$$
\begin{aligned}
& \begin{array}{l}
\frac{V W}{\operatorname{Tmh}} \text { an } 7-3051 \text { s.en } \\
\frac{D}{} \\
\text { Topilagh Vaugh Hill }
\end{array} \\
& \text { orain } \\
& \text { FTAIN } \\
& \text { Helb (amildp. } \\
& \text { UNIVERSITY } \\
& \text { NOTE BOOK } \\
& \text { Jorky Konorake } 19 \\
& \text { noomes haill neple aud } \\
& \text { suier- numual ory }
\end{aligned}
$$

J. Bronowth

The Athenaemin Pall Mall Sur 1

Watker Rivel RA 3y000
Anthar
 milfziail Rapl 6fa325y Mrome

Branuma on
$J . B_{r}$
c/ Mrs
Reva Gerstein

AL Gaver

$$
\text { shmotural }+ \text { fin }^{\circ}
$$

fit is demimonts, monable affectsortersonues

Arginuinloss lut Akpphuyein λ une sumbloply is hosence of for 10 tereterial sumbatits shept ves 305 Mhnamue hind pooyotruyede

(6)

$$
\underset{I}{I}
$$

$$
\begin{aligned}
& a b c \\
& a c b
\end{aligned}
$$

P. Radeu \& A. Renyi

$$
1,2,3, \ldots \ldots, n
$$

n^{*} no of no's in set to mep.

$$
\sqrt{2+\frac{4}{3 \pi}} \leq \lim _{n \rightarrow \infty} \frac{n^{*}}{\sqrt{n}} \leq \sqrt{\frac{8}{3}}
$$

P. Endos

$$
\begin{aligned}
& 1,2, \ldots, i, 2 i, 3 i, \ldots, i^{2} \\
& \sqrt{2} \leq \frac{n}{\sqrt{n}} \leq 2+\frac{1}{\sqrt{n}}
\end{aligned}
$$

factorial

$$
\begin{aligned}
& 1,2,3, \\
& H=\underbrace{i_{n}}_{n^{*}=n_{0}, i_{2}, i_{3}, \ldots i_{n^{*}}} \geqslant \\
& \underbrace{\text { low in bound } H}_{\frac{n^{*}\left(n^{*}-1\right)}{2}}
\end{aligned}
$$

upper bound

$$
i=\text { largest integer } \leq \sqrt{n}
$$

$$
\underbrace{0,1,2,3, \ldots 9,10,20,30, \ldots 100}_{n^{*} \text { numbles }} 1,2,3, \ldots, i, 2 i, 3 i, \ldots ., i^{2} \min _{i}\left(\frac{n}{i}+i\right) \doteq 2 \sqrt{n}
$$

$$
\sqrt{2+\frac{4}{3 \pi}} \leq n^{*} \leq\left(2+\frac{1}{\sqrt{n}}\right) n
$$

ba
cb a
$c b$

Nor
ale

Expeninenll for ${ }^{5}$ Gu lunh for efar gine.

$$
c^{\prime}+z^{4} y t
$$

select in presence of $\frac{P I G}{X}$ an nebiludre for Y Ginst
(sume if thise sull he Z caust.)
Nithant TPG use

$$
\left(\frac{i^{+\frac{1 d 2}{2}} z^{x} y^{x}}{i^{42} z^{x} y^{+}}\right)
$$

seled di Mellolishose
Shains fruced an be z suest Yesssd or Z indwestale ISFPG on Y musa: The lattes ase
Hocs fory

Cal
 Cone ios

Unhohndies
Nolons

Enperiment
Trlerecer moseric - ${ }^{k}$ solhmubel destrag primong rispauve lust minble Mntijen-]* shundel destong seundory mesponse

$$
0000
$$

410)

Text.
Comptement, whice hos
the poocitherty mith reopred
th the antiyen inmbeluning rile
of the antastendy
$\frac{\text { Comploen ot }}{\text { muller - Chertivedet: }}$
Ronlop

$$
0
$$

$$
\begin{aligned}
& 4 \times 10^{4} \quad 410^{9} \text { reanice } \\
& 10^{9} \text { uth } \\
& \begin{aligned}
&\left(\begin{array}{l}
\text { M } \\
\text { Din })
\end{array}\right. \\
&=(N+N \\
&=\frac{N}{(N-m)} \frac{N!}{m!(v-m!}!
\end{aligned} \\
& \ln x=\ln N!-\ln x_{x}!-\ln (N-m)!
\end{aligned}
$$

