

Correspondence Directory

Campus Directory Information
(858) 534-2230

Admissions

Campus Tours

Educational Opportunity

Program (EOP)

Financial Aids (Loans and Grants)
Foreign Students' Affairs
Housing
On-Campus
Off-Campus
Part-Time Employment
On-Campus
Off-Campus
Provosts
Eleanor Roosevelt College
Muir College
Revelle College
Thurgood Marshall College Earl Warren College
Registration
Residence Status
Scholarships
Student Activities
Transfer Student Services
GRADUATE
Dean of Graduate
Studies and Research
Admissions
Affirmative Action
Fellowships
Financial Aids (Loans and Grants)
Graduate Women's Program
Housing

Teaching and Research Assistantships

Office of Admissions and Relations With Schools
Office of Admissions and Relations With Schools
Office of Admissions and Relations With Schools

Financial Aid Office
Office of International Education

Housing Administration
Office of Housing Services
Career Services Center

Building 412
H\&SS Building, Room 2126
Revelle Provost Building
Thurgood Marshall College Admin. Building
Literature Building, Room 3210
Admissions \& Registrar
Admissions \& Registrar
Financial Aid Office
University Events Office
Office of Admissions and Relations With Schools

Office of Graduate Studies and Research
(Address the appropriate department of instruction.)
Office of Graduate Studies and Research
Office of Graduate Studies and Research
Financial Aid Office
Office of Graduate Studies and Research
Graduate Apartments
Residential Apartments Office
(Address the appropriate department of instruction.)

Building 301, University Center, 0021, (858) 534-4831
Price Center Theater, 0075, (858) 534-1935
Building 301, University Center, 0021, (858) 534-4831

Building 201, University Center, 0013, (858) 534-4480
International Center, 0018, (858) 534-3730

Trailer 310, University Center, 0041, (858) 534-4010
Student Center Building A, 0309, (858) 534-3670
Career Services Center, 0330, (858) 534-4500

University Center, 0069, (858) 534-2235
Muir Campus, 0106, (858) 534-3583
Revelle Campus, 0321, (858) 534-3262
Marshall Campus, 0509, (858) 534-4002
Warren Campus, 0422, (858) 534-4350
Building 301, University Center, 0021R, (858) 534-3150
Building 301, University Center, 0021R, (858) 534-4586
Building 201, University Center, 0013, (858) 534-4480
Price Center, 0078, (858) 534-4090
Building 301, University Center, 0021, (858) 534-4831

Building 518, Eleanor Roosevelt College, 0003, (858) 534-3555

Building 518, Eleanor Roosevelt College, 0003, (858) 534-3871
Building 518, Eleanor Roosevelt College, 0003, (858) 534-3556
Building 201, University Center, 0013, (858) 534-3807
Building 518, Eleanor Roosevelt College, 0003, (858) 534-3555
9224 B Regents Road, 0907, (858) 534-2952

162 Medical Teaching Facility, 0621, (858) 534-3880

Admissions Office

SCHOOL OF MEDICINE

Admissions Office

Contents

NOTE:

While efforts have been made to assure the accuracy of statements in this catalog, it must be understood that ail courses, course descriptions, designations of instructors, and all curricular and degree requirements contained herein are subject to change or elimination without notice. Students should consult the appropriate department, school, college, or graduate division
Correspondence Directory1
Calendar, Academic and Administrative Year, 2001-2002 5
Undergraduate Admission Information and Enrollment Deadlines
Graduate Admission Information and Enrollment Deadlines 7
Introduction 9
Undergraduate Majors Offered 11
Choosing a College at UCSD. 15
Graduation Requirements in the UCSD Colleges 17
Revelle College. 19
John Muir College 23
Thurgood Marshall College 27
Earl Warren College 31
Eleanor Roosevelt College 35
Undergraduate Admissions, Policies and Procedures 39
Undergraduate Colleges and Majors 39
Admission Policy and Selection Criteria 40
Freshman Applicant Admission 41
Transfer Applicant Admission 44
Advanced Placement Credit
Application to College and Major Requirements 46
International Applicants 49
How to Apply for Admission 49
Estimated Expenses (On-Campus Undergraduate
California Residents) 51
Undergraduate Registration 53
The Undergraduate Program 53
California Residence for Tuition Purposes 54
Payment of Fees 57
Academic Regulations 61
Undergraduate Degree Requirements 61
Grading Policy 66
UCSD Policy on Integrity of Scholarship 69
Absence/Readmission to the University 73
Graduate Studies 75
Graduate Degrees Offered, 2001-2002 77
Master's Degrees 78
The Doctor of Philosophy Degree. 80
Special Degree Programs 82
Fees. 84
Financial Assistance 86
for current information, as well as for any special rules or requirements imposed by the department, school, college, or graduate division.

UCSD on the World Wide Web:
http://www.ucsd.edu
General Policies and Requirements 88
Grades 88
Admission Requirements 90
Application Procedures 91
Admission and Registration 93
Campus Services and Facilities 97
Academic Services and Programs97
Academic Advising 97
Academic Computing 97
Education Abroad Program 99
Office of Academic Support and Instructional Services (OASIS) 99
San Diego Supercomputer Center 100
Extended Studies and Public Programs 103
The UCSD Libraries 106
Student Services and Programs 107
Dining 108
Students with Disabilities Office 108
Financial Aid 108
Undergraduate Scholarship Program 110
Housing: On- and Off-Campus 114
Recreation and Athletics at UCSD 116
Health Services 118
University Centers 119
Student Government 120
UCSD Alumni Association 121
UCSD Bookstore 122
Research at UCSD 125
University of California Institutes and Organized Research Units (ORUs) 125
Campuswide Institutes 127
Centers 130
Projects 135
The School of Medicine 137
Selection Factors 138
Programs for Prospective Medical Students 138
Scripps Institution of Oceanography 139
Graduate School of International Relations and Pacific Studies 141
Degree Programs 141
UCSD Faculty Members 143
Interviews 167
COURSES, CURRICULA, AND PROGRAMS OF INSTRUCTION
Academic Internship Program 199
African Studies Minor 199
Anthropology 200
Applied Ocean Science 210
Biochemistry 210, 232
Bioengineering 299
Biology 211
Biomedical Sciences 227
Biophysics 231
Chemistry and Biochemistry 232
Chinese Studies 243
Classical Studies 246
Clinical Psychology 250
Cognitive Science 252
Communications 261
Comparative Studies in Language, Society, and Culture. 270
Computer Science and Engineering (CSE) 312
Contemporary Black Arts Program 270
Contemporary Issues 271
Critical Gender Studies 271
Dimensions of Culture 275
Earth Sciences 276
Economics 281
Education Abroad Program (EAP) 287
Eleanor Roosevelt College 297
Engineering, Jacobs School of 297
Bioengineering 299
Chemical Engineering Program (CENG) 308
Computer Science and Engineering (CSE) 312
Electrical and Computer Engineering (ECE) 326
Mechanical and Aerospace Engineering (MAE) 345
Structural Engineering 359
English as a Second Language 368
Environmental Studies 368
Environmental Systems 370
Ethnic Studies 373
German Studies 381
Greek Literature 456
Health Care-Social Issues 382
Hebrew Literature 457
History 383
Human Development Program. 402
Humanities 406
International Relations and Pacific Studies
Graduate School (IR/PS) 407
Italian Studies 419
Japanese Studies 420
Judaic Studies 422
Language and Communicative Disorders 424
Latin American Studies 426
Latin Literature 458
Law and Society 429
Linguistics 431
Literature 442
The Making of the Modern World 467
Materials Science 468
Mathematics 471
Mathematics and Science Education 483
Mechanical and Aerospace Engineering (MAE) 345
Middle East Studies 484
Molecular Pathology 484
Muir College 486
Music 486
Neurosciences 499
Philosophy 502
Physics 509
Political Science 521
Psychology 532
Public Policy Analysis Minor 543
Religion, Study of 545
Revelle College 547
Russian and Soviet Studies 548
Science Studies 548
Science, Technology, and Public Affairs 550
Scripps Institution of Oceanography 550
Sociology 559
Space Science and Engineering 571
Spanish Literature. 446, 459
Structural Engineering 359
Subject A 571
Teacher Education Program 572
Theatre and Dance 581
Third World Studies 597
Thurgood Marshall College 599
UC San Diego Washington Center (UCDC) 599
Urban Studies and Planning 600
Visual Arts 604
Warren College 618
Appendix 621
Nondiscrimination and Affirmative Action Policy
Statement for the University of California 621
Notice to Students of Their Privacy Rights 621
UCSD Sexual Harassment Prevention and Policy 621
The Regents of the University of California 623
Chancellors of the UC Campuses 624
University Professors 624
UCSD Academic and Administrative Officers 625
UCSD Endowed Chairs 627
UC San Diego Foundation 628
UCSD Board of Overseers 629
UCSD Facts and Figures 629
Catalog Index 631
Campus Map 638

Academic and Administrative Calendar, 2001-2002

Fall Quarter, 2001

Winter Quarter, 2002
Fall quarter begins Monday, September 17
Instruction begins Thursday, September 20
Veteran's Day Monday, November 12
Thanksgiving holiday Thursday-Friday, November 22 2-23
Instruction ends Friday, November 30
Final exams Monday-Saturday, December 3-8
Fall quarter ends Saturday, December 8
Christmas holidays Monday-Tuesday, December 24-25
New Year holidays Monday-Tuesday, December 31-January 1
Winter quarter begins Friday, January 4
Instruction begins Monday, January 7
Martin Luther King, Jr. holiday Monday, January 21
Presidents' Day holiday Monday, February 18
Instruction ends Friday, March 15
Final exams Monday-Saturday, March 18-23
Winter quarter ends Saturday, March 23
Spring quarter begins Friday, March 29
Instruction begins Monday, April 1
Memorial Day holiday observance Monday, May 27
Instruction ends Friday, June 7
Final exams Monday-Friday, June 10-14
Spring quarter ends Saturday/Sunday, June 15/16
Summer Sessions, 2002
Summer Session I beginsindependence Day holidaThursday, July 4
Summer Session I ends Saturday, August 3
Summer Session II begins Monday, August 5
Labor Day holiday Monday, September 2
Summer Session Il ends Saturday, September 7

Undergraduate Admission Information and Enrollment Deadlines

	Fall Quarter	Winter Quarter	Spring Quarter
	2001	2002	2002
ADMISSION	Nov. 1-30, '00	*July 1-31, 01	*Oct. 1-31, 01
Filing period for application materials			
PRIORITY DEADLINE FOR APPLICATIONS FOR FINANCIAL AID	March 2, 01	March 2, ${ }^{\prime} 01$	March 2, '01
ENROLLMENT	May 9-Sept. 14	Oct. 31-Dec. 21	Feb. 13-Mar. 22
Students may enroll by telephone, via StudentLink, or in person after their appointment begins.			
Students may use add cards to enroll in restricted courses.			
Students may pay fees in person at Cashier's Office after enrolling.			
BILLING STATEMENTS MAILED TO ENROLLED STUDENTS	Aug. 15	Nov. 30	March 7
NEW STUDENT ENROLLMENT	June 18-Sept. 14	Dec. 3-7	March 18-22
DEADLINE DAY TO ENROLL WITHOUT LATE FEES			
Students who have not enrolled will be assessed $\$ 100$ in late fees. ($\$ 50$ late enrollment fee and $\$ 50$ late payment fee)			
Continuing Undergraduates	Sept. 7	Dec. 21	March 22
New Undergraduates	Sept. 14	Dec. 21	March 22
QUARTER BEGINS	Sept. 17	Jan. 4	March 29
LAST DAY FOR STUDENTS WHO MET ENROLLMENT DEADLINE TO PAY REGISTRATION FEES WITHOUT $\$ 50$ LATE PAYMENT FEE			
Continuing Undergraduates	Sept. 7	Dec. 21	March 22
New Undergraduates	Sept. 28	Jan. 11	Apr. 5
LAST DAY FOR STUDENTS ON FINANCIAL AID, SCHOLARSHIPS, AND FULL FEE WAIVERS TO NOTIFY THE CAMPUS IF NOT ATTENDING	Sept. 7	Dec. 21	March 22
LATE REGISTRATION PERIOD	Sept. 8-Oct. 5	Dec. 22-Jan. 18	Mar. 23-Apr. 12
INSTRUCTION BEGINS	Sept. 20	Jan. 7	April 1
ADD/CHANGE/DROP PERIOD	Sept. 20-Oct. 5	Jan. 7-18	Apr. 1-12
DEADLINE DAY TO PAY REGISTRATION FEES TO AVOID CANCELLATION OF CLASSES	Oct. 5	Jan. 18	April 12
FINAL DAY TO ADD COURSES	Oct. 5	Jan. 18	April 12
LAST DAY TO APPLY FOR PART-TIME STATUS	Oct. 5	Jan. 18	April 12
CHANGE/DROP PERIOD CONTINUES	Oct. 6-Nov. 26	Jan. 19-Mar. 8	Apr. 13-May 31
Last day to drop without "W."	Oct. 19	Feb. 1	April 26
Last day to change grading option, change variable units.	Oct. 19	Feb. 1	April 26
Last day to drop with "W" or final grade must be assigned.	Nov. 26	March 8	May 31
INSTRUCTION ENDS	Nov. 30	March 15	June 7
FINAL EXAMINATIONS	Dec. 3-8	March 18-23	June 10-14
FINAL DAY TO FILE "REQUEST TO RECEIVE GRADE INCOMPLETE"	Dec. 10	March 25	June 17
QUARTER ENDS	Dec. 8	March 23	June 14
COMMENCEMENT			June 15/16

[^0]
Graduate Admission Information and Enrollment Deadlines

FALL QUARTER 2002

ADMISSION			
Applicants should check with their prospective departments for deadline dates, although most have January 15, 2002, deadlines.			
GENERAL ADMISSIONS WITH FELLOWSHIP APPLICATIONS			
Deadline date for filing application materials	Jan. $15^{\prime} 02$		
Notice of awards	April 1 '02		
Acceptance of awards	April 15 '02		
DEADLINE FOR APPLICATIONS FOR FINANCIAL AID	March 2 '02		
GRADUATE ENROLLMENT DEADLINES	FALL	WINTER	SPRING
	QUARTER	QUARTER	QUARTER
	2001	2002	2002
OPEN ENROLLMENT: CONTINUING STUDENTS	May 9-Sept. 14	Oct. 31-Dec. 21	Feb. 13-Mar. 22
NEW STUDENT ENROLLMENT	June 18-Sept. 14	Dec. 3-7	Mar. 18-22
APPLICATION FOR INTERCAMPUS EXCHANGE PROGRAM	Aug. 27	Dec. 7	Mar. 4
FILING APPROVED LEAVE OF ABSENCE	Oct. 5	Jan. 18	April 12
DEADLINE DAY TO ENROLL WITHOUT LATE FEES	Sept. 14	Dec. 21	March 22
Students who have not enrolled will be assessed $\$ 100$. ($\$ 50$ late enrollment fee and $\$ 50$ late payment fee)			
QUARTER BEGINS	Sept. 17	Jan. 4	March 29
INSTRUCTION BEGINS	Sept. 20	Jan. 7	April 1
New and Readmitted Graduate Deadline to enroll and pay registration fees without payment of late fees	Sept. 29	Dec. 21	March 22
Late registration			
Last day for students who met enrollment deadline to pay registration fees without $\$ 50$ late payment fee.	Sept. 14	Dec. 21	March 22
Enrollment and payment of fees after this date requires payment of $\$ 50$ for late enrollment and $\$ 50$ for late payment of fees, totaling $\$ 100$.			
FINAL DAY TO ADD OR DROP	Oct. 5	Jan. 18	April 12
DEADLINE TO CHANGE GRADING OPTION	Oct. 19	Feb. 1	April 26
DEADLINE FOR DROPPING CLASSES WITHOUT "W" APPEARING ON THE TRANSCRIPT	Oct. 19	Feb. 1	April 26
MASTER'S DEGREE			
Filing for advancement to candidacy with completion in same quarter	Oct. 5	Jan. 18	April 12
Filing approved thesis	Dec. 7	March 22	June 14
DOCTOR OF PHILOSOPHY DEGREE			
Filing draft dissertation with doctoral committee for current quarter completion	Nov. 9	Feb. 22	May 10
Filing approved dissertation and related materials	Dec. 7	March 22	June 7
DROPPING CLASSES WITHOUT PENALTY OF "F" GRADE	Nov. 26	March 8	May 31
INSTRUCTION ENDS	Nov. 30	March 15	June 7
FINAL EXAMINATIONS	Dec. 3-8	March 18-23	June 10-14
REMOVING INCOMPLETE GRADES (I) ASSIGNED IN PRIOR QUARTER	Dec. 10	March 25	June 17
QUARTER ENDS	Dec. 8	March 23	June 14
COMMENCEMENT			June 16
COMPLETION OF REQUIREMENTS			
Final date for completion of all requirements for degrees to be awarded at end of quarter	Dec. 7	March 22	June 14

Dates are subject to change; see quarterly schedule of classes for changes.

Introduction

History

UCSD, one of the ten campuses which make up the University of California system, marked its fortieth anniversary during the 2000-2001 academic year. The other campuses of the University of California are located in Berkeley, Davis, San Francisco, Santa Cruz, Santa Barbara, Riverside Los Angeles, Irvine, and Merced. Each campus has its own distinct academic and social character, and each offers programs and facilities which set it off from the others.
As a member of the ten-campus family of the University of California, UCSD is a university in scale and scope. Graduate and undergraduate programs, offered in a wide range of disciplines, lead to the bachelor's, master's, M.D., and Ph.D. degrees. UCSD's Scripps Institution of Oceanography is internationally renowned, and UCSD's School of Medicine has won national acclaim for excellence. UCSD's Graduate School of International Relations and Pacific Studies is the only school of international affairs in the UC system. The UCSD School of Pharmacy is scheduled to open in 2002. At both the undergraduate and graduate levels, UCSD's curricula and programs have been highly ranked in recent surveys of American higher education.

UCSD enrolled its first undergraduates in 1964. Nevertheless, the campus can trace its origins in this area as far back as the late 1800 s. At that time, zoologists on the Berkeley campus, seeking a suitable location for a marine field station, found La Jolla a very desirable site. The facility they established became a part of the University of California in 1912 and was eventually named the Scripps Institution of Oceanography. In the late 1950s, when the Regents of the University of California decided to situate a general campus in the San Diego region, the Scripps Institution formed the nucleus of the new campus.

Today UCSD is recognized throughout the academic world for its faculty and for its graduate and undergraduate programs. The history of its growth may help to explain how, in some four decades, UCSD has been able to match institutions which were founded a century or more ago.

The faculty of UCSD now includes five Nobel laureates (four of whom hold joint appointments with the nearby Salk Institute); four recipients of
the National Medal of Science; one winner of the Pulitzer Prize; sixty-six members of the National Academy of Sciences; seventy Fellows of the American Academy of Arts and Sciences; fourteen Fellows of the American Philosophical Society; eight fellows of the Econometric Society; fifteen members of the National Academy of Engineering; six members of the International Academy of Astronautics; fourteen members of the Institute of Medicine; and two members of the National Academy of Education.

UCSD houses a chapter of Phi Beta Kappa, the best-known honor society for the liberal arts and sciences in America. The campus is one of 255 four-year institutions selected for this distinction since the society was founded in 1776, and more than 200 current faculty and staff are members.

In addition, UCSD is officially accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges.

University and Community

There are certain facts about UCSD to consider in making your choice. Among them are:

- UCSD, a four-year undergraduate campus, is also a full-fledged graduate and research institution. UCSD faculty and scholars are continually involved in research and developmental projects that put this campus on the cutting edge of science, technology, and the arts and humanities.
- San Diego has become one of America's major centers for high-technology electronics and biomedical industries. Students concentrating on sciences or engineering are actively sought by these industries to fill summer jobs and career positions. Off-campus internships also are available to UCSD students in all fields of study, with opportunities to serve at local television stations, in charity organizations, and in local, state, and federal government agencies as well as in a diverse array of local businesses.
- UCSD is recognized nationally as a major center for the arts and humanities, including music and theater.
- Undergraduates are offered opportunities to participate in certain research projects conducted by UCSD faculty. A number of UCSD undergraduates have developed computer skills that have led to their employment by leading computer manufacturers, and still others have gone on to form their own software enterprises as a direct result of their UCSD training.
- UCSD's unique small-college structure encourages undergraduates to play a more active role in student government, social life, and athletics than is generally open to them in other major universities. Opportunities for involvement in student governance are especially strong as there are student governing bodies at the campus-wide level as well as within the five individual colleges.
- UCSD fields twenty-three men's and women's intercollegiate athletic teams. Campus athletic facilities include the Recreational and Intramural Athletic Center (RIMAC), two gymnasiums, two swimming pools (one twentyfive yard, one fifty-meter), and numerous tennis and handball courts. The university's recreational and intramural athletic programs are among the most varied and extensive in the nation today.

Major Fields of Study

UCSD offers a wide variety of nationally recognized majors in a broad array of fields, summarized in the list below. (For a listing of graduate programs, refer to the section of this catalog titled "Graduate Studies.")

The academic departments of UCSD are listed below. Details and requirements of the various individual courses are found in the "Courses, Curricula, and Programs of Instruction" section of the catalog.

UCSD has limited the number of its academic departments. For example, there is only one Department of Literature. This system has proved especially valuable to undergraduates who choose to avoid overspecialization early in their studies.

A number of special, individually oriented programs use the combined resources of two or more departments. Among these are Chemical

Introduction

Engineering, Chinese Studies, Classical Studies, Computing and the Arts, Critical Gender Studies, Earth Sciences, Environmental Systems, Human Development, German Studies, Italian Studies, Japanese Studies, Judaic Studies, Latin American Studies, Study of Religion, Russian and Soviet Studies, the Teacher Education Program, Third World Studies, and Urban Studies and Planning.

Engineering students may choose from a number of majors in the Department of Bioengineering (BE), the Department of Computer Science and Engineering (CSE), the Department of Electrical and Computer Engineering (ECE), the Department of Mechanical and Aerospace Engineering (MAE) or the Department of Structural Engineering. All five departments seek to educate the engineer of tomorrow, with increased emphasis on computer methods and systems science.

Undergraduates interested in premedicine and prelaw majors should note that a variety of departments can serve their needs. For premed students, the common choices are biology, chemistry, psychology, and bioengineering. However, more and more students are electing double majors or are combining nontraditional majors with science majors. For prelaw students, nearly any undergraduate major will qualify a student for admission to a law school.

Should you need help in deciding on a major, many UCSD professionals are available to aid

you. Among them are the academic advisers in the provosts' offices of the various colleges, faculty members, and departmental advisers (who can help you to select an appropriate curriculum). Additional specialists in the Career Services Center and in Psychological and Counseling Services are available to help you appraise your personal aptitudes.

Summer Session

UCSD offers a Summer Session consisting of courses selected from the regular undergraduate curriculum and taught by UCSD faculty. In addition, Summer Session provides special educational opportunities not easily available during other quarters.

The Summer Session Program is open to UCSD students, students of other colleges and universities, qualified high school seniors, and the general public. Credit courses for selected professionals, such as teachers and engineers, are also offered.

Summer Session catalogs and registration forms are available in mid-March of each year. UCSD students may enroll via WebReg, http://studentlink.ucsd.edu. For free copies write to UCSD Summer Session, 9500 Gilman Dr., Dept. 0179, La Jolla, CA 92093-0179; or call (858) 534-4364; or send email to: summer@ucsd.edu. For up-to-date information the Web site address is http://orpheus.ucsd.edu/summer

What UCSD Does NOT Offer

Although the range and variety of programs offered at UCSD are very wide, there are certain disciplines which are not available on this campus. In some instances, the absence of a particular program reflects the academic philosophy of the UCSD campus and its faculty. In others, the

Undergraduate Departments

ARTS

Music
Theatre and Dance
Visual Arts

SCHOOL OF ENGINEERING

BE (Bioengineering)
CSE (Computer Science and Engineering)
ECE (Electrical and Computer Engineering)
MAE (Mechanical and Aerospace Engineering)
SE (Structural Engineering)
HUMANITIES
History
Literature
Philosophy

SCIENCE AND MATHEMATICS
 Biology

Chemistry and Biochemistry
Mathematics
Physics

SOCIAL SCIENCE

Anthropology
Cognitive Science
Communication
Economics
Ethnic Studies
Linguistics
Political Science
Psychology
Sociology

Departmental Undergraduate Majors

ANTHROPOLOGY
Anthropological (Archaeology). B.A.
Anthropology B.A.
Anthropology (BiologicalAnthropology).B.A.
BIOENGINEERING (BE)
Bioengineering B.S.
Bioengineering: Premedical B.S.
Bioengineering: Biotechnology. B.S.
BIOLOGY
General Biology B.S.
Animal Physiology and
Neuroscience. B.S.
Biochemistry and Cell Biology B.S.
Ecology, Behavior, and Evolution. B.S.
Microbiology B.S.
Molecular Biology B.S.
CHEMISTRY AND BIOCHEMISTRY Chemistry B.S.
Biochemistry/Chemistry. B.S.
Chemical Education B.S.
Chemical Physics B.S.
Chemistry/Earth Sciences B. .
Environmental Chemistry B.A./B.S.
Pharmacological Chemistry B. S.
COGNITIVE SCIENCE
Cognitive Science B.A./B.S.
Cognitive Science/Clinical Aspects of Cognition B.S.
Cognitive Science/Computation B.S.
Cognitive Science/Human Cognition. B.S.
Cognitive Science/Human Computer Interaction B.S.
Cognitive Science/Neuroscience B.S.
COMMUNICATION
Communication B.A.
COMPUTER SCIENCE AND ENGINEERING (CSE)
Computer Science B.A./B.S
Computer Engineering B.S
ECONOMICS
Economics B.A.
Management Science B.S.
Economics-Mathematics B.A.
EDUCATION (see Footnote 1)
ELECTRICAL AND COMPUTER
ENGINEERING (ECE)
Computer Engineering B.S.
Electrical Engineering B.S.
Engineering Physics. B.S.
ENGINEERING (see BE, CSE, ECE, MAE, and SE)ENGLISH (see Literature)
ETHNIC STUDIES
Ethnic Studies B.A.
HISTORY
History. B.A.
LINGUISTICS
Cognition and Language B.A.
Language Studies B.A.
Linguistics B.A.
LITERATURE
Literatures in English B.A.
French Literature B.A.
German Literature B.A.
Italian Literature B.A.
Russian Literature B.A.
Spanish Literature B.A.
Literature/Writing B.A.
Literatures of the World B.A.
MATHEMATICS
Mathematics B.A.
Applied Mathematics B.A.
Applied Mathematics (Scientific Programming) B.A.
Mathematics-Computer Science B.A.
Mathematics-Applied Science B.A.
Mathematics-Economics B.A.
Mathematics-Secondary Education B.A.
MECHANICAL AND AEROSPACE
NGINEERING (MAE)
Aerospace Engineering B.S.
Engineering Sciences B.S.
Mechanical Engineering B.S.
MUSIC
Computing and the Arts B.A.
Music. BA
Music/Humanities B.A.
PHILOSOPHY
Philosophy B.A.
PHYSICS
General Physics B.A.
General Physics/Secondary Education. B.A.
Physics. B.S.
Physics/Biophysics. B.S.
Physics with Specialization in Computational Physics B.S.
Physics with Specialization in Earth Sciences B.S.
Physics with Specialization in Materials Physics, B.S.
Physics with Specialization in
Astrophysics B.S.
POLITICAL SCIENCE
Political Science. B.A.
PRELAW (see Footnote 2)
PREMEDICAL (see Footnote 3)
PSYCHOLOGY
Psychology B.A./B.S.
SOCIOLOGY
Sociology. B.A.
STRUCTURAL ENGINEERING
Aerospace Engineering. B.S.
Engineering Sciences B.S.
Structural Engineering B.S.
TEACHER EDUCATION (see Footnote 1)
THEATRE
Dance B.A.
Theatre B.A.
Theatre and Dance. B.A.
VISUAL ARTS
Art History/Criticism B.A.
Art History/Criticism and Computing and the Arts B.A.
Art History/Criticism and Media B. A.
Art History/Criticism and Studio B.A.
Computing and the Arts B.A.
Media B.A.
Studio B.A.
NTERDISCIPLINARY MAJORS(see Footnote 4)
Chemical Engineering. B.S.
Chinese Studies. B.A.
Classical Studies B.A.
College Special Individual Majors. B.A.
Critical Gender Studies B.A.
Earth Sciences B.S.
Environmental Systems-Earth Sciences. B.S.
Environmental Systems-Ecology,
Behavior and Evolution B.S.
Environmental Systems-Environmental Chemistry B.S.
Environmental Systems-Environmental Policy B. A.
German Studies. B.A.
Human Deveiopment B.A.
Italian Studies B.A.
Japanese Studies B.A.
Judaic Studies B.A.
Latin American Studies B.A.
Religion, Studies in B.A.
Russian and Soviet Studies B.A.
Third World Studies B.A.
Urban Studies and Planning

Introduction

absence of a curriculum is temporary, awaiting the availability of funds, personnel, or facilities before a program can be offered. In still others, programs have not been included which would, in the university's judgment, unnecessarily duplicate comparable offerings on other UC campuses or at other institutions.

Among undergraduate majors currently not available at UCSD are:

1. Business.
2. Oceanography. Although UCSD does not offer an undergraduate major in oceanography, some marine science courses are offered in the Division of Biology. Students planning to pursue oceanography at the graduate level may select from a large number of undergraduate courses in the physical, biological, and earth sciences to build a firm foundation for later graduate work. Graduate-level work in oceanography is offered by the Scripps Institution of Oceanography, which is part of UCSD.
3. Nursing.
4. Industrial Arts.
5. Journalism. Although no major in journalism is offered, the Department of Literature offers a major in writing that can emphasize journalistic writing, and the development of writing skills is stressed in many disciplines. Many courses offered in the humanities and social sciences will provide the kind of broad-based preparation needed by practicing journalists. Several student newspapers are published on campus, providing ample "laboratory" opportunities for students to practice journalism.
6. Geography.
7. Physical Education. Note: UCSD does not offer athletic scholarships, and there is no intercollegiate football team at UCSD.

The Colleges of UCSD

UCSD undergraduates enjoy the benefits of a great university without the disadvantages of bigness found in many of today's mega-universities. The master plan conceived by UCSD's planners borrowed from the Oxford and Cambridge concept to provide a family of colleges, each with its own special academic and social flavor. UCSD's students thus gain a sense of belonging through affiliation with one of the campus's semiautonomous colleges.

Currently there are five colleges: Revelle, John Muir, Thurgood Marshall, Earl Warren, and Eleanor Roosevelt. A sixth college is scheduled to open in Fall 2002. Each college is independent, yet all are interrelated: all university academic and support facilities are available to all students, regardless of their college affiliation.

Each college is designed to accommodate up to 2,500-3,000 students. Each has its own residence halls, commons (which include dining facilities and meeting rooms), and classrooms. Each college has its own educational philosophies and traditions, its own set of general-education requirements, and its own administrative and advising staff. The objective is to give students and faculty the advantages of a small, liberal arts college combined with the best features of a major university.

Students applying to UCSD should select a college in order of their preference.

Details regarding the individual colleges are given in the "Choosing a College at UCSD" section of the catalog.

Recreation at UCSD

UCSD's undergraduate colleges are situated on a parklike site high on the bluffs overlooking the Pacific Ocean at La Jolla. La Jolla has some of
the finest beaches and coves, art galleries, and other attractions in the nation.
Much of UCSD's recreational and social life centers on the waterfront, with surfing, SCUBA diving, and beach activities among the favorite diversions of UCSD students. Throughout the area, students find a variety of amusements, ranging from the small-town atmosphere of waterfront Del Mar southward to the open-air markets of Tijuana and the primitive wilderness of Mexico's Baja California peninsula.
The city of San Diego, some twelve miles south of the campus, offers a wide range of recreational opportunities, including Old Town (California's birthplace), Sea World on Mission Bay, and the world-famous San Diego Zoo and Wild Animal Park. A year-round calendar of major league sporting events is offered in the city's Sports Arena and in San Diego Qualcomm Stadium, home of the Padres and the Chargers.

There are numerous theaters in San Diego, including the Old Globe Theatre in Balboa Park, site of the National Shakespeare Festival every summer. A year-round program of contemporary and classical professional theater may be enjoyed in the Old Globe and the adjacent Cassius Carter Centre Stage, and special summer theater fare is featured on the park's outdoor Festival Stage.

On-campus entertainment includes a yearround series of movies and cultural programs, dances, chamber music, and rock-band concerts sponsored by the University Events Office. The Department of Theatre and Dance presents plays in both the 500 -seat Mandell Weiss Theatre and the 500 -seat Forum Theatre. The Department of Visual Arts offers a continuing series of art shows in the Mandeville Art Gallery and displays of student art in other campus galleries.

Informal meeting places on campus are hubs of student activity throughout the day and evening, among them the Muir Rathskeller, Marshall College Mountain View Lounge, and the Price Center.

Mountains, Deserts, and Beaches

Many Southern Californians enjoy the out-ofdoors year-round. The San Diego metropolitan area enjoys the most comfortable climate in the United States, twelve months of the year.

Fishing opportunities are plentiful offshore in kelp beds west of La Jolla and surrounding the Coronado Islands in Mexican waters. Bass and trout fishing are available in nearby lakes. An hour's drive to the east, the Laguna Mountains provide pleasure during all seasons for campers and hikers. Beyond the Lagunas lies the vast Anza-Borrego Desert with its breathtaking display of wildflowers every spring.

The peninsula of Baja California, one of the world's last great wilderness areas, stretches for 900 miles southward from the international gateway at Tijuana. The peninsula-a mecca for lovers of unspoiled beaches and untouched mountains and deserts-is the site every year of the grueling Baja cross-country auto race.

Sports at UCSD

Through its intercollegiate athletic and intramural programs, UCSD provides its students with one of the more extensive and competitive sports programs in the United States. UCSD fields twenty-three intercollegiate athletic teams along with several club sports teams, while the intramural program provides for student competition in a wide variety of sports in three categories of play: men, women, and coed.

Intramural sports are highly popular with UCSD students. An estimated 60 percent of all students take part in one or more of the more than 1,500 teams involved in various sports during the course of the academic year.

Need More Information? Check the Following:

How do I apply for admission? See page 41. (See also "Note," below.)
How much does a UCSD education cost? See "Fees and Expenses," page 54.
What's the grading system at UCSD? See page 68.
How should I decide which college to choose at UCSD? See page 15.

What services and facilities are available to students at UCSD? See page 99.
Where do I write for more information? See inside front cover.
Note: An admissions packet for students interested in applying to UCSD can be obtained from any California high school or community college counselor's office. Out-of-state students may request a packet by writing to the Office of Admissions on any University of California campus.

Choosing a College at UCSD

One of the features which sets UCSD apart from most major universities in the United States is its family of undergraduate colleges: Revelle, John Muir, Thurgood Marshall, Earl Warren, and Eleanor Roosevelt. A sixth college is scheduled to open in Fall, 2002.

The division of the campus community into small colleges was patterned after the concept which has served Oxford and Cambridge so successfully for centuries. The planners of the new UCSD campus were convinced that students learn more, and find greater fulfillment in their personal lives, when joined academically and socially with a relatively small group of students. At the same time, the advantages to size in a university, including a faculty of international renown, first-rate teaching and research facilities, laboratories, libraries, and other amenities, were to be an important part of the design.

The result was an arrangement which combined the academic advantages of a large research university with the finest features of a small liberal arts college-the UCSD college system. Each of these semi-autonomous undergraduate colleges has its own residence facilities, staff, traditions, general-education requirements, and distinctive educational philosophy. The system was inaugurated with the opening of Revelle College in 1964. In the intervening years, four more colleges-John Muir, Thurgood Marshall, Earl Warren, and Eleanor Roosevelthave been established. Although many American university campuses have a separate college structure, in most cases, these colleges are designed to serve specific disciplines, such as engineering or business administration. At UCSD, however, any undergraduate may select from the full range of majors available. The choice of a college is not based on your major, but on your preferences in terms of the various educational philosophies and environments offered by the colleges.

UCSD's college system allows undergraduates to choose from among five distinct generaleducation curricula supplementing their major requirements. These curricula range from a very structured liberal arts program to a program with a broad range of electives. By contrast, most
universities offer only one general-education curriculum.

Students must rank the colleges in order of preference when applying for admission. Brief summaries of the various college curricula and philosophies follow. Later in this section, these variations are spelled out in considerable detail, college by college.

Revelle College
 Educational Philosophy

Revelle College stresses the broad character of general education. A structured liberal arts curriculum establishes a strong educational foundation for any major. All students complete a highly respected core humanities sequence and courses in the arts and social sciences. Students either meet proficiency in a foreign language or complete the fourth quarter of college level instruction. All students also complete sequences in mathematics and science, with separate courses available for science and non-science majors. Throughout the final two years, students concentrate on developing professional competence in an academic discipline.

This curriculum develops three main skills which are essential for a well-rounded education: learning to use the language of scholarship and science, learning how to think creatively, and learning how to learn.

Revelle College is distinguished by its emphasis on academics and student leadership. Its structured and well-rounded curriculum has been acclaimed nationally. Individual academic advising, honors programs, and programs that foster student-faculty interaction, are all hallmarks of UCSD's first college.

John Muir College Educational Philosophy

The faculty of John Muir College has established a flexible set of general-education and graduation requirements that ensures breadth and depth of learning and encourages the students of the college to take an active role in their own intellectual development. Students complete four year-long sequences drawn from the social sciences; the natural sciences or mathe-
matics; and the humanities, fine arts, or foreign languages. Many choices are available for each of these year-long sequences. Muir has a U.S. cultural diversity graduation requirement. Students also complete two analytical writing courses. Muir's requirements accommodate a wide range of interests and aptitudes. The relative openness and flexibility of its curriculum make Muir College particularly attractive to exceptionally able and well-prepared students with welldefined or developing academic interests.

John Muir College is distinguished by its atmosphere of friendliness and informality and a deep concern for the rights and welfare of others. Concern for one's fellow students goes well with Muir's educational philosophy, which stresses individual choice and development. The environment thus created fosters independence and responsibility.

Thurgood Marshall College Educational Philosophy

The dedicated focus of Thurgood Marshall College is the active development of the student as scholar and citizen. The college, a small liberal arts and sciences community, is characterized by an open, friendly environment in which students pursue any major in the natural and physical sciences, social sciences, engineering, humanities, and fine arts offered at the university.

The college's educational philosophy is guided by the belief that, regardless of a student's major, a broad liberal arts education must include an awareness and understanding of the diversity of cultures that comprise contemporary American society, and the richness that sociocultural diversity brings to the lives of American people. Therefore, the distinctive general-education program allows students course choices that include a critical examination of the human condition in modern American society.

Integral to the Marshall experience is the unique, three-quarter core sequence, "Dimensions of Culture-Diversity, Justice, and Imagination." This interdisciplinary, issues-oriented curricular experience explores how individuals and communities in America acquire their identifying characteristics. Students also choose
courses in mathematics or logic, natural/physical sciences, writing, humanities, and fine arts.

In addition to the strong academic program, Thurgood Marshall College is proud of its emphasis on the student as citizen. Students are encouraged to integrate educational alternatives and public service opportunities, such as Partners at Learning (PAL), for which they earn academic credit, into their curriculum. Through PAL and other options, such as internships and other public service and leadership activities, students develop skills learned in the classroom and apply them to real-world experiences. Toward that end, the Student Leadership Program is especially designed to encourage active participation in the governance of the college and in community service.

Thurgood Marshall College's hallmark is community, where students are encouraged to be active participants in their university education and take advantage of the abundance of opportunities to learn and develop as scholars and citizens.

Earl Warren College Educational Philosophy

Earl Warren College emphasizes curricula and programs that assist students in making a close connection between their undergraduate education and their personal and professional goals for their postbaccalaureate years. This pedagological approach is applicable to all students, regardless of their chosen field of study. As a means of supplementing curricular requirements, the college encourages students to take advantage of academic internships and careerlife planning programs to sharpen their skills and test their career choices.

Each student enrolled at Earl Warren College has the opportunity to develop an educational program best suited to his or her individual interests, but within a sound framework that ensures significant exposure in three disciplinary areas: humanities/arts, social sciences, and natural sciences. All students are required to take two focused collections of courses outside the general area of their major which, in the majority of cases, will include upper-division work, as well as introductory courses.

In addition, Warren College stresses the importance of the following attributes: student leadership development, an appreciation of diverse cultures, study abroad opportunities to enhance the educational experience, the impor-
tance of individual responsibility, and awareness of ethical issues and their application in contemporary society.

Eleanor Roosevelt College Educational Philosophy

Eleanor Roosevelt College (ERC) emphasizes a comprehensive general education designed to prepare students to compete successfully in the global and multicultural economy of the twenty-first century. Successful professional people will need to understand their own cultural heritage as well as those of people from other societies with whom they will be interacting in their workplaces and communities.

The perspectives gained at ERC prepare students well for the future, whatever their goals and their major field of study, and whether they plan to go on to graduate school, professional school, or the worlds of science and technology, business, or the arts.

At the core of the curriculum are six courses comprising The Making of the Modern World (MMW). This interdisciplinary sequence was developed by faculty from anthropology, history, literature, political science, and sociology. It teaches students to think historically and analytically, as well as across disciplines, about both Western and non-Western societies, and the ways humans have organized their experience in different places and times.

ERC students receive exposure to natural science, quantitative methods, foreign language, and fine arts, and each selects a geographic region for in-depth study. Interested students are encouraged and assisted in finding ways to study, work, or travel in other countries to expand their horizons.

A friendly and supportive campus community, ERC is also distinguished by its emphasis on helping each individual reach his or her full potential intellectuaily, and in those skills, contributing to effective participation and leadership.

As Eleanor Roosevelt wrote, "Whether or not they have made the world they live in, the young must learn to be at home in it, to be familiar with it. They must understand its history, its peoples, their customs and ideas and problems and aspirations." ERC students and graduates find themseives as much "at home" in the world as any of their generation, and more than most!

College Administration

The provost is a faculty member who acts as chief administrative officer and academic dean. In addition to the provost, each college has a director of academic advising and a dean of student life.

The academic departments and the college academic advising offices are designated campus units responsible for providing official academic advice and direction to undergraduate students. The college academic advising staff have primary responsibility for providing academic advice and services that assist new and continuing students in developing educational plans and course schedules which are compatible with their interests, academic preparation, and career goals.

The college academic advising offices conduct academic orientation/enrollment programs for all new students and advise continuing students about college general-education and graduation requirements. The advising staff of each college provide general academic and curricular information, clarify academic rules and regulations, review all aspects of academic probation, monitor academic progress, assist students with decision-making strategies, and give information about prerequisites and screening criteria for majors. In conjunction with the academic departments and the Office of the Registrar, the advising offices certify students for graduation and generally facilitate their academic adjustment to the university.

Moreover, college academic advisers are available to counsel students about educational alternatives; selection of courses and majors; program changes; new academic opportunities; and special programs such as exchange programs, honors programs, outreach programs, etc.

With a central concern for student development, dean's staff members provide a variety of nonacademic services such as coordinating both educational and social programs; overseeing residential programs; assisting students with decisions and procedures regarding withdrawal from school; coordinating disciplinary procedures, both academic and social; and making referrals to other student services on campus. (See also section on "Student Services and Programs.")

Whatever the question or concern, the provost and his or her staff stand ready at all times to assist undergraduates.

GRADUATION REQUIREMENTS IN THE UCSD COLLEGES

Unless otherwise indicated, the figures in this chart refer to the number of COURSES rather than the number of units. Most UCSD courses carry four quarter-units of credit, and a student usually takes four courses each quarter. Academic disciplines are classified as humanities/fine arts, social sciences, and mathematics/natural sciences/engineering. The term "noncontiguous" refers to a discipline that is different from that of the major. Students must meet the Subject A requirement prior to enrolling in the writing courses of their respective college. Each college's cultural diversity requirement can be fulfilled as noted by an asterisk (*) below.

GENERAL EDUCATION

REVELLE COLLEGE

HUMANITIES

university-level writing.
FOREIGN LANGUAGE0-4
Proficiency exam or number of
courses.
FINE ARTS \qquad
Art, music, theatre
PHYSICS AND CHEMISTRY 4
At least one course from each area (Sequences available for science and non-science majors.)

BIOLOGY \qquad
CALCULUS \qquad
(Sequences are available for science and non-science majors.)

SOCIAL SCIENCES \qquad To include at least one course in American Cultures*

AREA OF FOCUS \qquad
Focused on one subject noncontiguous to the major.

JOHN MUIR COLLEGE

WRITING

A Three-Course Sequence in each of TWO of the following categories: . \qquad
HUMANITIES FINE ARTS FOREIGN LANGUAGE

AND

A Three-Course Sequence. \qquad .3

INEITHER

MATHEMATICS (CALCULUS)

OR

NATURAL SCIENCE
(Sequences are available for science and non-science majors.)

AND

A Three-Course Sequence 3 IN
SOCIAL SCIENCES

THURGOOD MARSHALL

 COLLEGE
EARL WARREN COLLEGE

WRITING \qquad ETHICS AND SOCIETY 1 FORMAL SKILLS \qquad \ldots Two courses to be selected from a list including calculus, symbolic logic, computer programming, and statistics

PROGRAMS OF

 CONCENTRATION* \qquad .. 12NATURAL SCIENCES 3
One course each in biology, chemistry, and physics. (Courses are available for science and nonscience majors.)

MATHEMATICS AND LOGIC 2
(Courses are available for science and non-science majors.)
DISCIPLINARY BREADTH 4
Noncontiguous to the major. Two must be upper-division; one must include writing.

PUBLIC SERVICE(optional) The four-unit public service option may be used to fulfill one course in Disciplinary Breadth.
(for B.A./B.S. degrees in arts) sciences)
Two programs of concentration, each typically consisting of three lower-division and three upperdivision courses. Both programs must be noncontiguous to the major and to each other.

OR

AREA STUDIES 6
(for B.S. degrees in engineering) Two area studies each consisting of three courses. One area of study in humanities/fine arts and one in social sciences.

MINOR/ADDITIONAL GRADUATION REQUIREMENTS

Optional Minor

Optional Minor
*One U.S. Cultural Diversity course to be chosen from an approved list as part of the major, optional minor, elective, or an appropriate general-election course.

Optional Minor

MINIMUM NUMBER OF COURSES REQUIRED FOR GRADUATION

B.A./B.S. degrees require a minimum of 46 courses (184 units); at least 15 courses (60 units) must be upper-division.
B.A./B.S. degrees require 45 courses (180 units). At least 18 courses (72 units) must be upper-division.
B.A./B.S. degrees require 45 courses (180 units). At least 15 courses (60 units) must be upper-division.
B.A./B.S. degrees require 45 courses (180 units). At least 15 courses (60 units) must be upper-division.

ELEANOR ROOSEVELT COLLEGE

THE MAKING OF THE

 MODERN WORLD 6 Includes two six-unit courses with intensive instruction in universitylevel writing and cultural diversity*.FOREIGN LANGUAGE2-3
One quarter may be waived for students who are biliterate.

FINE ARTS

\qquad To include study of both Western and non-Western arts.

NATURAL SCIENCES 2
(Sequences are available for science and non-science majors.)

MATHEMATICS/

COMPUTER SCIENCE
.. 2
(Sequences are available for science and non-science majors.)

REGIONAL

SPECIALIZATION \qquad . 3
To include at least two courses taken at the upper-division level.

Optional Minor-Students may choose a noncontiguous minor in lieu of a Program of Concentration.
*One Cultural Diversity in U.S. Society course to be chosen from an approved list as part of the major, Programs of Concentration/Area Studies, or elective.

Optional Minor-Students may combine foreign language and regional specialization course work to create a minor focusing on a particular geographic area.

MAJOR

B.A./B.S. degrees require 45 courses (180 units). At least 15 courses (60 units) must be upper-division.

[^1]
Phi Beta Kappa

The UCSD chapter of Phi Beta Kappa elects student members on the basis of high scholastic achievement in academic programs emphasizing the liberal arts and sciences. Phi Beta Kappa was founded in 1776 at the College of William and Mary in Virginia and is the oldest, most prestigious, academic honor society in America. See also "Honors" in the index.

Honors

Each college awards honors to outstanding students on the basis of criteria approved by the Academic Senate. These honors are posted on students' transcripts and noted on their diplomas. For further details, see "Honors" in the index.

Transfer Students

Students transferring to UCSD must complete the requirements of the chosen undergraduate college. Students, especially biology, engineering, and other science majors, are strongly advised to complete all lower-division preparation for the major prior to enrollment. In preparation for the New Student Orientation Program, the College Academic Advising staff will evaluate the transfer course work for each student to determine which courses are applicable to gen-eral-education requirements. Since a variety of general-education options are available, students are encouraged to choose carefully the college which best fits their general-education program or course work. See Undergraduate Admissions, Policies and Procedures, "University of California Transfer Agreement."

Revelle College, the first college on the UCSD campus, was named in honor of Dr. Roger Revelle, former university-wide dean of research and for many years director of UCSD's Scripps Institution of Oceanography. Dr. Revelle is perhaps best known for his prediction of the Greenhouse Effect.

Revelle College was established in 1958. With the establishment of Revelle College, the faculty was given a rare opportunity to shape an undergraduate curriculum that would, insofar as any educational program can, prepare its students for the modern world. From the outset of planning the curriculum, the faculty asked: What sort of knowledge must students have if they are to be liberally educated? In what areas? To what depth? How specialized must that education be in the undergraduate years?

The educational philosophy of Revelle College was developed in response to such fundamental questions. Its undergraduate program is based on the assumption that students who are granted the bachelor's degree will have attained:

1. An acceptable level of general education in mathematics; foreign language; the physical, biological, and social sciences; the fine arts; and the humanities.
2. Preprofessional competence in one academic discipline.
3. An understanding of an academic area outside their major field.

To this end, a lower-division curriculum has been established which enables students to acquire an understanding of the fundamental problems, methods, and powers of the humanities and the arts, the social and behavioral sciences, mathematics, and the natural sciences.

The lower-division curriculum assumes that undergraduates should not concentrate heavily in a special field until they have had a chance to learn something about the various fields that are open to them. Their general education must, then, be thorough enough for them to see the possibilities in those fields. Early in their careers, they should know three languages: their own, a foreign language, and the universal language of mathematics.

During the students' junior and senior years, their main efforts will be devoted to intensive work in their major field at a level of competence that will enable them to continue their study at the graduate level. In addition to the major, students will study an area of learning distinctly different in content from the major.

Revelle College stresses the broad character of its curriculum. Every student, for example, is required to achieve a certain competence in calculus. The emphasis on calculus and physical science is in some respects a deviation from educational theory of the last hundred years. The older "general-education" theory demanded that scientists achieve a reasonable competence in the social sciences and humanities. The rising importance of science and technology justifies the application of the theory to nonscientists as well.

Four years of college can at best yield only a limited knowledge; the major task is to train students so that they can adapt quickly and effectively to the rapidly changing world.

General-Education Requirements

Students are encouraged to meet the gener-al-education requirements and the prerequisites to the major as rapidly as possible. Variations within the program will occur, of course, depending on the student's interest, prior training, and ability to make use of individual study.

Freshmen who enter with Advanced Placement credits can use many of these advanced courses to meet general-education requirements (see Advanced Placement chart in "Undergraduate Admissions, Policies and Procedures"). Transfer students may meet all general-education requirements before entering by following articulation agreements with community colleges or taking at any institution courses which Revelle College deems approximately equivalent in content to those at UCSD.

Those who demonstrate superior achievement and competence in an academic area may take advanced courses and individual study programs.

In order to fulfill the requirements in the principal fields of knowledge, the student takes a recommended set of courses, the prerequisites
for which have been met by the general admission standards of the university.

The general-education requirements are:

1. Satisfaction of the general University of California requirements in Subject A and American History and Institutions.
2. A five-course sequence in an interdisciplinary humanities program including two six-unit courses with intensive instruction in universi-ty-level writing. Written work is also required in the remaining (four-unit) three-quarter courses.
3. One course in the fine arts.
4. Three lower-division courses in the social sciences, to include two courses in the same social science and at least one course in American cultures.
5. Three courses in mathematics (three quarters of calculus).
6. Five courses in the physical and biological sciences to include four quarters of physics and chemistry and one quarter of biology.
7. Basic conversational and reading proficiency in a modern foreign language or advanced reading proficiency in a classical language or completion of the fourth quarter of foreign language instruction with a passing grade.
8. Three courses in an area unrelated to the major and focused in one department, subject area, or topic.

1. SUBJECT A AND AMERICAN HISTORY AND INSTITUTIONS

Satisfaction of the university requirements in Subject A and American History and Institutions. (See "Subject A," "Undergraduate Registration," "Academic Regulations," "Humanities," and "Undergraduate Admissions, Policies and Procedures: American History and Institutions.")

2. HUMANITIES

The purposes of the general-education requirement in humanities are two-fold: (a) to confront students with significant humanistic issues in the context of a rigorous course which can serve as an introduction to the academic disciplines of history, literature, and philosophy; (b)
to provide training and practice in rhetorical skills, especially persuasive written expression.

Students may meet this requirement by satisfactorily completing five courses of the interdisciplinary humanities program offered by the Departments of History, Literature, and Philosophy, which focus on some of the great documents of civilization. The sequence of courses, Humanities 1 through 5 , is designed to meet the humanities and writing requirement of Revelle College. (Students must have satisfied the university's Subject A requirement before registering for this sequence.)

In connection with learning about the Western tradition, students in Humanities 1 and 2 (six units each) will receive intensive instruction in university-level writing. Instruction in writing is provided in discussion sections, and frequent writing exercises are required. Written work is also required in the remaining three quarters of the sequence (Humanities 3-4-5, four units each).
For course descriptions, see "Courses, Curricula, and Programs of Instruction: Humanities."

3. FINE ARTS

One course is required to provide an introduction to the fundamental experience in the interpretation of creativity in theatre, dance, music, or visual arts. (See "Courses, Curricula, and Programs of Instruction: Theatre and Dance, Music, and Visual Arts.")

4. SOCIAL SCIENCES

Three lower-division courses offered by the Departments of Anthropology, Critical Gender Studies, Economics, Human Development, Linguistics, Political Science, Psychology, Sociology, or Urban Studies and Planning. At least one of these courses must be from a list approved as meeting the requirement in American Cultures (TAG students exempt).

5. MATHEMATICS

As an integral part of their liberal education, students will be brought into contact with a significant area of mathematics. Furthermore, they will gain the facility to apply mathematics in their studies of the physical, biological, and behavioral sciences.

There are two beginning-year sequences which meet the Revelle College mathematics requirement. Both sequences include integral and differential calculus. Freshman placement in
these sequences is dependent upon the student's high school or college preparation in mathematics (as evidenced by a placement examination) as well as future plans. Students are urged to keep their mathematical skills at a high level by taking mathematics during their senior year in high school. (See "Courses, Curricula, and Programs of Instruction: Mathematics.")

6. NATURAL SCIENCES

The natural science courses, including the physical and biological sciences, present the fundamental concepts of modern physics, chemistry, and biology. For the student who may major in one of these disciplines, the courses provide a background and preparation for further study; for those students who will continue their studies outside the natural sciences, they offer an opportunity to gain a certain understanding and appreciation of current developments in these fields.

Students choose their five required physical and biological science courses from the following sequences depending upon their interests, prior preparation, and intended majors. The Department of Chemistry offers Chemistry 11 , 12, 13 (for non-science majors), Chemistry 6A-BC , and $6 \mathrm{AH}-\mathrm{BH}-\mathrm{CH}$ (honors). The Department of Physics offers four acceptable sequences: Physics $1 A-B-C, 2 A-B-C-D$, and $4 A-B-C-D-E$, and $11 A-11 B$ (for non-science majors). The Department of Biology offers Biology 1 or 3 or 10 (for non-science majors) to meet the Revelle biology requirement. (See "Chemistry," "Physics," and "Biology" in the "Courses, Curricula, and Programs of Instruction" section of this catalog.)

Students planning to major in a science must consult the appropriate departmental listing under "Courses, Curricula, and Programs of Instruction" to find the additional preparation needed for their major.

7. FOREIGN LANGUAGE

Revelle College students are required to demonstrate basic conversational and reading proficiency in any modern foreign language, or advanced reading proficiency in a classical language or complete the fourth quarter of foreign language instruction with a passing grade.

Modern foreign language programs are currently offered in Chinese, French, German, Hebrew, Italian, Japanese, Korean, Russian, Spanish, and classical language programs are
offered in Greek, Latin, and Hebrew. Students who have preparation in other languages should see the Office of the Revelle Provost to arrange a proficiency examination. This exam may also be taken by native speakers of any foreign language without further course study.

8. AREA OF FOCUS

Three courses in an area noncontiguous to the major are required. The three courses must be interrelated and should focus on some discipline, subject area, or topic. For the purposes of this requirement, the humanities/arts, the social sciences, and the natural sciences/engineering/mathematics are considered three different areas. Courses from a single department will be considered focused. Courses from more than one department should be approved prior to enrolling. The area of focus is not posted to the diploma or transcript.

These three courses may not be used on any other requirements. These courses may be upper-division or lower-division but one should keep in mind that graduation requirements stipulate that at least sixty units of all work must be from upper-division courses. The courses may be taken pass/not pass and Advanced Placement or International Baccalaureate credits may be used.

Students may complete an optional noncontiguous minor to replace this requirement, if they wish to do so.

Sample Program

FALL	WINTER	SPRING
FRESHMAN YEAR		
Foreign Language	Humanities 1	Humanities 2
Mathematics	Foreign Language	Foreign Language
Natural Science	Mathematics	Mathematics
Subject A or Fine Arts	Natural Science	Natural Science
SOPHOMORE YEAR		
Natural Science	Natural Science	Fine Arts or elective
Social Science	Social Science	Social Science
Humanities 3	Humanities 4	Humanities 5
Major Preparation	Major Preparation	Major Preparation

* Science majors may want to take part of the social science requirement in the junior year to allow time for additional science laboratories and/or mathematics.

The Major

All undergraduate majors offered at UCSD are available to Revelle College students. An excep-
tional student who has some unusual but definite academic interest for which a suitable major is not offered on the San Diego campus may, with the consent of the provost of the college and with the assistance of a faculty adviser, plan his or her own major. The Revelle Individual Major must be submitted no later than three quarters before the student's intended graduation and be approved by the Executive Committee of the college before it may be accepted in lieu of a departmental or interdepartmental major. The faculty adviser will supervise the student's work, and the provost must certify that the student has completed the requirements of the individual major before the degree is granted.

Students who fail to attain a grade-point average of at least 2.0 in work taken in the prerequisites for the major, or in the courses in the major, may, at the option of the department, be denied the privilege of entering or of continuing in that major. Students majoring in MAE, biology, bioengineering, CSE, ECE, or math/computer science need to be aware of additional screening for acceptance into the major.

Optional Minor

A minor is no longer required in Revelle College. However, if a student wishes to complete a Department Minor or a Project Minor and have it posted to the transcript, he or she may do so. If a student completes either of these types of minors in a field noncontiguous to that of the major, it will replace the three-course noncontiguous area of focus general education requirement.

There are two types of minors from which to choose in Revelle College:

1. Department Minor-All courses for the minor are taken in one department and they are chosen with the advice and approval of a minor adviser in that department.
2. Project Minor-A project minor centers on a topic or period chosen by the student. The project is often interdepartmental and interdisciplinary. The program must have the approval of a minor adviser. (See Academic Regulations: Undergraduate Minors and Programs of Concentrations.)

The current university guidelines for the minor require seven courses (twenty-eight units), five of which must be upper-division. Students
who entered prior to January 1, 1998, may complete their six course (twenty-four unit), three upper-division course minors.

Pass/Not Pass Grading Option

1. No more than one-fourth of an undergraduate student's total course units taken at UCSD and counted in satisfaction of degree requirements may be graded on a Pass/Not Pass basis.
2. Courses used to satisfy the noncontiguous area of focus may be taken on a Pass/Not Pass basis. Use of Pass/Not Pass grades on the optional minor is decided by the department.
3. Courses taken as electives may be taken on a Pass/Not Pass basis.
4. The following general education courses may be taken Pass/Not Pass: American cultures, fine arts, language and area of focus. Non-science majors may take courses for the natural science requirement Pass/Not Pass.
5. Upper-division courses to be counted toward a departmental major may not be taken on a Pass/Not Pass basis. Individual departments may authorize exceptions to this regulation.

