
Trojan AI Detection
Christopher Armstrong (cparmstr@ucsd.edu), Daniel Hartley (dhartley@ucsd.edu),

Spencer Hutton (sphutton@ucsd.edu), Shirley Quach (shquach@ucsd.edu)

Advisors: XinQiao Zhang, Dr. Tara Javidi, Dr. Farinaz Koushanfar

June 9, 2023

Table of Contents
1. Abstract 2
2. Introduction 2
3. Team Roles and Responsibilities 3
4. Data Acquisition 4

4.1. Data Sources 4
4.2. Data Collection, Environment and Pipeline 5

5. Data Preparation 6
6. Analysis Methods 6

6.1. Analytic Approach 7
6.2. Model Performance 8

6.2.1. Random Forest 8
6.2.2. Gradient Boost 9
6.2.3. K Nearest Neighbor 9
6.2.4. Stochastic Gradient Descent 9
6.2.5. SVC 10
6.2.6. Gaussian Process 10
6.2.7. Xgboost 10

6.3. Model Description 11
7. Findings and Reportings 11
8. Solution Architecture, Performance and Evaluation 13

8.1. Performance Metrics 14
8.2. Cost Metrics 14
8.3. Compute 14
8.4. Storage 15
8.5. Scalability and Robustness 15

9. Technology Stack 15
Original NIST Provided Code Technology Stack (Primary Classification Method)
15
Original ABS - Code from the winning TrojAI team (Rutgers/Purdue) Technology
Stack 16

1

Our Updated ABS Code Technology Stack 16
10. Conclusion 16
11. References 16
12. Appendices 17

12.1. DSE MAS Knowledge Applied 17
12.2. Library Link and Citation 17
12.3. Github Link 17

2

1. Abstract
As machine learning (ML) gains prominence in the business world, the

implementation of deep neural networks (DNN) has become more widespread. The
security of DNN models has recently come under scrutiny as they are at risk of
adversarial attacks such as backdoor Trojan attacks. These attacks depend on a trigger
to activate malicious behavior. Due to the lack of transparency in DNNs, the effects of
Trojans may remain undetected until activated by an attacker. This project demonstrates
a significant reduction in the time and resources necessary to detect a poisoned model
through the use of dimensionality reduction techniques. The detector utilizes Principal
Component Analysis (PCA) and Independent Component Analysis (ICA) to reduce
model weights that can then be used to train a classification model. This work builds on
previous research, integrating reduction techniques to significantly reduce inference
time while maintaining model accuracy at 85%. Are you protected from malicious AI?

2. Introduction
Data has taken a prominent role in the world and only continues to increase in

importance. The demand for tools to analyze and model this data has continued to
escalate. The complexity of these models has grown to a point where even large
companies cannot train them “in-house” and must either outsource the training task to
the cloud or rely on pre-trained models that they can then tune for their specific needs.
Both of these options leave the company vulnerable to new security risks.

During the training process a malicious actor can step in, augment some of the
training data to create a backdoor in the model. The scope of this attack can vary but
the goal remains the same, to provide the end user with a model that is well trained for
most inputs but causes misclassifications on a targeted class or degrades the accuracy
of the model for inputs that contain the secret augmented property the attacker has
chosen. Such inputs could cause models intended to diagnose diseases to misclassify
either positively or negatively the disease or condition they were meant to identify.

Trojan attacks are nearly impossible for end-users to detect, let alone to be
aware it is even a possibility. Even the data scientists working with the model may not
know that the training data had been tampered with until the secret condition had
already been met and the backdoor triggered. This risk is present even if the company

3

has taken a pre-trained model and adapted it to their needs. While most of the difficulty
in training will be handled in this case, a trigger that existed in the original model will still
affect its performance.

If the backdoor has already been triggered then it is too late to prevent the attack
from occurring. While preventing a malicious party from accessing the model during
training would be ideal, it is hard to control. However, a company has full control over
whether or not they choose to deploy a trained model. Detecting a trojaned model
before it is deployed is the best way a company can ensure an end user does not suffer
from one of these attacks.

Although Round 1 of the NIST TrojAI leaderboards took place in June 2020,
there was more we could expand and improve on. We hypothesize that trojan models
may be detected by examining the model’s weights. The method is fast, cheap and may
be integrated into a more complex detection model.

3. Team Roles and Responsibilities
Christopher Armstrong - AWS Solutions Architect
Daniel Hartley - Data Visualization
Spencer Hutton - Data Scientist
Shirley Quach - Project Manager

4. Data Acquisition
Our dataset is the image-classification-jun2020 dataset from Round 1 of the

TrojAI competition. This dataset consists of 1000 trained, human classified image
classification AI models using the following architectures (Inception-v3, DenseNet-121,
and ResNet50). The models were trained on synthetically created image data of
non-real traffic signs superimposed on road background scenes. Half (50%) of the
models have been poisoned with an embedded trigger which causes misclassification of

4

the images when the trigger is present. Models in this dataset are expecting input
tensors organized as NCHW. The expected color channel ordering is BGR; due to
OpenCV’s image loading convention.