(4) 9
(1) Haxris

$$
715 \quad 755
$$

Fanctas II Michisow Dehn thmopores if Benocerot Aldaini in Hen Hessen hers troy 2 Uldaine, Len Hesem have proyy Smatiar Penter Herry firnkel sill cohm
Whant gives fied premer

Epheshord

$$
\left.\right|_{\square / 4}
$$

(H)

0

$$
\begin{aligned}
& \text { Refotave } \frac{1}{+\frac{\Delta V}{4}} \\
& r=\ln \frac{a V_{0}}{1+\beta V}
\end{aligned}
$$

NE 1000 HणाMए $x=30$

$$
\frac{x}{10}=3
$$

merlap oll $\frac{i 000}{30}$

TTC. TTC. TTC. TTC TTC.
4)

$$
\begin{gathered}
A G A \\
G A A \\
A \not A G
\end{gathered}
$$

$$
\underset{A T P}{D N A} \longrightarrow \text { proy }
$$

0

$$
\begin{aligned}
& \text { TTRA SBC } \\
& -T A \\
& -T A \\
& -T A
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{GTP} \longleftarrow \\
& \text { UTP } \\
& \text { GTP }
\end{aligned}
$$

$$
\text { ATATAT } \rightarrow \text { pogy }
$$

$$
10^{-9}-10^{-5}
$$

$$
10^{-5} 4-10^{-2}
$$

KI $\sim 10^{-4} \mu$ Ennex.
$1 / 2$

$$
[G \rightarrow \in \neq M C
$$

$$
\begin{aligned}
& x \times 30 \\
& \text { boves seleched at me.tuen poshaxle it tho } \\
& \text { phanion } 3 \text { is foox shomig } 3 \text { is of } \\
& \text { (a) }=\frac{1}{2} \\
& \left.9=1-1-\frac{30}{1000}\right)^{27} \frac{30}{3000} \\
& 1-\left[1-\left(1-\frac{30}{1000}\right)^{27}\left(\frac{30}{1000}\right)^{3}\right]^{(30)}=T=\frac{4}{3} 10 \\
& -\frac{30}{1000} \frac{27}{1000} \text { mose m } \\
& \text { Ma 4000 } \\
& e^{-1 q_{106}} \quad(1-\xi) \\
& \begin{array}{c}
\left(1-\frac{1}{3} 10^{-5}\right)^{\left.\frac{3}{3}\right)^{3}} \frac{27000}{6} \frac{4000}{p^{2}}=e^{-\frac{4}{3} 10^{-2}}=1-\frac{4}{3} 10^{-2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& N=1000 \\
& \text { mexmps } \\
& 50{ }^{2}=\frac{(50)^{5}}{5!}=\frac{10^{50}}{25 \cdot 5!}=\frac{1100^{10}}{24 \times 100} \\
& \frac{1000}{50}=20 \quad \text { gives }=10^{\infty}
\end{aligned}
$$

Mifperent enmy.

$$
\frac{\operatorname{so)^{4}}}{4!}
$$

vex lin hicfir 10 nuelles.

$$
\begin{aligned}
& \mathrm{gm} / \sec =\frac{\mathrm{pu}}{\mathrm{~cm}^{3}} \frac{\mathrm{~cm}^{2}}{\mathrm{~cm}} \\
& {[D]=m_{m}} \\
& \left(\frac{t_{1 c}}{r_{0}}\right)=D \frac{\mathrm{cn}^{2}}{\mathrm{~cm}_{n}^{3}} \\
& B=\frac{\operatorname{com}^{2}}{\operatorname{sen}} \\
& \sqrt{\frac{a q}{d}}=\frac{1}{\sqrt{D}} \\
& =\frac{\sqrt{\sec }}{\operatorname{con}} \\
& \sqrt{\frac{\tau}{ब^{2}}}=\frac{1}{\sqrt{D}} \\
& D \frac{C_{\text {unc }}}{d^{2}} \pi=\frac{C_{m e}}{2} \\
& \begin{array}{c}
\tau=\frac{d^{2}}{D} \quad \frac{\tau}{d^{2}}= \\
\sqrt{\frac{\sigma}{d^{2}}}=\frac{1}{\sqrt{\Delta}}
\end{array} \\
& d=10^{-3} \mathrm{~cm} \\
& \frac{1}{\mathrm{C}}=\frac{\sqrt{10^{-5}}}{10^{-6}} \\
& \tau=\frac{10^{-6}}{\sqrt{D}-4} \\
& 1 \text { mhame } \tau=3 \times 10^{-4} \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& Q^{x}==\frac{8}{2} \frac{y}{\text { Binnurice }} \\
& Q=1-\frac{4}{3} 10^{-2} \quad Q=1-\xi
\end{aligned}
$$

