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1 Abstract 

Our capstone project focuses on Pertussis, commonly known as Whooping cough, a highly contagious respiratory 

infection. We explore the challenges and nuances of the two main vaccines: whole-cellular (wP) and acellular (aP). 

Our research highlights the balance between the safety and effectiveness of vaccines, emphasizing the necessity of 

ongoing monitoring and research to evaluate how vaccine-induced immunity fluctuates over time in individuals, 

ensuring sustained effectiveness and safety in public health. The primary goal of the project was to create predictive 

models for forecasting immune response outcomes following pertussis vaccination, specifically targeting IgG 

antibody titer levels 14 days post-vaccination, monocyte frequencies one day post-vaccination, and gene expression 

levels of genes like CCL3 three days post-vaccination. The team utilized a comprehensive dataset of over 500 blood 

samples from 118 participants, including detailed demographic and immunological profiles. Through rigorous data 

preprocessing, including handling missing values, detecting outliers, and feature selection, the data was prepared for 

model building. A variety of models, from simple linear regressors to advanced ensemble learners like Random Forest 

and Gradient Boosting, were trained and evaluated using cross-validation. The models' performance was assessed 

using metrics such as R-squared, Mean Absolute Error (MAE), and Mean Squared Error (MSE), with ensemble 

methods demonstrating superior predictive accuracy. The findings revealed that targeted feature selection and 

advanced modeling techniques significantly enhanced the predictive power and reliability of the models in 

understanding and forecasting immune responses to vaccinations. 
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2 Introduction and Question Formulation 

2.1 Challenges 

The challenge that led to the problem in our project was rooted in the complexities of understanding and predicting 

immune responses to pertussis vaccination. Pertussis, or Whooping cough, is a significant public health concern due 

to its highly contagious nature and potential severity, particularly in infants and young children. Despite the 

availability of two main types of vaccines—whole-cellular (wP) and acellular (aP)—each presents its own set of 

challenges that complicate efforts to ensure long-term immunity and safety. Individuals exhibit varied immune 

responses to the pertussis vaccine, influenced by factors such as age, sex, ethnicity, and pre-existing health conditions, 

making it difficult to predict who will mount a robust immune response. The whole-cellular vaccine (wP) is known 

for its strong and durable immune response but has a higher incidence of side effects, whereas the acellular vaccine 

(aP) is safer but associated with waning immunity over time. This trade-off between safety and long-term effectiveness 

necessitates a nuanced approach to vaccine administration and monitoring. 

Moreover, the immune response to vaccination involves a complex interplay of various immunological markers, 

including antibody levels, cell frequencies, and gene expression profiles. Capturing and modeling these dynamics 

requires sophisticated analytical tools and comprehensive datasets. The push towards personalized medicine, where 

treatments and interventions are tailored to individual characteristics, further underscores the importance of 

developing predictive models that can accurately forecast immune responses based on a person's unique demographic 

and immunological profile. This approach aims to enhance the efficacy and safety of vaccination programs. 

Additionally, continuous monitoring and research are essential to evaluate how vaccine-induced immunity changes 

over time, identifying potential gaps in immunity and the need for booster doses to ensure sustained public health 

protection. 

These multifaceted challenges highlight the need for robust predictive models. Our project sought to address these 

issues by leveraging a comprehensive dataset of over 500 blood samples from 118 participants, incorporating detailed 

demographic and immunological data. Through advanced data preprocessing techniques and sophisticated modeling 

approaches, we aimed to unravel the complexities of the immune response to pertussis vaccination and provide 

actionable insights to improve vaccine strategies. 

2.2 Data Science Problem 

We combined several critical ingredients, which collectively enabled us to construct robust predictive models for 

understanding immune responses to pertussis vaccination. We started with a comprehensive dataset that included 

detailed measurements of immunological markers such as antibody titers, cell frequencies, and gene expression levels. 

This dataset also contained demographic information like age, sex, ethnicity, race, and birthdate, providing context 

and helping us understand how different groups respond to the vaccine. Temporal data on the timing of vaccination 

and subsequent immune responses (e.g., day 0, day 1, day 3, and day 14 post-vaccination) was crucial for capturing 

the dynamics of the immune response over time. 
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Data preprocessing techniques were essential, including methods for handling missing values, detecting and treating 

outliers, feature scaling to standardize the range of data features, and feature selection to identify the most relevant 

predictors among a vast array of variables. These steps ensured the completeness, reliability, and uniformity of our 

data, enhancing model performance and interpretability. 

Advanced modeling approaches were employed, ranging from simple linear regression to complex ensemble methods 

like Random Forest and Gradient Boosting. Cross-validation techniques were used to assess model performance and 

ensure generalizability, while tools like GridSearchCV optimized model parameters, balancing complexity and 

predictive power. Evaluation metrics such as R-squared (R²), Mean Absolute Error (MAE), and Mean Squared Error 

(MSE) were used to measure the accuracy and explanatory power of the models. 

Biological and domain knowledge was integral to our approach. Understanding the differences between whole-cellular 

(wP) and acellular (aP) vaccines, including their efficacy and safety profiles, was essential. Collaborating with 

immunologists ensured that our features and models were biologically meaningful and relevant. 

Iterative development and validation processes involved continuously refining models based on performance metrics 

and feedback, ensuring robustness and accuracy as new data became available. Collaboration with domain experts 

was crucial for validating findings and improving the practical applicability of the models. 

Visualization and interpretation were key components. We created visual tools to illustrate key findings, model 

performance, and relationships between variables, aiding in the communication of results to stakeholders. Ensuring 

that models were interpretable provided insights into the underlying biological processes, making the findings 

actionable and relevant for improving vaccine strategies and public health outcomes. By integrating these ingredients, 

we formulated a comprehensive data science problem that addressed the complexities of predicting immune responses 

to pertussis vaccination. 

2.3 Questions 

Some of the questions that have been formulated to address our challenges are: 

• How can we accurately predict IgG antibody titer levels 14 days post-pertussis vaccination using 

immunological data? 

• What are the most significant immunological predictors of monocyte frequencies one day after vaccination? 

• How do gene expression levels of specific genes, such as CCL3, change three days post-vaccination, and 

what factors influence these changes? 

• What is the comparative effectiveness of whole-cellular (wP) versus acellular (aP) vaccines in inducing a 

sustained immune response over time? 

• What are the key indicators of waning immunity, and how can ongoing monitoring be used to predict the 

need for booster doses? 

• How can advanced machine learning models be employed to improve the predictive accuracy and 

interpretability of immune response data? 
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• What are the trade-offs between model complexity and performance, and how can we optimize model 

parameters to balance these? 

• How can visualization tools be developed to effectively communicate complex immunological data and 

model predictions to stakeholders? 

• What are the best practices for integrating biological domain knowledge with data science techniques to 

enhance model relevance and applicability? 

2.4 Related Work 

• Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting 

antibody responses and memory B and T cells 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095229/pdf/nihpp-2021.04.19.21255739v2.pdf 

• Modeling of malaria vaccine effectiveness on disease burden and drug resistance in 42 African countries 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576074/pdf/43856_2023_Article_373.pdf 

• mSphere of Influence: Predicting Immune Responses and Susceptibility to Influenza Virus 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082138/pdf/mSphere.00085-20.pdf 

• Exploring the optimal vaccination strategy against hepatitis B virus in childhood 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10293880/pdf/br-19-01-01631.pdf 

• Gene expression profiling in vaccine therapy and immunotherapy for cancer 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411321/pdf/nihms394797.pdf 

• A machine learning model identifies patients in need of autoimmune disease testing using electronic health 

records 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130143/pdf/41467_2023_Article_37996.pdf 

• Comparative Effectiveness of COVID-19 Vaccines in Preventing Infections and Disease Progression from 

SARS-CoV-2 Omicron BA.5 and BA.2, Portugal 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973705/pdf/22-1367.pdf 
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3 Team Roles and Responsibilities 

Barry Grant - Advisor (Professor) 

• Scientific Guidance: Provides high-level guidance on the project’s direction and scientific validity. Offers 

expertise in the biological aspects of the immune response and ensures that the project aligns with broader 

research goals. 

• Research Oversight: Oversees the research methodology and ensures that the scientific approaches used are 

robust and appropriate for the study. 

