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Abstract

This project investigates the sleep behavior of northern elephant seals by leveraging a
comprehensive dataset derived from EEG, TDR, and SR recordings across various
environments including laboratories, natural habitats, and open sea settings. Key
accomplishments include the development of a robust data processing pipeline, the
application of advanced machine learning models to classify sleep stages, and the
creation of visual tools to aid in data interpretation and reporting. Our findings reveal
significant patterns in sleep behavior, contributing to a deeper understanding of marine
mammal physiology and their adaptations to different environments.

Introduction

Understanding the sleep patterns of northern elephant seals presents a unique challenge
due to their diverse and dynamic habitats. These marine mammals exhibit complex
behaviors that require sophisticated data collection and analysis methods. The primary
challenge was to develop a methodology that could accurately classify and analyze sleep
stages from a variety of data sources including EEG, ECG, and motion sensors.

Problem Formation: To address this challenge, the project formulated a data science
problem that involves processing and analyzing large volumes of heterogeneous data to
identify and classify sleep stages in seals.

The primary objectives were to:

● Develop a data collection and processing pipeline.
● Apply machine learning models to classify sleep stages.
● Integrate various data types to enhance the accuracy of sleep stage classification.

Questions:

1. How can we accurately classify sleep stages in seals using EEG and motion data?
2. What are the key features that differentiate various sleep stages?
3. How do environmental factors influence sleep patterns in northern elephant seals?



4. Can we improve classification accuracy by integrating multiple data sources?
5. How do sleep patterns vary across different environmental settings (lab, wild,

sea)?

Related Work:

How does this study differ from, or expand upon, any previous work carried out in this
field, if any?

Previous studies have investigated sleep in marine mammals using similar
electrophysiological data, but these efforts were often limited by the scope of data and the
methodologies employed. This project builds on these foundational studies by integrating
multiple data types and applying advanced machine learning techniques, which have
shown promise in handling complex, high-dimensional data.

For instance, studies on other marine species have demonstrated the utility of EEG and
motion data in identifying sleep stages, but this project aims to push the boundaries by
incorporating additional environmental data and employing more sophisticated analysis
techniques

Data Acquisition

Data Sources: The project utilized a rich dataset collected from various instruments
including EEG, ECG, and motion sensors. The data collection process involved
deploying custom non-invasive head caps and waterproof housings on the seals to record
their physiological and environmental parameters. Data sources included:

● EEG (Electroencephalogram): Recorded brain waves to monitor sleep stages.
● ECG (Electrocardiogram): Captured heart activity.
● EOG (Electrooculogram): Tracked eye movements.
● EMG (Electromyogram): Monitored muscle activity.
● Motion Sensors: Recorded three-dimensional movement and environmental

parameters such as depth, temperature, and illumination.

Volume, Variety, Velocity:

● Volume: The dataset included extensive recordings from multiple seals over
different periods, resulting in large volumes of time series data.



● Variety: The data encompassed various types of physiological and environmental
signals, providing a comprehensive view of the seals' behavior.

● Velocity: Data was continuously recorded, with electrophysiological signals
sampled at 500Hz and environmental/motion sensors at ~36Hz, later
down-sampled to 8-second intervals for analysis.

Technologies: Data was accessed and processed using a combination of cloud storage
(Qumulo), Python for data manipulation and analysis, LabChart for physiological data
visualization, MATLAB for advanced signal processing, and TimescaleDB for efficient
time series data storage. Utilizing diverse technologies enabled the integration of various
data sources and facilitated comprehensive analysis

Data Collection: Data was collected from both controlled environments (laboratories and
pools) and natural settings (shore and out at sea). This involved attaching sensors to the
seals using custom-designed head caps and housings that ensured data integrity while
allowing the seals to move freely. There were instances where data collection was
interrupted that led to the exclusion of certain data segments. Nevertheless, the devices
employed were robust enough to capture accurate data during periods when the seals
were engaged in typical behaviors.

Data Sizes: The data sizes varied depending on the recording duration and the number of
sensors used. Typically, each deployment generated gigabytes of data, which required
efficient storage and processing solutions. For example, much of the modeling and testing
that was conducted was not done on the entire data set but on specific sets.

