

Trile Pest

Blacts Canjou suthurlad condint stations.

Block Canyow-Shathenert

30" Wood Stave

50^{\prime}	head	at	$\$ 3.34$
100^{\prime}	n	n	4.75
150^{\prime}	n	n	4.96
200	n	n	$5.7 n$

Irrigating Flume Built with the Cement-Gun

Self-Supporting Flume with 2-In. Walls Built Up on Inside

Forms-130 Linear Feet per 8-Hour Shift

ONSTRUCTION is now under way on a 6 -mile line
of 4×6-ft. flume which will convey the high-level $A_{\text {water-supply }}$ for the Lindsay-Strathmore' irriga tion district in the San Joaquin Valley of California. The route follows along a side hill which has an average slope of 16°, and it was found possible to locate the the design to be adopted, experiments were made with full-size sections. As a result of these it was decided to build a cement mortar flume with 2 -in. walls, rein forced by wire longitudinal strips of wire mesh.
The walls were topped with beams which are connected at $8-\mathrm{ft}$. intervals by transverse struts consisting of $3-\mathrm{in}$. square rods incased in $2 \times 2-\mathrm{in}$. concrete blocks for protection against rust. These struts were cast in a yard and delivered ready for putting in place, but the longitudinal beams were cast in place by hand, using
forms braced from the outside.

> Proper Lap in Reinforcing Important

The side walls are reinforced with No. 6 woven wire mesh with $4-\mathrm{in}$. spacing both ways. The upper edg of the reinforcing in the side walls is bent around th ${ }^{\mathrm{d}}$-in. bars which reinforce the longitudinal beam 4 in deep and 6 in. wide. The floors, which are $2 \frac{1}{}$ in thick on solid cut, are reinforced with No. 12 woven
wire mesh with $5 \times 9-\mathrm{in}$. spacing. This reinforcing is ire mesh with $5 x 9-\mathrm{in}$. spacing. This reinforcing is reinforcing mesh comes in rolls 5 ft . wide, which allows nough for attaching to the beam reinforcing on top and lapping the floor reinforcing at the bottom.
At the beginning of the work, sand, cement and lime were placed in piles 100 ft . apart along the flume line. It was soon found, however, that by spacing the mate

rials at $50-\mathrm{ft}$. intervals the capacity of the plant was naterin 15%, and this spacing was thereafter used notor trucks delivered to the work by two 5 -to The use of the bench as a roadway was considered an advantage in helping to pack down the fills.
The Cement-Gun Train

The cement-gun was found to operate most economically when within 50 ft . of the point of application. To keep it within this range, a narrow-gage track was haid parallel to the flume and just below it, and the an moved along this track. Two trailers were he one to the truck on which the gun was mounted The one next the gun carries a 4×6 - ft. box, 1 ft . deep, and is equipped with an inclined screen, while the rear sack serves as a measuring box into which cement sand and lime are placed in proper proportions, mixed
dry and shoveled through the screen into the forward box. From the forward box it is shoveled into the gun hopper as required. The mix consists of one part cement plus 10% hydrated lime and $4 \frac{1}{2}$ parts of coarse sand.
A compact type of gas-engine-driven air compressor supplied by the cement-gun manufacturers provides air at $45-\mathrm{lb}$. pressure for operating the gun. This equip-2-in. pipe parallels the flume with taps every 100 ft With this equipment the operators claim that about $\mathbf{2 5 \%}$ additional capacity is secured through operating an additional nozzle so that throughout the work only one nozzle has been served by the gun. Water for the gun is supplied from a $2 \times 3-\mathrm{in}$. double cylinder pump
driven by gas engine and attached to the gun train. It

route follows a hillside
as found the the reinforcement in the walls is placed $1 \ddagger \mathrm{in}$. from was found that the two rubber nozzles, one at the dis- the inner face of the flume. This spacing is maintained charge end of the hose and one between the gun and the hose, required
of material.

