Champion

 No. 1299A O SHEETS
$\begin{array}{ccc}\text { Henen age iiff. avare } 40 & 13.33 \\ 60 & 10.2\end{array}$
S^{\prime} (tis. - yen pap $=\sqrt{2} \times 6.6=9.3$ yen "l quisoion mith tno atuved O der lins a dix weax of

$$
\frac{0.4}{9.3}=4.3 \%=\left(d_{x}\right) \text { here } D_{x}
$$

Lo commp.
omxplapion lite lubles

$$
0.37+86.15=(5.66)
$$

$$
\begin{aligned}
& \text { an m suall } \\
& i t=5.36 \text { yens } \\
& \sqrt{x^{\text {ti }}} \quad x=9 \quad \tau=3.1 \text { guss } 0
\end{aligned}
$$

$$
\begin{aligned}
& 3 \cdot 67 \\
& \operatorname{sentix} \frac{4.3}{3.67}=1.17 \\
& \begin{aligned}
10.8)^{2}-4.3 & =(\text { fitnunyut }]^{2} \\
7^{2}-1(9.3)^{2} & =[5.66]^{2}
\end{aligned}
\end{aligned}
$$

female men Crewhic al
Aneino riyo nuy liak atorne
viere afe hffercuoe $\bar{A}_{60}=6.2$ jears
crredted for these lialte
Aysing aliove 40 (an the has
H.W. hachor $\frac{1}{440}=62 \cdot \frac{(1.3)}{}=8.1 .32=8.18$ geners
shandl Nen. $\sqrt{t}($ is $)=\frac{0.18}{1.13}=7.24 \mathrm{Nem} \frac{8.0 r}{111}=7.3$
For íl hiviss alyunc 60

Inmprene with p.115 if byy timek
Thath $(6.2)^{2}-(2.6)^{2}=(5.63$
38.5
6.8

$$
\begin{aligned}
& \bar{\Delta}_{40}(\mathrm{gu})=5.63 \times 1.32=7.43 \\
& \left.\operatorname{sig}_{\mathrm{g}}^{\mathrm{f}} \mathrm{f} \mid \mathrm{sin}\right)=\frac{1.43}{1.13}=6.6 \mathrm{yem}
\end{aligned}
$$

$$
\begin{aligned}
& n=3 \\
& \operatorname{eon}+3.36=A W^{2} 4 \times 23 \\
& A_{i v}=\frac{(1 P)^{2}}{4 \times 23}=\frac{325}{92}=3.5 \\
& {\left[\begin{array}{l}
\left.\frac{80.5}{9.3} \sqrt{x}+x\right]^{2}=A+4 \times \\
76.5 n+x^{2}+17.3 \times \sqrt{n}
\end{array}=A\right.} \\
& \text { greve for moviviniz proctorin }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{s} \frac{x_{0}^{5}}{5!} e^{-x} e^{-\frac{(s+r)^{2}}{4 \times m}} A \sqrt{\left.e^{-(x)} \frac{A x}{2} \frac{2}{2}\right)^{2}} \\
& X_{W}=\alpha t \quad 2.5<\frac{\left(x_{0}+r\right)^{2}}{2}<3.5 \\
& f W=\frac{x_{0}^{5}}{5!} e^{-x_{0}^{4 m}} \times e^{-\frac{(8+r}{4 \pi}} \approx e^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \text { dx (max)}=\frac{3.67}{100} \\
& \frac{0.4}{\text { If der pro }}=\frac{3.67}{100} \\
& \text { ftxder }(\text { toxp })=\frac{0.4}{3.6 .7}=\frac{40}{3.67}=10.0 \\
& (10.9)-(3.04)^{2}=[\text { fland }(\text { papper })]^{2} \\
& 119.0 \\
& 109.2
\end{aligned}
$$

Accoveding ly D_{x}

$$
\begin{aligned}
& \tau=\frac{0.4}{\sqrt{n}} \frac{1}{t_{x}}=\frac{0.4}{10.13}=\frac{3.83}{140} \\
& m=3 ; t=6 y \text { yexs } \\
& m=9 ; 3.5 \text { yeus } \\
& m=16 ; 2.6 \text { yens }
\end{aligned}
$$

Thimeer
which is not lovel suy

$$
\begin{array}{rl|r}
\tau & \approx \frac{0.4}{\sqrt{n}} \frac{1}{d x} & \tau=\frac{P(m)}{d x}=\frac{0.256}{d x} \\
& \approx \frac{0.253}{d x} & \left.P(\sqrt{n})=\frac{n^{\tau}}{\tau!} e^{-n} \quad \right\rvert\, \overline{0.4}=0.3988
\end{array}
$$

$\begin{aligned} & \text { Whate dus que }{ }^{\text {qut }} \text { da }{ }^{2} \\ & \left.\qquad e^{-\left(\frac{18 x}{4 m}\right)^{2}}-\frac{(18)^{2}}{4 m}\right]\end{aligned}=e^{-\frac{37}{92}}$
treberr 2 sunuld be adnitt $e^{-0.4}=0.67032$ and thus it an 2 his arloyeas: foult is umbei muich plect Ifmoshian of sue refan, thet inper is alinut 15 gearo dlder Arse the endy as a meinle

$$
\begin{aligned}
& \text { Munle and Female } \\
& {\left[\frac{80.5}{9.3 / \sqrt{4}}+n\right]^{2}=A_{n} 4 \mathrm{~m}} \\
& p=\frac{m}{23} \\
& \left.\frac{p o 5-3}{x \cdot 3 / \mathrm{mm}}+n+p\right]^{2}=A_{M} 4 m
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left[\frac{\operatorname{pos}}{0,5} \times \sqrt{n}+n\right]^{2}}{A W \times 4 \times 23}=\left.p\right|_{\left.\rho=\frac{[8.65 \sqrt{2} \times n}{1}\right]^{2}} ^{1 n 4 \times 23}
\end{aligned}
$$

Mratenell ser selechian for lorfern:
Shape ot curng gibuig muluiof Wemer minse peridec olatio is He same as curve for $d x$, lunt lass of fuults is lomper if x is lomper

$$
\begin{aligned}
& \begin{array}{l}
1200 \\
\frac{1120}{2320} \\
20 \\
20 \\
20
\end{array} \\
& 675 \\
& \frac{462}{1142} 0 \\
& P=\frac{75 n+17.3 \sqrt{n} n+x^{2}}{A+4 \times 23}=\left(\frac{p \pi 5 \sqrt{4}+n)}{9,3}\right. \\
& \left.\begin{array}{l}
m=3 \\
A n=3.5
\end{array}\right\} \quad \rho=\frac{225+90+g}{322}=\frac{324}{322}=\frac{740}{322} \Omega 2 \\
& n=9 \quad \beta=\frac{675+467+d x}{322}=\frac{1142}{322} \sim 3 \\
& m=16 \quad p=\frac{2000+4100+256}{322}=3358 \times 10 \\
& n=16 p=\frac{1200+1120}{322}=7 \cdot 2
\end{aligned}
$$

$$
\begin{aligned}
\frac{A_{w}}{A_{w}} & \cong\left(1+\frac{\beta}{\left(\frac{80,5}{9,3} \times \sqrt{n}+x\right.}\right)^{2} \\
& =\left(1+\frac{\frac{80,5}{9,3} \times \sqrt{n}+n}{A_{w} \times 4 \times 23}\right)^{2}
\end{aligned}
$$

