August 28, 1970

> PROF. PAULINE OLIVEROS
> Department of Music
> University of California
> Post Office Box 109
> La Jolla, California 92037

Dear Pauline:
Enclosed are tape which gives a good sample of our music and a set of reprints which describe the equipment at our facility as well as some of the work we have done on this equipment. As you probably know, we, as a laboratory, do not have any concert activities. However, the individual composers working here are always glad to have their music played and occasionally arrange concerts privately.

I hope this material will occasionally be listened to. Risset's Sound Catalogue which has attached records is particularly usefurl. I enjoyed meeting you and seeing the La Jolla Music Dept. last spring.

MH-I22-MVM-HS
Best regards,

Murex
M. V. MATHEWS

Director
Behavioral and Statistical
Research Center

Enc.

An Introductory Catalogue of Computer Synthesized Sounds

by

J. C. Risset

Bell Telephone Laboratories Murray Hill, New Jersey

ABSTRACT

This introductory catalogue presents some 25 examples of sounds generated by computer, using M. V. Mathews' Music V programs. Some of the sounds are instrument-like; some are not. The catalogue consists of the combination of a tape (or a record) of the sounds, which permits one to evaluate them aurally, and of the computer data used for the synthesis of the sounds, which affords a thorough description of the physical structure of these sounds. This is intended as an example to be followed by people working in sound synthesis, so that others can benefit from their findings and so that an extended repertory of sounds can be made available for tone quality studies and for computer music.

An Introductory Catalogue of Computer Synthesized Sounds

by

J. C. Risset

Bell Telephone Laboratories

 Murray Hill, New Jersey
Table of Contents

Introductory Notes
References
Acknowledgment
Appendix--Catalogue of Sounds
General CØNVT
GEN Subroutines: GEN4, GEN5, GEN6, GEN7, GEN8
\#100 "Flute-like" Melody
\#150 Serial Excerpt with "Clarinet-like Sounds by Nonlinearity
\#200 Brass-like Sounds through Independent Control of Harmonics
\#201 Same as \#200 Played at a Different Sampling Rate
\#2l0 Simplified Brass-like Sounds
\#250 Reedy and Plucked Tones; Choral Effect
\#300 Linear and Exponential Decay Experiments
\#301 "Piano-like" Excerpt
\#400 "Drum" and "Snare-drum" like Sounds
\#410 Percussive Drum-like and Bell-like Sounds
\#41l Similar to \#410
\#420 "Gong-like" Sounds
\#430 Three Successive Approximations to a Bell Sound
\#440 Variable Pitched Drums
\#490 Example of Mixing
\#500 Spectral Analysis of a Chord
\#501 Same as \#500 with a different Time Envelope
\#502 Mixing from \#500
\#503 Mixing from \#501
\#510 Siren-like Glissandi
\#511 Glissandi, Particularly with Constant Frequency Difference Between Voices
\#512 Mixing from \#5ll
\#513 Fragment of Endless Glissando
\#514 A Sound Going Simultaneously Both Up and Down in Pitch
\#515 Envelope Translation for Octave Components Sounds
\#516 Envelope Translation for Harmonic and Inharmonic Components
\#517 Mixing from \#510 to \#5.16
\#550 Ring-modulation Chord with "Gong-like" Resonance

Introductory Notes

This limited "catalogue" presents examples of various types of musical sounds generated by computer, using Music V programs. A general description of the synthesis process is given in reference(l); more details on both the process and the particular program used can be found in reference(2). For each synthesis the user of the programs must provide data which corresponds to the physical parameters of the desired sound. The data used to synthesize a musical excerpt will be from now on referred to as the computer "score" for that excerpt.

It has long been recognized(3)that in order to take advantage of the unlimited resources of computer synthesis of sound, one had to develop a body of psychoacoustical knowledge, enabling him to specify the physical parameters corresponding to a desired type of sound. Experiments with the seemingly wellknown sounds of some musical instruments (4) have shown that such knowledge was still very poor, but that computer synthesis of sound was an invaluable tool to remedy this situation.

This catalogue presents results of computer syntheses for some instrument-like and some non-instrument-like sounds. It consists of the combination of a tape (or a record) of the sounds, which permits the evaluation of these sounds aurally, and of the corresponding computer scores with some additional explanations, which gives the recipe for synthesis and also affords a thorough description of the physical structure of the sounds. Thus the reader-listener can relate the physical parameters of the sounds and their subjective effect; he is also able to resynthesize the sounds by using the same or other programs, or any process enabling him to control the necessary physical parameters.

Each example presented is numbered on the tape and on the write-up. Together with the score, some explanations are given on the purpose of the example, on the design of the instrument, and on the stored functions used. Ahead of the examples a description and a listing are provided for a CøNVT subroutine and some GEN subroutines used in the examples but not described in the Music V manual (2).

It must be emphasized that the sounds are presented as examples and by no means as models. In several instances no attempt has been made to optimize the synthesis with regard to simplicity or efficiency; also most of the instrument-like sounds do not attempt a close imitation of real sounds. In our experience, examples of certain types of sounds with their description are most useful, since this provides a starting point for a
systematic exploration of the synthesis of sounds of these types: it is then rather straightforward to find and discard unimportant features by systematic variations of the parameters. For the sounds presented here, the physical parameters have been deduced from data on real musical instruments or from the results of various synthesis attempts.

Several of the syntheses presented are not very economical. Simple and economical syntheses are in general easy to explore, and complexity seems often necessary to generate varied sounds with life and musical interest. Yet there exist economical and non-trivial ways to synthesize interesting sounds: for instance through the use of unusual frequency modulations, as explored by John Chowning at Stanford University; or through the use of non-linear transfer of waves or ring-modulationlike operations, as exemplified in \#150 and \#550 of this catalogue.

Some of the sound examples presented (\#490, 502, 503, 512, 517) are not directly output from the computer but obtained from mixing one or several computer runs. Obviously mixing deprives the user of some of the computer's precision and convenience, and it requires good electroacoustic equipment. Yet, as discussed in \#512, it helps the user to control the balance of amplitudes of several voices, and it may permit the same computer runs to be used repeatedly.

Listeners are encouraged to listen to the examples at different tape speeds or backwards: these easy manipulations correspond to simple changes in the physical parameters.

The numbers of the examples are in general nonconsecutive: this is to permit us to insert later new examples at what seems the most logical place. Yet it must be noted that no attempt has been made to classify the sounds presented in a rigorous way. The problems here are formidable, since the dimensionality of timbre perception seems quite high.

This catalogue is only a by-product of some sound explorations, but we hope that it will stimulate other people working in the field of synthetic sound to do the same kind of presentation of their work: then one could take advantage of their results, and an extended repertory of sounds would gradually build up and be made readily available, which could benefit studies in tone quality and perhaps other fields of psychoacoustics (5) as well as computer music.

References

(1) M. V. Mathews. "The Digital Computer as a Musical Instrument", Science, 142 (1963) pp.553-557.
(2) M. V. Mathews. The Technology of Computer Music. M.I.T. Press, Cambridge, Mass., 1969.
(3) M. V. Mathews, J. R. Pierce, \& N. Guttman. "Musical Sounds from Digital Computers", Grav. Blatter 23/24 (1962) p. 109.
J. C. Tenney. "The Physical Correlates of Timbre", Grav. Blatter 26 (1965) pp.106-109.
J. R. Pierce, M. V. Mathews, \& J. C. Risset. "Further Experiments on the Use of the Computer in Connection with Music", Grav. Blatter 27/28 (1965) pp.92-97.
(4) J. C. Risset \& M. V. Mathews. "Analysis of Instrument Tones", Physics Today, 22, No. 2 (Feb. 1969) pp.23-30.
(5) R. N. Shepard. "Circularity in Judgments of Relative Pitch", J.Acoust.Soc.Am., 36 (1964) pp.2346-2353.
J. C. Risset. "Pitch Control and Pitch Paradoxes Demonstrated with Computer-Synthesized Sound", J.Acoust. Soc.Am., 46 (Pt.1) (1969) p. 88 (abstract only).
(6) M. V. Mathews. "The Computer Music Record Supplement", Grav. Blatter 26 (1965) p. 117.

ACKNOWLEDGMENT

I dedicate this catalogue to Max V. Mathews as a token of admiration and gratitude. It was indeed a great fortune and a great pleasure for me to work with him and to use the wonderful new means he forged to make music.

APPENDIX

General CØNVT Subroutine

For several of the runs which follow, a "general CøNVT" has been used. It has been designed by P. Ruiz to perform standard conversions without having to change the subroutine. One specifies for each instrument (from \#l to \#5) which P field must undergo which conversion by setting Pass II variables in the following way:
for instrument \#l: SV2 0 lo i $N_{1} N_{2} \ldots N_{i}$;
\#2: SV2 0 20 ...
i is the number of note cards fields to be converted.
If one wants to convert $P 6$ as a frequency (that is, $P(6)=$ (Function length/Sampling rate) $* P(6)$), one sets $N_{l}=6$.

If one wants to convert $P 7$ as a duration increment (that is, $P(7)=$ (Function length/Sampling rate)/P(6)), one sets $N_{2}=-7$.

The conversion to increments for the ENVelope generator is done as follows. One must provide 3 fields, the lst one (e.g., P8) for attack time (in s), the 2nd one (e.g., P9) for steady state time, the 3 rd one (e.g., Plo) for decay time. On the note card P9 is dummy, only attack and decay times need to be specified to their actual value. The CØNVT will determine the steady state time by subtracting $P 8+P 10$ from $P 4$ (duration of the note) (if the result is negative it will assume steady state duration $0(e . g ., P 9=F u n c t i o n$ length/4) and shorten P8 and P10 so that P8+P10 = P4). It "will then apply conversion $P_{(j)}=\left(\right.$ Function length $/ 4 *$ Sampling rate) $\left./ P_{(j)}\right)$. To get P8, P9, Plo converted this way, one simply sets $N_{4}=108$.

This CøNVT provides also for conversion for the FLT (filter) unit generator (not used in the examples).
C****N NUMBER OF FIELDS TO CONVERT
C*****N1,N2...FIELDS NUMBERS
C***************
C*******E. G_{H}. TG CONVT PG AS A FREQUENCY N $1=6$
C*****TC CONVT P? as A TIME INCREMENT N2=-7
C******T HAVE OS PO PIC AS ATTACK STEADY STATE(DUMMY) AND DECAY TIMES
C*****FPG ENVELLPE N3=1C8
C.*****TO HAVE DIl ANS P12 AS CENTER FREQUENCY AND HALF BANDWIDTH IN HZ
C******FกR FILTER N4 =211
C*****IF THIS I; ALL N=4
C***************
SUBRJUTINE CONVT
CEMMON IF(10).P(100),G(1000)
IF (S(3).NF.0.0) RFTURN
IF (P(1). VE.].0) RFTURN
FREQ $=511.0 / \mathrm{G}(4)$
I二P(3)
NPAR=G(10*I)
IF(NPAR.EG.O) GRTO 1
DJ $2 J=1$, NPAR
$M=10 * I+J$
$M=G(M)$
IF(M.ET. 200)GCTR40
TF(M.GT. 1001 GCTO 30
IF(M.LT.C) GOTE 20
C*******FREQUENCY*******
$P(M)=F R F Q * P(N)$
COTO2
C*****TIME*****
$20 \quad M=-M$
$P(M)=F R E Q / P(M)$
gOTO2
C******ENVELIPPE******
$30 \quad M=M-100$
$P(M+1)=P(4)-P(M)-P(M+2)$
[F $(P(M+1)) 32,33,34$
$32 \quad P(M)=(P(M) * P(4)) /(P(M)+P(M+2))$
$D(M+2)=(P(M+2) * P(4)) /(P(M))$
$P(M+2)=(P(M+2) * P(4)) /(P(M)+P(M+2))$
3? $\quad P(M+1)=123$.
GCTO35
$34 \quad 0(M+1)=F R E Q /(4.0 * P(M+1))$
$35 \quad P(M+2)=F R F Q /(4.0 * P(M+2))$
$P(M)=F R F G /(4.0 * P(M))$
GCTCZ
C******FILTER******
$40 \quad M=M-200$
$D=-(5.293) * P(M+1)) / G(4)$
$F=(6.2832 * P(M)) / G(4)$
$P(M)=? . * E X P(O) * \operatorname{COS}(F)$
$P(N+1)=E X P(2 . * D)$
2 COVTINUE
1 CONTINUE
RETURN
END

Some GEN subroutines not described in Music V manual have been used in the following examples. Here is given a description of these subroutines, together with the listing.
(A slight change has been performed in Pass III main program to extend the computed $G \varnothing T \varnothing$ following statement number 3 , so that one can provide GEN subroutines GEN6, GEN7, GEN8, GEN9.)

GENI, GEN2 and GEN3 are as in M. V. Mathews' book, The Technology of Computer Music, except for a slight difference in the definition of functions generated by GENI: in the scores given here, the abscissas range from 1 to 512, while in the book they range from 0 to 511.

GEN4

GEN4 is a Fortran subroutine to generate a stored function as the sum of segments of sinusoids.

The calling sequence is
CALL GEN4
Data is supplied by the $P(n), I(n)$, and $I P(n)$ array:
$C \emptyset M M \not \subset N$ I, $P / P A R M / I P$
GEN4 is written in Fortran and requires a sine function SIN(X) which produces the sine of an argument given in radians.

The $j^{\text {th }}$ function $F_{j}(i)$ is generated according to the relation:

$$
\begin{aligned}
F_{j}(i) & =(\text { Amplitude Normalizer }) \times \sum_{k=1}^{N} A_{k} \sin \left[\frac{2 \pi}{\operatorname{IP}(6)-1}\left(F_{k} i+P_{k}\right)\right] \\
i & =I_{k}, I_{k}+l, \ldots, J_{k} \\
0 & \leq i \leq \operatorname{IP}(6)-1
\end{aligned}
$$

The Amplitude Normalizer is computed so that $\max \left|F_{j}(i)\right|=.99999$.

The parameters of the function must be arranged as follows in the data statement:

$P(1)$	$P(2)$	$P(3)$	$P(4)$	$P(5)$	$P(6)$	$P(7)$	$P(8)$	$P(9)$	$P(10)$	$P(11) .$.
GEN Action	4	Function								
Time	4	No. (j)	Al	Fl	Pl	Il	J1	A2	F2	

Al is amplitude
Fl is frequency multiplier
Pl is phase (in samples)
Il is starting sample
Jl is ending sample

Example:

Continuous line function: GEN, 0, 4, l, 10*, 2, 0, 128, 384;
*arbitrary
Broken line function: GEN, 0, 4, 2, 10*, 2, 256**, 128, 384;
It must be noted that only relative amplitude of components
is relevant; the function being normalized, the $10(*)$ could as well be l or 100. On the other hand, phases are expressed in samples (**): 0 corresponds to 0 phase; 128 corresponds to 90° or $\frac{\pi}{4}, 256$ to 180° or $\frac{\pi}{2}$, and 384 to 270° or $\frac{3 \pi}{4}$.

In case harmonic partials are used, the first and the last samples of the function are equal: $F_{j}(0)=F_{j}[I P(6)-1]$, thus the period in samples is IP(6)-1.

The function is stored starting in $I(n)$ and is scaled by $I P(15)$:

$$
\begin{aligned}
I(n) & =I P(15) * F_{j}(0), \text { etc. where } \\
n & =I P(2)+(j-I) * I P(6)
\end{aligned}
$$

C
FUNCIION GENERATDR 4

C
C
DIMENSION I(15000) •P(100).IP(20), A(7000)
COMMON I,P/PARM/IP
EQUIVALENCE(I:A)
SCLFT=IP(15)
$N 1=I P(2)+(I F I \times(P(4))-1) * I P(6)$
N2=N1+IP(6)-1
DO $100 \quad K 1=N 1, N 2$
100
$A(K 1)=0.0$
FAC=6. $283185 /(F L D A T(I P(6))-1.0)$
NMAX $=I(1)-4$
DC $103 \mathrm{~L}=5$,NMAX:5
P2=P(L)
$P 3=P(L+1)$
P4=P(L+2)
JP5 $=P(L+3)$
$I P 5=J P 5+N 1-1$
$I P G=I F I X(P(L * 4))+N I-1$
DO $105 \mathrm{~J}=\mathrm{IP} 5$, IP6
$X J=J-J P 5-N I+1$
$A R G=X J * P 3+P 4$
105 A(J) $=A(J)+P 2 * S I N(F A C * A R G)$
103 CONTINUE
XMAX $=0.0000001$
DO $115 \quad J=N 1, N 2$
IF (XMAX-ABS (A1J)))116.115.115
116 XMAX=ABS (A|J))
115 CONTINUE
DO 120 L=N1,N2
120 I(L) $=(A(L) * S C L F T * .99999) / X M A X$
113 RETURN
END

GEN5
GEN5 is a Fortran subroutine which simply performs
various calls in order to skip files or to write an end of file on the output tape.

GEN6 is a Fortran subroutine to generate a stored function giving exponential attacks and decays with the ENVelope unit generator.

The calling sequence is

CALL GEN6

Data is supplied by the $P(n)$, and $I P(n)$ array:
CØMMØN I, P/PARM/IP
GEN6 is written in Fortran and requires both an exponential and a base 10 logarithmic function: EXP(X), ALØG(X).

The parameters of the function are given in the data statement:

P(1)
P(2)

P(3)

$$
P(4)
$$

P(5) P(6) P(7)
P(8)
GEN

$$
\begin{aligned}
& \text { Action } \\
& \text { Time }
\end{aligned} \quad \begin{gathered}
\text { Function } \\
\text { No. }(j)
\end{gathered} \log _{2} A 1 \text { A2 A3 }-\log _{2} A 4
$$

The function is computed according to the following figure:

The lst 128 samples of the function increase exponentially from a value $2^{-P(5)}$ (e.g., $1 / 2048$ if $P(5)=11$) to a value $P(6)$. They correspond to the attack portion of the envelope generator.

The following 128 samples of the function interpolate linearly between values $P(6)$ and $P(7)$. They correspond to the steady state portion of the envelope generator.

The following 128 samples of the function decrease exponentially from value $P(7)$ to value $2^{-P(8)}$.

The last 128 samples of the function are zero.
The function is scaled so that its maximum value is .99999 .
If $P(5)$ or $P(8)$ are zero or negative, the subroutine will give them the default value $2^{-1 l}$.

If $P(6)$ or $P(7)$ are zero or negative, the subroutine will give them the default value .99999.

Examples:

$$
\text { GEN } 0 \quad 6 \quad 2 \quad 2 \quad .99 \quad .5 \quad 10 ;
$$

will give for F2

GEN 063 ;
will give for F3


```
CGENG
                                    GENG FOR ENVELOPE
*****MUSIC V*****
CGENG FOR ENVELOPE WITH EXPONENTIAL ATTACK AND DECAY
    SUBROUTINE GENG
    DIMENSION I(15000),P(100),IP(20)
    DIMENSION A(512)
    COMMON T.P/PARM/IP
    SCLFT=IP(15)
    N1=IP(2)+(IFIX(P(4)+0.001)-1)*IP(6)
6 N11=N1-1
    N5=IP(6)
    N2=N6/4
    XNO=N2-1
    N3=N2+N2
    N4=N3+N2
    ARG1=P(5)
    APG2=P(6)
    ARG3=P(7)
    ADE4=P(8)
    IF (ARG1)510.610.611
E10 Y1=11.*ALOG(2.)/XNQ
    GOT0612
611 Y1=ARG1*ALOG(2.)/XNQ
512 CONTINUE
    IF(ARG2)614.614.615
614 Y2=.99999
    GOT0616
615 Y2=ARG2
516 CONTINUE
    IF(ARG3)618.618.619
618 Y 3 =.99999
        GOT0620
619 Y3=ARG3
6 2 0 ~ C O N T I N U E ~
        IF(ARG4)622.622.623
622 Y4=11.*ALOG(2.)/XNQ
        GOTOS24
623 Y4=ARG4*ALOG(2.)/XNQ
624 CONTINUE
        00 630 J=1,N2
        xJ=, \-N2
        YJ=Y1*XJ
        A(J)=.99999*EXP(YJ)*Y2
        JJ=J+N11
    630 I(JJ)=A(J)*SCLFT
        FACT=(Y3-Y2)/XNO
        NN2=N2+1
        DO640 J=NN2,N3
        A J=J-N2
        A(J)=.99999*(Y2+FACT*AJ)
        JJ=J+N11
        640 I(JJ)=A(J)*SCLFT
        NN3=N3+1
        DO 550 J=NN3,N4
        XJ=NN3-J
        YJ=Y4*XJ
        A(J)=.99999*EXP(YJ)*Y3
        JJ=J+N11
    650 I(JJ)=A(J)*SCLFT
        NN4=N1+N4
        NNE=N11+N5
    ONEGO J=NNG,NNS
```

GEN7 is a Fortran subroutine to generate a stored function which can be a rising exponential, a decaying exponential, or a bell-shaped curve.

The calling sequence is
CALL GEN7
Data is supplied by the $P(n), I(n)$, and $I P(n)$ array:
CØMMめN I, P/PARM/IP
The parameters of the function are given in the data statement:

$P(1)$	$P(2)$	$P(3)$	$P(4)$	$P(5)$
GEN	Action Time	7	Function Number	n

If $P(5)>0$ GEN7 will compute a function rising exponentially from $2^{-P(5)}$ to .99999. Such a function used to control frequency will cause the pitch to go up $P(5)$ octaves (if $P(5)$ is integer).

If $\mathrm{P}(5)<0$ GEN7 will compute a function decaying exponentially from .99999 to $2^{-P(5)}$. Such a function used to control frequency will cause the pitch to go down $P(5)$ octaves (if $P(5)$ is integer).