$$
\begin{aligned}
& x \varepsilon \cong 1 \\
& B=\left(\frac{30}{10000}\right)=\frac{1000^{30}}{30!} \\
& 30!=e^{-30}(30)^{30} \sqrt{2 \pi 30} \\
& B=\frac{30^{30}}{e^{-30} \sqrt{2 \pi 30^{\circ}}} \simeq 10^{30} \\
& =30^{30} \\
& e^{-x \varepsilon}=10^{-30} \\
& 10^{-\frac{x \varepsilon}{2 / 3}} \\
& x=\frac{2,3 \times 3000}{\frac{4}{3}} \frac{x \xi}{2,3}=30
\end{aligned}
$$

Fates

Predicate....
...the part of a sentence or clause that expresses what is said of the subject and that usually consists of a verb with or without objects, complements or adverbial modifiers

Coses)

$$
\begin{aligned}
& \Sigma=\frac{81}{106}=0.8 \times 10^{-4} \frac{30^{4}}{24} x \\
& =410^{-6} 30^{4}=4 \times 81 \times 10^{-2} x \\
& e^{-4 x}=k 0^{-175 x}=\frac{1}{\infty} \\
& B=\frac{10^{12}}{12}=410^{1.7}=10^{-} \\
& \varepsilon=\frac{0}{106}=10^{-4} \\
& b=\frac{(30)^{4}}{24}=\frac{8010^{4}}{24}=4 \times 8010^{2} \\
& \begin{aligned}
\varepsilon= & \left.10^{-12} ; b=\frac{330}{2}\right]^{4}=4 \times 80 \times 100 \\
& \sum b=410^{-8}
\end{aligned} \\
& e^{-516 x} \equiv 10^{-\frac{4}{213} 10^{-8} x}
\end{aligned}
$$

$p=$ Prombirlil hnut 4 seleelud ab rundon at It all - pvesent in aunther senderu set 130

$$
\begin{aligned}
& \left.=\int_{-3}^{\infty}=\int_{4}+\frac{10}{4}+6\right)\binom{4}{30}=b \\
& P=1-\frac{30}{11 x}^{4} \text { sut all mesent } \\
& \text { PHmat Mis is done for }\binom{4}{30} \text { chasres } \\
& =\left\{1-\left(\frac{30}{1000}\right)^{4}\right\}^{6} 1-\left(\frac{1}{1000}\right)^{4} \\
& \text { that it lwed for it sets Nf30 } \\
& A=\frac{1}{3} \text { bax } \quad B=\left\{\begin{array}{l}
30 \\
30
\end{array}\right\} \\
& \left\{1-\left(\frac{B}{1000}\right)^{4}\right\}^{b x}=\frac{1}{B} \\
& \{1-\varepsilon\}^{b x}=\frac{1}{B} \\
& e^{-\varepsilon b x}=\frac{1}{B}
\end{aligned}
$$

Opnanlay cure $N=10^{4}$

$$
\begin{aligned}
& \text { E(1- } \left.\frac{3}{1100}\right)^{30} \text { is mand ofvect } \\
& \left(1-\frac{3}{100}\right)^{30 x}= \\
& e^{-\frac{x}{10}}=10^{-\frac{x}{23}}=\frac{1}{\frac{1}{4 \times 30} 1050} \\
& \frac{120}{100}=10^{70} \quad B \quad=10^{-70} \\
& x=870 \\
& \text { nester } \\
& \begin{array}{l}
x \cong 23 \times 40=\frac{1600}{300} \\
\text { Bhenctit }
\end{array} \\
& 23 \times 1600
\end{aligned}
$$

de Capre

$$
\begin{aligned}
& e^{-\xi b}=\frac{1}{3} \quad 10^{-\frac{\sum b x}{2,3}}=\frac{1}{A} \\
& \Sigma=\left(\frac{3}{100}\right)^{4}=\frac{\infty 1}{106} \approx 8010^{-6} \\
& 6=\frac{30^{4}}{24}=\frac{\infty 1}{24} 10^{4} \\
& \begin{aligned}
\frac{\varepsilon b}{213} & =8010^{-6}+8 \times 4 \times 10^{2} \\
& -64 \times 4 \quad-2
\end{aligned} \\
& =64 \times \frac{4}{2+3} \quad 10^{-2}=11010 \approx 1 \\
& 10^{-x}=\frac{1}{3} \quad x=57 \\
& \frac{(1120)_{1}^{30}}{30!30}=\frac{10^{90}}{10^{33}} \cong 10^{57}
\end{aligned}
$$