Data Pipelines: The data pipeline was set up to handle large volumes of data efficiently.
This involved:

● Data Ingestion: Data was ingested from various sources into a central repository.
● Data Cleaning: Noise and artifacts were removed to ensure data quality.
● Data Transformation: Raw data was transformed into formats suitable for analysis.
● Data Storage: Processed data was stored in TimescaleDB for efficient querying

and retrieval.

Setup for Data Environment

To manage the vast amount of data collected, the project utilized a combination of cloud
and local resources. The primary storage solution was the OpenStack Object Store, which
provided robust cloud storage for both raw and processed data files.



This setup was crucial for handling the high volume of data, which included 2GB of raw
files and 200MB of processed EDF files. Additionally, training labels, which were
manually created, were also stored in the OpenStack Object Store, ensuring all data
components were centrally located and easily accessible.

A key decision in the data pipeline setup was the use of cloud storage versus local
storage. Cloud storage, through the OpenStack Object Store, was chosen for its
scalability and accessibility. This choice allowed team members to access data remotely
and facilitated collaboration. For processed data, TimescaleDB was selected as the
database solution. TimescaleDB's ability to handle time-series data efficiently made it an
ideal choice for storing the processed features and training labels.

Data Preparation

Data preparation was a critical phase, addressing several quality issues inherent in the
datasets. Outliers in motion and pressure data were identified and handled, and
misaligned time indices in labels were corrected. The transformation of raw data into
analyzable formats involved spectral signal processing to extract features at a 1 Hz
sample rate, peak detection for heart rate extraction from ECG data, and Fourier
transformation for calculating EEG delta power.

The significance of these pre-processing methods lay in their ability to ensure clean,
aligned datasets that were crucial for effective model training. Feature selection and
management were iterative processes, involving refinement based on model performance.
Key features included heart rate characteristics, delta spectral power, and motion data, all
of which were managed meticulously to optimize the model's performance.

Data preparation was a vital phase of the project, involving a series of meticulous steps to
address quality issues, transform raw data into usable formats, and ensure the datasets
were properly aligned for effective analysis and model training.

Quality Issues:

Several quality issues were identified in the raw datasets, particularly in the motion and
pressure data. These datasets exhibited outliers, which were likely the result of sensor
errors or inconsistencies in data collection. To address this, outlier detection and removal
techniques were applied. This process involved analyzing the distribution of the data and



identifying values that deviated significantly from the norm. These outliers were then
excluded to prevent them from skewing the results of subsequent analyses.

Another significant quality issue was the misalignment of time indices in the labels. This
misalignment occurred during the manual labeling process and could lead to inaccurate
model training if not corrected. The time indices were carefully reviewed and realigned
with the corresponding data points to ensure accuracy.

Transformation and Integration:

The raw data required extensive transformation and integration to be suitable for analysis.
This process involved several steps of spectral signal processing to extract meaningful
features from the high-frequency data. For example, the ECG data, recorded at 500Hz,
needed to be processed to derive heart rate features. This involved peak detection to
identify R peaks in the ECG signal, from which heart rate could be calculated as the time
interval between successive peaks. Additional features such as the average heart rate and
the standard deviation of heart rate were also derived from these calculations.

For the EEG data, a Fourier transformation was performed to isolate the power of signals
within the delta frequency range (0.5 - 4 Hz). This delta power is a crucial indicator of
sleep stages, particularly slow-wave sleep. The transformation process involved applying
a Fourier transform to the EEG signals and then calculating the power within the
specified frequency range over rolling windows. This approach allowed for the extraction
of delta power features at a 1 Hz sample rate, aligning with the target variable's
frequency.

Significance of Pre-processing Methods:

The pre-processing methods used in this project were critical for ensuring that the data
were clean, aligned, and suitable for model training. By addressing quality issues such as
outliers and misaligned time indices, the team ensured that the datasets reflected accurate
and reliable information. The transformation of raw data into analyzable features enabled
the extraction of meaningful insights that were essential for the development of the
machine learning models.

Feature Selection and Management:

Feature selection and management were iterative processes, guided by the performance of
the models. Initially, a broad set of features was extracted from the raw data, including
heart rate characteristics (e.g., mean heart rate, standard deviation of heart rate, very



low-frequency power), delta spectral power from EEG signals, and various motion data
features (e.g., overall dynamic body acceleration (ODBA), pressure, and gyroscopic
data).