If $P(5)=0$ GEN7 will compute a bell-shaped function as represented on the figure. If the ordinate scale is in $d b$, the curve
is a portion of a sine wave with a D.C. bias. The peak ordinate is equal to . 99999 and the end points ordinates are equal to $.64 \times 10^{-4}$, which

is 84 db below. The formula used is

$$
F(x)=\exp \left[\log (.008)\left(1-\cos 2 \pi\left(\frac{x-256.5}{511}\right)\right)\right]
$$

```
CEGGEN7 GEN 7 FOR GLISSANDI OR EXPONENTIAL DECAYS
C IF P(5)=^ POSITIVE GO UP N OCTAVES
C IF P(5)=-N GO DOWN N OCTAVES
C CDNSTANT NUNBER DF SAMPLES PER CCTAVE (EXPONENTIAL PRDGRESSICN)
C
            IF P(5)=0 DRAW SPECIAL SPECTRAL ENVELOPE
            SUBROUTINE GENT
            OIMENSIDN I(15000),P(100).IP(20),A(7000)
            COMNON I,P/FARM/IP
            EQUIVALENCEII,A)
            SCLFT=IP(15)
            N1=IP(2)+(IFIX(P(4))-1)*IP(6)
            N2=N1+IP(E)-1
                DO 100 K=N1.N2
    100 A(K)=0.C
                IF(0(5))200.300.250
C
                GC DOWN P(5) OCTAVES
        200 XN= P(5)*ALOG(2.)/511.
            On 205 J=N1,N2
            xJ=J-N1
            YJ=XN*XJ
            A(J) =FXO(YJ)*.99999
        205 I(J)=A(J)*SCLFT
            g0T7500
C GOUP P(5) DCTAVES
    250 XN= P(5)*ALJG(2.1/511.
            OO 255 J=N1.N2
            XJ=J-N1-511
            YJ=XN*XJ
            A(J)=EXP(YJ)*.99999
    255.I(J)=A(J)*SCLFT
                GOTO500
C AMPLITUDE FOR ENDLESS GLISSANDI
    300
                CONTINUE
            CO 325 J=N1,N2
            xJ=J-N1+1
            y J=(6.2832*(xJ-256.5))/511.
            ZJ=ALOG(.008)*(1.-COS(YJ))
            A(J)=EXP(ZJ)*.99999
    325 I(J)=A(J)*SCLFT
    500 RETLRN
                END
```

GEN8 is a Fortran subroutine to generate a stored function which can be a bell-shaped curve with one, two or three peaks.

The calling sequence is
CALL GEN8
Data is supplied by the $P(n), I(n)$, and $I P(n)$ array:
CØMMめN I,P/PARM/IP
The parameters of the function are given in the data statement:

$P(1)$	$P(2)$	$P(3)$	$P(4)$	$P(5)$	$P(6)$
GEN	Action Time	7	Function Number	n	m

$P(6)$ field is used only if $P(5)=0$.
If $P(5)=0$, GEN8 computes a bell-shaped function with one peak, as shown on the figure. If $P(6)=0$, default value $P(6)=1$ is assumed: This corresponds to end points ordinates
 42 db below the peaks ordinates. The function is computed according to the formula

$$
F(x)=\exp \left\{\log (.008) \times \frac{P(6)}{2} \times\left[1-\cos \left(\frac{2 \pi^{n}-256.5}{511}\right)\right]\right\}
$$

$$
\text { If } P(5)>0 \text {, GEN8 computes a bell-shaped function with }
$$

two peaks, as shown on the figure. The function is computed according to the formula:

$$
F(x)=\exp \left\{\log (.008) \times \frac{P(5)}{2} \times\left[1-\sin 2 \pi\left(\frac{x-65}{256}\right)\right]\right\}
$$

For $P(5)=1$, the end points ordinates are 42 db below the peaks ordinates.

If $\mathrm{P}(5)<0$, GEN8 computes a bell-shaped function with three peaks, as shown on the figure. The function is computed according to the

formula:

$$
F(x)=\exp \left\{\log (.008) \times\left[\frac{-P(5)}{2}\right] \times\left[1-\sin 2 \pi\left(\frac{x-44}{170}\right)\right]\right\}
$$

For $P(5)=-1$, the end points ordinates are 42 db below the peaks ordinates.

GEN 081
0;

1501.


```
CENVGEN8
GEN8 FOR 1.2.3 PEAK CURVES
                                    *******
C FOR TRNE HEIGHT VERSUS TONALITY STUDEY
C P(5) ZEPO DNE PEAK
C P(5) POSITIVE TWC PEAKS
C P(5) NEGATIVE THREE PEAKS
    SUBPDUTINE GEN8
    OIMENSION I(15000),P(100),IP(20),A(7000)
    CGMMDN I,P/PARM/IP
    EQUIVALENCEII,AI
    SCLFT=IO(15)
    N1=IP(2)*(IFIX(P(4))-1)*IP(6)
    N2=N1+IP(E)-1
    OO 100 K=N1.N2
    1OC A (K)=0.0
    IF(D(5))200.250,300
C THPEE PEAKS
200 CINTINUF
    XM= -P(5)
    OO 225 J=N1.N2
    XJ=J-N1+1
    YJ =(5.2832*(XJ-44.))/170.
    ZJ=ALOG(.OOR)*(1.-SIN(YJ))*.5*XM
    A(J) E EXP(ZJ)
    225 I(J)=A(J)*SCLFT
        GOTOSOO
C ONE PEAK
    250 CONTINUE
        XM=P(6)
        IF.\XM.EG`.O.1 XM=1.
        DO27.5, J=N1.N2
        XJ=J-N1+1.
        YJ = (6.2832*(XN1-256.5)//511.
        ZJ=ALOG(.008)*(1.-COS(YJ))*.5*XM
        A(J)=EXP(ZJ)
    275 I(J)=A(J)*SCLFT
        GOTO500
C TWO PEAKS
    3OO CONTINUE
        XM=P(5)
        00325 小=N1,N2
        XJ=3-N1+1
        YJ =16.2832*(xJ-65.))/256.
        ZJ=ALOG(.008)*(1.-SIN(YJ))*.5*XM
        A(J)=EXP(ZJ)
        325 I(J)=A(J)*SCLFT
    500 RETURN
        ENO
```

This is a melody played by an instrument reminding of a flute.

Instrument \#2
This instrument gives a wave with a time envelope, a random amplitude modulation and a periodic smplitude modulation.

The wave corresponds initially to function F2; by means of SET, it can be changed to function Fn, where n is the value of Pll in the note card.
(If $n \leq o n o$ change is effected.) Here Fl - sine wave, F2 4 harmonics wave, F3-6 harmonics wave - are used; for these 3 functions the fundamental is dominant. The function with the richest harmonic content is used for the lowest note. Care is taken to avoid foldover, except at action time 9 and 9.1 where a small amount of foldover is deliberately introduced. The time envelope corresponds to functions F5 and also F4, F6, F7; it gives slow attack and decay.

The random amplitude modulation
range is only 1% of the amplitude, (see CØNVT), and its rate is around 60 Hz . This modulation is on 1 y marginally significant.

The periodic amplitude modulation is performed using function Fl2, giving a sine wave with a D.C. bias. The rate is given by V7 and is around 5 Hz . Both Fl2 and V7 are changed in the course to the melody, (similarly to other parameters) to give more naturalness to the melody.

Instrument \#3
This instrument is simply
used to introduce frequency glides controlled by F9, or to increase the proportion of fundamental (in conjunction with instrument 2).

Note: Since only this example was to be generated with this type of tone quality, I have not attempted to improve the code in terms of economy of specification.

COMMENT FLUTE RUN ON TAFE M1669 FILE 6: GEN 05 5: COMMENT:SAMPLING RATE 10000 HZ : SIA 0410000 : COMMENT:INSTRUMENTS FOR FLUTE LIKE TONES:

```
INS 0 2;RAN P8 P9 B3 P30 P29 P28:AD2 B3 P5 B3:
```

OSC B3 V7 83 F12 ค25: SET P10:
OSC B3 P7 B3 F5 P27:SET P11:0SC B? P6 B3 F2 P26:0UT B3 B1:END:
INS 0 3: SET PS:OSC P5 P7 B3 F8 P30;SET P9:0SC P6 P7 B4 F9 P29:
OSC R3 B4 B3 F1 P28: OUT B3 B1:END:
COMMENT:METRONOME MARKING 70:
SV2 02 30:SV2 C 300702070 :
SV3 07 . 24:
GEN $0 \begin{array}{lllll} & 2 & 1 & 1 & 1 ;\end{array}$
GEN $0.2 \begin{array}{lllllll} & 2 & 1 & .2 & .08 & .07 & 4 \text {; }\end{array}$
GEN $0.2 \begin{array}{llllllllll} & 3 & 1 & .4 & \cdot 2 & \cdot 1 & \cdot 1 & .05 & 6:\end{array}$
GEN $0.1 \begin{array}{lllllllllllllllllllllllll} & 4 & 0 & 1 & .2 & 50 & .6 & 140 & .99 & 180 & .9 & 205 & .5 & 250 & .25 & 300 & .12 & 350 & .06 & 400\end{array}$
.034500 512;
GEN $0.1 \begin{array}{lllllllllllll} & 5 & 0 & 1 & .2 & 50 & .6 & 150 & .99 & 200 & .2 & 350 & 0 \\ 512:\end{array}$
GEN $0.16 \begin{array}{lllllllllll} & 6 & 0 & 1 & .2 & 50 & .5 & 250 & .2 & 350 & 0\end{array} 512:$

GEN 0.1 \& $0.1 .4150 .39 \quad 350.5400 .24 \quad 450 \quad 0 \quad 512$:
GEN 0119.8951 .99512 ;
GEN O 110.9991 .999 512:
GEN 0212.25 .74 1:
NOT . \& $8 \quad 3 \quad .12 \quad 1200 \quad 988 \quad .12810$;
NOT $1 \quad 2 \quad 2 \quad 8001109 \quad 2 \quad 20 \quad 60$:
GEN $1 \begin{array}{llllllllll}1 & 8 & 0 & 1 & .99 & 100 & 0 & 5 & 12: ~\end{array}$
NOT $1 \quad 3.7 \quad 300 \quad 1107 \quad .7810$:
GEN $3 \quad 212$. 3 . 6 1;
NOT $3 \quad 2 \quad .3 \quad 300 \quad 784 \quad .5 \quad 30 \quad 50 \quad 4$;
NOT $4.5 \quad 3.37 \begin{array}{llllll} & 3 & 375 & 1200 & 1397 & .375\end{array}$ 5:
NOT $4.85 \quad 3.15 \quad 1200 \quad 992.15$;
NOT $5 \quad 3.73001100 .7$:
NOT $5.01 \quad 2 \quad 2 \quad 1200 \quad 1109 \quad 2 \quad 30 \quad 80 \quad 6 \quad 2$:
NOT $7 \quad 2.2400 \quad 784 \quad .240 \quad 70 \quad 7:$
NOT 7.2 $2.3 \quad 300 \quad 698.3 \quad 30 \quad 50.5:$
NOT $7.51 \quad 2 \quad 1 \quad 300 \quad 370133050 \quad 6 \quad 2:$
NOT $7.5 \quad 3.5 \quad 150 \quad 368 \quad .58$:
NOT $8.5 \quad 2.5400 \quad 415 \quad .5 \quad 50 \quad 60 \quad 5$:
NOT $9 \quad 2 \quad .12 \quad 900 \quad 1395.5 \quad 30 \quad 80 \quad 4 \quad 2:$
NOT $9.1 \quad 2 \quad 1.2 \quad 900 \quad 1558.8 \quad 30 \quad 90 \quad 4 \quad 2:$
SV3 10.247.31:
NOT $10.25 \quad 2 \quad 1.08 \quad 900 \quad 2771.08 \quad 40 \quad 60 \quad 7 \quad 3:$
SV3 12.08 7.28;
NOT $10.25 \quad 31200 \quad 27516610$;
NOT $11.35 \quad 2.36 \quad 500 \quad 329.31 \quad 30 \quad 60 \quad 5 \quad 2:$
NOT 11.72 $2.36 \quad 800 \quad 528.26 \quad 30 \quad 60 \quad 5 \quad 2:$
NOT $12.093 .20 \quad 950 \quad 2217.2 \quad 69:$
NOT $12.10 \quad 2 \quad .15 \quad 7001975.1340 \quad 9051:$
NOT $12.23 \quad 2 \quad 2.599922171409041$;
TER 19 :
C CONVT FOR FLUTE
SUBROUTINE CONVT
COMMON IP (10),P(100) OF(1000)
IF(P(1).NE.1.)GOTO100
$F=511 . / G(4)$
$P(6)=F * P(6)$
$P(7)=F / D(4)$
IF(P(3).EQ.3.1GOTO100
$P(B)=F * P(9)$
$0(8)=.01 * P(5)$
100
QETURN

\#150

This run gives a serial excerpt. It makes use of three different tone qualities, particularly one obtained through non-linearity which has some similarity with clarinet sounds. The l2-tone development is done automatically in the 3 rd pass, by repeated scanning of stored functions: frequency controlling functions, corresponding to the pitch rows, and amplitude controlling functions, corresponding to rhythm and accent rows; this way hundreds of musical notes are generated from only 10 note cards, using a process similar to M. V. Mathews' cyclic algorithm but performed in the $3 r d$ pass ${ }^{(6)}$.

The example uses two pitch rows, specified respectively by F7 and F8. The frequency input of the oscillators using these functions is the frequency of the highest note in the row. The rows are as follows:

The example uses two rhythm rows, specified by $F 5$ and $F 6$.
For instance F5 corresponds to the following rhythm:

The tempo is $d=132$ for a scanning duration of 5.91 s.

The oscillators IDS using F5, F6, F7, F8 accept negative increments that will cause the function to be scanned backwards.

Instrument \#l is diagrammed here. A sine wave Fl is amplitude and frequency controlled by functions F5 and F6 respectively, and then submitted to a non-linear transfer, according to the characteristics of function F2. F2×P5 gives the output as a function of the input B3, which
 must be in the interval $-256,+256$.
This is achieved by using the bottom oscillator in a degenerate way, whereby B3 is used as sum with a
 frequency increment of $0(\mathrm{Vl}=0)$. Both P9 and P5

F6
 determine the maximum amplitude, but the value of P9 (in the interval -256,+256) determines the amount of "distortion" performed on the sine wave. (The output is still a sine wave if

P9<312-256 = 56.) The distortion generates odd harmonics so that a sampling rate of $20,000 \mathrm{~Hz}$ had to be used to avoid objectionable foldover for fundamental frequencies around 1500 Hz .

Instrument \#2 simply generates a waveform defined by F3, amplitude and frequency controlled respectively by functions F6 and F8. F3 is an all-positive waveform, generated by GEN7 (cf. description): it is a sine wave in a aB scale, with the lowest point 84 dB below the highest point. There is a marked difference between the aural effect of this wave and that of a true sine wave.

Instrument \#3 generates a sine wave whose frequency is controlled by F7 and whose amplitude is controlled by F4. F4 is a decaying exponential: this gives a percussive sound. The rate of scanning the amplitude function is about 12 times the rate of scanning the frequency function: if it were exactly that, it would give one "stroke" per pitch. By divorcing the rates of scanning for amplitude and for frequency functions, one can obtain repeated pitches or legato transitions between pitches.
Note: In the printout for run \#150, semicolons (;) are replaced by dollar signs (\$). (This run was performed on a

```
machine without a (;) in the character set.) Also
GENl is for this example defined with abscissas
ranging from 0 to 5ll.
```

COMMENT SRQIAL FUNCTTONS WITH NJN LINFARITYS

```
COMMFNT FCTS SF\IFLLER CLAD 1 CFLLD 2S
```


SET N1zETCS DF OR B4 F7 P11\%

GF\& $\quad 2111$ 1

CVR ก 102560
GFN ? 7 マ ? 1
GER $\because 14000.200140 .99250 .8 .22 \mathrm{C}, 240005114$
CПMMEMT FCTS DF OYTHMF PUIS DF PITCH\&

.7225 .322062330240 .4250 .9255026200275 .99276013140334
-名 $335 \cdot 234503530372.9977503930422 .5423 .1432 .7437$
$\rightarrow 44$ ก O 752 C 5119

$\cdot 05204.5790 .4200 .05 \quad 29 ? .5300 .830503120381 .63820 \quad 2970$
410.7415 .2425 C 440 त 492.99496 . 6504 C 5114

17r . 6.67171
.557 212.351 213.351 255.790 255.790 298.555 299.555 740

519.5925115

$.333170 \cdot 158171 \cdot 159217.422213 .422255 \cdot 601256.601298 .141$
?99. $141340.237341 .277203 .534304 .534425 .450425 \quad .450468$
.71? 469.71? 510.375 511 \$
INC O 3 QOSC PE PT B3 F 4 OROबTCC PE PR B4 F 7 P 294

GFA $074-94$
CIA 04 20กnのぁ
COMMTAT YT SEF GENFTAL CRNVTG
5V2 ก 1の ? 5-7-9は
sy> ก $2035-7-8 \pm$
इリフ 0 ? ? ? 5-7-2
Ninf 1111.22 250 1 f4n 11.8710 .90 25c.
NกT $24.5 ? 12 ? .54 \geq 001540-11.92-10.90 \quad 2508$
NกT TF. $44111.02250230411 .9210 .90250 \$$
NחT 3.72 ? 16.32 200 228 8.16 10.908
NOT F.45 1 29.5 $4508705.91-5.45$ 220
Ant $5.45129 .5400576 \geqslant .955-5.45 \quad 200 \$$
AOT 24215.32 ?nC $455-16.7 ?-10.904$
N!T ? 423.54400 2つn-11.92 10.90 250\$

NOT ? ? ? 22 5nの 6550.9711 \$
PER54at

This run provides a few "brass-like" tones. Here no attempt has been made towards economy of specification: schematized data from real trumpet tones have been used (cf., J. C. Risset and M. V. Mathews, Physics Today, Feb.1969).

Instrument \#1
This is a degenerate instrument which simply provides for random frequency modulation in the other instruments. The range is around

. 5% of the fundamental frequency;
the rate is around 10 Hz . (These are
low values: in this example the
random modulation is not very significant.)

Instruments \#2, 3, ..., 6
These instruments are used to synthesize tones with different envelopes for each partial: lst partial with function $F 2$, ..., 5 th partial with function F6. Random
frequency modulation is
possible using instrument \#1.

Fl is a sine wave.
\# 300

Instrument \#7
This instrument is used to synthesize partials with

COMMENT:BRASSY TONES WITH INDEPENDENT CCNTROL OF THE HARMONICS: COMMENT:TAPF M2029:
COMMENT:SAMPLING RATE 12.5 KC :
COMMENT:FOR FREQUENCY MODUL ATION AT RANDIM:
INS 0 1:FAN P5 F7 B2 P3O P29 P28:END:
COMMENT:FDR INCEPENDENT HARMONIC CONTPOL:
INS 0 2:SET $P 8: T S C$ P5 P7 B3 F2 P30:
AD2 P6 B2 B4:OSC B3 B4 B3 F1 P29:DUT 33 B1:END:
INS 0 3:SET PG:OSC F5 P7 B3 F3 P3C:
AD2 P6 32 B4:OSC B3 B4 B3 F1 P29: IUT B3 B1: END:
INS 0 4:SET P8:OSC P5 P7 B3 F4 P3C:
AD2 P6 B2 B4:ISC B3 B4 B3 F1 P29:OUT B3 B1:END:
INS 0 5:SET PO:OSC P5 P7 B3 FS P3C:
AD2 P5 B2 B4:OSC B3 B4 B3 F1 P29:OUT B3 B1:END:
INS 0 6:SET P9:OSC P5 P7 B3 F6 P30:
AD2 P5 B2 34:OSC B3 34 B3 F1 P23:OUT B3 B1:END:
COMMENT:FOR ATTACK ANC DECAY TIMES:
INS 0 7:ENV P5 F7 B3 P8 P9 P10 P30:AD2 P6 B2 B4:
OSC B3 B4 B3 F1 P29:OLT D3 BI:END:
SIA 0412500 :
GEN 0
GEN 0 1 2 . 0 O1 10. 28226.11240 .178429 .159473 .008500 .001 512:
GEN 0 1 3.001 1c. 500434.355454 .016490 .001 512:
GEN $0.14 .001 \quad 23.550435 .001512$ i
GEN O 1 5 . OC1 10.00510 .224418 .224431 .178458 .001512 :
GEN O 1 $5.00110 .00921 .08933 .02245 .02273 .112226 .178 \quad 264$
$.071345 .0624 E 8.001512$;
GEN $0.17 \begin{array}{lllllllllll} & 7 & 1 & .993 & 128 & .939 & 256 & 0 & 384 & 0 & 512:\end{array}$
$\begin{array}{lllllll}\text { NOT } & 1 & 1 & .17 & .6 & 55 & 10\end{array}$:
NOT $1 \quad 7.17 \quad 200 \quad 554 \quad 0 \quad 7.5 \quad 0 \quad 140$:
NOT $1 \quad 7.17 \begin{array}{lllllll} & 16 & 1108 & 0 & 7.5 & \cap & 110:\end{array}$
NOT $17.173501652 \quad 0 \quad 12 \quad 0 \quad 85:$
NOT 1.00 $7.15 \quad 310 \quad 2216 \quad 0 \quad 14$ C 80 :
NOT 1.00 $7.14160 \quad 2770 \quad 0 \quad 24 \quad 0 \quad 65:$
NOT $1.007 .14200 \quad 3324$ C 27 C 60 :
NOT $1.007 .14 \quad 993878 \quad 0 \quad 32 \quad 0 \quad 50:$
NOT 1.007 .1420 C 4432 C 3 C C 50 :
NOT $1.00 \quad 7.14 \quad 80 \quad 4985 \quad 0 \quad 35 \quad 0 \quad 50:$
NOT $3 \quad 1 \quad .15 \quad .5 \quad 20310$:
NOT $3 \quad 7 \quad .15 \begin{array}{lllllll}50 & 293 & 0 & 10 & 0 & 140:\end{array}$
NOT $3 \quad 7 \quad .15 \quad 80 \quad 586 \quad 0 \quad 10 \quad 0 \quad 110:$
NOT $3 \quad 7.15100 \quad 87 ? 0 \quad 12 \quad 0 \quad 85$;

NOT $3 \quad 7.15 \quad 180 \quad 1455025065$;
NOT 3.C1 $7.15 \quad 15 \mathrm{C} 1758 \quad 0 \quad 30 \quad \mathrm{C}$ 6C:
NOT $3.017 .15100 \quad 2051035050$:
NOT 3.017 .17202344 C 35060 :
NOT $3.017 .1450 \quad 2637040 \quad 0 \quad 100$:
NOT $3.017 .1480 \quad 2930 \quad 0 \quad 40 \quad 0 \quad 100:$
NOT 3.017 .1414032230450100 :
NOT $3.017 .1 ? 903516045$ C 100:
NOT $3.01 \quad 7 \quad .13453809 \quad 0 \quad 40 \quad 0 \quad 100$:
NOT 3.017.13 25 41020450 90;
NOT $51.4 \cdot 478420$;
NOT 52.4 \&OC 784 C :
NOT $5 \quad 3.48001559 \quad 0 ;$
NOT $5 \quad 4.4$ عOC 2352 C :
NOT $5 \quad 5 \quad .4800 \quad 3136$ 0:
NOT $56.4800 \quad 3920$ C:

NOT $6.02 .71400 \quad 930 \quad 0$:
NOT 5.C $3.710001550 \quad 0$:

```
NOT 6.0 4.7 1000 2490 0:
NOT 6.0 5 .7 1000 3320 0:
NOT 6.0 6 .7 1COO 4150 0:
Nar 6.8 1 .1 0 50 0:
YER 8:
    SUBROUTINE CONVT
    COMNQN IP(1C).P(100).G(1000)
    IF(P(1).NE.1.)GOTO100
    F=511./G(4)
    P(6) =F*P(6)
    IF(G(10).GE..5)GOTO200
    IF(P(3).EQ.1.)GOTO10
    IF(P(3).EQ.7.IGOTOTO
    P(7) =F/P(4)
    GOT0100
10PP(5)=.01*P(5)*P(6)
    P(7)=F*P(7)
    GOTO100
    FENV=F*.25
    P(8) =.001*P(8)
    P(9)=.001*P(9)
    P(10)=.001*P(10)
    P(9)=P(4)-P(8)-P(10)
    IF(P(9))2.3.4
    P(8)=(P(8)*P(4))/(P(8)*P(10))
    P(10)=(P(10)*P(4))/(P(8)+P(10))
    P(9)=129.
    GうTOS
    P(9)=FENV/P(9)
    P(8)=FENV/P(8)
    P(1C)=FENV/F(1C)
    GOTO100
200 P(6)=P(5)*P(3)*10.
    P(7) =F/0(4)
    FENV=F*.25
    P(9)=.001*P(8)
    P(9)=.001*F(9)
    P(10)=.001*P(10)
    P(9)=P(4)-P(8)-D(10)
    IF(P(7))202.203.204
202 P(g)=(P(8)*F(4))/(F(8)+P(10))
    P(10)=(P(10)*P(4))/(P(8)+P(10))
20? P(9)=129.
    GOTO205
204 P(9)=FENV/P(9)
205 P(8)=FENV/P(8)
    D(1\cap)=FENV/F(1C)
100 RETURN
    END
```

This is the same run as \#200, but played back at a sampling rate of 5000 Hz instead of $12,500 \mathrm{~Hz}$--hence all frequencies are multiplied by .4 , all durations are multiplied by 2.5 .