$\frac{A_{M}}{A W}<1.33 \quad \sqrt{\frac{A m}{A W}} \leqslant 1.15$

$$
\begin{aligned}
& 8.65 \sqrt{x}+x \leqq 48
\end{aligned}
$$

Of mu denvaind
$\frac{A M}{A_{h}}<1+\frac{1}{6} \sqrt{e^{\prime}}$ (inimeselís wels $\frac{20.5}{9.3} \times \sqrt{n}+n$

$$
11+167=1.00 \quad \underbrace{\infty}_{n=6}+65 \sqrt{x}+x \leqq 25.5
$$

Mrem aye tilparace
frem lithe atiles. (TW)
over $40 \quad 13.33$
Shenoal dero $\frac{1333}{1.13}=11.8$ gemes
hathile $\frac{0.4}{3.67}=11$
Is foctir $i .13$ corpect? Dlease huch' O.K.

$$
\left[\frac{80.5}{9.3} \sqrt{x}+x\right]-x^{2}=A \neq 4 \times 23=256
$$

Ale-Naro minle~ female f_{m}, f_{F}

$$
\begin{aligned}
& \left(\frac{p 0,5}{\tau(x)}+x\right)^{2}-n^{2}=A_{F} 4 \mathrm{~mm} \\
& \left(\frac{p 0.5-3}{\tau(n)}+n \times p\right)^{2}-n^{2}=A_{m} 4 p m \\
& t(m)=\frac{9.3}{\sqrt{2}} \\
& 2944 \\
& \frac{A M}{A F}=\frac{\left(\frac{7 \geq \cdot 5}{\tau(x)}+x+\beta\right)^{2}-x^{2}}{\left.\left(\frac{D B \cdot 5}{\bar{E} \cdot}\right)+x\right)^{2}-x^{2}} \\
& \begin{array}{lll}
x=3, ~ x=6 & x=9 & x=16 \\
p=1 & p=2 & p=3.5 \\
p=7.2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
\text { m cिt } \\
2.5 & 5.89 \\
4.5 & 2 & 4.38 & & \\
10 & 5 & 2.84 & 1690 & 1.370 \\
& 1.235 & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { De Mavo } \\
& p=\frac{75 n+17.3 \sqrt{n} n}{14 \times 4 \times 23} \\
& \text { HOE F W } \\
& \begin{array}{c}
n=2.5 \quad, \quad \text { A } \\
p=1
\end{array} \\
& \frac{\frac{185.5}{255.3}}{92}=2.78=A_{F}=.06204 \\
& 2.28 \times 92=256 \\
& \left\{\begin{array}{l}
n=4.5 \\
p=\frac{3 / 3}{256} 2 \frac{5}{25} \times 9=\frac{1}{2}+\frac{1}{2} \underline{2}-2.22 \\
345
\end{array}\right. \\
& \left\{\begin{array}{l}
n=9 \\
p=4-5
\end{array}\right. \\
& \left\{\begin{array}{l}
n=10 \\
p=5
\end{array}\right. \\
& \left(\frac{80.5}{6.2}+2.5\right)^{2}=92 A_{F} \\
& \frac{240}{92}=2.6 \quad+\leq 0.07420
\end{aligned}
$$

"Avederss" manea

- amme anean undot
posibel 43 years Alitern ten Q:3

$$
20-43 \quad \frac{23}{9.3}=2.5 \text { fi. der. }
$$

Angio hisxintl 2.5 Al . An $\frac{6}{1000}$

$$
\begin{aligned}
& .4930 \\
& .0062
\end{aligned}
$$

Oso: asomue sto 7 geus bay hemacen are and uppreonsuce
Ddesthishelp? No!

$$
\begin{aligned}
& \left(\frac{40.25}{5.88}+2.5\right)^{2} \\
& \left.\frac{6.85}{9.35}\right)^{2}=87.5=A 4.23
\end{aligned}
$$

Epect of mony feneratious.
armue nutatian rate for fants numbir of panles, dunfling dase ut lan dese rutes Do $50<D_{0}<150$ or Ulfisuate suntation laut is $2 n$, mincase by n and netimote life shontencing |g.3in A $\#$ or $\tau=9.3 \sqrt{m}$ jeas

$$
\begin{equation*}
27 n=2.5 \text { ni }=16 \text { yeurs } \tag{0}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Of we set as gumis, thle life } \\
& \text { shortening } 3 \text { yeurs penusinla }
\end{aligned}
$$

$\partial P x=i o$

$$
\text { Pemplem }=\frac{x_{0} \times 3}{15} \approx \frac{D_{0}}{5}
$$

$$
n \tau=29.4 \text { gears }
$$

$$
P_{e m}=\frac{\Delta_{0} \times 3}{29} \sim \frac{D_{0}}{10}
$$

$$
5=\frac{50}{10}<\mathrm{Deml}_{\mathrm{pem}}<\frac{150}{5}=30 \mathrm{r}
$$

If lanhes lmmever from 25 ta 120 pen to such 63% of final nublation lavil and ixpe shortemiag

Anection of mabe-
timnte ententution,
T_{m} for unles $\tau_{F}=\left(1+\frac{1}{46}\right)$
$\begin{gathered}\text { for } M=10 \\ C F=2.84\end{gathered} \quad y=5$

$$
\begin{aligned}
& Z F=2.84 \\
& E M=2.84+6=2.90 \\
& \frac{78.5}{2.90}=\frac{26.7}{(41.7)^{2}} \quad \text { tocamp } \quad \frac{77.5}{2.04}=\frac{15.3}{(42.3)^{2}}
\end{aligned}
$$

$$
\begin{array}{r}
11 \\
-140 \\
\hline 1640
\end{array}
$$

$$
\frac{A_{F}}{A_{M}}=\frac{1640}{1370}=1.195 \text { to comp } \frac{1690}{1370}=1.233
$$

$$
0 . \quad=2.5 \times v_{0} 195=0.40^{\circ} 7
$$

$$
\begin{aligned}
\bar{e}^{-0 \times \operatorname{LpD}} \simeq & 0 \cdot 615 \times 61 / 0 \\
& \text { of femmie mictiun } \\
& \text { at Henth }
\end{aligned}
$$

Gresses about life shortericy
monse taw the mate $10^{-4} / x$
U Rinfe dose $\begin{array}{cl}\text { ingle tose } & 310^{-4} / r \text { qovenfladler } \\ 7 \times 10^{-4} / r\end{array}$
Manse nentrous
 same usceter dy lonhor 3 to gex surn must be impornpex $5 \times 10^{-4} / \gamma$ or less if dom telthes

Mll alome $60-$
Life tables $\frac{O_{x}}{.033}=\frac{3,446^{10}}{.0033}=4,140 \times 10^{-5}$
sh. dev. $($ puph $)=\frac{D}{1113}=\underline{\underline{7 i 1 p y}}$ (gens

$$
(9.67)^{2}-(7.18)^{2}=(6.5)^{2}
$$

Hy What whect in n ?

$$
\begin{aligned}
& \frac{80.5}{7.18} \times \sqrt{n}+x^{2}-x^{2}-A_{1}=4 \times 2.3 \\
& (11.2 \sqrt{x}+x)^{2}-x^{2}-A_{1}+4 \times 23 \quad A_{N}=2.78
\end{aligned}
$$

17.7
\qquad

Rake at mlich like is
shrrhued per gen if sanbling dise is ysuen

$$
\begin{aligned}
& \frac{\tau}{10}=\frac{19.3}{10} \sqrt{n} \\
& \text { and } 2.5<n<10 \\
& 0.34<\frac{\tau}{10}<0.5 \text { gens }=16 \text { years } \\
& 0.3<\frac{\tau}{10}<.6 \text { yens }
\end{aligned}
$$

sumpinte unternal releedire
for $x=2.5$

Wife shorteming at law dure sate ot luw duse nate If LTO - thunble mutivelie thin it prolumes in mark nabes gen of fawbts shonter shorten lite ly sus. Gycars on 220 dags or ~ 3 duys / r
 nt reath $\overline{\Delta \approx} \frac{\tau \sqrt{n}}{1,13}$
4n flexinufme hom exponievee
mon yure tile suller is the ta
two cunses in y uverce sxp.
$\begin{aligned} & \text { N/H| Ratin for prep } \frac{40}{4} \overline{4} \\ & \frac{60}{4}=13.37\end{aligned}=1.313$

$$
\begin{array}{ll}
{ }_{60} \vec{A}=10.18 & { }_{40} \sigma=\frac{13.37}{1.13}=11.8 \text { years } \\
\sigma \text { oispuitic } & \sigma_{0}^{2}+\sigma_{s}^{2}=\sigma^{2}
\end{array}
$$

Phimangens selecoperentic "fants?