These features were evaluated based on their contribution to model performance.
Features that significantly improved model accuracy were retained, while those that did
not contribute meaningfully were discarded. This iterative process involved repeated
cycles of model training, performance evaluation, and feature refinement. The goal was
to identify and retain the most relevant features that would enhance the model's ability to
accurately classify sleep states.

Data Cleaning, Wrangling, and Feature Engineering:

The data cleaning and wrangling process involved several key steps to prepare the data
for analysis:

1. ECG Data Processing: Peak detection algorithms were applied to the ECG
signals to identify R peaks, enabling the calculation of heart rate features. These
included average heart rate, standard deviation of heart rate, and very
low-frequency power.

2. EEG Data Processing: Fourier transformation was used to calculate delta spectral
power, focusing on the 0.5 - 4 Hz frequency range. This process involved rolling
window calculations to maintain a 1 Hz sample rate.

3. Motion Data Processing:Motion data, including ODBA and pressure, were
cleaned by removing extreme outliers. These features required minimal processing
compared to the electrophysiological data.

4. Integration of Processed Features: All processed features were integrated into a
unified dataset, aligning them by time indices to ensure consistency across
different data types.

Analysis Methods

Identification of Preliminary Analysis Methods

The identification of methods for preliminary analysis was driven by the need to
understand the complex electrophysiological and motion data collected from Northern
Elephant Seals. The project began with Exploratory Data Analysis (EDA) to uncover
patterns and insights within the dataset. Tools such as MNE-Python were employed to
handle and visualize the EDF files containing electrophysiological data. This initial



exploration revealed significant features, such as the prominence of delta waves (0.5 - 4
Hz) in EEG signals during slow-wave sleep, which contrasted with their absence in REM
sleep and minimal presence in other stages.

Using EDA was significant because it allowed the team to identify key characteristics
and anomalies in the data, guiding subsequent analytical steps. For example, the
identification of delta waves as a critical feature influenced the decision to include
spectral power calculations in the feature extraction process. This method also
highlighted the need for careful preprocessing, such as time alignment of labels and
removal of outliers, ensuring the integrity of the data used for model training.

Influence on Project Design and Data Science Questions

The insights gained from EDA influenced the design of the project's next steps by
refining the data science questions. Initially broad questions like "What is the best
methodology for sleep scoring in marine animals?" were further defined to focus on
specific aspects such as the differentiation of sleep stages using spectral features and
heart rate variability. This focus helped streamline the analysis process and directed
efforts towards the most promising features and models.

Application of Analysis Techniques

Applying analysis techniques to the data involved several key steps, driven by the need to
derive meaningful insights and prepare the data for machine learning models. The
process included:

1. Feature Extraction:
○ ECG Data: Peak detection algorithms were used to identify R peaks in the

ECG signals, allowing the calculation of heart rate features such as average
heart rate and very low-frequency power. These features were crucial for
capturing heart rate variability, which is indicative of different sleep stages.

○ EEG Data: Fourier transformations were applied to the EEG signals to
calculate delta spectral power. This involved decomposing the EEG signals
into their constituent frequencies and summing the power within the delta
range. This feature was essential for identifying slow-wave sleep.

○ Motion Data: Features like overall dynamic body acceleration (ODBA)
and pressure were calculated, with outliers removed to ensure clean data.
These features helped differentiate between active and restful states.

2. Preliminary Modeling:



○ Initial modeling efforts involved testing various machine learning
classifiers, including Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), and Random Forest. GridSearchCV was used to tune
hyperparameters and identify the best model configurations.

○ A significant challenge identified during this phase was the misalignment
of time indices, which initially led to poor model performance. Correcting
this misalignment significantly improved model accuracy, demonstrating
the importance of precise data preprocessing.

3. Feature Importance:
The evaluation of feature importance was a critical component of this project,
providing valuable insights into which features significantly contributed to the
model's performance. Understanding feature importance helped in refining the
feature set, improving model accuracy, and enhancing interpretability.

Methodology:

Feature importance was assessed using the inherent capabilities of the
Random Forest and LightGBM (LGBM) classifiers. These models offer
methods to calculate the importance of each feature based on how
frequently and significantly the feature is used in the decision-making
process of the trees.