This run gives some examples of brass-like sounds synthesized with more economy of specification than in \#200, using an instrument designed to produce sounds whose spectra depend upon the amplitude of one component (cf. J. C. Risset and M. V. Mathews, Physics Today, Feb. 1969). It must be noted that this instrument is by no means limited to the production of this type of sounds: the components need not be harmonically related and the functions used can be entirely different.

The instrument (\#l) is diagrammed here. The amplitude of one partial (which will be in this example harmonic \#l) is controiled by function $F 8$, used with the ENV generator; the

maximum amplitude of this component is determined by P5, and has to be smaller than 512. The output of the ENV generator is input-output block B3. B3 is used as amplitude input of the
oscillator generating the contribution of harmonic \#l, and also for another purpose. Hence B3 has to be reserved in this instrument, it cannot for example be used as output for another oscillator. For each harmonic, B3 is used as sum for an oscillator with a frequency increment of $0(V 1=0)$, which performs simply as a function look-up unit. E.g., for harmonic \#2 the output of this oscillator will be the product of $V 22$ by the value of stored function $F 2$ for an abscissa equal to the current value stored in B3 (e.g., the current value of the output of the ENV generator); this output is stored into B4 and used as amplitude input for the oscillator generating the contribution of harmonic \#2--the frequency input being the produce of the fundamental frequency $P 6$ by the constant $\mathrm{V} 2=2$. Hence the value of the amplitude of harmonic \#2 is a prescribed function of the amplitude of harmonic \#l (this function being determined by V22 and by F2). Similar basic blocks of unit generators give, in a similar way, the amplitude of each harmonic as a prescribed function of the amplitude of harmonic \#l. Hence the spectrum of the sound depends upon the amplitude of harmonic \#1.

Fundamental frequency is given in Hz by P6. Attack time and decay time are given in S by P7 and P9; the CøNVT subroutine computes the steady state time as P4-P7-P9.

The example includes two sections, which differ by the constants V22,..., V28 and the functions F2, ..., F7 used with
the instrument. Hence the way the spectrum depends upon the amplitude of harmonic \#l is different in the two sections; however in both sections it retains one important characteristic of brassy tones, namely the fact that the proportion of high frequency energy increases with the intensity of the sound. In the first section functions F2 to F7 are as plotted (Plot attached). All functions have value .05 for abscissa 50: when lst harmonic's amplitude is 50 , 2nd harmonic's amplitude is $\mathrm{V} 22 \times .05$, (in this case $1000 \times .05=50$), 3rd harmonic's amplitude is $\mathrm{V} 23 \times .05$, and so on. Thus when $P 5=50$, the amplitude of the successive harmonics are proportional to 1000 , $\mathrm{V} 22, \mathrm{~V} 23, \ldots$. When P5 increases from value 50, due to the functions used the contributions of harmonics \#2, 3, ..., 7 increase respectively 2, 3, ..., 7 times as fast. Overloading (peak amplitude higher than 2048) occurs when P5 is between 80 and 90. So the useful range for $P 5$ is from 0 to 80 (but the sound is sinusoidal for $P 5<33$).

The first sound is a long tone with dynamics represented by $s f-p-c r e s c$, to illustrate how the spectrum brightens when the amplitude increases. Then follow 9 short sounds of varied amplitude, with a large amplitude overshoot at the beginning of the sound. The attack time used is 50 ms (larger than in most actual trumpet sounds--because of the unusual way the harmonics come in).

In the second section, slightly different functions F2 and F3 and different values for V22 to V27 are used. The section comprises five sustained notes and one crescendo note.

It is useful to add to the instrument a MLT generator to scale the output by a factor specified on the note card: this permits for example to have the instrument played by several voices, with P5 $=80$ for each of them, without overloading. (Merely reducing the value of P5 for each voice would change the spectrum.)

The sounds of this example are not presented as good imitations of trumpet sounds: the spectrum is not reproduced accurately and in particular there is no formant structure; there are not enough components, and there is no frequency control. (Both formant structure and frequency control could of course be incorporated in this type of instrument.) On the other hand, using this type of control of the spectrum, one can obtain somewhat "brassy" sounds with only 3 functions, one controlling harmonics 2 and 3 , the second one controlling 4 and 5, and the third one controlling 6 and 7. Also, as mentioned before, the utility of this type of spectrum variation is not limited to brass-like sounds.

Note: In the printout for run \#210, semicolons (;) are replaced by dollar signs (\$). (This run was performed on a machine without a ; in the character set.) Also GENI is for this example defined with abscissas ranging from 0 to 511.

$L \varepsilon-\forall$

COMMENT SIMPLIFIED BRASSY SOUNDS
INS $01 \Phi 5 N V$ P5 F8 B3 P7 P8 P9 P30\$0SC B3 P6 B4 F1 P29\$OUT B4 B19

OSC V24 V1 94 F4 B3SMLT P V 4 B5 $\$ 0$ SC B4 B5 B4 F1 P $23 \$ 0 U T$ B4 B1
OSC V25 V1 B4 F5 B3qMLT FG V5 B5\$OSC B4 B5 B4 Fi P21कCUT B4 B1\$
OSC V26 V1 B4 F5 B3\$MLT PG V6 85\$0SC B4 B5 B4 F1 P19\$0UT B4 B1\$
OSC V27 VI 34 FT B 3 SMLT PG V7 B5 $50 S C$ B4 B5 B4 FI P17SOUT B4 B 1 SEND $\$$
COMMENT TO SET GENERAL CONVT\$ SV2 $0101026107 \$$
$\begin{array}{llllllllll}\text { SV3 } & 0 & 1 & 0 & 2 & 3 & 4 & 5 & 6 & 75\end{array}$
$\begin{array}{llllllllll}\text { SV3 } & 22 & 1000 & 2000 & 1900 & 1250 & 1000 & 850 \\end{array}
GEN 0221111°

NOT $11 \begin{array}{lllllll} & 1 & 5 & 554.05 & 5 & .258\end{array}$

NOT $8.51 .3 \begin{array}{llllll} & 5 & 1 & 35 & 54 & .05 \\ 0 & .18\end{array}$
NOT 9 1 $1.3 \begin{array}{lllllll} & 50 & 554 & .05 & 0 & 18\end{array}$
$\begin{array}{llllllllllll}\text { NOT } & 9.5 & 1 & .3 & 55 & 554 & .05 & 0 & 15\end{array}$
$\begin{array}{llllllllll}\text { NOT } & 10.5 & i^{1} & .3 & 60 & 554 & .05 & 0 & .15\end{array}$
NOT 111.265554 .050 .19
NOT $11.5 \quad 1.270 \quad 554.050 .1 \$$
$\begin{array}{lllllllllll}\text { NOT } & 12 & 1 & \cdot 2 & 75 & 554 & .05 & 0 & .1 \$ \\ \text { NOT } & 12 & 5 & 1 & 0 & 3 & 80 & 554 & .05 & 0 & .1 \\end{array}
SEC $14{ }^{5}$
SV3 $0224000 \quad 5000 \quad 2400 \quad 4000 \quad 1000 \quad 5000 \$$

GEN $01133000040.05 \quad 50.120 \quad 100 \quad 0 \quad 511 \$$
GEN O 8 O 45 OS OS
NOT $11 . \begin{array}{lllllll} & 50 & 582 & .05 & .4 & .15 \\end{array}
NOT $2 \begin{array}{llllllll} & 1 & 6 & 60 & 682 & .05 & 4 & .15 \\end{array}
$\begin{array}{lllllllll}\text { NOT } & 3 & 1 & .5 & 70 & 682 & .05 & .4 & .15 \$ \\ \text { NOT } & 4 & 1 & .5 & 80 & 682 & .05 & .4 & 15 \\end{array}
$\begin{array}{lllllllll}\text { NOT } & 4 & 1 & \cdot 5 & 80 & 682 & .05 & \cdot 4 & .15 \$ \\ \text { NOT } & 5 & 1 & 3 & 85 & 582 & .05 & 3 & .2 \\end{array}
TED 94
\#250
This run gives an example of how the same waveshape can give different tone qualities, depending upon the amplitude envelope; here are presented sounds which could be described as "reedy" (like oboe or bombarde sounds) or "plucked" (like harpsichord sounds). Also an example of "choral effect" is given.

Instruments \#l, 2, 3
These instruments are diagrammed here. They give waveshape Fl with an envelope defined by functions F2 to F7. The sum of the waveshape oscillator is stored in a

Pass III variable: this
permits click-free "legato" transitions between successive notes (that is, transitions where the amplitude does not go to 0 at the end or the beginning of the note).

Instruments \#l, 2, 3 are defined by functions F2, F3 and F2 respectively for the envelope: but these function numbers can be modified in the note card, using SET. The functions used insure long attacks and decays (longer than 50 milliseconds) and "legato" transitions between successive notes.

Function Fl comprises ll harmonics. This same function is used in instrument \#4.

The first section plays an excerpt of a Brittany folk melody with one voice (produced by instrument \#l). The scale is not equally tempered; the leading tone is conspicuously low. The tone quality reminds of a double reed instrument.

The second section plays a similar melody, but with three voices played by instruments 1 to 3 . The frequency and time differences between the voices (up to a several per cent difference in frequency and up to .08s in time) somewhat evocates the sound of a number of players (choral effect). (From a single voice, the additional voices note cards could be generated automatically by use of a simple PLF subroutine.)

The third section plays a related melody with the same waveshape Fl but with a short (exponential) attack and an exponential decay. This section uses instrument \#4, diagrammed here. Function F8 gives an exponential attack and decay between 1 and 2^{-9}. The notes of this section
 have no steady state, an
exponential attack time of 10 milliseconds which corresponds to a very sharp attack, and an exponential decay time varying between .5 s and 2 s . The tone quality reminds of a plucked string instrument.

COMMENT: SAME SPECTRUM FOR REEDY AND PLUCKED SOUNDS:
INS 0 3: SET P8: OSC P5 P7 B3 F2 P30:0 SC B3 P5 B3 F1 V3: OUT B3 B1: END:
INS 0 4:ENV P5 F8 B3 P7 F8 P9 P30:DSC B3 P6 B3 F1 P29: OUT 83 B1: END:
COMMENT: TO SET GENERAL CONVT:
SUR $0101026-7:$
$\begin{array}{llllll}\text { SV2 } & 0 & 20 & 2 & 6 & -7:\end{array}$
SUR $030366-7:$
SV2 04026 107:
GEN $0 \begin{array}{lllllllllllllll} & 1 & 40 & 30 & 35 & 50 & 10 & 20 & 15 & 0 & 2 & 5 & 3 & 11:\end{array}$
GEN $0 \begin{array}{lllllllll}3 & 2 & 0 & 10 & 8 & 6 & 7 & 6:\end{array}$
GEN $0 \begin{array}{lllllllll} & 3 & 3 & 0 & 7 & 8 & 10 & 5 & 5:\end{array}$
GEN $0114.60 .9120 .7300 .8400 .6512:$
GEN $0.15 .5 \quad 0.6 \quad 240.5$ 512:
GEN 016.60 .920 .33200 512:
GEN $0 \quad 1 \quad 7.50 .840 .23000512:$
GEN $068 \quad 69.99 .999:$
COMMENT:BREIZ BOMBARDE TYPE:
COMMENT: ONE SINGLE VOICE:
NOT 11.5600486 .5 N NOT $1.51 .25 \quad 600615.25$ 4:
NOT 1.75 1.25 600648.25 :NOT 21.5600729 .5 :
NOT $2.51 .25 \quad 600972.25$:NOT 2.75 1.25 600 890.25:
NOT $31.25 \quad 500820.25$ NOT 3.251 .25600 729:
NOT 3.51 .5600820 . 5: NOT 412260072926 6:
SEC 7:
COMMENT: THREE VOICES FOR CHORAL EFFECT:
NOT $11.51200486 .52:$ NOT 1.03 2.5500492 .5 3:
NOT $1.08 \quad 3.5300473 .5$ 2:
NOT 1.5 1. $251200615.254:$ NOT 1.53 2 . $25 \quad 500610.25$ 5:
NOT $1.58 \quad 3.25300 \quad 629.254$:
NOT 1.751 .251200648 .25 :NOT $1.78 \quad 2.25 \quad 500660.25$:
NOT $1.832 .25 \quad 50 \mathrm{C} \quad 625 \quad .25$:
NOT $21.5 \quad 1200 \quad 729.5$ NOT $2.03 \quad 2.5500719 .5:$
NOT $2.08 \quad 3.5 \quad 300741.5:$
NOT $2.51 .251200 \quad 972.25$: NOT $2.53 \quad 2.25 \quad 500 \quad 990.25$:
NOT $2.58 \quad 3.25 \quad 300 \quad 950.25$:
NOT 2.751.25 1200 890.25; NOT 2.78 2. 25 500 880.25:
NOT $2.83 \quad 3.25 \quad 300 \quad 884.25$:
NOT $31.25 \quad 1200820.25$: NOT $3.03 \quad 2.25 \quad 500830.25$:
NOT $3.08 \quad 3.25 \quad 300 \quad 809.25$:
NOT 3.25 1.25 1200 820.25: NOT 3.28 2. 25 500 835.25:
NOT $3.333 .2530 C 807.25$:
NOT 3.51 .51200820 .5 NOT 3.532 .5500848 .5 :
NOT $3.58 \quad 3.5 \quad 300 \quad 800.5$:
NOT 4122120072926 SNOT 4.0321 .995007221 .99 7:
NOT $4.08 \quad 31.92 \quad 300 \quad 7431.97$ 6:
SEC 8:
CDMMENT:PLUCKED SOUND:
NOT 14.5600486 .0102 :NOT 1.54 .25700615 .0101 :
NOT $1.75 \quad 4 \quad .25 \quad 700 \quad 648 \quad .01 \quad 0 \quad 1$:
NOT 2416600486.010 2: NOT 2411600615.010 .1 .5 :
NOT 21600729.010 1.5:
NOT $2.54 .507001944 .010 .9:$ NOT $2.75 \quad 4.507001728 .01 \quad 0.9$.
NOT $34.25700 \quad 1640.010 .5$ NOT $3.254 .25 \quad 700 \quad 1458.01 \quad 0.5$:
NOT $3.54 .5700 \quad 1640.010 \quad 1$ SNOT $44.9600 \quad 1458.01 \quad 0 \quad 1$:
NOT 44.86001230 .01011 :NOT 44.9600731 .01011 :
TER 6:

This run compares different decays.
Instrument \#l is diagrammed here.
All 4 instruments are
similar, they only differ
by the function numbers.
(For simultaneous voices,
one cannot use the same
instrument with different
functions; for successive notes
one could redefine the function

The first section compares linear and exponential decay.
Linear decay is controlled by function $F 4$:
F_{4}

Exponential decay is controlled by function F5:
\qquad

lst note: linear decay, duration 2 s
2nd note: exponential decay, duration 2 s
3rd note: linear decay, duration 2 s
4 th note: exponential decay, duration 4 s
(Linear decay seems to decay slowly then suddenly disappears;
exponential decay is more even and gives a resonance impression.

The beginning of a linear decaying note is comparable with the beginning of an exponentially decaying note of longer duration.)
Note: $2^{-8}=1 / 256$. To get an uncut exponential decay, one should make sure that the amplitude controlling function decays to a final value not larger than the inverse of the maximum amplitude used, since when the amplitude is smaller than one sample, the sound is. lost in the quantizing noise. (E.g., if maximum amplitude is 1500, one should have a function decaying to $2^{-11}=1 / 2048$.)

The following notes consist of 3 waveshapes--F6, F7, F8-decaying at different rates; in this order:
5) all 3 waveshapes at same frequency 440, longest decay for component with least high frequency content (a "natural" situation, since high frequencies decay faster in pianos, bells...);
6) same as previously, except that components have slightly different frequencies 443, 440, 441--to give beats similar to those due to inharmonicity (or bad tuning) in piano sounds;
7) all 3 waveshapes at frequency 440, with the unnatural situation of having component with more high frequency energy decaying slower;
8) same as previously, with component frequencies 443, 440, 44I;
9) same as 5)
10) same as previously, with exaggerated differences in component frequencies ($448,444,440$).

```
COMMENT:DECAY STUDY ON TAPE M2804:
INS 0 1:OSC O5 P9 E3 F4 P30:SET PG:CSC B3 P7 B3 F7 P2S:OUT B3 B1:END:
INS O 2:OSC PS PG B3 F5 P30:SET PS:OSC 33 P7 B3 FG P29:OUT S3 B1:END:
INS 0 3:0SC P5 FG B3 F5 P30:SET PG:CSC B3 P7 B3 F7 P2C:OUT B3 B1:END:
INS O 4:OSC P5 PG B3 F5 P30:SET PG:OSC B3 P7 83 F8 P29:OUT B3 B1:END:
GEN O 1 4 .09 1 0 512;
GEN 0 7 5 -8:
GEN 0
GEN 0 2 7 1 . 5 . 3 . 2 . 15 . 12 6;
```



```
COMMENT:TO SET GFNERAL CONVT:
SV2 0 10 2 7-9:
SV2 0 20 2 % 7-9:
SV2 0 30% 2 7 7-9:
SV2 040 2 7-9:
COMMENT:TNICE LINEAR THEN EXPONENTIAL OECAY ONE COMPONENT ONLY:
NOT 1 1 2 1700 7 440 0 2: NOT 4 3 2 1700 7 440 0 2:
NOT 7 1 ? 1700 7 440 O 2:NOT 9 3 4 1700 7 440 0 4:
SEC 15:
COMMENT:TRIPLE DECAY:
NOT 1 2.1 1000 5 440 0.1:
NOT 1 3 1.8 350 7 440 0 1.8:
NOT 1 4 3 200 8 440 0 4;
SEC 5:
NOT 1 2.1 1000 6 443 0.1;
NOT 1 3 1.8 350 7 440 0 1.8:
NOT 1 4 3 3}20008441 0 4:
SEC 5:
NOT 1 4 . 1 1000 8 440 0. 1;
NOT 1 3 1.8 350 7 44n 0
NOT 1 2 3 200 0 440 0 4:
SEC 5:
NOT 1 4 . 1 1000 8 443 0 . 1;
NOT 1 3 1.8 350 7 440 0 1.8:
NOT 1 2 3 200 6 441 0 4:
SEC 5:
NOT 1 2 .1 1000 6 440 0 . 1;
NCT 1 3 1.8 350 7 440 0 1.8:
NOT 1 4 3 200 8 440 0 4:
SEC 5:
NOT 1 2.1 1000 6 448 0.1:
NOT 1 3 1.8 35C 7 440 0 1.8:
NOT 1 4 3 200 8 444 0 4:
TER 5;
```


\#301

This run plays this motive with a sound reminding of a piano.

For this run, 4 kinds of notes are distinguished and treated differently:
l)brief and low notes played on instrument \#l.
(duration $₹ .2$ s, frequency ${ }^{\gtrless} 250 \mathrm{~Hz}$)

The amplitude is
controlled by F3:

For a duration smaller than about . 2 s, this function will give a sharp attack; the decay consists of 3 linear portions: the 2 first approximate an exponential shape, the ard tries to
imitate the effect of a damper.
The wave form is given by $F l$, which consists of 10 harmonics. F_{1} : Amplitude

With loki sampling rate, all the harmonics will be heard without foldover up to a fundamental frequency of about 400 Hz .
2) brief and high notes played on instrument \#2. (duration

$$
\approx .2 \text { s, frequency } \widetilde{\sim} 250 \mathrm{~Hz} \text {) }
$$

This instrument is similar to instrument \#l except that the waveshape is given by F 2 , which consists of only 7 harmonics. F_{2} : Amplitude

Harmonic number
3)long and low notes played on instrument \#3. (duration $\tilde{\sim} 2$ s, frequency $\xlongequal{\sim} 250 \mathrm{~Hz}$)

This instrument is similar to instrument \#l, but here the amplitude is controlled by $F 4$.

F4 decays exponentially from 1 to $2^{-6}=1 / 64$. Thus the duration of the note corresponds to $6 / 10$ of "reverberation time" (time for the level to drop 60 db). In this example, "long" notes last between about. 4 and .8 s, and this would correspond to a "reverberation time" of the order of ls, which is shorter than that of a real piano (around ls at 2000 Hz , around 10 s at 200 Hz). (However, in real pianos the initial decay rate is higher, thus the discrepancy is not as large as it would seem from these data.)
4)long and high notes played on instrument \#4. (duration $\xlongequal[>]{>} 2$ s, frequency $\underset{>}{\sim} 250 \mathrm{~Hz}$)

This instrument is similar to instrument \#3, but the waveshape is given by $F 2$, as in instrument \#3.