Jason Hsiao - Advisor (Biological Sciences PhD Student) 

• Immunology Expertise: Offers specialized knowledge in biological sciences, particularly in immunology. 

Assists in the interpretation of data and results from a biological perspective and ensures that the modeling 

approaches are scientifically sound. 

• Technical Support: Provides technical support and advice on the experimental aspects of the study, including 

the handling and analysis of biological data. 

Peng Cheng - Solution Architect & Budget Controller 

• Solution Architect: Oversees the project’s architecture, ensuring that all components are integrated efficiently. 

Designs the data pipeline and modeling framework. 

• Budget Controller: Manages the project budget, ensuring that resources are allocated appropriately and that 

the project stays within financial constraints. 

Javier Garcia - Business Manager & Data Engineer (MLops) 

• Business Manager: Handles the operational management of the project, including timelines, deliverables, and 

coordination with stakeholders. 

• Data Engineer (MLops): Develops and maintains the data pipeline, ensuring data is processed efficiently and 

available for modeling. Manages the deployment of models in cloud infrastructure and oversees continuous 

integration and deployment (CI/CD) processes. 

Weikang Guan - Data Analyst & Visualization Developer 

• Data Analyst: Conducts detailed data analysis to uncover patterns and insights from the dataset. Performs 

preprocessing tasks such as cleaning, transforming, and feature engineering. 

• Visualization Developer: Creates visual representations of the data and modeling results. Develops 

dashboards and visual tools to communicate findings effectively to stakeholders and team members. 

Brian Qian - Data & Dashboard Developer 

• Data Developer: Develops the data infrastructure needed for the project, including database management and 

data retrieval systems. Ensures that data is accessible and well-organized for analysis. 
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• Dashboard Developer: Designs and implements interactive dashboards that present key metrics and model 

outcomes. Ensures that the dashboards are user-friendly and provide meaningful insights to researchers and 

stakeholders. 
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4 Data Acquisition 

4.1 Data Sources 

The data sources for our project include a comprehensive collection of immunological, demographic, and temporal 

data. Immunological data encompasses thousands of data points for each participant, capturing various markers such 

as antibody titers, cell frequencies, and gene expression levels. This data is collected at specific time points post-

vaccination (day 0, day 1, day 3, and day 14), ensuring a detailed temporal analysis of the immune response. 

Demographic data, collected once for each of the 118 participants, includes birthdate, sex, ethnicity, and race, 

providing context for understanding how different groups respond to the vaccine. Vaccine Responds Timeline is 

shown as figure 4-1. 

 

Figure 4-1 Vaccine Responds Timeline 

We also utilize temporal data related to the dates and times of vaccination and subsequent immune response 

measurements, ensuring a structured timeline for our analysis. The PBMC cell frequency data provides detailed 

information on various cell populations per sample, while plasma gene expression data includes transcript counts and 

TPMs for numerous genes, offering a deep dive into gene activity post-vaccination. Plasma antibody titer data details 

antibody levels, including antigen specificity and Mean Fluorescence Intensity (MFI) units, while plasma cytokine 

concentration data quantifies protein expressions, particularly cytokine levels, which are crucial for understanding 

immune signaling mechanisms. 

Additionally, metadata/ontology tables provide a comprehensive cross-reference for gene, transcript, and protein IDs, 

facilitating data interoperability and validation. Overall, our dataset is large and varied, with data collected at specific 

intervals to capture the dynamic immune response, allowing for robust analysis and the development of predictive 

models that yield meaningful insights into vaccine efficacy and safety. Dataset Overview is shown as figure 4-2. 
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Figure 4-2 Dataset Overview 

4.2 Data Collection 

4.2.1 Data Sizes 

To access and retrieve the data required for our project, we use two primary methods provided by the CMI-PB 

laboratory: APIs and SFTP. The first method involves using the Swagger UI and PostgREST API. The Swagger UI 

provides a user-friendly interface for exploring and interacting with the CMI-PB API, which is accessible at 

https://www.cmi-pb.org/api/v4_1. The PostgREST API dynamically generates endpoints for various data tables and 

supports operations such as GET, POST, DELETE, and PATCH. This allows us to retrieve information from tables 

like cell_type, gene, pbmc_cell_frequency, pbmc_gene_expression, plasma_ab_titer, plasma_cytokine_concentration, 

specimen, and subject. Each of these tables provides specific data such as cell population names, gene mapping 

information, cell frequencies, gene expression levels, antibody titers, cytokine concentrations, clinical sample details, 

and demographic information. 

The second method involves using SFTP provided by the CMI-PB consortium for large-scale data downloads and 

bulk access. This method is particularly useful for downloading text files containing the data for the second CMI-PB 

challenge. The SFTP access allows us to download comprehensive datasets including subject information for 118 

subjects, specimen information for 939 samples, antibody titer data for 112 subjects and 829 samples, gene expression 

data for 93 subjects and 507 samples, plasma cytokine data for 75 subjects and 406 samples, and cell frequency data 
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for 74 subjects and 414 samples. This method ensures we can efficiently handle and analyze large volumes of data. 

Data Sizes is shown as figure 4-3. 

 

Figure 4-3 Data Sizes 

By leveraging these technologies and methods, we can access a comprehensive and high-quality dataset necessary for 

our predictive modeling and analysis. This approach ensures robust and reliable insights into the immune response to 

pertussis vaccination, enabling us to address the key questions identified in our project. 

4.2.2 Data Pipelines 

Data pipeline from ingestion to analysis to sharing your results including the process and infrastructure. To address 

the need for real-time access to dynamic immune response data and ensure periodic updates for analysis, our approach 

incorporates the use of APIs for seamless data access. PosgREST API Description is shown as table 4-1. 
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Table 4-1 PosgREST API Description 

Table Description Subjects Samples API endpoint 

Subject information 118    subject 

Specimen information  939   specimen 

Antibody titer data 112 829   plasma_ab_titer 

Gene expression data 93 507   pbmc_gene_ expression 

Plasma cytokine data 75 406   plasma cytokine concentration 

Cell frequency data 74 414   pbmc_cell_frequency 

cell type gating information 52    cell_type 

This method is complemented by regular refresh cycles, enabling continuous analysis and ensuring that our datasets 

remain current and reflective of the latest immune response patterns. Data Pipeline Workflow is shown as figure 4-4. 

 

Figure 4-4 Data Pipeline Workflow 

4.2.3 Data Environment Set Up 

Our data environment is designed to efficiently handle the diverse and extensive datasets required for our predictive 

modeling project on immune responses to pertussis vaccination. We employ a hybrid setup that leverages both cloud 

and local resources, combining the strengths of databases and flat files for optimal performance and flexibility. 

In the cloud environment, we use Amazon Web Services 

Our data environment is designed to efficiently handle the diverse and extensive datasets required for our predictive 

modeling project on immune responses to pertussis vaccination. We employ a hybrid setup that leverages both cloud 

and local resources, combining the strengths of databases and flat files for optimal performance and flexibility. 

In the cloud environment, we use Amazon Web Services (AWS) for scalable storage and compute resources. AWS 

provides the flexibility to handle large datasets and the computational power required for complex modeling tasks. 

For data storage, we utilize Amazon S3, which offers scalable and durable storage for raw data, intermediate files, and 
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processed datasets. For data processing, AWS EC2 instances are used to run data processing and machine learning 

workloads, allowing us to adjust computational power based on the demands of our tasks. Additionally, AWS 

SageMaker is employed for building, training, and deploying machine learning models, providing a managed 

environment that simplifies development and scaling. 

The cloud environment offers several advantages, including scalability to easily adjust resources based on project 

needs, flexibility to access a wide range of services and tools, and enhanced collaboration by allowing team members 

to access the environment from any location. 

Locally, we use servers for storing smaller, processed datasets and for initial data exploration. This setup helps reduce 

latency and speeds up the development process. Local machines are used for preliminary data analysis, visualization, 

and model development, providing a convenient and immediate environment for testing and debugging. The local 

environment offers advantages such as low latency, immediate access to data without internet connectivity, and cost 

efficiency by utilizing existing infrastructure for initial stages of data processing and model development. 

We manage structured data using PostgreSQL, which provides robust querying capabilities and ensures data integrity. 

PostgreSQL is ideal for handling structured data such as demographic information, cell frequency data, and antibody 

titer data, facilitating easy integration and complex querying essential for linking different datasets and extracting 

insights. 