$\begin{array}{rl}\text { Hoogemes mantit pite } & =0.224 \times 10^{-2} \\ & 2.24 \text { gon tanles } \\ 900 u & 2\end{array}$

Anpex

$$
\begin{aligned}
x+\left(\frac{4}{t}\right. & x=\alpha t \\
\alpha & =\frac{1}{\tau} \\
x & =\frac{t}{\tau}
\end{aligned}
$$

T ip like ${ }^{2}$ storsevinuy the fres ove
hit.

$$
\left(x_{0}+x\right)^{2} \cong A_{F}=4 \mathrm{~m} \quad m=23 \mu
$$

hify r phmissan
and the numfat of Heoth ni mocens in hiuse internnets L quante he yobeen le $p=\frac{x^{x}}{x} l$
Cnde thuang inquate plue a Misest Nishitulisen of Nete, Nuin bies Mane caloaft lek Nef anly ni cfulain owew nerasebex Is ahive inhonel et aut rea monlad Nou Gun Tculker Number of : denthe per y aoz $\frac{\tilde{P}}{\tau}$ finftemen mirich for liryp

$$
\#=\frac{4 \times(9 \times 4)^{2}}{x^{2}}
$$ yeures is suntaw

$$
2
$$ 2

$$
=2 q^{2}
$$ $\frac{1}{F}$

$$
\bar{E}=
$$

live

$$
{ }_{41 \text { loon }}^{4} \frac{x}{4} \mathrm{~N}
$$

fons

$$
\begin{aligned}
& \frac{\pi}{7}=2\left(\frac{\xi}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \xi^{2}=\frac{4}{F} \quad \xi^{\xi}=\frac{2}{\sqrt{F}} \quad x=1000 \frac{2}{\xi}
\end{aligned}
$$

333 onfun specr pic runed upine $333 \times .224=0.75$ abunt $\frac{2}{2}$ ung Vary. Poec. pancts pulets M mitur mere Di> (chuch)

Asomine hivina if oo $\times 13$,000 $=10^{4}$ genes Hsprllime or abormed 4 or "mulanto hamexy $\frac{10^{4}}{210^{5}}=\frac{1}{20}$ or 50
fivelern or atertei (tumurepypeis for necimix lexhil)

200,000 canses $\frac{1}{2}$ slve la yenctece
 Whinis the θ_{0}^{0}

EExismy

$$
\begin{aligned}
& \mu_{0}=0.5 \\
& \mu_{*}=0.1 \\
& \mu_{1}=0.05
\end{aligned}
$$

Amblisi) Ane $=$ Do $_{0}$

T§6yens):10 Do sives I fanet

$$
100_{0} \leqq
$$

whth $6 d / \tau$ cobo ane $\tau_{0} 365$ duys

$$
d / \tau=6 d \mathrm{~m} / \mathrm{r}
$$

$$
\begin{aligned}
& \Rightarrow \angle \delta \delta<6 \text { Any } \\
& 6.5 R L D_{0}<73 R
\end{aligned}
$$

$\begin{array}{ccc}D_{0} & \text { gives } & 36.5 \\ \text { I To days } \\ \text { I } & \text { S diys }\end{array}$ $D_{0}=\frac{36.5}{s} \tau \wedge \operatorname{mun}$
If me ansume minintirin the $\mu_{1}^{*}=0.2 ; D_{0}=\frac{2 \times 36.5}{\mathrm{~S}}$
Q/p sime τ can mat he mone Mhon 6 yewns

$$
36.5 R<D_{0}<144 R
$$

$$
\begin{aligned}
& \text { hanits from dere so In hunt } \\
& 2 \times 0.05=0.1
\end{aligned}
$$

$M=2 \cdot 5$ font $\delta=3$ drexs then there jenss lnhe shastherice 1 $D_{\text {mana }}=$ permit 14.6 R penemation It $x>2,5$ mox will he leso!

Mratemal selection and 18 \& $43=25$ zens fencil hertrie $\frac{1}{116}$ (tal $=\frac{10}{16} 1020^{\frac{1}{3}} \frac{1}{12} \times 2.5 \frac{1}{2}$ elentst as shony as vowt pute $\approx \frac{1}{100}$ mis mondix thon invipenoate fully if muller mpos juis -5

$$
=5
$$

$$
=\frac{n}{50}
$$

This mixermit selectivtur is amptched uft whe expectiny cumbil foll bng $2.5 \times 5.88 \cong 15$ years bing so $\quad 30,000=2 \times 10^{-4}$

We might trune
510^{4} yenes tope quies at whink $\frac{5}{5}$ when 10^{4} Rec. Asthobs minsty whivik

ñ Thete for menelimen

$$
\text { most pininistoc } \begin{aligned}
& \sqrt{n}=6 \text { Muys } \\
& \frac{6 x}{36.5} \text { years } / R \text { unit }
\end{aligned}
$$

$$
\text { for } x=2 \times 5
$$

$\ln t$ th tathes $50 \mathrm{a}=0.41$ years
ty me permints 3 y ürs twhe shondo pong. MUT T.3R nenfone.

$$
\begin{aligned}
& \text { Do } D_{0}=\frac{36.5}{v} \tau
\end{aligned}
$$

$$
\begin{aligned}
& \text { (n\&/Jer } / R_{\text {nnit }}=\frac{36.5 \text { Sidoye }}{36.5}
\end{aligned}
$$

$$
\|_{T}=9,3 V \sqrt{n} \text { sums }
$$

 Lite shom it whlt $\rightarrow \frac{\text { Dasefar } \frac{14.5}{D_{0}} \text { Hems }}{\text { Sers }}$ $=25$ yerorgintivins
 If a munom of 65 m ard a

$$
\begin{aligned}
& \mu_{1}^{*}=\frac{\delta S_{0} \sqrt{n}}{9,3 \times 365 \times 2}
\end{aligned}
$$

$$
k \mu_{1}^{*}=\mu_{1}^{*} \quad \text { (as man }
$$

appect of Rumpulter
1 qur suminas
finctis portmede ${ }^{2 \mu} \operatorname{l}_{0}^{2}$ ì
Cinerl Apspriniz Is benerntoun.

$$
\begin{aligned}
& {\left[\frac{1}{D_{0} \mu_{1}^{*}} \times 365=\int \operatorname{lans}\right.} \\
& 2 \mu_{1}^{*}=\frac{\tau_{0}}{D_{0} 0} 365
\end{aligned}
$$

1

$$
\mu_{1}^{*}={ }^{*}
$$

FAmentiphas $=365 \tau 2 \mu_{1}^{*}$

$$
\begin{aligned}
& S_{\text {dan }}=\frac{365 \tau_{1} \mu_{1} \mu_{1}^{*}}{\Delta_{0}} \\
& \mu_{1}^{*}=\frac{\int_{1+} D_{0}}{\tau \times 3.65 \times 2}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\tau=6 \mathrm{mins} \\
D_{0}=36.5 R
\end{array}\right.
$$