COMMEAT NANH. BLLES ON TAPE N1485;
COMMEAT:RPIEF NOTES:
COMMENT:LOW NOTES:
INS C 1:OSC P5 P7 R3 F3 D $30: C S C$ B3 P6 B3 F1 P29:OUT B3 BI:END: COMMENT:HIGH VOTES:
INS O 2:0SS P5 P7 B3 F3 P30:0SC B3 PG R3 F2 P29:OUT B3 B1:END: こOMMENT:LONE NOTES:
COMMFAT:LOW NCTES:
INS ? $\because 0 S C$ OF P7 33 F 4 P30:05C 33 PG B3 F1 P29:OUT B3 BL:END:
COMMERT:HIGH NCTES:
INS 04 :OSC PS P7 33 F4 P30:0SC B3 DG B3 F2 P29;OUT B3 B1:END: SIA O 4 1COCD: COMMENT METRONOME MARKING $150: S V 2 \quad 0 \quad 2 \quad 30: S V 20030 \quad 0 \quad 15015150:$
COMMEAT:LO NOTE WAVE:
TEN ○ 2 1.158.316111.282.112.063.079.126.07110:
COMMENT:HI NOTE WAVE:
TEN O 2 2 1 . 232.099.1.071.089.0507:
COMMEAT:SHORT NOPE ENVELOPE:
GEN O 1 3 0 1 .99910.4 200.2 400 0 512:
COMMEAT:LCNG ACTE ENVELCPE:
SEN 054 -6:
NOT 131.65 3OC 304 1:NOT $1.331 . E 63001751:$
NOT $131.653002331:$ NOT $141.563002771:$
NOT $1431.563003301:$
NOT 1.531 .16250207 1:NOT $1.541 .16250 \quad 3491$ 1:
NOT $1.541 .1625 C 440$ 1:NOT $1.541 .16 \quad 2505541$:
NOT 2.55 : . 34 300 104 1:NOT $2.561 .34300 \quad 175$ 1:
NOT 2.561 .34 BCO 2331 INOT $2.66 \quad 2.34300 \quad 2771$ 1:
NOT $2.55 \quad 2 \quad 34 \quad 300 \quad 330 \quad 1:$
NOT $3 \quad 314400 \quad 207$ 1:NCT 34414003491 :

NOT 43322501551 in2T 4332250196 1:
NOT $4 \quad 3 \quad 2 \quad 250 \quad 2331:$
NOT $5 \quad 3 \quad 1 \quad 3002071: N O T \quad 5 \quad 4 \quad 1 \quad 300 \quad 2941:$
NOT 5 4 1 $300 \quad 3301:$ NOT $54113003921:$
NOT 54133004941 1;

NOT 631.65 3C0 233 1iMOT $641.66300 \quad 277$ 1:
NOT 643.66 ?CO 3301 1;
NOT $5.5 \quad 3 \quad 1.15 \quad 250 \quad 207 \quad 1$ NOT $6.5 \quad 4 \quad 1.16 \quad 250 \quad 349 \quad 1:$
NOT $6.541 .16 \quad 250 \quad 440 \quad 1$ iNOT $6.541 .16 \quad 250 \quad 5541$ 1:

NOT 7.66 1.34 30C 2331 INOT 7.66 $2.34300 \quad 2771$:
NOT 7. $56 \quad 2.34300330$ 1:
NOT $831400 \quad 2 C 7 \quad 1: N O T \& \& 14003491:$
NOT $8414400440 \quad 1:$
NOT $8414 \begin{array}{lllll}4 & 1 & 54 & 1:\end{array}$
NOT $9 \quad 3 \quad 2 \quad 250 \quad 104$ 1;NOT $9 \quad 3 \quad 2 \quad 2501471$ 1:
NOT 9? $222501651:$ NOT $93222501961:$
NOT 93 ? 2502331 :
NOT 1C ? $130 C 2071: N O T 10413002941:$
NOT $10 \begin{array}{llllllllllll} & 4 & 1 & 300 & 330 & 1: \text { NOT } & 10 & 4 & 1 & 300 & 392 & 1:\end{array}$
NOT $10413004041:$ TER 15:
SUBROUTINE CONVT
COMNON IP(1C).P(100).G(1000)
IF (P(1).NE.1.)GOTOLOO
$F=511.1$ G(4)
$D(6)=F * D(6)$
$P(7)=F / P(4)$
10C RETLRN
EA?

This run gives a few percussive sounds reminding of a drum--with and without snares. The list and the 3rd sections are played back at a sampling rate of $20,000 \mathrm{~Hz}$, and the and section is played back at a sampling rate of 5000 Hz , as specified in the score.

Instrument \#l is used to generate these percussive sounds (it is also used in example \#410). It is diagrammed below:

This instrument gives a sound which is the sum of a frequency band, of a sine wave and of an inharmonic spectrum.

The frequency band is generated by random amplitude modulation of a sine wave Fl. The center frequency is given by V1*, the half bandwidth by V2*. The envelope is given by function $F 2$, which decays exponentially from 1 to 2^{-12}.

[^0]F4 is a sine wave--it is the luth harmonic of the fundamental frequency specified in P6. Thus if $P 6=20$, the actual frequency of this sine wave is 200. The envelope is given by function $F 8$, which decays exponentially from 1 to 2^{-8}.

The "inharmonic" spectrum is, in fact, an approximation to an inharmonic spectrum, obtained by playing a wave containing only high order harmonics at a very low frequency. F3 comprises harmonics \#10, 16, 22, 23: thus with a fondamental frequency (specified in P6) of 20 , this will give component frequencies $200,320,440,460$. The envelope is controlled by F2.

The amplitudes for the noise band, the sine wave and the inharmonic spectrum are given respectively by P5, V3* and $V 4^{*}$.

Section 1 gives the following pattern

played with a snare-like effect given by a noise band centered at 4000 Hz and of 3000 Hz bandwidth. The sine wave component has frequency 200 Hz .

[^1]\#400

- 3 -

Section 2 gives the following pattern

played "without snares": there is no noise band ($\mathrm{P} 5=0$). The four pitches correspond to fundamental frequencies of $120,140,150$, and 160 Hz .

Section 3 gives the following pattern

played again with snares.

COMMENT:ORUM AND SNARE DRUM ON TADE M3586 FILES 23 4:
COMMENT:TO SKIP FILE 1:GFN 051 1:
COMMENT: SNARE:
COMMENT: 4 KC CEATER 3 KC BAND NGISE 200 HZ SINE AND MEMBRANE SPECTRLM:
こOMMENT:20 KC SAMPLING:SIA 0420000 :
COMMEAT:FOR DELM:
[NS 0 1:OSC P5 0733 F2 P3C:RAN 33 V2 33 P29 P23 P27:
DSC PZ VI B? F1 P2E:OUT B3 B1:
OSC V3 P7 34 -2 O25:SET O8: JSC B4 P6 B4 F3 P24: OUT B4 B1:
OSC V4 PT S5 FE P23:SET F9:OSC 55 PG B5 F4 F22:CUT B5 BI:END:
GEN $0221111:$
GEN 077 ? -12 :

EFM $\cap 4 \begin{array}{lllllll}4 & 1 & 10 & 0 & 1 & 512:\end{array}$

CEN $078-8$:
$5 V 30110065300$ 800:
NOT . $41.21000 \quad 200$:
NOT . B $1.21000 \quad 200$:
NOT 1.1 $1.15 \quad 1000 \quad 20 \quad 0$:
NOT 1.2 $1.21000200:$
NOT $1.6 \quad 1.2 \quad 1000 \quad 20 \quad 0:$
NOT $1.91 .151000 \quad 200$:
NOT $2.01 .21000 \quad 20 \quad 0 ;$
NOT 2.4 1.2 $1000 \quad 20$ 0:
NOT 2.8 1.21000200 :
NOT 3.1 1 . $151000 \quad 20 \quad 0:$
NOT $3.21 .21000 \quad 20 \quad 0:$
NOT 3.5 1 . $21000 \quad 20$ 0;
NET $3.91 .15 \quad 1000 \quad 200$:
NOT 4.01 .2100020 :
NOT $4.4 \quad 1 \quad .21000 \quad 20 \quad 0$:
NOT $4.8 \quad 1 \quad .21000 \quad 20 \quad 0:$
NOT 5.2 1. 210 CO 2 C 0 :
NOT $5.51 .21000 \quad 200$:
NOT $5.01 .25 \quad 13 C C \quad 200$:
SEC \&:
COMMENT:TE WPITT END DF FILE MARK: GEN C 50 :
COMMENT:DRUM:COMMENT:5 KC SAMPLING:SIA O 4 5000:
COMNERT:MEMGRARE SPECTRUM. SINE WAVE.NC NOISE BAND:
SV3 $017.5 \quad 2.5 \quad 500 \quad 1500$:
NOT . 4 1 1.3 O 1 ? C:NOT .F 11.20010
NOT 1.071 . ? 012 O:NOT 1.21 .20160 ;
NOT 1.51 .3 O 12 C:NCT $2.011 .25014 \mathrm{C}:$
NOT 2.41 .230150 :
NOT $2.6 \quad 1.27 \quad 0 \quad 150$:
NOT 3.07 1.23 2150 NOT 3.21 .230150 :
NOT 3.F 1.23 O 15 C:
NOT 4.0 1 . $23 \quad 0 \quad 150$:
SEC 6:
CDMMENT:TJ WRITE END DF FILE MARK: GEN 050 :
COMMENT:SNARE DRLN:CJMMENT:20 KC SAMPLING:SIA 0420000 :
TEN 072 -12;
GEN: $0 \quad 1 \quad 7 \quad 0 \quad 1 \quad .99 \quad 5 \quad 0 \quad 10000512:$
GEN 0 ? $-8-8$:
SV3 $0110065 \quad 300 \quad 800$;
NOT . $41.151000 \quad 20$ O:NOT $\quad .611 .21000 \quad 20 \quad 0:$
NOT $1.071 .21000 \quad 200$:
NOT 1.2 1.2 $1000 \quad 20 \quad 0$;
NOT $1.6 \quad 1.2 \quad 1000 \quad 2 \mathrm{C} \quad 0$:
NOT $2.01 .21000 \quad 20 \quad 0$;
NOT $2.41 .251200 \quad 20$ O:NOT $2.9 \quad 1 \quad .151000 \quad 20 \quad 0$:

```
NOT 3.0 1 . 15 1000 20 0:
NOT 3.1 1 . 15 1000 2C 0:
NOT 3.2 1 . 20 1000 20 0:
NOT 3.55 1.15 700 20 0:
NOT 3.5 1 . ? 700 20 0;
NOT 4.0 1 . 15 800 20 0;
NTT 4.05 1. .15 200 20 0:
NOT 4.13 1 . 15 800 20 0:
NOT 4.20 1 . 15 800 20 0:
NOT 4.27 1. . 15 800 20 0:
NOT 4.33 1 . 15 800 20 0;
NOT 4.4 1 . 22 1200 20 0:
TER 5:
        SUBROUTTAF CONVT
        CTMMON IO(10).P(100).G(1000)
        IF(P(1).NF.1.)ECTO100
        F=511./F(4)
        F(E)=F*D(F)
        P(7)=F/O(4)
        IF(P(3).EN.1.IGOTO1OO
        P(5)=P(5)*与(11)
100 FFTLEN
        END
```

This run gives a few percussive sounds. The two first sections are played back at a sampling rate of 5000 Hz , while they have been synthesized with a specified rate of $10,000 \mathrm{~Hz}$: hence, for these two sections, the durations are the double and the frequencies are the half of those specified in the score. The two last sections, giving two bell-like sounds, are played back at sampling rate $10,000 \mathrm{~Hz}$ and the frequencies and durations are as specified in the score.

Instrument \#l is used to generate the percussive sounds of the two first sections. It is diagrammed below:

This instrument gives a sound which is the sum of a frequency band and of an inharmonic spectrum. This sound decays exponentially.

The frequency band is generated by random amplitude modulation of a sine wave $F l$. The center frequency is given
by VI, the half-bandwidth by V2.* The envelope is controlled by function $F 2$, which decays exponentially from 1 to 2^{-7}.

The "inharmonic" spectrum is actually harmonic: an approximation to an inharmonic spectrum is obtained by playing at a very low frequency a wave containing only high order harmonics. For instance, spectrum l is generated by periodic waves comprising harmonics \#10, \#16, \#22, \#23, \#25, \#29, \#32: at frequency 10 (specified by P6), this will give component frequencies $100,160,220,230,250,290,320$. Spectrum 1 is here obtained by the sum of functions F3, comprising harmonics 10, 16, 22, 23, and F4, comprising harmonics 25, 29, 32: the envelope of $F 3$ is controlled by $F 2$, whereas the envelope of F4 is controlled by F8, which insures a faster decay for the higher components.

By means of P7 and P9, functions F3 and F4 can be changed to other functions. Here, in addition to spectrum l, which is an approximation to a membrane spectrum, an approximation to the spectrum of a struck metallic object has been tried: it is called spectrum 2. It is obtained by the sum of functions F5, which comprises harmonics $16,20,22,34,38,47$, and $F 6$, which comprises harmonics $50,53,65,70,75,77,100$.
*The values of 3 rd pass variables V1 \& V2 correspond to a center frequency and a bandwidth of 1000 and 800 Hz at lo Kc sampling rate, hence of $500 \& 4.00 \mathrm{~Hz}$ in the sound example, recorded at 5 Kc.

Instrument \#2 is used to generate inharmonically related frequency components of bell-like sounds. The waveshape Fl
ia a sine wave. Function F7, controlling the envelope, decays exponentially from 1 to 2^{-7}. The lowest component frequency is specified in the score by Vll (Pass II variable); in a component note card, P6

specifies the ratio of the frequency of a component to the frequency of the lowest component: CøNVT multiplies P6 by Vll. (E.g., if the components were harmonically related, the P6 would be l, 2, $3 \ldots$...)

Section 1 includes 3 sounds of actual duration $.8,2$, and 4 s played on instrument \#l, first with spectrum 1 , then with spectrum 2, with a fundamental frequency of 50 Hz .

Section 2 includes 3 sounds of duration 18, 2, and 4 s played on instrument \#l with spectrum, with a fundamental frequency of 150 Hz .

Section 3 gives a bell-like sound played with instrument \#2. It consists of 7 components of frequencies proportional to $1,2,2.4,3,4.5,5.33,6$ having different decay times. The lowest component is at frequency 329.

Section 4 gives a bell-like sound played with instrument \#2, consisting of only 4 components.

```
COMMFNT:DERCUCSICN:
COMMENT:TADF M117?;
COMMENT:FOR DRUN:
INS O 1:OSC DS OT R3 F2 P30:RAN B3 V2 B3 P29 029 027:
OST P? V1 R3 F1 P25:חIT R3 R1:
OC v3 07 04 R2 D25:S5T P8:OSC Q4 P5 Q4 F3 P24:JUT Q4 R1;
C<R y/4 DT Q5 F& D?Z:CFT Dg:OSC Q5 PE B5 F4 P??:CUT R5 B1:FND:
CV30 1 5n 40 500 50n:
MOMMFAT:FOR ERLLE:
INS ? ?:OSC OF OT D3F7 P30:OSC B3 PG Q3 F1 P2O:OUT B3 B1:END:
GENO> 1 1 1:CEM O 7 2 -7:
COMMENT:EOR SOCCTDUM 1:
GENO 4 3 1 10 0 1 517 1.5 150 1 512 2 22 0
TEN O 4 4 1 25 ? 1 51? . 5 79 0 1 51? . 2 32 n 1 512:
SNMMENT:FRP SPFCTRUM ?:
```



```
1 30 त 1 512 1 47 O 1 51?:
```



```
175 C 1 512 1 77 n 1 512 1 100001 512:
SEN O ? 7-0;GFN ? 7 & -1?:
COMMFNT:DRUM:
COMMENT:FREQUENCY ION HZ AT 1O KC SAMPLING RATE:
COMMENT:SPFCTPUN1:
NOT 1 1. .4 50n 10 0:NחT 2 1 1 500 10 0;
MOT ?. 1 2500 1C n:
COMMEVTPSOECTPUM ?:
NOT R 1.4 500 10 0 5 6:NOT 7 1 1 500 1C O 5 E:
NOT Q.5 1 2 500 10\cap5 5:
CFC 1フ:
COMNENT:FRFQUENCV TOO HZ SPFCTRUM 2:
NOT 1 1 - 4 50O 3O O:NCT, 1 1 500 30 C:
NOT マ. 5 1 2 500 >0 0:
SFCR:
COMMENT:RFLL LIKF SOUNDS:
COMMFNT:LCWEST FRFQUFNCY 320: SV2 C 11 329;
NOT 1 ? 2 200 1 O:NOT 1 ? 2.8 >00 ? O:NOT 1 2 2.7 200 2.4 0;
NOT 1 ? ?.4 200 3 O:NOT 1 2 2.2 200 4.5 O:NחT 1 ? 2 300 5.33 C:
NOT 1 2 1.5 300 5 0:
SFC =:
NOT 1 , 4 400 1 O:NOT 1 2 3.5 400 > O:NOT 1 2 3.2 400 2.5 0:
MOT 1 2 2.9 40C 3.36 C:
TED 7:
```

SURODUTTNE CONVT
COMMCN IP（10）．P（10C）．G（1000）
IF（n）（1）．NF．1．）OMTn 100
$F=511.16(4)$
$D(f)=F *$ の（ 5$)$
P（7）＝F／F（4）
IF（O）？）．F O．．．）ORTの100
P（C）二P（F）＊（11）
100 RFTUDN
FNO
\#411
This run gives some more percussive sounds, with the instruments and functions described for \#410. Here the sampling rate for playback is $10,000 \mathrm{~Hz}$, as specified in the score.
lst section gives 6 sounds of increasing pitches played on instrument \#l with spectrum 1 .

2nd section is similar to lst section, but with spectrum 2.

3rd section gives 3 sounds of increasing durations and decreasing pitches with spectrum 1 .

4 th section is similar to 3rd section, but with spectrum 2.

5th, 6th, and 7 th sections give 4 bell-like sounds played on instrument \#2.

CTMMENT：ORRCUSSICN：
COMMFNT：FOR ORUM：
INS \cap 1：OSC 5507 RS F2 P 30：RAN B？V2 83 P29 229 P27：
oer Pz V1 R3F1 م26：तllt R3 R1：

OKC V4 P？P5 F\＆D77：5TT DG：TSC B5 PG B5 F4 P？2：OUT R5 BI：FND：
「VR O 1 5ी 4？ 500 500：
CTMMFNT：FCR PFLLC：

GEN 0 ？ 1 1 1：G5：$\rightarrow 72$－7：
CTMMENT：FOR SOFCTOUM 1：

GEN $\cap 44122 \pi \cap 151 ? .57301512 .23201512:$
COMMENT：ECD SEFCTRUツ 2：

138 C 1 「1？ 1470151 ：

GEN $\rightarrow \rightarrow \rightarrow-Q:$ CEN ？ $78-1$ ？：
CПMMFNT：NCUM：
CTMMENT：ORIFF STUNOS SPECTRUM 1：
NTT 1．？ 1 ． 5 150 5．8 3 3 3 ：
NOT 1．Q 1.21509 .8 ©：
NOT ？ $1.4 \quad 150 \quad 13.9 \mathrm{n}$ ：

NOT 子．ヶ 1 ． 3150 31．1 0：
NOT 3.81 ．2 150 49．？ 0 ：
SCC $=$
CTMNENT：GRIEF STUNOS SOECTRUM 2：
MnT 1．？ 1.51505 .9 ？ 5 ：
NOT 1.01 .21509 .80 ：
NOT $1.4 \begin{array}{llll}4 & 150 & 13.0 & 0\end{array}$
NOT ？． 91.3150 ？ 1.3 ：
NतT 7.51 ． 3 15C 31．1 0：
NกT マ．2 1．2 $15^{\text {n }} 4$ a．2 0 ：
SFC E ：
COMMFNT：LONEFR SOUNOS SDECTRUM 1：
NOT $1 \begin{array}{llllllll} & 1 & 1 & 150 & 22 & 0 & 2 & 4:\end{array}$
NחT $2122500 \quad 13.9$ 0：
NOT 4149005.90 ：
SEC 10 ：
COMMENT：L ONGFF EOUNRS SPECTRUM ？：
NOT $111150730=5:$
NกT $\rightarrow 1250013.9$ n：
NOT 4143 3nO 5.8 ：
S5C 10；
CTMMENT•PFLLS：
CTMMENT：FFE QUFNCF FALE $1 C 4: S V 2 \quad 0 \quad 11104:$
NOT $12 ?$ ？ 4001 O：NOT 121.74001 .5 O：NOT 1221.5400220 ：
NกT 121.340 C 2．7 NONRT 1221.1400 3．3 0 ：

CER 10：
NOT 1 ？ 2 NO 1 OONRT 122.82002 O：NCT 122.72002 .40 ：
NOT $122.4200 \rightarrow 0:$ NOT 122.23004 .5 OFNOT $12223005.320:$
NOT $1 ? 1.5$ 30n ह C：
SEC 5 ：
NOT 1 ？ 4 4חO 1 O：NनT 1223.54002 O：NOT 1223.24002 .50 ：

TE？7：

SURODUTTMF CRNVT C ПMMON TP(1C).P(10C)•G(1000)
IF (P(1).NF•1.)GחTก100
$F=R 11.1 G(4)$
O(f) =F*O(5)
$P(7)=F / P(u)$
IF (P(3).Fก.1.) TOTの100
$P(F)=P(C) * G(11)$
100 DFTURN
FNO

This run gives percussive sounds reminding of gong sounds.
There is a separate note card for each frequency component of the sound; all components are generated by instrument \#l, diagrammed here.

The waveshape Fl is a sine wave.
Function F2 controls the envelope;
F2 is decaying exponentially from 1 to 2^{-7}. The component frequency is given by P6*, its initial amplitude by P5 and the duration of the decay
 by $\mathrm{P} 4^{*}$, duration of the note.

The frequencies of the components are not harmonically related.

In the first sound, all frequency components decay synchronously. The spectrum is thus invariant; the effect reminds of an element of an electronic chime.

In the second sound, the same frequency components have a decay time approximately inversely proportional to their frequencies (although this principle is not followed inflexibly, to give a more intricate decay pattern). The sound has more life and naturalness than the first one.

The following sound consists of different frequency

[^2]11420
components with non-synchronous decay.
Then follow four partly overlapping sounds of the same type; the beating of close components gives some warmth to the sound.