NCHW stands for number of data samples N , image channels (where a RGB image will
have three channels) C, depth D, image height H, image widthW. This is one way for
storing multidimensional arrays/data frames into memory into a 1-D array. .

Ground truth is included for every model in this dataset.

4.1. Data Sources

Dataset Name Image Classification on Models (Round 1)

Source https://data.nist.gov/od/id/mds2-2195

Destination ● AWS S3 bucket: s3://image-classification-jun2020/data/
● Locally

Acquisition
Notebooks,
Code,
Documents

https://pages.nist.gov/trojai/docs/image-classification-jun2020.ht
ml#image-classification-jun2020

https://github.com/usnistgov/trojai-example

Data Size 150 GB compressed

Other Notes The dataset has a software bug in the trigger embedding the
code that caused 2 models trained for this dataset to have a
ground truth value of ‘poisoned’ but did not contain any triggers
embedded.

Models without an embedded trigger:
id-00000077
id-00000083

5

https://data.nist.gov/od/id/mds2-2195
https://pages.nist.gov/trojai/docs/image-classification-jun2020.html#image-classification-jun2020
https://pages.nist.gov/trojai/docs/image-classification-jun2020.html#image-classification-jun2020
https://github.com/usnistgov/trojai-example

4.2. Data Collection, Environment and Pipeline
Our data is composed of 150GB of compressed models. Given that the total data

set was 150GB, it was an unreasonable ask to have all of it downloaded locally. For our
data preprocessing approach we decompressed the files using tar. Further
preprocessing steps are not applicable in this case because our given data were
models. A small portion of the data is stored locally because it is static and too large to
download at the time of execution. The benefit of having AWS S3 available is to relieve
us of storing everything locally. It was effective and more advantageous to run the
detector remotely once we had a working prototype.

The data taken from the Google Drive mirror was uncompressed at the time of
execution and saved directly to a S3 bucket in AWS using the AWS CLI. Locally, we had
a subset of the uncompressed data for use cases where the entire dataset was not
necessary in order to accelerate access and build a prototype. We leveraged our AWS
resources to support the larger datasets and requirements for accelerated computing
resources.

Once we loaded the model file, we extracted its weights and transformed these
weights into a set of features. These features are extracted at the time of detection and
not stored.

5. Data Preparation

Given our problem statement and dataset our method for data processing mostly
involved copying and decompressing the files using tar and downloading the dataset
that was stored in a google drive to our AWS S3 bucket. The dataset is ~150GB. Due to
the size of the dataset it was determined impractical to download the dataset
programmatically every time the detector is run. Since the project uses a static set of
models, there is no additional need to refresh frequently. We needed to be aware of the
dataset having a software bug in the trigger embedding code that caused 2 models
trained for this dataset to have a ground truth value of ‘poisoned’ but did not contain any
embedded triggers. The models without an embedded trigger that you may need to be
aware of include: id-00000077, id-00000083. Additionally, we did not integrate more
data outside of the NIST TrojAI source.

6

For initial exploration, a small set of the dataset was stored locally to replicate the
results from the first round. To utilize data from the image classification rounds that
followed Round 1, it will be necessary to utilize AWS with GPU resources such as
CUDA capable with 32+ GB of RAM.

6. Analysis Methods
We started by collecting the results on the performance of different

dimensionality reduction methods and classification models. By applying different
dimensionality reduction methods we hope to eliminate noise, any redundant features,
improve the model’s accuracy and performance. Comparison of the shortcomings of
each would drive the next step of development.

Dimensionality reduction methods we wanted to explore and compare included
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to
compare and look for insights between the performance between and unsupervised
algorithm (PCA) and supervised algorithm that takes class labels into account (LDA).

For our trial run, we trained a random forest regression model to predict whether
or not a given model is poisoned on a subset of data that was roughly ~10GB in size.
Hyper parameter tuning was done to improve the model. Additional classifiers will be
evaluated after our implementation is successfully migrated to AWS. As a result, we
were able to successfully train and test a basic model utilizing our proposed
architecture. There were challenges regarding code execution. We discovered that a
small number of samples caused the dimensionality reduction to fail, and a large
number of samples resulted in hitting a system memory constraint. Initial performance
was particularly poor, because execution occurred locally on a small subset of our
models. However, we believed this demonstrated that our approach was viable to
continue to develop our process.

In order to overcome our memory limitations during model training we needed to
migrate to AWS where we were able to test additional classification models and
compare performance where we were able to successfully train and test a basic model
utilizing our proposed architecture. We were also able to flatten and reduce the models
in the training data set and save them as a .pkl file using Pythons pickle library. This
allowed us to expedite the testing of different classifiers.

