Shore Stations Program, La Jolla - Scripps Pier
La Jolla Archive, 2025-03-14
File Size |
|
File Format |
|
Cite This Work |
To cite this particular archive, use: |
Description |
Surface temperature and salinity data: August 22, 1916 to December 31, 2024 |
Scope And Content | This resource includes files in the following formats: .xls and .csv. |
La Jolla Archive, 2024-11-25
File Size |
|
File Format |
|
Cite This Work |
To cite this particular archive, use: |
Description |
Surface temperature and salinity data: August 22, 1916 to June 30, 2024 |
Scope And Content | This resource includes files in the following formats: .xls and .csv. |
La Jolla Archive, 2024-07-24
File Size |
|
File Format |
|
Cite This Work |
To cite this particular archive, use: |
Description |
Surface temperature and salinity data: August 22, 1916 to March 31, 2024 |
Scope And Content | This resource includes files in the following formats: .xls and .csv. |
La Jolla Archive, 2024-04-02
File Size |
|
File Format |
|
Cite This Work |
To cite this particular archive, use: |
Description |
Surface temperature and salinity data: August 22, 1916 to December 31, 2023 |
Scope And Content | This resource includes files in the following formats: .xls and .csv. |
La Jolla Archive, 2023-09-30
File Size |
|
File Format |
|
Cite This Work |
To cite this particular archive, use: |
Description |
Surface temperature and salinity data: August 22, 1916 to June 30, 2023 |
Scope And Content | This resource includes files in the following formats: .xls and .csv. |
La Jolla Archive, 2023-06-30
File Size |
|
File Format |
|
Cite This Work |
To cite this particular archive, use: |
Description |
Surface temperature and salinity data: August 22, 1916 to March 31, 2023 |
Scope And Content | This resource includes files in the following formats: .xls and .csv. |
La Jolla Archive, 2023-05-31
File Size |
|
File Format |
|
Cite This Work |
To cite this particular archive, use: |
Description |
Surface temperature and salinity data: August 22, 1916 to December 31, 2022 |
Scope And Content | This resource includes files in the following formats: .xls and .csv. |
La Jolla Archive, 2022-10-24
File Size |
|
File Format |
|
Cite This Work |
To cite this particular archive, use: |
Description |
Surface temperature and salinity data: August 22, 1916 to December 31, 2021 |
Scope And Content | This resource includes files in the following formats: .xls and .csv. |
La Jolla Archive, 2022-07-07
File Size |
|
File Format |
|
Cite This Work |
To cite this particular archive, use: |
Description |
Surface temperature and salinity data: August 22, 1916 to December 31, 2020 |
Scope And Content | This resource includes files in the following formats: .xls and .csv. |
- Collection
- Cite This Work
-
Carter, Melissa L.; Flick, Reinhard E.; Terrill, Eric; Beckhaus, Elena C.; Martin, Kayla; Fey, Connie L.; Walker, Patricia W.; Largier, John L.; McGowan, John A. (2022). Shore Stations Program - La Jolla, Scripps Pier. In Shore Stations Program Data Archive: Current and Historical Coastal Ocean Temperature and Salinity Measurements from California Stations. UC San Diego Library Digital Collections. https://doi.org/10.6075/J06T0K0M
- Description
-
Scripps staff, Birch aquarists, and volunteers take daily temperature and salinity samples from the end of the Scripps Pier at the sea surface and near the bottom at a depth of about 5 meters. The proximity of Scripps Pier to the deep waters at the head of La Jolla submarine canyon results in data quite representative of oceanic conditions. Scripps Pier is a total of 1084 ft. long (330.4 M) and 22.5 ft. wide for most of its length. However it is 46.0 ft. wide at the end where the lab/pump house structure is situated with the west wall standing 88.0 ft. from the end of the pier (=996 ft. from the shore). The orientation is 277 / 97 degrees magnetic, 14 degrees East variation. The deck of the pier is 33.5 ft. above Mean Low Low Water (MLLW).
- Scope And Content
-
Daily surface and bottom temperature and salinity measurements for La Jolla, Scripps Pier Station.
- Date Collected
- 1916 to present (surface); 1926 to present (bottom)
- Date Issued
- 2022
- Principal Investigators
- Contributors
- Funding
-
California Department of Parks and Recreation, Natural Resources Division, Award #C1670003 (2017-2022), Award# C22820005 (2023).
