The "Chromosomal-Function-Loss" theory of the aging process and the dependence of the sex ratio at birth on the age of the father.

Sir,
Recently, I have ${ }_{1}$ attempted to develop a general theory of aging, applicable to mammals. This theory assumes that, during the life time of the animal, whole chromosomes, which are contained in the somatic cells, suffer a total loss of function in a single random event. It further assumes that the probability of such an event remains constant throughout lifetime and that it is the same for all individuals of a given species.

On the basis of the U.S. life tables I have derived the frequency with which such a random event occurs in Man and found that on the average one chromosome, of the haploid chromosomal set of the somatic cell, suffers such a "hit" in about twelve years. If we assume that this holds also for the spermatogonia in Man, we should then expect that the ratio of boys and girls at birth decreases with the age of the father. This conclusion is based on the following notions:

If the X chromosomes in a spermatogonium suffer an aging hit, then the cell is eliminated; if the Y chromosomes in a spermatogonium suffer an aging hit, then the cell remains fully functional and will give rise to spermatozoa, but only to spermatozoa which contain an X chromosome.

The length of the Y chromosomes amounts to about 2% of the total length of the haploid set of the autosomes ${ }^{(2)}$ and on this basis we may perhaps assume that an average of 2% of the Y chromosomes of the spermatogonia suffer an aging hit in a 12 year period. Thus, we are then led to conclude that the ratio, at birth, of boys and girls should decrease by 2% for a 12 years' increase in the age of the father, and that it should decrease by 4% for a 24 years' increase.

Professor Peter B. Medawar has very kindly transmitted to me statistical figures for 1956 for England and Wales, showing the dependence of the ratio of boys and girls on the age of the mother. These ratios, for the age group of the mother indicated, and for the sample sizes given in brackets, are as follows:

Under 20 (~19,000) 107.4 ; $20-24$ (~100,000) 106.4;
25-29 (~110,000) 105.6; 30-34 (~70,000) 105.3;
$35-39$ (~35,000) 104.8 ; 40-44 (~10,000) 102.6.
Because there is a strong correlation between the age of the father and the age of the mother these data are in good qualitative agreement with the prediction of our theory of the aging process.

In view of the small samples involved on which data of this type are based, it would be hardly worth while to attempt a
quantitative analysis in the hope of obtaining a quantitative confirmation of the prediction of the theory. For a more sophisticated analysis of birth data of this type the reader is referred to the work of those ${ }^{(3)}$ who attempt to separate the influence of the age of the father and the age of the mother on the sex ratio at birth.
p fhe excess boys over firls, conceived by young fathersh indicates that the probability of failure to be included in the sper, atozoon must be higher for the X momosome than for the Y chromosome; it is not possibIeोto say on theoretical how large an exeesh to xpection thin trois/

Leo Szilard
The Enrico Fermi Institute for Nuclear Studies
The University of Chicago
Chicago 37, Ill.
November 21, 1959.

Leo \int_{2} carner
(1)Proc.Nat.Acad.Sc.,U.S.A., Vol. 45 pp 32-45 Jan. 1959
(2) J.H.Tijo and T.T.Puck, Proc.Nat.Acad.Sc.,U.S.A.,Vol. 44 p.1229,1959
(3) E. Novitsky and A.W.Kimball, Amer.J.Human Genetics 1958.

The "Chromosomal-Function-Loss"" theory of the aging process:H The dependence of the sex ratio at Birth on the age of the father $\frac{\text { and other implications. }}{2}$
Sing
Recently I have attempted to develop a general theory of ageing applicable to mammals. (1) This theory assumes that, during the lifetime of the animal, whole chromosomes, which are contained in the somatic cells, suffer a total loss of function in a single random event. It further assumes that the probability of such an event remains constant throughout lifetime and that it is the same for all individuals of a given species.