Wood Forms Used Repeatedly
In starting a new section of the work the wood forms for the walls are first set up, and the reinforcing is attached to them. Inside forms only are used and are made up in 8-ft. sections from 1-in. tongue and groove
flooring, well studded and braced. A wood block is used

only inside forms are used
to keep the forms the required distance above the grades. The forms are kept well oiled and after having built
$1 \downarrow$ miles of flume were still in good shape. About 500 $1 \ddagger$ miles of flume were still in good shape. About 500
lin. ft . of forms are in use, and the cost of repairing these on the first $1 \frac{1}{2}$ miles of flume was $\$ 28$. Six standard curves are used, these being of $25-50$-, 100 150 -, 200-, $250-\mathrm{ft}$. radii respectively. The forms for these curves are made up of light steel plate fastened over a wood framework. In the use of these steel forms it is notable that considerable difficulty was experienced in making the cement a
by $1 \ddagger \times \frac{1}{2}$-in. bars placed between the form and the reinforcing wire, which are removed when the concrete is shot up to this depth. The side walls are shot first and immediately followed by the beam, which is poured by hand into a form clamped to the wall form. Material for this beam is provided by mixing the reound or wastage from the side walls with $33 \frac{1}{3} \%$ of placed along the bottom of the wall form. The forms are left on 24 hours and, finally, after their removal, the floor slab is shot with the gun.
Finished Flume Kept Full

Near the upper end of the flume, water from wells is pumped into it and allowed to flow down to a bulkhead near the point where work is under way. The fume is bulkheaded at close intervals with a wooden bulkhead faced with gunite, so that the mater i is kept wet during the setting period hosing expose always at hand for the gun and gates are provide at approximately one-mile intervals, so that after th llume is in operation its contents ase of a shutdown. Thes not believed that this additional expense was warranted.
On the completion of a section of the flume a bulkhead is placed at the downstream end and a hole cut in the bulkhead of the preceding day's work to admit the water. Previous to this, immediately after the side walls are constructed, burlap is hung over the wall and is sprinkled with a hose during the day time unti this section of the flume is core the curing has been admitted. With this proceunre cracks whatever.
To reduce the likelihood of cracks caused by settling. the thickness of the bottom slab is increased to 3 in .
over fills and the reinforcement is here made the same size as that used in the walls. The fills, however, are not over 10 ft . in height and average about 6 ft . They and before the rainy season was over. Specifications called for wetting and tamping in thin layers. However, on those fills which showed considerable settlement the flume was supported on three longitudinal beams running down to solid material. Culverts were placed for all watercourses, and cross drains of 6 -in. sewer tile were put under the flume at $400-\mathrm{ft}$. intervals to take care of all drainage from above the bench.
The gun crews work 8 hours per day, the crews usually being made up as follows: One gun operator; operator; 1 laborer shoveling sand, etc.; 2 laborer

CREW PLACED 130 LIN.FT. PER SHIFT
screening; 4 laborers mixing and turning material 10 laborers finishing grade and wrecking forms; men placing steel; 3 men setting forms.
This crew can place about 130 lin.ft. of flume, or 147 cu.yd., per 8-hour day. The side walls are shot covers the reinforcement, is $1 \frac{1}{2}$ in. thick; and after this has set for 20 min ., the final outside layer of $\frac{1}{2} \mathrm{in}$. thickness is applied. In shooting these walls it is found that the rebound which collects on the canvas strips at their base amounts to about 10% of the material which adheres to the forms. In remixing this rebound for use in the longitudinal beams it is considered as inert sand, although doubtless it has a certain per cent. of cement content. The crew which remixes this rebound follows initial set to have taken place between the two opera tions.
The flume was designed and constructed under the supervision of Stephen E. Kieffer, M. Am. Soc. C. E. consulting engineer, of San Francisco. The contract for the work is held by James Kennedy, of Los Angeles.

Harlem River Draw Is 389 Ft. Long

The swing bridge of the New York Central Railroad across the Harlem River, which was repaired by the Aug. 9 , has a swing span 389 ft . long, instead of 310 s by error marked on the drawing shown on p. 245.