$\mu_{1}^{*}=\sqrt{2}$

$$
\mu_{1}^{*}=\frac{1}{20}
$$

(1) Uerangyans \downarrow delection 10 "o enhzaral

$$
\begin{aligned}
& K \geq 2 \\
& \mu_{2}=0.1 \\
& \text { shatrom loss }=e^{-0.2} \approx 1-0.2 \\
& 2 \mu=2 \times 2500 \times 10^{-5}=\frac{1}{20} \\
& \text { It manuel the ze genentreens to } \\
& \text { Doffo minulole } \cong \text { \# } \\
& \text { blumsy loter }
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{t}^{\tau_{z}}=1 \text { mions } 50000 \text { ginininy } \\
& \text { U mep. the } \frac{1}{2} \text { Cham }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ht fromuloDo }= \\
& 5 \text { mintation }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 锥 Hofler } N_{t}=N_{1}+D_{2}+\sqrt{3} \\
& \mu_{1}+\mu_{2}+ \\
& N_{2} \operatorname{lol}_{2} \leq 1 \\
& \bar{e}^{\mu 2} \\
& \text { - } \\
& \text { apiny } 1-e^{-2 \mu^{2}} \approx 2 \mu_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ti } A=\text { nose } 2 / 36157
\end{aligned}
$$

$$
\begin{aligned}
& \mu=210 \\
& \text { \#D } \overline{D_{0}} \text { miduces } 1 \text { funct } \\
& 102 \times N, 210^{-5}=1 \text { funle We hadio } \\
& N_{1}=\frac{10^{5}}{40}=2500 \quad \begin{array}{c}
\text { sumper nather } \\
\text { nospoc }
\end{array} \\
& N_{2}=k N_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
N_{2}=10^{4} T \\
K=4 \\
\mu_{2}=K \quad l
\end{array} \quad \begin{array}{l}
\mu_{2}=0.2 \\
v_{-1}=D_{0} \sqrt{m}
\end{array} \\
& 4 \frac{1}{10} \frac{9.5}{19.3} \frac{1}{2}=0.2 \\
& =\frac{6 \times 36.5 \times 1.5 \mathrm{e}}{4.3 \times 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { HAxhar } \frac{f_{B}}{E_{\text {A }}}=0.6 \\
& f_{B}=0.38 F_{H}=\frac{R e}{l e} \\
& \sqrt{e} \cong 1.6
\end{aligned}
$$

be Nung ter nezan
 per thplove, funt the ${ }^{2}$ nqive 5 heuks it there ase cespses genes

D \qquad
If me arme 11 = 10000 ; then me branking dise is $30 \operatorname{sep} x-m y$)
If $N_{1}=5000$
$\mu=$

$$
k=2
$$

$$
\mu_{2}=\frac{4}{4} 10^{4} 10^{-5}=
$$

t

$$
\begin{aligned}
& P(2 S x)=\frac{(2 n)^{3}}{51} e^{-2 n} \\
& \frac{\bar{\Delta} \text { (one })}{\tau} \cong \frac{\sqrt{n} \times 1.13}{\sqrt{2} / 2 / \text { for }} \\
& \text { Probe of i full } \\
& \Delta_{60}^{*} \text { (rime) } \\
& = \\
& = \\
& \left.\frac{23}{\pi}=4 \text { when then }\right)=\frac{t .3 n x+1 / 3}{\sqrt{n}} \\
& Z=\frac{12}{1.13} \Delta(\text { and }- \text { them }) \frac{A}{\sqrt{2}} \sqrt{2} / \sqrt{3} \\
& A(\text { rile-then-gha }=2.35+0 \\
& q=\frac{9.8}{\sqrt{2}}
\end{aligned}
$$

de Navo for puper
D

$$
\begin{aligned}
& \text { N/H. } \quad \Delta(60)=10.18 \text { geans } \\
& 4(40)=13.37 \text { reans } \\
& \text { Rulco } v=1.31 \\
& \lambda=1.3 \\
& \left.\left.\left[\Delta_{80}(\text { Sib-gen })\right]^{2}=\Delta(\operatorname{Sib}-\operatorname{Ln} t)\right]_{60}^{2}=\Delta_{80}(\text { Idinin })\right]^{2} \\
& {[6.2]-2.6} \\
& \text { Q/W01 } \bar{\Delta}_{40}=\lambda \mathbb{4}_{60} \\
& \overline{\Delta t}_{40}(\text { sido pen })=1.3 \bar{\Delta}_{60}(\text { surb }- \text { yu })=7.3 \mathrm{v} \\
& \overline{4}_{40}(\text { Prp-pen })=\sqrt{2} \overline{4}_{40}(\text { fil.pen })=10.4 \\
& \text { O(pap) }=\frac{10,0}{1.13}=9.5 \text { years } \\
& { }^{2}=\pi \text { and }(\text { mep }- \text { now ter })^{2}=(13.37)^{2}-(10.4)= \\
& \sigma(\text { mp }- \text { mon yen })=\frac{0,4}{1,13}=7,43 \text { years } \\
& \text { D } \quad(4(\text { pap-diverosh }))^{2}=\sqrt{4}=(8.4)^{2} \sum(2.6 \times 1.3)^{2} \\
& (8.4)^{2}-(3.38)^{2} \\
& \sigma(\text { mar }-1 \text { man } 3)=\frac{7.7}{113}=6.8
\end{aligned}
$$

(1) $A v=\frac{T}{N} \frac{365 x^{2}}{K+1} \mu$ tot

$$
\begin{gathered}
\frac{x_{0}=36.5}{2} \frac{1}{10}(k+1)=4+x+5 \\
\frac{h+1}{\frac{5}{20}}=0.25=1 \operatorname{lat}
\end{gathered}
$$

ablar mut perpen/mp

$$
=\frac{h}{D_{0}}
$$

$$
\begin{aligned}
& \frac{5}{20}=0 \cdot 25=1 \operatorname{lot} \\
& N_{1}=\frac{1+t}{\mu} \frac{1}{K+1}
\end{aligned}
$$

$$
\mu=210
$$

$$
K * 1=5
$$

$$
N_{1}=\frac{1}{8 \times 10^{-5}} \frac{1}{5}=\frac{10^{5}}{40}=2500
$$

Lnlown N, we nunver hivela raise $\frac{\mu}{0}$ lut Gucpeosivy KA/ nuwalel Lnver so heluw 36.5 inden

M whe Ennes whse rathe $=3 \mathrm{dyy}$ Hher Do

$$
\text { Ho- } 2 \times 36.5
$$

If me muntin set $k \times l=10$ in $M=0.5$ $D Q=36.5$ and i.) tive $\mu_{1 \times} Q .5 \mathrm{M}$ tax

$$
N_{1}=10000 \text { for } N=\frac{1}{200,000} N=10^{5}
$$

vir

$$
N_{1}=5 \times 00\left(\begin{array}{l}
\mu=10^{-5} \\
\mu+2 T=0.5
\end{array} \quad N=S Q \text { or }{ }^{\mu} \mid\right. \text { Hapa }
$$

$$
\begin{aligned}
& h_{2}=K_{\mu_{1}}=k \otimes \Delta \\
& \frac{R x^{3} 65 x=}{} \\
& \text { D } \\
& \mu_{\hbar, t}=(1-k) \times 10^{4} \mu=\frac{0.5}{\frac{1}{20,000}} \\
& (k+1) \mu_{1}=(k+1) \frac{S D_{0}}{\tau \times 365 \times 2}=\underline{\underline{0.5}} \\
& D_{0}=\frac{\times \tau \times 365 \times 2 \times 4 \mathrm{LHT}}{(K+1) N} \\
& \mathbb{N}_{1}{ }_{\mu}=\frac{\mu_{L+}+}{K+1} \\
& \mathbb{N}_{1}=\frac{\mu L t}{\mu+1} \\
& \mu=\frac{\mu \operatorname{tat}}{K+1} \frac{1}{N_{1}} \int_{H_{1}}^{\mu}=\frac{\mu \operatorname{lot}}{\mu} \frac{1}{K+1}
\end{aligned}
$$

de Nova ungranis
on $h=$
10 mm 10 momers 10 NIC $K=5$ means 1080 onank 1 funct $k=5 \pi \quad$ mislakse." re $\frac{1}{10}$ mamble Ale $\frac{5}{50}$

$$
\begin{aligned}
& \mu_{1}=\frac{1}{\tau} \frac{\delta}{365} \frac{D_{0}}{2} ; \text { if } D_{0}>36.5 \\
& \left.\mu_{1}>0.05\right\} \\
& \frac{\mathrm{N}_{1}+1 / 2}{N_{1}} \quad N_{2} \text { pin dume } \\
& K_{\mu}, \text { is mey pmoluab }<0.5 \\
& \text { hintuing } K \mu_{1}=0.5 \quad ; K=10 \\
& \text { Thanet } \frac{K}{100} \text { reste for puriou porvo }
\end{aligned}
$$