The Graduation Requirements

In order to graduate from Revelle College, a student must:

1. Satisfy the University of California requirements in Subject A and American History and Institutions.
2. Satisfy the general-education requirements.
3. Successfully complete a major consisting of at least twelve upper-division courses as stipulated by the department and meet the department's major residence requirement if applicable.
4. Complete a minimum of fifteen upperdivision courses (60 units).
5. Pass at least 184 units for the B.A./B.S. degree. (No more than 3.0 units of physical education, whether earned at UCSD or transferred from another institution, may be counted towards graduation.)
6. Attain a C average (2.0) or better in all work attempted at the University of California (exclusive of University Extension). Departments may require a C average in all upperdivision courses used for the major and/or at
least C - grades in each course used for the major.
7. Meet the senior residence requirement. (See "Academic Regulations: Senior Residence.")

Honors

Particularly well-prepared students are invited to join the Freshman Honors Program. Students not eligible at admission will be invited to join the Freshman Honors Program upon obtaining a 3.7 GPA with at least twelve graded units during their first quarter. The program includes weekly participation in small faculty seminars, and a variety of other perquisites.

Quarterly provost's honors, honors at graduation, departmental honors, and Phi Beta Kappa honors are awarded. At least five outstanding graduating seniors are honored at graduation each year with a monetary honorarium. An honors banquet is given for the top two hundred students in Revelle each spring. Seniors are selected for participation in honors seminars. For additional information, see "Revelle Honors Program" and "Honors" in the index.

John Muir College

John Muir College admitted its first students in the fall of 1967 and moved to its present quarters in 1970. The college was named for John Muir (1838-1914), a Scottish immigrant who became a famous California naturalist, conservationist, and author. Muir explored the Sierra Nevada and Alaska, and worked for many years for the cause of conservation and the establishment of national parks and forests. Please visit out Web site at http://provost.ucsd.edu/muir

The Character of the College

Naming a college affirms certain ideas and values. John Muir was committed to learning, self-sufficiency, and the betterment of humankind. Throughout his life he was open to new ideas and experiences which he shared with others through his many books. In keeping with his example, the college has, through its interdisciplinary studies programs, developed courses covering such areas as contemporary issues, critical gender studies, and environmental studies. It has established an individualized major called the Muir Special Project. And it has inaugurated an exchange program with Dartmouth College, one of the most distinguished undergraduate institutions in the United States. Each quarter about fifteen UCSD students attend Dartmouth, while a similar number come from Dartmouth to Muir. By these and other means, the college maintains at UCSD the heritage of the remarkable man for whom it was named.

The General-Education Philosophy and Requirements

The general-education program was established by the faculty of John Muir College to guide students toward a broad and liberal education while allowing them substantial choice in the development of that education. In addition to two analytical-writing courses, students must select year-long sequences (three courses in the same department) from four different academic areas. One of the sequences must be from the social sciences area, the second from the natural sciences or mathematics (calculus), and the remaining two sequences from the humanities, fine arts, or foreign languages. Students choose sequences from several alternatives.

It should be understood that this freedom carries with it certain responsibilities on the part of the student for careful planning. Some of these are:

1. Students should request from the Academic Advising unit of the Office of the Provost a list of general-education requirements before making their final selection of courses.
2. Complete sequences only may be applied to the general-education requirement. Ordinarily an entire sequence from one department is taken in one academic year.
3. Courses taken to satisfy only the generaleducation requirements may, in general, be taken for a letter grade or Pass/Not Pass.
4. Units obtained from advanced placement may be applied toward the 180 units needed for graduation; such units may be used to fulfill partially the general-education requirements.

For students who transfer to Muir College from another institution, the general-education requirements will be interpreted in this way: two semester-courses or three quarter-courses in one subject represented on the approved list normally will be accepted as completing one of the four required sequences. After the Office of Admissions evaluates a student's transcript, the Academic Advising unit of the Office of the Provost makes an evaluation of prior work for each student at the time of his or her first enrollment.

Pass/Not Pass Grading Option

Muir students are reminded that to take a course Pass/Not Pass, they must be in good standing (2.0 GPA). No more than one-fourth of an undergraduate student's total UCSD course units counted in satisfaction of degree requirements may be in courses taken on a Pass/Not Pass basis with the exception of all major-related

courses and most minor courses. It is advised that students check with their major or minor department regarding restrictions or exceptions.

Enhancing Your Education

Students are able to enhance their undergraduate education by participating in the UC Education Abroad Program (EAP) and UCSD's Opportunities Abroad Program (OAP) while still making regular progress toward graduation. Information on EAP/OAP is detailed in the Education Abroad Program section of the UCSD General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http:// www/icenter/pao. Financial aid recipients may apply aid to the program and special study abroad scholarships are readily available.

Many programs are now available for sophomores, as well as juniors and seniors. With careful planning students should be able to fulfill some general education, major, and/or minor requirements while studying abroad.

Major Programs and Special Projects

Almost all of the major programs at UCSD have a pattern of prerequisites, some of them quite extensive. Students must declare a major upon accumulating ninety units. Students who do not plan well could find, in their junior year, that they have access to few majors without doing additional lower-division work. With careful planning, they may have access to a wide range of majors. Muir College students are encouraged to consult regularly with the academic advisers of the Office of the Provost as well as with their major department advisers concerning the selection of appropriate courses so as to graduate by the 200 maximum unit limitation.

Each academic department has, in its section of this catalog, a paragraph entitled "The Major Program." Students are encouraged to read these sections carefully, for they indicate both the extent and the nature of the upper-division program. The following points are useful to keep in mind:

1. A substantial command of at least one foreign language is required by some departments (e.g., linguistics, literature).
2. Specific science courses are required by many departments. For example, the Department of

Computer Science and Engineering and the Department of Electrical and Computer Engineering require Physics $2 \mathrm{~A}-\mathrm{B}-\mathrm{C}-\mathrm{D}$ or Physics 4A-B-C-D-E; the Department of Chemistry and Biochemistry requires Physics 1A-B-C, Physics 2A-B and C or D, or Physics 4A-B-C-D-E.
3. The physical and life sciences, applied sciences (the Departments of Computer Science and Engineering, Electrical and Computer Engineering, Bioengineering, Mechanical and Aerospace Engineering and Structural Engineering) together with certain social sciences (including cognitive science and economics), require at least one year of calculus.
The Muir Special Project (MSP) major is a B.A. degree only and is intended for students who have specific talents and interests which are not accommodated by one of the departmental majors. The MSP normally includes regular course work and independent study representing up to fifteen upper-division four-unit courses as well as a project or thesis. The project may be one of two kinds: creative work of some sort (e.g., a book of poetry, a collection of musical compositions), or a detailed program of study and research in a particular area. The latter results in a long paper representing a synthesis of knowledge and skill acquired. In either case, a regular member of the faculty must serve as an
adviser to a student doing the project. It should be understood that the demands of a special project major are great, and a project is not appropriate for a student who simply does not want the discipline of a normal major. For a course to be included as part of a Muir Special Project, the student must earn in it a grade of C or better. Further information may be obtained from the Muir Academic Advising Office.

Graduation Requirements

To receive a degree of bachelor of arts or bachelor of science a John Muir College student must:

1. Declare graduation by obtaining, completing, and returning the Degree and Diploma Application packet to the Academic Advising Office. This must be done by Friday of the ninth week of the quarter preceding the quarter of anticipated graduation. Students who plan to graduate at the end of a summer session must complete the above-mentioned process by the Friday of the ninth week of spring quarter. Fees may be assessed if students miss these deadlines. Degrees are not automatically granted: students must file their intention to graduate.
2. Meet the general university requirement in Subject A, English Composition. (See "Undergraduate Admissions, Policies and Procedures.")
3. Satisfy the University of California requirement in American History and Institutions (See "Undergraduate Admissions, Policies and Procedures.")
4. Meet the Muir College requirement in writing proficiency. This requirement asks that the student demonstrate an ability to write English according to standards appropriate for all college work. (See Muir College course listings: "The Writing Program.")
5. Fulfill the general-education requirements.
6. Fulfill the U.S. cultural diversity requirement.
7. To receive a B.A. or B.S. degree*, students must complete a minimum of forty-five fourunit courses (180 units) which includes a minimum of eighteen upper-division courses (72 units).
8. Show some form of concentration and focus of study. Ordinarily this is accomplished by
completing a department major. Students in the college may attempt any major upon completion of the prerequisites. (The Departments of Biology, and Literature/ Writing require students to attain a minimum GPA in prerequisite courses and apply for admission to majors in the departments.) Presently, freshman entry to computer science and computer engineering majors in the CSE and ECE departments is restricted. Refer to the departments for current detailed information. Students who do not choose to meet this requirement by means of a departmental or interdisciplinary major and who qualify may propose a special project major. As the name implies, this is a specialized form of concentration. It normally consists of a combination of regular course work, independent study, and a senior thesis or project. Each proposal and senior thesis or project must be approved by the provost. (See the section, "Major Programs and Special Projects," above.)
9. Satisfy the residency requirement which stipulates that 36 of the last 45 units passed be taken at UCSD as a registered Muir College student. Students planning to study abroad during the senior year should be aware that they must return to complete a minimum number of twenty-four units at UCSD. Such students should see their college Academic Adviser for clarification.
10. Accumulate a grade-point average of at least 2.0 overall and in most major. Department's may require a C average in all upperdivision courses used for the major or C grades in each course used for the major. Students should consult with their department to determine which grading regulation applies.
11. Make up all incomplete grades. Students may not graduate with "NRs", "IPs", or "Incomplete" entries on their transcript. Therefore, they should be sure that all Incompletes have been cleared and final grades have been properly recorded by the end of the quarter in which they plan to graduate.
12. Complete all requirements for the degree during the quarter in which students file to
graduate. If the degree requirements are completed after the expiration of the deadline in a quarter, but before the beginning of the next quarter, students must refile to graduate for the subsequent quarter.
13. Refile the Degree and Dipioma Application form if unable to satisfy all graduation requirements, including grade changes, by the end of the proposed graduating quarter. Students will graduate at the end of the quarter in which deficiencies are satisfied.
14. It is the students' responsibility to contact their department adviser to verify that they have satisfied departmental requirements for graduation.

While John Muir College does not call for the completion of a minor to fulfill its requirements for the degree of bachelor of arts or bachelor of science, it does acknowledge such completion of an approved departmental minor on a student's transcript. No upper-division courses may be used to satisfy both a major and a minor.

Students entering UCSD after January 1 , 1998 are required to complete twenty-eight units of interrelated work, of which at least twenty units must be upper-division. Students entering UCSD before January 1, 1998 must complete a minimum of six courses or twentyfour units of interrelated course work. A minimum of three upper-division courses must be completed. Departments or programs may establish more stringent criteria than the minimum. A formal request for the minor must be approved by the department or program and college by the quarter before graduation.

Upon satisfaction of the graduation requirements, Muir College will recommend that the students be awarded the degree of bachelor of arts or bachelor of science (180 units, of which at least seventy-two must be upper-division).

Honors

Quarterly provost's honors, departmental honors, college honors, membership in the Caledonian Society of John Muir College, and Phi Beta Kappa honors are awarded. Please note that graduating seniors must have letter grades for eighty units of work completed at the University of California for college honors. For additional information, see "Honors" in the Index.

Honorary Fellows of Muir College
Hannes Alfven, Scientist and Nobel laureate
*Georg von Bekesy, Psychologist and Nobel laureate
Oscar (Budd) Boetticher, Filmmaker
*David Brower, Conservationist
Francis H.C. Crick, Scientist and Nobel laureate
*Ernst Krenek, Composer
*Ernest Mandeville, Philanthropist
*William J. McGill, Educator
*Jonas Salk, Scientist
*Claude E. Shannon, Mathematician
John L. Stewart, Founding Provost
*Earl Warren, Jurist and Statesman
*Robert Penn Warren, Poet and Novelist
*Mandell Weiss, Philanthropist
*Deceased

Thurgood Marshall College

Thurgood Marshall College, formerly known as Third College, was founded in 1970. From its inception, the college has enriched the lives of undergraduates with its intellectual and philosophic commitment to the development of students as both scholars and citizens. In July of 1993, the college was renamed in honor of the famous lawyer and Supreme Court Justice, Thurgood Marshall. Justice Marshall was widely known and recognized for his historic contributions to American life and dedication to breaking down barriers to education, civil rights, freedom of speech, women's rights, and the right to privacy. Thurgood Marshall College, its faculty, staff, and students are committed to furthering the ideals and dreams of Justice Marshall; therefore, students are provided opportunities to develop as both scholars and citizens.

Thurgood Marshall's 3,000 students pursue any major in a variety of disciplines. About 40 percent choose majors in biology, the physical sciences, mathematics, and engineering; 35 percent select majors in the social sciences; and 25 percent pursue majors in the humanities and fine arts areas. One of the primary aims of the college is to prepare its students for the pursuit of a rigorous academic curriculum which in turn promotes entry into graduate/professional schools or into the career of one's choice.

Educational Philosophy

The educational philosophy of Thurgood Marshall College is guided by the belief that regardless of a student's major, a broad liberal arts education must include an awareness and understanding of one's role in society. Therefore, the distinctive core sequence, which serves as the centerpiece of the general-education requirements, emphasizes a critical examination of the human condition in our diverse American society. This three-quarter core sequence, "Dimensions of Culture-Diversity, Justice, and Imagination," challenges students to develop an informed awareness of the many cultural perspectives that have shaped American society. The core sequence is designed as an interdisciplinary, contemporary issues-oriented curricular experience that explores how individuals and communities in America acquire their indentify-
ing characteristics. Other general-education requirements include courses in mathematics, the physical and biological sciences, humanities, and the arts.

Wishing to uphold the ideals set forth by the college's namesake, Thurgood Marshall students are encouraged to develop their skills not only as scholars, but also as citizens. Therefore, it is our belief that scholarship and social responsibility are mutually compatible. In this regard, our students receive academic credit for participating in the Partners-at-Learning Program (PAL) by taking courses which train and place them as tutors and mentors in local inner city elementary schools and high schools as well as the on-campus model school, The Preuss School. Because this activity shares importance with other academic experiences, completion of one of these specific public service courses, offered through TEP, satisfies an upper-division general-education requirement.

Further underpinning the educational philosophy of Thurgood Marshall College is the belief that the best preparation for a complex, interdependent, and rapidly changing world is a broad liberal arts education, complemented by in-depth study in areas of the student's choice. This educational approach has several major advantages:

1. It guarantees a basic understanding of the principle branches of knowledge: the humanities and arts, social sciences, the natural sciences, and mathematics.
2. It enables students with well-defined interests and goals to begin work in their chosen field of study as first-year students.
3. It allows students who have not decided on a major to sample an array of potential majors while simultaneously satisfying the generaleducation requirements of the college.

General-Education Requirements

General-education requirements are established by Thurgood Marshall College faculty to be broad and flexible enough to encourage students to integrate other alternatives, such as public service, internships, study abroad, research, special studies, etc., into their academic program. This permits students flexibility in pursuit of their academic goals and in the practical
application of their liberal arts degree, whether they wish to enter the work force or continue their education in graduate or professional school. These courses are designed to introduce students to the academic focus of the college, provide a broad liberal arts and science background, and furnish students with the academic skills and the basic knowledge necessary to pursue any departmental or interdisciplinary major.
The general-education requirements for firstyear students are composed of a core sequence and a menu of choices within a liberal arts framework:

1. DIMENSIONS OF CULTURE: This three-course interdisciplinary sequence is entitled "Diversity, Justice and Imagination." Two of the three courses are six-units and include intensive instruction in university-level writing. This is a required sequence for all firstyear students. All courses must be completed at UCSD and taken on a letter-grade basis only. (See "Dimensions of Culture" in the departmental listings.)
2. PUBLIC SERVICE (optional): This four-unit public service option may be used to fulfill one course in Disciplinary Breadth for any major and fulfills the upper-division writing requirement.
3. NATURAL SCIENCES: Three courses. Choose one course each in biology, chemistry, and physics. Courses are available for science and non-science students.
4. COMPUTATIONAL SKILLS: Choose two courses in mathematics or one course in mathematics or statistics and one in computing or logic.
5. HUMANITIES AND CULTURE: Two courses. Choose one course each from ethnic studies and Third World studies.
6. DISCIPLINARY BREADTH: Four courses. Students choose four courses (three for students graduating with a B.S. degree in engineering) from a variety of disciplinary breadth areas: humanities/foreign language; social sciences; natural sciences; math/engineering. Courses used to satisfy the disciplinary breadth requirement come from fields outside the major field of study. Two of these

courses must be upper-division. At least one upper-division course must include significant writing.
7. FINE ARTS: One course in either music, theatre, or visual arts.
The Thurgood Marshall College Curriculum and Academic Affairs Committee publishes an annual fact sheet with specific course choices which may be used to meet these requirements. Contact the college academic advising office for additional information.

Graduation Requirements

To receive a bachelor's degree from Thurgood Marshall College, a student must:

1. Satisfy the university Subject A requirement.
(See "Undergraduate Admissions, Policies and Procedures.")
2. Satisfy the university requirement in American History and Institutions. (See "Undergraduate Admissions, Policies and Procedures.")
3. Fulfill the general-education requirements as described.
4. Complete a departmental or interdisciplinary major.
5. Satisfy the college residency requirement (thir-ty-six of the last forty-five units must be completed as a registered Thurgood Marshall College student).
6. Successfully complete a minimum of 180 units for the B.A./B.S. degree. At least 60 of these units must be completed at the upper-division level. All students must complete a minimum of fifteen four-unit upper-division courses.
7. A 2.0 or better GPA is required for graduation.

Transfer Students

Since transfer students have a variety of academic options, specific details regarding appropriate general-education requirements will be discussed during the New Student Academic Orientation/Registration Program.

Majors and Minors

Majors: Thurgood Marshall College students may pursue any of the departmental or interdisciplinary majors offered at UCSD. The majority of the academic departments have established lower-division prerequisites. Generally, these prerequisites must be completed prior to entry into upper-division major courses. Many of these courses may be counted for general-education credit as well. Students are strongly encouraged to work closely with department faculty and college advisers. For details on the specific major departments, refer to the "Courses, Curricula, and Programs of Instruction" section of this catalog.

Minors are optional. However, students are encouraged to keep as many options open as possible. A minor provides an excellent opportunity to complement the major field of study.

Students are required to complete twentyeight units of interrelated work, of which at least twenty units must be upper-division.

See your college or department for further information.

Enhancing your Education

Students are able to enhance their undergraduate education by participating in the UC Education Abroad Program (EAP) and UCSD Opportunities Abroad Program (OAP) while still making regular progress toward graduation. Information on EAP/OAP is detailed in those sections in the General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://www/icenter/pao. Financial aid recipients may apply aid to the program, and special study abroad scholarships are readily available.

Pass/Not Pass Grading Option

1. Courses to be counted toward a departmental major or as prerequisites to the major must be taken on a letter-grade basis.
2. Only one upper-division course to be counted toward a college minor may be taken on a Pass/Not Pass basis.
3. Courses taken toward completion of the college general-education requirements, with the exception of Dimensions of Culture (Diversity, Justice and Imagination), may be taken on a Pass/Not Pass basis, while at the same time the restrictions for prerequisites to majors and courses counted toward a minor must be observed.
4. Courses taken as electives may be taken on a Pass/Not Pass basis, while at the same time the restrictions on the majors and minors must be observed.
5. No more than one-fourth of the total University of California, San Diego units may be completed on a Pass/Not Pass basis.

Honors

Quarterly provost's honors, honors at graduation, departmental honors, and Phi Beta Kappa are awarded to Thurgood Marshall College stu-
dents. For additional information see "Honors" in the Index or speak with the Academic Honors Program adviser in the academic advising office.

College-Sponsored Programs

INDIVIDUAL STUDIES MAJOR

The Individual Studies major allows students to pursue a coherent course of study not formally offered at UCSD. To apply for the major, students must have a 3.25 grade point average. A written proposal with supporting documentation from a faculty adviser, a list of prerequisite courses, and a proposed curriculum plan are required. Students pursuing this major must be goal-oriented and self-directed.

PARTNERS-AT-LEARNING PROGRAM (PAL)

Students may participate in the Partners-atLearning Program (PAL) by taking courses which train and place them in local elementary schools as tutors and mentors. Participation in the PAL program can be counted toward satisfying the Public Service option at Thurgood Marshall College. This campuswide program is open to all students meeting the established criteria of 3.0 or better and junior standing. (See TEP 130 in the department listing).

PRICE PUBLIC AFFAIRS FORUM

The Price Public Affairs Forum invites leading public figures to speak on important contemporary issues. Such wide-ranging topics as "Race and Justice in America," "Women's Role in the Workplace," and "The Modern American Family" have been presented. These forums are open to the general public.

PUBLIC SERVICE MINOR

Thurgood Marshall College sponsors the Public Service Minor at UCSD, which encourages students to understand the history and practices of public service and to participate in the development of civic skills. This minor is open to all UCSD students in good standing. Please see "Public Service Minor" in the departmental listings.

THURGOOD MARSHALL COLLEGE HONORS PROGRAM

The Thurgood Marshall College Honors Program sponsors activities and events designed to introduce students to the excitement of pioneering research and innovative scholarship in all disciplines at UCSD and to create opportunities for discussion on public issues with locally and nationally known figures. (See Thurgood Marshall College Honors Program in the department listings.)

THURGOOD MARSHALL INSTITUTE

The Thurgood Marshall Institute is heavily devoted to undergraduate research. The institute will organize and support faculty and student group research projects in the area of education and public law; host conferences and symposia on related issues; and train junior and senior high school instructors in the teaching of the United States Constitution and its amendments.

UCSD-MOREHOUSE/SPELMAN STUDENT EXCHANGE PROGRAM

The UCSD-Morehouse/Spelman Student Exchange Program was established in the fall quarter of 1989. This formal exchange program was developed by Thurgood Marshall College and is open to all UCSD undergraduates. Morehouse and Spelman Colleges are located in Atlanta, Georgia.

The purpose of the program is to provide a unique opportunity for students to live and
study at important institutions of higher learning that are significantly different from the social and educational environment typical of California state colleges and universities. Similarly, the exchange students coming to UCSD from Morehouse and Spelman will have an opportunity to experience an exciting and very different educational environment. See the program coordinator in the college academic advising office for additional information.

STUDENT LEADERSHIP PROGRAM

Complementary to the strong academic programs, Thurgood Marshall College is proud of its emphasis on the student as citizen. The Student Leadership Program is especially designed to encourage active involvement in the governance of the college and participation in community and public service programs. College life outside of the classroom and laboratory is a vital part of each student's undergraduate experience. The college offers a wide variety of opportunities for students to shape the nature and character of student life. This active participation allows students to develop self-confidence and strong interpersonal, organizational, and leadership skills. The friendly and outgoing manner of Thurgood Marshall students contributes to a sense of community and mutual respect. This spirit of cooperation is a college hallmark.

Honorary Fellows of the College

Maryann Callery, College Activist
*Cesar Chavez, Civil Rights Activist
Ernesto Galarza, Novelist and Educator
Joseph W. Watson, Educator, Professor, Vice Chancellor
Marian Wright Edelman, President, Children's Defense Fund

[^2]Earl Warren College opened in the fall of 1974 and currently enrolls more than 3,800 students. The College is named for Earl Warren, former chief justice of the United States Supreme Court and the only three-term governor of California. A native Californian, Justice Warren earned his college and law school degrees at the University of California (B.L. 1912; J.D. 1914). During his governorship, he served as an ex-officio member of the UC Board of Regents for eleven years. He also saw public service as district attorney of Alameda County and as attorney general of California.

As governor during an era of lightning growth for California, Justice Warren developed the State Department of Mental Hygiene and led in reforms of the prison system in California by establishing the Board of Corrections and the Prisoner Rehabilitation Act. In his final role as a public servant, he was chief justice of the United States Supreme Court, which under his leadership elaborated a doctrine of fairness in such areas as criminal justice, voting rights, legislative districting, employment, housing, transportation, and education.

Earl Warren College is committed to preparing its students for active roles in society in their postbaccalaureate years. Whether students wish to continue their education in graduate or professional school, to seek an immediate career or to pursue other options, the college stands ready to assist. Students are advised by the Warren College administration to identify their abilities and interests, examine career possibilities, and prepare for the future over the course of their undergraduate years at UCSD. In addition, the college is a strong supporter of international education and therefore encourages students to pursue the many opportunities that are available for study abroad.

The college's students and faculty represent all disciplines offered at UCSD. Graduation requirements, which consist primarily of one major and two secondary areas of study, enable students to develop a program covering a wide range of material while also focusing on particular areas in depth. The diversity of its academic program has made Warren College an exciting home for students who seek maximum flexibility in designing their own education.

General-Education Requirements

The Warren College faculty has a firm belief that each student should have the opportunity to develop a program best suited to his or her individual interests, within a framework that ensures both depth and breadth of study. All students are required to have significant exposure to the humanities and fine arts, the social sciences, and the natural sciences. The faculty and staff of the college provide extensive advising on individual academic programs and their possible career implications. Students who enroll at Earl Warren College are required to work within the following academic plan:

1. Each student must complete a two-course sequence in writing, Warren Writing 10A-B, within four quarters following successful completion of the Subject A requirement.
2. The college also requires that all students complete a course entitled "Ethics and Society," offered jointly by the political science and philosophy departments (Philosophy 27/Political Science 27). Upon completion of Warren Writing 10A-B, "Ethics and Society" should be taken by the end of the second year at UCSD for letter grade only.
3. All students must satisfy the formal skills requirement by completing two courses chosen from an approved list that includes calculus, computer programming, statistics, and symbolic logic.
4. To ensure a significant exposure to the three disciplinary areas-humanities/arts, social sciences, and natural sciences-all students are required to complete two focused collections of courses outside the areas of their majors. For all students other than B.S. engineering majors, two focused collections of courses (programs of concentration) are required, each of which requires six courses outside of the major. A student may choose to declare an optional minor. In lieu of a program of concentration, a student may choose to declare a minor in a department or interdisciplinary program. These areas of study must cover the two disciplinary areas outside the student's major. A few programs of concentration require more than six courses.
For B.S. engineering majors, each student must complete an area study in the humanities/arts and an area study in the social sciences.

Each of these area studies consists of three courses of which at least one must be upperdivision level.

All programs of concentration and area studies must be approved by the Earl Warren College Academic Advising office. A brochure entitled "Earl Warren College Academic Advising Handbook" will be provided to entering Warren students. All minors must be approved by academic departments or programs.

Majors

Earl Warren College students may pursue any of the departmental or interdisciplinary majors offered at UCSD. The majority of the academic departments has established lower-division prerequisites, which, must be completed prior to entry into upper-division major courses. Students are strongly encouraged to work closely with departmental faculty, staff advisers, and college academic counselors. For details on the specific major department requirements, refer to the "Course, Curricula, and Programs of Instruction" section of this catalog.

A student may declare a double major upon the approval of both academic departments and their academic advising office. If the two majors are from noncontiguous discipline areas, one
program of concentration or area of study from the third noncontiguous discipline area will be required. If the two majors are from the same discipline area, two programs of concentration or area studies will be required from each of the remaining noncontiguous discipline areas.

The Earl Warren College Individual Studies Major is designed to meet the needs of students who have a definite academic interest for which a suitable major is not offered at UCSD. The student must submit a written proposal explaining the merit of the program and why it cannot be accommodated within existing UCSD major offerings. The proposal must first be approved by a faculty adviser and then approved by the College Executive Committee.

Minors

In lieu of a program of concentration, Earl Warren students may pursue a departmental minor to fulfill general education requirements. An approved department minor applied toward the general education requirement will be posted to the student's official transcript. Upperdivision courses taken for the departmental minor may not overlap with courses in the major, the program of concentration, or the area studies.

Pass/Not Pass Grading Option

Some general education requirements may be fulfilled by courses taken on the Pass/Not Pass basis. Earl Warren students are reminded that major requirements and prerequisites must be taken on the graded basis. The total number of Pass/Not Pass units may not exceed onefourth of a student's total UCSD units.

Graduation Requirements

To receive a B.A. or B.S. degree from Earl Warren College a student must:

1. Satisfy the University of California requirements in American History and Institutions, and in Subject A. (See "Undergraduate Admissions, Policies and Procedures.")
2. Fulfill the general education requirements described above.
3. Complete one course in Cultural Diversity in U.S. Society to be chosen from an approved list. This course can be part of the major, the general-education, or the electives.
4. Complete a major chosen from those regularly offered at UCSD. Each department determines the courses and grades required for its major; generally this will include a set of twelve to twenty-two upper-division courses. In addition, most majors require a certain amount of introductory course work, and the beginning student is urged to plan a program that will permit a wide choice of major fields. For example, calculus is required for a significant number of majors; a student who does not take this subject excludes all these majors from further consideration.
5. Attain a C average (2.0) or better in all work attempted at the University of California.
6. Satisfy the college residency requirement that thirty-six of the last forty-five units passed must be taken as a student in the college.
7. Pass a minimum of 180 units (normally 45 four-unit courses). At least 60 units (normally 15 four-unit courses) must be successfully completed at the upper-division level. No more than 3 units of physical education (activity) may be used towards degree requirements.

Transfer Students

For students who have completed their lower-division general education requirements at an accredited four-year college, and for students who have completed a systemwide or campuswide approved core curriculum in a California community college prior to entering UCSD, the only additional general education requirements are two upper-division courses noncontiguous to the discipline area of the major. For these students graduation requirement 3 [above] is waived. All other transfer students must complete the general education requirements above. (See "Earl Warren College" in the section "General Education Requirements.")

The Warren College Honors Program

The Warren College Honors Program is offered to students with a broad range of interests and a history of outstanding scholastic achievement. The program offers students the opportunity to work closely with faculty throughout their academic career at UCSD. High school seniors with a GPA of 3.8 or above, SAT I scores of 710 verbal/ 650 mathematics, SAT II writing score of 710 , or who are National Merit Scholars or Regents Fellows, are eligible for
admission to the program. Students may participate in the program until thirty-six units of UCSD credit are completed. After that, a cumulative GPA of 3.5 on all units completed at UCSD must be maintained to remain in the program. Entering transfer students with a GPA of 3.8 based on at least thirty-six units of college work are also eligible. Other students with strong academic credentials may also apply. (For more information, see "Warren College" in the section "Courses, Curricula, and Programs of Instruction.")

Academic Internship

Warren College administers an Academic Internship Program available to students from all five colleges. The program is based on the conviction that quality education results from a combination of classroom theory and practical experience. Participants work full- or part-time for a public or private organization. Placements match students' major areas of academic study and correlate with their career goals. Students may enroll one, four, eight, or twelve units per quarter, with a maximum of four internships and/or sixteen units of internship credit. Although most placements are in the San Diego area, the Academic Internship Program is international in scope and varied in offerings. Students might work for a senator in Washington; a legal-aid office in Los Angeles; a business, a T.V.
station, research lab or social service agency in San Diego; a public relations firm in London; or any number of other possibilities. Working closely with faculty advisers, students write research papers that integrate their academic backgrounds and internship experience. For more information, see listing under "Academic Internship."

Honors

Quarterly provost's honors, honors at graduation, departmental honors, and Phi Beta Kappa honors are awarded. For additional information see "Honors" in the Index.

Honorary Fellow of the College

Harry N. Scheiber, Historian

Eleanor Roosevelt College

Eleanor Roosevelt is widely regarded as one of the most visionary and influential American public figures of the twentieth century, and her life and achievements continue to inspire men and women everywhere. She was one of the first to champion human and civil rights for all Americans during the Great Depression and the Second World War. After the war, she was the architect of the United Nations Universal Declaration of Human Rights. In the decades that followed, her tireless efforts to promote international understanding and human rights earned her worldwide respect and the title "First Lady of the World."

The College

Eleanor Roosevelt College (ERC) was established in 1988, and its current enrollment of about 2300 men and women will grow to approximately 3000 . The college serves students interested in pursuing academic excellence, establishing the groundwork for future success, and becoming lifelong learners and effective world citizens.

ERC fosters the ideal of a comprehensive education that develops intellectual capacities and expands general knowledge. The core curriculum exposes students to a variety of academic disciplines, providing a foundation that is suitable for all majors, whether in the natural or applied sciences, the social sciences, or the humanities and the arts. It prepares students for opportunities to study and conduct research with UCSD faculty and scholars.

The world in which today's students will make their careers is one of rapid scientific and technological change, rich cultural diversity, and intense social and political interactions. ERC's general-education curriculum and co-curricular programs build knowledge of other cultures and skills for working in the rapidly changing environment of the twenty-first century. Students seeking careers in fields as diverse as business, law, medicine, public policy, engineering, the sciences, and the arts or humanities find ERC's curriculum and programs equally valuable and relevant.

At ERC, shared educational goals are pursued in a supportive community where students are

valued and respected, where they are challenged and helped to succeed, and where they can develop independence and confidence about their roles in society.

General Education

The general-education requirements at ERC are designed to provide all students with a broad intellectual foundation. The curriculum offers undergraduates opportunities to learn about the various fields that may be open to them, thus assuring that their choices in selecting a major, pursuing graduate study, or seeking employment will be based on clear understandings about the nature of the work and their own interests and talents.

Advanced Placement Credits

University credit may be granted for College Board Advanced Placement Tests on which a student earns a score of 3 or higher. The credit may be applied toward general-education requirements, elective units for graduation, as subject credit for use in a minor, or as a prerequisite to a major. For further details, see the advanced placement chart in "Undergraduate Admissions, Policies and Procedures."

ERC academic counselors provide information about advanced placement or courses that meet the general education requirements of the college. Students should take advantage of the counseling available in the Academic Advising Office to help them effectively incorporate the college general-education requirements into their academic program.

ERC General-Education Requirements for Students Entering as Freshmen

The Making of the Modern World (six quarters)

This interdisciplinary sequence of six courses incorporates humanities (literature, history, and philosophy) and social sciences as well as writing. The courses examine Western and nonWestern societies, cultures, and state systems both historically and comparatively. The Making of the Modern World (MMW) is taught by faculty from the disciplines of anthropology, history, literature, political science, and sociology.

MMW is designed to help students search for connections-between past and present, among the societies and civilizations that have inhabited the earth, and among the ways that humans have used to make sense of their experience.

At ERC, the university writing requirement is met through MMW and relies on those courses for its content. Instruction and practice in writing, in turn, help students master the course content and analyze and synthesize the material. In all fields, written communication skills are among the most important qualifications graduates take to the job market and graduate school. Writing is assigned in MMW 2-6; the second and third quarters include intensive writing instruction and carry two additional units of credit. For more details, see "The Making of the Modern World" in the department listings.

Natural Sciences \& Quantitative Methods (four quarters)

Two courses are to be chosen from selected offerings in biology, chemistry, physics, and/or earth sciences. In addition, two courses are to be chosen from selected offerings in pre-calculus, calculus, statistics, symbolic logic, or computer programming.

For students majoring in scientific fields, these courses are preparation for major study; for students who will continue their studies outside the sciences, they provide a basic understanding and appreciation of methods and developments in the fields. Many of the selected courses are designed for non-science majors.

Foreign Language (zero to four quarters)

ERC students are required to demonstrate basic conversational and reading proficiency in a modern foreign language, or advanced reading proficiency in a classical language, by completing the fourth quarter of foreign language instruction (or equivalent) with a passing grade.

Students may also complete this requirement by demonstrating advanced language ability on a special proficiency exam. Students considering this option should consult with an ERC academic counselor during their first year at UCSD.

Advanced placement scores in language or literature, and IB scores in language, may exempt students from all or part of the ERC language requirement.

College-level language study is a prerequisite for study abroad in most non-English speaking countries and enhances understanding of those societies. Students wishing to study abroad in non-English speaking countries may need to take additional language classes, and will need to take all language courses for letter grades.

Fine Arts (two quarters)

Two four-unit courses are required, to include study of both Western and non-Western music, theatre, dance, and/or visual arts. These courses help students appreciate the rich range of human expression to be found in cultures and ages other than their own.

Regional Specialization (three quarters)

Each ERC student selects three courses dealing with a single geographic region of the world. The college has defined regions broadly enough to assure course availability and narrowly enough to ensure coherence of subject matter. These courses may be chosen from offerings in humanities, social sciences, and fine arts. At least two of the three must be taken at the upper-division level. See "Minors" below about application of this course work to an optional ERC minor.

Upper-Division Writing Requirement

To demonstrate competency in written English at the upper-division level, students submit to the

Academic Advising Office a paper or papers of specified lengths that were written for one or more upper-division courses and graded C- or higher. Papers are returned to students after Academic Advising Office staff certify that they meet the upper-division writing requirement.

Sample Program

A program like the sample one shown here would lead to completion of most general-education requirements during the first two years of college. Some variation will occur depending upon a student's academic preparation, choice of major, and individual interests and priorities. For example, students planning to major in science, math, or engineering will be taking many prerequisite courses for their major.
FALL WINTER SPRING

FRESHMAN YEAR

| MMW 1
 foreign language
 fine art | MMW 2
 foreign language
 quabject A, major,
 or elective | MMW 3 3
 methods
 fine art |
| :--- | :--- | :--- | | foreign language |
| :--- |
| quantitative |
| methods |
| major or elective |

JUNIOR AND SENIOR YEARS

regional specialization (2)
major course work
electives

Transferring to ERC

Transfer students may meet most ERC general-education requirements before entering UCSD if they have followed articulation agreements with community colleges, or taken courses elsewhere that ERC deems equivalent in content to UCSD courses that meet the college's requirements.

All transfer students must take three quarters of MMW, and it is recommended that the three courses be taken in sequence. Students who have not met their freshman writing requirement elsewhere must complete it by taking MMW 2 and/or MMW 3 as part of this threecourse requirement.

All transfer students must also take two upper-division regional specialization courses and satisfy the upper-division writing requirement. See "Graduation Requirements" below.

Grading Options

1. No more than 25% of total UCSD units counted in satisfaction of degree requirements may be taken on a Pass/Not Pass basis.
2. Electives may be taken on a Pass/Not Pass basis except if they are to be applied to majors or minors. Check with the appropriate department or college for rules applying to specific majors or minors.
3. Courses that meet the following ERC generaleducation requirements may be taken Pass/Not Pass: fine arts, foreign language, natural sciences, quantitative methods, and one regional specialization course. All other general-education courses must be taken for letter grades.

Leadership and Community

ERC students are recognized for their strong sense of community. These bonds are created in part by common classroom experiences in MMW. They also grow from shared explorations in a variety of college programs in which students take active roles: college and campus-wide student government, service to the campus and the larger community, the acquisition of leadership skills, and sports and social activities.

The college is home to UCSD's International House, which offers informative and dynamic discussions for the campus community at its weekly international Affairs Group meetings. ERC also hosts (with the Programs Abroad Office) a retreat each fall to welcome back study abroad returnees from all five colleges and assist with their re-integration into the UCSD community.

Expanding Horizons

Students whose interests extend beyond our borders are encouraged and assisted in finding opportunities to spend part of their college career in another country. There are many options, including short-term or year-long academic programs, work opportunities, and careerrelated internships.
At one time or another, men and women from ERC have studied in more than forty different countries in Europe, Africa, Latin America, the Middle East, and Asia.

Students on university financial aid who participate in the UC Education Abroad Program pay UCSD fees and retain their financial aid packages, which are budgeted to include study
abroad expenses. For a fraction of their normal UCSD fees, students who participate in approved academic study programs sponsored by other universities may apply their UCSD financial aid to the cost of such programs. In addition, there are a number of sources for scholarship aid designated for study abroad.

Majors

An ERC student may pursue any of the approximately 100 undergraduate majors offered at UCSD. Students may complete more than one major, provided they comply with all Academic Senate regulations concerning double majors. To declare a double major, a student must have accrued at least ninety but no more than 135 units, have at least a 2.50 GPA , and meet university requirements regarding total maximum number of units earned and quarters attended at UCSD.

Most majors require the completion of specified "pre-major" or prerequisite courses at the lower-division level before enrollment in upperdivision major courses. For some majors, admission to upper-division course work is contingent upon a satisfactory GPA in certain pre-major courses. Students are strongly encouraged to work closely with department advisers as well as college academic counselors to assure adequate and timely preparation for their majors.

Completion of certain majors may take more than four years or the minimum 180 units required for graduation. Time-to-graduation in other instances may be affected by a student's level of preparation for upper-division work in the major or by a decision to change major. See "The Undergraduate Program(s)" in respective department listings.

ERC Individual Studies Major

ERC offers an Individual Studies major to meet the needs of students who have defined academic interests for which suitable majors are not offered at UCSD. Students who find themselves in this situation should consult a college academic counselor at the first opportunity.

This major includes regular course work and often independent study, representing a minimum of twelve upper-division four-unit courses. A regular member of the faculty serves as adviser to the student. Students admitted to the Individual Studies major may enroll in ERC 199, an independent study course supervised by a
faculty member, who tailors the content to fit the major.

Qualifying seniors pursuing an Individual Studies major may undertake an honors thesis research project (ERC 196) under the tutelage of their faculty mentor. See "Eleanor Roosevelt College" in the department listings.

Further information about an Individual Studies major may be obtained from the ERC Academic Advising Office.

Minors and ERC Special Minors

Minors are not required at ERC. However, completion of a minor can be an educational or pre-professional asset. All students have the option of completing any approved departmental or inter-departmental minor.

Alternatively, students may wish to combine foreign language course work with an associated regional specialization to earn an ERC Special Minor in, for example, Asian Studies or Middle Eastern Studies. Such minors must conform to Academic Senate policies: For students entering the University before January 1998, this means completion of at least six courses (twenty-four units), of which at least three (twelve units) must be at the upper-division level. Students entering in January 1998 or later must complete at least seven courses (twenty-eight units), of which at least four (sixteen units) must be at the upperdivision level. Upper-division courses applied toward a minor may not be used to meet the requirements of the major.

Internships

As a way to combine classroom theory and practical experience, juniors and seniors are encouraged to consider internships under programs available to any UCSD student and administered by the Academic Internship Program, Career Services, or UCSD Associated Students.

Participants work for various lengths of time in enterprises that match their major interests and career goals. Most placements are local, but some are in such locations as Washington, D.C., Sacramento, Los Angeles, or London.

Working with faculty advisers, students enrolled in academic internships write research papers integrating their work experience with their formal studies, and they can earn up to sixteen units of credit in increments of four, eight, or twelve per quarter.

Graduation Requirements

To graduate with a baccalaureate degree from the University of California, an Eleanor Roosevelt College student must:

1. Satisfy two University of California requirements: the Subject A requirement in English composition and the American History and Institutions requirement. See "Undergraduate Admissions, Policies and Procedures."
2. Fulfill the ERC general-education requirements as described.
3. Complete an approved departmental or interdepartmental major, meeting all requirements as specified by the major department or program.
4. Satisfy the senior residency requirement that thirty-six of the final forty-five units must be completed as a registered UCSD student. Students studying abroad in their senior year may petition to have this requirement waived.
5. Complete and pass a minimum of 180 units for the Bachelor of Arts or Bachelor of Science degree. At least sixty of those (fifteen courses) must be at the upper-division level. The B.S. degree is awarded in biology, physics, cognitive science, chemistry, earth sciences, management science, and designated engineering and psychology programs; the B.A. is awarded in all other majors.
6. Earn a cumulative GPA of 2.0 or higher.

Honors Recognition

Students who earn a quarter GPA of 3.5 or higher are notified by letter of having achieved Provost's Honors. Students who maintain GPAs of 3.5 or higher for a full academic year are awarded Provost's Honors certificates.

Every spring, ERC holds an academic honors recognition event to which high achieving students are invited, and graduating seniors are encouraged to invite individual faculty as their guests.

Also each spring, UCSD's chapter of the Phi Beta Kappa Society invites to membership seniors who have demonstrated outstanding academic achievement (3.65 GPA), breadth in their academic programs (including humanities, language, and quantitative methods), and good character, among other criteria. See "Phi Beta Kappa" in the index.

Eleanor Roosevelt College

At Commencement, ERC graduates with extraordinarily outstanding overall academic records are named Provost's Scholars. Graduates with final cumulative GPAs equivalent to approximately the top 14 percent of UCSD graduates become eligible for University Honors and receive their degrees Cum Laude (with honors), Magna Cum Laude (with high honors), or Summa Cum Laude (with highest honors).

ERC Honors Program

The Freshman and Sophomore Honors programs at ERC have been established to provide exceptionally motivated and capable students with enhanced educational experiences in association with faculty and other honors students.
Selected new students are invited to enroll in the Freshman Honors Seminar. During fall quarter, students meet with a variety of faculty members to learn more about their research and about academic enrichment opportunities at UCSD. Seminar members also participate in other enriching academic and cultural events.

The Freshman Honors Seminar continues during winter quarter (and some years through spring quarter) with faculty speakers who focus on international themes. In winter (and spring) quarters, these seminars carry one unit of credit each (ERC 20). See "Eleanor Roosevelt College" in the department listings.

Sophomores who have earned cumulative grade-point averages (GPAs) of 3.5 or higher have opportunities to pursue independent study with individual faculty for credit (ERC 92). See "Eleanor Roosevelt College" in the department listings.

Additional honors opportunities are offered in MMW. Students with excellent grades in MMW 1, 2 , and 3 and high cumulative GPAs are eligible to take honors sections of MMW $(4 \mathrm{H}, 5 \mathrm{H}$, and 6 H$)$. These students attend regular MMW lectures and meet in separate honors discussion sections. They also attend special guest lectures and enrichment activities related to course content.

At the upper-division level, students may qualify to enroll in honors programs offered by their major departments. These programs usually include research under the direction of a faculty mentor and the writing and presentation of an honors thesis.

Undergraduate Admissions, Policies and Procedures

All communications concerning pre-applicant undergraduate admission for U.S. citizens should be addressed to

Office of Admissions and Relations with Schools
University of California, San Diego,
9500 Gilman Drive, Dept. 0021,
La Jolla, California 92093-0021.
Email: admissionsinfo@ucsd.edu
Telephone: (858) 534-4831
Web site: admissions.ucsd.edu

Definitions

An application to the University of California, San Diego is processed and evaluated as a freshman or transfer, California resident; freshman or transfer, nonresident; or freshman or transfer, international applicant. See definitions below:

An Undergraduate Applicant

A student who wishes to complete a program of studies leading to a bachelor of arts or a bachelor of science degree.

A Freshman Applicant

A student who has graduated from high school but who has not enrolled since then in a regular session in any accredited college-level institution. This does not include attendance at a summer session immediately following high school graduation.

A Transfer Applicant

A high school graduate who has been a registered student in another accredited college or university or in college-level extension classes other than a summer session immediately following high school graduation. A transfer applicant may not disregard his or her college record and apply for admission as a new freshman.

An undergraduate student can earn transfer credit upon successful completion of collegelevel work which the university considers consistent with courses it offers. Such credit may be earned either before or after high school graduation. The acceptability of courses for transfer
credit is determined by the Office of Admissions and Relations with Schools.

For more information regarding transferring to UCSD call or write:

University of California, San Diego
Transfer Student Services
Office of Admissions and Relations with Schools
9500 Gilman Drive, Dept. 0021,
La Jolla, California 92093-0021
(858) 534-4831

Email: admissionsinfo@ucsd.edu
Web site: admissions.ucsd.edu

A Nonresident Applicant

A student who lives outside the state of California and who is required to present a higher scholarship average than is required of California residents to be eligible for admission to the university, in addition to paying the nonresident tuition fees.

An International Applicant

A student who claims citizenship in another country and has a nonimmigrant visa.

Educational Opportunity Programs

The Educational Opportunity Program (EOP) is a recruitment and academic support program established by the university to increase the enrollment of educationally disadvantaged and low-income students. Students are provided with pre-admission counseling, and academic and personal support services. EOP eligibility is based on family income level.

Services available to EOP students cover a broad range of needs. Recruitment and applica-tion-related services include pre-admission counseling, application fee waivers, application follow-up, and deferral of the Statement of Intent to Register fee. Academic support for EOP students is offered through the Office of Academic Support and Instructional Services (OASIS).

Prospective EOP students can obtain a $\cup C$ undergraduate application packet from any high
school or community college counselor or directly from UCSD. The application is also available online during the fall only at http://www. ucop.edu/pathways/appctr.html. All EOP applicants must be California residents. To apply for EOP, check the appropriate box in the UC application designated for the Educational Opportunity Program. Fill in the information requested in the application pertaining to family size and income, parental education level and occupation. This information is used in conjunction with other information from the admission application in determining eligibility for EOP.

Financial aid is available to eligible EOP students from the regular state, federal, and university sources administered through the UCSD Financial Aid Office. Although EOP eligibility does not guarantee financial aid, the low-income ceilings for EOP eligibility mean that most EOP applicants should qualify for substantial financial assistance. Financial aid information is available from the UCSD Financial Aid Office. Admissions information can be sought from your high school or community college counselor or the Undergraduate Admissions. For additional information about EOP eligibility requirements, program services, or general information regarding UCSD, call or write:

University of California, San Diego
Office of Admissions and Relations with Schools
9500 Gilman Drive, Dept. 0021, La Jolla,
California 92093-0021
(858) 534-4831

Email: admissionsinfo@ucsd.edu
Web site: admissions.ucsd.edu

Undergraduate Colleges and Majors

COLLEGES

Even though you may be uncertain about your major, your application for admission must include the name of the UCSD college with which you plan to affiliate (Revelle, John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt or Sixth College if you are applying for

Fall, 2002). You must indicate a second and third choice in the event your first choice college closes early. Applicants may be reassigned to another college by the Office of Admissions and Relations with Schools if enrollment quotas prohibit first choice. Applicants who do not indicate a UCSD college preference will be assigned a college.

In the "Choosing a College" section, which describes the educational philosophies of the five colleges at UCSD, you will find information concerning the requirements of each college. It is very important that you read that section of the catalog carefully, and that you decide which of the colleges is the right one for you.

You can also find information about UCSD's five colleges, and much more, on the Web site of the Office of Admissions and Relations with Schools (http://admissions.ucsd.edu).

IMPACTED MAJORS

The Division of Biology, the Irwin and Joan Jacobs School of Engineering, and the major in Literature/Writing have further requirements, such as direct application to the division (Biology), specific grades (Biology and Engineering) and prescreening courses (Biology and Literature/Writing). Some students may be admitted to pre-major status only, and others may be admitted to their alternate major. The literature/writing major also admits to pre-major status only. As a pre-major you must satisfy all prerequisites before admission to the major.

If openings are available, you may have to pass specific courses with grades of a given level to become a degree candidate in your preferred major. This set of conditions, determined on a department-by-department basis, and approved by the San Diego Committee on Educational Policy, is explained in detail under the department listing in this catalog.

Irwin and Joan Jacobs School of

Engineering: Criteria for freshmen and transfer students vary for individual majors. See the catalog section relating to specific majors or the departmental Web site for details.

Division of Biology: Freshmen will either be admitted directly to the major of their choice or admitted to the pre-major, depending on their admission status to the university.

Transfer students must meet biology screening requirements. See the catalog section relating to specific majors or the departmental Web site for details.

Other departments, however, may be approved to offer pre-majors by the Committee on Educational Policy subsequent to this publication. Please refer to "Major Fields of Study" in the introduction to the catalog.

Undergraduate Admissions

MINIMUM REQUIREMENTS

The university's minimum undergraduate admission requirements, which are the same on all University of California campuses, are based on three principles. They are: (1) the best predictor of success in the university is high scholarship in previous work; (2) the study of certain subjects in high school gives a student good preparation for university work and reasonable freedom in choosing an area for specialized study; and (3) standardized assessment tests provide a broad base for comparison, and mitigate the effects of differing grading practices.

It is important to understand that the academic requirements for admission are minimum entrance standards. Completing the required high school courses with satisfactory grades will not automatically determine whether you will be selected for admission to UCSD, as students are chosen from a large number of highly competitive applicants. Most of these applicants will have greatly exceeded the minimum requirements; therefore, selection depends on additional factors.

Students are encouraged to pursue the most rigorous academic curriculum possible, including honors and Advanced Placement (AP) courses, in order to prepare for the university experience. High test scores are necessary in conjunction with strong performance in classes and a consistent pattern of courses. Overall performance must be well above minimum requirements in order to admit you to the campus and major of your choice.

UCSD Admission Policy and Selection Criteria

The undergraduate admission policy at the University of California, San Diego is designed to select a highly qualified and diverse student body. As a major public institution of higher education serving the teaching, research, and public service needs of California, UCSD strives to reflect the diversity of the population of the state. This undergraduate admission policy has been developed by the San Diego campus in compliance with the University of California Policy on Undergraduate Admissions that "seeks to enroll a student body that, beyond meeting the University's eligibility requirements, demonstrates high academic achievement and exceptional personal talent, and that encompasses the broad diversity of California."

Freshman Selection

In recent years, the number of applicants has far exceeded the number of spaces available, and it has become necessary to adopt standards which are much more demanding than the minimum requirements to admit students. The San Diego campus has developed the following procedures for the selection of applicants to be admitted from its pool of eligible candidates:

ACADEMIC ASSESSMENT

Approximately 50 percent of admitted applicants will be selected on the basis of academic achievement. Freshman applicants are ranked using the following academic index: high school GPA $\times 1000+[(S A T$ I verbal \& math + SAT II writing + SAT II Math + SAT II third test) x .8]. A maxi mum of eight semesters of honors courses may be used to compute the GPA; for the SAT I, the best sitting will be used; for the SAT II, the best individual scores will be used; an ACT score will be converted to an equivalent SAT I score. See page 45 for more information about the third SAT II test.

COMPREHENSIVE ASSESSMENT

To select the remaining freshmen, UCSD considers California residents who meet the minimum eligibility requirements in the context of their academic assessment, leadership, special talents, achievements/awards, community/volunteer service, participation in precollegiate motivational programs, special circumstances and/or personal challenges, and social and educational environment, including eligibility in the local context (ELC). Those applicants with a combination of strong academic and supplemental factors will be considered for admission.

Advanced-Standing Selection

Admitted applicants will be selected primarily on the basis of academic performance, as assessed by review of the GPA in all UC-transferable courses and the total number of UC-transferable units completed one full term prior to the initial quarter of attendance at UCSD.

Applicants who have satisfactorily completed sixty transferable semester units (ninety quarter units) one full term prior to the term of admission will be considered for admission. California community college applicants must have a minimum 2.80 GPA in UC-transferable courses and be in good academic standing. Highest priority for
admission is given to upper-division transfer students from California community colleges, followed by upper-division transfer students from other UC campuses, upper-division California resident transfer students from other two-year or four-year institutions, and upper-division transfer students who are not residents of California.

More than 95 percent of UCSD's transfer students come from California community colleges. A California community college applicant is defined as follows: a student who has completed at least thirty semester/forty-five quarter UCtransferable units at a California community college, and who was enrolled for at least two regular terms at a California Community College immediately prior to enrolling at UCSD.

Admission as a Freshman Applicant

MINIMUM REQUIREMENTS

To be eligible for admission to the university as a freshman you must meet the high school diploma requirement, the subject requirement, the scholarship requirement, and the examination requirement, which are described below.

HIGH SCHOOL DIPLOMA REQUIREMENT

You must earn a diploma from a high school in order to enter the university as a freshman. The Certificate of Proficiency, awarded by the California State Department of Education upon successful completion of the High School Proficiency Examination, proficiency tests from other states, and the General Education Development (GED) certificate, will be accepted in lieu of the regular high school diploma. Subject, scholarship, and examination requirements discussed below must also be met.

SUBJECT REQUIREMENT

A student applying for admission as a freshman to the University of California must have completed a minimum of fifteen units of high school work during grades nine through twelve. At least seven of the fifteen units must have been earned in courses taken during the last two years of high school. (A one-year course is equal to one unit; a one-semester course is equal to one-half unit.)

These units must have been earned in academic or college preparatory courses, as specified below. Lists of approved courses are compiled by the UC Office of the President for high
schools in California. Lists are specific to each high school and are available through your high school's counseling office, and on the Web Site (www.ucop.edu/pathways/infoctr/doorway_index .html). Applicants from high schools outside California may find the following guidelines helpful in determining acceptability of courses.

Specific "a-f" Course Requirements

a. History/Social Science: two years required
Two years of history/social science, including one year of United States history or one-half year of United States history and one-half year of civics or American government, and one year of world history, cultures, and geography.

b. English: four years required

Four years of college preparatory English that include frequent and regular writing, and reading of classic and modern literature. Not more than two semesters of ninth-grade English will be used to meet this requirement.

C. Mathematics: three years required, four

 recommendedThree years of college preparatory mathematics that include the topics covered in elementary and advanced algebra and two- and three-dimensional geometry. Approved integrated math courses may be used to fulfill part or all of this requirement, as may math courses taken in the seventh and eighth grades that the high school accepts as equivalent to its own courses.
d. Laboratory Science: two years required, three recommended
Two years of laboratory science providing fundamental knowledge in at least two of these three disciplines: biology (which includes anatomy, physiology, marine biology, aquatic biology, etc), chemistry, and physics. Laboratory courses in earth/space sciences are acceptable if they have as prerequisites or provide basic knowledge in biology, chemistry, or physics. The appropriate two years of an approved integrated science program may be used to fulfill this requirement. Not more than one year of ninth-grade laboratory science can be used to meet this requirement.
e. Language Other than English: two years required, three recommended
Two years of one same language other than English. Courses should emphasize
speaking and understanding, and include instruction in grammar, vocabulary, reading, and composition. Courses in language other than English taken in the seventh and eighth grades may be used to fulfill part of this requirement if the high school accepts them as equivalent to its own courses.
f. College Preparatory Electives: two years required
Two years (four semesters), in addition to those required in "a-e" above, chosen from the following areas: visual and performing arts, history, social science, English, advanced mathematics, laboratory science, and language other than English (a third year in the language used for the "e" requirement or two years of another language).

Change Effective Fall 2003

Beginning with applicants for fall 2003, the Subject Requirement will include one unit of coursework in visual and performing arts (dance, drama/theater, music or visual arts). The number of college prepa-ratory electives required will be reduced from two units to one, so the total number of Subject Requirement units will remain at fifteen. The visual and performing arts requirement will be labled the " f " requirement and the college preparatory elective requirement will be labled the " g " requirement.

Courses Satisfying the " f " Requirement

History and English Elective courses that fit the general description in "f" above are acceptable.
Advanced Mathematics Trigonometry, linear algebra, precalculus (mathematical analysis), calculus, statistics, computer science, and similar courses are acceptable. Courses containing significant amounts of material from arithmetic or from shop, consumer, or business mathematics are not acceptable.
Laboratory Science Courses in the biological and physical sciences are acceptable.
Language Other than English Elective courses may be in either the same language used to satisfy the " e " requirement or in a second language. If a second language is chosen, however, at least two years of work in that language must be completed.
Social Science Elective courses that fit the general description in " f " above are acceptable. In addition, these courses should serve as preparation for lower-division work in social science at the university. Courses of an applied, service, or vocational nature are not acceptable.
Fine Arts Elective courses in fine arts should enable students to understand and appreciate artistic expression, and to talk and write with discrimination about the artistic material studied. Courses devoted to developing creative artistic ability and courses devoted to artistic perfor-

ELIGIBILITY INDEX				ACT to SAT 1 Conversion Table			
$\begin{aligned} & \text { "a-f" } \\ & \text { GPA } \end{aligned}$	SATI Total	$\begin{aligned} & \text { "a-f" } \\ & \text { GPA } \end{aligned}$	$\begin{aligned} & \text { SAT } \\ & \text { Total } \end{aligned}$	ACT	Equivalent SAT I Score	ACT	Equivalent SAT I Score
2.80-2.84	4640	3.20-3.24	3408	36	1600	23	1070
2.85-2.89	4384	3.25-3.29	3320	35	1580	22	1030
2.90-2.94	4160	3.30-3.34	3248	34	1520	21	990
2.95-2.99	3984	3.35-3.39	3192	33	1470	20	950
3.00-3.04	3840	3.40-3.44	3152	32	1420	19	910
3.05-3.09	3720	3.45-3.49	3128	31	1380	18	870
$3.10-3.14$	3616	≥ 3.50	3120	30	1340	17	830
3.15-3.19 3512 SAT Total equals: [SAT I composite] + [2 x (SAT II writing + SAT li math + third SAT III]. SAT I composite is highest combined mathematics and verbal scores from a single sitting. See adjacent table to convert an ACT score to an SAT I composite.				29	1300	16	780
				28	1260	15	740
				27	1220	14	680
				26	1180	13	620
				25	1140	12	560
				24	1110	11	500

mance are acceptable. Courses that are primarily recreational or are offered under physical education are not acceptable.