$$
\begin{aligned}
& e^{-30} 3^{30} 10^{30} 1 中^{10}
\end{aligned}
$$

$$
\begin{aligned}
& 30!=e_{-30}^{-30} 30^{30} \times 14 \\
& 10^{-\frac{30}{2.3}} 3^{30} \times 10^{30} \times 14
\end{aligned}
$$

$$
\begin{aligned}
& N=10^{4} \\
& \mu=30 \\
& \text { 良 }=4 \\
& b_{0}=\binom{4}{30}=\frac{30^{4}}{4!}=\frac{M 1 \times 10^{4}}{24} \\
& -\sum 6 x=\frac{1}{B} \\
& \Sigma=\left(\frac{30}{10^{3}}\right)^{4}=\frac{81}{10^{12}}=10^{-10} \\
& 30^{\prime} \cong 10^{50} \\
& B=\binom{30}{1010}=10^{70} \\
& \begin{array}{r}
-\frac{10^{-10} \cdot 310^{4}}{2.3} x=10
\end{array} \\
& 10^{-6} w=70 \\
& x=7010^{6} \\
& \text { or } x=10^{6}
\end{aligned}
$$

sunliwly mpperevt servies so mertap sumiler 10 gित les of saf $x=50$. ie. les then

$$
\begin{aligned}
& -\sum 6 x \\
& \Sigma=\left(\frac{5}{10^{3}}\right)^{\frac{6}{6}}=\frac{1.510^{4}}{10^{18}} \\
& l=\binom{6}{50} \simeq \frac{(50)^{6}}{6!}=\frac{125)^{2} 10^{6}}{24 \times 30} \\
& \frac{46 x}{23} \quad B=\binom{50}{104} \\
& \text { Gmerlinut } \quad \frac{\sum b x}{2.3}=1 \text {. } \\
& b=\frac{1,510^{4} 10^{6}}{7,5100} \\
& b=210^{7} \\
& \Sigma=1.510^{-14} \\
& \begin{array}{l}
\varepsilon b=3 \cdot 10^{-7} \\
\varepsilon b \approx 10^{-7}
\end{array} \\
& 30 v^{3} 0 \\
& -10^{6} \\
& \begin{array}{c}
\varepsilon=1.510 \\
\varepsilon 6=\left(\frac{50}{\left.10^{4}\right)^{6} \cdot \frac{(50)^{6}}{6!}}\right. \\
(2500)^{5}=100 \times 10^{6}
\end{array}
\end{aligned}
$$

Yexpremment
1.) Dubraioneren
yIV.) Gostualish
to Hen nerovive in loyhy x tomis wo lo loptat
(a) Lott minth sumel alome
2.) minlalish nerpouse in bight alone Min ade panuel
\& Stimes (inth remifroencisf) thine hest mith sumed
mertoprunbleer or uneloporm a_{i} whechevier is ounder

$$
\begin{gathered}
50!=e^{-50} 50^{50} \sqrt{2 \pi 50} \\
\sum_{-22}^{100^{50}}=10^{84} \\
50!\times 17 \\
B=\frac{10^{63}}{10^{603}}=10^{137} \\
\sum 6 x=10^{-137}
\end{gathered}
$$

$$
F \longrightarrow
$$

$$
\frac{\left(1-\frac{1}{B}\right)}{\left.\left(1-\frac{B}{B^{3}}\right)^{3}=\left(\frac{1}{e}\right) \sqrt{(0, k \cdot}\right)}
$$

dowese $\frac{x}{2}$. matule that natne of the en
fit $\sqrt{\frac{1}{e}}$

$$
50!
$$

Lifferewt apprinth
$\binom{30}{30}=\frac{(30)^{3}}{3!} \approx \frac{30 \text { en }}{6}=5000$
$30,26,22$
$x^{50 m}$
$\binom{3}{26}$

$$
\left\{\frac{\text { Ainelupmuntally det. }}{\text { mennus. }}\right.
$$

10^{4}

$$
\binom{10^{4}}{3}=\frac{10^{12}}{3!}
$$

luN
$30 \times 500 \mid=15000 \pi 10^{4}$

$$
\text { for } \begin{aligned}
m=2 \text { (mansur }
\end{aligned} \begin{aligned}
\& b x
\end{aligned}
$$