7

Our next steps were applying PCA on 30 components for the layers followed up
by ICA against the stacked PCA features while experimenting with the number of ICA
components. The two models that appeared to perform especially well on the subset of
training data were Random Forest and SVC and we decided to continue to refine our
findings with each iteration.

6.1. Analytic Approach

Our first goal was to investigate the different machine learning models available
to us and compare the results. Some models we explored include: Random Forest,
Gradient Boost, K Nearest Neighbor, Stochastic Gradient Descent, SVC, Gaussian
Process and Xgboost. We were utilizing AWS for this and our setup included a 24vCPU
instance which we found was not adequate to run the full dataset with less than 5% left
to finish processing. It was necessary to use a 32vCPU instance in order to process all
the data.

We added multi-layer feature reduction to get everything the same size and
serendipitously sped up our process by 20 times. Viability testing only utilizes 6% of the
training dataset and performance has improved through additional training.

6.2. Model Performance

Performance varied between the different classification types. The two models
that appeared to perform the best on the subset of the training data were Random
Forest and SVC and underperforming models were eliminated from the pool of
candidates.

8

6.2.1. Random Forest

6.2.2. Gradient Boost

6.2.3. K Nearest Neighbor

9

6.2.4. Stochastic Gradient Descent

6.2.5. SVC

6.2.6. Gaussian Process

10

6.2.7. Xgboost

6.3. Model Description
Different machine learning models available were investigated and results were

compared. Some models we explored include: Random Forest, Gradient Boost, K
Nearest Neighbor, Stochastic Gradient Descent, SVC, Gaussian Process and Xgboost.
We utilized AWS for this and our setup included a 24vCPU instance which we found
was not adequate to run the full dataset with less than 5% left to finish processing. It
was later bumped up to a 32vCPU instance in order to run all the models.

7. Findings and Reportings

7.1. Model Accuracy

Our model performance has improved significantly since our initial run where it is
currently at 84% accuracy at 2 sec/model compared to the top detectors on the TrojAi
leaderboard where they are averaging at 400 sec/model. Speed is a key capability in
our project which currently takes roughly 3 hours compared to 36 hours on the TrojAi
leaderboard. We observed marginal performance (5-10%) improvement after
implementing the ensemble.

Our approach enables the detector to run in 2 seconds, indicating that this
solution can be utilized at scale with minimal cost. We’ve added multi-layer feature

11

reduction. This includes PCA at each layer to get architecture dimensions on the
dataset to be all the same size followed by ICA on the reduced dataset. Due to the
many possible combinations at each step, a parameterized reduction cascade is
introduced to enable component exploration in order to search for the optimal number of
components. Our optimized reduction generation allows for a 20x speedup.

In our approach we implemented an automated model selection where we train
the model for each dataset and throw it out if it does not meet the threshold. This allows
us to be able to select the best performing model. Current implementation takes the
probabilities of each model as features for an ensemble. Our optimization process
involves the use of a sequential feature selector that minimizes the number of features
that will be kept for the final detector to reduce the size and increase speed at inference.
We store only the config/models to speed up the inference and to reduce the overall
size.

7.2. Integrated Product

For our final product we have a basic user interface where a user is able to
submit a model and in return receives a probability for whether their model is potentially
poisoned or not.

12

13

8. Solution Architecture, Performance and
Evaluation

8.1. Performance Metrics
Training the primary model currently requires having a system that can store all

the available models in memory. So it performs poorly or even crashes on systems with
less memory than is needed.

Accuracy performance is not very good for the primary classification method, but
it is able to evaluate models quickly. Slower methods such as the Artificial Brain
Stimulation (ABS) are able to consistently identify AI models that may act as trojans, but
the time required to perform the evaluation makes it less useful in cases where compute
resources are limited or where having highly responsive evaluation metrics are needed.

14

8.2. Cost Metrics
The dimensionality reduction method takes 1-2 seconds to evaluate a model.

The ABS code takes 50-60 minutes to evaluate a single model on our development
infrastructure with about 60-70% of the computational resources as the specially
approved g5.2xlarge EC2 resources in AWS. We expect to see a decrease in time to
run there. However resources using spot instances cost less than $0.50/hr so the cost
to evaluate a single model is relatively low. This meant that the cost would increase
dramatically if the time to evaluate a model must be decreased significantly.

In the TrojAI competition scenario, there are thousands of models to be
evaluated. So any method that could improve the speed of the evaluations or that could
help filter out the more easily classified AI models would potentially save hundreds of
dollars per run.