HONORS LEVEL COURSES

The University of California encourages students to take demanding advanced academic courses in all fields. Accordingly, the grades in up to four units of eleventh and twelfth grade honors courses will be counted on a scale $A=5, B=4$, $C=3$, if these courses are certified by the high school and the University of California as offered at an honors level. Honors credit will also be given for up to two of these four units taken in tenth grade. Grades lower than C do not earn honors credit.

EXAMINATION REQUIREMENT

All freshman applicants must take and submit scores from tests specified below. You must take the tests no later than December of your senior year.

1. One assessment test, either a or $b:$
a. Scholastic Assessment Test (SAT I: Reasoning Test)
Your verbal and mathematics scores on this test must be from the same sitting.
b. American College Test (ACT)

The composite score must be submitted.
2. Three Subject Tests (SAT II)

These must include (a) writing;* (b) mathematics, Level 1 or 2; and (c) one from English literature, foreign language, science, or social studies.

If tests are repeated, the university will accept the highest score received. See your counselor for information and registration forms or write to the College Board ATP, P.O. Box 6200, Princeton, New Jersey 08541-6200; Web site: www.collegeboard.org. For ACT information, write to the ACT Program, P.O. Box 168, lowa City, lowa 52240; Web site: www.act.org.
*The SAT II Subject test in literature may not be substituted.

SUBJECT A EXAMINATION

If the Subject A requirement is not satisfied prior to April 1, admitted students are required to take the university-wide Subject A Examination in mid-May. Notice of this examination will be sent to all admitted students. There will be a $\$ 55$ fee.

Freshman Eligibility

CALIFORNIA RESIDENTS (MINIMUM REQUIREMENTS)

(Refer also to "Admission as a Freshman Applicant.")

Please be advised that these are minimum eligibility requirements. The San Diego campus has been unable to accommodate all minimally eligible applicants. You must exceed these requirements in order to be considered for admission. See "UCSD Admission Policy and Selection Criteria."

Eligibility Index: An "Eligibility Index" is used to determine minimum eligibility for California applicants. The ACT is acceptable in place of the SAT I. See the conversion chart on page 44.

NON-CALIFORNIA RESIDENTS (MINIMUM REQUIREMENTS)

(Refer also to "Admission as a Freshman Applicant" and "Freshman Eligibility: California Residents.")

Please be advised that these are minimum eligibility requirements. The San Diego campus has been unable to accommodate all minimally eligible applicants. You must exceed these requirements in order to be considered for admission. See "UCSD Admission Policy and Selection Criteria."
Scholarship: An applicant who is not a resident of California is eligible to be considered for admission to the university with a grade-point average of 3.40 or better, calculated on the required high school subjects. These subjects, referred to as "a through f," are the same for the nonresident as for the resident. (The "Eligibility Index" applies to the California applicant only.)

High school Advanced Placement courses and UC-transferable college courses are considered honors courses for admission purposes for nonCalifornia resident applicants. Please note: College entrance exams are also required of nonCalifornia residents.

Additional Preparation for University Work: Freshman Applicants

High school courses required for admission to the university are listed at the beginning of this section. This list is in no way intended to constitute an outline for a valid high school program. The courses listed were chosen largely for their value as predictors of success in the university. These required courses add up to fifteen "Carnegie" units, while graduation from high school requires from fifteen to nineteen. Courses
beyond our requirements should be chosen to broaden your experience in such fields as social sciences and the fine arts, and should fit in with your personal plans for the future.

For example, besides taking courses in chemistry, physics and biology, a science major will find more than three years of mathematics essential. A science major without a working knowledge of trigonometry and at least intermediate algebra is likely to be delayed in getting a degree. If you have an interest in languages or plan a college program with a language other than English requirement, you should have completed more than the two years of language other than English needed for admission.

It is important to understand that the "a through $f^{\prime \prime}$ requirements for admission are minimum entrance standards. Completing the required high school courses with satisfactory grades will not automatically prepare you for freshman work in every subject, much less in your major or program of study. Many entering students discover to their dismay that they are not adequately prepared for basic courses, such as English composition and calculus, which they are expected to take in their freshman year. Also, many undergraduate majors, particularly those in sciences and mathematics, require more high school preparation than that necessary for admission. This lack of preparation can cause problems for students who do not choose a major until after they enter the university, or for those who prepare for one major but later decide to change to another.

For these reasons, you are advised to take courses that will prepare you beyond minimum levels of competence in reading, writing, and mathematics. A student who is well prepared for university work will have taken four years of English in high school, four years of mathematics, two to three years of language other than English, three years of laboratory science, two years of history/social science, and one or more years of art or humanities.

Reading: Freshman-level university work demands a great amount, and high level, of reading. Proficiency in reading and understanding technical materials and scholarly works is necessary. Learn to read analytically and critical$l y$, actively questioning yourself about the author's intentions, viewpoint, arguments, and conclusions. Become familiar and comfortable with the conventions of standard written English
and with various writing strategies and techniques. Your reading experience should include original works in their entirety (not just textbooks and anthologies) that encompass a wide variety of forms and topics.
Writing: Effective critical thinking and proficiency with the written language are ciosely related, and both are skills which every university student must master. By university standards, a student who is proficient in English composition is able to: (a) understand the assigned topic; (b) select and develop a theme by argument and example; (c) choose words which clearly and precisely convey the intended meaning; (d) construct effective sentences; (e) demonstrate an understanding of the rules of standard written English; and (f) punctuate, capitalize, and spell correctly.
If you plan to attend the university, it is imperative that you take English courses in high school that require the development and practice of these skills. You must take at least four years of English composition and literature that stress expository writing: the development of persuasive critical thinking on the written page.

Mathematics: Many fields require preparation in mathematics beyond that necessary for admission to the university. Courses in calculus are included in all majors in engineering and the physical, mathematical, and life sciences, as well as in programs leading to professional degrees in fields such as medicine, dentistry, optometry, and pharmacy. Moreover, many majors in the social sciences, business, and agriculture require statistics or calculus, and sometimes both.
Most students take calculus or statistics, if required, during the freshman year. The university strongly recommends that students take four years of mathematics in high school, including pre-calculus in the senior year. Courses in mathematics should include basic operations with numerical and algebraic functions; operations with exponents and radicals; linear equations and inequalities; polynomials and polynomial equations; functions and their graphs; trigonometry, logarithms, and exponential functions, and applications and word problems.

Students who are not prepared to take calculus or statistics during the freshman year will have to take one or more preparatory mathematics classes at the university. This could affect their success in other courses and delay their entire undergraduate program.

Laboratory Science: The university requires two years of laboratory science in high school, but many majors require additional science courses. Programs in the biological sciences and some natural resource fields require high school biology, chemistry, and physics. Programs in the physical sciences, mathematics, engineering, agriculture, and the health sciences require chemistry and physics, and recommend biology.

College Credit: Freshman Applicants

There are many steps you can take to earn credit which will be applicable to your graduation from college. Some of these steps may be taken even before you graduate from high school. Among them are the following:

College Courses

Many high schools have arrangements with nearby postsecondary institutions, allowing you to take regular courses while you are still in high school. Many of these courses are accepted by the university exactly as they would be if you were a full-time college student if courses are posted for credit on the college transcript.

No matter how many college units you earn before graduating from high school, you will still apply as a freshman.

College Board Advanced Placement

The university grants credit for all College Board Advanced Placement Tests on which a student scores 3 or higher. The credit may be subject credit, graduation credit, or credit toward general-education or breadth requirements. Students who enter the university with AP credit do not have to declare a major earlier than other students, nor are they required to graduate earlier.

Students are encouraged to take AP tests when appropriate. Counselors should advise a student who is fluent in a language other than English to gain AP credit. AP test scores will not adversely affect a student's chances for admission.

The university grants credit for Advanced Placement tests as described in the AP chart in this catalog. Credit is expressed in quarter-units.

The chart also details requirements met by AP tests by college. Even if subject credit or credit toward specific requirements is not mentioned in the college lists, students receive university credit as described in the chart for all AP tests on which they score 3 or higher. If a student is
exempt from a particular course at UCSD, duplication of this course does not earn academic credit.

Admission as a Transfer Applicant

UCSD welcomes transfer students. The campus' Transfer Student Services provides admissions counseling and a variety of programs and services for prospective transfer students. The university defines a transfer applicant as a high school graduate who has been a registered student in another accredited college or university or in college-level extension classes other than a summer session immediately following high school graduation. A transfer applicant may not disregard his or her college record and apply for admission as a new freshman.

Each year UCSD receives more applications from eligible transfer students than the campus can accommodate. In addition to satisfying UC minimum requirements, only transfer students who have completed ninety or more transferable quarter-units by the end of spring term are considered for admission. Priority is given to students transferring from California community colleges. See "Advanced-Standing Selection."

UCSD admits transfer applicants at the junior level only. To be competitive, applicants need to present an academic profile stronger than that represented by the minimum UC admissions requirements, and they should complete preparation for their intended field of study.

Division of Biology: Prospective biology majors applying for transfer to UCSD must meet biology screening requirements.

The Irwin and Joan Jacobs School of Engineering: Transfer students applying to UCSD who are interested in the computer science or computer engineering major must also select an alternate major on the UC application. Those not admitted directly to the major will be admitted to their alternate major, provided it is not impacted.

Students applying for transfer admission into impacted majors may have a significantly lower probability of gaining admission to those majors than those applying to non-impacted majors. Please refer to the catalog pages of individual departments for any specific courses or GPA requirements that may exist for transfer students hoping to be admitted to an impacted major.

Transfer Eligibility

CALIFORNIA RESIDENTS (MINIMUM UC REQUIREMENTS)

As a transfer applicant you must meet one of the requirements described below to be considered for admission to the university. Admission to UCSD is very competitive. You must exceed the minimum UC admission requirements. See page 43, Advanced Standing Selection.

1. If you were eligible for admission to UC when you graduated from high school-meaning you satisfied the subject, scholarship, and examination requirements-you are eligible to transfer if you have a C (2.0) average in your transferable course work.
2. If you met the scholarship requirements but did not satisfy the subject requirement, you must take transferable college courses in the missing subjects, earning a C or better in each required course, and have an overall C average in all transferable course work to be eligible to transfer.
3. If you met the scholarship requirement but not the examination requirement, you must complete a minimum of twelve semester (eighteen quarter) units of transferable work and earn an overall C (2.0) average in all transferable college course work completed.
4. If you were not eligible for admission to UC when you graduated from high school because you did not meet the scholarship requirements, you must have:
a. Completed ninety quarter-units (sixty semester-units) of UC transferable college credit with a grade point average of at least 2.4, and;
b. Completed a course pattern requirement, earning a grade of C or better in each course, to include:

- two UC transferable college courses (three semester- or four to five quarterunits each) in English composition, and;
- one UC transferable college course (three semester- or four to five quar-ter-units each) in mathematical concepts and quantitative reasoning, and;
- four UC transferable college courses (three semester- or four to five quar-ter-units each) chosen from at least two of the following subject areas: the arts and humanities, the social and
behavioral sciences, the physical and biological sciences.
Students who satisfy the intersegmental General-Education Transfer Curriculum (see page 51) prior to transferring to UC may satisfy Option 4b above of the transfer admission requirements.

Transfer Eligibility

NON-CALIFORNIA RESIDENTS (MINIMUM REQUIREMENTS)

The minimum admission requirements for nonresident transfer applicants are the same as those for residents, except that nonresidents must have a grade-point average of 2.8 or higher in all UC transferable college course work.

Transfer Eligibility

SECOND BACCALAUREATE/LIMITED STATUS APPLICANTS

For the past several years, UCSD has not accepted applications from students who have earned a four-year degree. Please check with the Office of Admissions and Relations with Schools for information on whether applications for second baccalaureate or limited status are being accepted.

If there is a policy change, applications received by the Undergraduate Admissions from non-degree seeking students, or those who have earned a four-year degree, will be reviewed by the college provost's office. Limited status (non-degree-seeking) applicants and those seeking a second B.A. or B.S. will be held to the same restrictions as are other newly admitted students; fields that have restrictions for admission (such as engineering) will also be restricted to these applicants. Students will be screened according to the amount of space available in the college. Admissions will be on an individual basis, and there is no guarantee of admission to the undergraduate college or to a particular major. Applicants seeking a second B.A. or B.S. degree will be given consideration on a spaceavailable basis with a lower priority than all other admitted students. Applicants for a second B.A. or B.S. will have limited status until such time as they have met the prerequisites to the major, filed a program approved by the major department and had their proposed program
reviewed and approved or disapproved by the college. Limited status students are not awarded on-campus housing.

Limited status students will be eligible to apply for a Guaranteed Student Loan if they have not exceeded the duration limit of eighteen quarters of postsecondary attendance. Academic transcripts will be required from all institutions attended prior to Student Financial Services' certifying of the application.

Determining Your Grade-Point Average

Your grade-point average for admission purposes is determined by dividing the total number of acceptable units you have attempted into the number of grade points you earned on those units. You may repeat courses that you completed with a grade lower than C (2.0).

The scholarship standard is expressed by a system of grade points and grade-point averages earned in courses accepted by the university for advanced-standing credit. Grade points are assigned as follows: for each unit of A, four points; B, three points; C, two points; D, one point; and F, no points.

Credit from Another College

The university gives unit credit to transfer students for courses they have taken at other accredited colleges and universities, including some extension courses. To be accepted for credit, the courses must be consistent with those offered at the university, as determined by the Office of Admissions and Relations with Schools. Applications from students who have more than 135 quarter-units (ninety semester-units) of transfer credit and meet selection criteria are considered to have excess units (senior standing). Applicants in this category may be reviewed for admission if space permits.

Many students who plan to earn a degree at the university find it to their advantage to complete their freshman and sophomore years at a California community college. Each community college offers a full program of courses approved for transfer credit. The university will award graduation credit for up to seventy semester- (105 quarter-) units of transferable course work from a community college. Courses in excess of seventy semester-units will receive subject credit and may be used to satisfy university subject requirments.

EXAM AND UNITS FOR UNIVERSITY CREDIT	UCSD COURSE EXEMPTIONS (OR USE ON MAJOR)	REVELLE COLLEGE
Art (Studio) - Drawing Portfolio. 8 - General Portfolio. 8 (8-unit maximum for both tests)	None	Fulfills fine arts requirement or 2 courses of the noncontiguous area of focus or may be used as 8 units of elective credit.
Art-History................................ . 8	None	Fulfills fine arts requirement or 2 courses of the noncontiguous area of focus or may be used as 8 units of elective credit.
Biology..................................... 8	Score of 4 or $5=$ BILD 1 and 2 Score of $3=$ Biol. 10; may take Biol. 1, 2, 3 for credit.	Score of 3,4 , or 5 meets Revelle biology requirement.
Chemistry................................... 8	```Score of 3 = exempt Chem. }4\mathrm{ or 11. Score of 4 = exempt Chem. 4, 11 or 6A; may take Chem. 6AH,6BH,6CH for credit Score of 5 = exempt. Chem. 6A-B-C or Chem. 11; may take Chem. 6BH,6CH for credit```	Partial completion of natural science requirement.
Computer Science - Computer Science A. 2 - Computer Science AB. 4 (4-unit maximum for both tests)	Score of 5 only on $A B$ exam may possibly be equivalent to CSE 10 . Score of 3 or 4 on A or $A B$ exam $=$ elective units. Students must see faculty adviser.	1 course on noncontiguous area of focus.
Economics - Microeconomics.............................. . 4 - Macroeconomics \qquad	Score of 5 AP Micro $=$ Econ. 1A/2A. Score of 5 AP Macro = Econ. 1B/2B. Score of 3 , or $4=$ elective units.	Each score of 3, 4, or 5 exempts student 1 course on social science requirement.
English - Composition and Literature. 8 - Language and Composition................. 8 (8-unit maximum for both tests)	Score of 3,4 or 5 meets Subject A requirement.	2 courses of the noncontiguous area of focus or 8 units of elective credit.
Environmental Science........................ 4	Score of 4 or 5 = exempt Earth Science 40	4 units of elective credit.
Language -French.. 8 - German.. . . 8 -Spanish... 8	Score of $3=$ exempt Ling. $1 \mathrm{C} / 1 \mathrm{CX}$. Score of $4=$ exempt Ling. 1D/1DX or Lit. 2A. Score of $5=$ exempt Lit. $2 B$.	Score of 4 or 5 meets proficiency requirement.
Latin -Latin: Virgil. 4 - Latin: Literature. 4	Score of 3, 4, or $5=$ exempt Latin 1, 2, 3.	Usually prepares student to pass proficiency exam; 2 courses of the noncontiguous area of focus or may be used as 8 units of elective credit.
Literature - French. - Spanish.	$\begin{aligned} & \text { Score of } 3=\text { exempt Ling. } 1 \mathrm{D} / 10 \mathrm{X} \text { or Lit. } 2 \mathrm{~A} . \\ & \text { Score of } 4=\text { exempt Lit. } 2 \mathrm{~B} . \\ & \text { Score of } 5=\text { exempt Span. Lit. } 2 \mathrm{C} \text { or French Lit. } 50 . \end{aligned}$	Score of 3,4, or 5 meets proficiency requirement.
Government and Politics - United States.	Score of 3, 4, or 5 satifies American History and Institutions. Score of 3,4 , or $5=$ exempt Poli. Sci. 10 .	1 course toward social science requirement or 1 course of noncontiguous area of focus.
Government and Politics - Comparative.	Score of 3, 4, or $5=$ exempt Poli. Sci. 11.	1 course toward social science requirement or 1 course of noncontiguous area of focus.
History -United States. 8	Score of 3,4 , or $5=$ exempt 2 quarters U.S. History: May take HILD $2 \mathrm{~A}, 2 \mathrm{~B}$ or 2 C to complete sequence. Satisfies American History and Institutions.	2 courses toward social science requirement or 2 courses of noncontiguous area of focus.
History -European. 8	None	2 courses of the noncontiguous area of focus.
Mathematics - Calculus AB. 4 -Calculus BC. 8 (8-unit maximum for both tests)	Score of 4 or $5 A B$ exam = exempt Math. 20A or 10A. Score of 3 on $A B$ exam = may take Math. 20A for credit; or exempt Math. 10A. Score of 4 or 5 on BC exam = exempt Math. 20A, 20B or 10A, 10B. Score of 3 on BC exam = exempt Math. 20A and may take Math. 20B for credit; or = exempt Math. 10A, 10B.	$A B$ exam $=1$ course toward math requirement; $B C$ exam $=2$ courses toward math requirement.
Music - Listening and Literature. 8 -Theory.. . . 8 (8-unit maximum for both tests)	None	Fulfills fine arts requirement and 1 course of noncontiguous area of focus.
Physics -Physics B. 8 - Physics C Mechanics. 4 - Physics C Electricity and Magnetism...... 4 (8-unit maximum for all three tests)	B exam = elective credit and exempt Phys. 10. C exam (Mech.) score of 3 or $4=$ exempt Phys. 1A and may take Phys. 2A or 4A for credit. C exam (Mech.) score of $5=$ exempt Phys.2A, 4A. C exam ($E \& M$) score of 3 or $4=$ exempt Phys. $1 B$ and may take Phys. $2 B$ or 4B for credit. C exam (E\&M) score of $5=$ exempt Phys. $2 B$ or $4 C$ and may take Phys. $4 B$ for credit.	Bexam = elective credit C exam $=($ Mech. or $E \& M)$ each 4 units can meet 1 course of the natural science requirement.
Psychology................................ . 4	Score of 4 or $5=$ exempt Psych. 1 .	1 course toward social science requirement or 1 course of noncontiguous area of focus.
Statistics.................................... . 4	Score of 4 or $5=$ exempt Sociology 60 or Psychology 60	4 units of elective credit.

The University of California grants credit for all College Board Advanced Placement Tests on which a student scores 3 or higher. The credit may be subject credit for use on a minor or prerequisites to a major, or credit toward general-education requirements or elective units toward graduation.

The number of units granted for AP tests are not counted toward the maximum number of credits required for formal declaration of an undergraduate major or the maximum number of units a student may accumulate prior to graduation. Students who enter the university with AP credit do not have to declare a major earlier than other students, nor are they required to graduate earlier.

Application to College and Major Requirements

MUIR COLLEGE	THURGOOD MARSHALL COLLEGE	WARREN COLLEGE	ELEANOR ROOSEVELT COLLEGE
8 units of elective credit.	8 units of elective credit.	May apply 2 courses toward Visual Arts or Humanities PofC or Area Study.	1 course toward Group B fine arts requirement.
8 units of elective credit.	May apply 1 course toward fine arts	May apply 2 courses toward Visual Arts or Humanities PofC or Area Study.	1 course toward Group B fine arts requirement.
Score of 3 meets one course of natural science option; score of 4 or 5 meets two courses of natural science option.	1 course of natural science requirement. May also apply 1 course toward disciplinary breadth if noncontiguous to major.	May apply 2 courses toward Science and Technology or Fundamentals of Bio PofC.	Score of 3, 4, or 5 meets two courses of natural science requirement.
Score of 4 or 5 meets two courses of natural science option.	May apply 1 course of natural science requirement and may apply 1 course toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	Meets 2 courses toward natural science requirement.
2-4 units elective credit.	$A B$ exam $=1$ course toward mathematics/computer/ statistics requirement.	May apply toward formal skills or program of concentration. See Warren adviser for details.	Score of $5=1$ course quantitative/ formal skills requirement.
Each score of 5 exempts 1 course on social science requirement.	May apply 1 course toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	4-8 units of elective credit.
8 units of elective credit.			
Score of 4 or 5 exempt Earth Science 40	4 units of elective credit.	4 units of elective credit.	Meets 2 courses toward natural science requirement.
Determines placement in language sequence if student chooses that option.	May apply 2 courses toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	Score of $3=8$ units of elective credit Score of 4 or 5 meets language proficiency requirement.
Meets 1 to 2 courses of foreign language option.	May apply 1-2 courses toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	1 course of language usually prepares student to pass proficiency exam.
Determines placement in language sequence if student chooses that option.	May apply 2 courses toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	Meets language proficiency requirement.
1 course toward social science requirement.	May apply 1 course toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	4 units of elective credit.
1 course toward social science requirement.	May apply 1 course toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	4 units of elective credit.
Meets 2 courses of history 2 sequence on humanities option.	May apply 2 courses toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	8 units of elective credit.
8 units elective credit only.	May apply 2 courses toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	1 course may apply toward regional specialization. See ERC academic counselor for details
$A B$ exam meets 1 course of math option; BC exam completes 2 courses of math option.	If $A B$ exam may apply 1 course toward math and statistical requirement. If BC exam may apply 2 courses toward math and statistical requirement.	$A B$ exam meets 1 course of formal skill requirement; $B C$ exam completes 2 courses formal skills requirement.	$A B$ exam = 1 course toward quantitative/formal skills requirement. $B C$ exam completes quantitative formal skills requirement
8 units elective credit only.	1 course toward fine arts requirement and 1 course toward the disciplinary breadth requirement if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	1 course toward fine arts requirement.
Each 4 units of C exam (Mech. or E\&M) can meet 1 course of the natural science option.	B exam = 1 course of natural science requirement and 1 course toward disciplinary breadth if noncontiguous to major. 4 units of C exam $=1$ course of nat. sci. requirement. 8 units of C exam $=1$ course of natural science requirement and 1 course toward disciplinary breadth if noncontiguous to major.	May apply toward program of concentration requirements if noncontiguous to major. See Warren adviser for details.	B exam $=2$ courses for natural science; C exam $(E \& M)=1$ course for natural science; C exam (Mech.) = 1 course for natural science for a total of 2 courses maximum.
4 units elective credit only. noncontiguous to major.	May apply as 1 course toward disciplinary breadth if requirements if noncontiguous to major.	May apply toward program of concentration See Warren adviser for details.	4 units of elective credit.
4 units of elective credit.	Score of 4 or 5 meets one course toward formal skills requirement	4 units of elective credit.	1 course toward quantitativefformal skills requirement.

A student cannot receive credit for a UCSD course which duplicates AP credit. Where the chart says "exempt" or "equal to a UCSD course number," that course may not be taken for credit. Students who are fluent in a language other than English should not overlook the opportunity to get AP credit by taking the foreign/literature exams. Note: Please see college academic adviser for clarification of any questions you may have.

The transferability of units from California community colleges and all other postsecondary institutions proceeds as follows: (1) the UC Office of the President determines unit transfer policies which are binding upon, and implemented by, each campus' admissions office; (2) applicability of transferred units to breadth (gen-eral-education) requirements is determined for each UCSD college by its provost (see also "Transfer Agreements" below); (3) applicability of units toward the major is determined by the appropriate UCSD academic department. Before applying to UCSD you may obtain more information on many of these matters from the Office of Admissions and Relations with Schools.

Applicants who have completed courses at a postsecondary institution outside the U.S. should have these records sent to the Office of Admissions and Relations with Schools as soon as possible. Advanced standing credit for appropriate courses will be decided on an individual basis.

Note: The University of California does not give credit for CLEP examinations.

University of California/UCSD Transfer Agreements and Preparation Programs

UCSD strongly recommends that transfer students complete lower-division breadth and general-education (B/GE) requirements prior to transfer. Transfer students are also strongly advised to complete all lower-division preparation for the major prior to enrollment.

The University of California, San Diego has established five transfer agreements and preparation programs. These agreements and programs, Transfer Admission Guarantee (TAG), UniversityLink, UC Transfer Reciprocity, Intersegmental General-Education Transfer Curriculum Agreement, and Articulation, allow students to fulfill all or most lower-division $B / G E$ requirements prior to transfer.

Transfer students may fulfill their lowerdivision $B / G E$ requirements with any of these agreements or programs, or they may fulfill them at UCSD. Completion of IGETC or UC Reciprocity agreements will satisfy the lower-division requirements of Earl Warren, Thurgood Marshall, or John Muir College only. Students who follow IGETC or UC Reciprocity are welcome to apply to Eleanor Roosevelt or Revelie College. Courses completed prior to transfer will be applied toward the college's own lower-division require-
ments. Revelle students must also complete the remainder of the college's requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the "Making of the Modern World" sequence in addition to the IGETC or UC Reciprocity requirements. They must also complete the remainder of the college's general education requirements. Transfer applicants should refer to the catalog pages for individual departments' specific courses for GPA requirements.

Transfer Admission Guarantee (TAG)

UCSD has established a Transfer Admission Guarantee (TAG) program with seventeen California community colleges. Completing the provisions of the TAG contract will guarantee admission to the term and UCSD college of choice, but not the major. Prospective computer science and computer engineering majors should note that, completing the provisions of the TAG contract will guarantee admission to UCSD and to the college of choice, but not necessarily to the major. Please refer to the catalog pages of individual departments for any specific courses or GPA requirements that may exist for transfer students hoping to be admitted to an impacted major. TAG also allows students to fulfill all or most lower-division $B / G E$ requirements prior to transfer. TAG contracts must be signed and submitted by deadlines for specific terms. TAG community college counselors can give you information regarding this program.

Participating TAG colleges are: Cuyamaca, DeAnza, Diablo Valley, Foothill, Grossmont, Imperial Valley, Mira Costa, Pasadena City, Saddleback, San Diego City, San Diego Mesa, San Diego Miramar, Palomar, Santa Barbara City, Santa Monica, Southwestern, and West Valley.

UniversityLink

UniversityLink provides guaranteed admission to high school seniors who sign an agreement and successfully complete academic and program requirements at a participating community college. UniversityLink partnerships are currently established with the following colleges: Cuyamaca, East Los Angeles, Grossmont, Mira Costa, Palomar, San Diego Mesa, San Diego Miramar, and Southwestern.

Transfer Preparation Programs

The following avenues do not guarantee admission. However, they do allow you to fulfill
your lower-division general-education requirements at the community college or other UC campus:

UC Transfer Reciprocity Agreement

Transfers who have attended any campus of the University of California and satisfied lowerdivision breadth and general-education (B/GE) requirements at that campus prior to transfer may consider these requirements satisfied for John Muir, Thurgood Marshall, or Earl Warren college only. Students who follow UC Reciprocity are welcome to apply to Eleanor Roosevelt or Revelle college. Courses completed prior to transfer will be applied toward the college's own lower-division requirements. Revelle students must also complete the remainder of the college's requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the "Making of the Modern World" sequence in addition to the UC Reciprocity requirements. They must also complete the remainder of the college's general education requirements.

Transfers in this category should obtain a "certificate of completion of GE requirements" from the campus at which these requirements were satisfied. This can be in the form of a letter or memo addressed to your UCSD undergraduate college academic advising office.

Intersegmental General-Education Transfer Curriculum Agreement

Transfers from California community colleges can fulfill the UC lower-division breadth and general-education (B/GE) requirements by completing the Intersegmental General-Education Transfer Curriculum (IGETC). Completion of IGETC will satisfy the lower-division B/GE requirements at UCSD for Earl Warren, Thurgood Marshall, or John Muir college only. Students who follow IGETC are welcome to apply to Eleanor Roosevelt or Revelle college. Courses completed prior to transfer will be applied toward the college's own lower-division requirements. Revelle students must also complete the remainder of the college's requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the "Making of the Modern World" sequence in addition to the IGETC requirements. They must also complete the remainder of the college's general education requirements.

Articulation

UCSD has Articulation Agreements for general education breadth requirements with fifty-four California community colleges, and major preparatory agreements for certain majors with selected California community colleges. These agreements can be found on the ASSIST Web site (http://www.assist.org), which includes statewide transfer information.

International Applicants

International applicants must meet highly rigorous selection criteria for admission.

Courses at UCSD are conducted in English, and every student must have sufficient command of that language to benefit from instruction. To demonstrate such command, students whose native language is not English will be expected to take the Test of English as a Foreign Language (TOEFL). Arrangements for taking this test may be made by writing to the Educational Testing Service, TOEFL Registration Office, P.O. Box 6151, Princeton, New Jersey 08541-6151, U.S.A. Online information is available at http://
www.toefl.org. The minimum acceptable TOEFL score is 550 (paper-based exam) or 220 (comput-er-based exam).

The results of this test will be used to determine whether the applicant's command of English is sufficient to enable him or her to pursue studies effectively at UCSD. International students whose command of English is slightly deficient will be required to take an English course and, therefore, a reduced academic program.

In addition to an adequate English-language background, international students must have sufficient funds available to cover all fees; living, and other expenses; and transportation connected with their stay in the United States (see "Fees and Expenses").

International students are required to obtain health insurance for themselves and dependents who accompany them. Suitable insurance policies and additional information are available at the Student Health Service and at the International Center.

Address all communications concerning undergraduate admission of international students to the Office of Admissions and Relations with Schools, 9500 Gilman Drive, Dept.

0021, University of California, San Diego, La Jolla, California 92093-0021, email: admissionsinfo@ucsd.edu.

How to Apply for Admission

Undergraduate admissions application packets are available from California high school and community college counselors or from any UC campus admissions office. The application is also available online in the fall only at the UC Pathways Web site (http://www.ucop.edu/pathways/appctr.html). Complete the Undergraduate Application form in the packet. Follow the accompanying directions carefully and mail to:

University of California,
Undergraduate Application Processing Center P.O. Box 23460

Oakland, CA 94623-0460
A preaddressed envelope is provided with the application.

You may apply to as many as eight campuses of the University of California on one application form.

INTERSEGMENTAL GENERAL-EDUCATION TRANSFER CURRICULUM (IGETC)

Summary Outline

Completion of the Intersegmental General-Education Transfer Curriculum (IGETC) will permit a student to transfer from a community college to a campus in the University of California system without the need, after transfer, to take additional lower-division, general-education courses.

It should be noted that completion of the IGETC is not a requirement for transfer to UC, nor is it the only way to fulfill the lower-division, generaleducation requirements of UC prior to transfer. Depending on a student's major and field of interest, the student may find it advantageous to take courses fulfilling the general-education requirements of the UC campus or college to which the student plans to transfer. IGETC is applicable at Earl Warren, Thurgood Marshall, and John Muir colleges only. Courses completed prior to transfer will be applied toward the college's own lower-division requirements. Revelle students must also complete the remainder of the college's requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the "Making of the Modern World" sequence in addition to the IGETC requirements. They must also complete the remainder of the college's general education requirements.

English Communication:

Mathematical Concepts and Quantitative Reasoning:
Arts and Humanities:
Social and Behavioral Sciences:
Physical and Biological Sciences:
Language Other than English:

[^3]
Application Fees

The basic application fee of $\$ 40$ entitles you to be considered at one campus of the university. For each additional campus you select, you must pay an extra $\$ 40$ fee. These fees are not refundable.

When to Apply for Admission

To make sure that you will be considered for admission to the university campus(es) you want to attend, and to the major or program of study you want to pursue, you must file your completed application during the applicable Priority Filing Period (see below).

If you plan to apply for financial aid, university housing, or other special programs where early application is important, you must also file during this time.

Priority Filing Periods

All UC Campuses, except Berkeley
Fall Quarter 2001:
File November 1-30, 2000
Winter Quarter 2002:
File July 1-31, 2001
Spring Quarter 2002:
File October 1-31, 2001

UC Berkeley Only

Fall Semester 2001:
File November 1-30, 2000
Spring Semester 2002:
File July 1-31, 2001
Note: Each campus of the university makes individual determinations regarding the level of transfer students who may apply to that campus. Some campuses do not accept applications for winter and spring. Inquire at the campus Office of Admissions and Relations with Schools. UCSD accepts winter and spring applications from Transfer Admission Guarantee (TAG) students only.

After the priority period has ended, campuses will accept applications only if they still have openings for new students. This means that some campuses may be able to accept additional applications, but others may not. If a campus is closed to new students, applicants will be informed that their applications will not be forwarded to that campus. In this case, a portion of the application fee may be refunded if appropriate.

Adding a Campus

If, after submitting your application, you want to add a campus or campuses to the one(s) you first listed on your application, you may do so if the campus or campuses you are considering are still accepting applications. Please contact the admissions office on each of these campuses for information on which programs are still open and the procedures for adding campuses.

Selecting Campuses and

Programs of Study

You are encouraged to approach the selection of a university campus or campuses and a program of study very carefully. You may be familiar with only one or two of the university's eight general campuses, probably those nearest to your home or mentioned more frequently in the news. You should seriously consider the many different educational alternatives and programs offered by other campuses of the university before completing your application. Your counselor and the university staff in the Office of Admissions and Relations with Schools can provide you with insights that will help you in the selection process.

College Choice

The application to San Diego must include a choice of undergraduate college (Eleanor Roosevelt, Thurgood Marshall, Earl Warren, Revelle, or John Muir) before it can be processed. Selecting alternative college choices is also advisable since each college has enrollment quotas that limit the number of new freshmen and new transfer students. The Office of Admissions and Relations with Schools will select an alternate college if an alternate choice is not indicated.

Transcripts

Every applicant is responsible for requesting that the high school of graduation and each college he or she has attended send official transcripts promptly to the Office of Admissions and Relations with Schools.

If you are still attending high school, please DO NOT send a sixth- or seventh-semester transcript; we will make a decision based on the selfreported academic data you have provided in the application. If admitted, you must arrange to send a final official transcript immediately upon
completion that includes final grades and date of graduation, or, if you have passed the High School Proficiency Examination, a verification of your Certificate of Proficiency. If you have completed any college courses while in high school, you must immediately arrange to send an official transcript of course(s).

Prior to admission decisions for transfer students, the Undergraduate Admissions will request that you have official transcripts sent from your high school of graduation, and from each college you have attended, including an up-to-date transcript from your present college listing your work in progress.

The transcripts and other documents that you submit as part of your application become the property of the university; they cannot be returned to you or forwarded in any form to another college or university.

Checklist for Applicants

1. Fill out the application form completely. You must select UCSD colleges in order of preference. Be sure to sign the form.
2. Complete your personal statement and include it with the application.
3. Fill in the self-reported academic data and test information carefully and accurately, as instructed in the undergraduate application packet.
4. Mail fall application or file an application on the University of California's Pathways Web site (www.ucop.edu/pathways/appctr.html) during the November filing period with fee (check or money order payable to The Regents of the University of California) to:
```
University of California
Undergraduate Application
Processing Service
P.O. Box 23460
Oakland, CA 94623-0460
```

5. Take the SAT I or ACT test and SAT II: Subject Tests if you are a freshman applicant no later than December of your senior year.
6. Request that your school(s) send transcripts and other required documents directly to:

Office of Admissions and Relations with Schools
9500 Gilman Drive, 0021
La Jolla, CA 92093-0021

Final high school transcripts must be on file in the UCSD Undergraduate Admissions by July 15 .

Notification of Admission

Admission-Freshmen

If you are a freshman applicant and you filed during the priority filing period, UCSD will notify you whether you have been admitted beginning mid-March and no later than March 31. All offers of admission are provisional until the receipt and verification of your test results and official final high school transcript (and college transcript, if applicable). If you are offered admission based on your self-reported academic record, official documents will be used to verify the self-reported academic data you submit. Offers of admission will be rescinded if: a) there are discrepancies between your official transcripts and your selfreported academic record; b) you do not complete the courses listed as "in progress" or "planned"; or c) you do not complete your twelfth-grade courses at the same academic level you achieved in previous course work.

Admission-Transfer

If you are applying to transfer, UCSD will send you notification between April 1 and May 1. All
offers of admission are provisional until the receipt and verification of all official transcripts. If you are offered admission based on your selfreported academic record, your official high school transcript and transcripts from all colleges attended will be used to verify the selfreported academic data you submit. Offers of admission will be rescinded if: a) there are discrepancies between your official transcript and your self-reported academic record; b) any college or school attended is omitted from your application; c) you do not complete the courses listed as "in progress" or "planned;" or d) the specified GPA is not maintained for courses "in progress" or "planned."

These admission notification dates apply

 only to applicants who file within the priority periods. Applicants for winter and spring quarters are notified as soon as possible (within three months) following receipt of all appropriate documents.
After receipt of notification of admission:

1. Read the documents in your admission packet carefully, noting any special provision governing your admission.
2. Request that any outstanding transcripts be forwarded to the Office of Admissions and Relations with Schools to ensure full matriculation.
3. Complete and return to the Office of Admissions and Relations with Schools the Statement of Intent to Register (SIR) and the Statement of Legal Residence (SLR). Please note the deadline to return your Statement of Intent to Register. If your SIR is postmarked after this date, you may be denied enrollment due to space limitations. For fall quarter admits, the deadline for return of your SIR and SLR is May 1 for freshmen and June 1 for transfers.

Statement of Intent to Register (SIR)

Upon receipt of your Statement of Intent to Register (SIR), the Office of Admissions and Relations with Schools provides information to various campus offices including Student Financial Services, Housing and Dining Services, and your college provost. You will then receive additional information from each of these offices. The $\$ 100$ nonrefundable fee accompanying your SIR is applied toward payment of the university registration fee for the quarter of your admission. International applicants outside the territorial United States are not required to submit the $\$ 100$ deposit with the Statement of Intent to Register.

Even though you may be admitted to more than one campus of the University of California, you can return an Intent to Register to only one campus.

ESTIMATED EXPENSES FOR ON-CAMPUS UNDERGRADUATE RESIDENTS OF CALIFORNIA

Non-California residents should estimate approximately $\$ 3,568$ additional tuition fees each quarter.

	FALL QUARTER	WINTER QUARTER	SPRING QUARTER	TOTAL
University Registration Fee	$\$ 238$	$\$ 238$	$\$ 237$	$\$ 713$
Educational Fee	906	905	905	2,716
Campus Activity Fee	20	20	20	60
University Center Fee	37	37.50	37.50	112.50
Recreation Facility Fee	82	82	82	246
Board and Room in Residence Halls (Avg.)	2,509	2,508	2,508	7,525
Transportation (Approx.)	311	310	310	931
Books, Supplies (Approx.)	386	386	386	1,158
Personal Expenses (Approx.)	406.50	406.50	406.50	$1,219.50$
Mandatory Health Insurance	163	163	163	489
Total	$\$ 5,059.50$	$\$ 5,056.00$	$\$ 5,055.00$	$\$ 15,170.00^{*}$

NOTE: Fees are subject to change by the Board of Regents.

* Total does not include orientation fee for new students (\$105 freshmen; \$40 transfer students).

College Orientation and Registration of New Students

Prior to the quarter for which they have been admitted, new students will receive information from their colleges regarding orientation and enrollment in classes. Admitted students (freshmen and transfers) will be required to attend a new-student orientation on the campus. Academic advising and enrollment in courses will take place during orientation sessions.

Student Health Requirement

Entering students are required to complete a Medical History form and to send it to the Student Health Center. Forms and complete instructions are usually sent to entering students well in advance of registration, or they may be obtained at the Student Health Center. Information submitted to the Student Health Service is kept confidential and is carefully reviewed to help provide individualized health care.

Mandatory Health Insurance: The University of California has established mandatory health insurance as a non-academc condition of enrollment for undergradates. Health insurance packages will be available for year-round coverage. The cost will be factored into grants, loans, and work-study programs offered to students who receive financial assistance. Students already covered by adequate health insurance can waive the requirement. The new campus-based insurance plans will not replace the primary medical care and referral services provided by the Student Health Service.

Hepatitis B Immunization: The California State Legislature mandates that first-time enrollees at the University of California who are eighteen years of age or younger provide proof of full immunity against Hepatitis B prior to their enrollment. All students who accept UCSD's offer of admission, and who will still be eighteen years old by the beginning of the Fall Quarter, will receive the Hepatitis B information in the mail from the campus. The immunization consists of a series of three vaccinations. You can receive these innoculations through your health care provider or county health department.

Students are urged also to submit a physical examination form completed by their family physician, particularly if they plan to take part in intercollegiate athletic competition. Routine physical examinations are not provided by the

Student Health Service. An optional student health plan that provides additional benefits off campus may be purchased at the time registration fees are paid. Student health insurance is also mandatory for all international and graduate level students and is a condition of enrollment.

Reapplication

An application for admission is effective only for the quarter for which it is submitted. If you are ineligible for admission, or if you are admitted and do not register, you must file a new application to be considered for a later quarter. The selection criteria in effect for the new term must be met.
If you have been admitted to the university, enrolled, and paid registration fees, but did not attend, contact the Office of the Registrar for readmission information.

Fees and Expenses

The exact cost of attending the University of California, San Diego will vary according to personal tastes and financial resources of the individual. Generally, the total expense for three quarters, or a college year, is estimated at approximately $\$ 15,000$ for California residents living away from home.

It is possible to live simply and to participate moderately in the life of the student community on a limited budget. The university can assist the student in planning a budget by indicating certain and probable expenses. For information regarding student employment, loans, scholarships, and other forms of financial aid at UCSD, see "Campus Services and Facilities" in this catalog.

Undergraduate Registration

Enrollment in Courses

Prior to the quarter for which they have been admitted, new students will receive information from their college regarding orientation dates, course enrollment, and fee-payment deadlines. Enrollment materials will be provided at the college provosts' offices on the days assigned for new students' registration. New freshman students admitted for the fall quarter will be invited to attend a new student orientation during the summer preceding fall quarter. Enrollment in courses will take place at that time.

New Student Orientation

Orientation programs are designed to acquaint students with the nature, functions, and purposes of UCSD's college system, and to show students how to deal with a variety of requirements set by the university, college, and academic departments. Although all five colleges have the same goals for students, each has developed its own distinctive program. The professional staffs of Revelle, Muir, Marshall, Warren, and Roosevelt Colleges have designed programs for their respective students and the students' parents. During the school year, these same staff members are occupied in counseling continuing students, so they have planned these orientation sessions for the summer, when they can devote 100 percent of their time to becoming acquainted with new students and introducing them to a whole new way of doing things.

Not only will new students be made aware of the opportunities offered by their college and the UCSD community as a whole, they will also receive a great deal of guidance in selecting courses and will register in advance for their first fall quarter classes.

To prepare for the orientation session, students should spend a little time thinking about what they want from their education. If the decision of which major to pursue has not been made, students can benefit by narrowing their choices, eliminating subjects they know they don't want, and selecting areas of possible interest. Students will have a lot of help in making such choices, but anything they can do in advance will make the process easier.

All new students are required to attend an orientation/registration session, and they will be charged a fee for the program. Parents' attendance is, of course, optional, but we hope they will want to come. Parents' concerns about life at UCSD are not exactly the same as students', so they will be invited to separate meetings.

In addition to the Summer Orientation, students should attend Welcome Week-the week before the official opening of the fall quarter and the beginning of classes.

Continuing Student Enrollment

Continuing students (those currently registered or eligible to register) should refer to the quarterly Schedule of Classes for enrollment information, dates, and fee-payment instructions. The Schedule of Classes is published prior to each quarter and is available on StudentLink or may be purchased at the UCSD Bookstore.

Definitions

Students are considered enrolled when they have requested space in at least one course and space in classes has been reserved. Students are not considered registered until they have both enrolled in courses and paid registration fees.

Priority enrollment is processed using WebReg in StudentLink on the Web. Continuing undergraduate students are assigned a start time, after which they may enroll in classes. Start times are based on the number of units completed. Students who have completed more units will receive earlier start times than students with fewer units.

Students are responsible for all courses in which they are enrolled. Students should check StudentLink/WebReg to confirm class enrollments. Alternately, students may go to the Registrar's Office and obtain a printout of their class schedule. Students must make any necessary changes by the Add/Change/Drop process (through WebReg in StudentLink or in person) or by appropriate withdrawal.

Adding, Changing, and Dropping Courses

After priority and open enrollment periods, students may make any necessary corrections to
their class schedules on WebReg in StudentLink, or by submitting an Add/Change/Drop Card to the Registrar's Office. Students may add courses through the second week of instruction, or through the fourth week of instruction with department approval. Please refer to the quarterly Schedule of Classes for appropriate approvals required.

Students may continue to change grading options through the end of the fourth week and to drop courses through the end of the ninth week of instruction. Students who wish to drop all their courses are required to file an Undergraduate Withdrawal form with their college academic advising or dean's office. Please see the W (Withdrawal) grade regulation that applies after the fourth week of instruction.

Weeks

1-2: ADD/DROP/CHANGE Grade Option
2-4: DROP/CHANGE Grade Option
5-9: DROP ONLY-"W" recorded on transcript
10 and later: No changes; final grade assigned

The Undergraduate Program

The undergraduate program consists of four four-unit courses each quarter, or sixteen units per quarter, for four years. Students must complete a minimum of thirty-six units in three consecutive quarters in order to satisfy the minimum progress requirements (see "Minimum Progress" in the "Academic Regulations" section). Undergraduate students wishing to take more than twenty-one and one-half units of credit in a quarter will need their college provost's approval.

Approval for Enrollment for More than 200 Units

The minimum unit requirement for the bachelor's degree is 184 quarter-units in Revelle College and 180 quarter-units in Muir, Marshall, Warren, and Roosevelt Colleges. A student is expected to complete the requirements for graduation within this minimum unit requirement. The bachelor of science degree may require satisfaction of additional units, depending upon the student's major. Candidates for B.S. degrees in
engineering are permitted 230 units (240 for engineering majors in Revelle and Roosevelt colleges).

Under special circumstances, students may extend their undergraduate training beyond the minimum. Non-engineering students who are attempting to achieve more than 200 quarterunits will not be permitted to register without their college provost's approval. Other exceptions will be granted only for compelling academic reasons and only with the approval of the college provost and the concurrence of the Committee on Educational Policy. Transfer units applicable toward general-education requirements or major requirements are included in the maximum unit calculation; all other transfer units are excluded. Advanced placement and international baccalaureate units are excluded. (See information regarding "Minimum Unit Limitation" in the "Academic Regulations" section of this catalog.)

Enrollment and Registration Holds

A student may have a "hold" placed on his or her enrollment or registration (payment of fees) and/or academic transcripts for the following reasons:

1. Failure to respond to official notices.
2. Failure to settie financial obligations when due or to make satisfactory arrangements with the Student Account and University Billing Services Office.
3. Failure to present certification of degrees and/or status on leaving previous institution(s).
4. Failure to comply with admission conditions.

Each student who becomes subject to a hold action is given advance notice and ample time to deal with the situation. However, if the student fails to respond, action will be taken without further notice, and he or she is entitled to no further services of the university, except assistance toward reinstatement.

Undergraduate students wishing to have their status restored must secure a release from the office initiating the hold action. Reinstatement is not final until the registration process is completed.

Change of Address

Students who change their local or permanent addresses are expected to notify the registrar either in writing or via StudentLink at once. Change-of-address cards are available at the Office of the Registrar, 301 University Center, and StudentLink is available through the campus Web
site: InfoPath, at www.ucsd.edu. Students will be held responsible for communications from any university office sent to the last address on record and should not claim indulgence on the plea of not receiving the communication.

California Residence for Tuition Purposes

TUITION FEE FOR NONRESIDENT STUDENTS

If you have not been living in California with intent to make it your permanent home for more than one year immediately before the residence determination date for each term in which you propose to attend the university, you must pay a nonresident tuition fee in addition to all other fees. The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter-and for schools on the semester system, the day instruction begins for the semester.

LAW GOVERNING RESIDENCE

The rules regarding residence for tuition purposes at the University of California are governed by the California Education Code and implemented by Standing Orders of the Regents of the University of California. Under these rules, adult citizens and certain classes of aliens can establish residence for tuition purposes. There are particular rules that apply to the residence classification of minors. (See below.)

WHO IS A RESIDENT?

If you are an adult student (at least eighteen years of age) you may establish residence for tuition purposes in California if: (1) you are a U.S. citizen; (2) you are a permanent resident or other immigrant; or (3) you are a nonimmigrant who is not precluded from establishing a domicile in the United States. Nonimmigrants who are not precluded from establishing domicile in the United States include those who hold valid visas of the following types: $A, E, G, H-1, H-4, I, K, L, O-$ $1,0-3$, or R. To establish residence you must be physically present in California for more than one year and you must have come here with the intent to make California your home as opposed to coming to this state to go to school. Physical presence within the state solely for educational purposes does not constitute the establishment of California residence, regardless of the length of your stay. You must demonstrate your intention to make California your home by severing
your residential ties with your former state of residence and establishing those ties with California. If these steps are delayed, the oneyear durational period will be extended until you have demonstrated both presence and intent for one full year. Effective fall 1993, if your parents are not residents of California or you were not previously enrolled as a UC student, you will be required to be financially independent in order to be a resident for tuition purposes. Your residence cannot be derived from your spouse or your parents.

REQUIREMENTS FOR FINANCIAL INDEPENDENCE

You will be considered "financially independent" if one or more of the following applies: (1) you are at least twenty-four years of age by December 31 of the calendar year for which you are requesting residence classification; (2) you are a veteran of the U.S. Armed Forces; (3) you are a ward of the court or both parents are deceased; (4) you have legal dependents other than a spouse; (5) you are married, or a graduate student or a professional student, and you were not claimed as an income tax deduction by your parents or any other individual for the tax year immediately preceding the term for which you are requesting resident classification; or (6) you are a single undergraduate student and you were not claimed as an income tax deduction by your parents or any other individual for the two tax years immediately preceding the term for which you are requesting resident classification, and you can demonstrate self-sufficiency for those years and the current year; (7) your parents are residents of the State of California; (8) you reach the age of majority in California while your parent(s) were residents of this state AND the California resident parent(s) leave the state to establish a residence elsewhere AND you continue to reside in the State of California with all your ties here after your parent(s) departure. (Note: Financial dependence will not be a factor in residence status for graduate student instructors, graduate student teaching assistants, research assistants, junior specialists, postgraduate researchers, graduate student researchers, and teaching associates who are employed fortynine percent or more of full time or awarded the equivalent in University-administered funds, e.g., grants, stipends, or fellowships at the University of California in the term for which classification is sought.)

ESTABLISHING INTENT TO BECOME A CALIFORNIA RESIDENT

Indications of your intent to make California your permanent residence can include the following: registering to vote and voting in California elections; designating California as your permanent address on all school and employment records, including military records if you are in the military service; obtaining a California driver's license or, if you do not drive, a California Identification Card; obtaining California vehicle registration; paying California income taxes as a resident, including taxes on income earned outside California from the date you establish residence; establishing a California residence in which you keep your personal belongings; and licensing for professional practice in California. The absence of these indicia in other states during any period for which you claim residence can also serve as an indication of your intent. Your intent will be questioned if you return to your former state of residence when the university is not in session. Documentary evidence is required, and all relevant indications will be considered in determining your classification.

GENERAL RULES APPLYING TO MINORS

If you are an unmarried minor (under age eighteen), the residence of the parent with whom you live is considered to be your residence. If you have a parent living, you cannot change your residence by your own act, by the appointment of a legal guardian, or by the relinquishment of your parent's right of controi. If you lived with neither parent, your residence is that of the parent with whom you last lived. Unless you are a minor alien present in the U.S. under the terms of a nonimmigrant visa that precludes you from establishing domicile in the U.S., you may establish your own residence when both your parents are deceased and a legal guardian has not been appointed. If you derive California residence from a parent, that parent must satisfy the one-year durational residence requirement.

SPECIFIC RULES APPLYING TO MINORS

Divorced/Separated Parents

You may be able to derive California resident status from a California resident parent if you move to California to live with that parent on or

before your eighteenth birthday. If you begin residing with your California parent after your eighteenth birthday, you will be treated like any other adult student coming to California to establish residence.

Parent of Minor Moves from California

You may be entitled to resident status and not be required to establish financial independence if you are a minor U.S. citizen or eligible alien whose parent(s) was a resident of California who left the state within one year of the residence determination date if:

1. you remained in California after your parent(s) departed;
2. you enroll in a California public post-secondary institution within one year of your parent(s)' departure; and
3. once enrolled, you maintain continuous attendance in that institution.

Two-Year Care and Control

You may be entitled to resident status if you are a U.S. citizen or eligible alien and you have lived continuously with an adult who is not your parent for at least two years prior to the residence determination date. The adult with whom you are living must have been responsible for your care and control for the entire two-year period and must have been residing in California
during the one year immediately preceding the residence determination date.

EXEMPTIONS FROM NONRESIDENT TUITION

Member of the Military

If you are a member of the U.S. military stationed in California on active duty, unless you are assigned for educational purposes to a statesupported institution of higher education, you may be exempt from the nonresident tuition fee until you have lived in California long enough to become a resident. You must provide the residence deputy on campus with a statement from your commanding officer or personnel officer stating that your assignment to active duty in California is not for educational purposes. The letter must include the dates of your assignment to the state.

Spouse or Other Dependents of Military Personnel

You are exempt from payment of the nonresident tuition fee if you are a spouse or a natural or adopted child or stepchild who is a dependent of a member of the U.S. military stationed in California on active duty. The exemption is available until you have lived in California long enough to become a resident. You must petition for a waiver of the nonresident tuition fee each term you are eligible. If you are enrolled in an
educational institution and the member of the military is transferred on military orders to a place outside California where he or she continues to serve in the armed forces, or the member of the military retires from active duty immediately after having served in California on active duty, you may retain this exemption under the conditions listed above.

Child or Spouse of Faculty Member

To the extent funds are available, if you are an unmarried dependent child under age twentyone or the spouse of a member of the university faculty who is a member of the Academic Senate, you may be eligible for a waiver of the nonresident tuition fee. Confirmation of the faculty member's membership on the Academic Senate must be secured each term this waiver is granted.

Child or Spouse of University Employee

You may be entitled to resident classification if you are an unmarried dependent child or the spouse of a full-time university employee whose assignment is outside of California (e.g., Los Alamos Scientific Laboratory). Your parent's or spouse's employment status with the university must be ascertained each term.

Child of Deceased Public Law Enforcement or Fire Suppression Employee

You may be entitled to a waiver of the nonresident tuition fee if you are the child of a deceased public law enforcement or fire suppression employee who was a California resident at the time of his or her death and who was killed in the course of fire suppression or law enforcement duties.

Dependent Child of a California Resident

A student who has not been an adult resident of California for more than one year, and who is the dependent child of a California resident who has been a resident for more than one year immediately prior to the residence determina tion date, may be entitled to a waiver of the nonresident tuition until the student has resided in California for the minimum time necessary to become a resident so long as continuous attendance is maintained at an institution.

Native American Graduates of a BIA High School

If you are a graduate of a California high school operated by the Federal Bureau of Indian Affairs, you may be eligible for an exemption from the nonresident fee.

Employee of a California Public School District

Any person holding a valid credential authorizing service in the public schools of the state of California who is employed by a school district in a full-time certificate position may be eligible for a nonresident tuition waiver.

Student Athlete in Training at U.S. Olympic Training Center, Chula Vista

Any amateur student athlete in training in the United States Olympic Training Center in Chula Vista may be eligible for a waiver of the non-resident tuition until he or she has resided in the state the minimum time necessary to become a resident.

MAINTAINING RESIDENCE DURING A TEMPORARY ABSENCE

If you are a nonresident student who is in the process of establishing a residence for tuition purposes and you return to your former home during noninstructional periods, your presence in the state will be presumed to be solely for educational purposes and only convincing evidence to the contrary will rebut this presumption. A student who is in the state solely for educational purposes will NOT be classified as a resident for tuition purposes regardless of the length of his or her stay.

If you are a student who has been classified as a resident for tuition purposes and you leave the state temporarily, your absence could result in the loss of your California residence. The burden will be on you (or your parents if you are a minor) to verify that you did nothing inconsistent with your claim of continuing California residence during your absence. Steps that you (or your parents) should take to retain a California residence include:

1. Continue to use a California permanent address on all records-educational, employment, military, etc.
2. Satisfy California resident income tax obligations. (Note: If you are claiming California residence, you are liable for payment of income taxes on your total income from the date you establish California residence. This includes income earned in another state or country.)
3. Retain your California voter's registration and vote by absentee ballot.
4. Maintain a California's driver's license and vehicle registration. If it is necessary to change your driver's license and/or vehicle registration while you are temporarily residing in another state, you must change them back to California within the time prescribed by law.

PETITION FOR RESIDENT CLASSIFICATION

You must submit petition and documentation by mail or drop off by the Registrar's Office for a change of classification from nonresident to resident status. All changes of status must be initiated prior to the first day of class for the term for which you intend to be classified as a resident.

TIME LIMITATION ON PROVIDING DOCUMENTATION

If additional documentation is required for residence classification but is not readily accessible, you will be allowed until the end of the applicable term to provide it.

INCORRECT CLASSIFICATION

If you were incorrectly classified as a resident, you are subject to a nonresident classification and to payment of all nonresident tuition fees not paid. If you concealed information or furnished false information and were classified incorrectly as a result, you are also subject to university discipline. Resident students who become nonresidents should immediately notify the campus residence deputy.

INQUIRIES AND APPEALS

Inquiries regarding residence requirements, determinations, and/or recognized exceptions should be directed to the Residence Deputy, Office of the Registrar, 9500 Gilman Drive, La Jolia, CA 92093-0021, or the Legal AnalystResidence Matters, Office of the General Counsel, University of California, 1111 Franklin Street, 8th Floor, Oakland, CA 94607-5200. No other university personnel are authorized to supply information relative to residence requirements for tuition purposes.

You are cautioned that this summary is not a complete explanation of the law regarding residence. Please note that changes may be made in the residence requirements between the publication of this statement and the relevant residence determination date. Any student, following a final decision on residence classification by the residence deputy, may appeal in writing to the legal

analyst within forty-five days of notification of the residence deputy's final decision.

Payment of Registration Fees

BILLING STATEMENT AND PAYMENT INFORMATION

Registration at UCSD is a two-step process: (1) enrollment in classes and (2) payment of fees. You must enroll first so that your fees can be assessed. You can pay fees anytime after you enroll in classes. A billing statement will be sent to you after enrollment; however, if you wait to enroll just prior to the enrollment deadline, you don't need a billing statement to pay your fees. Write your student ID number on your check and mail it or drop it in the Central Cashier's drop box. Fees are due and payable by the published deadline whether or not a billing statement is received.