Random Forest Classifier:

The Random Forest classifier was utilized because it provides high
accuracy when it comes to complex datasets. It effectively handles missing
values and outliers, ensuring reliable performance even with occasional
data interruptions, which was not uncommon in the gathering of
physiological data of the seals. The Random Forest classifier also offers
valuable insights into feature importance, helping to identify the most
impactful features for the model.

Each tree in the Random Forest uses a subset of features to make decisions,
and the frequency with which a feature is used across all trees indicates its
importance. The key steps involved in evaluating feature importance with
the Random Forest classifier were:



1. Training the Model: The Random Forest model was trained on the
processed dataset, incorporating features such as delta spectral power from
EEG signals, heart rate variability, and motion data.
2. Calculating Importance: After training, the feature importance
scores were extracted. These scores represent the average contribution of
each feature to the reduction in impurity across all trees.
3. Interpreting Results: Features with higher importance scores were
identified as crucial for the model’s predictions. For instance, delta spectral
power and very low-frequency power from heart rate data emerged as
significant features, highlighting their critical role in differentiating
between various sleep stages.

LightGBM (LGBM) Classifier:

The LGBM classifier also provided feature importance metrics, which were
essential for understanding the influence of different features. LGBM’s
gradient boosting framework enhances interpretability by returning
importance scores that reflect the feature’s impact on the model's decisions.
The process included:

1. Training the Model: The LGBM classifier was trained using the
same dataset, ensuring consistency in feature evaluation.
2. Evaluating Feature Importance: The importance of each feature
was calculated based on its contribution to the decision trees within the
boosting framework. The LGBM classifier’s ability to handle large datasets
efficiently made it particularly suitable for this project.
3. Refining Features: The results indicated which features had the
highest importance values. These insights guided the refinement of the
feature set, focusing on the most impactful features to enhance model
performance. For example, it was found that the epoch size for calculating
Welch power over EEG data had a significant impact, contrary to initial
expectations based on preliminary analyses.

Key Insights from Feature Importance:

The analysis of feature importance revealed several critical insights:



● Delta Spectral Power (EEG): This feature was consistently
identified as a crucial indicator of slow-wave sleep, emphasizing its
importance in sleep stage classification.
● Very Low-Frequency Power (Heart Rate): This feature captured
long-term oscillations in heart rate, essential for distinguishing between
different sleep stages.
● Motion Data (ODBA and Pressure): These features helped
differentiate between active and restful states, contributing significantly to
the model's accuracy.

Impact on Model Development:

The feature importance analysis played a pivotal role in refining the model
development process. By focusing on the most impactful features, the team
was able to improve the accuracy and robustness of the models. This
iterative refinement process, guided by the insights from feature importance
metrics, ensured that the models were both effective and interpretable.

4. Feature Density
Feature density, which assesses the concentration and relevance of various
features in a dataset, is crucial for understanding model performance. In our
analysis, delta power emerged as a significant EEG feature. During
Slow-Wave Sleep (SWS), delta power exhibits high absolute power while
maintaining a relatively high proportion compared to the total power in the
0.4-30Hz range.

Conversely, in Active Waking states, absolute delta power is also high, but
this is largely due to EEG noise, reflected in the low relative delta power.
During Drowsiness, absolute delta power is higher than in REM sleep but
lower than in SWS, yet its relative delta power surpasses that of SWS.

Finally, in REM sleep, although absolute delta power is low, its relative
proportion is high, indicating that delta power constitutes a significant part
of the overall low EEG activity during this state. This nuanced
understanding of delta power across different sleep stages highlights its
importance in the model and underscores the value of feature density in our
analysis.



Analytical Workflow:

The analytical workflow was structured to ensure a systematic approach to data analysis
and model development. The key stages included:

1. Data Ingestion: Raw data were ingested from the OpenStack Object Store and
preprocessed using proprietary software (Matlab, LabChart) and Python.

2. Feature Extraction: Spectral and time-domain features were extracted from the
ECG, EEG, and motion data. This involved applying signal processing techniques
and aligning features with the corresponding labels.



3. Preliminary Analysis: EDA and descriptive statistics were conducted to identify
key patterns and guide feature selection.