Text to poyes lufere
D if in moduces S(Dxy)lope shm⿻心㇒in
 Orse A_{0} proninces $S D_{0}$ life shortening
On the ther Ernod tie munter a) funts promiend is the tubling Duse os $2 \mu 1$; where pur is the montanumes nake of
O haplaid not,
Hous me nung maste

$\frac{n^{*}}{50}=2 \mu$ i, bett $l \in \operatorname{cov} \frac{n^{*}}{50}=\frac{\delta D_{0}}{365}$
$\therefore \quad \mu_{\text {tat }}=\frac{N}{\tau} \frac{V}{365} \cdot \frac{D_{0}}{2} K\left(\begin{array}{l}\operatorname{Ar} D_{0}=36.5 \\ n^{*}=5\end{array} \quad m^{*}=\frac{500 D_{0}}{365}\right.$
Fahal Annt hoore $=\frac{50 \int_{0}}{365} K$

$$
\begin{aligned}
\frac{1}{\tau} \frac{0.4}{\sqrt{m}}=d x \quad & d x=\frac{3.67}{100} \\
\tau & =\frac{4}{3.67} \frac{1}{100} \\
\sqrt{m} & =\frac{10.9}{\sqrt{m}}
\end{aligned}
$$

$\left\{\begin{aligned} \text { or for } x & =2.5 \\ \tau & =7.7 \text { reass }\end{aligned}\right.$

$$
\text { for pare pmp. } \sigma=\frac{d_{x}}{0.4}=\frac{3.4}{3.67}=10.9
$$

$$
\bar{A}=10.9 \times 1.13=\frac{12.32}{\operatorname{seats}}
$$

$$
\text { Opxp abs }=10.9
$$

$$
\begin{aligned}
(10,9)^{2}-(3,2)^{2} & =(5.875)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Wyouls }\left\{\begin{aligned}
& t=\frac{p(2.5)}{3.67}= \frac{0.2565 \times 100}{3.67}=7 \text { yars } \\
& \operatorname{tr} x=2.5
\end{aligned}\right. \\
& \text { İ }=5 \\
& \left\{\begin{array}{c}
x=100 \\
t=\frac{.1251}{3.67}=3.422_{\text {yenom }}=0.1251
\end{array}\right.
\end{aligned}
$$

But

- How smathy núshalies n* HA in clusuing foolts?

$$
\begin{aligned}
& \frac{\mu_{t}=0.255}{\mu / 2} \quad \bar{\rho}=40 \\
& \text { 革 } \min 2 \mu_{t}=1 / \mathrm{pen} \quad \frac{n^{*}}{40}=.5 \\
& \text { nu }=20
\end{aligned}
$$

$$
\begin{aligned}
& K=5 \\
& n=\frac{n^{*}}{40}=2 K \mu_{1} \\
& n=\frac{n^{*}}{K}=2 H_{1} \mu_{1} s_{0}
\end{aligned}
$$

0 ftrinfons moont ${ }_{2}$
Htt x present. $\left(\frac{100}{100}\right)$ mortatitas
it $K=5$; 5 rublentes montureer
for 1 funlt
4 nupunt murx" $50 /$, has ah tope oxpre at unieipaces
$N_{1}=2000$

$$
\mu_{1}=210^{-5} \text { nd } \mu_{1}=\frac{1}{20}
$$

365-nep nvwhes 5 mutendiows shmelae be 50 evshens.7 reps santho $\frac{365}{5}=73 \mathrm{mel}$
mohes 1 muthakiar andl 7.3 -ups unakes I lescar Puck snys 3 ne nep mogfet nuwl 1 deneusooure hneuk
at bevs 4 levions por chsuei orenh

Nomhatown taver
 in He porof mios 50°, due do foniturithe moxerew ke affer anfonsen amprifrinus wotwecheve and bity 50 in limbinyoric or

$$
\begin{aligned}
& \frac{2.6 \cdot 1.3}{1 \cdot 13}=\sigma_{\text {min }}=3 \text { sems } \\
& (10.9)^{2}-(3)^{2}=[10.5] \\
& \frac{-119}{110}
\end{aligned}
$$

0

$$
\tau=6.73
$$

$$
P(r)=\frac{n^{r}}{\sqrt{r+1}}
$$

$$
x \ln 2.5
$$

$$
\ln 2,5=0.9163
$$

$$
2,5=e
$$

$\begin{array}{ll}(2.5)^{2}= \\ 2 & \ln (2,5)^{\gamma} \\ 2 & 1.835 \\ 2.13 & 1.925 \\ 2.2 & 2.015 \\ 2.3 & 2.105 \\ 1 / 3 & \end{array}$
$\left.\begin{array}{|cc|}\hline 2.5 & \sqrt{x+1} \\ 6.265 & 21000 \\ 6.855 & 2.190 \\ 7.500 & 2.424 \\ 0.210 & 2.693\end{array}\right\}$
is tithaly tor he wey another any the be eloberito 2.5 than ho 10 dhe mopluchitan if Luvelarigg X-rays The unnulvale cansucior picue avy

 Fixation ul turvinuis cxits Collunis midele aye: 40.2

$$
e^{-x_{0}} \cdot \frac{\sqrt{2 \pi a x^{2}}}{e^{2 m}}
$$

$$
\begin{aligned}
& \left(\frac{40.25}{8}+2.55 \frac{\pi}{2}\right)^{2} \\
& 6.5+2.0=8.5 \\
& \frac{72.2}{92} \\
& \begin{array}{l}
\text { The tist hititan }-1)^{2} \\
=e^{\frac{1}{3}}=\operatorname{tancos}(1.4)^{4 m}
\end{array}
\end{aligned}
$$

Me sung wike
$0\left(\frac{20.5+2 p}{\tau}+n-\frac{1}{2}\right)^{2}-n^{2}=4 m A_{M}$
This ysines for the three alinve listed posso of 9 and x the nalues of $A_{H}=A_{H}=$ and.tint and ervess ponplivipy firn the bredini if ite monvivip sumatile cels fos the errade the nalues af
And Of we fome Mer-xtins $\frac{\mathrm{H}}{\mathrm{Em}}$ me alituis arrerpoundivg the nalus

$$
\frac{L_{G}}{f_{M}}=\frac{f F}{f m}=\frac{f F}{l_{M}}=
$$

Snince riv dues zut reev lotsely Wrat M_{x} क्Ntiout fracician at the non
 enmer for the nuele Llunpfor the
 Fr the vers wenet Enyy hur Elinn ane Dfe five Ano the as wery tre reen atinue therife rotida inencors woll vircrugoiny untursi of q ande z_{1} leftr the mhio $\frac{1}{\mathrm{~m}}$ I wearties
if und n ane ens.ene.n watotor ruch
 min the sayerseled as un ahrexdy is Mr high". Thiw sue mey sus that p is litrey hr mill helim 5 and x

$$
\frac{80.5}{\tau}=\sqrt{92 A}=n
$$

for $x=0$ this inies min uncue
fort
$\frac{A_{1}}{A_{2}}=1.0 .03$ enor D,s ρ
\ll
Whesh momax itunthor,