Your monthly billing statement from the university will list your credits, including your payments, and your charges. This includes registration fees, housing, parking, and other indebtedness. If you are a financial aid recipient, the funds which are disbursed through UCSD, e.g., Pell Grants and Perkins Loans, will be offset against the statement's charges, and you will either pay the remaining amount on the state-
ment or receive a remainder check if there is a credit. If you have any questions about the entries, use the phone numbers listed on the back of the statement to contact the appropriate office.

Billing statements are mailed to students' current or permanent mailing address.

To make a payment, all that is necessary is to mail the top of your statement to the Central Cashier's Office at the address provided on the statement stub (9500 Gilman Drive, La Jolla, CA 92093-0009).

If your fees are fully paid by financial aid or other programs and you decide not to attend UCSD, it is very important that you contact your college and initiate withdrawal/leave of absence procedures immediately. Graduate students should refer to the "Graduate Studies" section of the catalog for leave of absence or withdrawal procedures. Failure to do this may result in F grades being assigned to your courses.

Financial Aid/Remainder Check Disbursement

Student financial aid, graduate support, or fee waivers awarded to pay registration fees will be directly credited to your account and appear on
your statement as a credit. Financial aid will not be credited to your account until you have completed the enrollment process. Financial aid recipients are expected to be enrolled full-time. The Student Account and University Billing Services disburses all financial aid checks to students. These include remainder checks and other forms of financial aid such as outside scholarships and Stafford Loans. All Perkins and university loan borrowers must sign their promissory notes each quarter in the Student Account and University Billing Services Office. Loan funds will not be released (credited) to student accounts until the promissory notes are signed. The number of class units you are taking will be verified by the Student Account and University Billing Services Office staff at the time of disbursement. Additionally, prior to your check being issued it is necessary for you to sign the required legal paperwork and allow at least five working days for the check to be prepared.

Loan Counseling

It is required by law and/or university policy that all students receiving Perkins, Stafford (subsidized/unsubsidized), or university loans have a pre-loan counseling session wherein they are informed of the rights, obligations, and consequences attached to the loans. These counseling sessions are called entrance interviews. At these sessions, the students sign documents acknowledging their attendance and understanding of the issues involved. Also, all graduating students and students who withdraw or take a leave of absence who have received a loan must have final counseling before they leave school. These sessions are called exit interviews. At this time, students are individually told how much they owe on student loans, what their repayment amounts will be, and when their repayments will begin. In both sessions, students are provided with copies of all counseling content and documentation. You may call for an entrance interview appointment at (858) 534-2950.

As an alternative, students receiving only Stafford loans may complete the entrance interview requirement via the World Wide Web at: http://online.educaid.com/seminars/entrance/pa ge1.cfm, or by going to the Student Account and University Billing Services Office home page (http://www-bfs.ucsd.edu/bur/) and clicking on the Entrance Loan Counseling option.

Registration and Other Payments through the Central Cashier's Office

Registration payments must be made by mail or in the Cashier's Office drop box as early as
possible. The Central Cashier's Office receives payments for all university debts. It also cashes checks. The mailing address of the Cashier's Office is: Central Cashier's Office, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0009. (Make checks or money orders payable to UC Regents.)

Registration Stickers

After fees have been paid, students are eligible to pick up their student registration stickers at the Central Cashier's Office or the Student Account and University Billing Services Office. This sticker affixes to the back of your I.D. and certifies you are a UCSD student. The quarterly validation sticker is affixed by the Cashier's Office upon payment of fees, if fees are paid in person. After you pay by mail or drop box, wait about five working days in order for your payment to be processed.

INDEBTEDNESS COUNSELING AND BURSAR HOLD RELEASES

Entering college for the first time can be an overwhelming experience. And part of that experience is learning to handle your own finances. Most students have no real problem, but sometimes things can get out of control. Billing Services staff members will counsel you on campus indebtedness which you have already incurred and how to prevent such conditions in the future. It is a University of California regental policy that no student can continue in the next academic quarter if that individual owes the university money. Consequently, when a student owes the university money, an automatic hold prevents him or her from future registration until the bill is paid. It is recognized that there are occasional problems and situations which may be taken into account. Therefore, on occasion, after counseling, the Student Account and University Billing Services Office may authorize a Time Payment Agreement (TPA) with a student.

TRITON REGISTRATION INSTALLMENT PLAN

The UCSD Triton Registration Installment Plan (TRIP) is available for students who desire an alternative method of financing their registration fees on a short-term basis. All students in good financial and academic standing are eligi-
ble for the program, except for those students whose financial aid or graduate support will pay their registration fees. A prerequisite to applying for the program is enrollment for the term. The Triton Registration Installment Plan allows registration fees to be paid in up to three installments each quarter. On a three-month plan, the first payment is required by the quarterly registration due date. The remaining payments are itemized on the student's next two monthly UCSD Billing Statements. There is a $\$ 30$ nonrefundable fee that must be submitted with the application. This fee is strictly used to offset the costs of the program. Applications may be picked up at the Student Account and University Billing Services Office.

LOCATION

The Student Account and University Billing Services Office is located in Building 201 in the University Center, across the street from the Office of Admissions and Registrar. The Central Cashier's Office is at the intersection of Myers and Rupertus Drives in Building 401 University Center.

OFFICE HOURS

The Central Cashier's Office is open from 8:00 a.m. until 4:00 p.m.

The Student Account and University Billing Services Office is open from 8:00 a.m. until 4:30 p.m.

DEADLINES AND PENALTY FINES

Students should refer to the cover of the quarterly Schedule of Classes for actual deadline dates.

All prior delinquent debts must also be paid. Health insurance is mandatory for all students, both graduate and undergraduate, as a condition of enrollment. All students will be assessed the cost of the policy provided by the campus. Undergraduates who already have adequate health insurance should access StudentLink to request a waiver of this premium. An additional charge will be made for failure to pay required fees or deposits by the dates announced in this catalog and in the quarterly Schedule of Classes. Please note that students who enroll in courses but fail to pay fees by the published deadline will be assessed a late payment penalty fine. Students who fail to enroll in courses prior to the enrollment deadline will be assessed a late enrollment penalty fine and a late payment fee (see page 4 in the Schedule of Classes). Currently
these fines are $\$ 50$ each. (See "Miscellaneous Expenses" on the next page.)

With the exception of appeals to the legal analyst regarding a student's residence classification, no claim for remission of fees will be considered unless such claim is presented during the fiscal year to which the claim is applicable.

Receipts are issued for all payments, and these should be carefully preserved. No student will be entitled to a refund except after surrender to the Cashier's Office of the student's original receipt, if issued, or cancelled check or money order receipt.

EXEMPTION FROM FEES

Except for miscellaneous fees and service charges, no fees of any kind are assessed any surviving child of a California resident who was an active law enforcement or active fire suppression official and who was killed in the performance of active duties or died as a result of an accident or injury caused by external violence or physical force incurred in the performance of such duties.

Students who believe themselves entitled to one of these exemptions must apply for a fee exemption at the Office of the Registrar before registering. Without this authorization, students will not be permitted to register without payment of the entire fee. Graduate students should apply to the dean of Graduate Studies.

NONRESIDENT TUITION

Students who have not established and maintained California residence for at least one year immediately prior to the residence determination date for the term during which they propose to attend the university, and who do not otherwise qualify for resident classification under California law, are charged, along with other fees, a nonresident tuition fee each quarter. The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter. Final classifications are made by the residence deputy, who is located in the registrar's office, on the basis of a Statement of Legal Residence completed by the student and signed under oath. Prospective students who have questions regarding their residence status should consult the General Catalog or contact the residence deputy.

UNIVERSITY REGISTRATION FEE

The university registration fee is $\$ 713$ per year for undergraduates and must be paid at the time of registration. It covers services that benefit the student and are complementary to, but not a part of, the instructional program, and it includes recreational activities, student organizations, and the Student Health Service. No part of this fee is refunded to students who do not make use of these privileges. Exemption from
this fee may be granted for surviving children of certain deceased California fire fighters or law enforcement officers. Students should check with the Financial Aid Office for full ruling.

In addition, there is a campus activity fee of $\$ 60$ per year for undergraduates, a university center fee of $\$ 112.50$ per year for all students to be used for the construction and operation of the student centers, a $\$ 246$ per year recreational facility fee, and college activity fees of $\$ 6$ and $\$ 9$ per year for Muir and Revelle Colleges, respectively.

EDUCATIONAL FEE

The educational fee was established by the regents for all students beginning fall quarter 1970. The educational fee is a charge assessed against each registered student to cover part of the cost of the student's education at the University of California. The educational fee is approximately $\$ 2,896$ per year. The educational fee may be reduced by one-half for students approved on part-time status.

MISCELLANEOUS EXPENSES, FEES, FINES, AND PENALTIES

Books and supplies average about $\$ 200$ per quarter. However, students should be aware of the following possible expenses:
Statement of Intent to Register fee
(new undergraduate)
Application fee (one campus) 40
Each additional campus 40
Duplicate Photo I.D. Card 12.50
Transcript of record
Verification of Student Data/Status 6
Late filing of announcement
of candidacy for B.A.
Revelle Activity 3
Muir Activity 2
Late enrollment 50
Return check collection 10
Late payment of fees (late registration) 50
Duplicate diploma
22
Statement late charge 25
(See also "Withdrawal from the University.")

RETURNED CHECK POLICY

Several facilities at UCSD accept personal checks for payments and/or cash. Any individual who writes checks with insufficient funds will be subject to all legal action deemed appropriate by the university. In addition, anyone who writes to the university three or more checks that are subsequently returned will have their check writing privileges permanently revoked.

PARKING

Students who park motor vehicles on the campus are subject to parking fees. Parking permits may be purchased through StudentLink or at the Cashier's Office. A copy of the campus parking regulations may be obtained from the cashier at the time of permit purchase.

Part-Time Study at the University of California

GENERAL POLICY

1. Degree programs in the university may be open to part-time students wherever good educational reasons exist for so doing.
2. No majors or other degree programs will be offered only for part-time students, except as specifically authorized by the Academic Senate.
3. For the purposes of this statement of policy and procedures, the following definition applies:
A part-time undergraduate student is one who is approved to enroll for ten units or fewer, or an equivalent number of courses, per quarter.

ADMISSIONS AND ENROLLMENT

1. The same admissions standards that apply to full-time students will apply to part-time students.
2. Approval for individual students to enroll on a part-time basis will be given for reasons of occupation, family responsibilities, health, or, for one time only, graduating senior status.
3. Approval to enroll as a part-time student shall be given by the appropriate dean or provost.
4. Students must apply for part-time study prior to the end of the second week of the quarter and must be enrolled in ten or fewer units at that time (including any units taken through UCSD Extension) to qualify for reduced fees.

PROCEDURES

Students must apply for part-time status on the Part-Time Study application form available at their colleges prior to the end of the second week of the quarter. Approval for part-time study is granted for one academic year only-fall through spring quarters, winter through spring quarters, or spring quarter only. Students must reapply for approval each fall quarter and substantiate reasons for request. Approval for part-time study will automatically exempt students from the thirty-six unit-per-year minimum progress requirement. Students who are receiving financial assistance should contact their college financial aid office regarding eligibility requirements.

REDUCED FEES

Undergraduate students who have been approved for part-time study and who are enrolled in ten units or fewer at the end of the second week of classes are eligible for a reduction of one-half of the educational fee and onehalf of nonresident tuition, if applicable. Students who drop to ten or fewer units after this date will receive no reduction, and any student who receives a reduction in fees will be billed for the difference if the number of units increases to ten and one-half or more anytime in the quarter.

Undergraduates enrolled in Education Abroad and other special programs are excluded from this reduced fee policy. Employees of the university enrolled as students in the Employee Program have fees reduced by waiver from the Personnel Office and are not eligible to receive this further reduction. Extension courses taken by students in the Complimentary Enrollment Program will be included in the unit count whether or not the credit is accepted as part of a university degree program. Questions concerning this policy may be addressed to the Office of the Registrar.

Academic Regulations

Undergraduate Degree Requirements

Each of the undergraduate colleges on the San Diego campus has specific requirements for a degree. (See "Choosing a College at UCSD.")

Changes in Requirements

It is campus policy to introduce changes in graduation requirements so that students who began higher education (at UCSD or elsewhere) before the change will not be hindered substantially in the orderly pursuit of their degrees. This principle will have different implications for different kinds of requirement changes. To find out about the implications of particular changes, students should check with colleges, departments, or other sources of information.

Students transferring to UCSD from another UC campus who have completed their lowerdivision general-education requirements at a $U C$ campus are considered to have met UCSD's lower-division general-education requirements at Thurgood Marshall College, Warren College, and John Muir College. A letter certifying satisfaction of general education requirements under the UC reciprocity agreement must be sent to the Academic Advising Office of the student's college. UCSD upper-division general education requirements must be satisfied. (See "Graduation Requirements" for each undergraduate UCSD college.)

Students transferring to UCSD from California Community College campuses may elect to satisfy their lower-division general-education and breadth requirements prior to transfer by completing general-education/breadth requirements using the UCSD Articulation Agreement on file at the California Community Colleges; following the Intersegmental General Education Transfer Agreement; or signing a TAG (Transfer Admission Guarantee) contract and completing TAG requirements prior to entering UCSD. See "New University of California Transfer Agreements" in the "Undergraduate Admissions, Policies and Procedures" section of this catalog.

Requirements for the Bachelor's Degree

All course work required for a degree must be completed by the end of the quarter filed for graduation.

Every candidate for a bachelor's degree must have completed a major.

1. A major shall require the equivalent of twelve or more upper-division courses (forty-eight or more units).
2. Requirements for majors shall be determined by departments and programs, subject to the approval of the Committee on Educational Policy.
3. Double Majors: With the approval of both departments or programs and of the college provost, a student may declare a double major after reaching junior level (90 UC units) and no later than 135 units, with a minimum cumulative grade point average of 2.50 .
a. A student with a double major must fulfill the separate requirements of each major, and the equivalent of at least ten upperdivision courses (forty units) must be unique to each major. Courses taken in fulfillment of lower-division requirements may overlap to any degree.
b. The two majors may not be within the School of Engineering, nor, except with the approval of the Committee on Educational Policy, within a single department. When a department major is combined with a major in an interdepartmental or interdisciplinary program, the ten courses counted as unique in the interdepartmental or interdisciplinary program must all be drawn from outside the departmental major.
c. A student who has declared a double major is not subject to the maximum-unit limitations of Regulation 600.C. and may accrue up to 240 units.
d. A student with a double major may graduate only upon completion of all requirements for both majors. Both majors will be noted on the student's transcript and
diploma. If the two majors lead to different degrees (B.A. and B.S.), that fact will be noted on the transcript, and the two degree designations will appear on one diploma.
e. A student who has declared a double major may graduate in one major upon completion of all requirements for that major, but may not continue in the University for completion of the second major.
4. An undergraduate student must have declared a major or pre-major upon completion of ninety units.

Other requirements for graduation shall be determined by the colleges in conformity with universitywide regulations and subject to approval by the San Diego Division of the Academic Senate.

American History and Institutions

A knowledge of American history and of the principles of American institutions under federal and state constitutions is required of all candidates for the bachelor's degree. This requirement may be met in any one of the following ways:

1. By having passed with a grade of C or better one high-school unit in American history, or one-half high-school unit in American history and one-half high-school unit in civics or American government.
2. By completing with a grade of P or C - or better any one-quarter course of instruction accepted as satisfactory by the Committee on Educational Policy and Courses. Any of the following courses are suitable for fulfilling the requirement: HILD 2A-B-C, HILD 7A-B-C, or any course listed under HIUS (other than HIUS Colloquia); and Political Science 10, 100A, 100B, 100C, 102C, 102H, 104A, 110EA-EB, 110J, 142A.
3. By presenting proof of having received a score of 550 or more on the SAT II Subject Test of the College Entrance Examination Board (CEEB) in American History.
4. By presenting proof of having received a grade of 3 or higher on the Advanced Placement Test in American History administered by the Educational Testing Service, Princeton, New Jersey.
5. By presenting proof of having satisfied the present requirement as administered at another collegiate institution within the state.
6. By presenting proof of successful completion of an acceptable one-quarter or one-semester course, with a grade of C or better, in either American history or American government at a community college within the state.
7. By presenting proof of successful completion of an acceptable one-quarter or one-semester course, with a grade of C or better, in either American history or American government at a recognized institution of higher education, junior college included, in another state.
8. An alien attending the university on an $\mathrm{F}-1$ or $J-1$ student visa may, by showing proof of temporary residence in the United States, petition for exemption from this requirement through the office of his or her college provost.

SUBJECT A: ENGLISH COMPOSITION

The University of California requires all undergraduate students (including international students) to demonstrate a minimum proficiency in English composition (the Subject A requirement). This proficiency can be demonstrated by:

1. Submitting a score of 680 or better on either the Writing Test, English Composition, or the English Composition with Essay Test, SAT II Subject Tests of the College Entrance Examination Board (CEEB) (Note: not to be confused with the verbal portion of the Scholastic Assessment Test [SAT I]); or
2. Submitting a score of 3,4 , or 5 on the CEEB Advanced Placement Test in English; or
3. Submitting a score of 5 or better in the International Baccalaureate Higher Level examination in English (Language A only); or
4. Submitting proof of completion, prior to enrollment at UCSD, of an acceptable transferlevel college course of four quarter-units or three semester-units in English composition with a grade of C or better; or
5. Writing a passing essay on the Subject A Proficiency Test (which is required of all stu-
dents who have not otherwise met the requirement). This exam is administered statewide during May and on campus at the start of fall quarter. This examination may be taken only once.
All students who have not previously satisfied the Subject A requirement must take the Subject A Proficiency Test prior to enrollment at UCSD. Students who fail this examination must enroll each quarter in an approved Subject A course until they satisfy the Subject A requirement. Students satisfy the requirement by achieving a grade of C or better in SDCC 1 (English Composition-Subject A) and by passing the Subject A Exit Examination at the end of SDCC 1. The Exit Examination is administered by the Subject A Program office. Students whose performance on the Subject A Proficiency Test indicates they need work in English as a Second Language must enroll in ESL courses for three quarters (or until released by the ESL director) before enrolling in SDCC 1 . Students must enroll in SDCC 1 (or ESL) during their first quarter of residence at UCSD. For further information on SDCC 1, refer to "Subject A" in the catalog section "Courses, Curricula, and Programs of Instruction." For further information on ESL, see "English as a Second Language" in the catalog section "Courses, Curricula, and Programs of Instruction."

The Subject A requirement must be satisfied during a student's first year of residence. Students will be barred from enrollment at the university if they fail to satisfy the Subject A requirement by the end of their third quarter of enrollment at UCSD. (Exception: Students in need of ESL course work may have up to three extra quarters of residence in which to satisfy the Subject A requirement.)

Students will not be allowed to enroll in uni-versity-level writing courses at UCSD until the Subject A requirement has been satisfied.

Students who have been barred from enrollment because of failure to satisfy Subject A will be allowed to present evidence of further work in composition. If the Subject A director approves, these students may take a Subject A examination a final time. Students performing successfully on this final examination will be eligible to apply for re-enrollment at the university.

For further information about the Subject A requirement or the Proficiency Test, please visit
the Subject A Program office, 3232 Literature Building, or call (858) 534-6177.

Senior Residence

Each candidate for the bachelor's degree must complete thirty-six of the final forty-five units in residence in the college or school of the University of California in which the degree is to be earned.

Under certain circumstances exceptions may be granted by the provost, such as when a student attends classes on another UC campus as an approved visitor or participates in the UC Education Abroad, the UCSD Opportunities Abroad, Dartmouth, Spelman, Morehouse, or University of New Mexico exchange programs.

Note: Courses taken through the UCSD Extension Concurrent Enrollment Program will not apply toward a UCSD student's senior residency requirement. For further details see "Graduation Requirements" in the Index.

Maximum Unit Limitation

1. An undergraduate student may register for no more than 200 course units. An exception is permitted for candidates for B.S. degrees in engineering, for whom the limits are 240 units in Revelle and Roosevelt Colleges and 230 units in all other colleges. Other exceptions will be granted only for compelling academic reasons and only with the approval of the college provost and the concurrence of the Committee on Educational Policy.
2. Transfer units applicable toward general-education requirements or major requirements are included in the maximum unit calculation; all other transfer units are excluded.
Advanced Placement and international baccalaureate units are excluded.
Special kinds of study-e.g., laboratories, reading programs, studio work-may be required in addition to the basic course work in given curricula.

Graduation Credit for Physical Education Courses

No more than three units of physical education, whether earned at UCSD or transferred from another institution, may be counted toward graduation.

Undergraduate Minors and Programs of Concentration

A minor curriculum-or "minor" for short-is a set of courses on a well-defined subject. For students entering after January 1, 1998: a minor shall consist of at least twenty-eight units, of which at least twenty units must be upper-division. For sound academic reasons and with the approval of the Committee on Educational Policy, a minor may be established with fewer than twenty upper-division units. In the case of a subject that is the responsibility of a particular department, such as literature, physics or sociology, that department specifies which courses are acceptable for a minor curriculum in its section of this General Catalog. All other minor curricula must be approved by the Committee on Educational Policy and be published in this General Catalog. A student may not apply toward the minor any upper-division course that has been used to satisfy the requirements of his or her major curriculum. A student's successful completion of a minor curriculum will be recorded on his or her transcript at graduation.

Certain colleges require their students to complete one or more "programs of concentration" before graduation, and the courses or types
of courses acceptable for programs of concentration are determined by the faculty of the college or a subcommittee thereof. A program of concentration is not necessarily a minor. Indeed, a program of concentration is a minor only if it meets the criteria in the above paragraph, and only then may it be listed on a student's transcript as a minor. Otherwise it will be recorded as a concentration at graduation.

Honors

COLLEGE HONORS AT GRADUATION

The Academic Senate has established the following standards for award of college honors at graduation:

There shall be a campus-wide requirement for the award of college honors at graduation. No more than 14 percent of the graduating seniors on campus shall be eligible for college honors. Normally, no more than the top 2 percent shall be eligible for summa cum laude and no more than the next 4 percent for magna cum laude, although minor variations from year to year shall be permitted. The remaining 8 percent are eligible for cum laude. The ranking of students for eligibility for college honors shall be based upon the grade-point average. In addition, to be eligible for honors, a student must receive letter grades for at least eighty quarter-units of course work at the University of California. Each college may award honors at graduation only to those who are eligible to receive college honors.

DEPARTMENT HONORS

Each department or program may award honors to a student at graduation if the following two criteria are met:

1. The student has completed a special course of study within the department or program. The requirements for this special course of study shall be approved by CEP and published in the General Catalog.
2. No more than 20 percent of the seniors graduating from a department or program may be awarded departmental honors.
Honors awarded by departments may be designated on the diploma by the words "with distinction," "with high distinction," and "with highest distinction" after the departmental or program name. Currently the departments and majors listed below are approved to award hon-
ors to no more than 20 percent of graduating seniors: Anthropology, Biology, Chemistry, Chinese Studies, Classical Studies, Cognitive Science, Communication, Critical Gender Studies, Earth Sciences, Economics, Electrical and Computer Engineering, German Studies, History, Human Development, Japanese Studies, Judaic Studies, Linguistics, Literature, Management Science, Muir Special Project, Music, Philosophy, Physics, Political Science, Psychology, Roosevelt Individual Studies, Sociology, Study of Religion, Theatre and Dance, Urban Studies and Planning, and Visual Arts.

PROVOST HONORS

Provost honors are awarded quarterly based upon the completion of twelve graded units with a GPA of 3.5 or higher with no grade of D, F, or NP recorded for the quarter.

PHI BETA KAPPA

Phi Beta Kappa is the oldest and most prestigious academic honor society for the liberal arts and sciences in America. UCSD is one of only 255 four-year institutions that have been granted chapters since the society was founded in 1776. In addition, there are fifty active PBK alumni associations in major cities around the country.
More than 200 UCSD faculty and staff were initiated at their own undergraduate colleges, and they make up the local chapter, Sigma of California. Each spring the campus chapter elects student members on the basis of high scholastic achievement and breadth of academic background. Minimal criteria for consideration include:

1. Successful completion of at least 160 quarterunits by the time of consideration
2. Cumulative GPA of 3.65 or higher for work at UCSD. GPAs from transfer work are considered, but the GPA from UC must be at least 3.65, as must the overall GPA.
3. A minimum of five courses in the humanities or equivalent subjects.
4. One year of college-level course credit or demonstrated literacy and proficiency in a second language.
5. One year of college-level course credits in mathematics, quantitative science, logic, or statistics
6. Full-time enrollment at UCSD for at least two years.

As required by the National Society of Phi Beta Kappa, when they consider a student for membership the reviewers examine the excellance of the individual's academic record, the breadth and quality of the courses taken, and the evidence that the student has pursued a serious line of work and is of good character. Invitatons to membership are by letter, usually in late May, and initiation takes place in early June.

Application for Degree

Undergraduate seniors are required to file a Degree and Diploma Application form with their college academic advising office. Students should check with their college academic advising office for exact deadlines. Advising and counseling sessions should take place well before the quarter of graduation to ensure all degree requirements will be satisfied. Applications not on file by the deadline are subject to special approval, a $\$ 3$ late filing fee, and a $\$ 25$ specialorder diploma fee. Students who have not completed all degree requirements by the end of the quarter filed for graduation must file a new application. Failure to file this petition may delay the graduation date and receipt of diploma.

Specific Regulations

Progress toward Degrees

In order to apply the units of a course toward unit requirements for a degree, a student must receive an A, B, C, D, P, or S grade in the course. (Plus or minus suffixes ($+/-$) may be affixed to A, B, and C.) Further, an undergraduate student must have a 2.0 or higher grade-point average (GPA) to receive a bachelor's degree, and a gradlate student must have a 3.0 or higher GPA to receive a higher degree.

Probation

An undergraduate student is subject to acedemic probation if at the end of any term his or her GPA for that term or his or her cumulative GPA is less than 2.0.

Subject to Disqualification

An undergraduate student is subject to academit disqualification from further registration if at the end of any term his or her GPA for that term is less than 1.5 or if he or she has com-
plated two successive terms on academic probatimon without achieving a cumulative GPA of 2.0. Continued registration of an undergraduate who is subject to disqualification is at the discretion of the faculty of the student's college or its authorized agent (generally the provost/Office of the Provost).

If a student is not currently in scholastic good standing or has been denied registration for the next ensuing quarter on the date on which he or she left the university, a statement of his or her status shall accompany his or her transcript. A student who has been disqualified from further registration at the University of California may not register for UCSD courses through Summer Session, through UCSD Extension by way of the concurrent enrollment mechanism, or in UCSD Extension courses offered at the 100 level. Students receiving financial assistance should refer to information in the Financial Aid section of this catalog. Unique scholarship eligibility requirements must be met.

Note: Veteran students receiving financial assistance from the Veterans Administration should refer to unique requirements set by state approving agencies. See veterans' information under Financial Aid.

Minimum Progress

A full-time undergraduate student is subject to disqualification from further registration if he or she does not complete thirty-six units in any three consecutive quarters of enrollment. Continued registration of an undergraduate who is subject to disqualification due to lack of minimum progress is at the discretion of the faculty of the student's college or its authorized agent (generally the provost/Office of the Provost).

Eligible students may file for an exemption from the minimum progress requirement by completing the Part-time Study application and receiving college approval prior to the end of the second week of the quarter. (See "Part-time Study at the University of California.")

Double Majors

See "Requirements for the Bachelor's Degree" in this section.

Repetition of Courses

Repetition for credit of courses not so authorized by the appropriate Committee on Courses is allowed subject to the following limitations:

1. A student may not repeat a course for which a grade of A, B, C, I, P, or S is recorded on his or her transcript. (Plus or minus suffixes (+/-) may be affixed to A, B, and C.)
2. Courses in which a grade of D or F has been awarded may not be repeated on a P/NP or S/U basis.
3. Undergraduate students may repeat a course in which a grade of NP has been awarded for a P/NP or letter grade, if applicable. Graduate students may repeat a course in which a grade of U has been awarded on an S / U basis only.
4. Repetition of a course for which a student's transcript bears two or more entries with grades among D, F, NP, or U requires approval of the appropriate provost or dean.
5. All grades received by a student shall be recorded on the student's transcript.
6. The first sixteen units of courses that have been repeated by andergraduatestudent and for which the student received a grade of $D, F, N P$, or U shall not be used in grade-point calculations on a student's transcript.
Note: Although the University of California grade-point average will not include these repeated courses, other institutions/graduate programs, and agencies may recalculate the grade-point average to reflect all assigned grades.

Special Studies Courses

Subject to the limitations below, a student may earn credit for supervised special studies courses on topics of his or her own selection. An undergraduate taking one or more special studes courses must complete an application for each such course before the start of the course.

COURSE NUMBER

Ordinarily, special studies courses are numbbered 197, 198, or 199. The 197 course is for individually arranged field studies. The 198 course is for directed group study. The 199 course is for individual independent study.

LIMITATIONS

1. Enrollment requires the prior consent of the instructor who is to supervise the study and the approval of the department chair. The applicant shall show that his or her background is adequate for the proposed study.
2. A student must have completed at least ninety units of undergraduate study and must be in good academic standing (2.5 gradepoint average or better).
3. A student may enroll for no more than a total of four units of 198 and 199 Special Studies courses in one term.
4. On the advice of the instructor(s) and the department chair(s) concerned, the provost of a student's college may authorize exceptions to the limitations listed in 2 . and 3 . above.
5. Only a grade of P or $N P$ is to be assigned for a 197, 198, or 199 course.
6. Subject to the approval of the CEP Subcommittee on Undergraduate Courses, a department may impose additional limitations on its supervised special studies courses.

PROCEDURES

1. Students must complete an "Application for UCSD Special Studies Course Enrollment," available in department offices, and secure instructor and department chair approval.
2. Students must submit an approved form to the Office of the Registrar to enroll in a special studies course.

Undergraduate

Assistance in Courses

An undergraduate instructional apprentice is an undergraduate student who serves as an assistant in an undergraduate course under the supervision of a faculty member. The purpose of the apprenticeship is to learn the methodology of teaching through actual practice in a regularly scheduled course.

GUIDELINES

1. An undergraduate instructional apprentice shall be an upper-division student. He or she shall be involved only with lower-division courses.
2. Students are not permitted to assist in courses in which they are enrolled.
3. An undergraduate instructional apprentice must have a minimum grade-point average of 3.0. Departments may establish higher gradepoint average requirements.
4. The faculty instructor is responsible for course content and for maintaining the overail qual-
ity of instruction, including supervision of undergraduate instructional apprentices. The faculty instructor is responsible for all grades given in the class.
5. The instructor is expected to meet regularly with the undergraduate apprentice to evaluate the student's performance and to provide the direction needed for a worthwhile educational experience.
6. An undergraduate instructional apprentice may receive credit on a Pass/Not Pass basis only (through registration in a 195 course), subject to approval by the Committee on Educational Policy.
7. A student may not be an instructional apprentice more than once for the same course for credit.
8. A student may not be an instructional apprentice in more than one course in a quarter.
9. The total credit accumulated as an apprentice shall not exceed eight units.

PROCEDURE

All departments/programs using undergraduate instructional apprentices shall submit to the CEP Subcommittee on Undergraduate Courses a description of the role of the undergraduate instructional apprentice, as part of the petition for approval. Any deviation from the guidelines above must be explained and justified in a memo accompanying the petition. Any major change in the function or duty of the apprentice in a course should also be approved by the CEP Subcommittee on Undergraduate Courses.

Writing Requirements

A student may register in an upper-division course only if the student has satisfactorily completed the writing requirement of his or her college or has obtained the consent of the instructor of the upper-division course. The requirement is waived for a student who has been admitted as a transfer student and has not completed three quarters of residence at UCSD.

Final Examinations

Final examinations are obligatory in all undergraduate courses except laboratory courses, or their equivalent, as individually determined by the Committee on Courses.

Each such examination shall be conducted in writing whenever practical and must be completed by all participants within the announced time shown in the Schedule of Classes for the quarter in question. These examinations may not exceed three hours in duration.

In laboratory courses, the department concerned may, at its option, require a final examination subject to prior announcement in the Schedule of Classes for the term.

It is the policy of the university to make reasonable efforts to accommodate students having bona fide religious conflicts with scheduled examinations by providing alternative times or methods to take such examinations. If a student anticipates that a scheduled class meeting or examination will occur at a time at which his or her religious beliefs prohibit participation in the class or examination, the student must submit to the instructor, no later than the end of the second week of instruction of the quarter, a statement describing the nature of the religious conflict and specifying the days and times of conflict together with documentation of the religious proscription and of the student's adherence to this religious belief. Upon determination that a conflict with the student's religious beliefs does exist, the instructor will attempt to provide an alternative, equitable examination procedure which does not create an undue hardship for the instructor.

Retention of Examination Papers

Instructors are required to retain examination papers for at least one full quarter following the final examination period, unless the papers have been returned to the students.

Credit by Examination

With the instructor's approval and concurrence by the student's provost, a currently enrolled and registered undergraduate student in good standing may petition to obtain credit for some courses by examination. Credit by examination is intended for students who study the course material on their own and then petition for credit by examination when they feel they are prepared. The examination will cover work for the entire course. Except as authorized by the instructor and appropriate provost, credit by examination may not be used to repeat a grade of D, F, or W. A part-time student who, by registering to take a course credit by examina-
tion, surpasses the number of units allowed for part-time status must pay fees as a full-time student. There will be a $\$ 5$ fee for each Credit by Examination petition.

Use of Student Petition

For exceptional circumstances, students may request approval for variances to regulations and policies. This should be done by filling out an Undergraduate Student Petition (available in the provosts' offices or the Office of the Registrar), securing the necessary approvals, and filing the petition with the appropriate department or college academic advising office.

Grading Policy

Grades in undergraduate courses are defined as follows: A, excellent; B, good; C, fair; D, poor; F, fail; I, incomplete (work of passing quality but incomplete for good cause); and IP (In Progress courses approved for more than a one-quarter sequence). The designations P (Pass) and NP (Not $P a s s)$ are used in reporting grades for some undergraduate courses. P denotes a letter grade of C - or better. A blank grade indicates no record or no report of grade was received from the instructor. W is recorded on the transcript indicating the student withdrew or dropped the course sometime after the beginning of the fifth week of a quarter

Note: Students who drup certain laboratory courses after the second scheduled meeting period will receive a W grade. Refer to the quarterly schedule of classes for specific labs affected.

Instructors have the option of assigning plus $(+)$ and minus (-) suffixes to the grades A, B, and
C. This option became available as of fall 1983.

Grade Points

For each student, the registrar will calculate a grade-point average (GPA) over courses taken at any campus of the University of California, not including Extension courses. Grade points per unit will be assigned as follows: $A=4, B=3, C=2$, $D=1, F=0$. When attached to the grades of B and C, plus (+) grades carry three-tenths of a grade point more per unit. The grade of $A+$, when awarded, represents extraordinary achievement but does not receive grade-point credit beyond that received for the grade of A. When attached to the grades of A, B and C, minus $(-)$ grades carry three-tenths of a grade point less per unit
than the unsuffixed grades. Courses in which an I, IP, P, NP, S, U, or W grade has been awarded will be disregarded in grade-point calculations. A graduate student's GPA will be calculated over courses taken while in graduate standing.

Grade	Grade Points	Grade	Grade Points
A+	4.0	C+	2.3
A	4.0	C	2.0
A-	3.7	C-	1.7
B+	3.3	D	1.0
B	3.0	F	0
B-	2.7		

The grade-point average is computed by dividing the total number of grade points earned by the total unit value of letter-graded courses completed.

At the end of each quarter, the instructor of each course will assign a letter grade to each student who was enrolled in that course at the end of the ninth week of instruction on the basis of the work required for the entire course. An I grade may be assigned if appropriate.

Changes in Grades

All grades except I and IP are final when filed by instructors on end-of-term grade reports. However, a final grade may be corrected when a clerical or procedural error is discovered. No change of a final grade may be made on the basis of revision or augmentation of a student's work in the course. No term grade except Incomplete may be revised by further examination. No grade may be changed after one calendar year from the time it was recorded. Petitions for exceptions are referred to the Committee on Educational Policy.

No Report/No Record

A blank entry appearing on student transcripts in lieu of a grade indicates that no grade was assigned by the instructor. A blank entry will lapse automatically into an F , NP, or U if not replaced by a final grade by the last day of instruction of the subsequent quarter, and will be computed in the student's GPA.

Pass/Not Pass

The Pass/Not Pass option is designed to encourage undergraduate students to venture into courses which they might otherwise hesi-
tate to take because they are uncertain about their aptitude or preparation. Consistent with college policy, an undergraduate student in good standing may elect to be graded on a P/NP basis in a course. No more than one-fourth of an undergraduate student's total UCSD course units may be graded on a P/NP basis. Departments may require that courses applied toward the major be taken on a letter-grade basis. Enrollment under this option must take place within the first four weeks of the course. A grade of Pass shall be awarded only for work which otherwise would receive a grade of C - or better. Units passed shall be counted in satisfaction of degree requirements, but such courses shall be disregarded in determining a student's grade-point average. (See "Physical Education Credit toward Graduation.")

If students wish to change their selected grading option after enrolling, they may use WebReg in StudentLink, or complete an Add/Change/Drop card and file it at the Registrar's Office. The last day to change grading options is the end of the fourth week of instruction.

Only a grade of P or NP is to be assigned for courses numbered 195, 197, 198, and 199.
Subject to the approval of the CEP
Subcommittee on Undergraduate Courses, departments may impose additional limitations or restrictions.

Only a grade of P or NP is to be assigned an undergraduate student's work in a noncredit (0 -unit) course.

Note: See "Choosing a College at UCSD" section for further information regarding the P / NP grading option.

The W Grade

When a student withdraws from the university or drops a course, other than a laboratory course, between the beginning of the fifth week of instruction and the end of the ninth week of instruction of a quarter, the registrar will assign a W to the student for each course affected. Only the registrar may assign a W.

Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade. Refer to the quarterly schedule of classes for specific labs affected.

Courses in which a W has been entered on the student's transcript will be disregarded in determining a student's grade-point average.

ADDING AND DROPPING COURSES AND THE W GRADE

A student may, with the approval of the instructor (and adviser, if required), add a course to the study list before the end of the second week of instruction of a quarter (through the fourth week with department approval).

A student may drop a course before the end of the ninth week of instruction by filing the appropriate form with the registrar, after first notifying the instructor and/or department.

A student who wishes to drop all courses is required to file an Undergraduate Request for Withdrawal form with the college academic advising or dean's office.

1. A course dropped before the end of the fourth week of instruction will not appear on the student's transcript.

Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade. Refer to the quarterly schedule of classes for specific labs affected.
2. If a student drops a course after the end of the fourth week of instruction and before the end of the ninth week of instruction, the registrar will assign a final grade of W to the student for that course.
3. A student may not drop a course after the end of the ninth week of instruction.
When an instructor has assigned a grade in a course in accordance with the Academic Senate policy on Integrity of Scholarship prior to the end of the ninth week of instruction, that grade may not subsequently be changed by dropping the course or withdrawing from the university.

WITHDRAWING FROM SCHOOL AND THE W GRADE

A student may withdraw from the university before the end of the ninth week of instruction of a quarter.

1. If a student withdraws before the end of the fourth week of instruction, no course entries will appear on the student's transcript for that quarter.
Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade. Refer to the quarterly schedule of classes for specific labs affected.
2. If a student withdraws after the end of the fourth week of instruction and before the end of the ninth week of instruction, the registrar will assign a final grade of W to the student for each course in which the student was enrolled ta the beginning of the fifth week of instruction.
3. Each student will receive a final grade for each course in which the student was enrolled at the end of the ninth week of instruction of the quarter.
When an instructor has assigned a grade in a course in accordance with the Academic Senate policy on Integrity of Scholarship prior to the end of the ninth week of instruction, that grade may not subsequently be changed by dropping the course or withdrawing from the university.

The In Progress (IP) Grade

For exceptional and compelling reasons, a course extending over more than one quarter may be authorized with the prior approval of the Committee on Educational Policy and Courses (for undergraduate courses) or the Graduate Council (for graduate courses). In such courses an evaluation of a student's performance may not be possible until the end of the final term. In such cases the instructor may assign the provisional grade IP (in progress).

IP grades shall be replaced by final grades if the student completes the full sequence. The instructor may assign final grades, grade points, and unit credit for completed terms when the student has not completed the entire sequence provided that the instructor has a basis for assigning the grades and certifies that the course was not completed for good cause. An IP not replaced by a final grade will remain on the student's record.

In calculating a student's grade-point average, grade points and units for courses graded IP shall not be counted. However, at graduation, courses still on the record as graded IP must be treated as courses attempted in computation of the student's grade-point average in assessing a student's satisfaction of Senate Regulation 634.

The Incomplete (I) Grade

Academic Senate regulations state that the Incomplete grade I for undergraduates shall be disregarded in determining a student's gradepoint average, except at point of graduation, when students must have an overall $2.0(\mathrm{C})$ on
all work attempted at the University of California. All work required for a degree must be completed by the end of the quarter the student filed for graduation. Students requesting an I grade the last quarter before graduation may have their graduation date delayed.

Undergraduate students whose work is of non-failing quality but incomplete for good cause, such as illness, must file a Request to Receive/Remove Grade Incomplete form.

Graduate students enrolled in graduate courses may request instructors to assign the grade of "Incomplete" in order to be permitted to complete required work within the following quarter. If the required work is not submitted by the end of the quarter following so that the grade can be reported by the instructor, the grade will automatically be changed to one of "Failure" by the registrar. Graduate students must file a Request to Receive/Remove Grade incomplete form.

1. Students should complete their portion of the request form, including the reason they are requesting the Incomplete. The deadline for filing an Incomplete shall be no later than the first working day after final examination week.
2. The instructor has the option to approve or disapprove the request and should state on the form how and when the I is to be completed. If approved, the instructor submits the form with term grade reports.
3. Students miust complete the work to remove the Incomplete on or before the date agreed upon with the instructor and in time for the instructor to assign a grade before the end of finals week the following quarter.
4. Failure to complete this work within the regulation time limit will result in the Incomplete lapsing to a permanent F , NP , or U grade.
A student who has received an I grade should not re-enroll in the course to make up the missing work. If the student were to re-enroll, the course would be considered a repeat and would not remove the prior quarter's Incomplete, which would lapse to a permanent $F, N P$, or U grade.

INTENDED USE OF THE INCOMPLETE

The Incomplete is intended for use when circumstances beyond a student's control prohibit taking the final exam or completing course work.

The Incomplete is not intended as a mechanism for allowing a student to retake a course. A
student who has fallen substantially behind and needs to repeat a course can drop the course prior to the end of the ninth week of classes. Otherwise, the instructor should assign the appropriate final grade ($D, F, N P$, or U, for example).

An Incomplete may not be used simply to allow a bit more time for an undergraduate student who has fallen behind for no good reason. An I may be granted only to students who have a legitimate excuse. Examples of unacceptable reasons for approving an Incomplete include the need to rewrite a paper; the demands of a timeconsuming job; the desire to leave town for a vacation, family gathering, or athletic contest; the desire to do well on GRE tests; and the like.

EXTENSION OF INCOMPLETE

For justifiable reasons, such as illness, students can petition their provost or graduate office to extend the incomplete past one quarter. These petitions must have the prior approval of the instructor and the department chair. The petition must include the reasons for requesting the extension and how and when the l is to be completed. These petitions must be filed before the Incomplete grade lapses to an F, NP, or \cup grade. The extension cannot be made retroactively.

An I grade may be replaced upon completion of the work required by a date agreed upon with the instructor, but no later than the last day of finals week in the following quarter. If not replaced by this date, the I grade will lapse into an F, NP, or U grade, depending upon the student's initial grading option.

Student Copy of Final Grades

At the end of each quarter students should check StudentLink for grade information. Grades are usually available ten working days after the end of final examinations. Students should examine their record for accuracy and report any omissions or errors to the Office of the Registrar immediately.

Transcript Requests

Application for an official transcript of record to be sent to another party or institution should be submitted to the registrar several days in advance of the time needed. An application for a transcript must bear the student's signature. A \$6 fee is charged per copy. Checks should be made payable to the Regents of the University of California.

Grade Appeals

A. 1. If a student believes that nonacademic criteria have been used in determining his or her grade in a course, he or she may follow the procedures described in this regulation.
2. Nonacademic criteria means criteria not directly reflective of academic performance in this course. It includes discrimination on political grounds or for reasons of race, religion, sex, or ethnic origin.
3. Appeals to this committee [see $(B)(4)]$ shall be considered confidential unless both the complainant and the instructor agree otherwise. They may agree to allow the student representatives to the committee to participate in the deliberations of the committee, or they may agree to open the deliberations to members of the university community.
B. 1. The student may attempt to resolve the grievance with the instructor within the first month of the following regular academic quarter.
2. If the grievance is not resolved to the student's satisfaction, he or she may then attempt to resolve the grievance through written appeal to the department chair or equivalent, who shall attempt to adjudicate the case with the instructor and the student within two weeks.
3. If the grievance still is not resolved to the student's satisfaction, he or she may then attempt to resolve the grievance through written appeal to the provost of the college, the dean of Graduate Studies, or the dean of the School of Medicine, who shall attempt to adjudicate the case with the instructor, the chair, and the student within two weeks.
4. If the grievance is not resolved to the student's satisfaction by the provost or dean, the student may request consideration of the appeal by the CEP Subcommittee on Grade Appeals (hereinafter called the Committee) according to the procedures outlined below. This request must be submitted before the last day of instruction of the quarter following the quarter in which the course was taken.
C. 1. The student's request for Committee consideration should include a written brief stating the nature of the grievance, including copies of any and all documents in his or her possession supporting the grievance. The submission of the brief to the Committee places the case before it and restricts any change of the challenged grade to a change initiated by the Committee, unless the Committee determines that all other avenues of adjudication have not been exhausted.
2. Upon receipt of the student's request, the Committee immediately forwards a copy of it to the instructor involved and asks the instructor, the department chair or equivalent, and the provost or dean for written reports of their attempts to resolve the complaint.
3. The Committee, after having determined that all other avenues of adjudication have been exhausted, shall review the brief and the reports to determine if there is substantial evidence that nonacademic criteria were used.
a. If the Committee finds substantial evidence that nonacademic criteria were used, it shall follow the procedure in paragraph (D) below.
b. If the Committee decides the allegations are without substance, it shall serve written notification of its findings to the complainant and to the instructor within two weeks. Within ten days the complainant or the instructor may respond to the findings and any member of the Committee may appeal the Committee's findings to the full Committee on Educational Policy and Courses. If there are no responses, or if after consideration of such responses the Committee sustains its decision, the grade shall not be changed.
D. 1. If the Committee determines that there is evidence that nonacademic criteria were used, it shall interview any individual whose testimony might facilitate resolution of the case. The complainant shall make available to the Committee all of his or her work in the course which has been graded and is in his or her possession. The instructor shall make available to the Committee all records of student perfor-
mance in the course and graded student work in the course which is still in his or her possession. The complainant and the instructor shail be interviewed. At the conclusion of the case each document shall be returned to the source from which it was obtained.
2. The Committee shall complete its deliberations and arrive at a decision within two weeks of its determination that evidence of the use of nonacademic criteria had been submitted. A record of the Committee's actions in the case shall be kept in the Senate Office for three years.
3. If the allegations of the complainant are not upheld by a preponderance of the evidence, the Committee shall so notify the complainant and the instructor in writing. Within one week of such notification, the complainant and the instructor shall have the opportunity to respond to the findings and the decision of the Committee. If there are no responses, or if after considering such responses the Committee sustains its decision, it shall so notify the complainant and the instructor in writing and the grade shall not be changed.
4. If the Committee determines that nonacademic criteria were significant factors in establishing the grade, it shall give the student the option of either receiving a grade of P or S in the course or retroactively dropping the course without penalty. A grade of P or S awarded in this way shall be acceptable towards satisfaction of any degree requirement, even if a minimum letter grade in the course had been required, and shall not be counted in the number of courses a student may take on a P/NP basis. If the student elects to receive a grade of P or S, the student may also elect to have a notation entered on his or her transcript indicating that the grade was awarded by the divisional grade appeals committee.
a. The Committee shall serve written notification of its finding and its decision to the complainant and the instructor. The complainant and the instructor may respond in writing to the findings and the decision of the Committee within one week of such notification.
b. If there are no responses, or if after considering such responses the Committee sustains its decision, the grade shall be changed; the Committee shall then instruct the registrar to change the grade to P or S or, if the student elected the drop option, to retroactively drop the course from the student's record. Copies of the Committee's instruction shall be sent to the complainant and the instructor.
E. These procedures are designed solely to determine whether nonacademic criteria have been used in assigning a grade, and if so to effect a change of that grade.

1. No punitive actions may be taken against the instructor solely on the basis of these procedures. Neither the filing of charges nor the final disposition of the case shall, under any circumstances, become a part of the personnel file of the instructor. The use of nonacademic criteria in assigning a grade is a violation of the Faculty Code of Conduct. Sanctions against an instructor for violation of the Faculty Code may be sought by filing a complaint in accordance with San Diego Division By-Law 230(D). A complaint may be filed by the student or by others.
2. No punitive actions may be taken against the complainant solely on the basis of these procedures. Neither the filing of charges nor the final disposition of the case shall, under any circumstances, become a part of the complainant's file. The instructor may, if he or she feels that his or her record has been impugned by false or unfounded charges, file charges against the complainant through the office of the vice chancellor for Student Affairs, the dean of Graduate Studies, or the associate dean for Student Affairs of the School of Medicine.

UCSD Policy on Integrity of Scholarship

The principle of honesty must be upheld if the integrity of scholarship is to be maintained by an academic community. The university expects both faculty and students to honor this principle and in so doing protect the validity of
university grading. This means that all academic work will be done by the student to whom it is assigned, without unauthorized aid of any kind. Instruc-tors, for their part, will exercise care in planning and supervising academic work, so that honest effort will be encouraged.

The following policies apply to academic course work for both undergraduate and graduate students. A separate policy exists governing integrity of research. Medical students are governed by policies specified in the Handbook for School of Medicine Advisers and Students, as formulated by the School of Medicine Committee on Educational Policy.

INSTRUCTORS' RESPONSIBILITY

The instructor should state the objectives and requirements of each course at the beginning of the term and clearly inform students in writing what kinds of aid and collaboration, if any, are permitted on graded assignments.

STUDENTS' RESPONSIBILITY

Students are expected to complete the course in compliance with the instructor's standards. No student shall engage in any activity that involves attempting to receive a grade by means other than honest effort, for example:

No student shall knowingly procure, provide, or accept any unauthorized material that contains questions or answers to any examination or assignment to be given at a subsequent time.
No student shall complete, in part or in total, any examination or assignment for another person.
No student shall knowingly allow any examination or assignment to be completed, in part or in total, for himself or herself by another person.

No student shall plagiarize or copy the work of another person and submit it as his or her own work.

No student shall employ aids excluded by the instructor in undertaking course work.
No student shall alter graded class assignments or examinations and then resubmit them for regrading.

No student shall submit substantially the same material in more than one course without prior authorization.

A student acting in the capacity of an instructional assistant (IA), including but not limited to teaching assistants, readers, and tutors, has a special responsibility to safeguard the integrity of scholarship. In these roles the student functions as an apprentice instructor, under the tutelage of the responsible instructor. An IA shall equitably grade student work in the manner agreed upon with the course instructor. An IA shall not make any unauthorized material related to tests, exams, homeworks, etc. available to any student.

Responsibility for Disposition of Cases of Academic Dishonesty

The primary responsibility for maintaining the standards of academic honesty rests with two university authorities: the faculty and the administration. When a student has admitted to or has been found guilty of a violation of the standards of academic honesty, two separate actions shall follow. The instructor shall determine the student's grade on the assignment and in the course as a whole. The recommended academic consequence of a serious breach of academic honesty is failure in the course, although less serious consequences may be incurred in less serious circumstances. The dean of the undergraduate student's college shall impose an administrative penalty. The assistant dean of Graduate Studies shall impose administrative penalties for graduate students in consultation with the instructor and the department. [Hereinafter the college dean and the assistant dean of Graduate Studies shall be referred to as the "appropriate dean."] Under normal circumstances, the recommended minimum administrative penalties are probation for the first offense and suspension or dismissal for a subsequent offense. The transcript of a student who is dismissed for academic dishonesty shall bear a notation that readmission is contingent upon approval from the chanceilor.

Procedures for Disposition of Cases of Academic Dishonesty

The instructor may contact any of the following people for advice on how to proceed or for clarification of the appropriate policy: the student conduct coordinator, the assistant dean of Graduate Studies, the college dean, or the assistant to the vice chancellor for Academic Affairs.

The procedure for disposition of cases of academic dishonesty is divided into three phases:
A. The Initial Phase: When an instructor has reason to believe that a student has committed a dishonest act in completing an assignment, he or she should proceed in one of two ways: (1) Call the student to a meeting to discuss the charges, the evidence, and the proposed academic consequence. Unless the instructor decides that there is no evidence for academic dishonesty, the instructor must inform the appropriate dean of the charges. The dean shall then call the student to a meeting to discuss the case and the proposed administrative penalty. (2) Meet with the student and the appropriate dean together to present the evidence and to discuss the charges and the proposed academic consequence and administrative penalty. In this case, the instructor will contact the dean and the dean will, in turn, contact the student to arrange for a meeting of the three parties. Following steps (1) or (2), the instructor will confer with the dean to decide whether to proceed with the charge. The instructor may drop the charge, but the dean may not dismiss the charge without the instructor's consent. If the instructor and the dean do not agree on whether there is sufficient evidence to proceed, the dean should communicate his or her opinion to the chair of the relevant department. The instructor shall consult with the department chair before deciding whether to proceed.
If the decision is to proceed, the student shall be notified of the charges in writing by the dean and informed of the procedures for processing cases of academic dishonesty under the UCSD Policy on Integrity of Scholarship. The dean shall also advise the student of his or her options and the availability of assistance from Student Legal Services.
The student shall have ten (10) calendar days following notification by the dean to decide whether: (a) to accept the charge of academic dishonesty and the proposed academic consequences and administrative penalties, (b) to deny the charge of dishonesty and to proceed to a formal hearing as provided in paragraph B, or (c) to accept the charge of dishonesty but to appeal the proposed actions as provided in paragraph D. Unless the student informs the dean and the instruc-
tor otherwise within this ten-calendar-day period, he or she shall be presumed to have taken decision (a). If decision (a) is taken, a record of the academic consequences and administrative penalties imposed shall be maintained in the office of the appropriate dean. A copy of the final disposition of the case shall be sent to the chairperson of the department in which the violation occurred.
B. The Hearing Phase: If the student denies having committed the alleged act of academic dishonesty, he or she must submit a written request for a formal hearing to the appropriate dean within ten (10) calendar days of being notified of the charges. The dean shall refer the case to the student conduct coordinator (SCC), who within thirty (30) calendar days will schedule a formal hearing of the case by the Academic Dishonesty Hearing Board ("hearing board"). The SCC will provide at least ten (10) days notice to the student and the instructor of the time and location of the hearing. The SCC will also be available to advise the instructor of the procedures and options for presentation of the case.

The hearing board shall be composed of three faculty members appointed by the Academic Senate, one graduate student appointed by the assistant dean of Graduate Studies, one upper-division undergraduate student appointed by the vice chancellor of Student Affairs, and a college dean who shall serve as the presiding officer. Members shall normally serve a two-year term. The presiding officer shall conduct the hearing and advise the hearing board on procedure, but shall not vote. If the student is enrolled in the same college as the presiding dean, a dean from another college shall serve as the presiding officer. The hearing board shall be governed by the general UCSD rules of procedural due process.
When standing members are not available, the formal hearing may be conducted with the appointment of alternates from the appropriate panel as listed below. However, the hearing board must have at least two of the faculty standing members to proceed with the hearing. The student conduct coordinator will select alternates as needed from the appropriate panel on a rotating basis. The panels of alternates to the hearing board will be as follows:

1. A panel of ten faculty members to be appointed by the Academic Senate Committee on Committees,
2. A panel of five upper-division (junior or senior) undergraduate students, one from each college, to be appointed by the college dean. Members of this panel must have completed at least one year on a standing judicial board at UCSD, and,
3. A panel of five graduate students to be appointed by the assistant dean, OGSR.

The hearing board shall hold a formal hearing and decide on the basis of a preponderance of the evidence whether the student did engage in academic dishonesty. In cases where the hearing board deems that expert advice is essential to a judgment on the merits of the case, such as suspected dishonesty in research, the hearing board, in consultation with the Committee on Committees, may appoint an ad hoc committee to advise it. The ad hoc committee shall consist of three faculty members with knowledge of the field in question. The members of the ad hoc committee shall be present at the hearing and shall advise the hearing board during the board's deliberations. The final judgment on the case shall rest with the hearing board. Within five (5) calendar days from the date the hearing is completed, the presiding officer shall forward the hearing board's findings with explanations to the appropriate dean, with copies to the department chair, the instructor, and the accused student.

Within five (5) calendar days after receipt of the notice of the hearing board's final judgment in the case, the appropriate dean shall inform the student in writing of the findings of the committee and, if academic dishonesty is upheld, the administrative penalties to be imposed.
If the hearing board finds the evidence insufficient to sustain the charge of academic dishonesty, the dean and the instructor shall dismiss the matter without further action against the student, who shall be permitted to complete the course without prejudice or withdraw from it. If the student withdraws from the course, it shall not be listed on his or her transcript.
C. The Appeals Phase: If the hearing board sustains the charge of academic dishonesty, an
undergraduate student may appeal that judgment in writing to the appropriate college provost within fifteen (15) calendar days from the date of the notice from the dean. A graduate student or IA shall submit the appeal to the dean of Graduate Studies.

The basis for appeal of the hearing board's judgment shall be: (a) that the standards of procedural fairness were violated (e.g., that the student did not have sufficient opportunity to present his or her side of the case) or (b) that there exists newly discovered important evidence which has substantial bearing on the findings of the hearing board.
If the appeal is sustained, the case shall be referred back to the hearing board for a new hearing. Except for such appeals, the judgment of the hearing board shall be final.
D. Modification of Academic Action and/or Administrative Penalty: Within five (5) calendar days of receipt of the dean's letter, the student may appeal the instructor's determination of the academic action, and/or the dean's administrative penalty, as provided below.
Request for Modification of Academic Action: A request for review of the academic action taken under paragraph A may be directed to the CEP Subcommittee on Grade Appeals. If the case has been heard by the hearing board, the CEP Subcommittee on Grade

Appeals shall receive the report of the hearing board and accept its findings as to the facts of the case.
Request for Reduction of Administrative Penalty: An appeal of the dean's administrative penalty under the provisions of paragraphs A or C shall be directed by an undergraduate student to the provost of his or her college, or by a graduate student or IA to the dean of Graduate Studies.

OTHER POLICY

While the case is pending, the student may not drop the course in which he or she is accused of dishonesty. If the case has not been adjudicated before the end of the quarter, the instructor shall not assign a grade in the course, but shall put a faculty hold in the memoranda column of the grade report, and the case may be continued into the next regular academic quarter.

If the student withdraws from UCSD before the final disposition of the case, the following policy shall govern. If the student is found to have committed an act of academic dishonesty, and the instructor assigns him or her a final grade in the course, this grade shall be permanently entered on the transcript. If the administrative penalty is dismissal, the transcript shall bear a notation that readmission is contingent upon the approval of the chancellor. Any admin-

istrative penalty less severe than dismissal shall be imposed when the student returns to the university.

If the final decision in the case results in dismissal of the student, a record of the case and its outcome shall be established, in the Office of the Vice Chancellor for Student Affairs or the Office of Dean of Graduate Studies, depending on the registration status of the student. If the administrative penalty is suspension or dismissal, the fact that the student was suspended or dismissed for academic dishonesty must be posted on the academic transcript for the duration of the suspension or dismissal.

If a case of suspected academic dishonesty is also the subject of an administrative inquiry under the Policy on Integrity of Research, then the vice chancellor of Academic Affairs, in consultation with the hearing board, may make such modifications in procedure as are necessary to coordinate the two inquiries.

The appropriate dean can extend any timelines in this policy.