$\left(\frac{3}{1000.1}\right)^{4}$

100 elencurs - sels of 5
a) share O

$$
\frac{100}{5}=20
$$

b) thare 1

$$
\begin{aligned}
& 100-1=99 \\
& \frac{99}{4}=24 .
\end{aligned}
$$

$$
\begin{aligned}
-\left(\frac{n}{N}\right)^{4}\binom{30}{4} \times & \approx \ln B \\
x & =\frac{N^{4}}{n^{4}\left(\frac{30}{4}\right)}
\end{aligned}
$$

Noles

$$
\text { Antiblition of a } \frac{\text { ruce coud }}{\text { mporectand }}
$$ axtuipuisheal respouse. shomes thet of I must cennmumicnle mith oll E-s

*ymiociong if mater
2 nivanil vande timming. inefubitrian to ane if them Whining in hibitaz, Mameter fo

So thir mecornuy axtinatian

lewity componend shism is weinporeed inve und souse newrous E are frouspioptgid a miveriy M mbich tins more firbert fram Visunt
thon nomal
Anestion : is firmall exmpsuor reppouste
struper Plion vespouse to ligut alune?
benthon of prife

Dipmes that nathimy
cunderveause is secensised. Pretichun: estimpinthiny ane mith met now expisfuish poentlocampouncol
144 beotam
imprantant $p, 56$
Smarram
traymented

Shameô shin

Rennanent extríctiser:
A huw stricy nenous $=$ sure pibers to t to but not to eifector
Revvery after extimetion:
Assome threshalil distivhotiun
thenges
Dunble sipmer tutsobst Luele muprencubs suly Nues He stall resprunde tr suvitle signue thresth hovel
dibhilutsen,
0. 143 cumanume sxy anolit sis vel candit lameh Bumpr resprome
movivednflote caupel sopen exting nish viourl some nemom E's Movere
sühiletisisen mille दiveres aps mutiel कumuns $E=$ relunger
pire midertmena

$$
V=10^{4} \quad J 0
$$

(x)
50

(m)

\underline{L} han
$\frac{\text { Arunsinctuer }}{\text { Indistunct }}$
hxumnither IT

$$
\frac{\sqrt{1}}{1+\sqrt{2}}
$$

$$
\Leftrightarrow
$$

AC

Vass 1948 p.ll55-58
Abo is sune anflor
Indalgationes Muathern atsica Villo 1940 p.379- 2
7. Leceh ρ C.B. Hars Haselgrave

Nute on rertieded deflerence baseis

Fnom ML2utua Meath tre.

$$
\text { Val } 32.1957 \quad \text { p. } 2200-231
$$

Also suce puthen pire lines kintis o que)

Vol 31, 1956 pi 160-169 Prap. HAVBRICH
\downarrow Düchord
\checkmark Düchord
mproer Limit
mper hinit VN
30
20 witl do eurily

$$
\begin{aligned}
& 1,1,110 \\
& \begin{array}{lllllll}
1 & 0 & 1,2,3, & 10 \\
20 & 3 & 0 & 40
\end{array} 100
\end{aligned}
$$

1
Behn
an in
miso >0 (iso
Q Rudolf Preisendorfer $\frac{10}{\text { 20 exely }}$ vo
Pawry (Cloy) B
Braner
lpal \uparrow poblemin of aded muler thems mondes apel in Rl. Envimuening 7 - Whisha Mithell fredety 1045 p. 55 H 66 qudn"s Gai
fovet Veverinuidithe Keall Wetnchappeen on the wnemingtioncif $1,2,3$ op n
$\frac{x^{x}\left(\frac{n^{x}-1}{2}>x(100)\right)}{2}>x$

$$
\sqrt{2} \leq \frac{n^{*}}{\sqrt{n}} \leq 2+\frac{1}{\sqrt{n}}
$$

Whter Dor nemal nellows is such thot antren the fult amoletseme day is preventex moth
In wh matlet A An lafet
hot bero toob inpme from the
nemrano E colven when T_{2} duy weleck
hro heen hools emntitbenert ho
the env povizol nipuel is spesended
 कo thots mehifureed, the suter numanoes mhith huet hewe
bunponfed doning suen th the vist fi 居E mitle tare
be caciled and with ferie, Bow unr witwosk medel if a nomsen E prowh bas heen mingion hen mith he setf) fires hint the nemran F does not hive t menran Ft mull be cansed ho porse