For unstructured data, we use flat files (CSV/TSV) to store large-scale raw gene expression data and intermediate 

processing files. Flat files are also used for data transfer between different systems and for initial data exploration 

using tools like Python and R. This approach combines the flexibility and simplicity of flat files with the robust data 

management capabilities of databases. 

By leveraging both cloud and local resources, integrating databases and flat files, our comprehensive setup ensures 

efficient processing, analysis, and modeling of the data necessary to understand and predict immune responses to 

pertussis vaccination. This hybrid environment provides the scalability, flexibility, and efficiency needed to handle 

the diverse requirements of our project. 
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5 Data Preparation 

5.1 Datasets Quality Issues 

The datasets we utilized for our predictive modeling project on immune responses to pertussis vaccination had several 

quality issues that needed to be addressed to ensure the accuracy and reliability of our analysis. 

Firstly, there were missing values across various data points, including demographic information, immunological 

markers, and gene expression levels. Missing data can lead to biased results and reduce the overall effectiveness of 

our predictive models. Addressing these gaps required implementing strategies such as imputation, where we 

estimated the missing values based on available data, or excluding incomplete records where appropriate. 

Secondly, outliers were present in the dataset. These anomalous data points could skew the results and affect the 

performance of our models. Identifying and handling outliers involved statistical methods to detect values that 

deviated significantly from the norm and deciding whether to correct or exclude them to maintain data integrity. 

Thirdly, there was a need for feature scaling. The dataset included variables with different scales and units, which 

could disproportionately influence the model outcomes. Normalizing or standardizing the data was necessary to ensure 

that all variables contributed equally to the predictive models. 

Additionally, the data contained inconsistencies in labeling and formatting. For instance, demographic categories such 

as ethnicity and race were not consistently coded, requiring standardization to ensure uniformity across the dataset. 

Similarly, different measurement units for immunological markers needed to be harmonized to avoid discrepancies. 

Furthermore, there were challenges related to the temporal aspect of the data. Some time points for sample collection 

were not consistently recorded, making it difficult to analyze the immune response dynamics accurately. Ensuring 

accurate and consistent timestamping was essential for the temporal analysis. 

Lastly, the dataset's size and complexity presented challenges in handling and processing the data efficiently. Large-

scale gene expression data, in particular, required robust computational resources and efficient data processing 

techniques to manage and analyze effectively. 

Addressing these quality issues involved a comprehensive data preprocessing workflow, including data cleaning, 

normalization, imputation, outlier detection, and standardization. This ensured that the datasets were accurate, 

consistent, and ready for reliable predictive modeling and analysis. 

5.2 transform and integration 

To transform and integrate raw data into a format suitable for analysis in our project on predicting immune responses 

to pertussis vaccination, we implemented a comprehensive data preprocessing workflow. This involved several key 

steps to ensure the data was clean, consistent, and suitable for robust analysis and modeling. 
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By implementing these data cleaning, transformation, and integration steps, we successfully prepared the raw data for 

robust predictive modeling and analysis. This comprehensive preprocessing workflow ensured that our datasets were 

accurate, consistent, and suitable for generating reliable insights into immune responses to pertussis vaccination. 

5.2.1 Data Cleaning 

5.2.1.1 Subject Data Cleaning 

We started by cleaning the subject DataFrame, where we calculated the ages of the subjects by subtracting their year 

of birth from the year of the vaccination boost. Additionally, we applied one-hot encoding to categorical variables 

such as infancy vaccination status, biological sex, ethnicity, and race. This process standardized the categorical data 

and simplified the DataFrame structure, making it suitable for integration into statistical models or machine learning 

pipelines. 

5.2.1.2 Specimen Data Cleaning 

For the specimen data, we filtered the data to include only rows corresponding to specific planned days relative to the 

vaccination boost (days 0, 1, 3, and 14). We then removed subjects who did not have records for all these specified 

planned days. Furthermore, we calculated the difference in days between the planned and actual boost days, which 

was essential for subsequent analysis. 

5.2.1.3 Titer Data Cleaning 

The titer data was transformed from a long format to a wide format, where each unique combination of isotype and 

antigen became a column header. This restructuring facilitated easier analysis by organizing the data in a way that 

made it more accessible for examining relationships and patterns across various isotype-antigen interactions within 

individual specimens. 

5.2.1.4 Cell Frequency Data Cleaning 

The cell frequency data was also converted from a long format to a wide format, with each unique cell type becoming 

a column header. This restructuring made it easier to manipulate and compare cell frequencies across different 

specimens, which is crucial for analyses that require direct comparisons of multiple cell types within and across 

datasets. 

5.2.1.5 Gene Expression Data Cleaning 

For gene expression data, we transformed it from a long format to a wide format, where each unique gene ID became 

a column header. This transformation facilitated easier data manipulation and analysis by aligning gene expression 

values under their respective gene IDs for each specimen. 

5.2.1.6 Cytokine Data Cleaning 

The cytokine concentration data was converted from a long format to a wide format, where each unique protein ID 

became a column header. This restructuring was essential for facilitating easier access to and analysis of cytokine 

concentrations across different specimens. 
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5.2.2 Data Integration 

5.2.2.1 Merging Datasets 

We merged the cleaned and transformed datasets (subject, specimen, titer, cell frequency, gene expression, and 

cytokine data) into a unified dataset. This involved using common identifiers such as subject IDs and specimen IDs 

to ensure accurate integration. Missing values were filled where necessary to maintain the integrity of the dataset. 

5.2.2.2 Creating Target Columns 

We created target columns for the training data based on specific criteria, such as antibody titers on day 14 post-

vaccination and monocyte frequencies on day 1 post-vaccination. These target columns were crucial for training our 

predictive models. 

5.2.3 Data Validation and Quality Checks 

5.2.3.1 Validation of Preprocessed Data 

We conducted thorough validation checks to ensure the accuracy and consistency of the preprocessed data. This 

included verifying that imputed values were reasonable and that scaling transformations were correctly applied. 

5.2.3.2 Consistency Checks 

We ensured that the merged and integrated dataset maintained consistency across all variables and records by cross-

referencing different data sources to check for discrepancies. 

5.3 pre-processing methods 

The preprocessing methods used in our project were crucial for transforming raw data into a clean, consistent, and 

analyzable format. These methods significantly improved the quality of the dataset and enhanced the reliability and 

accuracy of our predictive models. The preprocessing methods used in our project were significant in transforming 

raw data into a high-quality dataset that was suitable for robust predictive modeling and analysis. These methods 

improved data integrity, consistency, and accuracy, ultimately enhancing the reliability and validity of our insights 

into immune responses to pertussis vaccination. Here are the key preprocessing methods: 

5.3.1 Missing Value Handling 

Addressing missing values was essential to avoid biases and inaccuracies in our analysis. Missing data can lead to 

incorrect model training and unreliable predictions. By imputing missing values or excluding incomplete records, we 

ensured that the dataset was comprehensive and robust, which is critical for building reliable predictive models. 

5.3.2 Outlier Detection and Treatment 

Outliers can skew the results and negatively impact the performance of predictive models. By identifying and treating 

outliers, we maintained the integrity of the dataset, ensuring that the models were trained on data that accurately 

represented the underlying trends. This step helped in improving the model's accuracy and generalizability. 
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5.3.3 Feature Scaling 

The dataset included variables with different scales and units, which could lead to certain features disproportionately 

influencing the model outcomes. Normalizing or standardizing the data ensured that all variables contributed equally 

to the models. This step was crucial for improving the performance and interpretability of the models, especially those 

based on distance metrics (e.g., k-nearest neighbors, SVM). 

5.3.4 One-Hot Encoding 

Categorical variables, such as infancy vaccination status, biological sex, ethnicity, and race, needed to be converted 

into a numerical format suitable for machine learning algorithms. One-hot encoding transformed these categorical 

variables into binary vectors, allowing the models to process and learn from these features effectively. This step 

ensured that the categorical information was preserved and appropriately utilized in the analysis. 

5.3.5 Temporal Alignment and Consistency 

Ensuring accurate and consistent timestamps for sample collection was essential for analyzing the dynamics of the 

immune response. This alignment allowed us to accurately track changes over time and understand the temporal 

aspects of the data, which is crucial for time-series analysis and longitudinal studies. 