Special Programs

Education Abroad Program and the Opportunities Abroad Program

Please refer to the "Courses, Curricula, and Programs of Instruction" section of this catalog, where the Education Abroad Program and the Opportunities Abroad Program are described in full.

Intercampus Transfer (ICT)

An undergraduate in good academic standing who is now, or was previously, registered in a regular session at any campus of the University of California and has not since registered at any other institution may apply for admission as a transfer in the same status to another campus of the university.

HOW TO APPLY

Intercampus transfers must complete the University of California Undergraduate Application form. These forms are available in the Office of the Registrar. You may apply to one or to as many as eight UC campuses of the university using one application form. Send your completed application to:

University of California
Admissions Application Processing Service P.O. Box 23460

Oakland, CA 94623-0460
Mail only your application form, fees, and essay to the processing service address above. Send your transcripts, test scores, and all other correspondence relating to your application directly to the Admissions Office at the university campus(es) to which you apply. The processing service will not forward them.

APPLICATION FEES

The basic application fee of $\$ 40$ entitles you to apply to one university campus. If you apply to more than one campus, you must pay an additional $\$ 40$ for each campus you select. These fees are not refundable.

WHEN TO APPLY

Priority dates for filing applications for intercampus transfer are identical to the application filing dates for new students: fall, November 1-30; winter, July 1-31; and spring, October 1-31. UC Berkeley fall semester, November 1-30; spring semester, July 1-31.

A campus will accept applications after the priority period only if it still has openings. If you apply after the priority filing period to a campus that is no longer accepting applications, the Admissions Application Processing Service will notify you by mail that your application will not be forwarded to that campus. In this case, you may receive a full or partial refund of the application fee.

Please note: UCSD does not accept applications for winter and spring quarters.

Intercampus Visitor (ICV)

Qualified undergraduates may take advantage of educational opportunities on other campuses of the University of California as an Intercampus Visitor (ICV). This program is designed to enable qualified students to take courses not available on their home campus, to participate in special programs, or to study with distinguished faculty members on other campuses of the university. Students who meet the following requirements should complete an application available in the Office of the Registrar.

1. An undergraduate student must have completed at least one year in residence on the
home campus and have maintained a gradepoint average of at least 2.0 (or equivalent) to apply as an intercampus visitor.
2. Approval of the appropriate provost office is required.
If students meet the above conditions, they should complete the ICV application form and return it to the Office of the Registrar on the home campus, on or before the appropriate deadlines listed above for an intercampus transfer (ICT). The ICV application is subject to approval of the host campus.

A nonrefundable fee of $\$ 40$ is charged for each ICV application.

Simultaneous Enrollment of UCSD Students at other UC Campuses

UCSD students may enroll in classes at another UC campus for the same term providing the student:

- Has completed one quarter as a matriculated student at UCSD
- Is enrolled for a minimum of eight units for the current term at UCSD
- Is in good standing
- Has the appropriate academic preparation as determined by the host campus.
Financial aid is available only through UCSD. Students eligible for veterans, rehabilitation, social security, and other federal, state, or county benefits must secure eligibility certification through the UCSD financial aid office. Units taken at both campuses may be combined to establish full-time enrollment for financial aid.

ROTC

UCSD does not have an ROTC program. Students may, however, with the permision of their college, enroll in ROTC courses at another institution in conjunction with completing their degree programs at UCSD.

ROTC courses are conducted on the campuses of the University of San Diego and San Diego State University (College of Extended Studies) for the Navy ROTC, and at San Diego State University for Army and Air Force ROTC. Further information on these programs may be obtained from the ROTC adviser at the Aerospace Studies Department, (619) 594-5545, and the Military Science Department, (619) 594-4943, at San Diego State University, or the Department of

Naval Science, (619) 260-4811, at the University of San Diego.

Absence/Readmission to the University

Undergraduate students absent for no more than one quarter are considered to be continuing students and should contact the Office of the Registrar for registration information.

Students in good academic standing who are absent for two or more consecutive quarters must file an application for readmission no later than four weeks prior to the beginning of the quarter at the Office of the Registrar, 301 University Center. A nonrefundable fee of $\$ 40$ is charged.

Students in good academic standing who are absent for two quarters are automatically readmitted to UCSD.

Students in good academic standing who were absent for three quarters or more, and who have been readmitted, must consult with a college academic adviser before enrollment. Students must adhere to the graduation requirements in effect at the time of readmission or those subsequently established.

Students who were on probation or subject to dismissal the last quarter of attendance at UCSD, but were not dismissed, must consult with an academic adviser and establish a contract before enrollment.

Students who were dismissed from UCSD, but have subsequently met the conditions stipulated in their original dismissal letter, must consult with an academic adviser and establish a quarterly contract before readmission and enrollment.

Students who attended another institution since leaving UCSD must submit official transcripts for all academic work completed. This work must be of passing or higher quality.

In the case of major departments with approved screening criteria, students may be readmitted as pre-majors.

Withdrawal from the University

Enrolled or registered (paid fees) students who wish to withdraw either prior to or during the quarter are required to complete the Undergraduate Application for Withdrawal. The form should be filed with the student's college

academic advising or dean's office. These forms serve two purposes: 1) a means to provide a refund of fees, if appropriate (see below); 2) automatic withdrawal from classes (see also "The W Grade"). Students considering withdrawing are urged to consult with their respective college. The colieges recognize that there are many reasons for students withdrawing from the university.

Refund Policy

NEW UNDERGRADUATE STUDENTS

Prior to the first day of instruction, the registration fee is refunded minus the $\$ 100$ statement of intention to register fee.

REFUND SCHEDULE

The following schedule of refunds is effective beginning with the first day of instruction and refers to calendar days (including weekends):

$0-1$ days	$2-7$ days	$8-18$ days	$19-35$ days	36 days and over
100	90 percent	50 percent percent	25 percent	0 percent
	(Subject to Change)			

(Subject to Change)

The effective date of withdrawal used in determining the percentage of fees to be refunded is the date indicated on the withdrawal form by the college academic advising or dean's office.

Auditing

Interested individuals, including registered students, are permitted to audit courses only with the explicit and continuing consent of, and under such rules as may be established by, the faculty member in charge of the course. The instructor is not obligated to devote time to the work of individuals not officially enrolled in the course. All persons auditing are required to abide by University policies and campus regulations.

RETURN OF TITLE IV FEDERAL STUDENT AID

Financial aid recipients may be required to return some or all of their aid at the time of withdrawal. This requirement applies only to undergraduate students who withdraw prior to completing 60 percent of the quarter. Questions about financial aid repayment should be directed to the Financial Aid Office.

Graduate Studies

At the University of California, San Diego all programs leading to master's degrees and to doctorol degrees (other than the M.D.) are under the jurisdiction of the Graduate Council and are administered by the Office of Graduate Studies and Research.

The combined administrative responsibility for graduate studies and for research reflects the intention of the San Diego campus to emphasize the research character of graduate education. The Ph.D. and most master's degrees are the culmination of creative effort and attest to the ability of the recipient to continue original inquiry. In addition to requiring original research, most of UCSD's graduate programs expect their students to obtain teaching experience.

Much of the training UCSD offers takes place outside the classroom-not only in seminars but in independent research and in tutorial work. Students can benefit from the many visitors from other universities; there are opportunities to study at other campuses of the University of California; and many students become involved in the research activities of UCSD's research institutes and centers. La Jolla has become one of the most important intellectual centers of the West. Not only has UCSD attracted many of the world's great scholars, but other research institutions located nearby such as the Salk Institute for Biological Studies, the Burnham Institute, and The Scripps Research Institute have enhanced the area's reputation.

The Nature of Graduate Instruction

Graduate courses demand, on the part of both instructor and student, a capacity for critical analysis and a degree of research interest beyond those appropriate for undergraduate study. These courses generally carry a number in the 200 series and may be conducted in any of several ways: (1) as advanced lecture courses; (2) as seminars in which faculty and students present critical studies of selected problems within the subject field; (3) as independent reading or study under faculty supervision; or (4) as research projects conducted under faculty
supervision. Graduate courses numbered 400-499 are designed for professional programs and may not be used to satisfy minimum graduate course requirements for degrees other than the specific degree program for which they are offered. Courses at the upper-division level (100-197) may be taken in partial satisfaction of the requirements for an advanced degree.

Graduate students may take lower-division courses (1-99) for a letter grade, but grades earned in those courses will not be considered in their overall grade-point average (GPA) for the purpose of determining good standing, except for students in the M.P.I.A. program who may take lower-division language courses for a letter grade and for inclusion in their GPA for the purpose of determining good standing.

The graduate student is accorded considerable liberty in choice of courses as long as minimum departmental core course, departmental requirements and grading standards, and residency requirements are met.

Administration

The Office of Graduate Studies and Research

The Office of Graduate Studies and Research is administered by the dean of Graduate Studies, who is responsible for graduate admissions; graduate degree programs; the administration of fellowships, traineeships, and other graduate student support; the development of new programs; and the maintenance of common standards of high quality in graduate programs across the campus.

The dean reports to the senior vice chancellor of Academic Affairs and to the Graduate Council, on the administration of graduate affairs.

The Graduate Council

The Graduate Council is a standing committee of the San Diego Division of the Academic Senate composed of faculty and graduate students. The primary function of the council is to exercise overall responsibility for graduate study programs and to implement systemwide policies, procedures, requirements, and standards.

The Graduate Adviser

The graduate adviser in a department, group, or school is the faculty member to whom gradu-
ate students direct requests for information about graduate study in a particular program. The graduate adviser's duties include:

1. Advising the dean on admission of graduate students.
2. Advising graduate students regarding their programs of study and other matters pertinent to graduate work.
3. Appointing individual advisers for each graduate student.
4. Approving official study lists.
5. Acting on the petitions of graduate students.
6. Insuring that adequate records are maintained on all graduate students in the department, group, or school, and supplying relevant information as requested by the dean.
7. Assisting the dean of Graduate Studies in the application of university regulations governing graduate students, graduate study, and graduate courses.
8. Advising the chair of the department and the dean of Graduate Studies about developments of the graduate program in the department, group, or school.

Graduate Student Association

The Graduate Student Association (GSA) is the officially recognized graduate student government at UCSD. It represents all graduate and medical students-including those at Scripps Institution of Oceanography, the Graduate School of International Relations and Pacific Studies, and the School of Medicine-in academic, administrative, campus, and university matters. The GSA Council, composed of five executive officers and representatives from each department, group and school, nominates graduate student representatives for appointment to campus governing bodies and committees, including the Graduate Council, the Registration Fee Committee, and the sys-temwide Student Body Presidents' Council. The GSA also sponsors projects and social activities designed to improve the academic and social lives of students. Meetings are open to all graduate and School of Medicine students.

For more information contact the GSA at (858) 534-6504.

Graduate Student Diversity

The University of California, San Diego actively recruits and admits qualified students to graduate programs who will enhance the diversity of UCSD graduate programs.

UCSD recognizes the value to students, faculty, staff, and the community in having a campus which reflects the full richness and talents of the people of California. Diversity is viewed as a campus strength and a critical component of higher education. The campus has a firm commitment to recruit and admit graduate students from all demographic groups including students from traditionally underrepresented backgrounds.

The Graduate Student Affairs Unit in the Office of Graduate Studies and Research provides an array of counseling and advocacy services to assist U.S. citizens and permanent residents in applying to graduate school, obtaining financial support, and successfully completing graduate degree programs.

UCSD offers the San Diego Fellowship Program, which is designed to increase campus diversity. The fellowship provides two awards: The San Diego Fellowship and the Eugene CotaRobles Fellowship. Incoming students who have overcome significant economic, educational, or social hardship in pursuit of their education or whose presence would enhance campus or departmental diversity in other ways are eligible for awards through the San Diego Fellowship Program. Fellows receive a stipend plus tuition and/or fees for at least four years. Students must be U.S. citizens or permanent residents.
Nominees for the San Diego Fellowship must be recommended for admission to a program leading to a Ph.D., M.F.A., M.P.I.A., M.Ed., D.M.A., or the M.A. in Latin American Studies. For the Eugene Cota-Robles Fellowship, nominees must be recommended for admission to a Ph.D. program. Integral to the fellowship experience, fellows are assigned a faculty mentor in their major department to assist with academic and research goals.

Fellows making good progress are eligible for departmental financial support for subsequent years usually in the form of teaching, research, and language assistantships.

In addition, a limited number of graduate student research awards are available in specific science disciplines through the UCSD-NIH Scholars program and The National Science Foundation

GRADUATE DEGREES OFFERED: 2001-2002

Anthropology
Art History, Theory, and Criticism
Bioengineering (Bioinformatics)
Bioinformatics
Biology
Biology
(Joint with San Diego State University)
Biomedical Sciences
(Bioinformatics)
Chemistry
(Biochemistry)
Chemistry (Joint with San Diego State University)
Clinical Psychology (Joint with San Diego State University)
Cognitive Science
Communication
Comparative Studies in Language, Society, and Culture
Computer Science (Bioinformatics) (Computer Engineering)
Earth Sciences
Economics
Economics and International Affairs
Education
Electrical Engineering
(Applied Ocean Science)
(Applied Physics) (Computer Engineering) (Communication Theory and Systems) (Electronic Circuits and Systems) (Intelligence Systems, Robotics, and Control) (Photonics)
Engineering Sciences (Aerospace Engineering) (Applied Mechanics) (Applied Ocean Science) (Chemical Engineering) (Engineering Physics) (Mechanical Engineering) (Structural Engineering)
Engineering Sciences (Applied Mechanics) (Joint with San Diego State University)

PhD.

Ethnic Studies
History (Judaic Studies)
International Affairs
Pacific International Affairs M.PI.A.
Economics and International Affairs
Politial Science and International Affairs
Language and Communicative Disorders
(Joint with San Diego State University)
Latin American Studies
Leadership of Healthcare Organizations
Linguistics
Literature
Comparative
English and American
French
German
Spanish
Marine Biology
Materials Science
Mathematics.
(Bioinformatics)
Mathematics (Applied)
Statistics
PhD.
M.A., PhD.

MA.

PhD.
PhD.
Ph.D.
MA.
M.A.S. -

Ph.D.*
PhD.
MA.
MA.
MA.
MA.
MA.
PhD.*
M.S., PhD.
M.A., PhD.
$\frac{\text { MhD. }}{\text { MA. }}$
MSS.
Mathematics and Science Education
(Joint with San Diego State University)
Molecular Pathology
Music
Neurosciences
Oceanography
Philosophy
PhD.
PhD.
M.A., Ph.D., D.M.A.

Ph.D.*
PhD.*
PhD.*
M.S.**, Ph.D.
(Bioinformatics)
Political Science

Psychology

Sociology
Teaching and Learning

Theatre

Visual Arts
(Biophysics)
Political Science and International Affairs
Public Health (Epidemiology)
(Joint with San Diego State University)
路.
PhD.*
(Curriculum Design) M.A.
(American Sign Language) M.A.
M.F.A.

PhD.
M.F.A.
(Joint with University of California, Irvine)
PhD.
PhD.
PhD.*
PhD.
PhD.*, M.A.** - ...

PhD.
hiD.
MAS
*The master's degree may be awarded to students pursuing work toward the Ph.D. after fulfillment of the appropriate requirements. See appropriate section of catalog.
§ Students who have completed some graduate study at UCSD and have been admitted to a doctoral program may apply for this interdisciplinary program.
**UCSD undergraduates in the junior or senior year may apply to their respective departments for admission to the integrated BS/MS degree program. A similar program is available to UCSD undergraduates in several of the engineering and science specialties. Consult department personnel and/or catalog departmental listing for complete information.
*** Pending approval.

Minority Access to Science, Engineering and Math (MASEM) Fellowship.

For assistance and further information about special opportunities for underrepresented students, contact the assistant dean for Student Affairs, Office of Graduate Studies and Research, 518 ERC, (858) 534-2770 or (858) 534-3555.

For additional information on students with disabilities, see "Disabled Student Services" (page 109).

Career Services for Graduate Students

The Career Services Center offers a wide range of programs and services to assist graduate students with their career planning and job search needs. Individual career counseling is available on both an appointment and drop-in basis. In addition, workshops and special events are regularly offered covering such areas as resume writing, job search strategies, and nonacademic employment options. The Career Services Center houses a career reference library containing information on employers, job listings, alumni contact list, salaries, sample resumes, and publications pertinent to graduate students' career issues. An online database and Internet access computer lab is also available to assist in placement efforts. For more information, see the
"Career Services" section of this catalog or visit the Career Services Office.

General Requirements for Higher Degrees

Courses and Grades

Only upper-division and graduate courses in which a student is assigned grades A, B, C (including plus $[+]$ or minus $[-]$ (D,gr S are counted in satisfaction of the requirements for the master of fine arts, master of Pacific international affairs, master of arts, master of engineering, master of science, doctor of musical arts, and doctor of philosophy degrees. An Incomplete grade, as well as an NR, will automatically lapse to an F or U if it has not been removed when the final report for the degree is approved by the Office of Graduate Studies and Research. (See also "Grades.")

Undergraduate language courses and courses in the 400 series are only used for degree credit in the program for the M.P.I.A. degree offered by the Graduate School of International Relations and Pacific Studies. For course information see the section on "International Relations and Pacific Studies" elsewhere in this catalog.

> Registration in the Final Quarter for the Award of the Degree

A student completing course work, using university facilities including the library, or making any demands upon faculty time (other than final reading of the thesis or dissertation, or administering the comprehensive or doctoral examination), must register in the final quarter in which the degree is to be conferred. Students who need only to submit their theses or dissertations, or to take the comprehensive or final examination may pay a filing fee in lieu of registration in the final quarter (see "Filing Fee").

Master of Arts and Master of Science Degrees

The master of arts and master of science degrees are offered under two plans: Plan I, Thesis, and Plan II, Comprehensive Examination. Since some departments offer both plans, with varying unit requirements, students should consult with their advisers before selecting a plan for completion of degree requirements.

Programs of Study

PLAN I: THESIS PLAN

A minimum of at least thirty-six quarter-units are required: eighteen units in graduate courses, including a minimum of twelve units in gradu-ate-level courses in the major field; tweive additional units in graduate or upper-division courses; and six units in research course work leading to the thesis. Consult your department for specific unit and course requirements.

Following advancement to candidacy, the student electing Plan I must submit a thesis. The thesis committee, appointed by the chair of the department or group and approved by the dean of Graduate Studies, consists of at least three faculty members, with at least two from the candidate's major department.

Information covering thesis preparation is contained in the publication, Instructions for the Preparation and Submission of Doctoral Dissertations and Masters' Theses, which is mailed to students electing Plan I, upon their advancement to candidacy. The completed thesis is submitted to the thesis committee for review.

When all members of the committee have approved the thesis, a Final Report of the Thesis for the Master of Arts or Master of Science Degree under Plan I must be completed. The candidate submits the thesis to the Office of

cal -western and SDSL Inter-institutional agreements

Graduate Studies and Research and upon approval by the dean of Graduate Studies, files the thesis with the university archivist who accepts it on behalf of the Graduate Council. Acceptance of the thesis by the archivist with a subsequent second approval by the dean of Graduate Studies represents the final step in the completion of all requirements by the candidate for a master of arts or master of science degree on the San Diego campus.

PLAN II: COMPREHENSIVE EXAMINATION PLAN

A minimum of at least thirty-six quarter-units are required: twenty-four units in graduate courses, including a minimum of fourteen units in graduate-level courses in the major field; and twelve additional units in graduate or upperdivision courses. Consult your department for specific unit and course requirements.

Apprentice Teaching

A maximum of six units of 500 -level courses (apprentice teaching) may be credited toward the degree requirements.

Academic Residence

The minimum residence requirement is three academic quarters, at least one of which must follow advancement to candidacy. Academic esidence is met by satisfactory completion of six units or more per quarter, some of which must be graduate level.

A candidate must be registered in the quarter in which the degree is to be awarded. (See "Registration in the Final Quarter for the Award of the Degree.")

Advancement to Candidacy

After completing all preliminary requirements of the major with a GPA equivalent to 3.0 in upper-division and graduate course work undertaken, a total of no more than eight units of F and/or U grades, and a minimum of two quarters or more of residency, the student may file an Application for Candidacy for the Thesis or Comprehensive Examination, Plan I or II, for the Master of Arts or Master of Science Degree. An Application for Candidacy must be filed no later than two weeks after the first day of the quarter in which degree requirements are to be complated. (See "Academic Calendar.")

Following advancement to candidacy, the student electing Plan 11 must pass a comprehensive examination administered by the major departmint. A Final Report of the Comprehensive Examination for the Master of Arts or Master of Science Degree under Plan II is used to report successful completion of the examination requirement.

Transferring Credit

With the approval of the major department and the dean of Graduate Studies, upper-division and graduate course work completed with a grade of B - or better while in graduate standing at another campus of the University of California may be accepted in satisfaction of one of the three quarters of residence and up to one-half of the quarter-units of credit required for the master's degree at UCSD.

On the recommendation of the major department and with the approval of the dean of Graduate Studies, a maximum of eight quarterunits of credit for work completed with a grade of B - or better in graduate standing at an institution other than the University of California may be applied toward a master's degree at UCSD. Courses used must be taken prior to matriculaIn any case, no more than of total) of one-half of the units required for a master's degree may be transferred in from any UC or other institu-

tions. Courses used for a previous degree max not be transferred. A letter from the institution from which the courses are being transferred will be required stating the courses were not used toward another degree.

Course work approved for transfer credit will not bedeullating a student's gradepoint average, regardless of the source.

Master of Education (M.Ed) Pending Approval

The campus is seeking approval for a Master of Education degree program. Details regarding the program may be obtained from the Teacher Education Programs.

Master of Engineering (M.Eng.)

Several departments in the School of Engineering offer the master of engineering (M.Eng.). The M.Eng. is a course work only ferminat degree designed to address the technical needs of engineers. Degree requirements, curriculum, and other details regarding the program may be obtained from the Department of Electrical and Computer Engineering and the Department of Bioengineering.

The Master of Fine Arts Degree

The master of fine arts degree is offered in the Departments of Theatre and Dance, and Visual Arts under a modified thesis plan. A short written thesis that may be regarded as a position paper, presenting a descriptive background for (the student's work, is required. There is no written final examination, but great weight is given to the candidate's final presentation and the oral defense of the thesis.

Program of Study

PLAN III: MODIFIED THESIS PROGRAM

Seventy-two quarter-units for visual arts and ninety quarter-units for theatre, with a GPA equivalent to 3.0 in upper-division and graduate course work undertaken, are required for a master of fine arts degree. Information covering thesis preparation is contained in the publication, Instructions for the Preparation and Submission of Doctoral Dissertations and Masters' Theses, which
is mailed to students upon their advancement to candidacy. The completed thesis is submitted to the thesis committee for review.

Following the filing of an Application for Candidacy for the Modified Thesis, Plan III, the candidate must submit a thesis. The thesis committee, appointed by the chair of the department and approved by the dean of Graduate Studies, consists of four faculty members; three from the department and one, preferably tenured, from outside the department.

When all members of the committee have approved the thesis, a Final Report of the Modified Thesis Examination, Plan III, for the Master of Fine Arts Degree must be completed. Approval by the dean of Graduate Studies and subsequent acceptance of the thesis by the university archivist, Special Collections, represents the final step in the completion of all requirements by the candidate for a master of fine arts degree on the San Diego campus.

Academic Residence

The minimum residence requirement is six academic quarters for visual arts and eight academic quarters for theatre, at least one of which must follow advancement to candidacy in either program. Academic residence is met by satisfactory completion of six units or more per quarter, some of which must be graduate level. The entire residence requirement must be satisfied at UCSD.

A candidate must be registered in the quarter in which the degree is to be awarded. (See "Registration in the Final Quarter.")

Advancement to Candidacy

After completing all preliminary requirements of the department with a GPA equivalent to 3.0 in upper-division and graduate course work undertaken, a total of no more than eight units of F and/ or U grades, and a minimum of five quarters of residency, the student may file an Application for Candidacy for the Modified Thesis, Plan III, for the Master of Fine Arts Degree. An application for candidacy must be filed no later than two weeks after the first day of the quarter in which degree requirements are to be completed. (See "Academic Calendar.")

Graduate Work Completed Elsewhere

In exceptional circumstances, a student may be given a leave of absence for the purpose of studying elsewhere. While appropriate credit may be allowed for course work completed elsewhere with a grade of B or better in a graduate program, the period involved will not reduce the UCSD academic residence requirement of six academic quarters for visual arts and eight quarters for theatre.

The Master of Pacific International Affairs

The master of Pacific international affairs program provides training for those interested in pursuing professional careers in international affairs and international management with an emphasis on the countries of the Pacific Rim. For degree requirements and curriculum, please refer to the International Relations and Pacific Studies description under the catalog listings of programs of instruction.

The Doctor of Musical Arts Degree (D.M.A.)

The DMA degree emphasizes the dual preparation for professional careers in the performance of contemporary music, as well as in the equally demanding area of teaching these skills on an advanced level. Candidates for this degree are expected to demonstrate musical excellence, artistic maturity, and the capability for doing original scholarly work. For degree requirements and curriculum, please refer to the Department of Music description under the catalog listings of programs of instruction.

The Doctor of Philosophy Degree

The doctor of philosophy degree is a research oriented degree which requires individual study and specialization within a field or the establishment of connections among fields. It is not awarded solely for the fulfillment of technical requirements such as academic residence and course work. Candidates are recommended for the doctorate in recognition of having mastered in depth the subject matter of their discipline and having demonstrated the ability to make original contributions to knowledge in their field of study. More generally, the degree constitutes an affidavit of critical aptitude in scholarship, imaginative enterprise in research, and proficiency in communication, including-in most departments-practice in teaching.

Program of Study

The student's program of study is determined in consultation with the adviser who supervises
the student's activities until the appointment of the doctoral committee. A doctoral program generally involves two stages.

The first stage requires at least three quarters of academic residence and is spent in fulfilling the requirements established by the Academic Senate and by the major department, group, or school. When the department considers the student ready to take the qualifying examination, it arranges for the appointment of a doctoral committee. Immediately upon passing the qualifying examination administered by the doctoral committee, the student advances to candidacy.

The second or in-candidacy stage is devoted primarily to independent study and research and to the preparation of the dissertation. A minimum interval of three quarters of academic residence must elapse between advancement to candidacy and the filing and final defense of the dissertation.

Foreign Language Requirements

Some doctoral programs require candidates to demonstrate language proficiency in one or more languages as part of the formal requirements for the Ph.D. degree. In these cases, the testing of proficiency is the responsibility of the department, group, or school concerned.

Ph.D. Time Limits

All graduate students in doctoral programs are subject to campus policy on time limits to the Ph.D. Each graduate program has three time limits pertaining to students' academic progress toward the Ph.D. degree:
(1) the registered time by which a student must advance to Ph.D. candidacy; (2) the registered time during which a doctoral student is eligible for support; and (3) the registered time by which a student must complete all Ph.D. requirements. Students will not be permitted to continue in doctoral status beyond the pre-candidacy and total registered time limits. Students will not be permitted to receive UCSD-administered financial support beyond the support limit. Information about these time limits is given in the descriptions of each department's graduate program in this catalog and departmental publications.

University policy requires that graduate students be continuously registered-unless on an approved leave of absence-from the first quarter of enrollment to completion of degree

requirements. (See "Continuous Registration" and "Leave of Absence.")

For purposes of calculating when precandidacy and total registered time limits are reached, accrued time is the elapsed time from first enrollment as a graduate student at UCSD less (a) time withdrawn or on approved leave of absence, and (b) time between completion of one graduate program at UCSD and first registration in another. For the support time limit, a maximum of three quarters of approved leave or withdrawal may be deducted from elapsed time in calculating accrued time. Time spent in graduate study at another institution or University of California campus prior to beginning graduate study at UCSD will not count toward accrued time, with the exception of students entering the $\mathrm{Ph} . \mathrm{D}$. program in electrical engineering, computer science, or music who have earned a master's degree in that discipline. All of the following will count toward accrued time: time spent at UCSD as a master's, non-degree, or intercampus exchange graduate student; time spent on leave beyond three quarters; time spent between completion of or withdrawal from a graduate program at UCSD and re-registration in the same field of study. Pre-candidacy and total registered time limits will not accrue during periods of leave of absence and/or withdrawal in excess of three quarters.

Further information may be obtained from departmental graduate coordinators or the Office of Graduate Studies and Research.

Academic Residence

The minimum residence requirement for the doctor of musical arts degree and doctor of philosophy degree is six quarters, three of which must be in continuous academic residence at UCSD. Residency is established by the satisfactory completion of six units or more per quarter, at least some of which must be at the graduate level. Joint doctoral students meet the UCSD academic residency requirement by successfully completing a minimum of thirty-six units of course work at UCSD.

A candidate must be registered in the final quarter in which the degree is to be awarded. (See "Registration in the Final Quarter."
p.80)

The Doctoral Committee

At least three weeks prior to a scheduled qualifying examination, the department requests approval for the appointment of the doctoral committee by the dean of Graduate Studies. This committee conducts the qualifying examination, supervises the preparation of and passes upon the dissertation, and administers the final examination.

The committee consists of five or more officers of instruction, no fewer than four of whom shall hold professorial titles of any rank. The committee members shall be chosen from two or more departments/programs; at least two members shall represent academic specialties that differ from the student's field and one of these two must be a tenured UCSD faculty member from another department. Consult the departmental graduate coordinator or the Office of Graduate Studies and Research for further details.

Reconstituted Doctoral Committee

For a variety of reasons a doctoral committee may need to be reconstituted. The request for reconstitution of the membership of a doctoral committee must be submitted on a reconstitution form to the dean of Graduate Studies by the chair of the candidate's major department, group, or school no less than two weeks prior to the qualifying examination or defense of the dissertation. The request must include departmental affiliation of the members of the proposed reconstituted committee and the reason(s) for requesting the change.

Qualifying Examination and Advancement to Candidacy

The doctoral committee administers the qualifying examination and authorizes the issuance of the Report of the Qualifying Examination and Advancement to Candidacy for the Degree of Doctor of Philosophy. Formal advancement to candidacy requires the student to pay a candidacy fee to the cashier prior to submitting the form to the dean of Graduate Studies for approval. Students must maintain a GPA equivalent to 3.0 or better in upper-division and graduate course work undertaken with a total of no more than eight units of F and/or U grades in order to take the qualifying examination and advance to candidacy.

If the committee does not issue a unanimous report on the examination, the dean of Graduate Studies shall be called upon to review and present the case for resolution to the Graduate Council, which shall determine appropriate action.

Dissertation and Final Examination

A draft of the doctoral dissertation should be submitted to each member of the doctoral committee at least four weeks before the final exami-
nation. The form of the final draft must conform to procedures outlined in the publication, Instructions for the Preparation and Submission of Doctoral Dissertations and Masters' Theses, which is mailed to candidates upon their advancement to candidacy.

The doctoral committee shall supervise and pass on the candidate's dissertation and conduct the final oral examination which shall be public and so announced.

If the committee does not issue a unanimous report on the examination, the dean of Graduate Studies shall be called upon to review and present the case for resolution to the Graduate Council, which shall determine appropriate action.

The Report of the Final Examination and Filing of the Dissertation for the Degree of Doctor of Philosophy form is initiated by the department, group, or school, signed by members of the doctoral committee, and the chair of the (major) department, group, or school.

The candidate submits the dissertation to the Office of Graduate Studies and Research and, upon approval by the dean of Graduate Studies, files the dissertation with the university archivist, who accepts it on behalf of the Graduate Council. Acceptance of the dissertation by the archivist, with a subsequent second approval by

the dean of Graduate Studies, represents the final step in the completion by the candidate of all requirements for the doctor of philosophy degree. All dissertations and theses submitted in partial satisfaction of Ph.D. or master's degree requirements shall be catalogued and shelved in the university library and dissertations shall be submitted to University Microfilms, Inc., for publication.

Candidate in Philosophy Degree

In several departments, as approved by the Graduate Council, the intermediate degree of candidate in philosophy (C.Phil.) is awarded to students upon advancement to candidacy for the Ph.D. degree. The minimum residence requirement for this degree is three quarters of continuous academic residence at UCSD. The C.Phil. degree cannot be conferred simultaneously with or following the award of a Ph.D. degree.

Letter of Completion

The Office of Graduate Studies and Research will direct the Office of the Registrar to issue a Letter of Completion to a graduate student who has completed all requirements for a higher degree but whose diploma has not yet been issued.

Postgraduate Appointments

A UCSD graduate student is not eligible for any UCSD postdoctoral appointment until all requirements for the Ph.D. degree have been completed. Such appointments may begin after the university archivist has accepted the dissertation and the Office of Graduate Studies and Research has accepted the final report.

Special Degree Programs

Graduate Programs in the Health Sciences

The university offers research training programs in the health sciences leading to the doctor of philosophy degree. The purpose of these graduate programs is to prepare students for careers in research and teaching in the basic medical sciences. Program requirements are flexible, consisting of graduate courses and supervised laboratory or clinical investigation. Graduate programs in the health sciences are offered by (1) regular campuswide departments
with activities related to the health sciences, for example, the Departments of Applied Mechanics and Engineering Sciences, Bioengineering, Biology, Chemistry and Biochemistry, and Psychology and (2) interdisciplinary groups of faculty drawn from the School of Medicine and from campuswide departments or from San Diego State University.

The following departments or interdisciplinary graduate groups provide research training opportunities in the biomedical sciences and should be contacted directly for further information: biomedical sciences, biochemistry (in either biology or chemistry and biochemistry), bioengineering, bioinformatics, biology, biophysics, chemistry, clinical psychology, molecular pathology, neurosciences, physics, psychology, public health (epidemiology), and the Scripps Institution of Oceanography.

Ph.D.-M.D. Program

Students may meet the requirements for both the Ph.D. and M.D. degrees in programs offered jointly by the School of Medicine and the graduate programs in the health sciences. In most cases, students are first admitted to the School of Medicine and may then apply for admission to a relevant graduate program. However, those students who wish to be considered for admission to the Medical Scientist Training Program (MSTP) may apply for admission to the School of Medicine and the MSTP concurrently.

Elements of the first two years of the medical school curriculum satisfy many of the requirements of the graduate program, but additional courses will be required. Thus, the student must complete requirements for the Ph.D. in accordance with the regulations of a department or a group and must in addition meet the requirements for the professional degree. Students interested in such programs should consult the associate dean for Student Affairs, School of Medicine.

Joint Doctoral Programs

Certain departments of the University of California cooperate with similar departments on the several campuses in the California State University System to offer joint programs of study leading to the Ph.D. degree. At UCSD, joint doctoral programs in biology, chemistry, clinical psychology, language and communicative disorders, engineering sciences (applied mechanics),
mathematics and science education, and public health (epidemiology) are currently offered in conjunction with San Diego State University and a Ph.D. in drama and theatre is offered in conjunction with University of California, Irvine. Applicants interested in these joint programs should consult the Departments of Biology, Chemistry and Biochemistry, Communicative Disorders, Mechanical Engineering, Psychology, Theatre and Dance; or the Office of the Dean, College of Engineering; or the Center for Research in Mathematics and Science Education; or School of Public Health at San Diego State University. Joint doctoral students meet the UCSD academic residency requirement by successfully completing a minimum of thirty-six units of course work at UCSD.

Special Programs

Intercampus Exchange Program for Graduate Students

A graduate student registered on any campus of the University of California, who wishes to take advantage of educational opportunities for study and research available on another campus of the university, must apply to become an intercampus exchange student on that UC campus. UCSD students must have completed at least one quarter of study and be in good standing prior to beginning an exchange.

Informal arrangements between departmental faculty on the two campuses must be undertaken prior to submission of a student's application to assure that space in desired courses, seminars, or facilities will be available.

No later than four weeks prior to the opening of the term on the host campus, a student must complete the Application for Intercampus Exchange Program for Graduate Students available at the Office of Graduate Studies and Research. This application, approved by the student's departmental graduate adviser and and the graduate dean of the home campus, is forwarded for approval by the department and the graduate dean on the host campus.

Students participating in an intercampus exchange must pay all required fees and enroll as appropriate at the home campus. Evidence of fee payment, at the home campus, must be presented to enroll in classes at the host campus.

An exchange student is not admitted to graduate standing at the host campus, but is consid-
ered a graduate student in residence at the home campus. Grades obtained in courses taken by the student enrolled in the intercampus graduate student exchange program are transferred to the home campus for entry on the student's official record. Library, health center, and other student privileges are extended by the host campus.

Off-Campus Study

(Other than Intercampus Exchange Program)
If the research and study program of a graduate student requires being off campus for extended periods of five weeks or more, the student may apply for off-campus study. During such periods a student is required to remain a registered student at UCSD and to carry twelve units of course work or research.

If the off-campus study is outside the state of California, one-half of the registration fee may be waived. All required fees including, but not limited to the full educational fee, student center fee, recreation facility fee, health insurance fee, and nonresident fee, if applicable, must be paid.

A graduate student who holds a fellowship, traineeship, or a research assistantship and desires to study off campus may do so under the following circumstances: The student must have completed at least one year of graduate study at UCSD, obtained the approvals of the academic department and the dean of Graduate Studies, and agreed to comply with the rules and regulations governing the award or appointment.

Regulations concerning accepting additional awards or compensation for appointments as outlined under the financial assistance section apply to off-campus study as well as on-campus study.

UCSD Extension

Students wishing to offer UCSD Extension course work taken prior to admission at UCSD as a graduate student in partial satisfaction of requirements for a master's degree must file a General Petition with the Office of Graduate Studies and Research. Acceptance of such course work is subject to the regulations on "Transferring Credit" on page 81 of this catalog, the recommendation of the major department, and approval of the dean of Graduate Studies, and will be considered upon satisfactory completion of course work in a regular session.

COMPLIMENTARY ENROLLMENT

Through a reciprocal agreement with UCSD Extension, a limited number of spaces in extension classes are open to full-time graduate students (registered for twelve units or more) in good standing without payment of additional fees. The number of spaces available for each quarter varies. The student must obtain a UCSD Application for Enrollment from the Office of Graduate Studies and Research and personally secure the necessary approvals. Course work taken through Complimentary Enrollment cannot be used in partial satisfaction of requirements for a master's degree, nor can it be used toward the twelve unit full-time enrollment requirement.

Education Abroad Program

Graduate students may apply to study at most Education Abroad Program (EAP) host institutions, provided that they meet EAP requirements and have completed at least one year of graduate work prior to departure, are in good standing, and have the support of their academic department and graduate dean.

Costs vary according to location.
Students pay fees to the University of California and are enrolled at UCSD while abroad. Full academic credit is received for courses satisfactorily completed.

At UCSD, complete information and application forms for the various overseas campuses may be obtained from the Programs Abroad Office, International Center, University Center, 0018 or on the Programs Abroad Web site http://orpheus.ucsd.edu/icenter/. In addition, the Programs Abroad Office also offers information and advisory services to graduate and undergraduate students interested in pursuing other activities involving study, research, work, or travel abroad.

For a detailed list of the countries with EAP study centers, see also Education Abroad Program in chapter entitled "Courses, Curricula, and Programs of Instruction." Study abroad information is also available online by accessing the EAP Web site http://www.uoeap.ucsb.edu.

Postdoctoral Study

Postdoctoral fellows, trainees, scholars, and medical fellows play an important role in UCSD's teaching and research programs. All interested
candidates should make advance arrangements with the appropriate department or research unit. The Office of Graduate Studies and Research has administrative responsibility for the appointment and census of postdoc-toral scholars undertaking training at UCSD. A scholar is appointed by means of a Postdoctoral Study Appointment form initiated in the office of the faculty sponsor and is eligible for a UCSD academic photo identification card and library privileges. The scholar is also eligible to purchase OGSR-sponsored Health Net medical and DentiCare dental insurance.

All scholars are required to have adequate health insurance. Information on Health Net, DentiCare, and enrollment procedures may be obtained from administrative offices of departments, organized research units, or OGSR.

Fees

The following schedule of fees is anticipated for the 2001-2002 academic year:

FEES PER QUARTER*

	Resident	Non- Resident
$\$ 3,568.00$		
Tuition	$\$$	238.00
Registration	966.00	$1,029.00$
Educational	37.50	37.50
Student Center	82.00	82.00
Recreational Facilities	8.00	8.00
Graduate Student	8.00	
\quad Assoc.	297.00	297.00
Health Insurance	$\$ 1,628.50^{* *}$	$\$ 5,259.50^{* *}$

Miscellaneous Fees and Fines

Students should also be aware of the following charges:
Application fee for admission $\$ 40$
Duplicate Photo-ID card 10
Petition for Readmission 40
Advancement to Candidacy for Ph.D. 50
Transcript of Record 5
Late payment of fees (Late registration) 50
Late enrollment 50
Late and retroactove Add/Drop 3
Returned check collection 25
Filing fee 119
UCSD Statement Late Charge 25

* Subject to change without notice. All receipts for payments made to the cashier, whatever their nature, should be carefully preserved. Not only do they constitute evidence that financial obligations have been discharged, but they may be required to support a claim that certain documents or petitions have been filed.
**Fees for graduate students approved for enroliment in a half-time program (not to exceed six units) may be reduced by one-half of the Educational fee and one-half of nonresident tuition for nonresidents.

California Residency and the Nonresident Tuition Fee

Each new student entering UCSD is required to submit a Statement of Legal Residence to the Office of the Registrar. No tuition is charged to students classified as residents of California. Nonresidents, however, are required to pay a quarterly tuition fee.

A complete statement covering California residence requirements, determination of residence for tuition purposes, and/or recognized exceptions appears in the section "Residence Requirements" or on the Web site https:// hollerith.ucsd.edu/cgibin/studentlink.p1/5/ students/finances/residency/. Additional information may be obtained from the Campus Residence Deputy, Office of the Registrar, Building 301, University Center. No other university personnel are authorized to supply information relative to residence requirements for tuition purposes. Students seeking to establish California residency for tuition purposes are advised to review the requirements and deadlines. Adherence to the published deadlines is the responsibility of each student and is essential. Exceptions to waive or extend deadlines are not considered.

To the extent funds are available, subject to change, waiver of nonresident tuition may be granted to spouses and dependent, unmarried children under age twenty-one of university faculty members who are qualified for membership in the Academic Senate. Inquiries should be directed to the Office of the Registrar or the Academic Senate Office.

University Registration Fee

The university registration fee is a quarterly fee required of all registered students, and it must be paid at the time of the student's registration. This fee is for services which benefit the student and are complementary to, but not part of, the regular instructional programs of the uni-
versity. No part of this fee is refunded to students who do not make use of these services; however, students who petition and are approved for out-of-state study will receive a waiver for one-half of the registration fee. Exemption from this fee may be granted to surviving children of certain deceased California fire fighters or police officers. Students who believe they may qualify for an exemption on this basis must consult with the Student Financia؛ Services Office, Building 201, University Center, for a ruling.

Student Health Services and Insurance Plans

The Student Health Center provides primary care without charge during the academic year for all students who pay the university registration fee. These services are also available during summer for a modest fee.

The Graduate Student Health Insurance (GSHIP)

GSHIP is a mandatory year-round insurance plan for graduate and professional students unless a waiver has been granted (see WAIVERS). Students must be enrolled in GSHIP for the spring quarter in order to retain coverage through summer. Three quarterly payments will provide year-round coverage under GSHIP. The spring quarter premium extends insurance coverage through the summer quarter.

Premium payment for GSHIP is due with the payment of the registration fee. Premiums for students holding graduate academic appointment titles for a full academic term at 25 percent time or greater will be paid directly by the university. Premiums for most students holding fellowships and training grants are also paid directly. Loans to cover premiums may be available for students who receive need-based financial assistance. GSHIP is not available for dependents of graduate students.

For first-year students arriving on campus prior to the start of the academic calendar year, it is highly recommended that the student review current insurance status and purchase short term coverage if necessary. Insurance information may be obtained by calling the insurance counselor at (858) 534-2123.

REFUNDS

Once registration fees have been paid, a refund of the insurance premium due to Leave of

Absence or Withdrawal may be possible only up to the end of the second week of classes. Refunds for all other fees are subject to the Refund Fee Schedule published in the Schedule of Classes. That refund schedule is effective beginning on the first day of the quarter and counts all calendar days. Students cannot expect exceptions to this schedule, regardless of the circumstances of the leave of absence/withdrawal request.

LEAVE OF ABSENCE

A student is eligible to be enrolled in GSHIP when on approved Leave of Absence for a total of three academic quarters. A student on approved leave is responsible for his or her enrollments and premium payments and for the Student Health Service access fee which is payable each quarter including summer. Enrollment in GSHIP is through the Student Health Insurance Office at the Student Health Services (SHS).

WAIVERS

Students already insured under a policy containing benefits equal to or better than GSHIP may be eligible for GSHIP waivers up to one academic year. Documents required for a waiver are: 1) student's written request, 2) proof of present insurance and premium payment to the end of the quarter, 3) a copy of the summary of insurance benefits, and 4) a copy of the insurance identification cards. Submit written requests directly to UCSD, Student Health Insurance Office, 9500 Gilman Drive, Dept. 0039, La Jolla, CA, 92093-0039 no later than the last business day of the first week of the quarter. Final decisions regarding waiver requests will be mailed to the student by SHS.

Educational Fee

The educational fee was established as a required fee for all students beginning with the fall quarter 1970. It is used to cover a variety of educational costs as determined by the regents. The educational fee may be reduced by one-half for students enrolled in six units or fewer (see "Part-time Study").

Student Center Fee

Every student is required to pay a student center fee each quarter.

Recreation Facility Fee

Every student is required to pay a recreation facility fee each quarter.

Reduced Fee Enrollments

1. One-half of the established registration fee may be waived for graduate students whose research or study requires them to remain outside the state of California for five weeks or more of the quarter. Students must file a General Petition for this privilege. The reduction pertains to one-half of the registration fee only. A student must pay, in addition, all required fees including, but not limited to, the educational fee, student center fee, recreation facility fee, health insurance fee, and nonresident tuition fee, if applicable.
2. Graduate students approved for enrollment in a half-time program (not to exceed six units) are eligible for a reduction in fees of one-half the educational fee, and, if applicable, onehalf of the nonresident tuition fee.
3. A full-time employee who is not subject to nonresident tuition, who has worked full time for the university for at least six months prior to the latest date that registration will be accepted, and who meets the admission requirements of the university is eligible for two-thirds reduction of both the university registration fee and the university educational fee for up to nine units or three regular session university courses per quarter, whichever is greater. An employee so registered is ineligible for the services and facilities of the Counseling Center, recreation facilities, or the Student Health Services, other than those services to which the employee is regularly entitled (University of California Staff Personnel Policy 260.23). Authorization for this privilege is secured from the Staff Personnel Office for staff employees, or from the Academic Personnel Office for individuals on academic appointments.
NOTE: In accordance with Academic Senate regulations, no voting member of the San Diego Division of the Academic Senate shall be recommended for a higher degree from UCSD unless the dean of Graduate Studies shall have certified that all requirements for that degree have been met prior to the appointment to a rank carrying the voting privilege.

Filing Fee

A student registered in the immediately preceding quarter, or on an approved leave of absence who has completed all requirements except for the final reading of the dissertation or thesis or the taking of the final examination is eligible to petition to pay a filing fee in lieu of registering and paying all required fees in the final quarter. The filing fee applies to both residents and nonresidents. Students must apply for this privilege by means of a General Petition.

Refund of Fees

Students who withdraw from the university during the first five weeks of instruction (35 calendar days) may receive partial refunds of fees, excluding health insurance, if applicable. The date of withdrawal, as related to the fee refund schedule, shall be the date on which notice of withdrawal is submitted to the Office of Graduate Studies and Research (OGSR). See Schedule of Classes for schedule of refunds.

Parking Fee

Students who park motor vehicles, including motorcycles, on the campus are subject to parking fees. (See "Parking," in chapter entitled "Campus Services and Facilities.")

Penalty Fees

Penalty fees (see "Fees"), are charged for failure to comply with normal deadline dates. To avoid such fines, students should fulfill all requirements in advance of the deadlines listed in the Schedule of Classes.

Transcript Fees

Students may obtain transcripts of theirtuCSD records from the Office of the Registrar for $\$ 5$ for each copy. Transcripts must be requested several days in advance of date needed.

Late Fees

Students are responsible for meeting quarterly enrollment and registration (fees payment) deadlines which are published on StudentLink, in the Schedule of Classes, and a variety of stu-dent-directed Web sites and publications. A $\$ 50$ late fee will be assessed for late enrollment and/or late registration up to $\$ 100$ total. Late enrollment automatically causes late registration as payments cannot be credited to a student's
account until enrollment occurs. Late fee waivers are rarely granted and only in extenuating and verifiable circumstances. Only certain staff in the Office of Graduate Studies and Research (OGSR) are authorized to grant waivers.

Financial Assistance

Several kinds of financial assistance are available to graduate students at UCSD. These include fellowships and traineeships; assistantships in teaching, language instruction, and research; scholarships in full or partial payment of tuition and/or fees; and loans and grants-inaid. Further details about these awards/appointments may be obtained from departmental, group, or school offices.

Descriptions in this section deal entirely with awards administered directly by the university.

Applicants for financial assistance should note the following: "Pursuant to Section 7 of the Privacy Act of 1974, applicants for student financial aid or benefits are hereby notified that mandatory disclosure of their Social Security number is required by the University of California to verify the identity of each applicant. Social Security numbers are used in processing the data given in the financial aid application; in the awarding of funds; in the coordination of information with applications for federal, state, university, and private awards or benefits; and in the collection of funds and tracing of individuals who have borrowed funds from federal, state, university, or private loan programs."

Fellowships and Traineeships

Regents Fellowships, offered to students with excellent academic and research qualifications, provide a stipend of $\$ 10,000$ for nine or ten months, plus tax-free resident fees and nonresident tuition, if applicable. These awards may be supplemented with a partial graduate student researcher or research fellowship from available departmental resources. The amount of the supplement varies by department.

The San Diego Fellowship, a program designed to increase the quality of education and research by enhancing campus diversity, currently provides a minimum stipend of $\$ 1,000$ per month plus resident fees and nonresident tuition, if applicable. These awards are usually given for two years. Academic departments are responsible for two additional years of support
for Ph.D. students awarded San Diego Fellowships.

Seven additional Cota-Robles fellowships for the most outstanding incoming students from San Diego Fellowship nominees are available from monies provided by the Office of the President. These awards provide an annual stipend of $\$ 15,000$, resident fees and nonresident tuition, if applicable. The fellowship is given for a period of four years, and the student is eligible for additional funding in the dissertation year.

Minority Access to Science, Engineering and Math (MASEM): UCSD is a recipient of funding from the National Science Foundation (NSF). The MASEM Fellowship provides awards to a limited number of new graduate students in the programs in biology, bioengineering, biomedical sciences, chemistry and biochemistry, computer science and engineering, electrical and computer engineering, materials science, mathematics, mechanical and aerospace engineering, molecular pathology, neurosciences, physics, Scripps Insti-tution of Oceanography and structural engineering. Support includes a first year stipend of $\$ 15,000$ and payment of tuition (if required, due to residency status) and fees, and a commitment of departmental support for the next four years at the same level or higher. For further information click on the following Web site: http//ogsr.ucsd.edu/ outreach/masem.htm

All other fellowship stipends are established by the department, group, or school and may vary in tenure from one to twelve months and in amount from $\$ 100$ to $\$ 2,000$ per month.
Fellowships awarded for one, two, or three quarters will also provide tax-free resident fees and nonresident tuition, if applicable. Awardees must register for twelve units of upper-division and graduate-level work each quarter and must remain in good academic standing, as described under "Standards of Scholarship" of this catalog.

Fellows and trainees on twelve-month tenure are required to devote full time to graduate study and research during the summer as well as during the academic year. A brief resume of proposed summer graduate study or research, approved by the appropriate adviser, must be filed with the dean of Graduate Studies before the end of the spring quarter preceding the summer portion of the fellowship or traineeship tenure.

Some fellowships and traineeships offer the privilege of participation in the teaching or research programs of the university.

The principal types of fellowships/scholarships at UCSD are the following:

1. Regents Fellowships
2. San Diego and Cota-Robles Fellowships
3. Research Fellowships
4. U.S. Public Health Service Predoctoral Traineeships
5. Fee Scholarships
6. Tuition Scholarships
7. Tuition and Fee Scholarships

Assistantships

Graduate students may be appointed by UCSD on a part-time basis as graduate student researchers and teaching assistants.

Graduate students enrolled full-time (twelve units or more) may be appointed up to 50 percent time (twenty hours/week) during the academic year and 100 percent time during the summer months, although most departments limit support to 50 percent time year-round. Students enrolled for less than full-time (one to eleven units) are eligible, at the discretion of the department, for 25 percent time appointments. Appointees must remain in good academic standing, as described under "Standards of Scholarship."

Graduate students who are appointed as graduate student researchers are eligible for remission of tuition and fees if they have a minimum 25 percent appointment for the entire quarter for which tuition and fees are paid, or the dollar equivalent; have an appointment effective with the first week of instruction in the quarter for which tuition and fees are paid; and are within the time limits for support described earlier in this section.

Teaching assistants and others appointed on academic titles at 25 percent time or more for the quarter are eligible for payment of partial fee remission of 85 percent of the annual education and registration fees and 100 percent of the Graduate Student Health Insurance fee. This will increase to 100 percent of the educational and registration fees effective Fall 2002.

Graduate students appointed as teaching assistants, associates, readers or tutors (ASE'S) are represented by the Association of Student Employees/UAW under a collective bargaining
agreement with the university. All salary payments under these titles are subject to a deduction of 1.15 percent for union membership dues or a 0.92 percent agency fee deduction for students who choose not to become members of the union. The university/UAW Agreement can be retrieved electronically at http://ogsr.ucsd.edu/ase.htm

All graduate students who are U.S. citizens and appointed as teaching assistants or graduate student researchers or are employed by the university in other positions are required by the California Constitution to sign the State Oath of Allegiance. In addition, all graduate student appointees and employees are required by university policy to sign the university's Patent Agreement. Copies of both documents may be obtained from the student's academic department.

Taxability of Awards

Under the 1986 Tax Reform Act, the taxability of awards is as follows:

1. Fellowships and Scholarships for Ph.D. and Master's Students. Funds used for tuition, fees, books, and course-related expenses are not taxable income. Stipends used for other purposes are taxable income.
2. Graduate Student Researchers and Teaching Assistants. All compensation is taxable income.
3. Payment of tuition and fees under the Graduate Student Researcher Tuition and Fee Remission program and payment of partial fee remission and graduate student health insurance for those appointed 25 percent time or more as teaching assistants or other academic titles, is nontaxable income.
4. Grants for Travel to Scholarly Meetings and for Graduate Student Research Expenses. Not taxable.

Students are advised to review available tax materials and make their own decisions about tax withholding, reporting of income, excluding income from taxation, and filing required tax forms. UCSD departmental and central administrative staff are not able to advise students on individual tax matters.

Graduate student fellowships, scholarships and traineeships are not subject to withholding for taxes under the Federal Insurance Contribution ACT (FICA). The salary of graduate students appointed as Teaching Assistants and Graduate

Student Researchers, Readers, or Tutors, or who are employed on campus is exempt from FICA if the students are registered for a minimum of 6 units each quarter (including summer). Nonresident aliens on $\mathrm{F}-1$ and J-1 visas are, by federal law, exempt from FICA.

Limited written tax information is available from academic departmental offices and the Office of Graduate Studies and Research.

Application Procedures

Entering students. Obtain application materials from academic department, group, or school offices. Oniy one application form is needed to apply for graduate admission and for any of the following: fellowships, traineeships, scholarships, and assistantships (teaching, language, or research).

In order for an applicant to be considered for a fellowship, traineeship, or graduate scholarship for the ensuing academic year, an application for admission with financial aid and all supporting materials must be received by the deadline as listed in the Application for Graduate Admission. No assurance can be given that applications can be processed after stated deadlines. Applications for assistantships may be accepted after the deadline, but most departments offer assistantships at the same time they consider applications for fellowships. Therefore, applicants for these appointments are strongly urged to submit their applications as early as possible.

Continuing and returning students. Consult with their departments.

Award Notification

The awarding of fellowships and similar awards for the following academic year will be announced not later than April 1. UCSD subscribes to the agreement of the Council of Graduate Schools of the United States, under which successful applicants for awards are given until April 15 to accept or decline such awards. An award accepted from one of the member universities may be resigned at any time through April 15. However, an acceptance given or left in force after that date commits the student not to accept another appointment without first obtaining formal release for that purpose.

Loans and Grants-in-Aid

An excellent package of grants-in-aid, workstudy, and loans is available to graduate students
who show evidence of financial need as determined by analysis of a completed Free Application for Federal Student Aid (FAFSA).

See section on financial assistance in chapter entitled "Campus Services and Facilities."

Time Limits for Graduate Student Support

For Ph.D. and D.M.A. students, all financial support administered by UCSD (including fellowships, scholarships, and appointment but excluding loans) is restricted to students who are within their departmental support time limits (see "Ph.D. Time Limits" and description of each department's graduate program). Within these limits, students can be appointed as teaching assistants for a maximum of six years or eighteen quarters. Absolutely no exceptions beyond the sixth year or eighteenth quarter are permitted by university-wide policy.
M.F.A. and M.PI.A. students can be supported for a maximum of ten quarters. M.A. and M.S. students can be supported for a maximum of seven quarters.

Fellowships and Research Awards from Outside the University

In addition to fellowships, traineeships, and loans administered by the university, other types of graduate student support are available through federal agencies and private foundations. Students wishing to explore such sources of support for their studies at UCSD are urged to consult one of the many directories available in the reference section of Geisel Library, the fellowship listings provided via the Graduate Studies World Wide Web site (http://ogsr.ucsd.edu), other Web sites dedicated to graduate fellowships, through the reference departments of other large libraries or the fellowship adviser in the Office of Graduate Studies and Research, 518 Eleanor Roosevelt College. Most application deadlines occur in the fall or early winter. Among the many organizations which award fellowships to students at UCSD are the Alcohol, Drug Abuse and Mental Health Administration; Department of Defense; the Ford Foundation; the Hertz Foundation; the Howard Hughes Medical Institute; Institute of International Education; the National Aeronautics and Space Administration; the National Science Foundation; the Social Science Research Council; and, the Woodrow Wilson National Fellowship Foundation.

General Policies and Requirements

Integrity of Scholarship

See "UCSD Policy on Integrity of Scholarship" in the Academic Regulations section of this catalog.

Student Conduct

Graduate students enrolling in the university assume an obligation to conduct themselves in a manner compatible with the university's function as an educational institution. Rules concerning student conduct, student organizations, use of university facilities, and related matters are set forth in UC San Diego Campus Regulations Applying to Campus Activities, Organizations, and Students, copies of which are available at the Office of Graduate Studies and Research, and the Office of Judicial Affairs.

Student Appeals

Because department chairs-in consultation with faculty colleagues-have primary responsibility for maintaining the excellence of graduate programs, and because faculty within a department are in the best position to judge their students' academic performance, graduate student appeals of an academic nature should first be made to the individual faculty member involved and, if necessary, the department chair.

Graduate students who wish to appeal actions of individual faculty, departments, or administrators relating to their academic program or financial support may do so if:

1. They feel that due process was not followed in arriving at a decision.
2. They feel that personal prejudice affected the academic judgment rendered.

Students wishing to appeal a decision on these grounds should address such appeals to the dean of Graduate Studies. Students are encouraged to contact the assistant dean for Student Affairs for further assistance.

In resolving student appeals, the dean of Graduate Studies may seek a review and recommendation by the Graduate Council.

Graduate students may appeal a course grade or Ph.D. or master's qualifying or final exam only if they believe that nonacademic criteria were
used in determining their grade. Students who wish to appeal a course grade should follow the procedure described in "Grade Appeals" in the "Academic Regulations" section of this catalog.

Students holding a non-senate academic appointment such as teaching assistant or research assistant are subject to the Academic Personnel Manual, policy 140. A copy of this policy is available in the Office of Graduate Studies and Research or it may be viewed on the World Wide Web at http://www.ucop.edu/ acadadv/acadpers/amp/s1-140.html.

Exceptions

A student may request an exception to the normal procedures and requirements governing graduate studies by submitting a General Petition, available from the department. The petition must state clearly the reasons for requesting the exception and bear all required approvals before being submitted to the Office of Graduate Studies and Research.