- Geographic
- Topics
- Cartographics
Point: 32.866954, -117.257146
Formats
View formats within this collection
- Language
- English
- Identifier
-
Identifier: Melissa L. Carter: https://orcid.org/0000-0002-3458-4775
- Related Resource
- Arthur, R. S. (1954). Oscillations in sea temperature at Scripps and Oceanside Piers. Deep-Sea Research, 2, 129–148. https://doi.org/10.1016/0146-6313(55)90013-7
- Bellquist, L. F., Graham, J. B., Barker, A., Ho, J., & Semmens, B. X. (2016). Long-Term Dynamics in “Trophy” Sizes of Pelagic and Coastal Pelagic Fishes among California Recreational Fisheries (1966–2013). Transactions of the American Fisheries Society, 145(5), 977–989. https://doi.org/10.1080/00028487.2016.1185035
- Berner, L. D., & Reid, J. L. (1961). On the response to changing temperature of the temperature-limited plankter Doliolum denticulatum Quoy and Gaimard 1835. Limnology and Oceanography, 6(2), 205–215. https://doi.org/10.4319/lo.1961.6.2.0205
- Breaker, L. C. (2007). A closer look at regime shifts based on coastal observations along the eastern boundary of the North Pacific. Continental Shelf Research, 27(17), 2250–2277. https://doi.org/10.1016/j.csr.2007.05.018
- Breaker, L. C., & Carroll, D. (2021). A closer look at power-law scaling applied to sea surface temperature from scripps pier using empirical mode decomposition. Journal of Atmospheric and Oceanic Technology, 38(4), 777–787. https://doi.org/10.1175/JTECH-D-20-0124.1
- Breaker, L. C., & Flora, S. J. (2009). Expressions of 1976–1977 and 1988–1989 Regime Shifts in Sea-Surface Temperature off Southern California and Hawai‘i. Pacific Science, 63(1), 39-60. https://doi.org/10.2984/1534-6188(2009)63%5B39:EOARSI%5D2.0.CO;2
- Breaker, L. C., & Welschmeyer, N. A. (2010). Detecting, characterizing and determining the biological response to regime shifts off the California coast. https://escholarship.org/uc/item/9296c41b
- California State Water Resources Control Board, S. and M. S. (1980). California marine waters areas of special biological significance reconnaissance survey report.
- Carson, H. S., López-Duarte, P. C., Cook, G. S., Fodrie, F. J., Becker, B. J., DiBacco, C., & Levin, L. A. (2013). Temporal, spatial, and interspecific variation in geochemical signatures within fish otoliths, bivalve larval shells, and crustacean larvae. Marine Ecology Progress Series, 473, 133–148. https://doi.org/10.3354/meps10078
- Checkley, D. M. J., & Lindegren, M. (2014). Sea surface temperature variability at the Scripps Institution of Oceanography pier. Journal of Physical Oceanography, 44, 2877–2892. https://doi.org/10.1175/JPO-D-13-0237.1
- Cisneros-Mata, M. A., Brey, T., Jarre-Teichmann, A., Garcia-Franco, W., & Montemayor-López, G. (1996). Artificial neural networks to forecast biomass of Pacific sardine and its environment. Ciencias Marinas, 22(4), 427–442.
- Dayton, P. K., & Tegner, M. J. (1984). Catastrophic storms, El Niño, and patch stability in a Southern California kelp community. Science, 224(4646), 283–285. https://doi.org/10.1126/science.224.4646.283
- Dayton, P. K., Tegner, M. J., Parnell, P. E., & Edwards, P. B. (1992). Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecological Monographs, 62(3), 421–445. https://doi.org/10.2307/2937118
- Ebert, T. A. (2014). Temporal changes in the sea urchin Strongylocentrotus purpuratus along the west coast of North America. In Climate change perspectives from the Atlantic: Past, present and future (pp. 443–460). Universidad de La Laguna.
- Fumo, J. T., Carter, M. L., Flick, R. E., Rasmussen, L. L., Rudnick, D. L., & Iacobellis, S. F. (2020). Contextualizing Marine Heatwaves in the Southern California Bight Under Anthropogenic Climate Change. Journal of Geophysical Research: Oceans, 125(5). https://doi.org/10.1029/2019JC015674
- Gelpi, C. G., & Norris, K. E. (2008). Seasonal temperature dynamics of the upper ocean in the Southern California Bight. Journal of Geophysical Research: Oceans, 113(4). https://doi.org/10.1029/2006JC003820
- Gunnill, F. C. (1985). Population fluctuations of seven macroalgae in Southern California during 1981-1983 including effects of severe storms and an El Niño. Journal of Experimental Marine Biology and Ecology, 85, 149–164. https://doi.org/10.1016/0022-0981(85)90140-6
- Hanna, M. E., Chandler, E. M., Semmens, B. X., Eguchi, T., Lemons, G. E., & Seminoff, J. A. (2021). Citizen-sourced sightings and underwater photography reveal novel insights about green sea turtle distribution and ecology in Southern California. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.671061
- Hare, S. R., & Mantua, N. J. (2000). Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography, 47, 103–145. https://doi.org/10.1016/S0079-6611(00)00033-1
- Herrick, S. F., Norton, J. G., Mason, J. E., & Bessey, C. (2007). Management application of an empirical model of sardine-climate regime shifts. Marine Policy, 31(1), 71–80. https://doi.org/10.1016/j.marpol.2006.05.005 More ...