$$
\begin{aligned}
& \text { loy } 0.2272-1 \\
& 42-1 \\
& 0450 \times 46=1 \\
& \text { fle }=12110
\end{aligned}
$$

$$
\begin{aligned}
& .92272 \\
& \log 2 \cdot 2-21-
\end{aligned}
$$

Thuspre freker Lurfuy hilessyydes 0 amanomenes to hav T aurd perause of aunld it remeruts 3 T or $1+$ yeus olter．－

$$
\begin{aligned}
& \text { Limit pert } \\
& \left(\frac{p 0.5}{t} A^{t}=4 \text { hatad } \sqrt{92 x}-x\right. \\
& \tau=\frac{80.5}{9.6 \left\lvert\, \$-\left(2-\frac{1}{2}\right)^{4}\right.} \\
& A=2.9 \sqrt{A}=1.64 \\
& A=2.5 \text {. Hont } 9.6 \times \sqrt{1}=-2=15.15-2=13.2 \\
& A=3 \quad \text { 泥痛 }-2=16.6-2=14 . \\
& \begin{array}{rl|l}
\text { If } \begin{aligned}
\frac{8005}{13.5} & =6.13 \\
\frac{80.5}{14.6} & =5.5 \\
2.5 & \tau(m=0)
\end{aligned}=5.3 \\
r(m=0) & =4.05
\end{array} \\
& \theta_{-3}^{-1.5}=0.0 \infty 20 \infty=\frac{1}{12.2} \\
& \binom{e^{-3}=}{e^{-2.3}=\frac{1}{10}} \begin{array}{l}
\frac{1}{5}=0.0667 \\
=e^{2.7}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(1-\frac{2 m x^{2}-x^{3}}{\rho m^{3}}\right)^{\frac{\rho m x^{3}}{2 m x^{3}}} e^{m}= \\
& m=m \frac{2 m x^{2} x^{3}}{8 m^{3}} \\
& =e^{-\left(\frac{2 x^{2}}{p m}-\frac{x^{3}}{8 m^{2}}\right.} \\
& =e^{-\frac{x^{2}}{4 m}+\frac{x^{3}}{8 m^{2}}} \\
& \begin{aligned}
&=e^{\frac{x^{2}}{2 m}} 4 \frac{x^{3}}{8 m^{2}}=B_{0} \\
&=-\left(1-\frac{1}{2} \frac{x}{m}\right) \frac{x^{2}}{4 m} \\
&=e^{2 m}
\end{aligned}
\end{aligned}
$$

Vocals prot $\frac{x}{2 m}=\frac{1}{4} 7^{m}$

$$
A=\left(\frac{1}{4}\right)^{2},\left(1-\frac{1}{12}\right)^{13} \frac{26}{\sqrt{3}}=e^{-11077}
$$

in ploce is

$$
11.65 \quad \frac{x^{2}}{92}\left(1-\frac{15}{46}\right)
$$

$$
\begin{aligned}
& \text { mith } e^{-\frac{(15)^{2}}{4 m}}= \\
& =\frac{-225}{92}=e^{-2.45}=
\end{aligned}
$$

thuh $\left(1+\frac{1}{13}\right)^{13}$

$$
\begin{aligned}
& 1.077 \\
& 0.0334 \\
& .0322 \times 13 \\
& 0.418 \quad 2.62
\end{aligned}
$$

- LeNmu

$$
\begin{aligned}
& \left.110 \cdot \frac{\xi}{9}+\frac{d}{2}\right)^{2} \xi^{2} \\
& \left.1-\left(\frac{x}{2 m}-\frac{1}{2} \frac{x^{2}}{4 m^{2}}\right)^{2}\right] \\
& {\left[1-\frac{x^{2}}{4 m^{2}}\right]_{4 m^{2}-m}^{m}=} \\
& \operatorname{lor} r \cdot\left(1-\frac{x^{2}}{4 m^{2}}\right)^{\frac{4 m^{2} \cdot m}{x^{2}}}=e^{-1 \frac{x^{2}}{4 m^{2}} m} \\
& \left.1-\frac{x^{2}}{4 m^{2}}+\frac{x^{3}}{8 m^{3}}\right)^{m}= \\
& 1-\frac{2 m^{4} x^{2}-5 x^{3}}{4 x^{8} m^{3}}=1-\frac{2 m x^{2}-x^{3}}{8 m^{3}}
\end{aligned}
$$

middolle aye

$$
\begin{aligned}
& \frac{40.5}{6.2}+2=x^{2} \\
& \operatorname{rap}^{2}=\frac{70}{92}
\end{aligned}
$$

$$
\begin{aligned}
\frac{70}{0,2} \times e^{-0.183}= & 0.832 \times \frac{20}{92}=0.63 \\
& -0.63
\end{aligned}
$$

$$
e^{-0.63}=0.532 \approx 50 / 0
$$

Epheit if wue aif A derok

$$
e^{-0.326^{92}}=\frac{30}{1.4}
$$

or tuma luiks fentor 2

$$
\begin{aligned}
& \frac{80,5}{\tau} \neq\left(x-\frac{1}{2}\right)=10 x \\
& - \text { Kxp }=\frac{x^{2}}{4 m}\left(1-\frac{x}{2 m}\right) \\
& \left(\xi x p \cong \frac{x^{2}}{4 m} e^{-\frac{x}{2 m}}\right)_{0}^{2} \\
& \text { AEF2.6 } \begin{aligned}
T & =6.2 \quad x=15 \quad m=23 \\
m & =2.5 \quad x=15 \quad m=2.5
\end{aligned} \\
& k_{n p}=2.45 e^{-0.326} \quad=0.326 \\
& 2.45 \times 0.722=1176 \\
& \bar{e}^{1,76}=0,122 \text { or } \frac{1}{t}=\frac{1}{5, \infty}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{80.5}{\tau}+u-\frac{1}{2}=7 \\
& \left(\frac{20.8)^{2}}{92}\left(1-\frac{20.8}{92}\right)-\frac{16}{92}\right. \\
& \varphi_{(2)}-\varphi_{(7)}>\frac{433}{92}\left(1-\frac{20.0}{100}\right)-\frac{17.4)}{1100} \frac{12.2}{100} \\
& \left.\frac{79}{100}\right) \quad\left(r^{\prime \prime}=3.5=2\right. \\
& 3.68-\frac{124}{100} \cong 3.56 \\
& \text { for } n=2.5 \quad \varepsilon(n)=0.945 \quad \sqrt{2 \frac{1}{2}}=1.58 \\
& z=\frac{\varepsilon(n) \sqrt{2.5} \times 0.5+\underbrace{n-\frac{1}{2}}_{9.3}}{9.3} \\
& \begin{array}{l}
2=0.945 \times 1.50 \times 8.65+2 \\
2=\frac{2}{12.9+2}+14.9
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 3,27^{2}=\frac{1}{113^{3}} \quad .838 \\
& \begin{aligned}
& 61 / 102.02-\frac{4.35}{100} \cong 107 \\
& \frac{1.0683}{2.023 / 3}
\end{aligned}
\end{aligned}
$$

$$
\tau=\frac{80.5}{x-\left(x-\frac{1}{2}\right)}
$$

imore for $x=2.5$ me lake $\approx \approx 6$ peers

$$
\begin{aligned}
& \tau=\frac{9.3}{\sqrt{m}} \\
& 4 x=\frac{0.3}{8, ~}=\frac{80.5}{x-\left(x-\frac{1}{2}\right)} \\
& 8 \frac{9.3}{\sqrt{a}}-\frac{9.3}{\sqrt{x}}\left(n-\frac{1}{2}\right)=\infty 0.5 \\
& P \text { B } \frac{0.3}{\sqrt{n}}\left(1-n+\frac{1}{2}\right)=80.5 \\
& Z=\frac{\sqrt{x}}{4-3) 9.3}+x-\frac{1}{2}
\end{aligned}
$$