8.3. Compute
We were initially leveraging a single node system to run code from the

competition teams. Development system resources for running the ABS model include
32GB of RAM, A4500 GPU w/16GB RAM, and 1 CPU with 32 cores running in Arch
Linux. AWS systems are single nodes running in AWS with 32GB RAM, A10 GPU w/24
GB RAM, and 8vCPU running in Amazon Linux 2. It was necessary to increase our
maximum vCPU usage from 24 to 64 as we continued to fine tune our models.

We were allocated $1000 in AWS credit and have spent approximately $750 by
the end of this capstone project. The majority of our costs went towards Amazon EC2
and S3.

8.4. Storage
AWS S3 Bucket: ~150GB for TrojAI round 1, and the data for rounds 2-4 have

larger datasets

8.5. Scalability and Robustness
Our agnostic architecture approach makes our solution robust. This approach

may also be effective for models trained for other tasks besides image classification. It
includes a reduction fit search optimized for a 20x speedup. Implementation of a
Sequential Feature Selector to minimize the reduction fits needed and model

15

hyperparameter tuning is embedded. Finally storing the fits/models for inference rather
than reproduce during inference.

9. Technology Stack
The original code we were working off of was 2-3 years old since most of the

TrojAI teams stopped updating it after the competition. The teams leveraged Python
version 3.6 or 3.7 code and either PyTorch or Tensorflow machine learning platforms.
The ABS code was using libraries that are no longer supported making it difficult to run
on more modern AWS architecture which required updated drivers. We updated the
code to leverage current versions of Tensorflow and CUDA as shown below.

Original NIST Provided Code Technology Stack (Primary Classification
Method)

● Python 3.7
● Numpy
● Scikit-image
● Torch 1.6.0
● Torchvision 0.6.0
● Advertorch

Original ABS - Code from the winning TrojAI team (Rutgers/Purdue)
Technology Stack

● Python 3.6
● Numpy
● Tensorflow 1.12.1
● CUDA 9
● CUDNN 7

Our Updated ABS Code Technology Stack
● Python 3.10
● Numpy
● Tensorflow 2.10
● CUDA 12
● CUDNN 8

16

● AWS

10. Conclusion
Our model’s performance has improved significantly compared to the earlier

stages of our work and compared to the top results on the TrojAi leaderboards. What
originally took roughly 36 hours to complete, we were able to reduce the run time to 3
hours for 150GB of modeled data. With this improvement a single model can be
processed in a couple of seconds and integrated into a business pipeline.

11. References

Backdoor Attack Detection in Computer Vision by Applying Matrix Factorization on the
Weights of Deep Networks (2022)
https://arxiv.org/pdf/2212.08121v1.pdf

ABS: Scanning Neural Networks for Back-doors by Artificial Brain Stimulation
https://people.cs.rutgers.edu/~sm2283/papers/CCS19.pdf

Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks
https://sites.cs.ucsb.edu/~bolunwang/assets/docs/backdoor-sp19.pdf

An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks
https://dl.acm.org/doi/pdf/10.1145/3394486.3403064

Michael Paul Majurski (2020), Trojan Detection Software Challenge -
image-classification-jun2020-train, National Institute of Standards and Technology,
https://doi.org/10.18434/M32195
https://data.nist.gov/od/id/mds2-2195

BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
https://arxiv.org/pdf/1708.06733.pdf

https://www.nist.gov/itl/ssd/trojai

17

https://arxiv.org/pdf/2212.08121v1.pdf
https://people.cs.rutgers.edu/~sm2283/papers/CCS19.pdf
https://sites.cs.ucsb.edu/~bolunwang/assets/docs/backdoor-sp19.pdf
https://dl.acm.org/doi/pdf/10.1145/3394486.3403064
https://data.nist.gov/od/id/mds2-2195
https://arxiv.org/pdf/1708.06733.pdf
https://www.nist.gov/itl/ssd/trojai

https://pages.nist.gov/trojai/docs/about.html

https://github.com/naiyeleo/ABS

12. Appendices
12.1. DSE MAS Knowledge Applied

Every skill learned as part of the DSE program was utilized throughout the
capstone project. Beginning with python for data analysis as our foundation to

12.2. Library Link and Citation
Armstrong, Christopher; Hartley, Daniel; Hutton, Spencer; Quach, Shirley (2023). Trojan AI
Detection. In Data Science & Engineering Master of Advanced Study (DSE MAS) Capstone
Projects. UC San Diego Library Digital Collections. https://doi.org/10.6075/J0B56JX8

12.3. Github Link
https://github.com/shirleyquach/dse260

18

https://pages.nist.gov/trojai/docs/about.html
https://github.com/naiyeleo/ABS
https://urldefense.com/v3/__https://doi.org/10.6075/J0B56JX8__;!!Mih3wA!B_3G4cQjiQcC4-udw0Fkv5GSVoFLrcZ0RTVSHyCMDSSKVpHk14NX2y8EG1P-uUiqPXho0RV1pw0g0EsC$
https://github.com/shirleyquach/dse260