- Hester, F. J. (1961). Method of predicting tuna catch by using coastal sea-surface temperatures. California Fish and Game, 47(4), 313–326.
- Hubbell, M. (2016). El Niño, climate change and record high sea surface temperatures at the Scripps Pier. In Senior Project Research Paper.
- Jacobson, L. D., & MacCall, A. D. (1995). Stock-recruitment models for Pacific sardine (Sardinops sagax). Canadian Journal of Fisheries and Aquatic Sciences, 52, 566–577. https://doi.org/10.1139/f95-057
- Kim, S. Y., & Cornuelle, B. D. (2015). Coastal ocean climatology of temperature and salinity off the Southern California Bight: Seasonal variability, climate index correlation, and linear trend. Progress in Oceanography, 138, 136–157. https://doi.org/10.1016/j.pocean.2015.08.001
- Lindegren, M., & Checkley, D. M. (2013). Temperature dependence of pacific sardine (Sardinops sagax) recruitment in the California current ecosystem revisited and revised. Canadian Journal of Fisheries and Aquatic Sciences, 70(2), 245–252. https://doi.org/10.1139/cjfas-2012-0211
- Litzow, M. (2010). Four decades of climate-biology covariation in Alaskan and North Pacific ecosystems: an ecosystem indicator approach.
- Lynn, R. J. (1998). The state of the California current, 1997-1998: transition to El Niño conditions. CalCOFl Reports, 39, 25–49. https://calhoun.nps.edu/handle/10945/43400
- Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6), 1069–1079. https://doi.org/10.1175/1520-0477(1997)078%3C1069:APICOW%3E2.0.CO;2
- Matthews, J. B., & Matthews, J. B. R. (2014). Physics of Climate Change: Harmonic and exponential processes from in situ ocean timeseries observations show rapid asymmetric warming. Journal of Advances in Physics, 6(2), 1135–1171. https://www.researchgate.net/publication/275335025
- McClatchie, S., Goericke, R., Auad, G., & Hill, K. (2010). Re-assessment of the stock-recruit andtemperature-recruit relationships for Pacific sardine (Sardinops sagax). Canadian Journal of Fisheries and Aquatic Sciences, 67(11), 1782–1790. https://doi.org/10.1139/F10-101
- Mckinnell, S. M., & Crawford, W. R. (2007). The 18.6-year lunar nodal cycle and surface temperature variability in the northeast Pacific. Journal of Geophysical Research: Oceans, 112(2). https://doi.org/10.1029/2006JC003671
- Miller, E. F., & McGowan, J. A. (2013). Faunal shift in southern california’s coastal fishes: A new assemblage and trophic structure takes hold. Estuarine, Coastal and Shelf Science, 127, 29–36. https://doi.org/10.1016/j.ecss.2013.04.014
- Miller, E. F., Pondella, D. J., Beck, D. S., & Herbinson, K. T. (2011). Decadal-scale changes in southern California sciaenids under different levels of harvesting pressure. ICES Journal of Marine Science, 68(10), 2123–2133. https://doi.org/10.1093/icesjms/fsr167
- Nagarkar, M., Wang, M., Valencia, B., & Palenik, B. (2021). Spatial and temporal variations in Synechococcus microdiversity in the Southern California coastal ecosystem. Environmental Microbiology, 23(1), 252–266. https://doi.org/10.1111/1462-2920.15307
- Norton, J. G. (1999). Apparent habitat extensions of dolphinfish (Coryphaena hippurus) in response to climate transients in the California Current. Scientia Marina, 63(3–4), 239–260. https://doi.org/10.3989/scimar.1999.63n3-4261
- Norton, J. G., & Mason, J. E. (2003). Environmental influences on species composition of the commercial harvest of finfish and invertebrates off California. CalCOFI Reports, 44, 123–133. https://calcofi.org/downloads/publications/calcofireports/v44/CalCOFI_Rpt_Vol_44_2003.pdf
- Norton, J. G., Herrick, S. F., & Mason, J. E. (2009). Fisheries abundance cycles in ecosystem and economic management of California fish and invertebrate resources. In The Future of Fisheries Science in North America (pp. 227–244). Springer. https://www.pfeg.noaa.gov/
- Osborne, E. B., Thunell, R. C., Gruber, N., Feely, R. A., & Benitez-Nelson, C. R. (2020). Decadal variability in twentieth-century ocean acidification in the California Current Ecosystem. Nature Geoscience, 13(1), 43–49. https://doi.org/10.1038/s41561-019-0499-z