5.3.6 Data Integration and Merging 

Merging data from different sources (e.g., demographic, immunological, and gene expression data) into a unified 

dataset provided a comprehensive view of the subjects. This integration enabled more complex analyses and helped 

in identifying interactions between different types of data. It was essential for developing robust models that could 

leverage the full breadth of available information. 

5.3.7 Data Cleaning and Standardization 

Inconsistent labeling and formatting, particularly in demographic categories, required standardization to ensure 

uniformity across the dataset. This cleaning process was vital for maintaining data consistency and accuracy, which 

are critical for reliable analysis and model training. 

5.3.8 Handling Multicollinearity 

Multicollinearity among features can affect the stability and interpretation of model coefficients. By identifying and 

mitigating multicollinearity, we ensured that the models were more stable and interpretable. This step was particularly 

important for regression models and other techniques where feature independence is assumed. 

5.3.9 Quality Control and Validation 

Conducting thorough validation checks on the preprocessed data ensured its accuracy and consistency. This step was 

crucial for identifying any remaining issues that could affect the analysis. Quality control measures helped in 

maintaining the integrity of the dataset and provided confidence in the reliability of the results. 
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5.4 features selection and management 

To select and manage features in our predictive modeling project on immune responses to pertussis vaccination, we 

implemented a structured and systematic approach. This approach ensured the selection of the most relevant features, 

which improved the performance and interpretability of our models. By implementing these feature selection and 

management techniques, we were able to enhance the performance and reliability of our predictive models, ensuring 

that they were based on the most relevant and high-quality features. 

5.4.1 Feature Selection Methods 

5.4.1.1 Random Forest Regressor 

We used a Random Forest Regressor to identify the most important features. This method evaluates feature importance 

based on their contribution to the prediction accuracy of the model. By fitting the Random Forest model to our data, 

we were able to rank the features according to their importance and select the top features that had the highest impact 

on the target variable. 

5.4.1.2 Lasso Regression 

Lasso Regression was another technique we employed for feature selection. Lasso applies a penalty to the coefficients 

of the linear regression model, forcing some of the less important feature coefficients to be exactly zero, effectively 

performing feature selection by shrinking irrelevant feature weights to zero. We used LassoCV for cross-validated 

Lasso regression to determine the optimal regularization parameter, ensuring the selection of significant features. 

5.4.1.3 SelectKBest 

SelectKBest with the f_regression score function was used to select the top k features that had the highest correlation 

with the target variable. This univariate feature selection method scores each feature and selects the top k features 

with the best scores, making it a straightforward and effective way to filter out less relevant features. 

5.4.1.4 Recursive Feature Elimination (RFE) 

We also used Recursive Feature Elimination (RFE) with a linear estimator to recursively remove the least important 

features based on the model coefficients until the specified number of features was reached. RFE helps in selecting 

features by considering the importance of each feature iteratively, ensuring that only the most relevant features are 

retained. 

5.4.2 Feature Management Processes 

5.4.2.1 Scaling Features 

Once the important features were selected, we scaled them using various scalers to ensure that all features contributed 

equally to the model. Scaling methods such as StandardScaler, MinMaxScaler, Normalizer, and RobustScaler were 

evaluated using GridSearchCV to find the best scaler for our data. Scaling helped in normalizing the feature values, 

which is crucial for models sensitive to the scale of input features. 
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5.4.2.2 Handling Missing Values 

We addressed missing values in the dataset by implementing strategies such as imputation, where missing values were 

estimated based on available data, or by excluding incomplete records. This step was essential to maintain the integrity 

and completeness of the dataset, ensuring that the selected features were representative of the entire dataset. 

5.4.2.3 Removing Columns with NaN Values 

Columns with excessive NaN values were identified and removed, except for columns where retaining the data was 

crucial. This cleaning step helped in reducing noise and improving the quality of the dataset, which is important for 

building robust models. 

5.4.2.4 Creating Target Columns 

Target columns were created based on specific criteria, such as antibody titers and monocyte frequencies at different 

days post-vaccination. This step ensured that the selected features were aligned with the predictive goals of our project. 

5.4.3 Workflow Integration 

5.4.3.1 Merging and Alignment 

The cleaned and selected features from different datasets (subject, specimen, titer, cell frequency, gene expression, 

and cytokine data) were merged into a comprehensive training dataset. This involved aligning columns across different 

datasets to ensure consistency and filling missing values where necessary. 

5.4.3.2 Validation and Visualization 

Selected features were validated using various techniques, and their importance was visualized through bar plots and 

other graphical representations. This helped in confirming the relevance of the selected features and provided insights 

into their contribution to the predictive models. 

5.4.3.3 Model Tuning and Evaluation 

We used GridSearchCV and cross-validation to tune and evaluate different models, ensuring that the selected features 

were effectively utilized in improving model performance. The best models and their parameters were saved for further 

analysis and deployment. 
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6 Analysis Methods 

6.1 Identifying Methods for Preliminary Analysis 

To identify methods for performing preliminary analysis of our data, we leveraged domain knowledge, exploratory 

data analysis (EDA) techniques, and best practices in data science. We began by reviewing existing literature on 

immunological responses to vaccinations, particularly focusing on studies related to pertussis (whooping cough). This 

helped us understand the key variables and metrics commonly analyzed in such studies, such as antibody titers, 

monocyte frequencies, and gene expression levels. 

Next, we employed various EDA techniques to gain insights into the structure, distribution, and relationships within 

the data. Descriptive statistics were used to calculate measures such as mean, median, and standard deviation to 

understand the central tendency and variability of the data. Data visualization tools like histograms, box plots, scatter 

plots, and correlation matrices were utilized to visualize distributions and relationships between variables. We also 

conducted missing value analysis to identify patterns and proportions of missing data, informing our imputation 

strategy. Additionally, outlier detection methods were used to identify and assess the impact of outliers on the dataset. 

6.2 Significance of Using These Methods 

Using these methods was significant because they helped us uncover critical characteristics of the dataset. 

Understanding the presence of missing values, outliers, and the distribution of key variables was essential for making 

informed decisions in subsequent data preprocessing steps. The insights gained from EDA directly influenced our data 

cleaning and transformation strategies. For example, identifying missing data patterns guided our imputation approach, 

while understanding the distribution of variables informed our scaling and normalization methods. 

EDA also helped us identify key variables and their relationships, which were crucial for feature selection. By 

visualizing correlations and trends, we could pinpoint which variables were likely to be significant predictors in our 

models. This preliminary analysis provided a deep understanding of the data's structure and characteristics, which was 

vital for developing reliable and accurate predictive models. 

6.3 Influence on Project Design and Data Science Questions 

The preliminary analysis had a profound influence on the design of the next steps in the project and the refinement of 

our data science questions. The insights gained allowed us to refine our initial data science questions by providing a 

clearer understanding of the data's potential. For example, we could specify questions such as, "How do antibody titer 

levels change 14 days post-vaccination?" and "What are the key demographic and immunological predictors of 

monocyte frequency one day after vaccination?" 

The preliminary analysis also influenced the design of subsequent project steps. Based on the relationships and patterns 

identified, we engineered new features and selected the most relevant ones for our predictive models. Understanding 

the data's characteristics helped us choose appropriate machine learning models and hyperparameters. For instance, if 

the data showed non-linear relationships, we opted for models like Random Forest or Gradient Boosting. 
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Additionally, the preliminary analysis informed our validation strategy. We designed our cross-validation and model 

evaluation strategies to account for identified data characteristics, such as imbalanced classes or the presence of 

temporal trends. This ensured that the chosen methods and strategies were well-suited to the data at hand, enhancing 

the reliability and validity of our insights into immune responses to pertussis vaccination. 

6.4 Applying Analysis Techniques to Data 

Applying analysis techniques to our data involved several key steps that were essential for ensuring the accuracy, 

reliability, and interpretability of our results. These steps included data preprocessing, feature selection, model training 

and evaluation, and validation. Each step was necessary to handle the complexities of our dataset and to derive 

meaningful insights from the data. 