\& for $x=4$

$$
\begin{aligned}
& 1<\varphi(x+x)-\varphi(x)<3 \\
& X=\frac{\sqrt{4}, \sqrt{n}}{\sum_{9} 9.3} \times 80.5+n-\frac{1}{2}=\frac{\sqrt{n}}{8} 0.65+n-\frac{1}{2} \\
& \text { hy } x=4 \quad \varepsilon(x)=1 \quad \text { \& } \text { winn inomive }=1 / 2\} \\
& Z=17.3+4-0.5=20.8 \\
& \xi_{a p}=\frac{Z^{2}}{4 m}\left(1-\frac{z}{2 m}\right)-\frac{r^{2}}{4 m}\left(1-\frac{r}{2 m}\right) \\
& \left.\xi m p=\frac{x^{2}}{4} m\left(1-\frac{z}{2 m}+\frac{7}{12}\left(z^{2}\right)^{4}\right)^{4 m}+\frac{7}{12 m} \frac{z^{2}}{4 m}\right)-\frac{x^{2}}{4 m}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{0.4}{\frac{0}{n} \text { Pare }} \frac{0.4}{K(n) \sqrt{n}} \\
& n=21 / 20.253 \\
& \left.0.257 \quad K F_{3}\right)=0.905 \\
& 21 / 2 \text { |n50| } \\
& 1.732 \\
& 2 \\
& \begin{array}{l}
k(x)=\frac{0.979}{x=2} \\
\frac{0.6}{282}=
\end{array} \\
& 1.414 \\
& K(n)=1 \\
& \text { for } x=3 \\
& \lambda(n)=0.998 \\
& \text { for } n=2.5 \\
& h(n)=0.985 \\
& \prod \frac{(2)^{1.5}}{\sqrt{2.5}} \times e^{-2}= \\
& 0.23215 P_{\text {max }}(3)=\frac{4 \times 1.73}{3.513} e^{-3}=0.0497
\end{aligned}
$$

Thiprale of o

$$
\begin{aligned}
& 0 \quad \frac{77.5}{2}+g^{2}+n-1 / 2=z \\
& \tau=\frac{9,3}{(a, y} \sqrt{m} \\
& k p_{m}=\frac{z^{2}}{m g}\left(1-\frac{z}{2 m g}+\frac{7}{12 m g} \frac{z^{2}}{4 m g}\right)- \\
& \text { そхрм }=3 \\
& -\frac{x^{2}}{4 m y}\left(1-\frac{x}{2 \pi y p}\right) \\
& \text { pow } \\
& \tau=\frac{a \cdot 3}{g_{m} r_{m}} \\
& \text { ExpF }=\frac{z^{2}}{m y} \text { (he }
\end{aligned}
$$

moper limit for ne and lamer him it for 2

Rensundete wider for x

$$
\begin{aligned}
& n=2 \quad z=x+r \\
& \text { AAt } \frac{80.5}{\pi}+m-\frac{1}{2}=x+r_{\text {maxx }} \\
& \tau=\frac{9^{\circ 2}}{\sqrt{n}} \approx 6.5 y_{\text {mus }} \quad \varepsilon(2)=1 \\
& \frac{80.5}{9.2} \sqrt{x}+x-\frac{1}{2}=x+r \quad x=2 \\
& \begin{array}{l}
0.75 \times 1.414=12.4+1.5=\frac{13.9}{13.9}=193 \\
r)-\varphi(r)=
\end{array} \\
& =\frac{193}{92}\left(1-\frac{13.9}{184}+\right)-\frac{4}{52}\left(1-\frac{2}{104}\right) \\
& \text { * } \\
& .92 .5= \\
& 2.1-\frac{4}{100} \approx \frac{1.96=A^{*}}{A^{*}=\frac{14}{100} \text { or } \sim \frac{1}{7}} \\
& n=3.0 \\
& 80.5+2 \frac{1}{2}=x+r \\
& \text { t.7. } \sqrt{3 .}+2 / 2=x+\gamma=17.5 \\
& \text { Fwroter }(17.5)^{2}=306 \\
& \frac{306}{92}\left(1-\frac{17.5}{184}-\frac{9}{92}(1-105=2.9\right.
\end{aligned}
$$

$$
\begin{aligned}
& (x-a)(x-b)(x-c)=0 \\
& x^{3} c x^{2}-a x^{2}-b x^{2} \\
& (a b+b c+a c) x=a b c \\
& x^{4}=(a+b x c) R^{2}+(a b+b c a c) x=\text { alac } \\
& \text { C } a+b+c=1 \\
& \text { abc }-a c=0 \\
& \text { lanechrer } \\
& x_{r}=x_{0}-\text { 偊 (OD) } r \\
& \tau=P(r) \frac{P x}{d r} \frac{d t}{d x} \\
& P(r) \frac{U_{R}}{A_{r} \frac{N t}{d x}}=P(r) 0.8 \times \widehat{C}= \\
& t=\tau x \\
& r=e^{-\frac{\xi}{2 m}} r_{0} \\
& \text { Wt thenth If tex perf ind, } \\
& \text { h } \frac{1}{p p^{2}}=\frac{x_{0}^{2}}{4 m}\left(1-\frac{x}{2 \pi}\right) \text { soxcinere } \frac{x}{2 m}
\end{aligned}
$$

0

$$
\begin{aligned}
& \text { limp-ision Guncoin preades } \\
& \left(1 x_{1}^{2}\left(1-\frac{x_{0}}{22}\right)_{i}\right. \\
& \text { dilespan }=x
\end{aligned}
$$

$$
\begin{aligned}
& \text { tan } A=z^{2}(1-r) \\
& A=z^{2}-z^{3}
\end{aligned}
$$

betis use firs apaprex

$$
\begin{aligned}
& x_{0}^{s}=\sqrt{4} \mathrm{~mm} \operatorname{fan}_{\rho_{0}^{*}}^{f_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\tau}{\text { complherlik }}=\frac{1}{\sqrt{4 m h / \frac{L}{x+}}}
\end{aligned}
$$

chun mish $\ln \frac{1}{4 x}=1$

$$
=\frac{80}{11.78 \%-3.5}
$$

$$
=8.5
$$

$$
\begin{aligned}
& \left.\ln \frac{1}{7 x}=\frac{(x+r)^{2}}{4 m}\left(1-\frac{x+x}{2 m}\right)\right)\left(\frac{(12.5)^{2}}{4 m}\right. \\
& \ln \frac{1}{4} x^{2}=\frac{(12)^{2}}{42}\left(1-\frac{12}{46}\right)=1.16
\end{aligned}
$$

Chan $\frac{80.5}{10.3209}$

$$
\begin{aligned}
& x_{r}+r=\sqrt{9 z}-1=8.6 \\
& \int \frac{\operatorname{po,5}}{?}+2=\sqrt{4 \mathrm{~m} \ln \frac{1}{p x}}+\ln \frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{80.5}{\operatorname{lin} \ln \frac{1}{2 x}-2+\ln \frac{1}{6 x}}}+\tan 2 x=\tau . \quad \text { hn } \frac{1}{\%}=1:
\end{aligned}
$$

nr \overparen{c} should be menctijse. with 1.27
$x=2.5 \quad 6.15 \times 1.27=7.0$ yeas
or if ln $\frac{1}{x^{*}}=1$

$$
\begin{array}{r}
e^{-\sqrt{\frac{1}{23}}}=\frac{1}{46} \\
e^{-(0.21-0.022} \\
e^{-0.19}=0.027
\end{array}
$$

$$
2 . z=x \quad \tau=7.43
$$

$$
\begin{aligned}
& \frac{x}{2 m}=\sqrt{\frac{1}{m} \text { aim }} \frac{1}{2 m} \frac{1 m}{1 x} \\
& -\left(\sqrt{\frac{2}{423}}-\frac{2}{46}\right) \quad \text { in } \frac{1}{1+} \\
& =C \quad=e^{-.24 r} \\
& 0 \\
& -.24 \\
& =0.7866
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\frac{80.5}{=}\right)+2 \times 0.8=9.9 .6 * 1-1.6{ }_{6.6-}^{\text {b. }} \text { 有* } \\
& \frac{P 0.5}{\tau}=9 \quad \tau=\quad \quad \quad=
\end{aligned}
$$

$$
\begin{aligned}
& \tau=8.46 \quad \Phi=0.726
\end{aligned}
$$

$$
\begin{aligned}
& \left(1-\left(1-e^{-y}\right)^{2}\right)^{m}
\end{aligned}
$$