4. Model Development: Initial models were trained using scikit-learn classifiers.
GridSearchCV was employed for hyperparameter tuning, and performance was
evaluated using accuracy and confusion matrices.

5. Iteration and Refinement: Based on initial results, features and preprocessing
steps were refined iteratively. Misaligned labels were corrected, and additional
features were explored to improve model performance.

Processing Environment Setup:

The processing environment was set up to support efficient data analysis and model
training. This involved:

● Python and Jupyter Lab: These tools provided an interactive environment for
coding, visualization, and iterative testing.

● MNE-Python: Used for handling and visualizing electrophysiological data.
● scikit-learn: Employed for model training and evaluation, offering a wide range

of machine learning algorithms and tools for hyperparameter tuning.
● Cloud Storage: Data was stored and accessed from the OpenStack Object Store,

ensuring scalability and accessibility for all team members.
● Local Computing Resources:While initial data processing was conducted

locally, the use of cloud-based storage and computation ensured that the workflow
could handle large datasets efficiently.

Findings and Audience
The Seal Sleep Capstone Project explored the accessibility, reproducibility, and

plausibility of the application of machine learning to sleep scoring and sleep studies. The
goal of this project evolved and changed over time; originally, the hope was to create an
all-purpose, omnipotent machine learning tool that could decrypt any seal’s
electrocardiogram (ECG) and electroencephalogram (EEG), and a few other raw data
channels, and “correctly” classify a seal’s sleep state between Active Waking, Quiet
Waking, Drowsiness, Slow Wave Sleep (SWS), and Rapid Eye Movement Sleep (REM).
In this case, we defined a “correct” classification as one that agrees with the classification
given by a seal sleep expert (Jessie, or Ritika).

While it was clear from the beginning that such a task was plausible, it was also
clear that it would be very challenging. In the first quarter, our project explored a simple



feature set extracted from EEG, ECG, movement (Gyrz), and depth (Pressure) to create
classifiers with scikit-learn’s KNeighborsClassifier (k-nearest neighbors), LinearSVC
(support vector machine), and RandomForestClassifier. We found that each of these
methods performed similarly with the features that were included, but the random forest
outperformed the others in terms of accuracy on REM and SWS. Using five days of sleep
data from the seal “Wednesday,” we obtained an overall accuracy of 65% with 92%
accuracy on Active Waking, 69% accuracy on SWS, and 52% accuracy on REM.

During the second quarter, much of the initial weeks were spent doing more
feature exploration: expanding the features we already were generating to be using the
most optimal parameters like size of our epoch windows, and also researching and adding
new features that other sleep studies and EEG studies were using. Additionally, we
transitioned from the RandomForestClassifier provided by sklearn to a light gradient
boosted classifier, from LightGBM. The reasoning for choosing this model was that it is a
more advanced boosting framework than the random forest, but still maintains the
underlying decision tree structure that fits the seal sleep classification problem very well.
By adding these new features and switching to the LightGBM, our accuracy on
Wednesday’s four days of sleep data improved from 65% to 80.1%, with 93% accuracy
on Active Waking, 84% accuracy on SWS, and 63% accuracy on REM.

While this substantial increase in SWS and REM detection was a major
improvement, another outcome from the project was a framework for generating brain
and heartrate features that can easily be generated for other seals, or completely new
animals, to help aid a machine learning approach for sleep detection. When we applied
our model trained on Wednesday to five new seals—HypoactiveHeidi, AshyAshley,
BerthaBeauty, SnoozySuzy, and JauntingJuliette— we found that the model trained on
just Wednesday alone extends decently but not great to a completely new seal, with the
REM and SWS accuracy hovering around 40% for each of these seals. This is better than
random and when combined with confidence scores could help speed up the seal
classification for a completely new seal, but is not good enough for full automation alone.
However, if you isolate each seal and train a model on only its own data, they each
performed at around the same accuracy as Wednesday using k-fold cross-validation,
which suggests that the sleep itself is predictable and learnable, there is simply more
work to be done on scaling the features and the datasets so that their distributions are
similar enough across seals to give meaningful results from the trained LightGBM
classifier.