From the U.S. life tables I have derived on the basis of the theory the frequency with which such random eventooccurg in Man and found that on the average one chromosome, of the haploid chromosomal set of the somatic cell, suffers such a "hit" in about twelve years. If we assume that this holds also for the spermatogonia in Man, we should then expect that the ratio of boys and girls at birth decreases with the age of the father. This conclusion is based on the following notions:

We may assume that any cell of the male becomes non-functional if the X chromosome for which the cell is hemizygous suffers an aging hit, $i \cdot 0$, , the absence of the X chromosomes is lethal for the somatic cell in the male. The absence of the Y chromosome is not lethal for the somatic cell and, as a matter of fact, it need not be lethal even for the zygote; there exist individuals whose cells contain one X chromosome and no Y chromosome and these exhibit Turner's Syndrome.

Accordingly, if the X chromosome in a spermatogonium suffers an aging hit, then the cell is eliminated; if the Y chromosome in a spermatogonium suffers an ageing hit, then the cell remains fully functional and will give rise to spermatozoa, but only to spermatozoa which contain an X chromosome.

The length of the Y chromosomes amounts to about 2% of the total length of the haploid set of the autosomes (2) and on this basis we may perhaps assume that an average of 2% of the Y chromosomes of the spermatogonia suffer an aging hit in a l2-year period. Thus, we are led to conclude that the ratio, at birth, of boys and girls should decrease by 2% for a 12 -years increase in the age of the father,
and that it should decrease by 4% for a 24 -years increase.
One may compute on the basis of birth data (3) for the United States, 1955, the dependence of the ratio of boys and girls on the age of the father. For the age-group of the father indicated and for the sample sizes - for boys alone or girls alone - given in brackets, the ratios are as follows:
$15-19$ years $(\sim 46,000) ; 106.7 ; 20-24$ years $(\sim 410,000): 105.7$;
$25-29$ years $(\sim 590,000): 105.0 ; 30-34$ years $(\sim 440,000): 105.0$;
$35-39$ years $(\sim 250,000): 105.0 ; 40-44$ years $(\sim 120,000): 104.1:$
$45-49$ years $(\sim 45,000): 103.6$.
These data do not take into account the age of the mother, and there is of course a strong correlation between the age of the father and the age of the mother. What one would want to know is the dependence of the sex ratio at birth on the age of the father, for a fixed age of the mother. However, if one tabulates the available data on this basis the sample sizes become too small.

From the above quoted data it would appear that the ratio of boys and girls does fall with increasing age of the father but that it does not fall linearly with the age of the father, as the theory would demand. We cannot say as yet whether data of this type contradict the theory because the sample sizes are too small, but they may conceivably contradict the theory when sufficiently large samples become available.

Wei propose to turn now to certain other implications of the theory. 4 It is tempting to postulate that a spermatozoon which is derived from a spermatogonium in which an autosome has suffered an aging hit, may have a finch smaller, chance of reaching and fertilizing the ovum, than a spermatozoon which is derived from a spermatogonium in which none of the autosomes have suffered an aging hit. On this basis we may then (assume that a spermatozoon carrying an autosome that has suffered an aging hit, or a spermatozoon that is missing an autosome, will fertilize the ovum only rarely, and that on these rare occasions there will be an early abortion. Accordingly, the number of early abortions should increase with the age of the father.

The theory permits us te predict/ the fraction p of the spermatozoa that carry a haploid set of chromosomes which have remained unhit, es a function of the age of the male, and we may write :

where τ is the average time-interval between ageing hits suffered by the diploid sets of chromosomes. In the case of Hem we have $\widetilde{C}=6$ years.

Because only the fraction p of the spermatozoa may be expected to lead to a successful pregnancy, it is possible experimentally to test the prediction of the theory in animals for which we have mate methods halation for artificial insemination.

In general we may expect, for the young male, that the number of spermatozoa that need to be inseminated in order to have a high probability for a successful pregnancy, is only a small fraction of the number of the spermatozoa contained in one ejaculate. In order to test the prediction of the theory one would need to determine for young males, age (1), the number of spermatozoa that must be inseminated in order to obtain a successful pregnancy with a given low probability. The theory then predicts that in an old male, age (2), the number of spermatozoa used in insemination must be higher by a factor of p_{1} / p_{2} in order to obtain a successful pregnancy with the same probability. For $\underline{p}_{1} / \underline{p}_{2}$ we may write:

(va) Leo Szilard Che Enrico Fermi Institute for Nuclear Studies
The University of Chicago
Chicago 37, Ill.
(1) Leo Szilard, Proc.Nat.Acad.S品., W.S.A., Vol. 45 Up, 32+4\$-Jan. (1959) (2) J.H.Tijo and T.T.Puck, Proc. Nat. Acad.Sci., W.S.A., Vol. 44 P. 1929, (1959) (3) "Vital Statistics of the U.S.", VoI.I po 213, (1955).