COMMEAT:GONG LIKE SOUNDS:
COMMENT:RUN 2 ON TAPE M3282 FILE 2:GEN 051 :
INS 0 1:OSC P5 P7 B3 F2 P30:0SC B3 P6 B3 F1 P29:CLT B3 B1:END:
COMMENT: PLAY AT A SAMPLING RATE OF 4000 HZ :
COMMENT:ORIGINAL SAMPLING RATE 2000C HZ: SIA 0420000 :
COMMENT:PLAY AT A SAMPLING RATE OF 5000 HZ :
CDMMENT:HENCE DLPATIJNS MLLTIPLIED BY 4: FREQLENCIES DIVIDED BY 4:
GEN O 2111 1:GEN 3 ? 2 -7:
COMMENT:FCR DENCNSTRATION FIRST NCTE WITH SYNCHRCNCUS DECAY:

NOT $1 \quad 1 \quad 2.5100 \quad 3250 \quad 0:$
SEC 5;

NOT 111110032500 :

SEC \&:

NJT $11111503250 \quad 0$:

NJT 1.711 .31001210 O:NOT 1.711 .110012600 :
NOT 1.711 .91001540 O:NOT 1.7111 .610019300 :
NJT $1.812 .9300 \quad 970$ O:NOT $1.812 .7 \quad 2501230 \quad 0:$
NOT 1.8 $122.6100 \quad 1350$ O:NOT $1.8 \quad 1 \quad 1.620015360$:
NJT 1.8 $111.2100 \quad 2043$ O:NUT $1.8 \quad 1 \quad 1.1150 \quad 3280$ 0:
NOT 3.213 .4150960 O:NCT 3.2113 .212511100 :
NJT $3.2133 .0150 \quad 1540$ O:NOT $3.2112 .15052420 \quad 0:$
NCT $3.21 .810 C 136 C \quad 0: N C T \quad 3.211 .65 C \quad 2680 \quad 0:$
NOT 3.2 111.1503250 0:
TER 8 ;
SUBROUTTNE CONVT
COMNON IP(1C),P(10C),G(1000)
IF(D)(1).NE.1.1G3T0100
$F=511 . / 6(4)$
$P(6)=F * P(5)$
P(7) =F/P(4)
100 RETURN
END

This run gives three successive approximations of a bell sound.

There is a separate note card for each frequency component of the sound; all components are generated by instrument \#l, diagrammed here.

The waveshape Fl is a
sine wave. Function F2 controls the envelope; F2 is decaying exponentially from 1 to 2^{-10}.

The component frequency is given by P6, its amplitude by P5, and the duration of the decay by P7. $(P(7)=P(4))$.

The frequencies of the components do not form a harmonic series; however, they are not arbitrarily inharmonic. In most actual bells it is attempted to approximate the following ratios for the lst 5 components: .5, 1, 1.2, 1.5, 2 (corresponding for example to the following succession of notes: G, G, B flat, D, G, called respectively hum notes, fundamental, minor third, fifth, nominal). Here the frequency ratios of the components are as follows: .56, .92, 1.19, 1.71, 2, 2.74, 3, 3.76, 4.07.

In the first sound, all these frequency components decay synchronously. This gives an unnatural sound.

In the second sound, the components have a decay time approximately inversely proportional to their frequencios
(although this principle is violated in one instance where a lower component decays faster: this gives a slight bounce a little after the beginning of the sound). The sound is much more natural, yet still a little dull.

In the third sound, each of the two lowest partials is split into two components of slightly different frequencies (224 and 225, 368 and 369.7). This causes beats which add some life and warmth to the sound. It is likely that in real bells partials are split into two close components, due to departure from rotational symmetry.

```
COMMENT:BELL EXPERIMENTS:
COMMENT:ON TAPE M1485 FILE 4: GEN O 5 3:
COMMENT:5 KC SAMPLING RATE: SIA O 4 5000:
INS 0 1:OSC PS P7 B3 F2 P30:0SC B3 P6 B3 F1 P29:0UT B3 B1:END:
COMMENT:TO SET GENERAL CONVT: SV2 0 10 2 6-7:
GEN 0 2 1 1 1: GEN 0 7 2 -10:
COMMENT:SYNCHRONOUS DECAY:
NOT 1 1 20 250 224.5 20:NOT 1 1 20 400 368.5 20:
NOT 1 1 20 400 476 20:NOT 1 1 20 250 684 20:
NOT 1 1 20 220 800 20;NOT 1 1 1 20 200 1096 20:
NOT 1 1 20 200 1200 20:NOT 11 1 20 150 1504 20;
NOT 1 1 20 200 1628 20:
SEC 21:
COMMENT:NON SYNCHRONOUS DECAY:
NOT 1 1 20 250 224 20:NOT 1 1 1 12 400 368.5 12:
NOT 1 1 6.5 400 476 6.5:NOT 1 1 7 7 250 680 7:
NOT 1 1 5 220 800 5:NOT 1 1 4 200 1096 4:
NOT 1 1 3 200 1200 3:NOT 1 1 2 150 1504 2:
NOT 1 1 1.5 200 1628 1.5:
SEC 21:
COMMENT:NON SYNCHRONOUS DECAY AND TWO SPLIT PARTIALS:
NOT 1. 1 20 150 224 20:NOT 1 1 18 100 225 18:
NOT 1 1 1 13 150 368 13:NOT 1 1 1 111 270 369.7 11:
NOT 1 1 6.5 400 476 6.5:NOT 1 1 7 250 680 7:
NOT 1 1 5 220 800 5:NOT 1 1 4 200 1096 4:
NOT 1 1 3 200 1200 3:NOT 1 1 2 150 1504 2:
NOT 1 1 1.5 200 1628 1.5:
TER 22:
```

This run gives some drum-like sounds with variable frequency (plus a non drum-like sound).

The sounds are generated by instrument \#3, which uses among its inputs the output of degenerate instrument \#2.

Instrument \#2 is used to effect pitch changes. It is a degenerate instrument, the output of which goes into B5. Function F2 controls pitch evolution. P6 gives the duration of the
 frequency cycle (which for all examples of this run coincides with the note duration--
in fact it is made slightly longer to be sure to avoid a recycling of the frequency function at the end of the note. This can happen due to round off errors in the increment value, especially with computers of 24 bit word length). $P 5=1$.

Instrument \#3 comprises 3 parallel oscillators with different envelope controls, as shown by the diagram.

One of these oscillators generates the fundamental of maximum frequency 160 Hz (F3 is a sine wave.). The amplitude is controlled
by F6. In all examples given here (except the last note) the attack time is 10 ms or 30 ms (note this is not a linear
 attack--otherwise these times would be smaller), the "steady" state lasts 0 ms or 30 ms and the decay time is about 1.6 s .

The two other oscillators play waveshapes F4 and F5, which comprise high order harmonics of a low fundamental--in order to imitate an inharmonic set of partials. (F4 comprises harmonics 3, 4, 5, 6: with Pll $=75$, this oscillator will give frequencies 225, 300, 375, 450; similarly F5 comprises harmonics 8, 9, l0, ll, $12,15,17,18$, with Pl6 $=61$, which yields frequencies between 500 and ll00.) The amplitude are controlled respectively by F7 and F8, which insure a fast decay for waves F4 and F5 (in this example, about. 6 and

 . 3 s to decay to $1 / 1000$ of the initial amplitude for all notes except the last one).

The lst section plays 2 notes with constant pitch--the 2nd note has a longer attack and a 30 ms steady state for the fundamental.

The 2nd section is similar, but the pitch is going up a minor third from the beginning to the end of each note.

The 3rd section is similar, but the pitch is going up then down during each note, since the frequency is controlled by
 minor third from the beginning to the end of each note.

The last section gives a note generated with the same instrument but with parameters differing very much from the previous ones, especially a .9s attack time for wave F5 and an attack time occupying practically all the duration (2s) of the note for wave F 4 . This in only to show how easily a computer instrument designed for a particular purpose can be used to give different types of sound.

COMMENT:VARIABLE PITCH DRUMS;
SIA O 4 5000;
COMMENT:FRR PITCH VARIATION:
INS O 2:OSC PS DF ES F2 P3O:END:
COMMENT:FOP 3 COMPGNENTS:
INS O 3:FNV PS FE B2 P7 P8 PG P30:
MLT P5 B5 B6;05C 92 B5 B2 F3 P29;OUT B2 B1:
ENV D10 F7 Q3 P1? P1? P14 P20:
MLT P11 35 B7:O5C $33 \quad 37$ Q3 F4 P27:OUT B3 B1:
ENV P15F8 R4 D17 P18 P19 P25:
MLT P16 85 S3:J5C 343334 F5 P25:OUT B4 B1:END;
COMMENT:TO SE T CENEFAI CCNVT:
SV2 O 201 - S :
$\begin{array}{llllllllll}\text { SV2 } & 0 & 30 & 5 & 6 & 107 & 11 & 112 & 16 & 117:\end{array}$
GEN 02311 ;
GEN $0.2 \begin{array}{llllllllll} & 4 & 0 & 0 & 1 & 1 & \cdot 3 & \cdot 2 & 6\end{array}$
GEN $04 \begin{aligned} & 4 \\ & 5\end{aligned} 10 \times 3 \times 1 \begin{array}{lllllllllll}1 & 512 & 3 & 9 & 0 & 1 & 512 & 5 & 10 & 0 & 1 \\ 5\end{array} 12$

CJMMENT:FOR ENVELTOE:
GEN O 5 6. 10.29.3 10;
GEN $9667.8 .99 .9924:$
GEN $0.6888 \cdot 99.9940$;
COMMENT:CONSTANT PITCH: GEN 012.991 .99 512:
NOT $1221.6311 .63:$
NOT 1.3 1. $621000160.01001 .560075 .01001 .6130061 .010 \quad 0 \quad 1.61:$
NCT $3 \quad 2 \quad 1.7111 .7$;
NOT $331.661000160 .030 \quad 0 \quad 1.6 \quad 600 \quad 75.010 \quad 0 \quad 1.5530061 .010 \quad 0 \quad 1.65$:
SFC 5:
COMMENT:UP A MINOQ 30.85 1: GEN $012.851 .99512:$
NOT 1 2 2 1.E3 1 1.53:
NOT $131.621000160 .01001 .560075 .010 \quad 0 \quad 1.6130061 .010 \quad 0 \quad 1.61$;
NOT $3 \quad 2$ 1.7 1.1 .7 :
NOT $331.651000150 .03001 .660075 .010 \quad 0 \quad 1.6530061 .010 \quad 0 \quad 1.65$:
SEC 5:
COMMENT:OSCILL PITCH: GEN 022 . 1.91 1:
NOT 1221.6311 .63 :
NOT $1 \quad 3 \quad 1.621000150 .010 \quad 0 \quad 1.5600 \quad 75.010 \quad 0 \quad 1.61 \quad 30061.010 \quad 0 \quad 1.61:$
NOT 3 2 1.7 1 1.7:
NOT $3 \quad 31.551000160 .03001 .560075 .01001 .6530061 .010 \quad 0 \quad 1.65$:
SEC 5:
CDMMENT:DOWN A MINQR 3O: GEN 012.991 .85 512:
NOT $12.1 .6311 .53:$
NOT 1.31.62 1000160.01001 .660075 .01001 .6130061 .01001 .61 :
NOT 321.7 1.1.7:
NOT $3 \quad 31.561000160 .030 \quad 0 \quad 1.6 \quad 600 \quad 75.010 \quad 0 \quad 1.65 \quad 30061.010 \quad 0 \quad 1.65$:
SEC 5:
COMMENT:NOTE WITH NON REALISTIC PARAMETERS:
NOT 122212 2:

TER 4;

This example presents a fragment obtained through mixing from runs \#200, 301, 400, 410, and three other runs.

Three of the original sounds (excerpted from \#200 and \#410) underwent transposition by speed changing before mixing, the others did not undergo electroacoustic madification (except of course amplitude control). Some tape splicing was involved to excerpt single sounds from \#200 and \#410 and to place each element at the proper time. A chart of the beginning of the mixing is given.

As can be heard, the synchronization if not bad; with good tape recorders, it seems easy most of the time to achieve satisfactory synchronization up to durations of 30 s to 1 mn . In connection with this, it should be noted that tape recorder speeds often go down substantially, due to changes in tape tension, when one approaches the end of a reel (this has been studied by F. Harvey and J. McLean).

The runs used in this episode and not presented among the previous examples are briefly described below:
(1) a cluster of sinusoids, forming the following chord:
together with two brief episodes
played by a simple instrument with
feedback (c.f.,\#5l0), and noted
as follows:

(2) a run analagous to \#301, but where the spectra are gradually moved from a low region (below aroung 600 Hz) to a higher region (between about 500 and 2500 Hz) by means redefining the functions giving the waveshape in the course of the run;
(3) a run analagous to the and section \#410, but with a lower pitch (frequencies about twice lower) and a regular beat:

The remarks mentioned for \#5l2 apply to this example.
$\# 490 \stackrel{d}{\leftrightarrows}=150$

Rum \#3
Lower" Drum"

Run\# 410 Bell like sounds

time ins \qquad

(continued)

Rum

Rum \# 410 Bell like sound \qquad
Run\#301 Piamo-like
 then Rum \#2

1
1
I
I
Lime in $s \longrightarrow$

This run presents what might be called a "spectral analysis of a chord": for each note of the chord, successive harmonics are gradually introduced. This is performed automatically by subroutine PLF3, listed with the score and described below. The example is in stereo, with a sampling rate of $20,000 \mathrm{~Hz}$ for each channel; it is played backwards, because it was desired to terminate on the fundamental notes of the chord. (This can be done also by using negative values for TS.

PLF3 is a first pass subroutine, called by the following data statement:

$$
\begin{array}{lccccccc}
\mathrm{P}(1) & \mathrm{P}(2) & \mathrm{P}(3) & \mathrm{P}(4) & \mathrm{P}(5) & \mathrm{P}(6) & \mathrm{P}(7) & \mathrm{P}(8) \\
\text { PLF } & \begin{array}{c}
\text { Action } \\
\text { Time }
\end{array} & 3 & \mathrm{NC} & \mathrm{~N} & \mathrm{TS} & \mathrm{FACT} & \mathrm{DD}
\end{array}
$$

It operates on a number of subsequent note cards, and this number is specified by NC: e.g., if NC=4, PLF3 will operate on the 4 note cards following the PLF data statement. The instrument number has to be 1 or 2 , and these instruments must be such that $P(6) *$ gives the note frequency F. PLF3 will add to each note card it operates on N note cards of frequencies $2 F, 3 F, \ldots,(N+1) F$, played alternately by instrument number 1 and 2. If the action time of the original note card is $A T$, the action times of the added note cards will be, respectively, $A T+T S, A T+2 T S, \ldots, A T+N T S$. In examples \#500 and \#501, the instrument 1 and 2 give the same tone quality respectively in the left and the right channel. This *From now on, the P fields refer to note cards P fields--the P fields of the PLF3 data statement are referred to as NC, N, TS, FACT, DD.
alternation between instrument can be used as well, for instance, to get alternate harmonics of different timbres or intensities.

PLF3 provides for a multiplication of $P(5)$ by FACT from one harmonic to the next. (If $F A C T \leq 0, P(5)$ is left the same.) This can be used for example to increase (or to reduce) the amplitude by a constant factor from one harmonic to the next.

Finally, the successive harmonics note durations are related to the fundamental note duration D by $D-D D$. If $\mathrm{DD}=0$, they have the same duration as the fundamental, as in the figure:

The total duration
of the sound is given in this case by $D+N \times T S$.
 If $\mathrm{DD}=\mathrm{TS}$, the pattern is as on the figure. In this case the total duration of the note is equal to D.

Care must be taken to avoid negative durations if $D D>0$. ($D D$ can as well be negative, to give harmonics lasting longer than the fundamental.)

In example \#300, PFL3 is applied to the note of a chord noted:

A different PLF statement is used for each pair of bracketed notes: 4 harmonics of group 1, 8 harmonics of group 2 and 10 harmonics of group 3 are generated--at different rates, such that the overall duration is the same for all groups. (Actually the very end of the sound--which becomes the beginning since the example is played backwards--has been cut out.) All notes are played by instrument \#l or \#2, which are identical, except that l plays into the left channel and 2 into the right channel. Instrument 1 is diagrammed here. Fl is a sine wave.

This instrument gives
a parabolic attack and decay, since $F 2$ is a linear attach and decay as draw here, and since the output of the

generator is multiplied by itself (which yields the dotted curve).

```
COMMENT:SPECTRAL ANALYSIS DF A CHORD TO BE PLAYED BACKWARDS:
CGMMENT:TAPE M1084 FILE 2:COMMENT:TD SKIP FIRST FILE:GEN 0 5 1;
COMMENT:G SHARP D GNATURAL E B A SHARP USE SPECIAL PLF 3:
COMMENT:PARABOLIC ATTACK AND DECAY SAMFLING RATE 2OOOO;SIA 0 4 2CO00;
INS 0 1:OSC P5 P7 B3 F2 P35:MLT B3 B3 B4:OSC 34 P6 B4 F1 P34:
STR R4 V1 BI:END:
INS O 2:OSC P5 D7 B3 F2 P35:MLT B3 B3 B4:OSC B4 P5 B4 F1 P34:
STR V1 B4 B1:END:
```



```
COMMENT: E SHARP D G NATURAL E B A SHARF:
PLF 1 3 2 10 1 O O:NOT 1 1 2 500 208 2:NOT 1.01 2 2 500 294 2:
PLF11 3 2 8 1.25 0 0:NOT 1 1 3.75 500 392 3.75;NOT 1.01 1 3.75 50C 659
3.75:
PLF 1 3 2 4 2.5 1:NOT 1 1 1 7.5 500 988 7.5:NCT 1 1 7.5 500 1865 7.5:
TER 15;
SUBROUTINE CONVT
COMMON IP(10).P(100).G(1000)
IF(F(1).NE.1.)GCTO100
F=511./G(4)
P(5)=SQRT(P(5))
P(6) =F*P(6)
P(7)=F/P(7)
    100 RETURN
        END
CPLF3LB1
    PLF3 FOR LB1
C GENERATES HARMONICS WITH ALTERNATING INSTRUMENTS
C OPERATES ON NQTE CARDS OF INSTS 1 AND 2
C P(5) AMPLITLDE,P(6) FREQUENCY ON NOTE CARDS
C ON PLF CARD, P(4) SPECIFIES HOW MANY FOLLOWING NOTE CARDS WILL
C BE OPEPATED EN
C P(5) GIVES THE NUMBER OF HARMONICS GENERATED
C P(E) SPECIFIES TIME SEPARATION BETWEEA HARMCNICS
C P(T) SPECIFIES THE AMDLIUDE MULTIPLIER FROM ONE HARMONIC TO NEXT
C P(8) GIVES THE DURATION DIMINUTION FRCM CNE HARMCNIC TO THE NEXT
    SUBROUTINE PLF3
    COMMON IP(1C),P(100).O(2000)
NC=P(4)
N=P(5)
TS=P(5)
FACT=P(7)
DO=O(8)
DO 1 I= I,NC
CALL READI
CALL WRITE1(10)
F=P(5)
OO 2 J=1.N
    P(6)=FLDAT(J*1)*F
    P(2)=P(2)+TS
C TO CHANGE INSTS NUMBER FROM 1 TO 2 AND VICE VERSA
    AINST=P(3)-1.
    IF(AINST)3,3,4
    3 P(3)=2.
    goro5
    4 P(3)=1.
5 CONTINUE
    IF(FACT.GT.C.)P(5)=P(5)*FACT
    P(4)=P(4)-DD
2 CALL WRITEI(10)
1 CONTINUE
    100 RETURN
```

 END
 \#501
This run is similar to \#500: the same harmonics from notes of the same chord have been generated by PLF3 (c.f., \#500) (except that a longer portion has been removed from the end of the sound--which again becomes the beginning since the example is played backwards).

The difference in tone quality is due to the difference in the envelope of each component: instead of a gradual parabolic attack and decay, each harmonic (for the example played backwards) has an instantaneous attack and an exponential decay, controlled by F7.

```
CTMMENT:SPECTFAL ANALYSIS OF A CHORD TO BE PLAYED BACKWARDS:
COMMENT:G SHARP D GNATURAL E B A SHARP USE SPFCIAL PLF3:
COMMENT:INSTANTANEUUS ATTACK EXPONENTIAL DECAY:
INS 0 1:35C P5 P7 33 P2 P35:DSC B3 P6 14 F1 P34:STR B4 V1 B1:END:
INS O 2:CSC DSPF B3 F2 P35:OSC E3 PE B4 F1 P34;STD VI B4 BLIEND:
GEN \cap 2 1 1 1:5EN ? 7 2 5:
FLF1 3 ? 10 1 1 0:N.OT11 1 2 200 208 2:NCT 1.C1 2 2 200 294 2:
PLE1 3 2 5 1.251 0:NOT 1 1 3.75 200 5:? 3.75:NOT 1.01 1 3.75 500 659
3.75;
DLF 1 3 ? 4 2.51 0;NOT 1 1 7.5 200 983 7.5:NOT 1 1 7.5 200 1855 7.5:
TER 15:
SUQPJUTT:E CONVT
COMNO: MP(10).P(100).5(1000)
IF(o(1).s.1.)GOTj100
F= =11./r(4)
つ(8)=F*D(5)
P(7)=F/P(7)
100 2FTURN
    FN%
CPLF3LS1 DLF3 FOR LB1
C CENERATES HARNCNICS WITH ALTERNAT&NG INSTRUMENTS
    OPFQATES ON NOTE CARUS OF INSTS : AND 2
    F(5) AMPL:TLDE,DIE) FREGLENCY ON NOTE CARCS
    ON OLF CARU. P(4) SPECIFITS HOW MANY FOLLOWING NOTE CARDS WILL
    RF GDEEATEO ON
    O(5) GIVFS THE NUMQER BF HARMGNILS GENERATED
    P(5) SDECIETES TIME SEPARATISN BLTWEEN HAFMCNICS
    د(7) S?CIFI=S THE AMDLIUNE HULTIPLIER FROM ONE HARMONIC TO NEXT
    P(8) GIVES THE NUFATION GIMINUTICA FFOM CNE HARMONIC TO THE NEXT
    SUODDUTTME FLF?
    CRMNON TH(10).D(100).0(2000)
    NC=O(4)
    N=0(5)
    T5=?(5)
    FACTニP(ア)
    OO=D(3)
    OC? I=1,浣
    CALL OEAUl
    CALL WRITEI(10)
    F=D(5)
    n? ? J=1.l
    0(\delta)=F!OAT(J+1)*F
    P!?)=F(2)+TS
C TT CHANSE INSTS NUMBER FROM 1 TO ? AND VICE VERSA
    ATNCT=P(3)-1.
    IF(AINST)3,Z,4
    f(こ)=2.
    0.7T35
    D(3)=1.
    5 CJNTIVUS
    IF(FACT.CT.C.) F(5)=P(5)*FACT
    O(4)=?(4)-ก0
    CALL WRITEJ(10)
    1 CTNTEMUS
    100 FETIEN
    ENM
```

\#502
This sound results from mixing \#500 with itself at different speeds. The speeds have been changed in a way equivalent to playing back \#500 simultaneously at a sampling rate of $40,000 \mathrm{~Hz}, 20,000 \mathrm{~Hz}$, and $10,000 \mathrm{~Hz}$. (This example, in stereo, is again presented backwards.)

The remarks mentioned in \#512 apply here.

\#503

This sound results from mixing \#501 with itself at different speeds. The speeds have been changed in a way equivalent to playing back \#50l simultaneously at a sampling rate of $40,000 \mathrm{~Hz}, 20,000 \mathrm{~Hz}$, and $10,000 \mathrm{~Hz}$. (This example, in stereo, is again presented backwards.)