Requests for exceptions to time limits require a letter of explanation and support from the student's research adviser, and support and justification from the program's graduate adviser and endorsement by the department or group chair. Such requests are submitted to the Graduate Council through the dean of Graduate Studies. Exceptions to the time limits policy are granted only in the case of truly exceptional and unavoidable circumstances.

Grades

Standards of Scholarship

Only upper-division, graduate, and professional courses in which grades of A, B, C (including plus $[+]$ or minus $[-\mathrm{y}$) $\mathrm{D}, \mathrm{brS}, \mathrm{P}$ (Satisfactory) are earned can be ounted in satisfaction of the requirements for a higher degree.

A student's grade-point average (GPA) is computed by dividing the total number of grade points earned by the total unit value of graded upper-division, graduate, and professional courses undertaken at UCSD with the exception of those undertaken in UCSD Extension. Grades of $S, U, I, I P, N R$, and W are excluded in computing a grade-point average. Lower-division course work units are not used in computing a graduate student's grade-point average nor in satisfying program requirements for a higher degree with
the exception of language courses taken by students in the M.P.I.A. program.

Each department or group prepares, not later than the second week of each spring quarter, a detailed, written evaluation of each of its Ph.D., D.M.A., or M.F.A. students. These evaluations are designed to inform students of their progress and to improve communications between faculty and graduate students. Evaluations are discussed with students who may elect to add written comments before signing the copy of the evaluation sent to the Office of Graduate Studies and Research. A student's signature on the evaluation indicates knowledge of the assessment but does not necessarily signify agreement.

To be in good standing academically a graduate student must meet departmental standards including a satisfactory spring evaluation, maintain a GPA of 3.0 or the equivalent in upper-division, graduate, and professional course work, and must not have accumulated more than a total of eight units of F and/or U grades overall, unless departmental standards specify more stringent grade requirements.

Good standing is a requirement for:

1. Holding academic and staff appointments.
2. Holding fellowship, scholarship, or traineeship appointments.
3. Participating in the Education Abroad Program (EAP)
4. Advancing to candidacy for a graduate degree.
5. Going on leave of absence.
6. Receiving a graduate degree from UCSD.

Graduate students who are not in good standing for any reason are subject to probation and/or disqualification from further graduate study.

Grading System

The grade of A+, when awarded, represents extraordinary achievement but does not receive grade-point credit beyond that received for the grade of A. The grades of A, B, and C may be modified by plus (+) or minus (-). When attached to the grades of B and C, plus $(+)$ grades carry three-tenths of a grade point more per unit, and when attached to A, B, and C, minus (-) grades carry three-tenths of a grade point less per unit. Grades and grade points are described as follows:

Grade	Grade Points per Unit	
A+		4.0
A	Excellent	4.0
A-		3.7
B+		3.3
B	Good	3.0
B-		2.7
C+		2.3
C	Fair	2.0
C-		1.7
D	Poor	1.0
F	Fail	0.0
- S	Satisfactory (equivalent	0.0
	to B- or better)	

Grade

U Unsatisfactory
I Incomplete-but work of non-failing quality*
$\mathbb{P} \quad$ In Progress (provisional grade; replaced when full sequence is completed)

W Withdrawal (assigned when withdrawing or dropping a course beginning fifth week to end of ninth week of instruction)

* Requires Request to Receive Grade Incomplete form to be initiated and completed by the student, approved by the instructor, and filed with the department prior to the end of finals week. The Incomplete grade will lapse to F or U if not made up by the last day of finals week in the following quarter.
All grades except incomplete and In Progress are final when entered in an instructor's course report filed at the end of the quarter.
- While grades of U are not computed in a grade-point average, they are not considered satisfactory grades for students on appointment, nor are they considered to be evidence of satisfactory progress on the part of any student. Therefore, a student whose record bears more than eight units of U and/or F grades in upperdivision, graduate, or professional course work may not be eligible to continue on appointment and may be subject to academic probation or disqualification.

Changes in Grades

All grades except I and IP are final when filed by the instructor unless a clerical or procedural error is discovered.

No change of a final grade may be made on the basis of revision or augmentation of a stu-
dent's work; no term grade except Incomplete may be revised by further examination; and no grade may be changed after one calendar year from the time the grade was recorded.

Repetition of Courses

A student assigned a grade of D, F, or U petition to repeat the course on the same grading basis for which it was first taken. That is, a course in which a grade of D or F has been received may not be repeated on an S / U basis. Conversely, a course in which a grade of U has been awarded may not be repeated on the basis of a letter grade. Degree credit for a course will be given only once, but the grade assigned for each enrollment shall be permanently recorded. Only the grade received in the repetition of the course will be used in calculating the overall grade-point average for the first sixteen units repeated. For additional units repeated, the grade assigned for each enrollment shall be used in calculating the grade-point average.

No Report/No Record

A blank entry appearing on student transcripts in lieu of a grade indicates that the student's name appeared on a grade report but no grade was assigned by the instructor. A blank entry will lapse automatically into an F or U if not removed or replaced by a final grade by the last day of instruction of the subsequent quarter, and will be computed in the student's GPA.

I (Incomplete)

The grade of I may be assigned by an instructor only when the student's work is of passing quality but is incomplete. The student must complete and submit to the instructor the form, Request to Receive Grade Incomplete and Removal of Grade Incomplete, which will contain both the reason for requesting the grade I and the conditions to be met before the Incomplete can be replaced with a final grade. The Incomplete must be made up, the grade assigned, and the completed form filed with the Office of the Registrar no later than the end of final examination week the following quarter.

Incomplete grades assigned in the quarter before a graduate student withdraws or takes an approved leave of absence must be replaced by a final grade before the end of the academic quarter following to prevent the Incomplete from lapsing to F or U.

IP (In Progress)

An IP is assigned in a sequential course which extends over more than one quarter, and the evaluation of a student's performance may not be possible until the end of the course. A student who has dropped out without completing the entire sequence may be assigned final grades and unit credit for any quarter(s) completed, provided that the instructor has a basis for assigning the grades and certifies that the sequence was not completed for good cause. An IP not replaced by a final grade will remain on the student's record. Courses graded IP are not used in calculating a student's grade-point average until graduation. At that time course units still graded IP on a student's record must be treated as units attempted in calculating the GPA; thus units graded IP will have the same effect on the overall GPA as an F or U.

S/U (Satisfactory/Unsatisfactory)

The minimum standard of performance for a grade of Satisfactory shall be the same as the minimum for a grade of B-.
With the approval of the Graduate Council, departments may offer graduate courses in which graduate students may elect to be evaluated on an S / U basis and courses in which S / U grading shall be the only grading option. Grading options for a given course are identified in course listings in the UCSD General Catalog.

In addition, and with the approval of the department and the instructor concerned, graduate students may elect to have the following courses graded on an S/U basis: any upper-division or lower-division course taken (provided they have obtained approval of the instructor and the department), and any graduate or upper-division course outside their major department. If departmental requirements have been fulfilled for advancement to candidacy for the Ph.D. or D.M.A. degree, graduate students may take any course on an S / U basis.

Selection of S / U as a grading option must be made in the first two weeks of a quarter. Units graded Satisfactory shall be counted in satisfaction of degree requirements but shall be disregarded in determining a student's grade-point average. No credit shall be allowed for work marked Unsatisfactory.

W (Withdrawal)

Students who discontinue graduate study any time during a quarter without formally withdrawing will receive failing grades for all course work undertaken. Formal withdrawal requires filing a Leave of Absence, Extension and/or Withdrawal form prior to leaving campus with the Office of Graduate Studies and Research after receiving departmental approval and all other approvals listed on the form. When a student withdraws before the end of the fourth week of instruction, no course entries will appear on the transcript for that quarter. Students who withdraw from the university or drop a course between the beginning of the fifth week of instruction and the end of the ninth week of instruction will be assigned a W (Withdrawn) by the registrar for each course affected.

Courses in which a W has been assigned will be disregarded in determining a student's grade-point average.

Final Grades

Students may access their full UCSD graduate academic record on StudentLink in the academic history module. The student must have his/her PID and PAC numbers to access StudentLink. If lost or misplaced, the PAC number may only be obtained from the Office of the Registrar (OAR) after providing proof of identification; the PID
may be obtained through the departmental graduate program coordinator or the OAR. Students may receive computer-generated telephone verification of their fall and winter grades (see Schedule of Classes for complete information). While grade reports submitted by instructors at the end of the quarter are generally considered final, students should carefully examine their grade report or transcript for omissions and clerical errors and consult with instructors and the Office of the Registrar to clarify any discrepancies.

Admission Requirements

Academic

Applicants for graduate admission must present official evidence of receipt of a baccalaureate degree from an accredited institution of higher education or the equivalent, with training comparable to that provided by the University of California. A minimum scholastic average of B or better is required for course work completed in upper-division, or prior graduate study.

Admission Policies

Duplication of Advanced Degrees

Normally, duplication of advanced degrees for the master's or doctorate is not permitted. A
duplicate degree is one at the same level, e.g., at the master's level, regardless of the discipline or the specialization awarding the degree. Under certain circumstances a second master's degree may be awarded in a substantially different discipline; an example which might be considered is a master's degree in sociology awarded to the holder of a master's degree in electrical engineering. Examples of duplicate degrees for which an exception is unlikely to be approved are master's degrees in electrical engineering and computer engineering. Exceptions to the policy can only be granted by the Graduate Council. A student admitted to a Ph.D. program with a master's degree in the same general field will not be awarded a second master's degree even though course work satisfying the master's degree requirement is completed at UCSD. A professional degree is not regarded as a duplication of an academic degree.

Non-Degree Study

There is no "student-at-large" classification at UCSD; application for admission must be made to a specific department or group. Applicants who wish to enroll for "course work only" within a department or group and who do not intend to pursue a higher degree at UCSD may request admission for non-degree study. Applicants for non-degree study must satisfy all admission requirements and are not eligible for fellowships or assistantships. Non-degree status is granted for up to one year; students may petition the dean of Graduate Studies for a second year of non-degree status.

Part-Time Study, Including Half-Time

Students who enroll in fewer than twelve graduate or upper-division units each quarter are considered part-time students. Students who are approved by their major department and by the dean of Graduate Studies for enrollment in a program of half-time study (maximum of six units or fewer) for reasons of occupation, family responsibilities or health, may be eligible for a reduction in fees. All other part-time students ($7-11$ units) pay the same fees as full-time students.

Part-time study may be pursued in several masters' programs and a few Ph.D. programs at UCSD. In all instances, part-time students must satisfy the same admission requirements as full-
time students and are eligible, at the discretion of a department, for appointment to 25 percent time teaching or research assistantships. Admitted students must file the petition for halftime study with the Office of Graduate Studies and Research no later than the last day of the second week of the quarter to be eligible for a fee reduction.

Application Procedures

When to Apply

Applicants for admission who wish to be considered for a fellowship, traineeship, graduate scholarship, or assistantship should refer to "Financial Assistance-Application Procedures." Most programs have an application deadline of January 18 for fall admissions. A few programs accept applications for winter and spring admissions. For specific deadlines refer to the Application for Graduate Admission or contact the specific program office.

Applicants need not have completed their undergraduate programs in order to apply. However, when an applicant's grades or preparation appear to be marginal, the department, group, school, or the Office of Graduate Studies and Research may defer action upon an application until a supplementary record or evidence of the receipt of a degree becomes available.

How to Apply

Applicants must complete an Application for Graduate Admission and submit it, together with a nonrefundable application fee of $\$ 40$, to the Office of Graduate Admissions. Applications submitted without the application fee will not be processed. An application and additional program and application information are obtained from the graduate office of the program to which the applicant is applying. To obtain the application, call, write the graduate office of the specific program to which you are applying or access the UCSD Web site and the appropriate program's graduate information. Telephone numbers and campus addresses are listed with the department information in this catalog, and the street address for all departments is 9500 Gilman Drive, La Jolla, California 92093. The Graduate Admission Application includes application for a fellowship, traineeship, scholarship, or assistantship. Detailed instruc-
tions as to how to complete the application appear within the application booklet and on the UCSD Web site, http://ogsr.ucsd.edu/ admissions.html. The documents which are required in support of an application for graduate admission are listed below.

On-Line Application

Several UCSD departments permit application using the on-line application. Applicants must be applying to one of the departments listed on the Web site as accepting the on-line application. Use of this application requires payment by credit card only and the payment of a transaction fee. No fee waivers are granted for applicants using the online application. The on-line application can be accessed at: http://ogsr.ucsd.edu/admissions.html

Social Security Number Disclosure

Pursuant to the Federal Privacy Act of 1974, applicants are hereby notified that disclosure of their Social Security number is mandatory. The Social Security number entered on the application for graduate admission may be used as the applicant's identification number for part of the UCSD graduate student record keeping system. A personal identification (PID) number will also be assigned by the UCSD student information system for record-keeping purposes. This recordkeeping system was established prior to January 1, 1975 pursuant to the authority of the Regents of the University of California under Art. IX, Sec. 9 of the California Constitution.

Required Supporting Documents

All supporting documents, including letters of recommendation, should be forwarded directly to the applicant's prospective major department.

ACADEMIC RECORDS

Applicants must request that official transcripts of all previous academic work, including certification of degrees received or documentation of status upon leaving each institution, be forwarded to their prospective major department. Transcript labels are enclosed in the application packet for this purpose. Only official records bearing the signature of the registrar and the seal of the issuing institution will be accepted. Applicants with academic work in progress who expect to complete a degree program before the intended date of enrollment at

UCSD must submit evidence of degree conferral and a final academic record, as soon as they are available. The undergraduate degree must be completed prior to the start of graduate study.

SPECIAL NOTE TO INTERNATIONAL APPLICANTS

In all applications for graduate admission, official records bearing the signature of the registrar or other responsible academic officer and the seal of the issuing institution are required. However, true copies, facsimiles, or photostatic copies of foreign academic records will be accepted if, after the copies have been made, they have been personally signed and stamped by an educational official of the issuing institution, who certifies that they are exact copies of the original document. Properly signed copies should be sent instead of irreplaceable original documents. Unless academic records are issued in English by the institution itself, certi-
fied English translations must accompany official documents written in a language other than English.

Foreign academic records should show all courses attended each year, examinations passed, seminars completed, and grades or marks received in all institutions where formal records are maintained. Official evidence of degree conferral must also be supplied, together with evidence of rank in class if possible.

GRADUATE RECORD EXAMINATIONS (GRE) SCORES

Most graduate programs require that applicants take the GRE. Contact the specific program for further information. Applicants who are applying for admission to a department, group, or school which requires that they take the GRE should do so as early as possible to insure the timely receipt of their score results. Applicants must take the GRE no later than fall in order to meet most departmental deadlines for admission. The GRE is administered two times a year in the United States and in 133 other countries. Applicants are urged to consider taking the computer-based GRE test instead of the paper and pencil test. Applicants may also schedule individual computer testing dates. Consult the GRE Information \& Registration Bulletin for further information. In addition, several administrative service tests are given each year in major U.S. cities (dates change). Applications may be
obtained from the Educational Testing Service, Box CN 6000, Princeton, New Jersey 08541-6000.

To facilitate the processing of applications for admission, applicants may forward to their proposed major department, group, or school a copy of their GRE examination score as soon as it is received, since official copies are not always received by the appropriate department at UCSD.

LETTERS OF RECOMMENDATION

Applicants should arrange to have three letters of recommendation forwarded directly to their prospective major department, group, or school. (Recommendation forms are included in the application booklet.) It is most important that letters of recommendation be completed by individuals in a position to analyze an applicant's abilities and academic or professional promise. Applicants who have applied within the last two years, and were admitted, but did not enroll, should check with their major department or group to determine if letters of recommendation are still on file.

INTERNATIONAL APPLICANT FINANCIAL STATEMENT

Foreign applicants are required to certify that they possess sufficient funds to cover all fees, transportation, and living expenses during the first academic year of graduate enrollment at UCSD. In addition, they must certify as to the probability of funds for subsequent years of study. An International Applicant Financial Statement, for the purpose of indicating the amount and source of funds available for graduate study, is forwarded to foreign applicants upon admission into a graduate program. A written summary of present and future financial resources must be provided before visa forms can be granted.

Opportunities for employment on or off campus, are extremely limited, and foreign applicants should not base their educational plans on the hope of finding employment after arriving in the United States.

Admissions Examination Information

There are a variety of internationally administered examinations which may be taken to meet requirements for admission to graduate study or to satisfy certain requirements for advanced
degrees. Several examinations of importance to UCSD applicants are listed here.

TEST OF ENGLISH AS A FOREIGN LANGUAGE (TOEFL)

All international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English must take the TOEFL and submit their test scores to the Office of Graduate Admissions.

Applicants who are admitted with a total TOEFL paper-based test score of less than 550 or a computer-based score of less than 213 may be required to take an English proficiency test upon arrival at UCSD and to enroll in an English course until the required proficiency is attained.

Application: Information and forms are available from TOEFL Services, P.O. Box 6151, Princeton, NJ 08541-6151, or from United States embassies, consulates, and related centers; and the San Diego State University Testing Office, Student Services Building, Room 2549, 5300 Campanile Drive, San Diego, California 921820577. Telephone: (858) 594-5216.

Applications must be submitted to TOEFL. Services at least six weeks prior to the scheduled examination date.

Examination Schedule: One day each month (dates change each year) in approximately 135 countries and at computer-based testing sites by appointment.

Fee: Consult the current TOEFL booklet for fees.

TEST OF SPOKEN ENGLISH (TSE)

Address: Educational Testing Service, Box 6157, Princeton, New Jersey 08541-6157.

Purpose: To help foreign students provide a reliable measure of proficiency in spoken English. This test is highly recommended for foreign applicants for teaching assistantships.

Application: Same as TOEFL above.
Examination Schedule: Given in approximately 135 countries. Consult the current testing booklet for current information.

Fee: Consult the current testing booklet for fees.
SPECIAL NOTE: Foreign applicants who wish to be considered for a teaching assistantship are urged to submit scores on the Test of Spoken English (TSE).

Admission and Registration

Official admission to graduate study at the university is contingent upon review of an applicant's record, receipt of final undergraduate transcript showing degree(s) awarded, an affirmative recommendation by the prospective department, group, or school, and action by the Office of Graduate Studies and Research. The dean of Graduate Studies or the prospective major department, group, or school may deny admission if an applicant's scholastic record is undistinguished, if the preparation is judged inadequate as a foundation for advanced work, or in the event that no further students can be accommodated for a given quarter. Only the official Certificate of Admission from the dean of Graduate Studies constitutes formal approval of admission to a graduate program at UCSD.

Official notification of admission by the dean of Graduate Studies will be mailed well in advance of the beginning of the quarter for which application has been made. Applicants should call their prospective major department, if formal notification is not received four weeks prior to the beginning of the quarter for which they applied.

Admission to graduate standing does not constitute registration for classes. A student is not officially registered for classes until the entire registration procedure is completed each quarter. Information and all necessary registration materials will be available at department offices approximately two weeks before the opening of the quarter (see "Academic Calendar").

Reapplication

Applicants who are admitted and fail to register in the quarter for which they first apply may request deferral of their application for a later quarter within the same academic year or the academic year immediately subsequent. Application for admission of a deferred applicant for the subsequent academic year may be made by submitting a statement of activities and official transcripts of any academic work undertaken since the first application to the department or group. Admission is not guaranteed to previously admitted applicants who request a deferral. In no case are application files retained for more than four consecutive academic quarters
from the date of first application. Application after this period may be made only by completing a new application and providing all necessary documents, including payment of the graduate application fee.

Students who are denied admission must submit a new application and fee together with required documentation in order to be considered for admission in another academic year.

Readmission

A graduate student whose status has lapsed because of an interruption in registration must petition his or her department for readmission at least eight weeks prior to the first day of the quarter in which reenrollment is intended. Do not complete an Application for Admission. Students must submit supplementary transcripts of all academic course work undertaken since last enrolled at UCSD, pay a readmission fee of $\$ 40$, and complete a General Petition and a supplementary Statement of Activities. In addition, a Statement of Legal Residence is required for all students returning after an absence of two quarters or more.

Readmission is not automatic.

Registration Requirements and Procedures

All students must enroll and pay fees on or before the deadline dates established by the Office of the Registrar for each quarter to avoid paying late fees. Enrollment materials are obtained at the major department. (See Schedule of Classes for current deadlines.)

Full-Time Student

A full-time student is required to be registered for twelve units each quarter of each academic year until the completion of all requirements for the degree, including the filing of the thesis or dissertation. 7

Part-Time Student

A part-time student is enrolled in fewer than twelve units a quarter but is admitted as a regular student. A part-time student must pay full fees unless approved by the dean of Graduate Studies to enroll in half-time status for six units or fewer. A student must file the petition for half-
time study with the Office of Graduate Studies and Research no later than the last day of the second week of the quarter to be eligible for reduced fees. (See "Admissions Policies-PartTime Study.")

Schedule of Classes

Detailed information on registration and enrollment procedures is contained in the quarterly Schedule of Classes, available for purchase at the University Bookstore before the beginning of the quarter. It is the responsibility of each graduate student to keep informed of and meet all enrollment and registration (fee payment) deadlines. Scheduling information may also be found on the Office of Admissions and Records home page on the World Wide Web: http://studentlink.ucsd.edu

Priority Enrollment

CONTINUING STUDENTS

Continuing graduate students may enroll any time during Priority Enrollment by telephone. A Personal Access Code (PAC) number is issued to graduate students by the Office of the Registrar. Students may also use StudentLink to enroll, add, change, and drop classes. Students who do not use teléphone or StudentLink registration may complete Add/Drop Cards and file them with the Office of the Registrar any time during enrollment periods.

Complete instructions for enrolling by telephone (T-REG) or Add/Drop Cards can be found in the quarterly Schedule of Classes and on StudentLink.

Confirmation of classes is immediate by telephone. Students must officially withdraw from a course to avoid receiving a failing grade.

NEW STUDENTS

New students enroll just prior to the start of instruction during enrollment periods. New students may enroll by telephone after receiving adviser approval, or may complete Add/Drop Cards and file them with the Office of the Registrar.

Registration Receipt

Upon payment of fees in person, the Cashier's Office will provide a cash register receipt and will affix a validation sticker to the back of the Student Photo-Identification Card. Students who
pay fees by mail may obtain the validation sticker from the Bursar's Office.

Student Photo-Identification Card

A validated Student Photo-Identification Card is the official ID for registered students and entitles the student to library privileges, a student health card, and use of other university facilities, as well as for purchasing tickets and/or admission to certain university events and voting in student body elections.

If the Student Photo-Identification Card is lost, students may obtain a duplicate at the Campus Card Services Office, 508 University Center; if the Registration Receipt is lost, a duplicate may be obtained from the Cashier's Office (see "Fees").

The validation sticker is removed from the Student Photo-Identification Card when students withdraw or go on leave of absence.

UCSD graduate students on campus continuing their graduate studies or research during the summer months may request a Summer Validation Sticker from their major department, group, or school office.

Registration Procedures

Students are considered enrolled when they have requested at least one course and space in it has been reserved. Every effort will be made to enroll students in their preferred class sections. Students are not considered registered until they have both enrolled in classes and paid registration fees.

Payment of Registration Fees

Please refer to the "Payment of Registration Fees" section in the "Undergraduate Registration" portion of this catalog or the quarterly Schedule of Classes which outlines procedures for payment of registration fees.
Note to Fellowship, Scholarship, or Traineeship Holders:

The first billing statement will be sent to the major department, group, or school about one month prior to the start of each quarter. Fees and tuition awarded to pay registration fees will be credited to the graduate student's account and appear on the statement as a payment or credit. Each award recipient should carefully check the amounts listed on the statement against the graduate award letter and contact the Office of Graduate Studies immediately at
(858) 534-6464 if there is a discrepancy. Graduate students with partial fee and/or tuition awards will be required to pay the balance by the fee deadline to complete their registration.

Fellowship, scholarship, or traineeship holders must enroll in and maintain full-time enrollment status (at least twelve units per quarter).

Note to Students on Academic Titles:

Students appointed 25 percent time or more as graduate student researchers on the tuition and fee remission program will have the amount of their required tuition/fees credited to their account prior to the beginning of the quarter. This payment will also appear on the student's university billing statement.

Students appointed 25 percent time or more as teaching assistants, associates, and readers or, tutors guaranteed by the hiring department to work at least 110 hours (25 percent) for the quarter will have partial fee remission (including remission of the health insurance fee) credited to their university account prior to the beginning of the quarter. Students who are readers and/or tutors who are not guaranteed 25 percent time at the beginning of the quarter, but subsequently work 110 hours or more, are issued refunds for partial fee remission at the end of the quarter.

Teaching assistants appointed 25 percent time or more are eligible to apply for the TA Fee Deferment program. Under this program, the balance of resident fees (but not tuition) is deducted from the second and third check each quarter.

During the fall quarter only, teaching assistants and graduate student researchers appointed 25 percent time or more may be eligible to apply for the TA/RA Loan program.

For additional information, contact your graduate department or the Office of Graduate Studies and Research.

Full-time graduate study and support requires enrollment in a minimum of twelve units each quarter.

Continuous Registration

All graduate students are required to be registered each quarter until all degree requirements have been completed, including filing of the thesis or dissertation and the final examination, or to be on an approved leave of absence.

A student who fails to register or to file an approved leave of absence form by the regis-
trar's deadline date (no later than the end of the second week each quarter) will be assumed to be withdrawn from UCSD and will be dropped from the official register of graduate students. In addition, all outstanding Incomplete grades, and NRs assigned by the registrar, will lapse to F's or U's unless cleared by the end of the current quarter. A student who is on leave of absence or who has withdrawn from the university is not entitled to withdraw books from the library or to use other university facilities or faculty time. A student who is withdrawn must petition for readmission to resume study at a later date, pay the nonrefundable readmission fee, and be considered for readmission with all others requesting admission to that quarter.

Ph.D. degree candidacy will lapse for graduate students who fail to register and are not granted a formal leave of absence. To be reinstated to candidacy, a graduate student must be readmitted, enroll and register, be readvanced to candidacy, and pay the candidacy fee.

Late Registration/Deadline and Penalty Fees

Students will be assessed late fees if not enrolled and registered by the registrar's published deadlines outlined in this catalog and the quarterly Schedule of Classes. Please refer to the "Graduate Admission Information and Enrollment Deadlines" portion of this catalog or to the quarterly Schedule of Classes for additional information.

A student who has not completed registration (enrolled and paid fees) by the deadline for change of program must petition for permission to register late and will pay late fees totalling $\$ \mathbf{1 0 0}$, regardless of the source of fees payment.

A student whose registration in classes is cancelled for non-payment of fees and seeks reinstatement will be assessed both the late enrollment ($\$ 50$) and late registration fees ($\$ 50$), currently totaling $\$ 100$, regardless of the source of fees payment.

Students are advised to consult the quarterly Schedule of Classes for current deadline dates.

Changes in Course Selection

Add/Drop Cards reflecting changes in class enrollment must be filed with the Office of the Registrar in order for the student to receive
credit for added courses and be relieved of responsibility for dropped courses.
Add/Drop Cards must be completed in full and include correct course information and course codes as listed in the current Schedule of Classes.

After enrolling in courses, a graduate student may add courses, change sections of a given course, or change grading options up to the end of the second week of instruction without fee by completing an Add/Drop Card available at the Office of the Registrar. Students may also use 'Studen tina. Students in some programs must obtain approval of their graduate adviser or department. See Schedule of Classes, "Changes of Programs." Any requests to the dean of Graduate Studies for exception to this policy require written explanation and instructor verification of attendance/course work completion to date.

A graduate student may drop a class up to the end of the ninth week of classes by filing an Add/Drop Card with the registrar, after first notifrying the instructor, and obtaining the approval of the graduate adviser or department and the dean of Graduate Studies. If the course is dropped before the end of the fourth week of classes, no course entry will appear on the student's transcript. Courses dropped after the end of the fourth week of instruction and before the end of the ninth week of instruction will remain on the transcript as permanent entries showing course number and title, and the registrar will assign a final grade of W, signifying Withdrawal.

Students may not drop courses after the end of the ninth week of instruction and will receive the earned grade or an Incomplete, if applicable. When a grade in a course has been assigned in accordance with the Academic Senate policy on Integrity of Scholarship, a student may not subsequently change that grade by dropping the course or withdrawing from the university.

Enrollment Limits

A full-time graduate student in a regular quarter is expected to enroll in twelve units of upper-division or graduate course work with the exception that in the Graduate School of International Relations and Pacific Studies the normal course load is sixteen units. A student who wishes to take units in excess of these limits must obtain the approval of the graduate adviser or department chair.

Graduate students holding half-time appointments as graduate student researchers, teaching assistants, language assistants, readers, or other employment titles, or who receive support from traineeships, fellowships, or scholarships paid through the university or directly to the student, must enroll and register for twelve units of upper-division and/or graduate course work and research each quarter.

Teaching units (500 series) above the full-time program of twelve units are not considered an overload.

Graduate students approved for half-time study are limited to a maximum of six units of upper-division or graduate course work each quarter.

Changes of Name or Address

Students must file official change of name or address forms with the Office of the Registrar. Students are advised to also notify their major department, group, or school. CCJSR?

Leave of Absence/Extension

A student who discontinues graduate study with the intention of resuming during a later quarter, with department approval, files a formal Leave of Absence, Extension and/or Withdrawal form prior to leaving the campus. Graduate students must have completed at least one quarter of academic residence and be in good standing (GPA 3.0 minimum or equivalent and no more than eight units of U or F) to be granted a leave. All graduate students are limited to a maximum of three quarters of leave and/or withdrawal.

Prior to the end of the second week of instruction of the quarter in which the leave is to begin, a student must complete a Leave of Absence form and obtain required signatures as listed under the clearance section of the form, and the approvals of the graduate adviser, chair of the (major) department, group, or school, and dean of Graduate Studies. If a student has registered, paid fees and enrolled for the quarter in which a leave is being requested, the validation sticker will be removed from the PhotoIdentification Card; fee refund will be subject to the refund schedule published in the quarterly Schedule of Classes (see section on "Withdrawal")f graduate student who enrolled in classes before requesting a Leave of Absence must also request a withdrawal from course work for the quarter of leave to avoid
paying fees for that quarter Graduate students may request an extension of an approved leave prior to the expiration of the leave, up to the maximum of three quarters in all degree program e For an extension of an approved leave, the student must complete a new leave of absence form and obtain the signatures of the graduate adviser, chair of (major) department, housing, and dean of graduate studies.

A student who has a long-term loan is considered to be out of school while on a leave of absence and must set up an exit interview with the Loan Records Office before leaving the campus. Since rules and regulations pertraining to such loans are complex, it is to the student's advantage to determine loan requirements prior to seeking a leave of absence.

A student on leave of absence may not (1) be employed by UCSD, UCSD Medical Center or UC Extension, or hold a fellowship, traineeship, or similar appointment administered by the university, (2) use university facilities, (3) complate a qualifying examination for advancement to candidacy, or (4) place demands on faculty, including discussion of thesis or dissertation work, either directly or by correspondence, during the period of leave.

A student may remain in student housing while on an approved leave of absence providing he or she has been a full-time student (twelve units or more) for three consecutive quarters immediately prior to the leave of absence and is eligible for university housing.

Students must return all borrowed library material if requesting a leave of absence or withdrawing.

Any student on an approved Leave of Absence must contact their major department to be reinstated and cleared for enrollment and registration.

A new Statement of Legal Residence is required for all graduate students returning from a leave of absence of two quarters or more.

Withdrawal

A student withdrawing from the university must obtain a Leave of Absence, Extension and/or Withdrawal form and secure appropriate signatures. The approved form must be filed with the Office of Graduate Studies and Research and the validation sticker removed from the Photo-Identification Card.

Graduate Studies

Students who withdraw during the first thirtyfive days of instruction will receive refunds of fees in proportion to the number of elapsed calendar days since the first day of instruction. The date of withdrawal used in calculating the refund shall be the date on which the approved notice of withdrawal is submitted to the Office of Graduate Studies and Research.

A registered student who stops attending classes and fails to file a Leave of Absence, Extension, and/or Withdrawal form will receive a grade of F or U in each course, thus jeopardizing eligibility for readmission.

Return of Title IV Federal Student Aid

Financial aid recipients may be required to return some or all of their aid at the time of withdrawal. This requirement applies only to undergraduate students who withdraw prior to completing 60 percent of the quarter. Questions about financial aid repayment should be directed to Student Financial Services Office.

Bar from Registration/Nonacademic

After suitable warning, a student may be barred from further registration for a variety of nonacademic reasons, including failure to comply with official notices, to settle financial obligations when due, to provide final undergraduate transcripts, or other related matters.

Bar from Registration/Academic

Academic disqualification is determined by the dean of Graduate Studies in consultation with the student's department, and normally relates to: unsatisfactory academic performance, e.g., failure to maintain a grade-point average of 3.0 or better; failure to meet departmental criteria of performance; failure to advance to candidacy or complete the degree within established time limits; accumulation of more than eight units of F or \cup grades; or failure to comply with conditions set at the time of admission to a graduate degree program.

Campus Services and Facilities

Academic Services and Programs

Academic Advising

The college academic advising offices and the academic departments are the designated campus units responsible for providing official academic advice and direction to undergraduate students. The college academic advising offices and departments have primary responsibility for academic advice and services that assist new and continuing students to develop educational plans and course schedules which are compatible with their interests, academic preparation, and educational and career goals.

COLLEGE ADVISING OFFICES

Revelle College, Office of the Provost, Revelle College, Mail Code 0321, (858) 534-3490
John Muir College, 2126 H\&SS, Mail Code 0106, (858) 534-3580

Thurgood Marshall College, Admin. Building, Mail Code 0509, (858) 534-4110

Earl Warren College, Literature Building, Second Floor, Mail Code 0422, (858) 534-4350
Eleanor Roosevelt College, 412 University Center, Mail Code 0069, (858) 534-9864

Specifically, the college academic advisers conduct academic orientation/enrollment programs for all new students and advise new and continuing students about college generaleducation and graduation requirements. The advising staff of each college provides general academic and curricular information, clarifies academic rules and regulations, reviews all aspects of academic probation, monitors academic progress, assists students with decisionmaking strategies, and provides information about major prerequisites as well as criteria for departments that screen students. In conjunction with the academic departments and the Office of the Registrar, the advising offices certify graduation and generally facilitate students' academic adjustment to the university.

Moreover, academic advisers are available to counsel students about educational alternatives,
selection of courses and majors, program changes, new academic opportunities, and special programs such as exchange programs, honors programs, outreach programs, etc.

See your college academic adviser for assistance with academic concerns or referral to appropriate academic support units.

Academic Computing Services

User Support Office
2113 Applied Physics and Mathematics,
Muir College
(858) 534-4060

Administration and Director's Office
1141-1161 AP\&M
(858) 534-4050
http://www-acs.ucsd.edu/
Academic Computing Services (ACS) plays a variety of roles relating to computing at UCSD. Among these are support of instructional computing, management of the main academic computer network, hardware repair, and administration of site agreements for the licensing and distribution of software.

Student Computing

The main function of ACS is to provide facilities for instructional computing. In addition to timesharing systems ACS maintains over 1500 workstations of various types available across campus. These include Windows NT, Macintosh, and UNIX workstations located in public areas, computer labs, and libraries.

A wide variety of software is available on various platforms, including general purpose wordprocessing and spread sheet applications; compilers and program development tools; special purpose packages for electronic design, mechanical engineering, animation, statistics, genetic studies, and symbolic mathematics.

Beyond instructional computing, ACS provides facilities to students for popular activities such as electronic mail and other network-based communications. Incoming students receive personal account information at Orientation.

ACS has student assistants who are available at scheduled times in computer labs to help students use the facilities. These assistants comple-
ment other forms of support such as guidance from instructors and teaching assistants, and online documentation.

The Open Computing Environment (OCE) is a service model available to students in most academic disciplines. OCE provides both instructional and extracurricular computing services to students through a single "personalized" account. The goal is to make computing more convenient and flexible, and to allow students to pursue academic computing interests on their own initiative.

Network Management

The Office of Network Operations is a branch of ACS. Network Operations plays a major role in the management of campus computer networks (including ResNet), remote access to the campus network (including dial-in modems and ISDN), and connections to global networks. To facilitate electronic mail communications within and beyond the boundaries of the campus, Network Operations maintains a popmail server, the campus email gateway, and a registry of campus members and affiliates.

To use campus dial-in lines, UCSD users must sign up and pay for dial-in service. Users will also need a network security username and password. Incoming students have these issued automatically; others may register by bringing a picture ID to the Office of Network Operations in room 2113 AP\&M. Signups for dial-in service may be made at this location or via the Web at http://www-no.ucsd.edu.

Network Operations can assist you in connecting your computer to make use of Internet services using electronic mail and mailing lists. Information about many of these services can be found on the World Wide Web at http://wwwno.ucsd.edu.

Network Operations Access Services is located in 2113 AP\&M. The Network Operations technical help line is (858) 534-1857 or userserv@ucsd.edu. Dial-in billing questions may be directed to (858) 822-2900.

ResNet, the computer network that serves students in their residence halls and on-campus apartments, is also supported through Network Operations. Students can obtain more information about ResNet at http://resnet.ucsd.edu and
can obtain support at this Web site or by calling (858) 822-2800.

Software Licensing and Distribution

ACS manages agreements with several soft ware vendors under which UCSD departments are able to license and obtain software at a discount. For information, see http://swdist.ucsd.edu/.

Desktop Support

The ACS Desktop Support Program provides assistance on a fee-for-service basis to UCSD departments, as well as to residence hall customers. Services include installation, configuration, and repair of Wintel and Macintosh workstations; Windows NT and Novell Netware server support. For information, see http://desktop.ucsd.edu/.

Instructional WWW Development Center

ACS' Instructional WWW Development Center (IWDC) provides instructional Web site creation and development assistance and training for faculty. The IWDC offers more extensive services on a recharge basis, including departmental and UCSD-affiliated group Web hosting and fee-forservice Web-related programming. For more information, see http://iwdc.ucsd.edu and the campus course Web site directory at http://courses.ucsd.edu.

Technical Services

(858) 534-4057
http://techserv.ucsd.edu/
Techinical Services provides computer and printer maintenance and repair for over 1300 workstations and printers in various labs across campus including network installation and support. ACS Technical Sercies Computer Repair also provdes the UCSD community with expert hardware repair and upgrade support. We have professional certified full-time staff with extensive combined repair service experience. We repair and upgrade most computer and printer products and are available for network installation and repair. Our goald is to provide UCSD faculty, staff, and students with an efficient and cost effective solution for all their computing neeeds.

Other ACS Functions

ACS operates one UNIX system which is available on a fee-for-service (recharge) basis. This system is primarily used by UCSD academic departments for electronic mail and administra-

tive purposes. ACS also has a service to distribute campus administrative data to academic departments.

Academic Enrichment
 Programs/Student Educational Advancement/Student Affairs

University Center 411
Mail code 0074
(858) 534-1774

Dedicated to providing UCSD undergraduates with research and other academic enrichment experiences beyond the classroom.

PROGRAM DESCRIPTIONS:

Faculty Mentor Program

The Faculty Mentor Program offers valuable research experience to juniors and seniors. Participants work as research assistants to UCSD faculty members for at least ten hours per week during the winter and spring quarters. Students receive four units of 199 independent study credit for each quarter, attend seminars on how to write and present a research paper, and receive graduate school and fellowship information. At the conclusion of the program, students
present their research papers at the Faculty Mentor Program Research Symposium.

Health Professions Program

The Health Professions Program assists students in their undergraduate preparation for careers in the health professions. These include medicine, dentistry, pharmacy, veterinary, public health, nursing, and others. The program provides students with activities and resources including pre-professional seminars, review course scholarships, a volunteer placement information service, peer discussion series, and mentorship opportunities. Participants have access to a library of information on summer and postbaccalaureate programs, upcoming conferences, health professional schools, etc. The program also serves as a clearinghouse for information about other campus resources available to the pre-health professional student.

Summer Research Program

The Summer Research Program offers fulltime research experience to students who are interested in preparing for careers in research or university teaching. As research assistants, students work on their faculty mentor's project for at least thirty hours per week. Students are trained in research skills, how to write and present a research proposal or paper, and how to prepare for the Graduate Record Examination (GRE). At the conclusion of the program, students present their papers at the annual UCSD Summer Research Conference.

McNair Program

The McNair Program is a U.S. Department of Education initiative designed to serve lowincome, first-generation college students and underrepresented minorities who are interested in pursuing a Ph.D. It is a one-year rigorous program of scholarly activities that includes participation in the Faculty Mentor Program and the Summer Research Program. In addition, participants receive training in how to write and present a scholarly paper, preparation for the GRE, and assistance with the graduate school application process. All participants have the opportunity to present a paper at a minimum of two research conferences.

CAMP Science Program

The CAMP Science Program is funded by the California Louis Stokes Alliance for Minority

Participation in the Sciences, Mathematics, and Engineering (CAMP) grant from the National Science Foundation. This program is designed to provide support to underrepresented minority students who are seeking bachelor's degrees in chemistry, physics, or other sciences. Participants in the program attend informational and skillbuilding workshops, tour local companies and research institutes, attend local or national conferences, receive tutoring, and earn book scholarships. In addition, students are encouraged to participate in academic year or summer research, and pursue graduate school preparation.

Undergraduate Research Conference

The UCSD Undergraduate Research Conference is an annual event where more than 100 students who have written outstanding research papers are invited to present their research. Invitation is by faculty nomination. Students present their papers at small roundtable discussions led by a faculty presider.

Education Abroad Program (EAP)
 International Center (corner of Gilman Drive and Library Walk)
 Mail code 0018
 (858) 534-1123
 http://www.ucsd.edu/icenter

The Education Abroad Program provides students enrolled at the University of California an opportunity for an intercultural experience at UC centers located in Australia/New Zealand, Africa, Asia, Europe, Latin America, and North America, while allowing normal progress toward a degree.

The program is described in detail in the "Courses, Curricula, and Programs of Instruction" section of this catalog under the "Education Abroad" heading.

International Scholar Adviser

International Center (corner of Gilman Drive and Library Walk)
Mail code 0018
(858) 534-3730
http://www.ucsd.edu/icenter
The international scholar adviser provides assistance to UCSD's international faculty, researchers, and post-doctoral fellows, in the areas of immigration and visa matters, financial, health, and personal issues. The adviser also informs campus departments about regulations
and documentation pertaining to international visitors. The Friends of the International Center provide additional hospitality services and programs to international scholars and their family members.

International Student Adviser

International Center (corner of Gilman Drive and Library Walk)
Mail code 0018
(858) 534-3730
http://www.ucsd.edu/icenter
The international student adviser provides assistance to UCSD's nonimmigrant undergraduate and graduate international students, including advising on immigration, financial, health, and personal matters. The international student adviser also coordinates campus programs such as orientation and check-in for new students, and provides support to international student organizations.

OASIS (Office of Academic Support and Instructional Services)

3rd Floor, Center Hall
Mail code 0045
(858) 534-3760

The Office of Academic Support and Instructional Services (OASIS) provides a variety of services to maximize student performance and retention at the University of California, San Diego.

MISSION

The mission of OASIS is to assist UCSD students in reaching their full potential by developing an appreciation for learning. OASIS strives to facilitate learning by concentrating on learners, and supporting their academic, intellectual, and personal growth at UCSD. Services are designed to assist students to develop the academic skills to excel in their subject matter at UCSD and eventually in graduate or professional school.

SERVICES

A description of services offered each quarter is available at the OASIS office on the third floor of Center Hall. All students in any of the five colleges are eligible for OASIS services. Under-represented students are strongly encouraged to use OASIS services in order to maximize their valuable contribution to UCSD.

The Academic Transition Program

The Academic Transition Program coordinates a residential Summer Bridge Program and professional and academic transition counseling for freshmen at UCSD. A variety of academic support and personal development activities are offered to facilitate a smooth transition from high school to UCSD's fast-paced quarter system.

The Math and Science Tutorial Program

The Math and Science Tutorial Program is designed to support students in their desire to excel in mathematics and science courses. The program offers workshops for mathematics, physics, biology, chemistry, engineering, and economics courses.

The Writing Program

The Writing Program offers students an opportunity to improve their writing skills and strategies for a range of different writing situa-tions--the essay exam, the lab report, term and research papers-and across disciplines, from science to literature. One-to-one writing conferences are available by appointment for UCSD students. These conferences stress pre-writing preparation, revision, and editing strategies.

The Language Program

Students whose first language is not English are assisted in the Language Program. In addition, students doing academic work in Spanish, French, and other foreign languages can participate in Language Program tutorial sessions conducted by bilingual staff. Language Program services include group or individual intensive reading and writing sessions, workshops on grammar and mechanics, and individual conferences where feedback on drafts of writing in the languages is provided.

The Student Support Services Program

The Student Support Services Program is a comprehensive U.S. Department of Education initiative designed to support the academic efforts of participating students. The program seeks to maximize the achievement and development of eligible students, particularly those who have been traditionally underrepresented due to race or ethnicity, gender, disability, and/or economic status. Student Support Services also strives to enhance each program participant's eligibility for entrance to graduate and profes-
sional schools and to foster an institutional climate which will support the success of program participants. The program consists of intensive individual tutoring, professional counseling, peer mentoring, and various cultural enrichment activities.

Study Management Program

The Study Management program equips students with strategies and techniques for more efficient and enjoyable learning. Study strategies are provided for freshmen, transfer, and continuing UCSD students with a focus on undergraduates. Study Management Program staff assist students in developing and/or refining skills in areas including time management, active listening, note taking techniques, forming/conducting study groups, concentration/memory development, active reading techniques, test preparation, and exam strategies. Services are provided through workshops and individual conferences with peer tutors or professional staff.

The Research and Evaluation Program

Administered jointly by the Office of the Assistant Vice Chancellor for Student Educational Advancement and OASIS, the Research and Evaluation Program maintains data about students using OASIS services and conducts research projects which examine a particular problem or issue related to OASIS services. In addition, longitudinal studies of the effect of services on student users are undertaken, such as follow-up studies on the retention of Summer Bridge students. Evaluation activities that are essential to the provision of effective services to students are also the responsibility of this program.

TEP 116-The Psychology of Teaching

OASIS offers a four-unit, upper-division course that provides instruction to all OASIS student staff members on the teaching-learning process. The course is designed to balance lectures and readings with supervised, practical experience.

Office of International Education

International Center
(corner of Gilman Drive and Library Walk) Mail code 0018
(858) 534-3730
http://www.ucsd.edu/icenter

The International Center houses the offices of the international student and scholar advisers and advisers for the Education Abroad Program and the Opportunities Abroad Program, as well as the Programs Abroad Resource Library. In addition, the center has American English tutors available to international students, scholars and spouses, and houses the office of all the community volunteers who provide a wealth of hospitality programs to international students, scholars, and spouses, including language tutors and host families.

The staff and community volunteers as well as the International Club also sponsor a variety of international/intercultural programs and services for all members of the UCSD community. These include lectures, language exchanges, linkages with international faculty specialists, and weekly international cafe lunches which are open to the entire campus.

Opportunities Abroad Program (OAP)

International Center (corner of Gilman Drive and Library Walk)
Mail code 0018
(858) 534-1123
http://www.ucsd.edu/icenter
The Opportunities Abroad Program (housed in the Programs Abroad Office, along with the Education Abroad Program) facilitates participation in programs abroad sponsored by institutions other than the University of California. OAP offers a resource library and advisory services enabling UCSD students to choose study, work, internship, and educational travel abroad programs best suited to their individual needs. Programs are available for students in all majors, for periods ranging from a quarter to a full academic year. Students participating in approved academic programs abroad transfer credit back to UCSD. They receive assistance with this as well as application, financial aid, predeparture, and re-entry issues through the OAP. Special study abroad scholarships are also available. Students participating in non-academic programs generally do not earn credit but in some instances may arrange to do so, for example, through the Academic Internship Program.

San Diego Supercomputer Center (SDSC) and the National Partnership for Advanced Computational Infrastructure (NPACI)

Mail code 0505
(858) 534-5000 (general inquiries)
(858) 534-5100 or consult@npaci.edu
(user inquiries)
http://www.sdsc.edu
http://www.npaci.edu
The San Diego Supercomputer Center (SDSC) is an organized research unit of UCSD focusing on computational science and engineering. Its mission is to provide world leadership in advancing knowledge through the development and application of advanced computing technologies. With a staff of 280 comprised of scientists, software developers, and operations, and user support staff, the center has served more than 10,000 researchers from 300 academic, government, and industrial institutions since its inception in 1985. Researchers around the country are using SDSC resources, including the eighth most powerful computer in the world, to study problems in various scientific applications areas and investigate new paradigms of computing.

More specifically, SDSC

- Leads the National Partnership for Advanced Computational Infrastructure (NPACI)-see next section.
- Is working with the National Computational Science Alliance (NPACl's sister partnership) to develop and implement a national computational and data "grid"
- Conducts and fosters scientific research (see entry under "Research at UCSD")
- Broadens the impact of computational science and engineering through education, outreach, and training activities
- Integrates computational technology into commercial research, design, and manufacturing processes through partnerships with industry

National Partnership for Advanced Computational Infrastructure

SDSC was founded in 1985 with a grant from the NSF Supercomputer Centers program. In October 1997, SDSC began a five-year, $\$ 170$ mil-
lion grant from NSF to serve as the foundation for the National Partnership for Advanced Computational Infrastructure (NPACI) and formally became part of UCSD.

NPACl's mission is to create and deploy lead-ing-edge computational infrastructure to support research by the national scientific community. To realize this mission, NPACI focuses effort in three key areas:

- Capability computing: Providing compute and information resources of exceptional capability to enable scientific discovery at scales not previously achievable
- Discovery environments: Developing and deploying integrated, easy-to-use computational environments to foster scientific discovery in traditional and emerging disciplines
- Computational literacy: Extending the excitement, benefits, and opportunities of computational science to a diverse population
These key areas are identified, respectively, with the three components that make up NPACI:
- Resources
- Eight Technologies and Applications thrust areas
- Education, Outreach, and Training (EOT) thrust area

Funds from this grant help keep SDSC's computational resources at the state of the art and support a variety of software development projects led by staff and faculty members.

NPACI has deployed an IBM supercomputer capable of 1.7 trillion calculations per second (1.7 teraflops). Called Blue Horizon, this system is the largest computer available to academic researchers in the U.S. It helps researchers tackle demanding problems such as determining chemical reaction rates, designing new materials, simulating the human nervous system, modeling water and pollutant transport, modeling climate and predicting storms, and understanding the origins of the universe. NPACl also supports several novel architectures, such as the Cray MTA and Sun Enterprise 10000, to evaluate other routes to high performance. NPACI is extending this infrastructure by developing "data-intensive computing" capabilities to enable management, curation, analysis, and visualization of extremely large amounts of data.

To build this infrastructure, NPACI teams the nation's experts in computational and computer science at forty-eight partner institutions, including seven international affiliates. Software development projects are organized into technology and applications thrust areas. Current technology thrusts are Metasystems, Programming Tools and Environments, Data-Intensive Computing, and Interaction Environments. Applications thrusts are Molecular Science, Neuroscience, Earth Systems Science, and Engineering. Each project teams applications and technology developers, and involves representatives from multiple partner sites. This infrastructure is being developed further through partnerships with computer vendors and companies with high-performance computing applications.

NPACl is also emphasizing software development in seven "alpha" projects:

- Bioinformatics infrastructure for large-scale analyses
- Protein folding in a distributed computing environment
- Telescience for advanced tomography applications
- Multi-component models for energy and the environment
- Scalable visualization tool kit for bays to brains
- Adaptive comptations for fluids in biological systems
- Monte Carlo cellular microphysiology on the grid
http://www.npaci.edu

COMPUTATIONAL RESOURCES

SDSC computational resources include

- Blue Horizon-A 1,152-processor IBM SP with 576 GB of memory and a 5-TB disk file system with a peak performance of more than 1.7 teraflops
- Cray T90-A 14-processor vector system with 4 GB of memory and 900 GB of disk with a peak performance of 24 Gflops
- Cray T3E-A 272-processor parallel system with 128 MB of memory per node and 100 GB of disk with a peak performance of 154 Gflops
- Cray MTA-With the first-ever system installed, SDSC is collaborating with Cray Computer Company to evaluate its MultiThreaded Architecture (MTA) system

Campus Services and Facilities

- Sun Enterprise 10000-A 64-processor system with 64 GB memory and 140 GB of disk with a peak performance of 51 Gflops
- HPSS-An IBM-based archival storage system accessible from all SDSC production systems with 2 TB of disk cache and 360 TB of available tape storage. With more than 200 TB stored in 15 million files, SDSC operates the world's largest HPSS installation
- A visualization laboratory featuring advanced display systems, facilities for producing solid 3-D models of geometric data sets, and a suite for producing professional-quality videotapes of visualized research results.
http://vis.sdsc.edu
Additional systems being allocated through NPACI include
- Cray T3E and Cray SV1 at the University of Texas
- IBM SP at the University of Michigan
- HP V2500 at Caltech
http://www.npaci.edu/Resources/

ALLOCATIONS

UCSD faculty and students are eligible for allocations of time on SDSC's supercomputers and other NPACI resources. Undergraduate and graduate students may obtain time through applications submitted by their advisers. Such allocations should support research projects and class curricula. All proposed projects must be nonproprietary. To apply for time, you must submit an application at least sixty days prior to the quarter in which you want your allocation to begin (quarters begin January 1, April 1, July 1, and October 1 ; allocations are typically made for 12-month periods). Applications for relatively small amounts of time can be submitted any time and are reviewed shortly after receipt. www.npaci.edu/Allocations
Accounts are also available on workstations in SDSC's VisLab to any academic researcher, or graduate or undergraduate student. To apply, fill out the SDSC Workstation Access Request form, which is available from Rachel Chrisman, chrisman@sdsc.edu, (858) 534-5025. Each form is reviewed to ensure that the goals of the applicant are consistent with the mission of SDSC. This review process takes 2-4 weeks.

USER SUPPORT

Researchers with access to SDSC's resources are supported by SDSC's consulting staff and other staff at the University of Texas and the University of Michigan. SDSC consultants are available through the Web (http://www. npaci.edu/Consult) 5:00 a.m.-5:00 p.m. (Pacific time) Monday-Friday. Researchers and students with accounts are welcome to attend SDSC's periodic training workshops, which typically are free (http://www.npaci.edu/Training).

Additional Opportunities for the Campus Community

SDSC offers the following additional opportunities for UCSD faculty, staff, and students:

- Access to high-performance computers through UCSD classes-Many UCSD classes make use of the SDSC resources, providing a hands-on way to learn about high-performance computing. Check particularly class listings for biology, chemistry and biochemistry, computer science and engineering, mechanical and aerospace engineering, the Scripps Institution of Oceanography, and UCSD Extension.
- Annual NPACI All Hands Meeting (AHM)--The AHM is NPACl's annual opportunity to discuss
progress, establish new collaborations, and plan future projects. This event typically takes place in late February. For more information, please see http://www.npaci.edu/ahm2001
- Seminars-SDSC hosts a wide variety of seminars on topics of interest to the high-performance computing and computational science community. Most are open to the UCSD community, http://www.sdsc.edu/CSSS
- Publications--SDSC publishes a quarterly science magazine, EnVision; a biweekly electronic newsletter, Online; and other documents, including SDSC Science Advances and the NPACI Partnership Report. All are free to the campus community. For subscriptions, please contact Gretchen Rauen, gretchen@sdsc.edu, (858) 534-5111.
- Internships-Through the academic internship program at UCSD, students can obtain work experience at SDSC for course credit. SDSC has internships in systems software development, computational science research, visualization and applications programming, scientific and technical writing, and curriculum development. SDSC is also participating in the NPACI Coop Program, which enables students to alternate full-time paid employment at selected NPACl compute

sites with full-time study at UCSD over several quarters. For more information, contact Ann Redelfs, redelfs@sdsc.edu, (858) 534-5032.
- Part-time and full-time employment-SDSC posts part-time and full-time professional job openings at the UCSD Career Services Center. Typical jobs are in research programming support, scientific writing, computer operations, and reception work
- Tours-SDSC offers a 45 -minute tour at 4:00 p.m. every Friday. Reservations are recommended and can be made by contacting the SDSC receptionist, reception@sdsc.edu, (858) 534-5000. Special-interest group tours can be arranged by contacting Cheryl Brown, (858) 822-3692, clbrown@sdsc.edu.

Additional information about SDSC can be obtained from the SDSC and NPACI Web servers (http://www.sdsc.edu/ and http://www. npaci.edu) or by contacting David Hart, dhart@sdsc.edu, (858) 534-8314.

Extended Studies and Public

Programs

9600 North Torrey Pines Road
(on the UCSD campus north of Muir College)
Mail code 0176
(858) 534-3400
email: unex-reg@ucsd.edu
Fax: (858) 534-8527
Internet: http://www.extension.ucsd.edu
UCSD Extension, the Division of Extended Studies and Public Programs is the key lifelong learning resource for the University of California, San Diego. The organization provides a rich and varied array of academic and community outreach programs designed to support a diverse constituency. The division has classrooms and administrative centers on the main campus in La Jolla and in Sorrento Mesa, Rancho Bernardo and Oceanside at Mira Costa College. The division provides advanced learning opportunities for adults, including courses, seminars, workshops, institutes, conferences, and study tours. Annual enrollment is approximately 45,000 in the various programs administered through UCSD Extension. Over 75 percent of UCSD Extension participants have a bachelor's degree.

With the exception of specific grant-funded programs, the division's programs are supported by course fees and receive no state funds.

For further information on Extension, the Division of Extended Studies and Public

Programs, phone (858) 534-3400; for a free quarterly catalog phone (858) 534-0406. Among the many programs in the division are:

CONTINUING PROFESSIONAL EDUCATION

Courses and certificate programs are offered in a wide range of fields, including engineering, accounting, business management, financial management, hazardous materials management, legal assistant training, marketing, computer programming, human resource management, urban planning, desktop publishing, e-commerce and e-business, quality management, fundraising, strategic management, exercise science and fitness instruction, cross-border health care, clinical trials design, management and administration, and legal nurse consulting. State-approved credential programs for educators, quarterly engineering colloquia, a career-planning program, and specializations in business, science, engineering, and information technologies are also offered.

FOR UCSD UNDERGRADUATES

The UCSD Undergraduate Certificate in Business consists of seven courses that may be taken any time before graduation. The program combines four regular degree credit campus courses and three Extension non-degree courses. Courses may be taken in any order unless prerequisites are noted. Courses may also be taken individually without a commitment to pursue the certificate. Courses are offered at no cost to full-time UCSD juniors and seniors (students are required to pay for books and for a small certification fee). Please contact the Department of Business and Professional Development at Extension; phone (858) 822-2931 or e-mail unexbusi@ucsd.edu for an application, description of each course and other important information.

EXECUTIVE PROGRAMS

UCSD Extension offers a variety of programs to meet the needs of San Diego companies for astute, broadly educated managers equipped to deal with the dramatic financial, technological, and cultural changes in today's workplace.

Three such programs include the "Executive Program for Scientists and Engineers" (EPSE), the LAMP Institute which includes the "Leadership and Management Program for Scientists and Engineers" (LAMP), and the "Healthcare Executive Leadership Program" (HELP). All are
accelerated, proficiency-based courses of study tailored to the scientist, engineer, or healthcare administrator who holds, or is about to be promoted to, a significant management position. Participants are nominated to apply for the programs by their companies or organizations. In addition, UCSD Extension sponsors major institutes and conferences featuring international experts.

ADVANCED TRAINING FOR EDUCATORS

State-approved credential programs for teachers offered by UCSD Extension include Adult Education, Vocational Education and the Resource Specialist, as well as state-approved certificate programs in Teaching Reading, CrossCultural Language and Academic Development (CLAD), and Education of the Gifted and Talented (GATE). Certificate programs and supplementary authorizations are offered for Teaching English as a Second Language (TESL), Educational Technologies, and Physical Education. Additional certificates are Community College Instructor, Preschool/Day Care Early Childhood Education, Educational Therapy, Developmentally Appro-priate Practices, and Library Media Services. A wide range of seminars and workshops in innovative teaching techniques and educational administration are also available.
In addition, summer institutes for teachers allow the university to contribute to the education of our community's young people by enhancing the intellectual perspective of teachers and administrators. For example, the Program for Teacher Enhancement in Liberal Arts (PTELA) and the Program for Teacher Enhancement in Science and Technology (PTEST), bring selected teachers to the campus and various sites in the San Diego area for seminars and courses taught by prominent UCSD faculty. PTELA's Principals Executive Program is a partnership between business and industry and San Diego County K-12 schools to share proven management techniques with school administrators.