Sir,
Recently I have attempted to develop a general theory of aging applicable to mammals. (1) This theory assumes that, during the life time of the animal, whole chromosomes, which are contained in the somatic cells, suffer a total loss of function in a single random event. It further assumes that the probability of such an event remains constant throughout lifetime and that it is the same for all individuals of a given species.

On the basts-012/the U.S. life tables I have derived the The feresis
af the given species. frequency with which such a random event occurs in Man and found that on the average one chromosome, of the haploid chromosomal set of the somatic cell, suffers such a "hit" in about twelve years. If we assume that this holds also for the spermatogonia in Man, we should then expect that the ratio of boys and girls at birth decreases with the age of the father. This conclusion is based on the following notions:

We may assume that any cell of the male becomes non-functional if the X chromosome for which the cell is hemizygous suffers an aging hit, i. e. the absence of the X chromosome is lethal for the alic cell in the male. The absence of the Y chromosome is not lethal for the cell and, as a matter of fact, it need not be lethal even for the zygote; there exist individuals whose cells contain one X chromosome and no Y chromosome and these exhibit Turner's Syndrome.

Accordingly, if the X chromosome in a spermatogonium suffers an aging hit, then the cell is eliminated; if the Y chromosome in a spermatogonium suffers an aging hit, then the cell remains fully functional and will give rise to spermatozoa, but only to spermatozoa which contain an X chromosome.

The length of the Y chromosomes amounts to about 2% of the total length of the haploid set of the autosomes ${ }^{(2)}$ and on this basis we may perhaps assume that an average of 2% of the Y chromosomes of the spermatogonia suffer an aging hit in a 12 year period. Thus, we are thA led to conclude that the ratio, at birth, of boys and girls
should decrease by 2% for a 12 years' increase in the age of the father, and that it should decrease by 4 \% for a 24 years' increase.

Professor Peter B. Medawar has very kindly transmitted to me statistical figures for 1956 for England and Wales, showing the dependence of the ratio of boys and girls on the age of the mother. These ratios, for the age group of the mother indicated, and for the sample sizes given in brackets, are as follows:

 $(\sim 35,000) 104.8 ; 40-44(\sim 10,000) 102.6$.

Because there is a strong correlation between the age of the father and the age of the mother these data are in good qualitative agreement with the prediction of our theory of the aging process.

In view of the small samples involved on which data of this type are based, it would be hardly worth while to attempt a quantitative analysis in the hope of obtaining a quantitative confirmation of the prediction of the theory. For a more sophisticated analysis of birth data of this type the reader is referred to the work of those ${ }^{(3)}$ who attempt to separate the influence of the age of the father and the age of the mother on the sex ratio at birth.

It is tempting to postulate that a spermatozoon which is derived from a spermatogonium in which an autosome has suffered an aging hit, may have a much smaller chance of reaching and fertilizing the ovum, than a spermatozoon which is derived from a spermatogonium in which none of the autosomes have suffered on aging hit. On this basis we may then assume that a spermatozoon carrying an autosome that has suffered an aging hit, or a spermatozoon that is missing an autosome, will fertilize the ovum only rarely, and that on these rare occasions there will be an early abortion. Accordingly, the number of early abortions should increase with the age of the Lut it differelt father it is possible, howoverf to rake a quantitative pgediction in this regard on the basis of the theory.