The remarks mentioned in \#5l2 apply here.

\#510

This run gives a bunch of siren-like glissandi.

Instrument \#1

This instrument delivers
a variable frequency sound. The wave
is a sine wave with feedback
(a process suggested by
A. Layzer). The frequency
controlling oscillator has
a cycle of $8 \mathrm{~s}(\mathrm{P} 7)$ repeated
3 times.

Instrument \#2
This instrument gives a noise band with variable center frequency. The
l/2 bandwidth is given
by P8. The frequency cycle
lasts 6s(P7).

Instrument \#3
This instrument gives a wave with variable frequency. The frequency cycle (P7) lasts l2s. The wave given by stored function F2 is truly periodic, but it simulates the sum of inharmonically related partials: the fundamental frequency

is 20 Hz and the wave consists simply of harmonics \#le, 29, 39: thus frequencies $420 \mathrm{~Hz}, 580 \mathrm{~Hz}$ and 780 Hz are present.

F2 is a drastically varying function; to minimize noise due to roundoff errors, IDS is used here (This is the version of the oscillator which interpolates between 2 successive sampleas whenever the sum of increments is not an integer.).

Instrument \#4
This instrument gives
a sine wave with variable
frequency.

Note: here the rate at which the frequency controlling functions are scanned is determined by P7 (converted by $P(7)=F / P(7))$: it is divorced from the duration of the note; in effect these functions are scanned several times for one note length.

```
COMMENT:SIRENE POLR MUTATION:
COMMENT:TAPE 1779:
COMMENT:FEEDBACK GLISSANDO:
INS 0 1:OSC PS P7 B4 F5 P8:AD2 B10 P5 B11:
OSC F:I1 E4 B1O F1 P3O:OUT B1O BIIEND:
COMMENT:NOISE BAND GLISSANDO:
INS O 2:RAN F5 P8 B4 P30 P29 P28:
OSC PG P7 S5 FG P9:OSC 34 B5 55 F1 P27:OUT 85 B1:END:
COMMENT:INHARNONIC GLISSANDG:
INS 0 3:OSC P5 P7 34 F7 P8:IOS P5 B4 B5 F2 P 30:
OUT QS BIIEND;
COMMENT:SINES GLISSANDO:
INS O 4:OSC PE PT B4 F8 P8:OSC P5 B4 B5 F1 P3C:OUT B5 BI:END:
SIA O 4 10000;
GEN 0 2 1 1 1:
GEN 0 4 2 2 1 21 0 1 5.12 1 29 0
CEN O 1 5 . 999 1 . 999 25 . 318 231 . 318 281 .999 487 . .999 512:
GEN 0 1 6..377 1.999 256.377 512:
GEN 0 1 7 . 5 1 .5 15.9 241 .9 271 .5 497 .5 512:
GEN 0 1 8 . 333 1. . 333 8.999 248.999 254.333 504.333 512;
NOT 1 1 244450 98C 8:
NOT 1 2 24 400 1550 5 200:
NOT 1 3 24 200 20 12:
NOT 1 4 4 24 70 2400 3
NOT 1 4 24 70 240C 3 128;
NOT 1 4 4 24 70 2400 3 256:
NOT 1 4 24 70 240C 3 384;
TER 25;
C SIRENE POUF MUTATION CONVT
        SUBROUTINE CONVT
        COMNON IP(1C),D(10C),G(1000)
        IF(P(1).NE.1.1FOTO100
        F=511./G(4)
        P(6) =F*P(5)
        P(7)=F/P(7)
        IF(P(3).E2.2.)P(3)=F*P(8)
    100 RETLRN
        ENO
```

This run gives a bunch of simultaneous glissandi, played at double speed $(20,000 \mathrm{~Hz}$ sampling rate instead of $10,000 \mathrm{~Hz})$.

lst Section

Instrument \#l
This instrument delivers a variable frequency sound.

The wave is a sine wave with feedback (a process suggested by A. Layzer).

The frequency controlling oscillator has a cycle of 4.5 s , repeated 4 times.

Instrument \#2
This instrument gives a
noise band with variable
center frequency. P8: half bandwidth

Instrument \#3

This instrument gives a variable frequency triangular wave.

2nd Section

Instrument \#4
This instrument gives
a glissando for six
"parallel" voices,
such that there is
a constant frequency
difference between the
voices (instead of a
constant frequency ratio,
which would give a constant musical done by J. Clough.

Here the glissando is
relatively narrow. The
parameters P6, P8, P9, P10,
Pll, Pl2 correspond to an initial

chord noted:


```
COMMENT:GLISSANDI FOR LB;
COMMENT:ON TADE M2804.FILE 1:
COMMENT:FEEDBACK:
TNS O 1: SET P9; OSC PG P7 B4 F5 P 30; MLT P8 B6 B7: AD2 P5 B7 B8;
OSC BQ B4 B6 F1 P29; OUT BG B1: END:
COMMENT:NOISE BAND:
INS O 2:
SFT P9: OSC P6 P7 B4 F6 P30; RAN P5 P8 33 P10 P29 P28:
OSC B3 84 B5 F1 P27; OUT B5 B1: END:
COMMENT:SIMPLE GLISSANDO:
INS 0 3:
SET P9: OSC P6 P7 34 F7 P30: OSC P5 B4 35 F2 P29; OUT B5 31; END;
SIA 0 4 10000;
GEN 0 2 1 1 1: GEN 0 3 2 0 10 0 -10 0; ;
GEN 0 1 5 .999 1 .999 50.85 462 .85 512:
GEN 0 1 6 .999 1.999 20.235 492 . 235 512;
GEN 0 1 7.999 1 .999 25 .06 487 .06 512:
NOT 1 1 1 18 300 208 4.5 .7:
NOT 1 2 15.5 300 440 5.5 80:
NOT 3.75 2 111 300 380 5.5 150;
NOT 1 3 17.6 200 1864 2.2:
NOT 1.7 3 16.9 200 1964 2.2;
NOT 2.4 3 16.2 200 1864 2.2:
SEC 20;
COMMENT:MULTIPLE SYNCHRONOUS GLISSANOI:
INS 0 4: OSC PG P7 B4 F8 P24: AD2 B4 P8 35: AD2 B4 P9 86: AD2 B4 P10 B7;
AD2 P4 P11 B8: AD2 B4 P12 B9: 0SC P5 B4 B4 F1 P30; 0UT B4 B1:
OSC P5 B5 35 F1 P29; OUT B5 B1: OSC P5 B6 86 F1 P28: OUT B6 B1;
OSC P5 B7 B7 F1 P27: CUT B7 B1:
OSC D5 B8 B8 F1 P2G: OUT B8 B1: OSC P5 B9 B9 F1 P25; OUT B9 81: END:
GEN 0.1 8. .25 1. .25 30.05 140.25 200 . 25 210.50 270.75 290.05 512:
NOT 1 4 20 300 10.65 20 4.402 9.420 23.09 39.936 84.836:
TER 22;
CGCONVT CONVT FOR GLISSANDI L B
    SUBROUTINE CONVT
    COMMON IPP(10),P(100),G(1000)
    IF(P(1).NE.1.)GOTO100
    F=512./G(4)
    P(7)=F/P(7)
    IF(P(3).EQ.4.)GOTO100
    F(6)=F*P(6)
    IF(P(3).EO.2.) P(8)=F*P(8)
100 RETURN
    END
```

This example presents sounds obtained by mixing from the sound of the 2nd section of run \#5.11 (glissandi with constant difference in frequency between voices).

The original sound underwent only transpositions by speed changing before mixing. What differs from one sound of this example to another are both the frequency regions of the sounds (low, medium, high) and the density of mixing, that is, the number of voices. The densest passage has a mixing density of 36 , and since the original sound comprises 6 voices, the final sound comprises up to 6×36, i.e., more than 200 voices.

Theoretically sounds of this example could have been obtained directly from the computer, without later manipulation, since the sound manipulations performed electroacoustically (transposition, mixing) are easy to do with Music V. But this process allowed to produce complex textures while saving computer time: and it is quite likely that the sound quality of a computer run comprising such a large number of voices would be very poor, since there are only a few samples for the definition of each voice. Moreover this process allows to control the amplitude balance of the various components of the mixing. It is, of course, subject to well-known inconveniences: noise build-up, synchronisation problems (c.f., \#490).

This run presents a little more than one octave of an "endless glissando", which could be pursued indefinitely since it is back to its original point after an octave "descent" (c.f., R. N. Shepard, J.Acoust.Soc.Am. ,36, 1964,pp.2346-53; J. C. Risset, J.Acoust.Soc.Am., 46,1969, p. 88 (abstract only) The gliding sound comprises 10 components, all generated by instrument \#l, diagrammed here.

Function F3 controls the frequency of the components. It goes down exponentially from 1 to 2^{-10} (10 octaves below). For each component,
 the initial sum is specified in P9; the value of these sums for the different components are respectively: $0, \frac{1}{10} \times 511, \frac{2}{10} \times 511$, $\frac{3}{10} \times 511, \ldots, \frac{9}{10} \times 511$. Since $P 6$, which gives the maximum frequency, has the same value 3900 for all components, the components are initially one octave apart. The duration of the frequency cycle is given in P7 and is l20s: this means that each component goes down an octave after $\frac{120}{10}=12$ s--and the components stay locked one octave apart. (After one octave descent, the lowest component becomes the highest one.)

Function F 4 controls the amplitude of the components. It is a bell-shaped curve which consists of a portion of a sine
wave with a D.C. bias, if the ordinate scale is in db . (See description of GEN7). For each component,
 the initial sum is specified in P8: the value of these sums are the same as those specified in P9, and the duration of the amplitude cycle is the same as that of the frequency cycle. Thus the component amplitudes scan this curve while their frequencies scan the frequency curve. This has the effect of strongly attenuating low and high frequency components. (Even though the specified P8 and P9 are equal, the two oscillators should not share the same P field for the sum.) After one octave descent, the pattern is the same as the starting pattern (except for errors due to the imprecise definition of small increments which cause the duration of the cycle to be different from the one expected--this may be severe for less than 36 bit word computers.

Function $F l$ is a sine wave.
$I \varnothing S$ has been used instead of $\varnothing S C$ for the three oscillators of the instrument. It gives a truly continuous--not a quantized--frequency glide; similarly it gives a more gradual. amplitude change. But it is also preferable for the waveshape oscillator--in this case, as in other cases with glissandi or other frequency modulations, round off errors with ØSC
(c.f., M. V. Mathews, The Technology of Computer Music, MIT Press, 1969, p.l34) are specially noticeable because the corresponding noise goes on and off, diminishing when the frequency is such that the sum of increments (the abscissa) is close to an integer value.

To get continuously descending glissandos, one could compute an entire descent of many octaves; it is more economical to compute one cycle (i.e., one octave) and use the computer to copy these samples successively as many times as desired. However, due to the errors mentioned above, one has to inspect the samples and choose to make the concatenation at a point which will give no appreciable discontinuity in either frequency, amplitude, and waveform.

- COMMENT:ENDLESS GLISSANDI WITH 3 IOS:

COMMENT: TADE M1913:
COMMENT:CYCLE DURATION 12 S 10 COMPONENTS;
INS 0 1:IOS PS P7 B3 F2 P8:IOS PS P7 B4. F3 P9:
IOS P3 R4 B5 F1 P25:OUT E5 BI:FND:
COMMENT:TO SET GENERAL CONVT; SV2 $01026-7$:
SIA O 4 10000:

NOT $11114850 \quad 39 C 0120.0000$:
NOT 111148503900120.0051 .151 .1 :
NOT $1.114885039 C 0120.00102 .2102 .2$;
NOT 1.11485503900120 .00153 .3153 .3 ;
NOT $11 \begin{array}{llllllll} & 14 & 850 & 39 C 0 & 120.00 & 204.4 & 204.4 \text {; }\end{array}$
NOT $111143503900120.00 \quad 255.5 \quad 255.5:$
NOT $11114485039 C 0120.00 \quad 306.5 \quad 306.6$:
NOT $1.11 \begin{array}{llllllll}14 & 850 & 3900 & 120.00 & 357.7 & 357.7:\end{array}$
NOT $111485039 C 0120.00408 .8408 .8$;
NOT $111148503900120.00459 .9459 .9:$
TER 16;

This run is related to \#513: but here, while the components frequencies go down, the center of gravity of the frequency distribution goes up (instead of staying approximately invariant as in \#513), so that the sound goes down 3 octaves while becoming shriller--and that it ends up much higher than it started.

The basic instrument is similar to that used in \#513, except that here an
instrument comprises
five such units, each of which gives one frequency component; so only two note cards are required to get the 10 components of

the sound. Functions F1, F2, and F3 are the same as those used in \#513. The initial sums are defined in the same way.

While the component frequencies go down, the spectral envelope goes up because the duration of the entire frequency cycle (given by $P 8=60 \mathrm{~s}$) is longer than the duration of the entire amplitude cycle (given by $P 7=30 \mathrm{~s}$). (This may be easier to understand by examining what happens to the initial spectral configuration of $\# 513$ when the amplitude increment is larger than the frequency increment.) If the process was allowed to continue longer, the peak of the spectral distribution would continue to be translated towards the highest frequencies and then it would jump to the lowest frequencies and resume its translation upwards.

- CDMMENT:TONALITY GOES DOWN TONE HEIGHT GOES UP: COMMENT:DURATYOM 18 S FREQUENCY CYCLE 6 S: COMMENT:TAPF M2334 FILE 5:GEN 054 :
INS 0 1:
OSC P5 P7 32 F2 P10:05C PS D8 B3 F3 P11;IOS B2 B3 B2 F1 P30; OUT B2 B1:
OSC P5 P7 B4 F2 F12:0CC P5 P8 B5 F3 P12:IOS B4 B5 B4 F1 P29:OUT B4 B1: JSC D5 P7 B5 F2 P14:55C P5 D8 B7 F3 P15; IOS B6 B7 B6 F1 P28: OUT B6 B1: OSC PS PT Q8 E2 F16:OSC F6 P8 B9 F3 P17:IOS B8 B9 B8 F1 P27:DLT B8 B1; OSC P5 P7 D, 10 FZ ? $18: 05 C$ P6 P8 B11 F3 P19:IOS 310 B11 B10 F1 P26; QUT B10 BI:ENO:
SIA O 4 10000:
GEN 022111 I:CE: $\begin{array}{lllllllll}0 & 7 & 2 & 0 & \text { GGEN } & 0 & 7 & 3 & -10 \text { : }\end{array}$ COMMENT:FRFGUENCY CYCLE 55 AMPLITUDE CYCLE 3 S: NOT $1.11850040003060000651 .1 \quad 51.1102 .2102 .2153 .3153 .3$ 204.4 204.4:
$\begin{array}{lllllllllllllllllllll}\text { NOT } 18 & 18 & 500 & 40 C O & 30 & 60 & 0 & 255.5 & 255.5 & 306.6 & 306.6 & 357.7 & 357.7\end{array}$
408.8400 .945 . 359.3 ;

TEP 20 :
C C.JNVT OTUR CJNFLIT CHRJMA HAUTEUR BRUTE
SUBPOUTTAE CJNVT
COMMが IP(10), P(100).G(1000)
IF(P(1). NE. 1.$)$ SOTO100
$F=511.15(4)$
F(F) =F*F(5)
$D(7)=F / 0(7)$
$P(8)=F / F(3)$
100 RETURN
FND

This run presents sounds whose tone height goes up (or down) continuously, without octave jump, while their tonality remains invariant (in this case corresponding to a B). This is achieved by having fixed frequency octave components whose spectral envelope is translated as in \#514.

Instrument \# I is used for each of the 8 components of the sounds. It is diagrammed here. The component frequency
is given by P6; all
components are in
octave relation. For
each component, the

initial sum is specified
in P8; the value of these sums for the different components are close to, respectively, $0, \frac{1}{8} \times 511, \frac{2}{8} \times 511, \ldots, \frac{9}{10} \times 511$. Each sound lasts 5 s , which corresponds to less than an entire amplitude cycle.

In the list section, function $F 2$ is a single peak bellshaped curve with 84 db difference between peak and end points ordinates (c.f., description of GEN7).

In the and section, function $F 2$ is a single peak bellshaped curve with 42 db difference between peak and end points ordinates (for this section and the two which follow, c.f., description of GEN8).

In the 3rd section, function $F 2$ is a double peak bellshaped curve--hence the repetition of the pattern.

In the 4 th section, function $F 2$ is a triple peak bellshaped curve.

Note: effects similar to those obtained here can probably be obtained more economically, if not as conveniently and precisely, through the use of FLT. This remark also applies to \#516.

```
COMMENT:CPFCTRAL ENVELODE TRANSLATION FOR DCTAVE COMPONENTS:
COMMFNT:FTXED FREGUENCIES:
COMMENT:TADF 155O FTLE 2:GEN 0 5 1;
TNS O 1:OSC PE DT E3 F2 P8:OSC B3 P6 B3 F1 F25;CUT B3 B1:END:
STA 0 4 !0000;
COMMENT:TO SET GENERAL CCNVT: SV2 O 10 1 6:
SENO 2 1 1 1;
COMMENT:ANFLITLDE FUNCTION CNE PEAK &4 DB AMBITLS:GEN 0 7 2 0:
NOT 1 1 5 500 30 .00715 128:
NOT 1 1 5 500 60 .0C715 192;
NOT 1 1 5 500 120.00716 255:
NOT 1 1 5 500 240.00716 320:
NOT 1 1 5 500 430 .00716 384:
NOT 1 1 5 500 960 .00715 44=:
NOT 1 1 5 500 1320.00715 0;
NOT 1 1 5 500 304C .00715 64:
SEC 7:
COMMENT:ONE PEAK AMETTUS 42 DQ:GEN C 8 z O:
NOT 1 1 5 500 30.00715 128;
NOT 1 1 5 500 60 .00716 192;
NOT 1.1 5 500 120.00716 255;
NCT 1 1 5 500 240.00716 320;
NOT 1 1 5 500 480.00716 334;
NOT 1 1 5 500 96C.0071F 440;
NOT 1 1 5 500 1320.0071% 0:
NOT 1 1 5 500 3840.00716 64;
SEC 7;
COMMENT:THO PEAKS AMRTTUS 4? DRIGEN O 8 2 1;
NOT 1 1 5 500 30 .00715 128;
NOT 1 1 5 500 60 .00715 192:
NOT 1 1 5 500 120.00716 255;
NOT 1 1 5 500 240.0071E 320;
NOT 1 1 5 500 480.00715 384:
NOT 1 1 5 500 360.00716 440;
NOT 1 1 5 500 1320.00715 0:
NOT 1 1 5 500 3340.0071E o4;
SEC 7:
COMMENT:THREE OEAKS ANBITLS 42 DOD:EEN O 8 2-1;
NOT 1 1 5 500 30.00716 12S;
NOT 1 1 5 500 6C .00715 192;
NOT 1 1 5 5 500 120.00716 255:
NOT 1 1 5 500 240.00716 320;
NOT 1 1 5 500 480.00716 384;
NOT 1 1 5 500 900.C0715 44?:
NOT 1 1 5 500 1320.00715 0:
NOT 1 1 5 500 こ24C.00716 64;
TER 7;
```

This run presents sounds of variable spectrum; the variation of spectrum is achieved by translating (as in \#514) the spectral envelope of fixed frequency components.

The instrument used is the same as in \#515. However, 10 frequency components are used instead of 8 , and here they are not in octave relation.

In the first 3 sections the frequency components form a harmonic series:
(1) In section 1 , function $F 2$ is a single peak bell-shaped curve with 42 db difference between peak and end points ordinates (For the amplitude controlling functions of this run, c.f., description of GEN8).
(2) In section 2, F2 is a double peak bell-shaped curve.
(3) In section 3, F2 is a triple peak bell-shaped curve.

In the last 3 sections the frequency components are not harmonically related.:
(4) In section 4, F2 is as in section 1 .
(5) In section 5, F2 is as in section 2.
(6) In section 6, F2 is as in section 3 .

See note at the end of \#515.

CGMMENT：VARIAQLE SPECTRUN SCUNDS THROUGH SPECTRAL ENVELCPE TRANSLATICN： COMMFNT：FIRST HAFMDNIC THEN：INHARMDNIC FREQUENCIES： COMMENT：TAPE M1495；
INS O 1：OSC DF P7 3？F2 P8：SSC BJ FG 3Z F1 P25：CUT 33 E1：END：
SIA 04 10000；
COMMENT：Tコ SET GENEPAL CONVT：EVZ O 1016 6：
GEN \cap ？ 1 11：
COMNENT：HARMONIC FREQLENCIES：
COMMENT：AMPLITUOF FUNCTIMN JNE PEAK 42 DB AMBITUS：GEN 0820 ：
$\begin{array}{llllllll}\text { NOT } & 1 & 1 & 3 & 500 & 200 & .02 & 0 ; \\ \text { NOT } & 1 & 1 & 3 & 500 & 400 & .02 & 51.1 ;\end{array}$
NOT $1123500600 \quad .02102 .2:$
NOT $1135500300 \quad 0 ? 153.3:$
NOT $11135001000 \cdot 02204.4$ ：
NOT $11135001200 \quad 02 \quad 255.5 ;$
NOT 11355001400 •ก2 305.5 ；
NOT $1: 35001000.02357 .7$ ：
NOT 1135001000 ． 22408.0 ：
NOT 11235002000 ． 1 2 459.3 ：
SFC 5；
COMMENT：TN？PEAKS：GEN O P 2 1；
$\begin{array}{llllllll}\text { NOT } & 1 & 1 & 3 & 500 & 200 & .02 & 2: \\ \text { NOT } & 1 & 1 & 3 & 500 & 400 & .02 & 51.1 ;\end{array}$
NOT 113500 EOC ． 2 2 102．？；
NOT $1 \quad 13500800 \quad 02153.3:$
NOT $1=5001000.02204 .4$ ：
NOT 1135001200.02255 .5 ；
NOT $1135001400.02306 .6 ;$
NOT $1 \quad 1 \quad 35001500 \quad 102 \quad 357.7$ ；
NOT $1135001800.02408 . \circ$ ：
NOT 11135002000.02453 .3 ：
SEC 5：
COMMENT：THRFE PEAKS：GENO Q $2-1$ ：
NOT $11 \leq 500200$ 02 0 ：
NOT $1113500400 \quad 0251.1$ ；
NOT 113500 \＆OR ． 22 102．？
NOT 113500200 •0？153． 3 ；

NOT $11335001000.02 \quad 204.4$ ；
NOT $11 \geq 5001200.0 ? 255 . \Sigma ;$
NOT 11135001400.02 305．：
NOT 11135001600 • 1 ？ 357.7 ；
NOT 11135001900.02408 .0 ：
NOT 1135002000.02459 .9 ：
SEC 5：
COMMENT：INHAPMONTC FREOLENCIES：
COMMFNT：ANPLITUDE TUACTICN ENE PEAK 42 DB AMBITLS：GEN 0 \＆ 20 ：
NOT 11350080.02255 .5 ；
NOT $1 \quad 1 \quad 3500230.02459 .9:$
NOT $1113500315.0 ? 305.3$ ；
NOT $1 \quad 132500550.02$ 204．4：
NOT 11235500750.02102 .2 ：
NOT 1 1 $133500 \quad 930 \quad 020$ ：
NOT $11135001400.0 ? 153.3:$
NOT $11335002500.02357 .7:$
NOT $11335003700.02403 .3:$
SEC 5：
CПムMFNT：TWO PEAKS：GE゙N J 9 2 1：
NOT 1 I 3 500 \＆6．02 255．5：
NOT 1113500230.02450 .9 ：
NOT $111350003: 5.02$ 306． 3 ；
NOT 1133500650 ．02 204．4；
NOT 1133500750.02 10？．2：

NOT $1113500 \quad 930.02 .0:$
NOT $1 \quad 1 \quad 3500 \quad 1400.02153 .3:$
NOT $1113500 \quad 2500.02357 .7:$
NOT $1 \quad 13500370 \mathrm{C} .02408 .2:$
SEC 5;
COMMENT:THREE DEAKS:GEN O $82-1$:
NOT 113550080.02 255.5:
NOT 113500230.02459 .9 :
NOT $1 \begin{array}{lllllll}1 & 3 & 500 & 315 & .02 & 306.3:\end{array}$
NOT $11135500650.02 \quad 204.4$ i
NOT 1133500750.02 102.2:
NOT $1 \quad 1 \quad 3 \quad 500 \quad 930.020$:
NOT $111335001400.02153 .3:$
NOT $11 \begin{array}{lllllll} & 3 & 500 & 2500 & .02 & 357.7: ~\end{array}$
NOT 11335003700.02408 .8 ;
TFR $5:$

\#517

This example presents a fragment obtained by mixing from runs \#510, 511, 513 to 516 (and a couple of other similar runs).