Well Yields Different Water After Being Sealed a Year
Peculiar Phenomenon in Saratoga Springs DistrictChange from Soda to Salt Water with

Burst Upon Pumping
By Charles G. Anthony
BY CHARLES G. ANTHONY
Chilof Engineer, State Reservation, Saratoga springn, N. Y. $A_{\text {observed in the interesting natural phenomena }}^{\text {MONG }}$ Aobserved in the series of studies in the mineral water basin of Saratoga Springs conducted during the last few years, the following changes in the character of the yield of a deep well within a year after it was In may be noted.
In 1914 a 6 -in. drill hole was sunk to a depth of
420 ft at Saratoga Springs for purposes of experiment and observation. The drill passed through a heavy deposit of drift and Hudson River shales and terminated in limestone. The well was dry for 150 ft . Below this epth an abundance of water was found.
As soon as the shales were penetrated, a strong dor of sulphuretted hydrogen gas became apparent. A ew hours after the appearance of water in the hole, the mineral waters. The other springs and wells in this basin show large quantities of CO gas with now and then a trace of sulphuretted hydrogen, while the ex perimental bore showed large quantities of sulphuretted hydrogen and just a trace of CO , gas.
When a vessel was filled with the thick muck brought up by the sand bucket, the mass exhibited a curious behavior, rising and flowing over the edges of the vessel like batter until a large collection of gas that had armed in the interior of the mass came to the surface vessel then seemed to collapse and sink to about one-

SEX-INCH STREAK OF FROTHY WATER SPOUTED TO
half of its original volume. At short intervals this mass would again overflow the vessel until it was practically empty. The chemist found the gases thus given
off to be mainly sulphuretted hydrogen with a small
off to be mainly sulphuretted hydrogen with a smal
dmixture of hydro-carbon gases. Arter sand bucketed and pumped until all was thorling sample was obtained. The result of an analysis was a complete surprise, for the water had very few of the characteristics of the Saratoga waters. The water was quite devoid of chloride of sodium but carried a very large amount of sodium bicarbonate. All of the
other springs show sodium chloride ranging from a minimum of 2091 to a maximum of 10,646 p.p.m., yet not a trace could be found in this water.
The well was pumped to capacity (10 gal. per min.) for a few days, then closed by means of a cap place at the top of the $6-\mathrm{in}$. casing
analysis Unchanged at First
A year later the well was opened, a deep-well pump pumped in successive 20 rubber seals the well was 10 gal per min . were found, but a complete analysis showed the water to be the same as that analyzed the year before.
On the eighth day after pumping started the well belched forth great quantities of CO_{2} gas, the tubing and seals were thrown high in the air and were shortly
followed by a 6 -in. stream of frothy water that spouted over the tops of the neighboring pine trees. A separator was installed and careful measurement showed a ratio of 120 volumes of gas to 1 volume of water. An nalysis of this water showed that the mineralization had acrbled and that the water then contained 5707 p.p.r. of sodium chloride and no sodium bicarbonate. were 10,41

States Spend \$33,087,410 for Roads Out of a total outlay of $\$ 85,099,088$ for permanent year, $\$ 33,087,410$ went for the year, $\$ 33,087,410$ went for the construction of new ways. The figures given are from a report on the "Financial Statistics of States, 1916," compiled under the direction of Starke M. Grogan, chief statistician for statistics of states and cities, which will be published by S. L Rogers, U. S. Bureau of the Census, Washing ton, D. C. More than half of the road outlays covered by the total given were made in two states, New York Maryland expended $\$ 3,563,697$. The circular issued the Bureau of the Census says further: "Only 21 states-Maine, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, Ohio, Michigan, Minnesota, Maryland, Louisiana Montana, Idaho, New Mexico, Arizona, Utah, Wash ington, Oregon and California-expended money direct In on the construction and improvement of roads durportioned sums to counties, municipalities, etc., which were spent in the construction and improvement of
roads." roads."

Los Angeles Sets Large Velocity Meter in Open Conduit

Than 98 Per Cent.

By J. E. Philitps
Englineerink Department, Bureau of wator
THE NECESSITY 1 measuring and recording the daily amount of waer supplied to the City of Los Angeles, Calif., through the several main trunk lines led to the construction and installation of a large meter at the south portal of ranklin tunnel where the aqueduct supply enters the pper Franklin reservoir. It was designed by William Mulholland, chief engineer of the Los Angeles City Water Department, and built and installed under the upervision of Fred J. Fischer, chief mechanical engi eer.
The meter operates on much the same principle as the o-called velocity-crest meters, its size and the results obtained with it being the main features of interest. It was placed in an uncovered, concrete-lined conduit, at which point the quantity of water at present passing varies from 10 to 50 or more sec.-ft. The value of the meter as a measuring device depended upon whether or
not, between the above limits, a constant quantity of water would pass the meter per revolution of the pro peller wheels. The results obtained with the one in-

METER IN PLACE BEFORE WATER TURNED THROUG

4531

$+2$

MAP SHOWING
COMPARATIVE PLANS rON POWER DEVELOPMENT WATER FROM
WARNER AND SUTHERLAND RESERVOIRS LETTER OF SEPT: 25, 1917
LEGENO
 .