CONNECT: WHERE ENTREPRENEURS COME FOR RESULTS

UCSD CONNECT is widely regarded as the nation's most successful regional program linking high-technology entrepreneurs with the resources they need for success: technology, money, markets, management, partners, and support services. Focused on assisting growth companies in the San Diego region, CONNECT
has been directly involved with over 500 companies during its 15 -year history. Part of the University of California, San Diego, CONNECT has a dual role in accelerating growth: it assists growth companies in the San Diego region and promotes the commercialization of technology from university-based research. CONNECT's programs also help business service providers, attorneys, accountants, bankers, investors, and marketing professionals with the knowledge about emerging technologies and access to new business opportunities. CONNECT is entirely selfsupporting and receives no funding from the university or the State of California. It is supported by membership dues, course fees, and corporate underwriting for specific programs. For further information, call (858) 534-6114; email connectinfo@ucsd.edu, or access CONNECT on the World Wide Web at www.connect.org.

SAN DIEGO DIALOGUE

San Diego Dialogue seeks to address regional policy issues by bringing together the very different competencies of academics and civic leaders from both San Diego and Baja California. The Dialogue sponsors applied research and public education programs that examine the challenges and opportunities for regional development, including:

- Planning a common, sustainable urban future with Tijuana;
- Enhancing the role that both San Diego and Baja California can play in the growing global economy;
- Ensuring educational achievement for all students in our elementary and secondary schools;
- Creating an effective structure for regional governance.
San Diego Dialogue organizes public forums to share its research findings, create community networks and build consensus around issues. In addition to these events, the Dialogue convenes workshops, roundtables and small community discussions that focus on specific issues related to the development of the region. An affiliate program, Friends of the Dialogue, gives the public an opportunity not only to support the Dialogue's work but to receive priority release of research findings and advance notice and reduced rates for all public events. For more information, please call San Diego Dialogue at
(858) 534-8638, send an email to sddialogue@ucsd.edu, or visit the Web site at http://www.sddialogue.org.

SCIENCE, ENGINEERING, AND ENVIRONMENTAL STUDIES

Few extension programs have the depth and variety of technical curricula as those offered by UCSD Extension. As an integral part of a worldrenowned research university, which also claims one of America's top ten schools of engineering, the UCSD Extension Department of Engineering, Science, and Environmental Studies is well positioned to provide the highest quality of continuing professional education for today's engineering and scientific technical professionals.

UCSD certificates are awarded to those who successfully complete the highly focused studies offered through Extension, providing valuable documentation of an individual's commitment to professional growth. Among the more than 20 certificate programs offered are CDMA Engineering, Embedded Computer Engineering, Drug Discovery and Development, Medicinal Chemistry, Agricultural Biotechnology, Systems Engineering, International Environmental Management, and Occupational Health and Safety. Several UCSD Extension engineering and science courses are now available in a totally online environment, including the complete CDMA Engineering certificate, making these careerenhancing courses of study available to students anytime, anywhere in the world.

Another facet of the department's curriculum is the OSHA Training Institute at UCSD, providing standards-based occupational safety and health courses approved by the U.S. Department of Labor for practitioners in the private sector and in federal agencies. The Institute also offers Title 8 -based safety and health courses throughout California to assist companies, utilities, and others to comply with Cal-OSHA standards.

For Engineering and Science information, call (858) 451-7691 or visit http://sees.ucsd.edu. For information on OSHA training call (800) 358-9206 or on the Web at http://osha.ucsd.edu.

INFORMATION TECHNOLOGIES

The Information Technologies department offers a broad array of courses and curricula to aid professionals in upgrading their skills, and to provide a pathway to career change for those entering the rapidly expanding fields of information and communications technology.

With a clear mission to lead the region in developing new programs to keep pace with rapid advances in technology, Information Technologies offers a variety of certificate programs in the broad areas of communications and networking, software analysis and design, computer languages and programming, databases, Internet and Web technologies, graphics and digital design, e-commerce, multimedia, Microsoft system engineering, and Unix/Linux system administration. Please call the department at (858) 622-5740 for additional information or visit http://extension.ucsd.edu/T.

LIBERAL ARTS AND INTERNATIONAL PROGRAMS

The Department of Liberal Arts and International Programs offers the opportunity to explore your world and meet new people who share your interests. We offer a variety of courses every quarter to capture your imagination and inspire you to learn something new. Courses and workshops are offered in art, music, literature, writing, political science, and theater, to name just a few. In addition, we can meet your language learning needs with courses in more than ten different languages, a professional translation and interpretation certificate program, and travel study language immersion programs for those seeking to "live the language."

In addition to our wide selection of evening and weekend courses, we offer an intensive English Language Program. The English Language Program has an outstanding worldwide reputation for providing various types of English language instruction to thousands of international students every year. Based on a philosophy of classroom excellence, and supported by a staff of highly qualified academic professionals, the ELP program offers ten-week, four-week, and executive English programs. Evening courses for foreign professionals are also available in accent reduction, technical writing, and oral presentation. For more information on any of our programs, call (858) 534-8042.

HEALTHCARE MANAGEMENT AND DELIVERY

The delivery of health care is no longer just a professional practice, it is big business with integrated networks comprised of hospital systems, physician groups, and insurance companies. The business and provision of health care is a critical issue from an economic and clinical perspective. UCSD Extension, through its Healthcare Conti-

nuing Education Division, offers courses and programs in healthcare management and health care delivery.

The UCSD Department of Family and Preventive Medicine in the School of Medicine offers a Master of Advanced Studies (MAS) in the Leadership of Healthcare Organizations. The degree is designed to meet the needs of healthcare professionals who have clinical and executive or management responsibilities. All courses will be held in the late afternoon, evenings and weekends for the convenience of working professionals. Extension's Healthcare Continuing Education Division provides administrative support for the program. Further information on the degree program may be obtained by contacting UCSD.

Both professional and specialized certificate programs in Clinical Trials, Legal Nurse Consulting, Case Management and coming Spring 2001 a new and improved Professional Certificate in Fitness Instruction and Exercise Science are just a few of the programs offered through the Healthcare Continuing Education Division.

Through special programs, seminars and certificate programs, you'll discover that Extension's Healthcare Continuing Education Division can provide you with a better understanding of your industry, help advance your career and serve your community. For more information about any of these programs and others that are offered, call (858) 964-1010.

CONCURRENT REGISTRATION

Concurrent registration is a procedure that allows individuals who are not officially matriculated UCSD students to participate for credit in regular UCSD courses. Enrollment is on a spaceavailable basis with the approval of the course instructors. Individuals must register through UCSD Extension. Information on this program can be obtained through the UCSD Extension Registration Office, (858) 534-3400.

COMPLIMENTARY ENROLLMENTS

Through a reciprocal arrangement with the university, UCSD Extension offers a limited number of complimentary enroliments to full-time UCSD seniors, juniors, and sophomores, who may enroll in one free course of up to $\$ 270$ (students must pay anything over the amount) on a first-come, first-served basis. Graduate students please contact OGSR. Medical students contact your department.

PROGRAMS FOR RETIRED PERSONS

The Institute for Continued Learning (ICL) is an organization for retired persons conceived, developed, and directed by retirees themselves. ICL has an active learning and social program created by members, including seminars, study groups, classes, forums, trips, and luncheons. Approximately 350 members participate in ICL activities. Information and a brochure are available by calling (858) 534-3409.

UCSD TV

UCSD-TV is the University of California's only broadcast television station. The unique programming format of UCSD-TV links key civic, scientific, and artistic resources of the University of California, San Diego campus and the region with the community. This independently operated; non-commercial station was launched in 1993 and has continually expanded its partnerships with community and campus organizations to create high quality, original productions that reflect the San Diego region. UCSD-TV programs focus on important health and medical issues, cutting-edge scientific research, and timely public events with a wide variety of forums, lectures, creative performances, and documentaries.

In addition to spotlighting activities and research from the UCSD campus, UCSD-TV collaborates with community organizations to deliver the finest performing arts, public affairs, health and scientific issues from the region. UCSD-TV partners include the San Diego Opera which is co-producing two series, OperaTalk! with Nick Reveles and San Diego Opera Spotlight; The Old Globe Theatre presents Backstage at the Globe, a behind-the-scenes look at Old Globe productions; The San Diego Natural History Museum and Fleet Science Center, whose guest speakers are featured in monthly presentations; City Club of San Diego, which features nationally prominent guest speakers; and The San Diego Union-Tribune's Editorial Roundtable, featuring interviews with state, national, and global leaders. UCSD-TV can be accessed on most cable systems in San Diego County, including:

Cox Communications San Diego, Channel 76 (M-F 4 PM to midnight)
Cox Communications North County, Channel 58 (M-F 4 PM to midnight)
Time Warner, channel 18 (7 days a week, 4 PM to midnight)
Del Mar TV, channel 3 (hours of coverage vary) UHF (no Cable), channel 35 (24 hours a day)
Programs from UCSD-TV and other University of California campuses are now broadcasting live and on demand at UCTVonline.org. UCTV offers quality in-depth television utilizing the vast intellectual, scientific and creative talents of the ten University of California campuses. For further information, please call UCSD-TV at (858) 534-3535 or visit them at www.ucsd.edu/ucsdtv.

The UCSD Libraries

http://www.ucsd.edu/libraries
The UCSD Libraries consist of the Social Sciences and Humanities Library, the Science and Engineering Library, the Biomedical Library and Medical Center Library, the Scripps Institu-tion of Oceanography Library, the International Relations and Pacific Studies Library, the Center for Library \& Instructional Computing Services (CLICS), the Art and Architecture Library, the Film and Video Library, the Music Library, and The Mandeville Library of Special Collections.

COMBINED UCSD LIBRARIES STATISTICS, 2000
Volumes
. 2,654,094
Periodical and other serial publications received
Paper ..995
Electronic ...
Government documents196,221
Maps ..29,517
Microforms ...2455,943
Audio and video materials93,449
Slides and other pictorial items305,579
Computer files ..14,231
The library is a center for study, reading, and scholarship at UCSD. Its collections and services are basic resources supporting undergraduate and graduate instructional programs, as well as advanced research. The library units are organized and staffed to meet these academic objectives. While each library may have varying rules, all are open to all members of the UCSD community.

Reference services are available at each of the campus libraries and are designed to assist students and faculty with their course needs and research activities. Through its Instructional Services and Outreach Program, the library offers campus users a variety of orientation and instructional opportunities. The Contemporary Issues 50 course (Information and Academic Libraries) of Muir College is one example. Group tours of the libraries can be arranged through the reference librarians.

The Interlibrary Loan Service locates and borrows materials not held at UCSD. This service is available to all faculty, staff, and students of the university. Our students enjoy direct borrowing privileges at the other UC campuses.

InfoPath is a World Wide Web-based campuswide information system developed by UCSD Libraries to provide access to campus and community electronic resources as well as a gateway
to the resources of the Internet. Services and resources currently offered through InfoPath include extensive library resources such as ROGER (UCSD Libraries catalog); MELVYL®/ California Digital Library (the University of California systemwide catalog, indexes, and fulltext databases), and links to research resources on the internet. A wide variety of other information about the campus is available through InfoPath, and new resources are added continually. The InfoPath URL is http://www.ucsd.edu.

Library hours of service vary and are regularly posted in the libraries and on InfoPath. Most units extend hours during examination periods.

Note: Call (858) 534-3336 for an up-to-date schedule of open hours for all libraries (recorded message).

SOCIAL SCIENCES AND HUMANITIES LIBRARY

(located north of the Price Center in Geisel Library)
Mail code 0175R
(858) 534-3336

The SS\&H Library houses the research collections in the social sciences and humanities ($1,526,152$ vols.). Its reference collection contains an outstanding collection of bibliographies, indexes, encyclopedias, biographical directories, and other information resources in print and electronic form. The Government Information Collection is a depository for the official publications of California and the United States, and also contains a major topographical and political map collection. Course reserve materials used by faculty in their classes are provided at the circulation desk.

SCIENCE AND ENGINEERING LIBRARY

East Wing, Geisel Library
Mail code 0175E
(858) 534-3258

The Science and Engineering Library contains strong collections in the physical sciences and technology (254,549 vols.). Of particular importance are its research materials in chemistry, computer science, electronics, engineering, mathematics, physics, space sciences, nuclear energy, and materials science.

BIOMEDICAL LIBRARY AND MEDICAL CENTER LIBRARY

Basic Science Building, School of Medicine Mail code 0699
(858) 534-3255

The Biomedical Library contains collections in biology and medicine which are especially rich in the journal literature of the basic sciences and clinical medicine, with emphasis on cellular and molecular biology, neurosciences, and genetics (221,467 vols.). A branch library, the Medical Center Library (24,671 vols.), supports the activities of health care providers at the UCSD Medical Center in the Hillcrest area of San Diego. Mail code 8828, (619) 543-6520.

INTERNATIONAL RELATIONS AND PACIFIC STUDIES LIBRARY

Robinson Complex, Bldg. 3
Mail code 0514
(858) 534-7785

The IR/PS Library features materials on contemporary political, economic, and business affairs in East Asia, Latin America, and the rest of the Pacific Basin region (91,452 vols.).

SCRIPPS INSTITUTION OF OCEANOGRAPHY LIBRARY

Eckart Bldg.
Mail code 0219
(858) 534-3274

Scripps Institution of Oceanography Library is one of the largest marine science libraries in the world (226,598 vols.). It has outstanding collections in marine biology, oceanography, and marine technology, and also specializes in geology, geophysics, and zoology.

CLICS (Center for Library \& Instructional Computing Services)

Galbraith Hall
Mail Code 0318
(858) 822-5427

Opened in fall 2000 , CLICS offers more than 200 computer workstations, group study rooms, a popular reading collection, a reference collection, current magazines and a popular computing collection, and a program of library instruction and outreach.

ART AND ARCHITECTURE LIBRARY

West Wing, Geisel Library
Mail code 0175F
(858) 534-4811

The Art and Architecture Library's collections support the study of the visual arts and architecture (65,222 vols.; 278,169 slides). Collection

strengths include art history, performance and environmental art, photography, painting, sculpture, and architectural design, theory, and history, urban design, landscape architecture, and building technology. The Slide Collection provides visual materials for on-campus instructional purposes.

MUSIC LIBRARY

West Wing, Geisel Library
Mail code 0175Q
(858) 534-2759

Located on the first floor of Geisel Library, the Music Library contains a strong collection of books and periodicals emphasizing music of the twentieth century and music theory, as well as music scores centered around twentieth century and chamber music performance materials (28,813 vols.; 38,996 scores). The Listening Room has sixty stations for listening and viewing of course reserve and related materials; it contains a large and diverse collection of music and spoken word Lp recordings, CDs, audio tapes, and CD-ROMs. The Film and Video Library collection includes over 8,603 videos, laser dises, and films. Films and videos on course reserve are available at the Film and Video Reserves service point.

THE MANDEVILLE LIBRARY OF SPECIAL COLLECTIONS

West Wing, Geisel Library Mail code 01755
(858) 534-2533

The Special Collections (156,365 vols.) include rare books, manuscripts, and other research materials. Other resources include materials about Baja California, Pacific Voyages, the Spanish Civil War, science and public policy, and modern poetry.

Student Services and Programs

Vice Chancellor, Student Affairs

Building 112 University Center
Mail code 0015
(858) 534-4370
http://vcsa.ucsd.edu
The Office of the Vice Chancellor of Student Affairs is responsible for the overall quality of life at UCSD for undergraduate and graduate students. The office provides coordination and direction to more than two dozen student service departments and works closely with other components of the campus to ensure that programs, services, policies, and procedures foster
the development of students and the achievement of their academic and career goals.

Career Services Center

Located on Library Walk
Mail code 0330
(858) 534-3750
http://career.ucsd.edu
The Career Services Center (CSC) helps students with virtually any career-related concern and offers a comprehensive set of programs and services throughout the year.

Career Development: From self-assessment testing and individual advising to occupational reference materials and online information, CSC provides resources to help students explore career options, gain practical experience, and determine career goals.

Internships: Getting career-related, work experience before graduation is an important step that enables students to make solid career choices and enhance their potential in the eyes of employers or graduate and professional school admission officers. CSC offers internship advising, workshops, and the Internship SuperSite at http://career.ucsd.edu-a one-stop shop for internship resources, information, and opportunities.

Job Opportunities: CSC lists thousands of part-time and full-time job listings year round, including on-campus and off-campus work-study and non-work-study jobs. To access the listings, you must: 1) be a currently enrolled student at UCSD; or a newly enrolled student who has returned the UCSD Statement of Intent to Register; and 2) complete the online registration required via CSC's Web site at http://career.ucsd.edu. New registration is required each year, beginning July 1.

Graduate School Opportunities: Students considering an advanced degree should visit CSC for advising and information on schools, applications, reference letters, tests, essays, fellowships, and interviews. Annual fairs feature recruiters from professional and graduate schools.
Workshops, Presentations and Fairs: CSC offers a wide variety of information sessions, interview workshops, career panels, fairs, networking opportunities, and company presentations featuring career professionals and graduate school representatives.

Alumni Services: In addition to the programs and services listed above, alumni can meet with
our alumni career advisor and attend special workshops. Alumni registration fee required.
For more information, call (858) 534-3750 or go to http://career.ucsd.edu.

College Deans' Offices

Revelle, Mail code 0321, (858) 534-3492
http://revelle.ucsd.edu
Muir, Mail code 0106, (858) 534-3587
http://muir.ucsd.edu
Marshall, Mail code 0509, (858) 534-4390
http://marshall.ucsd.edu
Warren, Mail code 0422, (858) 534-4731
http://warren.ucsd.edu
Roosevelt, Mail code 0069, (858) 534-2237
http://roosevelt.ucsd.edu
The staffs of the college deans' offices perform many different functions. They provide help, advice, counseling, and referral for students and parents in many areas including commuter and residential matters as well as special concerns for transfer students. The deans' offices regularly develop and coordinate activities such as orientation, Welcome Week, commencement, leadership opportunities, decisions about remaining in or withdrawing from school, college disciplinary matters, involvement in student governments, planning social and educational activities, handling housing concerns, assisting with specialized concerns for physically limited students, and assisting in hearing procedures regarding grievances

Contact your college dean's office for assistance, particulariy if you do not know which university office or resource would best be able to assist you with your problem or concern.

Dining Services

Administration: Muir Commons Annex
Mail code 0122
(858) 534-4014

A variety of high quality food appealing to all types of diners is served in UCSD Dining Services facilities. Dining Services restaurants are located at Revelle, Muir, Warren, and Thurgood Marshall Colleges, as well as at the School of Medicine, and Scripps Institution of Oceanography. Many are located near residence halls.

Each restaurant has its own unique atmosphere and menu, with hours depending of operation appropriate for the location and time of
year. Students and members of the community are welcome to dine at any facility.

A meal plan is mandatory for residence hall students and optional for apartment residents. Please refer to the "Housing" section for meal plan options and prices.
TritonPlus Account, the campus debit account, is also available from Dining Services. Accepted at over forty locations, TritonPlus Account offers an easy, convenient, and secure way to shop and dine on campus. For information, call (858) 534-7587.
Students use their official UCSD Photo ID card to access their meal plan and TritonPlus Account.

Other food service facilities include six fast-
food restaurants and a convenience store located at the Price Center; the Food Co-op and Grove Caffe at the Student Center; and Ch \geq Cafe on Revelle campus. In addition, a limited selection of food may be purchased at portable food carts, convenience stores, and vending machines throughout UCSD.

Disabilities, Office for Students with (OSD)

202 University Center
(858) 534-4382 (Voice/TDD)
(858) 534-4650 (Fax)
http://orpheus-l.ucsd.edu/osd/
The Office for Students with Disabilities (OSD) mission is to facilitate students independence, academic, and social success, and strong selfadvocacy through access to campus programs, services, and facilities. OSD promotes effective planning, adaptation, and enhanced awareness of students' individual abilities. OSD serves as a liaison to UCSD academic departments, the campus community, and off-campus disabilityrelated agencies. Coordination may include disability management counseling, note takers, sign language interpreters, real-time captionists, readers, typists, library/laboratory assistants, special equipment loans/minor repair, priority registration/enrollment assistance, on-campus housing coordination, exam accommodations, on-campus transportation/parking coordination, and referrals. College learning skills seminars (including memory strategies, note-taking, test taking, time management, and study skills) are offered on an individual and small group basis in collaboration with OASIS. In addition, OSD provides disability awareness through maintenance of a resource library of books, periodicals, arti-
cles, films, and video formats, and provides oncampus disability awareness workshops.

Students who have been diagnosed as having a disability should consult promptly with a qualified specialist at the Office of Students with Disabilities (OSD), as only students registered with OSD will receive accommodation in classes. In order to implement an OSD-approved accommodation for examinations or assignments, students must meet with the course instructor within the first two weeks of instruction and present a certificate from OSD recommending the appropriate accommodations.

If the student's disability has been certified by OSD, the course instructor should accommodate the student's needs. Faculty are not responsible for determining what accommodations are appropriate for a particular student. If an instructor is presented with a claim of a disability by a student who has not been certified by OSD, the course instructor should refer the student to OSD and not become personally involved in diagnosing or evaluating the seriousness of the disability. OSD is available to assist instructors in providing accommodation. If for any reason an instructor cannot meet the request, the department chair and OSD should be promptly consulted.

The full text of the Policy on Students with Disabilities and Steps for Academic Accommodation has been posted to the Academic Senate Web site (as an Appendix to the San Diego Division Regulations), at the following address: http://www-senate.ucsd.edu/apxtoc.html.

Financial Aid

All financial assistance for undergraduate and medical students and need-based aid for graduate students is administered by the Financial Aid Office (FAO). Information relating to graduate student support in the form of fellowships and assistantships is presented in the catalog section entitled "Graduate Studies."

The Financial Aid Office, which also includes the Undergraduate Scholarship Office and the Office of Veterans' Affairs, is located in University Center 201 and can be contacted at the phone numbers below.

Financial Aid Office	(858) 534-4480
Scholarship Office	(858) 534-3263
Veterans Affairs	(858) $534-4480$
Medical School \quad Financial Aid (858) $534-4664$	

Other information about our services and programs is available on our Web site:

http://www.ucsd.edu/finaid.

Applications and requests for information should be addressed to the Financial Aid Office, 0013, 9500 Gilman Drive, La Jolla, California 92093-0013.

No student should leave the university for financial reasons before exploring all possible avenues of assistance with a Financial Aid Office counselor. All information contained herein is intended to serve as a general guide and is subject to change due to new and revised federal, state, and University of California regulations and procedures.

Applying for Financial Aid

A student is eligible for financial aid if she or he:

1. Is a United States citizen or eligible noncitizen.
2. Has a valid social security number.
3. Is not in default on a federal student loan or has made satisfactory arrangements to repay it.
4. Does not owe money back on a federal student grant or has made satisfactory arrangements to repay it.
5. Is registered with Selective Service (males at least eighteen years old, unless not required).
6. Is enrolled at UCSD (minimum of six units per quarter) in a degree or certificate program. Limited status students (non-degree/non-certificate) enrolled in a course of study necessary to be accepted in a degree or certificate program are only eligible for one year of Federal Stafford Loan(s). After one year, these limited status students are not eligible for any financial aid funding.
7. Is making satisfactory academic progress for financial aid recipients.
For evaluation of financial need, all applicants must submit a Free Application for Federal Student Aid (FAFSA) or renewal FAFSA and, if requested, copies of the 2000 federal income tax returns, and any other required documents. The FAFSA form should be filed by March 2, 2001, the UCSD priority filing date, with the appropriate processing agency and must indicate the University of California, San Diego (list Federal School Code 001317) to receive a processed copy of the

FAFSA. Late applicants will be considered for limited aid.

Receiving Financial Aid

UC financial aid for students with demonstrated financial need is funded by a combination, or "package", of gift and self-help aid. Grants and scholarships are awards that do not have to be repaid. Self-help aid may consist of a loan, which does have to be repaid, or a work-study award, earned by working a part-time job while attending school, or a combination of both. UCSD ensures that students in similar circumstances receive similar packages. Grant funds are directed to the most needy students. Students who are nonresidents of California should note that need-based financial aid funds are not sufficient to meet the additional cost of nonresident tuition ($\$ 10,244$ during 2001-2002). The family should be prepared to provide this amount from their own personal resources or educational loan programs. The various types of aid and programs which may be included in need-based packages are listed below:

Federal Pell Grant

The Federal Pell Grant program is designed to provide financial assistance to undergraduates attending postsecondary educational institutions. Amounts range from $\$ 400-\$ 3,300$ for 2001-2002.

University of California Grant Program

The University of California Grant Program provides grants to undergraduate and graduate students.

Federal Supplemental Educational Opportunity Grant (SEOG)

SEOG awards are federally funded and are available only to undergraduates. Awards may range from $\$ 100$ to $\$ 4,000$ per academic year.

Cal Grants (Undergraduate)

Cal Grants are awarded by the California Student Aid Commission to undergraduate California residents. All resident applicants for UCSD aid are required to apply for a Cal Grant. To be considered as a new winner, the FAFSA or renewal FAFSA and the GPA Verification Form must be postmarked prior to March 2, 2001.

Current recipients must file a FAFSA or a renewal FAFSA each year to have their award renewed.

Repayable Scholarships/Fellowships for Teaching Credential Students

The Cal Grant T is awarded by the California Student Aid Commission to students who have been accepted into the Teaching Credential Program. Pre-TEP students are not eligible. The Gorornois Teaching Fellowships (GTF) Program is adminitered by the California State University system. Those wishing to apply need to contact the UCSD Teacher Education Program at (858) 534-1680.

Work-Study

Federal and state work-study awards are employment programs that provide funds for student employment by the university or by public and private profit/nonprofit organizations. The work-study program provides experience in many fields, including experimental sciences, library work, recreation, computer sciences, peer counseling, and office work. Pay ranges from minimum wage and above. Job listings and referrals are provided through the Career Services Center.

Federal Perkins Loans

This loan carries a 5 percent interest rate. Students begin paying both the principal and the interest nine months after ceasing to be enrolled at least half-time.

Federal Subsidized Stafford Loans

The annual maximum allowed during the first year of undergraduate study is $\$ 2,625$. Sophomores can borrow an annual maximum of $\$ 3,500$, and the yearly limit for juniors and seniors is $\$ 5,500$, with an undergraduate cumulative maximum of $\$ 23,000$. Graduate students may borrow up to $\$ 8,500$ per academic year with an aggregate sum up to $\$ 65,000$, including the amount borrowed as an undergraduate. The interest rate for new borrowers is variable, not to exceed 8.19 percent. The 2000-2001 rate was 6.92 percent.

The federal government pays (subsidizes) the interest on the student's behalf during in-school (enrolled in six units or more), grace, and authorized deferment periods. Repayment of principal and interest begins six months after the borrower leaves school or ceases to be enrolled as a half-time student.

Federal Unsubsidized Stafford Loans

Students who do not have financial need eligibility for the maximum Federal Stafford Loan may borrow under this program. The annual maximum and interest rate are the same as the Subsidized Stafford Loan. Independent undergraduates may borrow an additional $\$ 4,000-$ 5,000 annually; graduate students may borrow an additional $\$ 10,000$ annually. The maximums include amounts borrowed under the Federal Stafford Loan program. Aggregate maximums are $\$ 23,000$ for dependent undergraduates, $\$ 46,000$ for independent undergraduates, and $\$ 138,500$ for graduate students. The interest is not paid on the student's behalf. Interest begins accruing immediately after disbursement, but payment of principal and interest may be deferred until six months after ceasing to be enrolled for six units or more. The amount borrowed cannot exceed the cost of education minus other financial aid resources (including other need-based loans).

Federal PLUS Loans for Parents

Parents of dependent undergraduate students are eligible to borrow under this program if they have no adverse credit history and meet program eligibility requirements. The interest rate for this loan is variable, but not to exceed 9 percent. In 2000-2001, the interest rate was 8.99 percent. Parents are eligible to borrow up to the cost of education minus other financial aid (including other loans). The first payment is due within sixty days after disbursement by the lender.

Triton Registration Installment Plan (TRIP)

The UCSD Triton Registration Installment Plan (TRIP), administered by the Student Account and University Billing Services (SAUBS) formally Bursar's Office, is a monthly payment arrangement and is available for students who desire an alternative method of financing their registration fees on a short-term basis. All students in good financial and academic standing are eligible for the program, except for those students whose financial aid or graduate support will pay their registration fees by the quarterly registration fee due date. A prerequisite to applying for the program is enrollment for the term. The TRIP allows registration fees to be paid in up to three installments each quarter. On a three-month plan, the first payment is required by the quarterly registration due date. The remaining payments are
itemized on the student's next two monthly UCSD Billing Statements. There is a $\$ 30$ nonrefundable quarterly fee that must be submitted with the application to the Student Account and University Billing Services (SAUBS) formally Bursar's Office. This fee is strictly used to offset the costs of the program. For further information, please contact the Billing Services Unit at (858) 534-6806, or online at: http://wwwbfs.ucsd.edu/bur.

Short-Term Emergency Loans

The limited emergency loan funds, administered by Student Financial Services, are loaned in small amounts to help students in critical short-term emergencies, and usuaily must be repaid within thirty days. There currently is a service charge of $\$ 20$ per emergency loan, and students must be enrolled in at least six units. Registration fees must be paid prior to applying. Applications and further information are available from Student Financial Services.

Federal Tax Credits

Two federal tax credits may benefit you or your parents, if the grants and scholarships you receive do not fully cover your fees. Both tax credits are tied to the tuition and fees paid for college.

The Hope Scholarship Credit (up to $\$ 1,500$) is available for the first two years of at-least-halftime enrollment in postsecondary education.

The Lifetime Learning Credit (up to $\$ 1,000$ per tax year) is available for postsecondary enrollment at any level.

To find out more about these tax credits, consult your tax adviser or visit the U.S. Dept. of Education Web site (www.ed.gov/offices/ OPE/Students/hopegd.html).

Graduate Financial Assistance

See catalog section titled "Graduate Studies" for additional types of financial assistance available to graduate students.

THE UNDERGRADUATE

SCHOLARSHIP PROGRAM

The purpose of the Undergraduate Scholarship Program at UCSD is to recognize outstanding achievement, to encourage academic excellence, and to offer support to meritorious students.

Scholarships are awarded on a competitive basis by the UCSD faculty Committee on

Undergraduate Scholarships and Honors. Merit scholarships are awarded on the basis of academic excellence. Restricted scholarships are awarded based on one or more additional criteria or restrictions such as financial need, study in a particular major, or leadership. Students who are awarded scholarships restricted by financial need must file a Free Application for Federal Student Aid (FAFSA) in order to receive the award. Additionally, undergraduate research scholarships are offered to current students which enable them to pursue special studies and projects under faculty supervision.

UCSD is actively engaged in developing new scholarship opportunities. Many of these awards were established through the generous support of individual sponsors, foundations, businesses, and community organizations. Every gift toward undergraduate scholarships is appreciated and appropriately recognized. Further information about supporting scholarships at UCSD may be obtained from Brian Daly, Director of Development, Student Affairs. He may be reached at (858) 822-1536. His address is 9500 Gilman Drive, La Jolla CA 92093-0937.

You may view a listing of scholarships, financial aid resources, and information on outside agency scholarship opportunities on the UCSD Financial Aid Office (FAPO) Web page at:

http://www.ucsd.edu/finaid.

The Scholarship Office is part of the UCSD Financial Aid Office and is located in Building 201, University Center, 9500 Gilman Drive, La Jolla, CA 92093-0013. Office hours are from 8:00 a.m. to $4: 30$ p.m., Monday through Friday. For additional information regarding the scholarship program, contact the Scholarship Office at (858) 534-3263.

How to Apply for Scholarships

Entering Students

Entering students apply for UCSD scholarships, including the Regents Scholarship and other campus scholarships, at the same time they apply for admission to UCSD by filing the University of California Application for Undergraduate Admission and Scholarships. The filing period is in November for the following fall quarter. Scholarships are awarded to entering students on a very competitive basis. Students will be considered for all scholarships for which they are eligible provided they comply with scholarship application requirements. It is not necessary to submit any additional paperwork for scholar-
ship consideration. The information that is needed to determine scholarship eligibility is taken from the student's completed admissions application. Entering students who receive a scholarship from UCSD will be notified in writing by May 1 . We regret that we are unable to mail denial notification letters to other applicants.

Current and Readmitted UCSD Students

Current UCSD students apply for scholarships annually during winter quarter for the following fall quarter by filing the UCSD Continuing Student Scholarship Application. This application is available online via StudentLink in February and is due in Aprii. Current students who receive a scholarship from UCSD will be notified in writing by the end of June. Students who do not receive an award will not be notified due to the large volume of applications.

UCSD Undergraduate Scholarships

The scholarships listed below are generally available at UCSD. Although every effort is made to present the most accurate information, this listing is subject to change due to federal, state, and university funding limitations, and changes in policy or law.

Entering Freshman Awards

James Avery/Black Alumni Scholarship: Awarded to an African-American student pursuing studies in the performing arts at Thurgood Marshall College. This is a four-year $\$ 4,000$ award, paid in the amount of $\$ 1,000$ annually. There is an additional $\$ 1,000$ award available for graduate and professional school applications in the senior year.

Black Alumni Scholarship: Awarded to entering African-American students. This is a four-year $\$ 10,000$ award, paid in the amount of $\$ 2,500$ annually. There is also an additional $\$ 1,000$ award for graduate and professional school applications in the senior year.

Clayton H. Brace Scholarship: Awarded to an entering student with an interest in communications. This is a one-year award. The award amount varies.
H. Kenneth Branson Family Scholarship: Awarded to entering freshmen with high financial need residing in San Diego, or who are of African-American ancestry. Preference is given to first generation college students. This is a oneyear award up to $\$ 5,000$.

Community Scholars Scholarships: Awarded to San Diego and Imperial County high school seniors who are admitted to UCSD and who have made valuable contributions through community and volunteer service. This is a one-year \$1,000 award.

Del Mar Thoroughbred Club Scholarships: Awarded to entering freshmen from San Diego and Imperial County high schools, based on academic achievement, financial need, and community involvement and/or participation in school extracurricular activities while in high school. This a four-year \$10,000 award, paid in the amount of $\$ 2,500$ annually.

Entering Freshman Scholarship: Awarded to full-time students with at least a 2.75 GPA. Preference is given to students from zip code areas 92104 and 92105 or to African-American students with financial need. This is a one-year \$5,000 award.

Entrepreneurial Scholarship: Awarded to an entering freshman with preference for an African-American student with an expressed desire to embark on a career in business with the goal of eventually owning his or her own business. This a four-year $\$ 10,000$ award, paid in the amount of $\$ 2,500$ annually.

Herbert Greenberg Memorial Scholarship: Awarded to an entering freshman based on academic merit and demonstrated financial need, with a preference given to African-American students. This a one-year $\$ 2,400$ award.

Courtney and Sally Hall Scholarship: Awarded to African-American students majoring in biological sciences. This a four-year $\$ 10,000$ award, paid in the amount of $\$ 2,500$ annually.

High School Diversity Scholarship: Awarded to students from California high schools that historically are underrepresented at UC campuses, have demonstrated need, and show academic merit. This a four-year $\$ 4,000$ award, paid in the amount of $\$ 1,000$ annually.

Hispanic Achievement Award: Awarded to entering Hispanic students based on demonstrated academic merit and financial need. This is a four-year $\$ 10,000$ award, paid in the amount of $\$ 2,500$ annually. There is also an additional $\$ 1,000$ award for graduate and professional school applications in the senior year.

Charmaine and Maurice Kaplan Scholarship: Awarded to entering students on the basis of academic merit, demonstrated financial need,
and involvement in extracurricular activities. The award amount and term varies up to $\$ 2,000$ per year.

Rebecca E. Lytle Memorial Scholarship: Awarded to an entering student in Thurgood Marshall College with a minimum 3.5 high school GPA and an extensive record of volunteer or community service. Must have demonstrated financial need. Other factors that may be considered are: first-generation college student, dem-onstrated history of overcoming a particular hardship, demonstrated artistic ability, or participation in an AVID-like high school program. This is a fouryear $\$ 4,000$ award, paid in the amount of $\$ 1,000$ annually.

Dr. A.R. Moossa Scholarship: Awarded to a premedical student who plans a career as a physician, who has financial need, is a full-time student with at least a 3.0 GPA . This is a four-year $\$ 7,680$ award, paid in the amount of $\$ 1,920$ annually.
National Merit University-Sponsored Scholarship: Awarded to an entering freshman who are National Merit finalists and who are sponsored by UCSD. Finalists are nominated by the National merit Scholarship Corporation for their exceptional academic performance in high school. This is a four-year award. Students with financial need may receive up to $\$ 2,000$ per year. those students without demonstrated financial need receive $\$ 500$ per year. UCSD National Merit Scholars are also eligible for certain privileges such as preferred class enrollment, guaranteed on-campus housing for four years (providing housing deadlines are met), extended student library privileges, honors seminars, and expanded computer accounts.

Sheila Owens-Collins/Black Alumni Scholarship: Awarded to an African-American student pursuing studies in the life sciences. This is a four-year $\$ 4,000$ award, paid in the amount of $\$ 1,000$ annually. There is an additional $\$ 1,000$ award available for graduate and professional school applications in the senior year.

Ray and Betty Ramseyer Scholarship: Awarded to an entering student with an interest in the social sciences. This is a four-year $\$ 4,000$ award, paid in the amount of $\$ 1,000$ annually.

Regents Scholarship: The Regents Scholarships is the most prestigious scholarship awarded to undergraduate students at the University of California. This scholarship is offered to entering
freshmen for four years. Recipients are selected on the basis of academic excellence. If a student is offered the Regents Scholarship and has financial need, the student will receive additional scholarship and/or grant funds up to the amount of demonstrated need for four academic years, excluding non-resident tuition costs. Entering freshmen applying in the 2001-2002 academic year without documented financial need will receive an honorarium equal to the amount of in-state registration for the four years of their appointment at UCSD. The 2001-2002 in-state registration fees are estimated at $\$ 4,336.50$. Entering freshmen apply for the Regents Scholarship through the admissions application. UCSD Regents Scholars are also eligible for certain privileges and recognitions such as preferred class enrollment, guaranteed on-campus housing for four years (providing housing deadlines are met), UCSD college of choice at time of admission, extended student library privileges, honors seminars, and expanded computer accounts.

Roger and Ellen Revelle Scholarship: Awarded to entering freshmen based on academic merit. This is a four-year award and the amount varies.

Rose Foundation Scholarship: Awarded to students who graduated from San Diego County or Imperial County high schools that historically are underrepresented at UC campuses. Students must have financial need, be full-time students, and they must be in fair academic standing (at least a 2.5 GPA). This is a four-year $\$ 7,680$ award, paid in the amount of $\$ 1,920$ annually.

Shimotori Memorial Scholarship: Awarded to a student with demonstrated academic merit and financial need. This is a one-year $\$ 4,000$ award.

Ludwig \& Ada Strauss Scholarship: Awarded to an academically outstanding entering freshman with demonstrated financial need. This a oneyear award up to $\$ 4,000$.

Edmund and Fanny Thelen Scholarship:

 Awarded to entering freshmen from Sweetwater Union High School. This is a one-year award. The award amount varies.
Awarded to Students Tranferring from Community Colleges

High Tech Marketing Alliance Scholarship: Awarded to transfer student from a community college, majoring in communications, with a $3.0+$ GPA, enrolled full time, and who plans on a
career in communications or journalism. This is a one-year $\$ 960$ award.

Current Student Awards

Christopher B. Arrott-Gay, Lesbian \& Bisexual Scholarship: Awarded to gay, lesbian or bisexual undergraduate students with a record of active service and involvement in the gay, lesbian, and bisexual community. This is a one-year $\$ 1,000$ award.

Charles and Clara Ash Scholarship: Awarded to students with demonstrated financial need. This is a one-year award. The award amount varies.

BAE Systems Scholarship: Awarded to full-time students who are seniors in the 2001-2002 academic year, with a $3.2+$ GPA, majoring in computer science, applied mathematics, computer or electrical engineering with a computer sciences emphasis, are U.S. citizens and plan to pursue a career in computer science in San Diego. This is a one-year award up to $\$ 5,000$.

Errett Bishop Scholarship: Awarded to upper division mathematics majors with financial need. Preference given to graduating seniors. The award amount varies up to $\$ 3,000$.

The Darcy C. and Robert Bingham Scholarship: Awarded to full-time students who are in good academic standing and are employed with UCSD Recreation, UCSD Student Affairs, or UCSD. Students must work for an average of ten hours per week during the three-quarter academic year at UCSD, and must have worked at least one quarter prior to the submission of their application. This is a one-year $\$ 1,500$ award.

Jane A. Bosworth Scholarship: Awarded to an outstanding junior or senior in the 2001-2002 academic year, who is supported by the Office for Students with Disabilities. This is a one-year award for $\$ 500$.

Braille Transcribers Guild: Awarded to visually impaired students who are clients of the UCSD Office for Students with Disabilities. This award may be renewable. The award amount varies up to $\$ 1,500$.

Julia Brown Undergraduate Scholarship: Awarded to a full-time junior or senior in the 2001-2002 academic year, who intends to pursue a career in the health sciences (including medicine, research, and public health). The award is based on academic merit and financial need. This is a one-year \$5,000 award.

California Retired Teachers Association-Laura E. Settle Scholarship: Awarded to current sophomores or juniors with demonstrated financial need who are planning a career in teaching. Students must be U.S. citizens and residents of California. Must be declared majors in TEP (Teacher Education Program). This is a one-year award and the amount varies up to $\$ 2,000$.

CliniComp Scholarship: Awarded to full-time students who are juniors or seniors in the 2001-2002 academic year, with at least a 3.5 GPA, majoring in computer science or computer engineering, and who are planning a career in software engineering. This is a one-year award. The amount varies up to $\$ 5,000$.

Cohu, Inc.-William S. Ivans Scholarship: Awarded to undergraduate students who are enrolled full-time, majoring in mechanical or electrical engineering with at least a 3.0 GPA . This is a one-year $\$ 2,500$ award.

Thomas B. Curtis Scholarship: Awarded to juniors or seniors in the 2001-2002 academic year, majoring in the fields of biology, chemistry, or physics, who also demonstrate interest in the larger world around them, with leadership-level involvement outside the classroom, and have a minimum 2.75 GPA. This is a one-year award. The award amount varies.

Brython P. Davis Scholarship: Awarded to Current students whose parent is or was a regular member of the U.S. Navy or Marine Corps. This is a one-year award. The award amount varies.

Klara D. Eckart Scholarship: Awarded to current students in the fields of computation, mathematics, or physics. This is a one-year award. The award amount varies.

Farmers Insurance Group of Companies Scholarship: Awarded to current students in the fields of insurance, mathematics, business administration, economics, personnel, and other areas related to the insurance industry. This is a one-year award. The award amount varies.

First Interstate Bank Leadership Award: Awarded to current students who through their leadership, academic excellence, unique talents, and active involvement, have brought recognition and acclaim to UCSD. This is a one-year award up to $\$ 1,500$.

The Ed and Mary Fletcher Foundation and The Willis and Jane Fletcher Foundation Scholarship: Awarded to a graduate of a San Diego County high school with demonstrated financial need. This is a one-year award for $\$ 2,500$.

Rose Formost Memorial Scholarship: Awarded to undergraduate students with a major or interest in music. This is a one-year $\$ 5,000$ award.

Jaye Haddad Memorial Scholarship: Awarded to students who have been diagnosed with cancer, with Acquired Immune Deficiency Syndrome, with AIDS-Related Conditions, or to students with physical disabilities. This is a oneyear award. The award amount varies.
E. Coke Hill Scholarship: Awarded to students with demonstrated financial need. This is a oneyear award. The award amount varies.

Iranian-American Student's Scholarship: Awarded to current students who are of Iranian or Iranian-American descent with demonstrated financial need and academic merit. This is a oneyear award in the amount of $\$ 1,000$.

Irvine Memorial Scholarship: Awarded to students based on academic merit. This is generally a one-year award. The award amount varies.

Peter Jensen Scholarship: Awarded to a current freshman for three years. Minimum award is $\$ 1,000$ annually.

Mary Jessop Scholarship: Awarded to undergraduate students majoring in biology. This is a one-year award and the amount varies.

Kelly J. Kolozsi Scholarship: Awarded to students in the following priority: 1) graduates of Menlo Atherton High School, 2) graduates of a high school in the Sequoia Union High School District. Preference is given to students diagnosed with a learning disability. This is a oneyear award. The award amount varies. The recipients are chosen by the Kolozsi Scholarship Selection Committee.

Madge E. Lawhead Scholarship: Awarded to students who, in the 2001-2002 academic year, will be junior-level students who entered UCSD from high school and senior-level students who entered UCSD from another institution. Selection is based on academic achievement at UCSD. This is a two-year award for junior-level students and a one-year award for senior-level students. The award amount varies.

Jeffrey R. Leifer Leadership Award: Awarded to students who, through their campus leadership and/or community activism, have made a significant contribution to UCSD or the community at large. The selection criteria for this scholarship include both a strong academic record and demonstrated effectiveness. This scholarship has
been established through the generous contributions of Jeffrey R. Leifer. As a student at UCSD, he served as Associated Student Body President and founded International Student Pugwash, a worldwide organization dedicated to issues surrounding ethics, technology, and society. This is a one-year award in the amount of $\$ 1,000$ to students without demonstrated financial need and \$1,500 to students with financial need.

Los Angeles Times Scholarship: Awarded to graduates of Los Angeles, Orange, Riverside, or Ventura County high schools who have completed one year in college, a minimum GPA of 2.8, demonstrated financial need, and have expressed interest in a career in journalism, communications, or English. This is a one-year award of $\$ 5,000$. Students may reapply each year.

Alice Marriott Scholarship: Awarded to students with demonstrated financial need. This is a one-year award. The award amount varies.

Thurgood Marshall College Scholarship: Awarded to students enrolled in Marshall College who have a 3.2 GPA by the end of spring quarter, and have completed a minimum of seventy-two graded quarter units. Transfer students need thirty-six graded UCSD units with a 3.2 GPA and 3.5 cumulative GPA in advanced standing work. Seniors who apply should have a minimum of thirty-six units remaining to be completed in the academic year the scholarship is awarded with a minimum 3.2 cumulative GPA. This is a one-year $\$ 1,000$ award.

Marx and Marshall-Gay and Lesbian Scholarship: Awarded to gay and lesbian students with a record of active service and involvement in the gay, lesbian and bisexual community. This is a one-year award. Preference will be given to students with financial need. The award amount is $\$ 1,000$. Recipients may reapply.

MP3.com Scholarships: Awarded to full-time students, in good academic standing, with demonstrated financial need, who plan on careers in software engineering and/or internet and/or e-commerce industries. This is a one-ear award up to $\$ 5,000$.
S. Falck Nielsen Scholarship: Awarded to current freshmen. The amount and term varies.

LaVerne Noyes Scholarship: Awarded to current students who are descendants of World War I Veterans (defined as four months of service in the U.S. military prior to November 11, 1918).

This is a one-year award. The award amount varies.

John and Laura Olinski Scholarship: Awarded to an upper-division student with a management science or economics major, with a minimum 3.5 GPA. This is a one-year award. The amount varies up to $\$ 1,500$.

Sven Peterson Memorial Scholarship: Awarded to a current freshman or sophomore, UCSD Warren College student, enrolled full-time, majoring in an area other than engineering or life sciences. The recipient must have been placed on the college provost's honors list at least one quarter during his or her academic career in advance of applying for the award and must maintain a 3.0 cumulative GPA. This is a $\$ 3,000$ per year award and may be renewable.

QUALCOMM Scholarship: Awarded to students who are juniors in the 2001-2001 academic year, majoring in electrical engineering, computer engineering, or computer science with at least a 3.15 GPA. Special consideration is given to students who have been a San Diego resident for three or more years, who are willing to consider an internship at QUALCOMM, or who have volunteered a minimum of four hours per month at a K-12 educational institution. This is a one-year award, equivalent to in-state fees.

Mabel Wilson Richards Scholarship: Awarded to women who were residents of the greater Los Angeles area for two years prior to attending UCSD, with a B average and demonstrated financial need. Must be a U.S. citizen or, if under 21, one parent should possess a permanent resident visa. This is a one-year award. The award amount varies up to $\$ 2,000$.

Bevan Schroeder Memorial Scholarship: Awarded to students majoring in computer science engineering. Selection is based on academic merit, financial need, and involvement in campus activities. This is a one-year $\$ 1,000$ award.

Sempra Scholarship: Awarded to juniors or seniors in the 2001-2002 academic year, with majors that lead to careers in technology/information systems (computer science, computer engineering) or careers in electrical or material engineering, including chemical engineering. This is a one-year $\$ 4,000$ award.

Malcolm R. Stacey Memorial Scholarship:

 Awarded to Jewish students in the following priority: 1) undergraduate who is an orphan and preparing for graduate study in aeronauticalengineering, 2) undergraduate in the field of aeronautical engineering, 3) a student in the division of engineering, and 4) a student in any field of study. This is a one-year award. The award amount varies.

William H. Stout Scholarship: Awarded to students based on academic merit. This is a oneyear award. The award amount varies.

Russ Ty-Gay and Lesbian Scholarship:
Awarded to gay and lesbian students based on academic merit. This is a one-year award. The award amount is a maximum of $\$ 1,000$.

Visual Arts Endowment Scholarship: Awarded to full-time current students, with the intent to support talented undergraduates majoring in visual arts. This is a one-year award up to $\$ 4,000$.

Stefan E. Warschawski Memorial Scholarship: Awarded to students majoring in mathematics. This is a one-year award. The award amount varies up to $\$ 2,400$.

If you have any questions regarding graduate scholarships, they should be directed to the Office of Graduate Studies at (858) 534-3555.

UNDERGRADUATE RESEARCH SCHOLARSHIPS

These special awards are for current undergraduate students who wish to engage in special studies or research projects under faculty supervision. The work must be above and beyond the normal course of study. The subject matter does not have to be related to the student's major, minor, or other course work. These are one-year awards; however, a student may submit a new application each year for consideration. Awards range from $\$ 1,500$ to $\$ 2,500$.

Applications are available from the UCSD Financial Aid Office in February and are due in May. Winners are notified by the middle of June. All recipients are required to submit a brief summary report, including details of how the funds were used. Also, the sponsoring faculty member must submit a review and appraisal of the results of the project.

David Marc Belkin Memorial Research Scholarship will give preference to those proposals designed to pursue special studies and projects in the general areas of environmental and ecological issues. The maximum award amount is $\$ 1,500$.

Julia Brown Research Scholarships will give consideration to juniors or seniors in the 20012002 academic year, whose career objectives
include medical school and/or medical research. Preference given to students with extenuating circumstances or financial need. The maximum award amount is $\$ 2,500$.

Chancellor's Research Scholarship will give consideration to proposals regardless of proposal topic. The maximum award amount is \$1,500.

David Jay Gambee Memorial Research Fellowship will give preference to proposals which involve the student as an active citizen in university governance, the local community, or national and international affairs. Also receiving preference are proposals which lead to a heightened awareness of the relationship between environment and society. Service in the community through volunteer activities or participation in programs related to the Institute on Global Conflict and Cooperation is encouraged. The maximum award amount is $\$ 1,500$.

Doris A. Howell Foundation Research Scholarship will give consideration to juniors or seniors in the 2001-2002 academic year whose proposals are designed to improve the physical, mental, spiritual and behavioral health, and/or well-being of women. Proposals may encompass all areas related to women's health including biological, medical, cultural, economic, behavioral, psycho-social, or cross-cultural influences. The Howell Foundation for Research in Women's Health is a not-for-profit spin-off of Soroptimist International of La Jolla. The maximum award is $\$ 2,000$.

SCHOLARSHIPS FOR STUDY ABROAD

UCSD students study abroad through the UC Education Abroad Program (EAP) and the UCSD Opportunities Abroad Program (OAP). In addition to the UCSD scholarships listed above, study abroad students may also qualify for special awards restricted to EAP and OAP participants. All of the scholarships listed below require a separate application through the International Center, unless otherwise indicated.

For more information about these scholarships and other outside opportunities for study abroad, contact the Programs Abroad Office at the International Center at (858) 534-1123 or via email to: abroad@ucsd.edu.

Betty Tate International Scholarships: Awarded based on financial need and students must have a minimum 2.8 GPA.

Chris Borton Memorial Study Abroad Scholarships: Awarded on the basis of academic merit and without consideration of financial need.
EAP Alumni and General Scholarships: Awarded primarily on the basis of financial need, with some consideration given to students from underrepresented groups and to those students bound for developing countries.

EAP Program-Specific Scholarships: Awarded to students bound for the Pacific region and some European countries.

Eleanor Roosevelt College (ERC) Scholarships: Awarded to ERC students with financial need. Applicants should apply through ERC.

Friends of the International Center: Awarded predominantly on academic merit, with some consideration of financial need.

Judaic Studies Scholarship: Awarded to students bound for Israel, with preference given to students with a major or minor in Judaic studies. Applicant should apply through the Department of Judaic Studies.

INTERNSHIP PROGRAMS

University of California President's Washington Scholarship: Awarded to students on internship in Washington D.C. with financial need and a 3.0 GPA. Applicants should apply through the Academic Internship Program Office. Telephone (858) 534-4355 or the UC/DC Program Office, telephone (858) 534-2705.

Housing

ON-CAMPUS HOUSING

Administration:
Building 310 University Center
Mail code 0041
(858) 534-4010

World Wide Web: http://housing.ucsd.edu

SINGLE UNDERGRADUATE HOUSING

Residence halls and apartments are located at Revelle, John Muir, Thurgood Marshall, Eleanor Roosevelt, and Earl Warren Colleges

Residence Halls

Residence hall rooms are arranged in suites of eight to ten students who share a bathroom and study/living area. Suites are single gender and some buildings are coed. A meal plan is mandatory in the residence halls. Most freshmen live in
residence halls; single rooms are often reserved by returning students. Rooms are furnished and provide ample space for effective studying, sleeping, and storing of personal belongings, books, and clothes.

Apartments

Campus apartments are self-contained units with kitchens, bathrooms, bedrooms, and study/living areas. Each unit is fully furnished with carpets, drapes, beds, desks, chest of drawers, tables, couch, dining set, stove, and refrigerator. Typically a bedroom is shared by two students; single rooms are available in some apartments. Meal plans are optional.

Rates for 2001/2002

The estimated budget figure for room and board in the residence halls is $\$ 7,800$ for the three-quarter academic year (excluding quarter breaks); apartments without the board plan will be about $\$ 4,500$ for the academic year. Payment plans are available and will be listed in the housing contract.

A housing brochure with an application for on-campus housing was included in the admission packet mailed in mid-March to all who were admitted to UCSD. Students must return the housing application to the Housing Administration Office and file a Statement of Intent to Register form with the Admissions Office by the specified due dates to be eligible for housing. On-campus housing spaces will be filled on a first-come, first serve basis according to the date applications are received in the UCSD Housing Office. The priority system is explained in detail in the housing brochure.

The housing application deadline for guaranteed housing for fall 2001-2002 was May 8, 2001, for new freshmen. Transfer students will almost certainly not receive on-campus housing for the academic year 2001-2002 due to high demand and overflow. For the best selection of housing closest to campus, contact the UCSD OffCampus Housing Office.

The Housing Administration Office recommends that freshmen who have not been offered housing by mid June call us at (858) 5344010 for further information.

The resident dean of the applicable college assigns rooms in the residence halls or spaces in the apartments. The Housing and Dining Services Administration Office, located in Building 310 University Center, administers housing con-
tracts and handles other details related to housing contracts.

MARRIED AND SINGLE GRADUATE HOUSING-OFF-CAMPUS

The University of California, San Diego Affiliated Housing Team operates several housing complexes in an effort to provide the highest level of flexibility when selecting your residence.

MESA RESIDENTIAL APARTMENTS (located minutes off campus) are designed to house single graduate or medical students, married students with or without children, and single parents. Residents must be enrolled full-time in a degree granting program or Teacher Education Program. The Mesa Residential Apartments offer unfurnished one-, two-, and three-bedroom units. Each unit features carpeting, blinds/ drapes, range/oven, and refrigerator. In addition, apartments are prewired for cable television and feature private patios or balconies.

Some units include utilities and some require electricity to be paid by the residents. The community is a park-like setting and amenities include community rooms, coin-operated laundry rooms, co-op garden plots, storage space for each apartment, ample parking, playgrounds for children, and an outdoor sports area providing courts for tennis, basketball, and volleyball.

LA JOLLA DEL SOL, a condominium-style community owned by UCSD in San Diego's Golden Triangle, just minutes from campus, is designed to house UCSD faculty, staff, and students.

Each one- and two-bedroom apartment has a fuil-size washer and dryer, refrigerator, dishwasher, range/oven, ceiling fan, and private patio or balcony. Second- and third-floor apartments have wood burning fireplaces and assigned covered parking. Unassigned parking is also available for all residents. All apartments are prewired for cable. Residents can enjoy the use of two heated pools with adjoining spas, two lighted tennis courts, and a fitness center and community room. Doyle Community Park is across the street and local malls and grocery stores are within walking distance. Apartments are assigned on an individual basis. To apply for housing and to be added to the wait list at La Jolla Del Sol, please call (858) 587-1221 or email ljds@ucsd.edu.

SINGLE GRADUATE HOUSING-ON-CAMPUS

Single Graduate Apartments (located on the Warren Campus) are designed to house unmar-
ried graduate and medical students without children. Residents must be enrolled full-time in a degree granting graduate or medical course of study, or participating in the Teacher Education Program. Single Graduate Apartments all have four single bedrooms and a shared living room, dining, kitchen, and bath area. Units are fully furnished with the exception of personal linen and cooking utensils. All utilities are included in the rental rate. All units have cable TV included at no extra charge and optional connections to the campus computer system for a fee. All spaces are available on a twelve month lease. This is a nonsmoking facility.

Note: All policies and procedures concerning the operation of married and graduate student housing, the eligibility for housing, and the application process are subject to change without notice.

For more detailed information on any of the above graduate or married housing facilities and/or an application, you may write, apply in person, or telephone the following:
Affiliated Housing Operations
9500 Gilman Drive, Dept. 0907
La Jolla, CA 92093-0907
(858) 824-0850
http://hdsu.ucsd.edu/hsgaffil/affhome.htm

International Center

(Located at the corner of Gilman Drive and Library Walk)
Mail code 0018
(858) 534-3730

Facility reservation: (858) 534-6442
http://www.ucsd.edu/icenter
The International Center assists U.S. students going abroad as well as international students, scholars and families, and facilitates interaction among all internationally minded UCSD students, faculty, and staff.

Services to students going abroad include advising on a wide range of study, work, and travel opportunities through the UCSD Programs Abroad Office, and administration of the systemwide UC Education Abroad Program.

The International Student/Scholar Office serves as the liaison with government agencies for all nonimmigrants, and advises international students, researchers, faculty, and campus departments about immigration and visa matters. The office also provides pre-arrival informa-
tion, orientation, and check-in for new students and scholars. The Friends of the International Center provide additional services and programs to international visitors and their family members.

The staff and Friends of the International Center as well as the International Club sponsor a variety of international/intercultural programs and services for all members of the UCSD community. These include lectures, language exchanges, a tutoring program, linkages with international faculty specialists, and weekly international cafes.
The International Center facility also includes a resale shop, a reservable conference room, and a meeting/office facility for Oceanids, the volunteer support organization for the university.

Off-Campus Housing

Off-Campus Housing is a rental referral and housing information resource center. This office receives and maintains up-to-date available rentals from people in the community within the various areas near campus. The rentals include individual houses, apartments, and condos, as well as roommates, rooms in private homes, and work-exchange situations.
The most popular housing situation involves sharing a house, condo, or apartment with other UCSD students.

The university is located in the midst of a resort area that results in relatively high rent in the coastal towns of San Diego: Del Mar and Solana Beach to the north of campus, La Jolla, and Pacific Beach to the south. A general rule of thumb: the closer to the beach, the higher the rent.