The original sounds underwent only transpositions by speed changing before mixing (except for the sound analagous to the one presented in \#514, which was artificially reverberated by means of an EMT metallic plate--a similar reverberation could have been performed by computer).

The remarks mentioned by \#5l2 also apply here.

This run presents an attempt to prolong harmony into timbre: a chord, played with a timbre generated in a way similar to ring modulation, is echoed by a gong-type sound whose components are the fundamentals of the chord. The latter sound is perceived as a whole rather than as a chord, yet its tone quality is clearly related to the chord's harmony. The passage is as follows:

Instrument \#1 is used to generate the notes of the chord, in
a way similar to a ring modulator combining the outputs of a sine wave and a square wave oscillator.

Low values have to be used
for the amplitude inputs P5 and
P7, since the resulting maximum amplitude will be

of the order of P5 \times PT.

The dominant frequency of a note played with this

instrument is the difference between P8 and P6. Function F3 controls the envelope of the sine wave component, hence the
envelope of the note; this modulation at the same time produces spectrum changes. Notes of the chord are first played with a short (l0 ms), percussive attack, then with a cresc-decresc type envelope.

Instrument \#2, used for the gong-like sound, is similar to instrument \#l of \#420: there is one note card for each frequency component; the waveshape is a sine wave; each component is decaying exponentially at its own rate. As was mentioned earlier, the frequencies of the components are equal to the frequencies of the notes of the preceding chord.
OSC P7 D8 B4 F2 P28:MLT B3 B4 B3:CUT B3 BI:END:
INS O 2:OSC P5 P7 B3 F4 P30:0SC B3 P6 B3 F1 P29:OUT B3 BI:END:
COMMENT:TO SET GENERAL CONVT:
SV2 0 1n 368 109;
$\begin{array}{llllll}\text { SV2 } & 0 & 20 & 2 & 6 & -7:\end{array}$
GEN $\cap 21111:$
GEN $0 \begin{array}{llllllllllllllll} & 3 & 2 & 0 & 10 & 10 & 10 & 10 & 10 & 0 & -10 & -10 & -10 & -10 & -10 & 0:\end{array}$
GEN O 64310.99 .9910 ;
CEN $074-9$:

NOT .5 | 5 | 1 | 6 | 13 | 424 | 18 | 1000 | .01 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NOT o F $1.51818727181000 .01 \quad 0.6$:
NOT . 913 3. $6 \quad 18 \quad 424 \quad 18 \quad 1000 \quad 2.3 \quad 0 \quad 1.2$:
NOT. © 1.518154218 .2000 .010 .6 ;
N?T $1 \quad 1 \quad 3.518 \quad 797 \quad 1310003.201 . ?:$
NOT 1. $1 \quad 1.618113618 \quad 2000.010 .6$;
NOT $1.3133 .218 \quad 154718 \quad 20001.90 \quad 1.2$?
NחT 1.4 1. $5 \quad 18 \quad 134218 \quad 2000.0100 .6:$
NOT $1.5113181136 \quad 1820001.9 \quad 0 \quad 1.2$:

COMMENT: TIMBRF ECHO TO PRFVIOUS HARMONY:
NOT 421040027310 INOT $4227.5 \quad 2004557.5$:
NOT 4 ? $4.5 \quad 200 \quad 575 \quad 4.5$ NOT $4226.5 \quad 150 \quad 648$ 5.5:
NOT 4224150864 4:
TER 15:

A Study of the Motion of a Bowed Violin String

J. Kohut and M. V. Mathews

Bell Telephone Laboratories
Murray Hill, New Jersey

1. Introduction

This paper reports a study of the motion of a violin string which was made by an electromagnetic technique suggested by Albert Rose ${ }^{l}$. His method simplifies the observation of rapid vibrations on small strings. An earlier study ${ }^{2}$ using high-speed photographs of a cello string indicated the form of the motion was as predicted by Helmholtz ${ }^{3}$ and Rayleigh ${ }^{4}$ but the flyback time was longer than expected. The present study shows the violin string motion is essentially as predicted by the Helmholtz-Rayleigh Theory with certain exceptions which will be pointed out. We will begin by describing the theoretical motion, then describe the experimental results, and finally point out certain acoustic implications of the results.
2. Theory of Vibrations

Vibrations of a bowed string are forced in the sense of being caused by the bow in contact with the string, but the period of these vibrations is essentially the same as that of free vibrations, set up, for example, when the string is plucked. This coincidence of periods leads one to hypothesize
that the bow excites a free vibration in the string. Strings can vibrate in many different modes. The particular mode investigated by Helmholtz and Rayleigh, which seems appropriate to bowed excitation, is shown on Fig. 1 in its idealized form. Fig. l(a) shows snanshots of the string at successive instants in time. At all times it is formed of two line segments. The breakpoint between the segments propagates along the string at a uniform velocity and is reflected from the ends. The envelope of the breakpoint is a parabola.

A heuristic explanation of this motion may be obtained from the elementary theory of a perfectly flexible string which says that the acceleration at any point on the string is proportional to its curvature. Since most of the string is a straight line segment at all times, the only point that is accelerated is the breakpoint. The straight line segments are not being accelerated and consequently they are in uniform motion. What is this motion? It is a uniform rotation around the end points. The direction of the rotation changes as the breakpoint passes.

Fig. l(b) shows the string motion as a function of time at three points on the string, denoted A, B, and C on Fig. $I(a)$. At all points the time motion is a simple sawtooth triangle, but the ratio of rise time to fall time differs for the three points. At point A we have a rapid fall time and a slow rise
time. At point B, which is further along the string, we have a somewhat longer fall time and a somewhat shorter rise time. In the exact center of the string the fall time and rise time are precisely equal.

If we define two quantities, measurement position, MP,

$$
M P=\frac{D}{L}
$$

where D is distance from the bridge to the point of observation and L is the string length; and duty factor, $D F$,

$$
D F=\frac{T_{F}}{P}
$$

where T_{F} is the fall time and P is the period of the vibration; then a simple analysis of the ideal string motion depicted in Fig. I(a) will show that

$$
D F=M P
$$

for all values of D. The experimental part of this paper will show that the motion of an actual violin string is a reasonable approximation to the triangular waveforms shown in Fig. I at all points along the string and that the duty factor closely approximates the measurement position at all points.

Why is this free vibration appropriate to excitation by the bow? The bow and string together form an oscillator. An explanation of the mechanism of an oscillator, which must be nonlinear in nature, is beyond our knowledge and our
intentions in this paper. Schelleng ${ }^{5}$ has made a more complete analysis of the string and bow considered as an oscillator. We will merely point out that the string does oscillate, and that during the rise of the waveform, the string and the bow are stuck together and hence move at the velocity of the bow, which is constant. Thus a constant velocity during the rise time is appropriate. The string slips along the bow hair during the fall time and thus moves at a different velocity than the bow. Although it does not seem essential that the string moves with constant velocity during the fall, this is a perfectly acceptable motion.

There are certain departures observed in the motions of actual strings from the ideal motion of fig. l. We will discuss these after considering the motion of an actual string. In addition to departures due to the characteristics of actual strings, if an ideal or actual string is bowed at a node of one of the harmonics of its natural modes of vibration (bowed at distance $\mathrm{m} / \mathrm{n} \cdot \mathrm{L}$ from the bridge where m and n are integers) a different waveshape of vibration occurs. This effect was noted by Helmholtz and Rayleigh and has been extensively studied by Raman ${ }^{6}$. The difference arises because components at the nodal frequency are not excited. The resulting waveshape has a number of ripples in the basically triangular waveform shown in Fig. l. If the bow is close to the bridge, as in normal violin technique, so
that n is greater than about six, then the ripples are very small so they can scarcely be seen. Consequently, we have not further considered these deviations in the remainder of this paper.
3. Examination of Actual Strings

The measurement technique developed by Rose is very simple and is shown in Fig. 2(a). Rose noted that almost all violin strings have a metal component and hence are conductors. If one simply puts a magnetic field across the string, the voltage at the endpoints will measure the velocity of the string at the position of the magnet. Fig. 2(b) shows the velocity waveform to be expected from the ideal vibration shown in Fig.]. Tt. is simnty a snilare wave whose duty factor equals the duty factor of the string motion. We are now in a position to see if the square wave is actually observed and if its duty factor equals the measurement position, MP, which can now be defined as

$$
M P=\frac{M}{L}
$$

where M is the distance of the magnet from the bridge. The equality should hold for all positions of the magnet and for different bow positions. We define the bow position as

$$
B P=\frac{B}{L}
$$

where B is the distance of the bow from the bridge.

A series of measurements were carried out with a violin and with a test string consisting of a piano wire 0.010 inches in diameter and a 13.7 inch long string between two stops on a solid board and tuned to 360 Hz . The strings were instrumented as shown in Fig. 2. A photograph of the magnet clamped to the fingerboard of the violin is shown in Fig. 3. The length of the magnetic field along the string is 0.75 inches except for the data recorded in Fig. 9 where the magnetic field was shortened to 0.25 inches. The strings were excited by a hand-held violin bow. Oscillograms of the string velocity were obtained by photographing the oscilloscope with a Polaroid camera. All measurements were made on the photographs.

Fig: 4 shows some typieal wayeforms from the test string and from both open and stopped violin strings for various bow and magnet positions. With one important exception, which we will subsequently discuss, all the waveforms we have observed are of the general form shown in Fig. 4. It is a good approximation to a square wave indicating that the string does vibrate with a triangular waveform. Two deviations from rectangularity are visually most prominent:
(1) The sides of the pulse are not vertical. It could be caused by the finite length of the magnetic field which would introduce a rise time of 0.03 periods. It could be due to the stiffness of the string. The G, D, and A strings are larger in diameter and tend to be stiffer than the E
string which exhibits a noticably faster rise time in Fig. 4. It could, according to Lazarus ${ }^{7}$, be due to the motion of the bridge (finite impedance of the bridge). We have not considered this latter effect.
(2) A small, almost sinusoidal oscillation is superimposed on the square wave. This oscillation will be discussed in Section 5.

Having ascertained that the string waveform is approximately triangular, we are now in a position to see if the duty factor equals the measurement position. In the photographs, the duty factor was measured as the width of the pulse at its half amplitude point. The measurement position was measured io life lefiler of the magnet.

Fig. 5 shows the relationship between duty factor and measurement position for the test string and for one bow position. Except for the second point, which may be an error, all observations fall close to the theoretical line of unity slope.

Fig. 6 shows the lack of effect of bow position on duty factor for the test string.

In Fig. 7 we have plotted DF/MP for a violin. Fig. 7(a) shows the effect of measurement position on the open D string, Fig. $\dot{7}(\mathrm{~b})$ shows the effect of bow position on the open D string, Fig. 7(c) shows various stopped and open strings for a fixed
magnet position (2 inches from bridge) and bowing position (l inch from bridge). These data show that $D F / M P$ is close to unity independent of where the motion is measured, where the string is bowed, which string is sounded, and whether or not the string is stopped. All ratios are slightly larger than unity. A possible explanation is the stiffness of the string. One would expect unity value only for a perfectly flexible string. Again, the E string is noticably closer to unity than the other strings. The stopped note for which the string is about $3 / 4$ of its open length seems to exhibit an unusually high DF/MP ratio. We can think of no explanation.
4. Double Slip Notes

One of the important exceptions to the triangular waveform exhibited in the preceding data is the multiple (usually double) slip waveform. Such a form is obtained when too light a bow pressure is used or when the bow position is far from the bridge. In practice we have observed double slips in the tones produced by beginners, in rapid loud strokes (martelé) and in sul tasto playing.

The tones studied in Section 3 were all produced by controlling the bow so as to achieve a tone judged by the ear to be of normal violin quality. For large values of bow position such a tone was hard to achieve and the range of bow position studied was limited by the requirement of achieving normal quality.

Fig. 8(b) shows an oscillogram of a normal mezzo forte sustained tone played by an experienced violin teacher ${ }^{8}$. Fig. 8(a) shows the oscillogram obtained when she reduced the bow pressure thus producing an inferior tone which she described as a "surface tone" and which she taught her students to avoid. Instead of having a single flyback or fall time, the surface tone exhibits two flyback cycles per period, one being slightly larger than the other.

The surface tone has a markedly different sound than the normal tone so that no experienced violinist would tolerate such quality in sustained tones. However, the bow cannot be so well controlled in rapid passages. Fig. 8(c) shows an oscillogram from a fortissimo note obtained from a martelé bow stroke. This oscillogram also exhibits a double flyback.

The sul tasto style of bowing also produces markedly different waveforms which probably cause the different tone quality thus achieved. Fig. 8(d), (e), and (f) give examples of oscillograms obtained bowing over the fingerboard (3 inches from bridge) with various speeds and pressures. In only one of these, (f), is there an approximation to a single slip. In Fig. 8(e) the string motion appears to be mostly a fundamental sinusoid plus some second harmonic. In Fig. 8(f) the waveform contains much 4 th harmonic. Clearly the violinist can strongly influence the tone quality by his manner of bowing, at least for the extraordinary tones such as sul tasto.
5. Minor Oscillations of the String

As we noted in section 3, one of the most prominent visual deviations from a triangular waveshape is an almost sinusoidal oscillation in the velocity oscillogram. Fig. 9 shows a sequence of oscillograms taken to study this oscillation. The tones are all played messo forte on the open D string. A series of bow positions were used to examine the effect of bow position on the oscillation.

The vibration is unusual in that its amplitude is zero (or very small) at the end of the flyback time and its amplitude increases during both the rise time and the flyback time. We would normally expect an oscillation to be started by one of the dincurithuitici in the stiving velocity at the beginning or end of the flyback time and subsequently the oscillation would decay during the relatively stable motion of the rise time. Since the amplitude of this oscillation increases, it must be absorbing energy from the bow in some way not clear to us.

The period of the oscillation increases as the bow is positioned further from the bridge as shown in Fig. IO (Data for the plot was read from the Fig. 9 oscillograms.). However, the rate of increase is not a linear function or some simple function for which we have a simple explanation. It does not result from a wave being reflected back and forth
between the bridge and bow. Consequently, at the moment, we simply note the existence of the oscillation without being able to explain it.
6. Conclusions

The principal result of this study of the bowed string is a confirmation that its motion is a close approximation to the simple triangular motion predicted by Rayleigh and Helmholtz and shown in Fig. 1. The main deviations from this form are (l) a small but unexplained sinusoidal oscillation and (2) some rounding of the corners of the triangle probably due to the stiffness of the string and the motion of the bridge. In addition to these deviations, the string occasionally vibrates in one of several modes which are grossly different from triangular such as a double slip mode. These modes can either be obtained accidently by using too light a bow pressure or intentionally as in the sul tasto style of playing. In either case, the sound is markedly changed.

In the triangular mode of vibration, the string and bow are stuck together during the rise time and hence move at the same velocity. This constraint has implications for the violinist. In order to achieve a loud tone, a large velocity must be produced. This can be done in two ways; either by moving the bow faster or by bowing closer to the bridge. The latter possibility works because, as is shown in Fig. 1, the
envelope of the string motion is parabolic and a small motion near the bridge produces a much larger motion toward the center of the string. Although we have not analyzed bow pressure, bowing near the bridge probably requires higher pressures.

The final conclusion concerns acoustics. Assuming most of the sound of a violin comes from the body, the most important waveform of the string motion is that at the bridge, since the bridge transmits the vibrations to the body. This waveform for the ideal triangular motion is shown in Fig. Il and consists of a slow rise and an instantaneous flyback. In an actual instrument, the flyback cannot be instantaneous because of string stiffness and other factors. However, if it were, the Fourier spectrum of the Fig. Il waveform would be

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} \sin (n w t)
$$

This is a very effective spectrum because it contains all the harmonics and the amplitude of successive higher harmonics decreases 6 db per octave. The presence of all harmonics is a good way of exciting the resonances of the violin. The rate of decrease of 6 db per octave is a good compromise between having weak high frequencies (as would be the case for a 12 db per octave fall-off) and a rate of fall-off less than 6 db per octave which tends to give a harsh tone in many sounds.

Notes and References

1. RCA Research Laboratory, Princeton, N.J.
2. M. V. Mathews, Joan E. Miller, J. R. Pierce, and J. Tenney, "Computer Study of Violin Tones," J. Acoust. Soc. Am. 38, 912(A)(1965).
3. H. L. Z. Helmholtz, on the Sensations of Tone (Dover Pub., A. Ellis, Ed., from the 4th German Edition 1877).
4. J. W. S. Rayleigh, The Theory of Sound (Dover Pub. 1877, revised 1894).
5. John C. Schelleng, "Negative Resistance in the Bowed

6. C. V. Raman, "On the Mechanical Theory of Bowed Strings and of Musical Instruments of the Violin Family, with Experimental Verification of the Results," Proc. Indian Assoc. Sci. 15 (1918).
7. Hans Lazarus, "Dynamical Theory of String Excitation by Bowing," J. Acoust. Soc. Am. 48, 74 (A) (1970).
8. Mrs. D. F. Kautzman, Summit, N.J.

Fig. 1. Ideal motion of a bowed string showing (a) snapshots of the entire string at successive instants in time and (b) the time motion at various places along the string.

Fig. 2. Measurement technique suggested by Albert Rose to observe the velocity of the motion of a violin string at point M by means of a magnetic field inducing voltage in the moring string. The figure shows (a) the equipment arrangement and (b) the expected waveforms.

Fig. 3. Magnet on violin.
Piビ. !!. Samplo wavoforme observed on test string and on all four violin strings in open or stopped conditions. Arrows indicate time scales (1 ms) and voltage scales (l mv).

Fig. 5. Duty factor of test string as function of the measurement position for one fixed position of the bow.

Fig. 6. Duty factor of test string as a function of bow position for a fixed measurement position.

Fig. 7. Duty factor divided by measurement position for a violin as function of (a) measurement position (b) bow position and (c) string and stopped length of string.

Fig. 8. Modifications in waveshape produced by either intentional or unintentional bow pressure which is less than that required to produce a triangular waveshape. Arrows indicate time scales (2 ms) and voltage scales (1 mv).

Fig. 9. Oscillograms to show minor oscillation which is superimposed onto the triangular string motion and how this oscillation varies with bow position. All tones are played on the open D string. The magnet position is $2^{\prime \prime}$. Arrows show the time scales (2 ms) and voltage scales (2 mv).

Fig.10. Period of minor oscillation of violin string divided by period of string as a function of the bow position.

Fig.ll. Waveshape at the violin bridge which would be observed if the motion of the string were an ideal triangular form.

b) TIME WAVEFORMS OF STRING MOTION

FIG. 1

(a) EQUIPMENT

FIG. 2

FIG. 3

(a) TEST STRING

$$
\begin{aligned}
& B=9 / 16^{\prime \prime} \quad M=1.7^{\prime \prime} \\
& L=13.8^{\prime \prime}
\end{aligned}
$$

(c) E STRING (OPEN)

$$
B=1^{\prime \prime} \quad M=2^{\prime \prime} \quad L=12.8^{\prime \prime}
$$

$$
\begin{aligned}
& \text { (e) D STRING (G) } \\
& B=1^{\prime \prime} \quad M=2^{\prime \prime} L=9.75^{\prime \prime}
\end{aligned}
$$

(d) A STRING (OPEN)

$$
B=1^{\prime \prime} \quad M=2^{\prime \prime} \quad L=12.8^{\prime \prime}
$$

(f) A STRING (D)
$B=1^{\prime \prime} M=2^{\prime \prime} L=9.75^{\prime \prime}$

FIG. 4

FIG. 5

FIG. 6

FIG. 7

(a) mf, SUSTAINED SURFACE TONE OPEN D

(b) mf, SUSTAINED REGULAR TONE OPEN D

(e) SUL TASTO, mf, FAST BOW MOTION OPEN D

FIG. 8

(c) ff, RAPID BOW STROKE (MARTELÉ) OPEN A

(f) SUL TASTO, mf OPEN D

$$
B=1.1^{\prime \prime} M=2^{\prime \prime} L=12.8
$$

$B=1.3^{\prime \prime} \quad M=2^{\prime \prime} L=12.8$
FIG. 9

$B=1.6^{\prime \prime} \mathrm{M}=2^{\prime \prime} \mathrm{L}=12.8$

FIG. 10

FIG. 11

> GRめфVE--A Program to Compose, Store, and Edit Functions of Time

by
M. V. Mathews and F. R. Moore

Bell Telephone Laboratories Murray Hill, New Jersey

ABSTRACT

A Program which makes possible creating, storing, reproducing, and editing functions of time is described. The functions are typical of those generated by human beings. Multiple functions (up to 14) are produced for long periods of time (up to several hours) at sufficiently high sampling rates to describe fast human reactions (up to 200 samples per second). The functions can be used for a variety of purposes such as the control of machine tools or sound synthesizers or anything a person normally controls.