6.4.1 Data Preprocessing 

We began by cleaning and transforming the data to address issues such as missing values, outliers, and inconsistent 

formatting. This step involved handling missing values by applying imputation techniques to estimate missing values 

based on the available data or by excluding incomplete records to maintain dataset integrity. Outlier detection and 

treatment were performed using statistical methods and visual tools to identify and handle outliers, ensuring they did 

not skew the results or negatively impact model performance. Scaling and normalization techniques, such as 

StandardScaler and MinMaxScaler, were applied to ensure that all variables contributed equally to the models, 

especially those sensitive to the scale of input features. 

6.4.2 Feature Selection 

Identifying relevant features was crucial for improving the performance and interpretability of our predictive models. 

We employed several feature selection methods, including the use of a Random Forest Regressor to evaluate the 

importance of features based on their contribution to prediction accuracy. Lasso Regression was applied to shrink 

irrelevant feature weights to zero, effectively selecting significant features by using regularization techniques. 

SelectKBest was utilized to select the top k features with the highest correlation with the target variable, filtering out 

less relevant features. Additionally, Recursive Feature Elimination (RFE) was implemented to recursively remove the 

least important features, ensuring that only the most relevant features were retained. 

6.4.3 Model Training and Evaluation 

Choosing and tuning models were essential steps in ensuring that the models were well-suited to our data 

characteristics. We selected models such as Random Forest, Gradient Boosting, and Lasso based on their ability to 

handle the data’s complexity and non-linear relationships. Hyperparameter tuning was performed using 

GridSearchCV to optimize hyperparameters, ensuring the models achieved the best possible performance. Cross-

validation was applied to validate model performance and ensure robustness, preventing overfitting and ensuring the 

models generalized well to new data. 
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6.4.4 Validation 

Validation was a critical step to confirm the reliability and accuracy of our models. We calculated cross-validation 

scores using metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared to assess model 

performance. Graphical representations, such as bar plots and scatter plots, were used to visualize model performance 

and feature importance, providing insights into the model’s predictive power and the significance of selected features. 

Each of these steps was crucial for several reasons. Data preprocessing ensured the dataset was clean, consistent, and 

complete, providing a solid foundation for analysis. Feature selection focused the analysis on the most impactful 

variables, improving model accuracy and interpretability. Model selection and tuning ensured that the best algorithms 

and parameters were used, maximizing predictive performance. Validation confirmed that the models were robust and 

reliable, capable of generalizing to new data and providing meaningful insights. 

By applying these analysis techniques, we were able to handle the complexities of our dataset effectively, derive 

meaningful insights, and develop reliable predictive models for immune responses to pertussis vaccination. 

6.5 Basic analysis techniques used 

We employed several basic analysis techniques to ensure a comprehensive understanding of our dataset and to prepare 

it for more advanced modeling. These techniques included descriptive statistics, data visualization, missing value 

analysis, and outlier detection. Each technique played a crucial role in addressing specific aspects of data quality and 

interpretability. The basic analysis techniques we used included descriptive statistics, data visualization, missing value 

analysis, and outlier detection. These techniques were essential for understanding the data's structure, identifying 

potential issues, and guiding subsequent data cleaning and transformation processes. By applying these techniques, 

we ensured that our dataset was well-prepared for more advanced modeling, ultimately leading to more accurate and 

reliable results in our study of immune responses to pertussis vaccination. 

6.5.1 Descriptive Statistics 

We used descriptive statistics to summarize and describe the main features of the data. Measures such as mean, median, 

standard deviation, and interquartile range provided insights into the central tendency and variability of the data. 

Descriptive statistics helped us understand the overall distribution of key variables, identify potential issues such as 

skewness or extreme values, and set the stage for further analysis. This technique was essential for getting a 

preliminary sense of the data and ensuring that any subsequent transformations or analyses were based on a solid 

understanding of its basic properties. 

6.5.2 Data Visualization 

Data visualization techniques, including histograms, box plots, scatter plots, and correlation matrices, were employed 

to visually explore the data. These visual tools helped us identify patterns, relationships, and anomalies that might not 

be immediately apparent from the raw data. Histograms and box plots allowed us to see the distribution and spread of 

individual variables, while scatter plots and correlation matrices provided insights into relationships between pairs of 
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variables. Visualization was crucial for uncovering trends, detecting outliers, and communicating data characteristics 

effectively to the team. 

6.5.3 Missing Value Analysis 

Identifying and addressing missing values was a critical part of our analysis. We conducted missing value analysis to 

understand the extent and pattern of missing data in our dataset. This analysis involved calculating the percentage of 

missing values for each variable and examining whether the missing data occurred randomly or followed a pattern. 

Addressing missing values was important because they can lead to biased results and reduce the power of statistical 

tests. Depending on the findings, we applied appropriate techniques such as imputation to fill in missing values or 

exclusion of incomplete records to maintain the integrity of the dataset. 

6.6 Analytical workflow 

The workflow chart illustrates the comprehensive process of data analysis and modeling in our project aimed at 

predicting immune responses to pertussis vaccination. The workflow is structured into distinct stages, each critical for 

ensuring accurate and reliable results. Analytical workflow is shown as figure 6-1. 

 

Figure 6-1 Analytical workflow 

The process begins with data acquisition from the CMI-PB Lab's PostgreSQL database, accessed via the PostgREST 

API using the GET method. The key datasets retrieved include Subject (containing demographic information such as 

birthdate, sex, ethnicity, and race), Specimen (details about the specimens collected, including the boost date and the 

timing of sample collection relative to the vaccination), Antibody Titer (measures of antibody levels), Gene Expression 

(data on gene expression levels), Cell Frequency (information on the frequency of different cell types in blood 

samples), and Plasma Cytokine (levels of various cytokines in plasma samples). 

The preprocessing stage involves preparing the raw data for analysis. Demographic data is processed by calculating 

age from the birthdate and boost date, and converting categorical variables such as sex, ethnicity, and race to numerical 

format using one-hot encoding. Vaccination data is aligned by matching actual and planned vaccination dates and 

processing immunological measurements such as normalized mean fluorescence intensity and the percentage of live 
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cells. Immunological data includes features such as immunoglobulin isotypes, antigens, cell types, and gene 

expression levels, which are essential for understanding immune responses. 

All features are collected to represent the immune system's baseline state on Day 0 relative to the vaccination. This 

ensures consistency in the data used for model training and subsequent predictions. Data transformation steps are 

applied, including handling missing values to ensure dataset completeness and reliability. The best scaler for the data 

is identified using GridSearchCV, which ensures that the features are appropriately scaled for model training. 

Feature selection methods are applied to identify the most significant predictors from the immunological and 

demographic data. This involves selecting the most relevant features for each prediction task, ensuring they provide 

the best possible representation of the underlying biological processes. A total of 22 regression models are tuned using 

various hyperparameters to identify the best-performing models for each target prediction task. These models are 

validated using 3-fold cross-validation to ensure their robustness and ability to generalize to new data. 

Once the models are trained and validated, they are used to make predictions on new data. The prediction targets 

include IgG Antibody Titers on Day 14 (measuring the immune response in terms of antibody levels), Monocyte 

Frequency on Day 1 (estimating the frequency of monocytes in the blood), and Gene Expression Levels on Day 3 

(focusing on specific genes like ENSG00000277632 to understand the gene expression response to vaccination). The 

prediction process uses the selected scalers and features from the training phase to ensure consistency and accuracy. 

The results provide valuable insights into the immune response to pertussis vaccination, helping to tailor more 

effective immunization programs. 

In summary, this workflow chart demonstrates a structured and systematic approach to analyzing complex 

immunological data, from initial data acquisition through preprocessing, feature engineering, model training and 

validation, to making accurate predictions. This methodical process ensures that the insights derived are reliable and 

can significantly contribute to improving vaccination strategies. 

6.7 processing environment  

 Setting up the processing environment for our project involved a combination of local and cloud-based resources to 

ensure robust data handling, efficient model training, and scalable deployment. 

6.7.1 Local Environment 

We started with a local Ubuntu server, which provided a stable and controlled environment for initial data processing 

tasks. This server was equipped with sufficient CPU, memory, and storage to handle the computational needs. The 

server ran Ubuntu due to its stability and compatibility with various open-source data science tools. 