Le Nana

$$
y=\sqrt{\frac{L}{m} \cos \frac{y}{f}}
$$

$$
\ln \frac{1}{1-y}=\ln \left(1+3+y^{2}\right)
$$

$$
\begin{array}{rl}
x+r & y+y^{2}-\frac{1}{2} y \\
= & y+\frac{1}{2} y^{2} \\
=2 m\left(y+\frac{1}{2} y^{2}\right)=\sqrt{4 m \ln \frac{t}{1+}}+\ln \frac{1}{f *}
\end{array}
$$

$\ln \frac{1}{f *} \approx 1$

$$
\begin{aligned}
& x_{0}=\sqrt{4 m \ln \frac{1}{\mu t}+m \rho t} \approx \\
& \frac{x_{0}}{2 m}=\frac{1}{46} \times(9.6+1)=\frac{10.6}{46}=0.23
\end{aligned}
$$

Wist Cady

$$
\begin{aligned}
& \frac{\operatorname{lncy}}{\frac{x_{0}}{2 m}}=(\sqrt{4 m}+1)=\frac{10.6}{2 m}=0.23 \\
& e^{-23}=0.8
\end{aligned}
$$

$\ln \frac{1}{f_{*}}=2$

$$
\begin{aligned}
& \frac{15.6}{2 m}=0.34 \\
& e^{-.34}=0.71=F
\end{aligned}
$$

$$
\begin{aligned}
& \ln \left(1-\sqrt{1-\frac{1}{m} / \ln x^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\ln \frac{1}{\rho_{0}}=m \ln \left[1-\left(1-e^{-2}\right)^{2}\right] \\
& \text { * } \frac{1}{20} \text { hos } \\
& e^{m \sigma^{2}}=1-e^{-\frac{1}{n_{n}} \operatorname{kat} \frac{t}{k \pi}} \\
& -e^{-y}=\sqrt{1-e^{-x, x} x} \\
& 1-\sqrt{1-e^{-\frac{1}{x}} \text { 教x }}=e^{-y} \\
& 1-\sqrt{1+\left(\frac{1}{m} \ln \frac{1}{p^{*}}-\frac{1}{2}\left(\frac{1}{4} \ln \frac{1}{4} f^{-x}\right)^{2}\right.}=e^{-y} \\
& y=\ln \frac{1}{1-\sqrt{\frac{1}{2}} \ln \frac{1}{x}-\frac{1}{2}\left(\frac{1}{\left(n_{n}+\frac{1}{x_{x}}\right)^{2}}\right.}=\cos ^{\prime} x^{\prime} \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \ln \frac{m}{} / x=\frac{m 1}{\ln } 1+\left(1-e^{-y}\right)^{2} \\
& \text { z } \\
& \left.\ln \frac{1}{p^{*}}=m\left(z+\frac{1}{2} z^{2}\right)=m\left(1-e^{-y}\right)^{2}+\frac{1}{2}\left(1-e^{-y}\right)\right] \\
& =m\left[y^{4} y^{2}\right. \\
& \left.e^{-y}+e^{-2 y}\right)+\frac{1}{2}\left(1-2 e^{-y}+e^{-2 y}\right)^{2} \\
& =\min \left[\frac{x y}{x} y^{2}-3 y-2 \frac{y^{2}}{2}+\frac{4 x^{2}}{2}+\right. \\
& \frac{1}{m} \ln \frac{x}{\rho t}=\frac{1}{1-1\left(1-e^{-y}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { O }
\end{aligned}
$$

$$
\begin{aligned}
& \text { D.K. }
\end{aligned}
$$

Piguendation in the Mowre

1. Dr. Clement \mathscr{R}. Morkert

Depi. of zoology Minir. of Michigan Ane Arbor, Mich.
2. Dr. Mary \&. Ravoles

Dept oy Bi wlogy
Jolus Huplions Unveroity
3. Dr. Elizabeth Russel

Roscoe B. Jackson Memoinal Rab.
Bar Harbor, Harne
4. Dr. willyp k. Silvers

Depd. of Biology.
Brown Unimesients
Promidence, R.I.
May be at Wistar Inotitute Plinadelphin now.
N 11 woods /énc
Part I has abour
10000 word

- II abour 4000 .

2 space inclndis mathematical ex preosios, Eotivate $1 / 3$ the sypace

$20 ' s-8$	160
30 's 20	600

$$
\begin{aligned}
& \text { Stivate } 1 / 3 \text { the space } \\
& 896 \text { is matherarizal } \\
& \frac{89}{9856} \text { wond }
\end{aligned}
$$

Extracted from: Atti dell' Istituto Nazionale delle Assicurazioni. 1930. v. 2. p. 245-266 (Cassinis, G. Sull'impiego di alcune funzioni trascendenti nelle rappresentaziont empiriche.)
con 5 cifre significative, per x compreso fra 0 e 10,9

$$
1.1997
$$

$$
\Sigma=1.040
$$

Proc. Nat 1. Aced. of Sci.

One copy has 110 pages.
47 lines per page
Average of 13 words per line or approximately 510 words per page.

H $\frac{1.1997}{10.993}$ Heonan ?

$$
\begin{aligned}
& 2 n=\sum ; \frac{11067}{0.0017} ; \Sigma=1.040 \\
& \frac{1.322}{0.9970} ;<\sum_{(2 m=6)}^{1.322} \\
& \text { hayh }(2 m=5)=111997 \times .993 \begin{array}{l}
=1.192 \\
(230-5)
\end{array} \\
& \text { * } 2 \text { 啨 }=0.87972
\end{aligned}
$$

Sechtre th thenpitherstiva
\qquad
Mus. Dowthy La throp GHice ok madh min wher

$$
\begin{aligned}
& \text { MAA, RMD=mae }=\sigma \sqrt{2^{2}} \\
& \sigma \sqrt{\frac{2}{\pi}}=0,79>88 \sigma \\
& \text { memu } \\
& \sqrt{2} \sqrt{\frac{2}{\pi}} \sigma=\frac{2}{\sqrt{\pi 1}} \sigma \approx 1.13 \sigma
\end{aligned}
$$

(
Chuh

Herroen lackean $n=2.5$ huas

$$
f=2 \text { and laryen }
$$

Sisfunc bbluiver $=1.224$
-

$$
\begin{array}{lcl}
\text { letr afS }=1 \\
\text { and } S=2 & S_{1}+\frac{1}{2} P(1) & \frac{1}{2} \frac{1}{4}
\end{array}
$$

$$
\begin{aligned}
& D_{\text {Nff }}=1.224 \\
& \text { BIN }=\varepsilon(n) \frac{2 n}{\pi} \\
& 1.261 \\
& \varepsilon(4)=.945
\end{aligned}
$$

$$
1573 \text { thouthom ten Morbeley }
$$

$$
4 \text { heun T. } k \mid R Z
$$

Heanou ext. 3547

$$
\begin{aligned}
& \operatorname{lu}_{\mathrm{Fe}} \mathrm{Le}_{5}=3143 \\
& \text { Fe s-3143 Manden Reltries }
\end{aligned}
$$