On the brighter side, using a leave-one-out approach, we were able to predict sleep
with much higher accuracy. By training a model with data from just five of the seals and
then testing it on the remaining seal, we are able to explore how adding data from new



seals to the model helps it learn the varying distributions on its own. We would hope that
a model trained on more seals would do better than a model trained on just Wednesday
alone, and this seems to be the case. The table below shows the overall accuracy, Active
Waking accuracy, SWS accuracy, and REM accuracy for each seal (note that the model
was trained using the data from the other five seals). Note that Wednesday, Ashley,
Bertha, and Suzy are captives that are only ever in the lab with a shallow 10m pool, while
Heidi and Juliette were translocated north and swam back to San Diego, and thus perform
deep ocean dives, during which they are sometimes sleeping, but at much lower rates
than the lab seals. The deep dives result in different scales in the signals in these seals,
and some of the other seals have messier or noisier signals for other reasons.

Test Seal Overall % Active Waking % SWS % REM %

Wednesday 66.13 87.71 91.73 66.40

AshyAshley 67.22 94.59 65.45 63.02

BerthaBeauty 68.13 84.10 60.81 39.83

SnoozySuzy 67.82 99.60 22.36 18.06

HypoactiveHeidi 92.83 96.13 46.43 4.63

JauntingJuliette 36.32 31.87 73.63 42.05

Wednesday, AshyAshley, and BerthaBeauty were isolated to the lab and have
some of the cleanest signals, so it makes sense that their accuracies are the most
balanced. SnoozySuzy had a very noisy signal which is likely why the prediction for her
was more difficult. HypoactiveHeidi was awake for >90% of her four-day dataset, so the
REM she does have is short-lived and harder to predict, while JauntingJuliette’s signal
was much noisier than the others.

Findings to Present
The most important factor in determining what to present is to show the findings

that could have the largest impact and could be used by future researchers to help
expedite work they are doing. Keeping this in mind, our product and repository is focused
on reproducibility— in the case of the product we have easy to understand GUIs and an
interactive interface to help make feature generation simple and seamless. This project
ran into many issues and roadblocks simply because there aren’t many (if any)



researchers working on heart rate and brainwave-focused studies on marine wildlife, so
there is not an out of the box “these are the features you need for this problem.” Because
much of the work for the project was done on researching and generating features, we
want to emphasize this in our presentation, and make that part of the project accessible
for someone else who may want to do something similar.

Of course, we will still want to present the easier-to-understand statistics like
accuracy, per-class accuracy, and possibly even breaking it down further into a confusion
matrix to be able to see which sleep states are most commonly confused for each other. If
two classes are commonly being misclassified for each other (e.g. Active Waking and
Quiet Waking), this could indicate that the boundary we defined to separate these classes
is too rigid, or perhaps that there are many transitions between the two classes, so
deciding when exactly the transition happens changes how the model would report its
accuracy. Regardless of the accuracy, we definitely want to present visualizations that
show how our models predict sleep throughout a nap versus what the actual; this helps
illustrate what some of common errors are (and shows that even though the accuracy may
be 80%, our model may actually be performing very well, it just detects transition points
slightly differently from what a sleep expert may say, creating somewhat of a reported
underperformance.

Tools and Techniques
We used lots and lots of python visualizations— seaborn density plots, matplotlib

plots, pandas matrices for accuracy and confusion matrices, and used color to
communicate different sleep states to help visualize what differences between states we
would expect a machine learning model to be able to pick up on. Finally, one of the more
important plots that we generate is one with the seal’s derived features lined up with
some raw data like heart rate and EEG, along with both the actual sleep state and
predicted sleep state. By creating a plot with all of these lined up together on the same
timescale, it helped during the development process with debugging issues, but it is also
an effective visualization for communicating model performance and showing times
when the model does not perform as well. Additionally, we used our product to help
communicate some of the intricacies that come with feature extraction, and to help make
the whole process easier.



Visualizations and Products

Figure 1: Heart Rate distribution for the different seals; values around 0 illustrate errors in the heart rate generation that stem partially
from noisier ECG data. The significantly different distributions in something as simple as heart rate illustrate how each seal is its own
individual and poses challenges in using machine learning to predict sleep state.

Figure 2: On the left, results of the model trained on Wednesday’s data test on Wednesday. On the right, model train on Wednesday’s
data test on AshyAshley. This illustrates that the sleep problem is extensible, i.e. the model trained on Wednesday works as a
better-than-random (in fact, much better than random) predictor of sleep in AshyAshley. Out of the additional five seals, Ashley has
one of the most similar signals to Wednesday, but with more work on the preprocessing and scaling the other seals should also perform
well.