Bunnt mit. Déŕ.

$$
\begin{aligned}
& 34 \text { sec ft emini. })=\binom{723,8 \times 34}{24,610} \text { aft yeer } \\
& \text { with stinge of } \\
& 4 \frac{(24,610}{6,152 a \text { aft }}+a \\
& \begin{array}{l}
\text { what langer ondrit thi } \\
\text { ound fo delviricel in } 8 \text { mos }
\end{array}
\end{aligned}
$$

Namen-Pamo-Kits Conduit.
vithe sugplied t the
VISTA IRPIGATION DISTRICT
The thelloning comprasatio figmes are t shm the wet cost of emonating 22 n.g. 10 . of ramer water t rista hnjetime Reistist. The pimo + sutteland miter not
 met. Same to th divitad fime minit conduit at San paogmel to file Sun clenute

additimal cost menny to ciny
Pamot inthuland rrater 7 san demente via abre conduit selaged to cany spo mig:D croning sumta youl a, from noth t sinft aide onear East hine of Bumerso Ro.
(sen page 4)

San Clumente anx (aiil t mes sithichlinimax)

Sinthuland Lam
roy
Parrer amonist
hesume pipie
prons peaut
7 hm Danco Rem
ganns Leame
11 milis of somgel Cmanist" 25,000

20 miles rade a camy $30 \mathrm{~cm} . g$ म. $2 \mathrm{zs}=\mathrm{mo}$ San Clementollam
720,000
72,000
25,000
10,000

1,360,000

$$
\frac{690,000}{\$ 3,652,000}
$$

Sol. El zlotehor, orsico.

Deare Nir :-
This is a momo to corract your noton:-

(Jonsthe in foot)

	Tunnols	Motal Oondrit	$\begin{aligned} & \text { Izabsuro } \\ & \text { Iino } \\ & \hline \end{aligned}$	Hoac
Post's Pinc IFt. High Preanuro	11,000	A6,850	6,670	1,500
Sost's Korr Hit. Low Zreasuro	-	19,063	2,000	890
		15.43 milat	1.64 vilos	
3awn 31k itt. Olrouit High proseuro	19,550	54,082	4,460	1,5<2
Jow Hronsuro	820	36,233	2,250	849

Whotohor - 211s

Flotohor - B21I日 Altornsto
Via guoquaifo twanel HIGh Prossure Low fregmaxo

Themtial HP 1520
surb T $2 / 3 \quad 520 \times 2=1040$

$$
\text { Ifr } 3 / 481040=4 \frac{\left(34^{3} 0\right.}{780}
$$

$$
\text { 17) } \frac{2600}{\frac{97}{900}}(133
$$

$$
1 \text { sec } t=123.8 \text { acfr }
$$

Io produre this nieme $1^{11^{13 \times 60 \times 7} 170}$ porrer to S:D - suthore 592,000

$$
\begin{aligned}
& m+0 \quad 4 \%
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2,25-9,2084}{90,368.32} \\
& \frac{4119}{4055^{5} 95^{-}}=225,920 \\
& \begin{array}{r}
4119 \\
2055^{950}
\end{array} \\
& \begin{array}{l}
2883^{3} \\
3295-2
\end{array} \\
& 280000 \\
& \text { 200) } \frac{2,250,2008}{2240,000}
\end{aligned}
$$

$$
\frac{3}{4} 8 \frac{3}{4}=\frac{9}{16}=0,562
$$

. 113
$.1 / 3$
B
$\frac{1542 \times 62.4 \times 34}{5.50}=\frac{1159924(350.25}{\frac{5}{12}} \frac{3333.25^{5}}{333.0} \begin{gathered}998 \\ 4330\end{gathered}$