The data preparation phase on the local server involved gathering and preprocessing offline data. We installed Python 

along with essential libraries such as pandas, NumPy, and scikit-learn to facilitate data cleaning, transformation, and 

initial analysis. Simple, naive models were built to establish baselines and to help us understand the data structure 

better. These models also helped identify any preliminary issues that needed addressing. Post-processing steps 

included refining the data and model outputs to ensure they were ready for more complex modeling. 
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6.7.2 Cloud Environment 

For more intensive model training and hyper-parameter tuning, we utilized AWS SageMaker. This platform was 

chosen for its powerful machine learning capabilities and scalability. AWS SageMaker facilitated the selection of 

appropriate algorithms and the training of our models using large datasets from the years 2020 and 2021. SageMaker's 

built-in tools for hyper-parameter tuning were instrumental in optimizing the model parameters, ensuring that our 

models were both accurate and efficient. We validated the models using various performance metrics to ensure they 

met our standards, and the results were logged and reviewed to select the best-performing models. 
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7 Findings and Reporting 

7.1 Evaluation Results for Various Models 

The training and evaluation process for the six models involves using a variety of regression techniques, each tuned 

using GridSearchCV for optimal performance. The primary goal is to identify the best model for each task based on 

performance metrics such as R-squared, Mean Squared Error (MSE), and Mean Absolute Error (MAE). The models 

considered include Random Forest Regressor, Support Vector Regressor (SVR), Gradient Boosting Regressor, Lasso 

Regressor, Ridge Regressor, and ElasticNet Regressor. Each model undergoes a rigorous evaluation process to ensure 

the highest accuracy and reliability. 

The Random Forest Regressor model is trained by fitting it to the training data and using the feature importances to 

select the most relevant features. GridSearchCV is employed to tune hyperparameters such as the number of estimators 

and maximum depth. This model is evaluated based on its ability to handle large datasets and capture complex 

interactions between features. 

The Support Vector Regressor (SVR) model is trained by tuning hyperparameters like the regularization parameter 

(C) and kernel type. GridSearchCV is utilized to find the best combination of these parameters. SVR is particularly 

effective for tasks requiring high accuracy and can handle non-linear relationships within the data. 

The Gradient Boosting Regressor is trained by optimizing parameters such as the number of boosting stages, learning 

rate, and maximum depth of trees. GridSearchCV helps in identifying the optimal settings. This model is known for 

its robustness and ability to improve prediction accuracy by combining the strengths of multiple weak learners. 

The Lasso Regressor model uses L1 regularization to select a subset of features, reducing model complexity and 

enhancing interpretability. Hyperparameters, including the regularization strength, are tuned using GridSearchCV. 

Lasso is effective for preventing overfitting and ensuring that the model remains simple and interpretable. 

The Ridge Regressor model employs L2 regularization to manage multicollinearity in the data. GridSearchCV is used 

to fine-tune the regularization parameter. Ridge Regressor is particularly useful for tasks where all predictors need to 

be retained, but their impact needs to be controlled to avoid overfitting. 

The ElasticNet Regressor combines L1 and L2 regularization, offering a balance between feature selection and 

regularization. The ratio between the two regularization terms is optimized using GridSearchCV. ElasticNet is suitable 

for scenarios where there is a need for a more flexible regularization approach, leveraging the benefits of both Lasso 

and Ridge techniques. 

Each model undergoes a final evaluation based on performance metrics such as R-squared, MSE, and MAE. The best-

performing model for each task is selected and saved for making predictions, ensuring that the final model is both 

accurate and reliable. 

Across all models, the Support Vector Regression (SVR), Extra Trees Regressor, Ridge regression, Polynomial 

Regression, and TheilSen Regressor were found to be effective for different aspects of the dataset. These models were 



25 

chosen based on their ability to explain a significant amount of variance in the data, as evidenced by their high R-

squared and explained variance scores. The chosen models reflect the diversity of the data and the complexity of the 

relationships within it, necessitating robust and flexible modeling approaches. 

7.1.1 IgG Antibody Titers against Pertussis Toxin Model 

The best model for predicting IgG antibody titers against pertussis toxin was the Support Vector Regression (SVR). 

This model achieved the highest R-squared value of 0.612328, indicating that it explained a significant portion of the 

variance in the data. The Mean Squared Error (MSE) was -10.07838, and the Mean Absolute Error (MAE) was -

2.421688. The explained variance was 0.667341, demonstrating the model's effectiveness in capturing the underlying 

patterns in the data. IgG Antibody Titers against Pertussis Toxin Model Selected Features and R2 Evaluation are shown 

as figure 7-1. 

 

Figure 7-1 IgG Antibody Titers against Pertussis Toxin Model Selected Features and R2 Evaluation 

7.1.2 IgG Antibody Titers against Pertussis Toxin Model (Fold Change) 

For the fold change in IgG antibody titers, the Extra Trees Regressor was the best-performing model. It had an R-

squared value of 0.629754, an MSE of -88.55589, and an MAE of -7.987199. The explained variance was 0.639865, 

suggesting that this model effectively handled the variability and complexity of the fold change data. IgG Antibody 

Titers against Pertussis Toxin Model (Fold Change) Selected Features and R2 Evaluation are shown as figure 7-2. 

 

Figure 7-2 IgG Antibody Titers against Pertussis Toxin Model (Fold Change) Selected Features and R2 Evaluation 
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7.1.3 Frequency of Monocytes Model 

The Ridge regression model was found to be the best for predicting the frequency of monocytes. It had an R-squared 

value of 0.363876, with an MSE of -0.086865 and an MAE of -0.220176. The explained variance was 0.486610, 

indicating a good balance between bias and variance and a solid performance in explaining the frequency of monocytes. 

Frequency of Monocytes Model Selected Features and R2 Evaluation are shown as figure 7-3. 

 

Figure 7-3 Frequency of Monocytes Model Selected Features and R2 Evaluation 

7.1.4 Frequency of Monocytes Model (Fold Change) 

The Polynomial Regression model performed best for predicting the fold change in monocyte frequency, with an R-

squared value of 0.338976. The MSE was -31724.10, and the MAE was -78528.89. The explained variance was 

0.470572, highlighting the model's capability to capture non-linear relationships in the data. Frequency of Monocytes 

Model (Fold Change) Selected Features and R2 Evaluation are shown as figure 7-4. 

 

Figure 7-4 Frequency of Monocytes Model (Fold Change) Selected Features and R2 Evaluation 

7.1.5 Gene Expression Model 

The TheilSen Regressor excelled in the gene expression model, achieving an R-squared value of 0.629636, an MSE 

of -0.781172, and an MAE of -0.652281. The explained variance was 0.669913, indicating the model's robustness in 

handling outliers and providing stable predictions. Gene Expression Model Selected Features and R2 Evaluation are 

shown as figure 7-5. 
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Figure 7-5 Gene Expression Model Selected Features and R2 Evaluation 

7.1.6 Gene Expression Model (Fold Change) 

Similarly, the TheilSen Regressor was also the best model for predicting fold changes in gene expression, with an R-

squared value of 0.628969, an MSE of -0.781679, and an MAE of -0.652287. The explained variance was 0.670278, 

reinforcing the model's suitability for this type of data. Gene Expression Model (Fold Change) Selected Features and 

R2 Evaluation are shown as figure 7-6. 

 

Figure 7-6 Gene Expression Model (Fold Change) Selected Features and R2 Evaluation 

7.2 Prediction Results 

The prediction program is structured to seamlessly integrate data preparation, transformation, and prediction using 

pre-trained machine learning models. Initially, the program prepares the data by importing necessary modules and 

functions and fetching data from CSV files via a custom API. This data is merged to form a comprehensive dataset, 

enabling exploratory data analysis. 

Next, the program preprocesses the data. It cleans the data by calculating ages and handling categorical variables with 

one-hot encoding. Columns with NaN values are dropped, except for those deemed crucial, ensuring the dataset 

remains clean and consistent. 



28 

Feature selection and scaling follow. The program identifies relevant features using previously saved files that list 

important features. It applies the best scaler determined during model training, standardizing the data to fit within the 

required range and format for accurate model predictions. 

In the prediction phase, pre-trained machine learning models are loaded from joblib files. These models are then used 

to make predictions on the prepared dataset, ensuring that the data used for predictions aligns with the model’s 

expectations through the application of selected features. 

Post-processing involves converting predictions to ranks when necessary, providing a standardized format for 

comparison and analysis. The program also removes specific suffixes from column names to ensure clarity and 

consistency in the results. 