- Parnell, P. E., Miller, E. F., Lennert-Cody, C. E., Dayton, P. K., Carter, M. L., & Stebbins, T. D. (2010). The response of giant kelp (Macrocystis pyrifera) in southern California to low-frequency climate forcing. Limnology and Oceanography, 55(6), 2686–2702. https://doi.org/10.4319/lo.2010.55.6.2686
- Parrish, R. H., & Mallicoate, D. L. (1995). Variation in the condition factors of California pelagic fishes and associated environmental factors. Fisheries Oceanography, 4(2), 171–190. https://doi.org/10.1111/j.1365-2419.1995.tb00070.x
- Pineda, J. (1991). Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science, 253(5019), 548–551. https://doi.org/10.1126/science.253.5019.548
- Pineda, J. (1994). Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. Journal of Marine Research, 52, 427–458. https://doi.org/10.1357/0022240943077046
- Porter, D. L., & Shih, H. H. (1996). Investigations of temperature effects on NOAA’s next generation water level measurement system. Journal of Atmospheric and Oceanic Technology, 13, 714–725.
- Rasmussen, L. L., Carter, M. L., Flick, R. E., Hilbern, M., Fumo, J. T., Cornuelle, B. D., Gordon, B. K., Bargatze, L. F., Gordon, R. L., & McGowan, J. A. (2020). A Century of Southern California Coastal Ocean Temperature Measurements. Journal of Geophysical Research: Oceans, 125(5). https://doi.org/10.1029/2019JC015673
- Sefidmazgi, M. G., & Sefidmazgi, A. G. (2020). Causality analysis of climate and ecosystem time series. Evaluating Climate Change Impacts, 139–162.
- Shanks, A. L. (2006). Mechanisms of cross-shelf transport of crab megalopae inferred from a time series of daily abundance. Marine Biology, 148(6), 1383–1398. https://doi.org/10.1007/s00227-005-0162-7
- Skern-Mauritzen, M., Ottersen, G., Handegard, N. O., Huse, G., Dingsør, G. E., Stenseth, N. C., & Kjesbu, O. S. (2016). Ecosystem processes are rarely included in tactical fisheries management. Metroeconomica, 67(3), 165–175. https://doi.org/10.1111/faf.12111
- Sugihara, G., May, R., Ye, H., Hsieh, C. H., Deyle, E., Fogarty, M., & Munch, S. (2012). Detecting causality in complex ecosystems. Science, 338(6106), 496–500. https://doi.org/10.1126/science.1227079
- Sydeman, W. J., & Thompson, S. A. (2010). The California Current Integrated Ecosystem Assessment (IEA), Module II: Trends and variability in climate-ecosystem state. www.faralloninstitute.org https://www.faralloninstitute.org/
- Tegner, M. J., Dayton, P. K., Edwards, P. B., & Riser, K. L. (1997). Large-scale, low-frequency oceanographic effects on kelp forest succession: a tale of two cohorts. Marine Ecology Progress Series, 146, 117–134. https://doi.org/10.3354/meps146117
- Tommasi, D., Stock, C. A., Pegion, K., Vecchi, G. A., Methot, R. D., Alexander, M. A., & Checkley, D. M. (2017). Improved management of small pelagic fisheries through seasonal climate prediction. Ecological Applications, 27(2), 378–388. https://doi.org/10.1002/eap.1458
Referenced by
- License
-
Creative Commons Attribution 4.0 International Public License
- Rights Holder
- UC Regents
- Copyright
-
Under copyright (US)
Use: This work is available from the UC San Diego Library. This digital copy of the work is intended to support research, teaching, and private study.
Constraint(s) on Use: This work is protected by the U.S. Copyright Law (Title 17, U.S.C.). Use of this work beyond that allowed by "fair use" or any license applied to this work requires written permission of the copyright holder(s). Responsibility for obtaining permissions and any use and distribution of this work rests exclusively with the user and not the UC San Diego Library. Inquiries can be made to the UC San Diego Library program having custody of the work.
- Digital Object Made Available By
-
Research Data Curation Program, UC San Diego, La Jolla, 92093-0175 (https://lib.ucsd.edu/rdcp)
- Last Modified
2025-03-18