The program operates on a small computer (DDP-224). Functions are stored on a disc file. Functions may be created by real-time human inputs to the computer which can interact with already stored functions and computed functions. Real-time feedback from the process being controlled is an important link in the system. The environment for effective man-machine interaction has been carefully nurtured.

GRODVE--A Program to Compose, Store, and Edit Functions of Time

by
M. V. Mathews and F. R. Moore Bell Telephone Laboratories Murray Hill, New Jersey

Objectives and Concepts

Many tasks now done by people are best described simply by one or more functions of time. To list only a few examples, the control of machine tools, the control of plants such as rolling mills or chemical processes, the control of the body itself, speaking, and playing music can all be characterized by a suitable set of time functions. If these tasks are to be automated, the basic job of the computer is to create the functions. Hence it seems worthwhile to develop a general program to produce time functions which are characteristic of human actions. GRD$\varnothing \mathrm{VE}$ is the first attempt at such a program. It can generate multiple functions (up to 14) for long periods of time (up to several hours) with bandwidths sufficient to reproduce fast human responses (up to 100 Hz).

To create time functions, several facilities must be provided. Some are obvious. Methods for generating and
storing the functions are necessary. Equally important are methods for changing or editing the stored functions. The resulting concept is a "file system" for time functions and such a system is central to GRめфVE.

A second concept is feedback control. People inevitably use their sensory inputs to control their motor activities in a feedback operation. In creating time functions on the computer, GRD (VE provides opportunity for immediate feedback from observations of the effects of time functions to computer inputs which compose the functions. In the composing mode of the GRDDVE system, a human being is in the feedback loop as shown on Fig. 1. Thus he is able to modify the functions instantaneously as a result of his observations of their effects.

It is also possible with GRØDVE to have feedback directly from the analog device to the computer. Such feedback is an essential part of some programs, for example those used to control mechanical arms. We have chosen to emphasize the human rather than the direct feedback. Systems without human links require more intelligent programs or from a different viewpoint, with the addition of a human link, we can currently do more complex tasks. In addition, Moore and Mathews, who wrote the program, enjoy not only being in the loop but retaining command.

```
    The final concept is more nebulous. Since GR\varnothing\varnothingVE
    is a man-computer system, the human engineering of the system
    is most important. For example, we discovered that the
    control of program time* needs to be quite different for
    composing than for editing and the program was modified
    accordingly. Human engineering has affected the entire
    structure of GR\varnothing斩
    subsequently.
```

[^3]
The Conductor Program

Abstract

Although GR $\varnothing \varnothing$ VE is a general purpose program, it has been initially used to control an electronic music synthesizer consisting of oscillators whose frequency is set by a voltage and amplifiers whose gain is likewise voltage controlled. Originally we had thought simply of attaching an organ keyboard to a DDP-224 computer which was being used to study speech synthesis and was equipped with 14 digital-to-analog converter outputs. In this way we hoped to make possible the nuances of real-time performance in computer music. However, with a simple program there seemed to be greater danger of imposing on the computer the limitations of the organ rather than improving the organ by means of its association with the computer. Further thought convinced us that the desired relation between the performer and the computer is not that between the player and his instrument, but rather that between the conductor and the orchestra. The conductor does not personally play every note in the score; instead he influences (hopefully controls) the way in which the instrumentalists play the notes. The computer performer should not attempt to define the entire sound in real-time. Instead, the computer should have a score and the performer should influence the way in which the score is played. His modes of influence can be much more varied than that of a conventional conductor who primarily controls tempo, loudness,

and style. He can, for example, insert an additional voice of his own, or part of a voice such as the pitch line while the computer supplies the rhythm. He should also be able to modify or edit the score. The computer should not only remember the score, but also all the conductors' functions, so when he achieves a desired performance, it can subsequently be replayed by the computer from memory. These concepts led directly into the GRDØVE program for composing and editing time functions.

Computer System for GR $\varnothing \varnothing$ VE

Fig. 2 shows a block diagram of the equipment on which GRDфVE is run and Fig. 3 shows a picture of the facility. The DDP-224 is a medium sized computer with a 16,000, 24-bit, 1. 7μ, word memory. Heavy use is made of two memory-access channels which are independent of the central processor and of each other. The main secondary memory is a CDC-9432 disc file with removable disc packs which transmits 1200 computer words in 30ms. A typewriter provides control input. The magnetic tape is used only as backup memory for the disc file.

Several special devices, originally developed for speech synthesis are utilized by GRDфVE. Twelve 8-bit and two l2-bit digital-to-analog converters form the principal outputs of GR $\varnothing \varnothing$ VE. Two additional converters supply the X and Y deflection voltages to a cathode ray tube which displays points or characters via a character generator. An analog-to-digital converter plus multiplexor allows sampling up to 20 voltages in about $10 \mu s$ per voltage. At present GRD\varnothing VE inputs 7 voltages. Four come from rotary potentiometers or knobs which may be turned by the operator in real-time. Three come from a 3-dimensional linear wand shown projecting up from a square box (Fig. 3a). These real-time inputs are called knob inputs.

An external oscillator in the equipment rack on the left controls the sampling rate of the output functions by
means of one of the interrupt lines on the DDP-224. The sampling rate is also controlled by a knob--the frequency dial on the oscillator.

The two loudspeakers hanging on the wall provide the perceptual feedback to the operator. The oscilloscope (center) resembles a medium-sized television screen. The acoustic partitioning situated behind the typewriter and computer console keeps the operating environment isolated from the sounds of the computer (air-conditioning, etc). Through the viewing window (Fig. 3b) may be seen the magnetic tape unit and the disc. These devices may be remote-controlled from the operator's console, so that except to mount or dismount either digital magnetic tapes or disc packs, the operator need never enter the actual computer room.

The specially-built keyboard input device is shown sitting to the right of the typewriter. Each key has a potentiometer associated with it, so it may be set to any desired group of discrete input values. An intercom is used to communicate with another room containing the voltagecontrolled equipment.

Fig. $3 c$ is a close-up view of the four knob inputs, Kl, K2, K3, and K4. The small box on which they are mounted also has 4 toggle and 2 push-button type sense switches which may be used to communicate with the program in real-time. Pushing box sense-switch one (BSSWI) causes real-time processing
to stop and the typewriter to request a command. BSSW3
is used to put the program in the "edit mode" described later. Other switches are undefined and may be used to control the user-supplied portion of the GRDDVE program.

General Operation of the GRD$\varnothing \mathrm{VE}$ Program

The objective of the GRDØVE program is to read samples of functions stored on a memory file at a rate determined by a sampling rate oscillator, to combine these with samples of knob functions which are generated in realtime, to compute and put out samples of output functions in real-time, and, if desired, to record revised functions on the memory file.

The primary storage medium for time functions is the disc file. Successive samples of n functions, denoted Tl through Tn, where n can be set by the program to values between 2 and 40, are kept in 1200-word disc records and are called disc functions. The general mode of operation is:

1. Read one record of disc functions into core memory. 2. Unpack the current n samples of disc functions, Tl...Tn, upon receipt of a pulse from the sampling rate oscillator.
2. Compute the 14 output functions and revised values of the disc functions. Data for the computation consists of the current samples of the disc functions plus current samples of the knob inputs plus current samples of any periodic functions which may be defined and will be discussed below. An algebraic expression interpreter which will handle Fortran-like expressions is part of GRØDVE and is used to define the relations which are compiled.
3. Output the current values of the 14 output functions. 5. Pack the n revised samples of the disc functions and write these onto disc in place of the original disc functions.

The program configurations embodying these functions is shown on Fig. 4. Operation begins in a typewriter command section in which the various parameters of the program are set, the algebraic statements defining output voltages and revised disc functions are written and simple periodic functions are defined. At a start command from the typewriter the program enables the sampling oscillator interrupt line and enters the "update CRT display" loop. A sense switch returns control to the typewriter at any time to revise parameters or terminate the program.

The program continues in the CRT display loop
until interrupted by the sampling rate oscillator. It then goes through the computations to output and revise one sample's worth of functions as discussed above and returns to the CRT loop. The amount of time spent in the sample computations depends on the number of disc functions and the complexity of the algebraic statements. The amount of time available depends on the sampling rate. Any extra time between interrupts is spent in the CRT loop and, hence, as the sampling rate is increased, the display deteriorates first before the output functions are affected. By observing
the display, the operator can avoid failures due to "speeding". The most complex computations so far tried with 14 disc functions have allowed sampling rates up to 150 Hz , which is quite comfortable.

Reading and writing disc functions are both buffered and overlapped so no interruption in outputting or display is involved at the end of a disc record.

Arithmetic Expressions

One of the advantages gained by treating control signals as functions of time is that they may then be operated on mathematically. It is easy to imagine relatively complex control signals which are really only the sums, differences, products, etc., of several simple functions of time. Many of these simple functions can be periodic.

Therefore the GR $\varnothing \varnothing$ VE system has a facility for handling arithmetic expressions which determine how the various inputs to the system are to be combined, and a facility for defining many types of periodic functions. Each arithmetic expression which is typed in at the on-line typewriter is an assignment statement. Some examples of typical statements are:

$$
\begin{aligned}
& T 6 \cdot T 2+480 \\
& T 1 \cdot T 1 \\
& T 13:-F 1 *(K 3-2000) \\
& T 28: 4095 /(1+U 1(F 1+U 2(T 1+K 2)))
\end{aligned}
$$

The left-hand side of this statement is one of Tl, T2..., T40, which specifies one of the disc functions which was retrieved from the computer's disc memory. The right-hand side of the statement is any arithmetic expression made up of the four standard arithemtic operators (+, -, *, and /), any number of balanced pairs of parentheses, and the following operands:

1. Tl-T40, which refer to the current value of a disc function, 2. Kl-K7, which refer to the current value of some real-time input device, such as a knob or keyboard, and
2. Fl-F40, which refer to the current value of a periodic function.

In addition, the right-hand expression may include a notation of the form Ul $(\langle X\rangle)$, where Ul refers to the first of 95 possible user-supplied arithmetic functions, and $<X>$ is any allowable arithmetic expression. The user-supplied functions may carry out such operations as exponentiation and quantization of a function which are not provided for in the basic GRめ \quad VE arithmetic. These user functions insure that the mathematical capabilities of the system can be as powerful as necessary for a given task, without providing for every possible operation in advance.

The operator which relates the right- and left-hand sides of a GRDфVE equation is either a period or a colon. The period means: "replace the value of the specified disc function with the value of the expression, but do not change the permanent record of this disc function." (on the disc unit). The colon both assigns the expression value to the disc function and does change the permanent record of
this disc function accordingly. Thus, GRめ \quad VE has the facility to edit disc functions on a trial basis (the period case). If the results of such an edit are found by observation to be desirable, the period is changed to a colon, and the function is permanently altered. Other ways of editing disc functions will be discussed later.

Periodic Functions

Since periodic functions are extremely useful in
 handling them is fairly extensive. When Fl-F40 is typed in an arithmetic expression, it is assumed that the characteristics of this function either have been previously defined, or will be defined before real-time processing is started. Essentially, three different kinds of periodic functions can be handled at present: l) functions consisting of one or more joined line segments (ramp functions), 2) functions consisting of one or more discrete values (step functions), and 3) an arbitrary-length piece of some time function from disc memory (core functions). Examples of the three kinds of functions together with the statements used to define them are shown on Fig. 5. Just as for the algebraic expressions, typing a command at the on-line typewriter allows a periodic function to be defined. For ramp and step functions, this is a matter of:

1. Specifying what function is being defined, 2. Specifying what type (ramp or step) of function it is, and
2. Typing a list of co-ordinates or time-value pairs.

The ramp function interpreter automatically interpolates between the points typed; the step function interpreter
treats each point as the right-hand end of an interval with the value specified. Any number of points may be used to define a function; their abscissa values need not be uniformly spaced.

For a core function, the definition portion of the function statement consists of:

1. A number specifying the length of the function, and
2. A notation specifying where the function values will come from. (TI-T40)

Any pieces of a previously generated time function may then be combined to form a periodic function. Core functions occupy much core memory since each sample of the function must be stored individually in contrast to ramp and step functions for which only the coordinates of the points need be stored. By packing two samples per computer word, up to 8000 samples can be accommodated in the DDP-224 corresponding to 80 seconds of a function at 100 samples/second. This is a usable, if not a copious amount.

The abscissa value at which the periodic functions are evaluated is normally incremented by one unit for each output sample. However, this increment can be set equal to any constant, knob value or disc function. In this way the period of the function in output samples can be changed. The phase can be similarly changed.
By converting disc functions to periodic core functions and using phase control, the expression evaluator can effectively combine two disc functions at different abscissa values. This is the only way of achieving such time shifts in GR $\varnothing \varnothing$ VE.

Display

Once all of the algebraic expressions and the periodic function definitions have been given to the GR $\varnothing \varnothing$ VE program, we normally will want to see the effects of our formulae, knob turnings, etc., on the functions of time we are either creating or editing. The real-time display enables us to see an oscilloscope display of any subset of the disc functions (T1-T40). Fig. 6 is a sketch of such a display. The functions are displayed in "pages" corresponding to one disc buffer full of information about each displayed function.

In addition to the functions, the positions of each of the seven knob inputs is depicted by displaying seven points on a vertical scale. This vertical scale is made to march across the function display, thereby indicating the exact position of "program time" along the abscissas of each of the disc functions. The disc buffer number acts exactly like a "page number" in the conductor's "score" of displayed functions, enabling him to note the places in which mistakes were made, and return to them easily at a later time.

Control of "Program Time" and Editing

One of the most important features of GR $\varnothing \varnothing \mathrm{VE}$ is the flexible control of "program time" which may be used both to edit and to alter the generation of the output functions. Coarse control of "program time" may be accomplished by typing TIME N, where N is a disc buffer number. If $\mathrm{N}=0$, the computer will simply go back to the beginning of the disc functions. At any point, we may set a switch which will cause the computer to re-cycle continuously through the same disc buffer. We may also slow down the progress of program time by reducing the frequency of the interrupt oscillator. Or we may stop the progress of time altogether by throwing a switch which essentially tells the computer: "don't progress time normally at all, but instead, use the value of a knob to give the current position of time within one disc buffer." The x-axis of the 3 -dimensional wand is drafted for this task, since moving it from left to right most resembles the perceptual task of moving a time pointer along an abscissa. Along with the visual display of the time functions and the perceptual feedback from our controlled system, we now have a fine control over the exact position of program time. This is a very powerful feature of the editing system. By throwing a switch, the user may essentially "re-draw" any portion of any disc function using any input
device he likes, such as the $X-Y$ axes of the 3-dimensional wand or a knob value. While he is doing this, he can not only see what he is doing on the oscilloscope display, but he can also observe its effect on the controlled process. So it is quite possible to stop in the middle of a run and "tune up a chord" or adjust a motor speed at some point, and then go right on. The change may be either permanently registered, or, as we mentioned before, it may be a "trial edit". Every precaution has been taken to insure that the GRØ $\varnothing V E$ system will not destroy the record of a time function until directions to do so are made very explicit. But at the same time, given the appropriate commands, the system will allow any function of time to be altered in any conceivable manner.

Example
At this point, an annotated protocol from the computer typewriter will best illustrate the overall use of GRØøVE. The following example generates the time functions needed to control one voice of a sound synthesizer to produce a simple melody.*

Dialogue
\$ INIT

Remarks

1
14

TYPE STARTING TRACK ON DISC
100
IS LOAD DESIRED?
4
NO
TABLES NOW CONTAIN DEFAULT VALUES
5
DEFINE NEW PERIODIC FUNCTIONS?
6
YES
READY
$\begin{array}{lllllllllllllll}\text { Fl R } & 0 & 2000 & 300 & 0 & 599 & 0 & 600 & 2000 & 900 & 0 & & 7\end{array}$

F2

SPEED FI 10
9

SPEED F2 10
DEFINE NEW T-VALUES?
10
YES
READY

* Both the operator and the computer use the typewriter. In this protocol, the operators typing was subsequently underlined.
Tl : Fl + F2 + K4 11
T2 : (Kl/l28)*128 12
TURN DISPLAY ON? 13
YES
TYPE DISC FUNCTION NUMBERS 14
$1 \quad 2$
TYPE NSDF VALUE 15
1
INITIALIZATION COMPLETE 16

Remarks:

1. The GRD$\varnothing \mathrm{VE}$ program types a dollar sign, "requesting" a command thereby. We type INIT to cause the following initialization sequence to occur.
2. This line requests the number of disc functions of time which we wish to reserve space for on the disc storage unit. We create more than we need here in order to save some room for additional functions to be added later.
3. One disc pack may contain several "compositions" beginning at different places (tracks). We arbitrarily start at track number 100.
4. If "yes" is replied to this question, the program will copy a file from magnetic digital tape onto the disc, starting at track 100 as specified above.
5. This line informs us that the program found no periodic function definitions or T-value definitions at track 100 on the disc. Therefore, it automatically fills all of the program tables which hold these definitions with "default values", Tl:Tl, T2:T2, etc.
6. If "yes" is replied to this question, the program readies itself to accept periodic function definitions, as shown. If "no" had been typed, no periodic functions would have been defined and the next question would have been asked.
7. This statement defines a periodic ramp function named Fl which has a period of 900 samples and the shape of two saw teeth. It will be used to generate rhythm patterns consisting of a 300 sample note, a 300 sample rest and a 300 sample note. 8. This statement defines another periodic ramp function which will produce a 3150 sample rest followed by a 150 sample note.
8. This statement essentially divides the time scale of FI by 10. That is, it says that rather than using every point of Fl , we will use only every loth value of our definition as the value for $F 1$. The reasons for this will be made clear below.
9. Typing a blank line terminates the control of the periodic function definition processor. The INIT command processor now asks whether we wish to mathematically combine time functions (T-values). We do, so the reply is "yes".
10. Output line number one is connected to control the amplitude of our sound source; therefore output time function one ($T 1$ in this case) is defined as the sum of our two rhythmic periodic functions, plus the "current value" of knob four (K4) from our control box. The effect of summing these two functions will be the effect of combining the two rhythmic patterns defined above plus an extemporaneous input from knob four.
11. Output line number two is connected to control the frequency of our sound source. We therefore use T2 to control our melodic pitch sequence, while the periodic functions produce a rhythm automatically through Tl. The relation given here quantizes (because of the effects of integer arithmetic on a computer) the current value of knob one into 32 equal steps. Thus the current value of knob one will determine which note of a 32 -note scale will be sounded (since $0 \leq K l<4096, K l / 128<32$).
12. If "no" is replied here, the initialization sequence would be complete.
13. We may select any of the 14 time functions for display here by typing their numbers. We choose to observe both our pitch and amplitude functions.
14. This value allows us to specify the "resolution" of the CRT display; if "l" is typed, every sample of the specified function will be displayed, "2" means display every other point of each function, etc. Since the display preparation is time-consuming, typing a larger number than one here speeds up operations.
15. At this point, the initialization sequence is complete, at the program "requests" another command by typing a dollar sign. This command is "START", which causes real-time processing to begin.

Let us now suppose that the above initialization

Abstract

sequence has been used, "START" was typed, and a "melody" in our 32 -note scale was improvised by the user in realtime. When the improvisation is over, we push the box sense switch one button, the program stops real-time processing and we type:

\$ FUNC 17
READY
SPEED FI T3
SPEED F2 T3
\$ TVAL
READY
T2 : T2
T3 : K3/64
\$ TIME 0
\$ START
17. This command allows us to define new periodic functions or re-define old ones. Here we specify that the "speed" of Fl and $F 2$ is now given by $T 3$, rather than being constant as it was before.
18. We also input new T-value definitions by typing the TVAL command. T2 is set to simple "playback mode" and T3, which will control the speeds of $F 1$ and $F 2$, is a value between 0 and $4096 / 64=64$.
19. This command resets the current disc track number to zero, which is synonymous with starting again from the beginning. We then start the program again, and, using the improvised melody as it was input before, superimpose new rhythmic patterns on it by turning knob three. Knob four still controls the overall amplitude of the sound.

The GRD \varnothing VE program has been in a process of development and use since October 1968. Many of the features which we have described, such as knob controlled "program time" and core functions, were added as a result of the demands of users. Future changes will undoubtedly be made.

So far the program has only been used for sound synthesis. For this purpose, it is almost irresistible. Examples of existing music from Bach to Bartok have been realized. They can be performed with great precision and subtle nuance. Wild distortions of existing compositions using algorithms have been done and seem compositionally interesting. The keyboard attracts improvisation which can be stored on the disc and subsequently edited. Typewriterdefined functions have been used to generate rhythm patterns.

Features that seem particularly effective are the arithmetic expression definition, the typewriter-defined functions, direct feedback from the sound generators to the person twisting knobs, and the editing flexibility inherent in knob controlled program time. In general we are well satisfied with the program.

We believe the general concept of composing, filing and editing functions of time is a significant addition
to computer software for real-time computers. The embodiment of this concept in GRD$\varnothing \mathrm{V}$ together with its other features seems to be broadly useful. We are anxious to try other applications.

FIG 1 - FEEDBACK LOOP FOR COMPOSING FUNCTIONS OF TIME

FIG. 2 BLOCK DIAGRAM OF GROOVE COMPUTER SYSTEM

B69-3271-M4

FIG. 4-BLOCK DIAGRAM OF GROOVE PROGRAM

STEP FUNCTION
THE STATEMENT: $\left\{\begin{array}{llllllll}\hline \text { F1 } & \text { S } & 25 & 1000 & 75 & 250 & 100 & 2000\end{array}\right.$
DEFINES F1 AS:

RAMP FUNCTION:
THE STATEMENT: $\left\{\begin{array}{llllllllllll}\hline F 2 & R & 0 & 1000 & 25 & 250 & 75 & 2000 & 100 & 1000 \\ \hline\end{array}\right.$ DEFINES F2 AS:

CORE FUNCTION
GIVEN A DISC FUNCTION (TI3):

WE MAY DEFINE A 100-SAMPLE PERIODIC FUNCTION MADE UP OF SEGMENTS (A) AND (B) BY TYPING THE STATEMENT: $\begin{cases}\text { F3 C } 100 \text { TIB }\end{cases}$

DEPRESSING A SPECIAL SWITCH ONLY WHILE THE TIME POINTER ON THE DISPLAY MOVES OVER THE (A) AND (B) SEGMENTS OF T13 WILL DEFINE F3 AS:

ETC.

FIG. 5 -PERIODIC FUNCTION DEFINITIONS

[^0]: * third-pass variables

[^1]: * third-pass variables

[^2]: * This run has been computed with a sampling rate of $20,000 \mathrm{~Hz}$, but the sound example presents it played back with a sampling rate of 5000 Hz . Hence actual durations correspond to 4 times the values indicated in P4; actual frequencies correspond to .25 times the values indicated in P5.

[^3]: *The abscissa of the functions of time which are the principal outputs of GRD $\varnothing \mathrm{VE}$ is called program time.