The theory permits us to predict, the fraction p of the spermatozoa that carry a haploid setp of chromosomes which have
remained un-hit, as a function of the age of the male, and we may write

$$
P=e^{-\frac{\text { age }}{2 \tau}}
$$

where \approx is the average time interval between aging hits suffered by the diploid sets of chromosomes. In the case of Man we have $\tau=$ 6 years.
may be eppected to Because only the fraction p of the spermatozoa lead to a successful pregnancy, it is possible experimentally to test the prediction of the theory in animals for which adequate methods have been worked out for artificial insemination.

In general we may expect, tiki for the young male, that the number of spermatozoa that need to be inseminated in order to have a high probability for a successful pregnancy, is only a small fraction of the number of the spermatozoa contained in one ejaculate. In order to test the prediction of the theory one would need to determine for young males, age (1), proxy the number of spermatozoa that must be inseminated in order to obtain a successful pregnancy with a given low probability $n 0 \%$. The theory then predicts that in an old male, age (2), the number of spermatozoa used in inseinination must be higher by a factor $\sigma f \mathrm{P} / / \mathrm{P}_{2}$ in order to obtain a mecessful pregnancy with the same probability. For $\mathrm{p} / \mathrm{p}_{2}$ we may write:

$$
p_{1} / p_{2}=e^{\frac{\operatorname{age}(2)-\operatorname{agc}(1)}{2 \tau}}
$$

Leo Szilard
The Enrico Fermi Institute for Nuclear Studies The University of Chicago Chicago 37, Ill.
(1) Leo Szilard, Proc.Nat.Acad.Sc.,U.S.A., Vol. 45 pp 32-45 Jan. 1959
(2) J.H.Tijo and T.T.Puck, Proc.Nat.Acad.Sc.,U.S.A.,Vol. 44 p.1929,1959
(4) E. Novitzky and A.W.Kimball, Amer.J.Human Genetics /1958.

$$
\begin{aligned}
& \text { Vital Shanestic At the II.S halo. pp. }{ }_{-268} \\
& \text { alI p213 } 1955
\end{aligned}
$$

Recently I have attempted to develop a general theory of aging applicable to mammals. ${ }^{(1)}$ This theory assumes that, during the life time of the animal, whole chromosomes, which are contained in the somatic cells, suffer a total loss of function in a single random event. It further assumes that the probability of such an event remains constant throughout lifetime and that it is the same for all individuals of a given species.

From the U.S. life tables I have derived on the basis of the theory the frequency with which such α random events occurp in Man and found that on the average one chromosome, of the haploid chromosomal set of the somatic cell, suffers such a "hit" in about twelve years. If we assume that this holds also for the spermatogonia in Man, we should then expect that the ratio of boys and girls at birth decreases with the age of the father. This conclusion is based on the following notions:

We may assume that any cell of the male becomes non-functional if the X chromosome for which the cell is hemizygous suffers an aging hit, i.e. the absence of the X chromosomes is lethal for the somatic cell in the male. The absence of the I chromosome is not lethal for the somatic cell and, as a matter of fact, it need not be lethal even for the zygotis; there exist individuals whose cells contain one X chromosome and no I chromosome and these exhibit Tumer's Syndrome.

Accordingly, if the X chromosome in a spermatogonium suffers an aging hit, then the cell is eliminated; if the I chromosome in a spermatogonium suffers an aging hit, then the cell remains fully functional and will give rise to spermatozoa, but only to spermatozoa which contain an X chromosome.

The length of the I chromosomes amounts to about 2% of the total length of the haploid set of the autosomes ${ }^{(2)}$ and on this basis we may perhaps assume that an average of 2% of the Y chromosomes of the spermatogonia suffer gn aging hit in a 12 year period. Thus, we aro lee fomposclad that the ratio, at birth, of boys and girls should decrease by 2% for a 12 jears' increase in the age of the father,
and that it should decrease by 4% for a 24 years' increase.
One may compute on the basis of birth data ${ }^{(3)}$ for the United States, 1955, the dependence of the ratio of boys and girls on the age of the father. For the ace group of the father indicated and for the sanple sizes - for boys alone or girls alone - given in brackets, the ratios are as follows:
15-19 years ($\sim 46,000)$; 106.7; $20-24$ years ($\sim 410,000): 105.7$;
25-29 years $(\sim 590,000): 105.0 ; 30-34$ years ($\sim 440,000$): 105.0;
$35-39$ years $(\sim 250,000): 105.0 ; 40-44$ years $(\sim 120,000): 104.1:$
$45-49$ years ($\sim 45,000$): 103.6.
These data do not take into account the age of the mother and there is of course a strong correlation between the age of the father and the age of the mother. What one would want to know is the dependence of the sex ratio at birth on the age of the father, for a fixed age of the mother. However, if one tabulates the available data on this basis the sample sizes become too small.