The program saves the cleaned and ranked prediction results to CSV files, facilitating further analysis or submission. 

It ensures the format of the prediction results matches the required structure for reporting or submission by using a 

provided prediction template. This structured approach maintains data integrity and model accuracy throughout the 

process, from data preparation to the presentation of results. Prediction Results is shown as figure 7-7. 

 

Figure 7-7 Prediction Results 

7.3 Visualizations and reporting dashboard 

The dashboard is organized to provide an interactive and comprehensive view of immune responses to pertussis 

vaccinations. The initial section includes importing necessary libraries and modules such as pandas, plotly, dash, and 

dash_bootstrap_components, and setting up the directory path and custom module import from pipeline. 

In the data fetching and preprocessing section, datasets are fetched from the CMI-PB laboratory database using API 

requests. These datasets are merged for exploratory data analysis. Training datasets for different tasks and selected 
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features for each task are loaded from CSV files, along with model evaluation results for each task. The final prediction 

results are also fetched and rounded for display. Dashboard is shown as figure 7-8. 

 

Figure 7-8 Dashboard 

The app initialization involves creating a Dash application with external stylesheets and meta tags for responsive 

design and description. The app title is set to "CMI-PB Responses Pertussis Vaccination". 

For dropdown menu creation, two dropdown menus are designed: 

1. One for selecting the task to be viewed. 

2. Another for selecting the evaluation metric (MSE, MAE, R-squared). 

The app layout is organized using dbc.NavbarSimple for the navigation bar and dbc.Container for the main content. 

The navigation bar includes links to the data source and the GitHub repository. The main content is structured using 

dbc.Stack, which contains several rows and columns for different visualizations and interactive elements. 

Multiple callback functions are defined to update and generate various plots based on user input. These include: 

1. Age Distribution: A histogram showing the distribution of ages. 
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2. Sex Distribution: A pie chart displaying the distribution of biological sex. 

3. Race Distribution: A histogram depicting the distribution of race. 

4. Feature Correlation Heatmap: A heatmap illustrating correlations between selected features. 

5. Model Evaluation Chart: A bar chart showing evaluation metrics (MSE, MAE, R-squared) for different 

models. 

6. Bubble Chart: A bubble chart for visualizing the most important features. 

7. Parallel Coordinates Plot: A plot demonstrating how unique features were shared and utilized across different 

tasks. 

The CSV download function enables users to download the prediction results as a CSV file. Finally, the Dash 

application is hosted on a local server with port 8003. 

In terms of content, the dashboard features dropdown menus that allow users to select different tasks and evaluation 

metrics. Visualizations include histograms, pie charts, heatmaps, bar charts, bubble charts, and parallel coordinates 

plots. There is also a data table displaying the final prediction results and a download button for exporting the results 

in CSV format. 

Stylistically, the dashboard uses the "Minty" theme from dash_bootstrap_components for a clean and modern look. 

The design is responsive, adapting to different screen sizes, and employs a dark color scheme for the navigation bar 

along with various color scales for the plots to enhance readability and visual appeal. Consistent use of fonts and 

spacing ensures a cohesive and professional appearance, and interactive elements like dropdowns and buttons provide 

a dynamic user experience, allowing users to explore the data and model results in depth 
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8 Solution Architecture, Performance and Evaluation  

8.1 Solution Architecture 

The Solution Architecture chart provides a detailed depiction of the entire workflow involved in developing, deploying, 

and monitoring predictive models for immune responses to pertussis vaccination. The architecture is divided into three 

main phases: Train Prep, Train & Tune, and Deploy & Monitor. Each phase is essential for ensuring the models' 

effectiveness and reliability. Solution Architecture is shown as figure 8-1. 

 

Figure 8-1 Solution Architecture 

In the Train Prep phase, which is conducted on a Local Ubuntu Server, the process begins with gathering offline data 

from various sources. This data undergoes extensive preparation, including cleaning, transforming, and organizing to 

ensure it is suitable for model building. A naive model is initially built to understand the data and establish a baseline 

for more advanced modeling. Post-processing refines the initial model, validates results, and makes necessary 

adjustments to improve accuracy. 

The Train & Tune phase takes place on an AWS SageMaker Instance. This phase starts with the selection of 

appropriate algorithms based on the data's characteristics and the specific requirements of the predictive tasks. The 

selected algorithms are then used to train the models using data from the years 2020 and 2021. The models' 

performance is evaluated using various metrics to ensure robustness and accuracy. Hyper-parameters are fine-tuned 
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to optimize model performance, ensuring the models are well-suited for the data. The trained models are stored in a 

model registry, which keeps track of the models and their versions for future reference and deployment. 

In the Deploy & Monitor phase, which is carried out on an AWS EC2 Instance or a local server, the validated models 

are deployed to the production environment, utilizing data from 2022 and 2023 for real-time predictions. A monitoring 

dashboard continuously tracks the models' performance and provides real-time insights. Models are periodically 

retrained with new data to ensure they remain accurate and relevant. This involves updating the models in the model 

registry and redeploying them as necessary. 

Throughout the entire workflow, the CMI-PB Lab Database plays a central role by providing the data necessary for 

training, tuning, and deploying the models. Data from the CMI-PB Lab Database is integrated at various stages to 

ensure that the models are built and validated using the most current and relevant information. 

In summary, this Solution Architecture illustrates a structured and systematic approach to developing predictive 

models, ensuring they are accurate, reliable, and continuously updated to reflect new data. This comprehensive 

workflow ensures that the insights derived are actionable and contribute significantly to improving vaccination 

strategies. 

8.2 Performance Measurement 

Performance was measured using a set of key evaluation metrics: Mean Squared Error (MSE), Mean Absolute Error 

(MAE), R-squared, and Explained Variance Score. These metrics provided a comprehensive view of how well the 

models performed on the given tasks. 

MSE and MAE were used to quantify the accuracy of the predictions by measuring the average squared difference 

and absolute difference, respectively, between predicted and actual values. These metrics are crucial as they indicate 

the average magnitude of errors in the predictions, with lower values suggesting better model performance. 

R-squared was employed to assess the proportion of the variance in the dependent variable that is predictable from 

the independent variables. This metric provides insight into the goodness-of-fit of the model, with values closer to 1 

indicating that the model explains a large portion of the variance in the data. 

Explained Variance Score was used to measure the proportion of variance explained by the model, offering a direct 

understanding of how much variability in the data the model can account for. High values in this metric suggest a 

strong explanatory power of the model. 

GridSearchCV was utilized to optimize the hyperparameters of each model, ensuring that the models were not only 

accurate but also well-tuned for the specific data at hand. Cross-validation within GridSearchCV helped in obtaining 

robust performance estimates, reducing the risk of overfitting. 

Visualization techniques such as bar plots and feature importance charts were used to compare the performance of 

different models and to understand the impact of various features on the model predictions. This holistic approach 

ensured that the selected models were both reliable and interpretable. 
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8.3 Model scale and evaluation 

Model scaling and evaluation were integral components of the project, aimed at optimizing the models and accurately 

measuring their performance. The process started with model scaling, which involved selecting the most suitable 

scaler to normalize the data. This was necessary to ensure that all features had a consistent scale, which is crucial for 

the performance and convergence of many machine learning algorithms. Several scalers, including StandardScaler, 

MinMaxScaler, Normalizer, and RobustScaler, were tested using GridSearchCV along with a Lasso regression model. 

The best scaler was chosen based on the highest cross-validated R-squared score, ensuring the data was appropriately 

preprocessed for model training. 

Feature selection was another critical step in the process. Various techniques were employed to identify the most 

relevant features, reducing overfitting and improving model accuracy. These techniques included using feature 

importances from a trained Random Forest model, identifying non-zero coefficients in a Lasso regression, selecting 

top features through univariate statistical tests with SelectKBest, and recursively eliminating the least important 

features with Recursive Feature Elimination (RFE). Each method provided a different perspective on feature 

importance, allowing for a comprehensive selection process. 