$860 \times 6.1 / 3.4 \times 18.5$

$$
\frac{5 \times 6.4 \times 18.5}{5.50}=\frac{141798}{\frac{18}{19} 98} \frac{10112.9}{1011.6}-1012
$$

D
$1376 \times 6^{11 / 3} 4 \times 34$

$$
\frac{x 63.4 \times 34}{5.3-0}=\frac{6.655}{\frac{68}{1,5} 135}-3405.6
$$

500
$\begin{aligned} & 1559(97.44 \\ & \frac{144}{119} \frac{876.96}{112} \frac{64}{64}\end{aligned}$

VOLCAN LAND \& WATER CO.
WARNER CONDUIT
CANAL
FOR GRADE OF .0005
SCALE : $\frac{1}{2}^{\prime \prime}=1$ '
W. S. POST, Eng' DEC. 1, 1910

VOLCAN $\angle A N D ~ \& ~ W A T E R ~ C O . ~$
WARNER CONDUIT
CANAL
FOR GRADE OF . 0005
x
SCALE: $\frac{1}{2}^{\prime}=1^{\prime}$
W. SOST, Eng' DEC. 1,1910

TWIN OATS DISTRIBUTIUIV.
thin in of potimisi γ the nuaite distablation Linegrom Merraui Reservoir cassed to a point on the hillside above Turn Oaks where a syphon caul fr used t cross the valley. The raise fir withy thmoshot length if- rub is in pie ins that the point of shier to the lame Gahsspphom represents a most miserly posit of, which o terminate Withe other istinworer

Memorandum.
The last atation or outlet Into the San Dieguito Reservoir and those proceeding it are as follows:

Station	Elevation
$244+51$	241.6
Conduit $(1606 \mathrm{ft})$.	
$228+45$	242.28
Syphon $(555 \mathrm{\rho t})$.	
$222+90$	242.84

A very dep section occurs between stations $228+45$ and $244+51$. To meet the back water of the reservoir from elevation 250 feet the side walls of the conduit are simply extended upward on $\operatorname{sam} \theta$ slope, $v i z ., 1 / 4$ to 1 .

(Longths in Miles)
Tabulation giting the result of three different powor surveys for the use of the Wamer-suthorland Waters


```
Col. Ed Fletcher,
Office.
Dear Sir:-
```

This is a memo to correct your notes:-

WARNER - SUTHEK AND HYDRO-ELECTRIC POWER DEVELOPMENT
(Iengths in feet)

	Tunnels'	Total Conduit	$\begin{aligned} & \text { Pressure } \\ & \text { Pipe } \end{aligned}$	Head
Post's Pine $\mathbb{M} t$. High Pressure	11,000	46,850	6,670	1,500
Post's Kerr 4 It. Low Fressure	-	24,063	2,000	890
		3.43 miles	1.64 miles	
Baum Blk IIt.Circuit High Pressure.	19,550	54,082	4,460	1,542
Low Pressure	820	36,233	2,250	849

Fletcher - Ellis
Blk Canyon - S.Y.Circuit

High Pressure	25,400	49,542	6,650	1,570
Low Pressure	820	$\frac{25,213}{2,480}$	860	
		14.16 miles	1.73 miles	

Fletcher - Ellis Alternate
Via Quoquaffe Tunnel

High Pressure	30,840	43,411	6,665
Low Pressure	820	$\frac{25,213}{13 \text { miles }}$	$\frac{2,480}{1,73 \text { miles }}$

1,576
860

Ed Fletcher Papers

1870-1955
MSS. 81

Box: 51 Folder: 7

Business Records - Water Companies - Volcan Land and Water Company - San Dieguito System - Warner Dam (Lake Henshaw) and associated projects - Sutherland-Black Canyon project field data

Copyright: UC Regents
Use: This work is available from the UC San Diego Libraries. This digital copy of the work is intended to support research, teaching, and private study.

Constraints: This work is protected by the U.S. Copyright Law (Title 17, U.S.C.). Use of this work beyond that allowed by "fair use" requires written permission of the UC Regents. Permission may be obtained from the UC SanDiego Libraries department having custody of the work (http://libraries.ucsd.edu/collections $/ \mathrm{mscl} /$). Responsibility for obtaining permissions and any use and distribution of this work rests exclusively with the user and not the UC San Diego Libraries.

