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PROBLEM

Pertussis, commonly known as whooping cough, is a highly contagious Challenges

lung infection caused by the bacterium Bordetella pertussis.
Vaccination is the primary strategy for controlling the spread of
pertussis. There are two main types of vaccines: whole-cellular (wP)

and acellular (aP). The efficacy of vaccine-induced immunity can as durable immunity.
diminish over time. Several factors influence this, including the type
of vaccine received and the individual’s age at vaccination. Research Importance

Vaccine Types

Balancing the safety and efficacy of pertussis vaccines remains a
critical challenge. wP vaccines offer robust initial protection but can
cause severe side effects. aP vaccines are safer but may not provide
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Ongoing research and monitoring of vaccine effectiveness are crucial.

Surveillance data help in understandi

ng the duration of immunity and

Objective: Analyze immune responses post-Tdap booster vaccination.
Subjects: 118 individuals contributing 500+ blood specimens.

Timeframe: Pre- and post-vaccination (days 1, 3, 7, and 14).

1. Whole-cellular (wP) vaccine: Contains inactivated whole bacteria. the potential need for booster doses.
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produce proteins at the right times and in the right amounts. CCL3 is crucial in the
inflammatory process and is significant for pertussis research. Numerous genes and

proteins are expressed, with CCL3 being one of the key genes under study. values.

METHODS AND TECHNIQUES

PostgreSQL database provided by CMI-PB

Monocytes, a type of white blood cell, defend the body against infections and are
collected from blood samples. Other cell types can be used to predict monocyte

(concentra

tion of antibodies in the blood).
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3. Gene Expression model: TPM on Day 3 after vaccination

We extract the most critical data from these files. The subject data
includes demographic information about the individual. The specimen

data comprises the blood sample details, such as the col

lection date

and the identity of the sample’s owner. Experimental tables capture the
measurements from the blood sample, indicating the body’s status at

the collection time.

RESULTS

models performed best and which features were most significant

for our predictions. We integrated a feedback cycle in AWS
SageMaker, utilizing APl data from 2020-2022. This allowed us to
train our models on the cloud, benefiting from scalable
computing resources and streamlined workflows. Once satisfied

with our

models’ performance, we saved the best-performing

models to a model registry in an S3 bucket for future use and

deploym

ent.
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Task 1.2

KEY INSIGHTS

Support Vector Regression (SVR): The model
performed well in predicting antibody titer
levels. SVR is effective in high-dimensional
spaces and can handle nonlinear
relationships, making it suitable for handling
our complex biological data.
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Task 2.2

Extra Tree Regressor and Gradient Boosting:
These ensemble methods outperformed
other methods in predicting the Log2 fold
change of antibody levels at day 14 relative to
day 0. They were able to reduce overfitting
through bagging and boosting techniques,
making them a good fit for our dataset.
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Task 3.2

Gradient Boosting for Monocyte Frequency:
Gradient Boosting showed the best performance
in predicting monocyte frequency at day 1. The
approach of this model helps minimize the
prediction error, making it applicable to a
variety of tasks.
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ElasticNet for Gene Expression Levels: Initially,
ElasticNet performed best in predicting CCL3
gene expression levels at day 3. However,
simpler models such as Stochastic Gradient
Descent(SGD) Regressor and TheilSen Regressor
outperformed ElasticNet when predicting the
Log2 fold change of the target variable.