Once the features were selected and the data was scaled, multiple regression models were trained. These models 

included Random Forest Regressor, Support Vector Regressor (SVR), Gradient Boosting Regressor, Lasso, Ridge, 

ElasticNet, Decision Tree Regressor, K-Nearest Neighbors Regressor (KNN), Linear Regression, Polynomial 

Regression, SGD Regressor, Bayesian Ridge, ARD Regression, Passive Aggressive Regressor, Extra Trees Regressor, 

AdaBoost Regressor, Bagging Regressor, Huber Regressor, Quantile Regressor, and TheilSen Regressor. Each model 

was tuned using GridSearchCV with specific parameter grids to find the optimal hyperparameters, ensuring the best 

performance for each model. 

The performance of the models was evaluated using several metrics, including Mean Squared Error (MSE), Mean 

Absolute Error (MAE), R-squared, and Explained Variance Score. MSE measured the average squared difference 

between predicted and actual values, MAE measured the average absolute difference, R-squared indicated the 

proportion of variance explained by the model, and the Explained Variance Score measured the proportion of variance 

captured. These metrics provided a comprehensive evaluation of each model's accuracy and explanatory power. 

Visualizations played a significant role in comparing the performance of the models. Bar plots of R-squared scores 

and other evaluation metrics were used to visually compare the models, making it easier to identify the best-performing 

model for each task. The model with the highest R-squared score was selected as the best model, and this model was 

then saved for making predictions on new data. 

The selected models were used to make predictions on the test dataset. The prediction process involved applying the 

best scaler and selected features to the test data, and then using the trained models to generate predictions. The 

predictions were then saved and ranked as required, providing the final output for the project. This comprehensive 

approach ensured that the models were both optimized and accurately evaluated, resulting in reliable predictions. 
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8.4 budget management 

 During the completion of my project, we implemented several strategies to control AWS costs effectively. Here are 

the key approaches we used: 

8.4.1 Setting Budget Limits 

We established a clear budget with an overall limit of $1000.00 and a daily limit of $50.00. This setup allowed me to 

monitor my expenses closely and ensure that we stayed within my financial boundaries. Regularly checking these 

limits helped me avoid unexpected costs and stay on track with my spending. 

8.4.2 Using Spot Instances 

To save on costs, we took advantage of Spot Instances for SageMaker. Spot Instances are typically much cheaper than 

On-Demand Instances, offering significant savings for workloads that can tolerate interruptions. This choice was 

crucial in reducing the overall cost of my project without compromising on performance. 

8.4.3 Stopping Instances When Not in Use 

We made it a habit to stop all instances when they were not actively being used. This practice was essential in 

preventing unnecessary billing for idle instances. By ensuring that instances were only running when needed, we was 

able to keep my costs under control. 

8.4.4 Choosing Appropriate Instance Types 

We carefully selected a variety of instance types (e.g., ml.t3.medium, ml.m5.2xlarge, ml.c6i.xlarge) that were tailored 

to the specific computational needs of different tasks. This approach helped me avoid over-provisioning and paying 

for unnecessary capacity, ensuring that we only paid for what we needed. AWS Instances list for this project is shown 

as figure 8-2. 

 

Figure 8-2 AWS Instances list 
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8.4.5 Scheduling Instance Usage 

We planned and scheduled the creation and usage of instances to ensure they were used efficiently. By scheduling 

tasks and creating instances at specific times, we could optimize their uptime and avoid incurring costs from extended 

usage periods. 

8.4.6 Monitoring and Regular Updates 

Frequent monitoring of usage and costs was a critical part of my cost management strategy. By regularly updating and 

reviewing my budget and usage information, we stayed aware of my spending status and could make informed 

decisions about instance management. This proactive approach allowed me to take corrective actions if my expenses 

were nearing the set limits. AWS service costs for this project is shown as figure 8-3. 

 

Figure 8-3 AWS service costs 

By combining these strategies, we managed AWS costs effectively during my project. This disciplined approach 

ensured that resources were utilized efficiently, expenses were kept under control, and the value derived from AWS 

services was maximized. 
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9 Conclusions  

The project on Predictive Modeling of Immune Responses to Pertussis Vaccination has yielded significant insights 

and valuable outcomes. The comprehensive approach taken, from data preprocessing to model evaluation, has 

highlighted the critical aspects of predictive modeling in a healthcare context. Below are the key conclusions drawn 

from this project: 

9.1 Data Preprocessing and Feature Selection 

Effective data preprocessing and feature selection were fundamental to the success of the predictive models. By 

addressing missing values, normalizing data, and selecting the most relevant features, the quality and performance of 

the models were greatly enhanced. Techniques such as Random Forest, Lasso, and SelectKBest were pivotal in 

identifying the most influential features, leading to more accurate predictions. 

9.2 Model Training and Tuning 

The project involved the training and evaluation of multiple models, including Random Forest, Support Vector 

Regression (SVR), Gradient Boosting, Lasso, Ridge, and more. The use of GridSearchCV for hyperparameter tuning 

ensured that each model was optimized for the best possible performance. The rigorous evaluation metrics, including 

MSE, MAE, R-squared, and Explained Variance, provided a comprehensive understanding of each model's strengths 

and weaknesses. 

9.3 Model Evaluation and Comparison 

Evaluating the models on different tasks related to immune response predictions revealed the varying effectiveness of 

each model. For instance, the SVR model was identified as the best performer for predicting IgG antibody titers against 

pertussis toxin, while the Extra Trees Regressor excelled in other tasks. This comparison underscored the importance 

of selecting the right model for specific prediction tasks in biomedical research. 

9.4 Predictive Insights 

The models provided valuable predictive insights into immune responses to pertussis vaccination. The ability to rank 

individuals based on predicted IgG titers, monocyte frequencies, and gene expression levels offers a powerful tool for 

understanding and potentially improving vaccination strategies. These predictions can help identify individuals who 

may benefit from additional booster shots or alternative vaccination schedules. 

9.5 Visualization and Interpretation 

The visualization of model performance and feature importance played a crucial role in interpreting the results. 

Heatmaps, bar charts, and parallel coordinates plots made the complex relationships between features and outcomes 

more comprehensible. These visual tools facilitated better communication of findings to stakeholders and contributed 

to more informed decision-making processes. 
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9.6 Practical Applications and Future Work 

The project's outcomes have practical implications for enhancing pertussis vaccination programs. The predictive 

models can be integrated into clinical workflows to support personalized vaccination strategies. Future work could 

expand the dataset, incorporate additional features, and explore advanced modeling techniques to further improve 

prediction accuracy and robustness. 

9.7 Final Thoughts 

In conclusion, the Predictive Modeling of Immune Responses to Pertussis Vaccination project has demonstrated the 

power of machine learning in healthcare. By meticulously preprocessing data, selecting relevant features, and 

rigorously evaluating models, the project has set a solid foundation for predictive analytics in immunology. The 

insights gained from this project not only contribute to the scientific understanding of vaccine responses but also pave 

the way for personalized medicine approaches in vaccination programs. The success of this project highlights the 

potential of predictive modeling to transform healthcare practices and improve patient outcomes. 
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11 Appendices 

11.1 DSE MAS Knowledge Applied to the Project 

In our project, we applied various skills and knowledge acquired from the DSE MAS course. Key courses that 

contributed significantly to our project include Python Data Analysis, Database Management Systems, Statistics and 

Probability with Python, Machine Learning, and Data Visualization. 

We used Python extensively for data pre-processing and analysis, leveraging libraries such as Pandas and NumPy to 

efficiently process and analyze large amounts of immune response data. The knowledge from the Database 

Management System course enabled us to build and query relational databases, effectively manage and integrate 

multiple datasets through PostgreSQL and PostgREST API. Statistical methods and probability theory were used to 

evaluate our models, using metrics such as MAE, MSE, and R-squared values to ensure that the predictions were 

robust and accurate. 

The machine learning techniques we learned in the course were essential in developing the predictive models. We 

employed various algorithms, including random forests, gradient boosting, and linear regression, and performed 

hyperparameter tuning to optimize model performance. Data visualization skills were essential in making complex 

data easier to understand. We created multiple visualization tools and dashboards to clearly present the prediction 

results and model performance to provide insights to team members and stakeholders. 

The integration of these courses allowed us to build and refine predictive models that can predict immune responses 

to pertussis vaccines, thereby helping to personalize vaccination strategies and improve the overall effectiveness of 

the vaccine. 

11.2 Link to the Library Archive for Reproducibility 

https://library.ucsd.edu/dc/collection/bb8093534p 

 

https://library.ucsd.edu/dc/collection/bb8093534p
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