Prom the above quoted data it would appear that the patio of boys and girls does fall with increasing age of the father bus that It does not fall linearly with the age of the father, as the theory would demand. We can not say as yet whecher data of this type contradict the theory because the sample sizes are too small, but they may conceivably contradict the theory when sufficiently large samples bocome available.

We propose to tum now to certain other implications of the theory. - It is tompting to postulate that a spermatozoon which is derived from a spermatgesonitum in which an autosome has suffered on aging hit, may have afinuch smallor chance of reaching and fertilizing the ovum, than a spermatozoon which is dorived from a spematogonium in which none of the autosomes have suffered an aging hit. On this basis we may thenfassume that a spermatozoon carrying an autosome that has suffored an aging hit, or a spermatozoon that is missing an autosome, will fertilize the ovum only rarely, and that on these raxe occasions there will be an early abortion. Accordingly, the number of early abortions should increase with the age of the father.

The theory permits us to predict the fraction p of the spermatozoa that carry a haploid set of chromosomes which have remained unhit, es a function of the age of the male, and we may write

$$
p=e^{-\frac{\text { age }}{2 \tau}}
$$

where τ is the average time interval between aging hits suffered by the diploid sets of chromosomes. In the case of Nan we have $\tau_{m} 6$ years.

Because only the fraction p of the spernatozoa may be expected to lead to a successful pregnancy, it is possible experimentally to test the prediction of the theory in animals for whichifadequate methods butulluobucontealoud for artificial insemination.

In general we may expect, for the joung male, that the number of spermatozoa that need to be inseminated in order to have a high probability for a successful pregnancy, is only a small fraction of the number of the spermatozoa contained in one ejaculate. In order to test the prediction of the theory one would need to determine for young males, age (1), the number of spermatozoa that must be inseminated in order to obtain a successful pregnency with a given low probability. The theory then predicts that in an old male, age (2), the number of spermatozoa used in insemination must be higher by a factor of P_{1} / P_{2} in order to obtain a successful pregnancy with the same probability. For $\mathrm{P}_{1} / \mathrm{p}_{2}$ we may write:

$$
\begin{gathered}
p_{1} / p_{2}=e^{\frac{\operatorname{age}(2)-\operatorname{age}(1)}{2 \tau}} \\
\text { The Enrico Pemi Institute Sor Nuclear Stuaies } \\
\text { The University of Chicago } \\
\text { Chicago 37, Ill. }
\end{gathered}
$$

(1) Leo Szilard, Proc.Nat.Acad.So.,U.S.A., Vol.45,pp 32-45, おarr 1959
(2) J.H.Tijo and T.T.Puck, Proc.Nat.Acad.Sc.,U.S.A.,Vo1. 44 p.1929, 1959
(3) Vital Statistics of the U.S., Vol.1 p.213, 1955.

Soure

We may assume that the spernatogonia are lost ot envertain and are replaced by other spermatogonia undergoing division§. If spermatogonia which lack a functioning Y chromosome divide at the same rate as spometogonia which coify a fanctioning y chromosome, then the ratio, at birth, of boys and girls vould decrease by 2% for a 12 years increase in the age of the father, and by 4% for a 24 years increase. However, if the spermatogonia which lack a functioning Y chromosome undergo divisions at a sonewhat lower rate, then the ratio of boys and girls would initially, femprunge fothom, decrease with the fathor's age at the rate quoted above, but the ratio would approach a fired value with increesfing age of the falher.

Insert 2.
From the above quoted data it would appear that the ratio of
 howeper,
relenart be possible to draw nem conclusions which are esinterost from the point of view of the theory until data based on larger samples become aveileble.