Figure 3: Visualizations of one of Wednesday’s naps. Includes a few of the features used for modeling (from top to bottom: Absolute
Delta Power, Relative Delta Power, EEG Std.Dev, Heart Rate, Heart Rate Rolling Mean, Pressure), as well as the true and predicted
label shown as a matrix plot. This illustrates that the model is mostly corrected, but has brief hiccups where it hallucinates. However,
in most cases it hallucinates to a sleep state that is either recent or upcoming, which is a reflection of the transition period between
sleep states that we don’t have a separate class for.



Solution Architecture, Performance, and Evaluation

Measure of Performance?

Performance was measured using several key metrics to ensure the accuracy and
reliability of our models. We primarily used overall accuracy and class-specific
accuracies, which were calculated through k-fold cross-validation. This method involves
splitting the dataset into training and validation sets multiple times to ensure the model
performs well across different subsets of data.

For each fold, we evaluated how well the model's predictions matched the actual sleep
states. Additionally, we used confusion matrices to visualize the performance across
different sleep stages, helping us understand where the model was making errors. Feature
importance metrics provided by the Random Forest and LGBM classifiers were also used
to identify which features contributed most to the model's decisions, thereby refining the
model further.

How Did You Scale and Evaluate Your Models?

Scaling and evaluating the models involved using dedicated compute nodes and cloud
resources to handle the large volume of data efficiently. The data pipeline was designed
to be scalable, using the OpenStack Object Store for raw and processed data storage and
TimescaleDB for storing processed features and training labels. This setup allowed us to
manage and process large datasets effectively. To ensure robustness, we employed
cross-validation techniques, such as k-fold cross-validation, which helped us evaluate the
model's performance across different subsets of data.

This method reduced the risk of overfitting and ensured that our models were
generalizable to new, unseen data. Additionally, we explored different machine learning
algorithms, including Support Vector Machines (SVM), K-Nearest Neighbors (KNN),
and Random Forest, and used hyperparameter tuning with GridSearchCV to find the best
model configurations.

How Did You Manage Your Budget?

Budget management was a critical aspect of the project, ensuring that resources were
used efficiently without compromising the quality of the research. We utilized
cost-effective cloud storage solutions through the OpenStack Object Store, which
provided scalable and flexible storage options. This approach minimized the need for



expensive local storage infrastructure. Computational resources were optimized by using
dedicated compute nodes for data processing and model training, balancing the need for
performance with cost-effectiveness.

We also leveraged Nautilus, a cost-effective high-performance computing resource, to
manage large-scale data processing tasks. Nautilus allowed us to access powerful
computing resources without the high costs associated with commercial cloud services.
This integration significantly reduced our overall computational expenses while
maintaining high processing power and efficiency. The automatic resource-usage tools as
part of Nautilus allowed consistent monitoring of our resources and spending as to not go
beyond set thresholds as part of our computing infrastructure.

We leveraged open-source software tools such as Python, scikit-learn, and Streamlit,
which reduced the need for costly proprietary software licenses. By managing these
resources carefully and prioritizing essential expenses, we were able to stay within
budget while achieving our project goals.

Conclusion

The Seal Sleep Capstone Project successfully demonstrated the feasibility and
effectiveness of using machine learning to classify sleep states in Northern Elephant
Seals. By employing advanced models such as LightGBM and comprehensive feature
extraction techniques, we achieved significant improvements in accuracy, particularly in
detecting critical sleep stages like Slow Wave Sleep (SWS) and Rapid Eye Movement
(REM). Our findings highlight the importance of specific features, such as delta spectral
power and heart rate variability, in achieving reliable sleep state classification.
Visualizations and detailed metrics provided clear insights into model performance and
facilitated the identification of areas for further improvement.

This project underscored the potential for scaling these methods to a broader user base,
thanks to user-friendly interfaces and scalable computing resources. Our robust
framework not only advanced the understanding of marine mammal sleep patterns but
also provided a solid foundation for future research and applications in ecological and
behavioral studies. By making our methods and findings accessible, we aim to support
ongoing and future efforts in marine biology and related fields.
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