Also available through this office are helpful landlord/tenant materials such as: leases, room rental agreements, bus schedules, wall maps, a courtesy phone for local calling and a variety of house hunting aids.

Our Web site is useful for students and others unable to come into the office, yet need to review rental listings. Downloadable rental agreement forms are available. Links to local papers allow access to the classifieds. In addition, answers to frequently asked questions ease anxiety regarding housing.

Services are available to registered students, staff, faculty, and alumni of the University of California only. You must show a current UC ID card or official Letter of Acceptance to receive rental contacts. Rental referrals are not mailed,
faxed, or given out over the telephone. The office staff will be happy to assist you with any housing questions or concerns. Our office is located in the Student Center, Building A, Eucalyptus Lounge, Suite 200-202.

For further information contact:
Off-Campus Housing
9500 Gilman Drive, Dept. 0309
La Jolla, CA 92093-0309
Phone: (858) 534-3670
Fax: (858) 822-1440
Email: offcampushousing@popmail.ucsd.edu Web site: http://offcampushousing.ucsd.edu

Psychological and Counseling Services

Central Location:
190 Galbraith
Mail Code 0304
(858) 534-3755
http://www.ucsd.edu/psychserv
Psychological and Counseling Services provides professional assistance with a wide array of difficulties that may interfere with academic success. Specific concerns for which students often seek assistance include loneliness and isolation, personal issues, homesickness, parent/family relationships, difficulty studying, concentrating or test taking, relationship/marital difficulties, sexuality, educational/career questions, depression, and anxiety. Students often consult with counselors when experiencing a variety of life issues or emotional situations. In order to enhance the UCSD student experience, Psychological and Counseling Services professionals offer consultation to the university at large regarding a wide range of student issues. Individual and group counseling, psychotherapy, marriage or relationship counseling, family sessions, and many issue-focused groups are provided to support the emotional and social growth of students. During the course of a year, groups for ethnic minorities, students in science and engineering, gay, lesbian, bisexual and transgendered students, reentry students, and graduate students are offered.

Time-limited focus groups assist students in developing social skills, and in expanding abilities regarding assertion training, stress management, test-taking confidence, decision making, enhancing creativity, and maintaining healthy lifestyles. Groups are also available to support
developing healthy eating patterns, coping with alcohol or drug abuse, overcoming eating disorders, and developing social confidence. Student peer counselors present programs concerning a variety of topics to student groups throughout the year.

Psychological and Counseling Services staff are clinical and counseling psychologists and psychologists-in-training. In order to provide greater accessibility, the service has offices in all colleges in addition to the central location.
Services are available to any currently enrolled undergraduate or graduate student, and appointments can be arranged by contacting the central office. The counseling relationship is private and confidential.

Recreation

RIMAC
Mail code 0529
(858) 534-4037
http://recreation.ucsd.edu
Campus Recreation provides UCSD students with quality recreation programs. They are designed to meet leisure-time needs and interests through on-campus programs offering clubs, intramural sports, recreation classes, outings, and a myriad of activities and special event programming. Our goal is to provide opportunities promoting a lifetime of health-conscious options.

FACILITIES

RIMAC with arena, gymnasium, weight room, racquetball and squash courts, and equipment room.
Main and Recreation Gymnasia
Main Gym Weight Room
Indoor 25-Yard Natatorium Pool and Spa
Outdoor 50-Meter Canyonview Pool and Spa
Outback Indoor Climbing Center
Tennis Courts
Playing Fields
Canyonview Weight Room
Golf Driving Range
Mission Bay Aquatics Center
Spanos Training Facility with weight training equipment, martial arts studio, and trainers' facility
Running and Jogging Track
Par Courses
Sand Volleyball Courts
Outback Adventures equipment rentals

INTRAMURAL SPORTS

The Intramural Sports Program at UCSD is a balanced blend of team and individual sports activities that are designed to meet the diverse needs of the campus community. Sports offered include flag football, floor hockey, tennis, basketball, softball, soccer, bowling, volleyball, tube waterpolo, and badminton.

RECREATION CLUBS

Recreation Clubs are special-interest activity clubs open to the entire campus community. The clubs are designed to bring together people with common interests. Students may join or begin new recreation clubs and participate in the workouts, meetings, social gatherings, and special events that are part of the RecClub structure. RecClubs include interests from aerobics to wrestling.

SPORT CLUBS

Sport Clubs are those teams that compete on an intercollegiate basis but without many of the restrictions of the formal Intercollegiate Athletic Teams. The clubs offer students the opportunity to become involved in somewhat less traditional competitive sports, while still enjoying the travel to and competition against other institutions. Teams include ballroom dance, competition dance team, equestrian, water ski, cycling, lacrosse, sailing, surfing, rugby, alpine ski/snowboard racing, ice hockey, and ultimate disc.

RECREATION CLASSES

Recreation classes provide students and the university community an opportunity for noncredit, nongraded instruction in a range of physical and leisure activities. The program includes professional instruction in everything from aerobics, tennis, weight training and swimming to karate, gymnastics, dance, and yoga.

OUTBACK ADVENTURES

Outback Adventures (outdoor recreation program) is a passport to adventure and the great outdoors. The program offers fun, full-service trips (transportation, meals, instruction, equipment) in backpacking, rock-climbing, crosscountry skiing, canoeing, kayaking, mountainbiking, and other outdoor pursuits. The Outback Adventures director will also arrange customized trips. In addition, the program offers instructional workshops, a resource library of maps and park information, and a camping and outdoor

equipment rental service which includes downhill and cross-country skiing equipment, mountain bikes, camping equipment, and game equipment. Outback also runs the indoor climbing center, with facilities for beginning to advanced climbers, rentals, and instruction.

AQUATICS

UCSD Campus Recreation Aquatics encompasses a wide range of aquatic activities. Student users can participate in competitive and training programs in diving, swimming, and water polo. Special events scheduled throughout the year range from student social activities to international team competitions. Additionally, an extensive recreational lap swim program is maintained to accommodate daily users from the campus and community.

OPEN (INFORMAL) RECREATION

Open recreation provides individuals and groups of students the opportunity to make use of any and all of the physical activity facilities at UCSD. From jogging on the par course to shooting hoops in the gym, or playing racquetball in RIMAC, "open rec" time allows students to develop their own leisure activities.

MISSION BAY AQUATIC CENTER

Located on Santa Clara Point in Mission Bay, this facility and its programs provide students with an exclusive opportunity to participate in ali aspects of aquatic recreation. From highly structured classes to equipment rentals, MBAC is a "first class" operation. (488-1036)

INTERCOLLEGIATE ATHLETICS AT UCSD

http://athletics.ucsd.edu

With 23 intercollegiate teams to choose from the UC San Diego Athletics program provides students with varying interests the opportunity to participate in a highly-competitive program. As a non-scholarship institution, UCSD's Tritons have competed in the NCAA Division III, achieving national prominence in nearly every sport. In 1998, UCSD won the Sears Directors' Cup, which is awarded to the nation's top overall athletics program in the NCAA Division III. In the fall of 2000, UCSD moved to Division II and immediately captured an NCAA Championship in Women's Soccer while finishing runner-up in the NCAA Water Polo Championship.

Triton teams have captured 94 first-, second-, and third-place national finishes, led by Women's

Volleyball's seven titles. Women's Soccer has won six championships, followed by Women's Water Polo with five, Women's Tennis with four, Men's Soccer with three and Men's Golf with one national championship. Individually, 90 Tritons have won national championships while a remarkable 721 have earned All-American Recognition. Tritons have been named Academic All-Americans on 122 occasions and 10 student/ athletes have been awarded the prestigious NCAA Postgraduate Scholarship.

Sports offered for men and women include basketball, crew, cross country, fencing, soccer, swimming and diving, tennis, track and field, volleyball, and water polo. Men's baseball, men's golf, and women's softball are also offered.

With the move to Division II, most teams now compete in the California Collegiate Athletic Association, widely considered to be the top Division II athletic conference in the country.

In addition to athletic competition, UCSD students may get involved through support groups, game management, and internships. The UCSD Pep Band has grown steadily in recent years and is a fixture of spirit at all basketball and volleyball events. In 1999, the Triton Tide made its debut as a student booster club, and students may also join the UCSD Cheerleaders, the UCSD Twirl Flag Team, or the UCSD Dance Team. In addition to the student groups, Triton Athletic Associates, a booster group of parents, alumni, and friends assists UCSD Athletics with much-needed financial support. Students interested in a firsthand experience in the operations of an athletics program should check into opportunities to work in game management, which provides the staff for all home athletic events, or inquire about internships within the Athletics Department.

Religious Affairs

Building 201 University Center
Mail code 0081
(858) 534-2521

The Office of Religious Affairs is a privatelyfunded interdenominational program which promotes interfaith cooperation and dialogue among UCSD students, faculty, and staff. Ordained clergy and professional staff provide non-sectarian consultation, education and counseling services on theological, ethical, and moral issues facing the campus.

Student Affirmative Action and Education Equity Program

Old Student Center, Bldg B, Room 109
Mail Code 0329
(858) 822-4973

Web site: http://ugr8.ucsd.edu/equity
The Student Affirmative Action and Education Equity Program, (SAA\&EE Program), serves as the campus contact for campus and UC officials, programs, and groups in matters relating to affirmative action, diversity, education equity, and equal educational opportunity. It also monitors campus programs, practices, and procedures to maximize achievement of a diverse student body at UCSD that reflects the California population. It also provides staff support, research, and technical assistance and information for Student Affairs and campus administrative units, workgroups, or advisory committees in areas relating to student affirmative action/education equity/equal education opportunity.

Student Office for Human Relations (SOHR)

Old Student Center, Building B, Room 104 Mail Code 0362
(858) 534-6708, sohr@ucsd.edu http://ugr8.ucsd.edu/sohr

The Student Office of Human Relations, (SOHR), monitors and assesses campus programs, practices, and procedures to maximize achievement by UC/UCSD of a student oriented, positive and nurturing, learning environment that promotes understanding and acceptance of diversity in the UC/UCSD community through a broad educational program for UCSD students, staff, and faculty in student oriented human/race relations, cultural pluralism, hate/bias prevention education. It also serves as the campus contact for any student related hate/bias crimes or incidents, and complaints of unlawful discrimination involving UCSD students.

Student Health Service

Mail code 0039
(858) 534-3300
http://www.ucsd.edu/shs
Comprehensive primary health care, urgent care, laboratory, x-ray, as well as health education programs are provided free of charge to all registration paying students during the acade-
mic quarters. A health fee is charged during the summer quarter to continuing students.

Specialized care is provided through the Women's Clinic, Sports Medicine Clinic, Dermatology Clinic, Nurses' Clinic, Headache Clinic, and Travel Clinic, most at no additional fee.

Reduced fees are charged for pharmaceuticals, contraceptives, travel immunizations, and some laboratory tests. A Visual Care Clinic is available at modest fees. The Visual Care Clinic offers eye glasses, designer frames, lenses, sunglasses, contacts, and eye exams.

Although undergraduate, graduate, medical, and international students may have unlimited visits with Student Health Service (SHS), students requiring medical or surgical care from practitioners, hospitals, or clinics other than SHS should be prepared to assume the cost of such care. All students are strongly urged to have and maintain adequate health insurance. (See below)

Starting fall term 2001 the University of California Board of Regents has established a requirement that all undergraduate students have mandatory major medical health insurance as a non-academic condition of enrollment. The Undergraduate Student Health Insurance Plan (USHIP) provides benefits for ambulance, emergency room, hospitalization, certain outpatient services, surgery and major medical expenses with SHS referral. USHIP also includes benefits for pharmaceuticals, vision care and intramural, club and intercollegiate sports. The cost for USHIP will be factored into grants, loans, and work-study programs offered to students who receive financial assistance. Students already covered by adequate health insurance can waive the requirement. The new campus-based insurance plans will not replace the primary medical care and referral services provided by the Student Health Service.

Participation in the Graduate Student Health Insurance Plan (GSHIP) is mandatory for all graduate, professional, and international students. GSHIP provides benefits for certain outpatient services, hospitalization, surgery, and major medical expenses by referral. GSHIP also contains a dental and vision care plan and pharmaceutical benefits. The fee for GSHIP is paid by the university for graduate and professional students holding academic appointments of 25 percent time or more.

Brochures describing these insurance plans, their limitations, exclusions, and open enrollment periods are available at Student Health

Service and through the SHHS Web page. A representative of the insurance company has an office at Student Health Service and is available to assist students.

Student Policies and Judicial Affairs

Building B, Student Center
Mail code 0329
(858) 534-6225
http://ugr8.ucsd.edu/judicial
Student Policies and Judicial Affairs (SP\&JA) consists of the administration of student judicial affairs, which includes campus-wide coordination of student conduct, including graduate students, monitoring of compliance requirements, with applicable federal and state laws, and university policies and campus regulations, such as Right to Privacy as it affects students. In addition, the director also provides legal advice and consultation to faculty and administrators on student-related matters. Other programs encompassed by SP\&JA include the Student Legal Services Office, Student Office for Human Relations (SOHR), (SAA/EEP) Student Affirmative Action/Education Equity Program, and the Office of Religious Affairs.

Student Legal Services

Building B, Student Center
Mail code 0329
(858) 534-4374
http://sls.ucsd.edu
email: sls@ucsd.edu
Student Legal Services (SLS) provides advice to UCSD students in legal matters. It prepares and drafts legal documents for students seeking to represent themselves in court. These include Petitions for Dissolution, Name Change, Immigration Petitions, and Restraining Orders. Student Legal Services also counsels and prepares students for in pro per court appearances, i.e., Small Claims, Municipal, Traffic, and Misdemeanor Arraignment hearings. As SLS cannot represent students, if such representation is deemed necessary the student is referred to an outside attorney or agency specializing in that particular area of the law. SLS conducts twenty legal education workshops on a wide variety of topics each quarter. Additionally, SKS advises Phi Alpha Delta Law Fraternity, the Community Law Project, and the Minority Law Foundation.

Student Safety Awareness Program

Main Gym, north side
Mail code 0372
(858) 534-5793
http://www.ucsd.edu/ssap
email: studentsafety@ucsd.edu
The Student Safety Awareness Program (SSAP) is the primary source of information, crisis intervention, and follow-up support regarding sexual assault, dating violence, and general personal safety on the UCSD campus. The goals of the peer-to-peer education programs for men and women are to dispel myths, to promote awareness of personal violence, and to prevent the incidence of these crimes. The program also explains the victim's options to notify law enforcement and to utilize other resources, i.e., campus and community counseling, and student services. SSAP outlines procedures to follow if a sex offense occurs, if a victim reports to law enforcement and/or uses the on-campus disciplinary process.

SSAP provides information and education about sexual harassment. Students who have questions and/or concerns may seek confidential assistance by calling the above number.

University Centers

The facilities, services, and programs of the University Centers at UCSD complement the teaching and research functions of the university. Both the Price Center and the Student Center provide opportunities for students and the campus community to meet, relax, dine, and enhance their experiences outside the classroom or lab.

THE PRICE CENTER

Mail code 0076

Administration office: (858) 534-7666
Web site: theuniversitycenters.ucsd.edu
The centrally located, modern facilities of the Price Center are home to a variety of services geared to the needs of students. The Price Center is the place for eating, studying, surfing the Internet, running errands, and catching the latest feature film at the Dolby Digital sound equipped movie theatre. The Library Lounge is a perfect place to study. The adjacent galleries exhibit student art. Services that are located in the Price Center include the university bookstore, a copy and technology center, a travel agency, a post office, a video and billiard gameroom, a Ticketmaster outlet, a flower stand, and
a photo lab. Many afternoons, sounds of bands and socializing fill the patio in the outdoor courtyard. An equally-vibrant indoor food court has a variety of fast-service restaurants such as: Wendy's, Subway, Round Table Pizza, Jamba Juice, Star Wraps, Tia Molly, Wok's Up, and Espresso Roma. A large ballroom hosts major exhibits, conferences, meetings, concerts, and dances throughout the year. Fifteen state-of-theart conference/meeting rooms are available for use by the campus community. Professional catering and high tech audio and visual services can also be arranged. The Price Center is also home to many student organizations. The offices of Campus Tours, Volunteer Connection, Associated Students, University Events, and the Office of Student Organizations and Leadership Opportunities are located in the Price Center.

THE STUDENT CENTER

Student Center Services

Mail code 0323
Administration office: (858) 534-8929
Web site: theuniversitycenters.ucsd.edu
Nestled among the eucalyptus trees, the wood exterior of the Student Center stands in contrast to the modern marble of the Price Center. The casual atmosphere and unique blend of services make the Student Center a special place. The main building is home to The General Store, Groundwork Books, and the Food Co-op. These are UCSD's own brand of student-run cooperatives. The UCSD Guardian newspaper, KSDT radio station, and SRTV are located here along with several alternative campus newspapers. The Student Center main building is a popular study spot with academic services such as A.S. Soft Reserves, A.S. Lecture Notes, three indoor lounges, and plenty of comfortable outdoor study areas. There are also conference/ meeting rooms, two ATMs, and the UCSD Bike Shop, which sells, repairs, and maintains bikes and bike accessories. The Off-Campus Housing Office, which helps students find housing, is located on the second floor in the Eucalyptus Lounge. Next to the main building is a unique facility known as The Pub where dances, concerts, and many other events occur. Around the corner, Porter's at the Pub serves up lunch, dinner, and microbrew beer. Students, faculty, staff, alumni, and community members learn the art of neon, pottery, glass blowing, and other crafts in classes offered at the Crafts Center. The work of artists from around the world is exhibited at
the adjacent Grove Gallery. Nearby, specialty coffees, light cuisine, and an occasional musical performance are served up in the patio setting of the Grove Caffe, one of the most beautiful places on campus. Just south of the Student Center on the Revelle campus is the Ché Café, which serves a vegetarian menu at very affordable prices.

STUDENT INFORMATION CENTER (EDNA)

Price Center

Mail code 0076
Administration Office: (858) 534-3362
Web site: theuniversitycenters.ucsd.edu
Located in the Price Center Plaza next to the theater lobby, the information desk serves the campus community by providing information and a variety of other services benefitting the students, faculty, and the general public.

If the student staff cannot answer your question, they will direct you to the proper person or agency.

STUDENT GOVERNMENTS

Associated Students
Third Floor, Price Center
Mail code 0077
ASUCSD: (858) 534-4450
Hours: 8:00 a.m.- 4:30 p.m. Monday-Friday
http://as.ucsd.edu
Graduate Student Association
Student Center A
First Floor, room 132
Mail code 0353
GSA: (858) 534-6504
Hours: 9:00 a.m.-5:00 p.m. Monday-Friday
The Associated Students (ASUCSD) and the Graduate Student Association (GSA) provide students with practical leadership experience in the areas of programming, financial planning, and in the development of programs and services which are designed to meet the students' needs. The ASUCSD operates AS Internship Office, Grove Caffe, AS Lecture Notes, AS Soft Reserves, U.S. Grants, the AS Volunteer Connection, SRTV, and KSDT. The ASUCSD also sponsors a wide variety of programming, including speakers, concerts, and festivals.
The GSA takes a proactive stance on graduate concerns in the areas of housing, TA/RA workrelated issues, and mandatory health insurance. The Student Government staffs work with the AS and the GSA in providing logistical, accounting, and programmatic advice. The student leaders
and the staff of the ASUCSD, the GSA, and the Student Government Services office encourage you to get involved and take part in the many leadership opportunities available at UCSD.

University Events Office

Price Center
Mail code 0078
(858) 534-4090
http://ueo.ucsd.edu
The University Events Office is a central resource for programming of events and activities at UCSD. The office hosts over fifty events annually. It provides the campus and community with programs in the areas of internationally acclaimed dance, drama, chamber music, popular entertainment, and the San Diego International Film Festival. All programs are presented in conjunction with student committees and volunteers are welcome.

The staff is a central resource for programming advice and assistance in the areas of event planning, publicity, marketing, ticket handling, and contracting. The management of the Central Box Office provides for the sale of tickets to most campus events as well as tickets sold on the Ticketmaster system to events in town and around the country.

STUDENT ORGANIZATIONS AND LEADERSHIP OPPORTUNITIES

Price Center
Mail code 0078
(858) 534-0501
http://solo.ucsd.edu
The office of Student Organizations and Leadership Opportunities strongly supports the notion that the university must provide learning experiences for students both within and outside the classroom. Participating in leadership workshops, seminars, conferences, and in any of the over 300 student organizations is an integral part of the university experience. With so many organizations to choose from, there is bound to be one that sparks individual interest. If not, students can start their own organization! Registration for student organizations begins in the fall and continues throughout the academic year. The advisers are here to assist in selecting an organization or in starting one.

In addition, leadership seminars are organized to help strengthen the leadership poten-
tial of students. Listed below are some of the training programs we schedule each year:

Improving interpersonal skills
Public relations
Interviewing techniques
Fund raising
Team building
Running effective meetings
Time management
Careers in student affairs
Budget management
Motivation
Stress management
Ethics
Publicity/advertising
Recruiting volunteers
Diversity
We invite you to stop by the Student Organizations Center on the third floor of the Price Center to learn more about student organizations and leadership opportunities!

Veterans' Affairs

Building 201 University Center
Mail code 0013
(858) 534-4480
http://www.ucsd.edu/finaid

ELIGIBILITY

The following persons may be eligible for federal veterans' educational benefits:

Chapter 35

1. Sons, daughters, spouses, and surviving spouses of veterans who died, or are permanently and totally disabled as the result of a service-connected disability, or persons missing in action, or captured in line of duty by a hostile force.

Chapter 30

2. A person who entered active duty for the first time after June 30, 1985, and served continuously for three years.

Chapter 106

3. Persons who have a six-year obligation to serve in the Selected Reserve signed after June 30, 1985.

CalVet Fee Waiver

4. California Veterans' Dependents College Fee Waiver Program: A student who is the child of a deceased veteran or veteran with a serviceconnected disability may receive a waiver of
registration and educational fees. Eligibility is determined by individual county veterans' services offices.

OTHER SERVICES

In addition to certifying paperwork to initiate a student's veterans' benefits, the Student Financial Services staff can answer questions about check problems or other programs administered by the Veterans Administration such as tutorial assistance and VA work-study, or can provide you a phone number so that you can make an inquiry to the Veterans Administration Regional Office

Upon admission to the university, please contact the Student Financial Services Office to request certification of VA educational benefits, or notify the office of your eligibility for the Calvet waiver

Other Services and Programs

UCSD Alumni Association

202 University Center
Mail code 0083
(858) 534-3900
email: alumni@ucsd.edu
http://www.alumni.ucsd.edu
The UCSD Alumni Association, founded in 1972 with a grant from the University of California Board of Regents, promotes the university as an exceptional institution of higher education through alumni involvement.

The association co-sponsors and provides funds for the National Merit Scholarship program, honors distinguished alumni and faculty, provides student and alumni career programs, educational and professional seminars, develops regional clubs, and actively supports alumni legislative advocacy programs affecting higher education.

Members of the UCSD Alumni Association enjoy borrowing privileges at all UC libraries, a UCSD Bookstore discount coupon, Career Services Center discount, networking and volunteer opportunities, travel programs, a subscription to UCSD Perspectives and Alumni News, and, discount cards for a variety of services. In partnership with Student Affairs, the Alumni Association offers two-year memberships with a variety of special student discounts and benefits.

Art Galleries

UNIVERSITY ART GALLERY

Mandeville Center, Room 101
Mail code 0327
(858) 534-2107
http://www.universityartgallery.ucsd.edu
The University Art Gallery presents six exhibitions each year with an emphasis on contemporary works. Painting, sculpture, and photography are joined by newer art forms such as performance art, installation works, and video art, giving visitors a chance to experience the full range of contemporary artistic expression. Recent exhibitions have included: Living in Context: Archetypal Urban Housing for the 21st Century; Obsessions; the Empty Cabinet and Related Works by Tony Oursler.

Gallery hours are from 11:00 a.m. to 4:00 p.m., Tuesday through Saturday. The gallery is closed Sundays, Mondays, and school holidays. There is no admission charge.

MANDEVILLE ANNEX GALLERY

Mandeville Center, Room B-118 Mail code 0327

The Mandeville Annex Gallery is for Visual Arts undergraduate art exhibitions. A new exhibition is mounted each week of the quarter. Included in the exhibition schedule are individual, group, and class shows. Gallery hours are from 12:00 noon to 5:00 p.m., Monday through Friday. There is no admission charge.

VISUAL ARTS GRADUATE GALLERY

Visual Arts Facility, Room 309
Mail code 0084
http://visarts.ucsd.edu
The six-building complex houses the Visual Arts Graduate Gallery. First-year review shows and M.F.A. exhibitions will be mounted each week of the quarter. Gallery hours are from 12:00 noon to 5:00 p.m., Monday through Friday. There is no admission charge.

Crafts Center

Mail code 0338
(858) 534-2021
http://www-crafts.ucsd.edu
Located in the center of the campus, the Crafts Center offers studio and art/crafts instructional facilities in ceramics, photography, jewelry,
drawing, neon, glassblowing, and other crafts. The center provides personal enrichment and creative educational opportunities to individuals wishing to develop artistic skills in an active stu-dio-classroom situation.

The Grove Gallery is a part of the center, and offers ongoing exhibits of contemporary crafts and ethnic arts. The Grove Gallery Store sells an international selection of handmade crafts and other decorative accessories.
Registration for Crafts Center activities takes place the first week of every quarter at the center. Specific classes, schedules, and course fees information can be obtained by calling (858) 534-2021 or http://www-crafts.ucsd.edu.

UCSD Cross-Cultural Center

Building 510, Mail Code 0053
(858) 534-9689, Fax (858) 822-0173
cccenter@ucsd.edu
http://orpheus.ucsd.edu/ccc
Established in May of 1995, the UCSD CrossCultural Center functions as a campus community center committed to creating space for dialogue while also maintaining an environment conducive to the recruitment and retention of students, staff and faculty from underrepre-sented backgrounds

The CCC offers programs and services specifically designed to reflect UCSD's commitment to excellence, scholarship, and community through cross-cultural interactions. The Center's focus areas include: faculty, staff, and student exchanges, educational materials and resources, student outreach and retention activities, speakers, film series, community outreach, support and discussion groups, and leadership development.

Day Care Center

Mail code 0962
(858) 534-2768
http://admissions.ucsd.edu
The UCSD Early Childhood Education Center serves the children of students, staff, and faculty. Age requirements are eleven months through kindergarten. State subsidy is available for income-eligible staff and full-time students on a limited basis. Only full-time enrollment is offered, 7:30 a.m. to 5:00 p.m., Monday through Friday. Breakfast, lunch, and afternoon snack are included in the cost. For further information or to visit, call the Day Care Center's office at (858) 534-2768 between 8:00 a.m. and 4:30 p.m.

As an alternative, the Infant Toddler Referral Program aids campus families in locating licensed home-care providers for children from six weeks through preschool ages. For assistance, call (858) 534-2768 during office hours or leave a recorded message for a return call.

Imprints

http://imprints.ucsd.edu

YOUR UCSD PRINT RESOURCE CENTER

Self-serve copies, full color copies, fax service, posters, lamination, plus a large variety of other printing and binding services are available. Price Center Imprints is open evenings and Saturdays. In addition to standard services, computer workstations are available on a rental basis with both black and white and color laser printer options.

Campus Locations:

- Applied Physics and Math Bldg., Room \#3301, (858) 534-2197
- Campus Services Complex, Bldg. A, (858) 534-3020
- Geisel Library, Main Flr (858) 534-2534
- Price Center, Upper level (858) 822-4422
- University Center, Bldg. 201, (858) 534-7050

Triton Plus Card, Library photocopy card, cash, and check payment accepted. Visa and Mastercard accepted at Price Center and Geisel Library locations.

Transportation and Parking Services

Located in the Gilman Parking Structure
Mail code 0040
(858) 534-4223
http://parking.ucsd.edu
Transportation and Parking Services, (T\&PS) sponsors a variety of programs and services designed to help students living at UCSD without a car. An extensive network of shuttles spans the campus and also serves several off-campus locations. A special sticker can be affixed to a UCSD ID card, free of charge, allowing unlimited rides on San Diego Transit buses within a two-mile radius of campus. T\&PS offers a free holiday shuttle service to the airport, helping students get home

during breaks. For information, route maps, or schedules, please telephone (858) 534-RIDE, or check our Web site at parking.ucsd.edu.

A number of money-saving rideshare programs have been developed for commuting students. Carpool, vanpool, rail, bicycle, and subsidized transit programs feature terrific additional incentives including a free emergency ride home and complimentary parking. For program details, call Rideshare Operations at (858) 534-RIDE.

If you choose to bring a car to campus, be aware that a parking permit is required on UCSD property, Monday through Friday, 7:00 a.m. to 11:00 p.m., unless otherwise posted. (A short grace period during September's Welcome Week allows parking in student spaces without a parking permit.) Parking permits can be obtained at the Parking Office (858) 534-4223, or by accessing StudentLink.

Student spaces are defined by yellow lines, student ("S") parking permits are valid in these yellow-striped spaces at all times. After 4:30 p.m. weekdays, all UCSD permits are upgraded and become valid in spaces marked with green or red squares, and metered (no fee required) spaces. Permits are not required on campus Saturday and Sunday, unless otherwise posted. Student permits are never valid in spaces marked "A" Permit Required, 24 Hours a Day, 7 Days a Week, or in any other $7 / 24$ parking space.

T\&PS also has a Motorist Assistance Program which provides battery jumps, help with lock outs, flat tire inflation, or a lift to the nearest station to buy gas for drivers stranded on campus. Call (858) 534-8108.

If you have questions about $T \& P S$, purchasing a permit, or parking at UCSD, please telephone a service representative at (858) 534-4223, visit our Web site: parking.ucsd.edu. or stop by the Parking Office, located in the Gilman Parking Structure (entrance on Russell Lane).

Student Mail Services

Campus Services Complex, Bldg. A
Mail code 0047
(858) 534-7098
http://www-bfs.ucsd.edu/mails/
The Student Mail Services provides Monday through Saturday distribution of mail to resident students during the academic year. Hours of operation are 8:00 a.m. to 4:30 p.m. Stamps and various other U.S. Postai commodities can be purchased and international items can be mailed at this location.

The UCSD Bookstore

Located in the Price Center Plaza 9500 Gilman Drive La Jolla, CA 92093-0008

Monday-Friday 8 a.m. -6 p.m.
Saturday 10 a.m.-5 p.m.
Extended hours during the beginning of each quarter.

- Textbook Adoption Requisitions: bookstore.ucsd.edu/textadoptions
- Textbook Reservations for fall quarter: bookstore.ucsd.edu/trs

General Information	$534-R E A D$
Birch Aquarium Bookshop	$534-8753$
Clothing \& Gifts	$534-8530$
Computer Center	$534-4291$
Computer Repair	$537-2438$
Custom Publishing	$534-7963$
Electronics Department	$534-3786$
Medical Instruments	$534-7057$
Refund/Recharge	$534-7326$
Sunshine Store/Film	$534-2875$
Supplies Department	$534-3786$
Textbook Department	$534-4557$
Toll Free	(800) $520-7323$

Trade and Professional	
Book Information	
Fax Numbers	
- General Number	$534-3149$
- Computer Center	$534-0565$
- Book Departments	$534-1430$
- Supplies \& Clothing	$534-5286$
email \quad comments@ucsdbkst.ucsd.edu	
Web site	bookstore.ucsd.edu

Book Information

500,000 title database. The Book information Department can find any title that's still in print in the United States. If the book is not available in the store, it can be special ordered. In addition to offering personal service inside the store, orders can be placed and questions can be answered via phone, fax, email, and through their fully encrypted and secure Web site.

General Books

The 17,000 square foot General Book Department contains over 141,000 shelved books representing over 67,500 titles from more than 900 different publishers. The strongest sections are literature (especially classic literature, literature in foreign languages, new fiction, short stories and emerging young writers), mysteries, cinema, cultural studies, political science, history, Black studies, art, music, children's, and gender issues. Any title that's still in print in the United States can be located. Bestsellers are always discounted 35 percent. They are constantly seeking new titles from interesting sources in order to broadly represent the entire world of books. Every Wednesday from 4 p.m. -6 p.m. all general, scientific, and technical books are discounted 10 percent.

Medical \& Technical Books

The UCSD Bookstore is proud of its partnership with the medical community and has been recognized as a primary resource for the technological, biotechnological, and telecommunications communities offering up-to-date, quality, medical, and technical reference information. More than 25,000 titles, in over 130 medical and technical disciplines are shelved at the UCSD Bookstore. In addition, a large selection of medical instruments are available along with lab coats, clinical jackets, and medical software programs. Over 90,000 medical books, school of medicine textbooks, journals and more, are available online at bookstore.ucsd.edu/medbooksale.

Faculty Authored Books

The UCSD Bookstore is proud to display and sell books written by UCSD faculty. Books are shelved in the categorical section that applies, in a special faculty author area of the UCSD Bookstore and also in the Faculty Club. Faculty members who have written a book they would like the UCSD Bookstore to sell, should provide the title, the publisher, and the ISBN number. Unfortunately, the UCSD Bookstore is not able to order out-of-print titles.

Custom Courseware

The Educational Resources Division of the UCSD Bookstore provides custom course materials as part of the UCSD Bookstore's mission to serve the UCSD community as an essential academic resource. The purpose in providing this service is not to replace those materials already available from publishers, but to supplement them with a variety of other printed matter, including out-of-print books, out-of-stock books, journals and newspaper articles, syllabi, anthologies, lab manuals, course notes, workbooks, and original works. To ensure that the UCSD Bookstore is complying with any and all legal requirements involving reproduced printed materials, necessary copyright permission is secured. The UCSD Bookstore is committed to providing professional service and quality products on a timely basis and at a reasonable costat all times within the legal framework of copyright authorizations.

Textbooks

Required and recommended textbooks are stocked at the UCSD Bookstore. Also provided are lecture notes, laboratory guides, software, and many other publications. Books for UCSD Extension courses can be found in a special section of the UCSD Bookstore, and at the UCSD North County Center in Rancho Bernardo. Each quarter, the UCSD Bookstore sends a letter to faculty requesting textbook orders within a certain time frame. Textbook orders can be submitted directly to the Textbook Department at the UCSD Bookstore, through the book coordinator within the various campus departments or via their Web site. Each department can help estimate enrollment quantities to determine how many books to order. Textbook orders need to be submitted before the quarterly deadline to ensure that the books can be stocked in time for the beginning of class. During the first week and
finals week of each quarter the UCSD Bookstore provides a buy back service for students to sell their used textbooks for cash.

Textbook Reservations

At the beginning of every fall quarter, the UCSD Bookstore offers a hassle-free textbook reservation service.

Emblematic Clothing and Gifts

An up-to-date selection of fashionable UCSD insignia and gift items are available at the UCSD Bookstore as well as a gift and clothing catalog with toll-free and online ordering capabilities.

Supplies: School, Art, and Office

In addition to finding an extensive selection of supplies carried within the department a catalog containing over 10,000 art, office, and school supplies-more than in any store-is available through the UCSD Bookstore's supply department.

Electronics

A comprehensive selection of brand name calculators such as Hewlett Packard, Casio, Texas Instruments, and Sharp as well as many more electronic items and accessories are stocked at the UCSD Bookstore. Special orders are always welcome.

Computers

The extremely knowledgeable staff of the UCSD Bookstore computer department is available to assist those who wish to purchase computer and printer hardware and accessories. Educational pricing is offered for full-time UCSD students, extension students (certificate courses), faculty, and staff on Macintosh and PC software and hardware. Special orders are encouraged for products that may not be stocked. The UCSD Bookstore One Stop Shopping (BOSS) system was created to allow ordering computer products online: www-bookstore.ucsd.edu/ncomputers.

Computer Repair

The UCSD Bookstore has a fully certified Apple Computer Repair Shop, open Monday through Friday.

Special Orders

Books, gifts, clothing, office and art supplies, medical instruments, computer hardware and software can be special ordered at any time.

BIRCH AQUARIUM AT SCRIPPS BOOKSHOP

2300 Expedition Way
La Jolla, CA 92093-0207
Monday-Sunday 9:30 a.m.-5 p.m.
(858) 534-8753
(Closed Thanksgiving Day and Christmas Day)
This bookshop has been operated by the UCSD Bookstore since August 1994. It's goal is to support the education and community service missions of the Scripps Institution of Oceanography and the Birch Aquarium at Scripps. The bookshop has an exciting selection of educational books concerning the geological, biological, and physical sciences and how they interact with the sea. A dazzling variety of children's books and educational toys are available to children of all ages who have interest in the ocean and its marine life. Other popular items are guides to scuba diving and snorkeling, tide pool guides, San Diego tourist guides, and maps. The bookshop's selection of souvenirs and gifts is fun-loving with a wide-ranging selection of T-shirts, sweatshirts, postcards, calendars, cassette tapes, video tapes, stuffed animals, jewelry, and lots more.

THE SUNSHINE STORE

Monday-Friday 7 a.m.-8 p.m.
Saturday 10 a.m.-5 p.m.
Sunday 11 a.m. -5 p.m.
Established in April 1979 as an auxiliary operation of the UCSD Bookstore, the Sunshine Store is a busy annex located next to the UCSD Bookstore on the ground floor of the Price Center Plaza. Open seven days a week, the Sunshine Store carries snacks and groceries along with school and office supplies, soda, juice, coffee, tea, popcorn, health and personal care products, ice cream, sandwiches, donuts, and candy. Film and film processing are also available with film specials running throughout the year.

CUSTOMER SATISFACTION PHILOSOPHY

The UCSD Bookstore strives for complete customer satisfaction. Should any product you select from the UCSD Bookstore fail to meet your expectations, they will respond to your concern and assist you in an exchange, refund, or credit whenever possible within the guidelines which apply to their specific merchandise categories.

- All categories of refundable merchandise require an original receipt to obtain a refund.
- Textbooks must be in resalable condition, accompanied by a cash register receipt, and returned within the first three weeks of the current quarter for refund, exchange, or credit. Texbooks purchased after the third week have a three business day (including Saturday) return/exchange. Software used as course materials and textbooks containing software, are not returnable if the seal on the software or sleeve is broken.
- Trade, technical, and medical books may be returned for refund, exchange, or credit within 14 days if they are in resalable condition and are among the titles currently carried in the UCSD Bookstore.
- Nonrefundable/nonexchangeable merchandise: medical instruments, Medical (MDTEST), other testing (REFEXM) books, magazines, and clearance books.
- Computer hardware and software refund policies are available in the computer department.

University Police Department

Building 500 University Center
Mail code 0017
EMERGENCY, DIAL 9-1-1
Business, (858) 534-4357
http://police.ucsd.edu
The UCSD Police Department protects life and property through the enforcement of local, state, and federal laws. The police department strives for a safe campus environment, where the educational and research pursuits of the university can be realized.

The Police Department provides continuous twenty-four-hour-a-day police patrol to protect the campus community, along with the dispatching of emergency fire and ambulance services.

In addition, student residential areas are provided with additional security with on-site residential security officers (RSOs) during the evening and early morning hours.

CRIME PREVENTION PROGRAM

(858) 534-3644

The Police Department's Crime Prevention Program offers a variety of information to the campus community on crime prevention meth-
ods. Pamphlets and informative seminars are available.

COMMUNITY SERVICE OFFICER PROGRAM

(858) 534-9255

CSOs are students employed by the UCSD Police Department. They provide a variety of services related to crime prevention and campus safety. One of the services is the safety ESCORT program, which is available every evening from 5:00 p.m. to 1:00 a.m. They also provide security for campus events and facilities. For more information contact the program coordinator at (858) 822-1130.

LOST AND FOUND

(858) 534-4361

The Police Department serves as a central repository for lost and found articles. Lost and found items should be taken to the police station. The station is open twenty-four hours daily.

U.S. Neighborhood Post Office

2.425 Price Center

Mail code 0047
(858) 534-2052
http://www-bfs.ucsd.edu/mails/
The Price Center Post Office is a contract station operated under the rules and regulations of the U.S. Postal Service. Stamps, money orders, and other postal items may be purchased and mailed at this location Monday-Friday, 8:30 a.m. to $4: 00$ p.rn. P.O. Box rentals are available in various sizes. Stamp purchases from stamp vending machines are available Monday-Friday, 8:30 a.m. to 7:00 p.m.

Organized Research Units (ORUs) are academic units the University of California has established to provide a supportive infrastructure for interdisciplinary research complementary to the academic goals of departments of instruction and research. The functions of ORUS are to facilitate research and research collaborations; disseminate research results through research conferences, meetings, and other activities; strengthen graduate and undergraduate education by providing students with training opportunities and access to facilities; seek extramural research funds; and carry out university and public service programs related to ORUs' research expertise. The senior staff of these units are faculty members in related academic departments. Institutes and centers currently in operation at UCSD are described below.

In addition, the university is formally and informally affiliated with various private research organizations such as the Institute of the Americas, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, Ludwig Institute for Cancer Research, and The Burnham Institute.

Universitywide Institutes/ Organized Research Units

California Space Institute (Cal Space) was established in 1979 as a multicampus organized research unit of the University of California (UC). It supports and conducts pure and applied spacerelated science and technological research and development throughout the UC system. Specific areas of investigation include the following:

Remote Sensing-acquisition, processing, and application of observations by satellites or other remotely automated instruments to study the Earth and its changing environment. The primarily satellite-based investigations study the greenhouse effect, global warming, hydrological cycle, land surface processes, air-sea interactions, radiation, and cloud dynamics.

Climate-interdisciplinary scientific research that applies space observations and numerical modeling techniques to fundamental issues of climate prediction and global change caused by both natural and human forces. CalSpace collaborates with the Climate Research Division and

other divisions at Scripps to study complex geophysical and biochemical interactions and feedbacks that link the components of the climate system, including the atmosphere, oceans, and land surfaces.

Space science and engineering-investigations of both the solar system and universe, and the development of automation and robotic systems for space exploration. Current investigations include the study of comets, asteroids, the solar wind, and cosmic background radiation. Space observations are often conducted with instruments and techniques designed by CalSpace researchers.

Education-promotion of undergraduate and graduate education in the interdisciplinary fields of climate and global change, and space science and engineering. The CalSpace-led state-wide consortium (California Space Grant Consortium) was designated in 1989 as a Space Grant College by NASA's Office of Education. The program expands leadership in the development and application of space resources through research and hands-on space projects, fellowship funding, and educational outreach activities. The California Space Grant Program works with NASA Centers and the aerospace and high technology industries to strengthen its educational objectives.
Institute of Geophysics and Planetary Physics (IGPP) was established in 1960 and named the Cecil H. and Ida M. Green IGPP in 1994. It is a multicampus research unit of the University of California, headquartered at UCSD, with branches at UCLA, UCR, UCSC, as well as Los Alamos and Lawrence Livermore National Laboratories. The present facility includes the Roger and Ellen Revelle Laboratory and the Judith and Walter Munk Laboratory. Present research concentrates on the study of crustal dynamics by measurements of gravity, tilt, displacement, and strain in both continental and oceanic environments; of regional seismicity and linear and nonlinear earthquake and explosion source mechanisms; of the variability of the earth's geomagnetic field and its generation by the geodynamo; of the spherical and aspherical structure of the earth by measurements of free oscillations, surface waves, and travel times; of seafloor tectonics using marine geophysical methods; of linear and nonlinear theoretical and computational fluid dynamics; of the variable mesoscale structure of the oceans and global ocean warming by acoustic tomography; of the
structure of the oceanic crust and lithosphere by seismic and electromagnetic measurements on the ocean bottom and at the ocean's surface through seismic multichannel methods; of seafloor and planetary topography and gravity using satellite methods; of nonlinear dynamics applied to geomorphology; and of tides, waves, turbulence, and circulation in the oceans; of surface change caused by tectonic activity, or climate change using satellite Interferometric Synthetic Aperture Radar (InSAR), as well as airborne and spaceborne laser altimetry. The institute operates a global network of some forty broadband seismometers, the IDA (International Deployment of Accelerometers) Array, with ten of these stations in the former Soviet Union which are telemetered by satellite to the institute; a crustal strain and seismic observatory at the Cecil and Ida Green Pi-on Flat Observatory near Palm Springs; a scientific wireless network in California with SDSC, the High Performance Wireless Research and Education Network (HPWREN); a southern California network of Global Positioning System (GPS) satellite geodetic sites operated by the Scripps Orbit and Permanent Array Center (SOPAC) and the California Spatial Reference Center (CSRC); an acoustic network in the Pacific for measuring ocean temperature variability; a $5 \mathrm{~m}, \mathrm{X}$-band satellite receiving antenna for satellite remote sensing; a national Ocean Bottom Seismograph Instrument Pool (OBSIP); and telemetered seismic arrays in Kirghizia, and two locations in California. The institute does not grant degrees, but makes its facilities available to graduate students from various departments who have chosen to write their dissertations on geophysical problems. Undergraduate students are involved in independent research projects and as laboratory assistants. Members of the institute staff now hold joint appointments with the Departments of the Scripps Institution of Oceanography, and Applied Mechanics and Engineering Sciences. Support for visiting scholars and grant matching funds is provided through an endowment to the Cecil and Ida Green Foundation for the Earth Sciences.

The University of California Institute on Global Conflict and Cooperation (IGCC) was founded in 1983 as a multicampus research unit for the entire University of California (UC) system. IGCC is based at UCSD and serves all ten universities of the University of California and
the UC-managed Lawrence Berkeley, Lawrence Livermore, and Los Alamos National Laboratories. IGCC's mission is to educate the next generation of international problem-solvers and peacemakers through teaching activities, research, and public service. Scholars, researchers, government officials, and journalists from the United States and abroad participate in IGCC projects.

During IGCC's first five years, research focused largely on averting nuclear war through arms control and confidence building measures between the superpowers. Since then, the research program has diversified to encompass several broad areas of inquiry: regional relations, international environmental policy, ethnic and internal conflicts, the proliferation of strategic weapons, and international trade and telecommunications.

IGCC serves as a liaison between the academic and policy communities. IGCC supports research and teaching on the causes of international conflict and opportunities to promote international cooperation through an annual fellowship and grant cycle. IGCC's development office provides additional resources on foundation funding opportunities for UC faculty projects.

In 1997, an IGCC Washington D.C. office was established to further connect scholars with the policy process. The D.C. office administers a graduate internship program in international affairs and the IGCC Dissertation/Foreign Policy Fellow Program. Interns and fellows work with governmental and non-governmental organizations involved in international policy. IGCC Washington also puts on policy seminars to showcase UC faculty research results and provide interaction between professors and policy-makers.

Annually, IGCC's NEWSWired provides a concise overview of IGCC's multicampus agenda, research, funding, awards, projects, meetings, workshops, colloquia, news, and publications. IGCC's online POLICYPacks serve our core mission of informing policy debate. IGCCReView condenses and thematically addresses booklength results of research conducted by senior faculty associated with IGCC.

IGCC receives primary support from the Regents of the University of California and the State of California. Additional funding has been provided by the U.S. Department of Energy, the U.S. Department of State, the U.S. Department of Defense, the U.S. Institute of Peace, the JapanU.S. Friendship Commission, and Japan's National Institute for Research Advancement
(NIRA). IGCC also receives important foundation support from the Carnegie Corporation of New York, the John D. and Catherine T. MacArthur Foundation, the William and Flora Hewlett Foundation, the Rockefeller Foundation, and the Japan Foundation Center for Global Partnership.

For in-depth information about IGCC and its research programs, including full-text publications, visit IGCCOnline at http://wwwigcc.ucsd.edu.

The White Mountain Research Station (WMRS) was established as a UC multicampus research unit in 1950 to support high altitude research. The station includes 4 laboratory facilities located over a $3,000 \mathrm{~m}$ (10,000 vertical ft .) altitude transect, ranging from the floor of the Owens Valley to the highest peak in the White/ Inyo Mountains. Located on the western edge of the Great Basin, WMRS also provides access to three major biogeographic regions (Sierra Nevada and White/Inyo montane, Mojave desert and Great Basin desert), and geologically rich and diverse field sites. WMRS has evolved into a major multidisciplinary research and teaching institution in eastern California, and hosts programs in archaeology and anthropology, atmospheric and space sciences, biological and medical sciences, ecology, conservation and natural resource management, geological, hydrological, and earth sciences.

WMRS facilities include: (1) the business office, laboratories, classrooms, dormitories, and dining hall for up to seventy people in Bishop, (2) a newly renovated lodge, cabins, and laboratory at Crooked Creek ($3,094 \mathrm{~m}$ altitude), which accommodates up to fifty people, (3) the Nello Pace Laboratory and Mount Barcroft facilities $3,801 \mathrm{~m}$ alitude) which accommodate thirty-five people in dormitories, and (4) the 450 square foot Summit Laboratory located on White Mountain peak ($4,342 \mathrm{~m}$ altitude), and is the highest research lab in North America.

The Bishop facilities include a modern biology laboratory, The Deepest Valley Interagency Plant Propagation Center, and a geographic information system (GIS) laboratory that houses the USGS-funded "Eastern Sierra Geospatial Data Clearinghouse." This is used by visiting researchers and local agency scientists, as well as offsite investigators and policy makers via World Wide Web access.

WMRS hosts more than 2,000 users from over 100 institutions per year for research, teaching,

and conferences. Research is most intensive in the summer and involves students supported by WMRS Fellowships, UC faculty supported by WMRS Research Grants, and faculty from other universities around the world. Educational uses include several geology field courses and the UC intercampus supercourse in Environmental Biology with the students in residence for the spring quarter. WMRS hosts the UC Summer Symposium in conservation biology and annual professional society meetings, and offers published proceedings from symposia on the environmental science in the region.

Campuswide Institutes

Established in September 1996, the AIDS
Research Institute (ARI) originated from the Center for AIDS Research (CFAR), an NIH-funded AIDS research program. The ARI is an organizational umbrella to integrate HIV (human immunodeficiency virus)/AIDS (acquired immune deficiency syndrome) researchers and clinicians on campus by sponsoring seminars and work-
shops, offering developmental grants to new investigators in the area of HIV- and AIDS-related research, and devising new approaches to the prevention, diagnosis, and treatment of AIDS. One of the the missions of the ARI is to become an important community resource for HIV- and AIDS-related clinical programs, innovative therapies, and cutting edge research taking place at UCSD. The AIDS program at UCSD's medical school ranked eighth in the nation and HIV- and AIDS-related grants at the university totaled more than \$24 million in 1999.

Related HIV research and care centers at UCSD include the Center for AIDS Research (CFAR), the UCSD Treatment Center, The Owen Clinic, The HIV Neurobehavioral Research Center (HNRC), The Center for Medicinal Cannabis Research, and the Center for Viral Dynamics at the San Diego VA Healthcare System.

Investigators at UCSD are also recipients of the Adult AIDS Clinical Trials Group (ACTG), the Pediatric AIDS Clinical Trials Group (PACTG), the California Collaborative Clinical Trials Group (CCTG), the California NeuroAIDS Tissue Network
(CNTN), and individual grants totaling more than $\$ 10$ million.

The ARI is committed to improving core facilities, as well as offering education, training, and research opportunities. It also serves as a liaison with the public for increased awareness of AIDS transmission, available treatments and clinical trials, as well as counseling programs for affected individuals and their families.

The UCSD Institute of Molecular Medicine
(IMM) is a newly approved initiative designed to provide a unique research and training atmosphere for graduate students, Ph.D. students, M.D. fellows, and M.D.-Ph.D. fellows with a scientific focus on molecular medicine in the postgenome era. The Institute of Molecular Medicine was established in June 2000 as an Organized Research Unit at UCSD, and has been designed as a "Center Without Walls" to encourage interactive, interdisciplinary, educational, and research opportunities in the growing field of molecular medicine. The faculty members of this institute are committed to create and maintain a collaborative environment that will ensure the rapid development of novel, biologically targeted therapies to enhance the lives of the patients of tomorrow. The first phase of programs has been established in the areas of cardiovascular and neurological diseases; however, it is anticipated that studies in other complex human diseases will be included as scientific and clinical opportunities are solidified in the new institute. A current National Institutes of Health Training Program and The Leducq Award are joint programs with collaborators at The Salk Institute, which afford students an opportunity to work for periods of time at both institutions, depending upon the technology which is being applied to their particular research project. Research and educational programs include stem cell biology, regeneration, chemical biology, neuroscience, computer modeling, and genomics.

The Institute of Molecular Medicine's goals and objectives are: 1) to expand on the growing vertebrate genomic databases and a variety of genetic based approaches to form a multidisciplinary research program to unravel complex human diseases, including heart and neurological disorders 2) to provide a high technology platform that will be based upon collaborative research efforts between prominent scientists in the fields of bioengineering, neuroscience, chemistry, physiology, biology, and genetics 3) to
provide an international, cross-institutional, interdisciplinary training program in the Molecular Basis of Complex Human Physiology and Diseases, for M.D., M.D./Ph.D., and Ph.D. postdoctoral fellows 4) to develop strategic research collaborations, educational exchange programs, and training alliances with other international institutions and 5) to promote the development of industrial collaborations for specific targeted areas of both scientific and clinical interest.

Seventy-five faculty members from UCSD, Salk, Scripps, Burnham, and internationallybased collaborators, are participating in the Institute of Molecular Medicine. These participants represent a cross-section of the investigators and educators who constitute the scientific and clinical community of leading investigators working and teaching in areas related to molecular, cellular, genetic, and bioengineering approaches to identify pathways that control complex human physiological systems and related diseases. Each year the IMM hosts an international symposium, "Days of Molecular Medicine" which brings world leaders to La Jolla to present state-of-the-art lectures and provides programs which allow students in the IMM to

meet and discuss their projects with the speakers and senior scientists in attendance. This year, the journal Nature Medicine has forged a partnership with the IMM to co-sponsor the 2001 symposium and awards and further information can be reviewed online at imm.ucsd.edu. In addition to strengthening the ties in academia, the symposium also provides an opportunity for corporate sponsors to discuss potential collaborations and meet with the next generation of physician-scientists in this ever-changing field. The Institute of Molecular Medicine is based on the vision that a new era in human health and drug discovery lies at the borders between curiosity-driven science and tomorrow's medical therapies.

The Institute for Neural Computation (INC) focuses on research into how nervous systems function through experimental investigation and modeling of neural structures. The institute supports graduate training programs in cognitive neuroscience and computational neurobiology. The recently dedicated Swartz Center for Computational Neuroscience within the institute uses imaging techniques to study brain dynamics. The Machine Perception laboratory in the institute studies human perception and develops similar capabilities for robots. Additional areas of research include motor control systems, learning and memory, and language modeling. There is an active visitors program and an industrial affiliates program with ongoing joint research projects.

The Institute for Nonlinear Science (INLS) promotes interdisciplinary research and graduate education in the development and application of contemporary methods in the study of nonlinear dynamical systems. Using a common mathematical language, faculty and students from disciplines as diverse as physics, mathematics, oceanography, biology and neuroscience, mechanical and electrical engineering, and economics pursue the implications of generic characteristics of nonlinear problems for their subjects. Each year the institute sponsors several long- and short-term senior visitors from the University of California and elsewhere and provides, through funds from external funding agencies, support for approximately ten graduate students to work on Ph.D. dissertations concerned with nonlinear problems. Also associated with INLS are approximately twenty full-time research scientists and postdoctoral researchers.

The core of NLS activities is composed of (1) joint research among faculty and students across disciplinary lines and (2) lecture series and working seminars designed to convey recent research progress and to stimulate new investigations. Through contracts with external agencies the INLS supports experimental, numerical, and theoretical studies of nonlinear dynamics and chaos in neurophysiology, investigations in nonlinear fluid dynamics and pattern formation, studies (jointly with the University of California, Los Angeles and Stanford University) of applications of chaos in communications, as well as in the nonlinear dynamics of granular materials.

INLS has developed joint research programs with universities, research institutes, and commercial companies in areas of common interest. It actively works with colleagues at UCLA, Stanford, Cal Tech, Argonne National Laboratory, ST Microelectronics, Time Domain Inc., and Randle Corporation. These affiliations provide new research horizons and realistic opportunities for technology transfer.

Institute for Pure and Applied Physical

Sciences (IPAPS) is an interdisciplinary research unit which brings together faculty and researchers in physics, chemistry, engineering, and Scripps Institution of Oceanography. The institute is concerned with fluids and materials. Specific subjects of research include superconductivity, ferromagnetism, semiconductor heterostructures, solid surfaces, plasma physics, hydromagnetics, turbulence, fluid mechanics, laser physics, and numerical analysis.

Within the IPAPS is the Center for Interface and Materials Science (CIMS), which emphasizes interdisciplinary collaborative research on the properties of surfaces, thin-layered composites, and novel materials, as well as their technological applications. With centralized space and equipment, CIMS brings together faculty and research staff from the Departments of Physics, Applied Mechanics and Engineering Sciences, Chemistry and Biochemistry, Electrical and Computer Engineering, and the Scripps Institution of Oceanography.

The Sam and Rose Stein Institute for

Research on Aging (SIRA) is an ORU committed to advancing lifelong health and independence through research, education, and patient care. Established in 1983, the unit consists of sixtyeight researchers representing eleven different departments ranging from bioengineering to
family and preventive medicine and from neurosciences to psychiatry. This wide diversity fosters an interdisciplinary approach to solving the problems posed by diseases that increase with age. A majority of the total budget is allocated to research expenditures. SIRA also sponsors "Start-up Grants" to junior-level scientists in order to allow them to lay a foundation of data necessary to compete for national funding and help with career development. In addition, the institute is active in recruiting young students to the field of aging through the "Student Investigator Grant Program." Undergraduate and medical students, who have expressed an interest in age-related research, are teamed with established senior scientists to pursue a project. Healthwise, the free monthly newsletter, informs community members of the latest research discoveries and upcoming events sponsored by SIRA and UCSD. Coupled with the newsletter, a free monthly public lecture series presented by SIRA faculty is also used to inform the public.
The Whitaker Institute of Biomedical Engineering (WIBE). The Institute for Biomedical Engineering was established as an Organized Research Unit in November 1991. In August 1999, the ORU was named the Whitaker Institute of Biomedical Engineering in recognition of the strong support given by the Whitaker Foundation to biomedical engineering at UCSD.

The overall objective of the ORU is to provide an academic research unit for interdisciplinary interactions among faculty and students aimed at promoting and coordinating bioengineering research and education. The goals of the ORU are complementary to the academic goals of departments of instruction and research, with a major emphasis in bridging the various disciplines on campus related to biomedical engineering. The specific aims are: (1) to promote technology and biomedical engineering research at UCSD, (2) to enhance extramural research funding involving multidisciplinary collaborations, (3) to increase the visibility of the bioengineering programs at UCSD, (4) to coordinate bioengineering research at UCSD and neighboring institutions, and (5) to set up a high-technology laboratory for technology transfer to industry and medicine.

Members of the institute include close to 100 faculty and research scientists from the Jacobs School of Engineering, the School of Medicine, other departments on the main campus, and

The Scripps Institution of Oceanography, as well as The Scripps Research Institute, The Salk Institute, and The Burnham Institute.

The main research theme of the institute is integrative biomedical engineering. Under this general theme, principles and methods of engineering and life sciences are applied to elucidate structure-function relationships in normal and pathological states. The focus areas range from genes and molecules to tissues and organs. The research programs in the WIBE integrate the various levels of biological hierarchy and different body systems, as well as quantitative engineering analysis and modern biomedical sciences.

The WIBE has established several core facilities, which have provided research infrastructure for its members and educational facilities for graduate and undergraduate students, as well as postdoctoral fellows. The facilities include the Molecular/Genetic Technology Core (which includes Molecular Biology and DNA microarray), a Cell/Tissue Technology Core (which includes Confocal Microscopy, Cell/Tissue Culture Core, Flow Cytometry, Scanning Cytometry, and Biosensor Technology), and a Computation and Modeling Technology Core.

The research and training activities fostered by the WIBE are related to important medical problems such as heart failure, hypertension, atherosclerosis, pulmonary diseases, shock, inflammation, burns, orthopedic disorders, sports injuries, myopathies, peripheral nerve and brain injuries, age-related blindness, noise injury, cancer, liver disease, and diabetes. The ultimate goal of the interdisciplinary research carried out in the Institute is to improve the methods of prevention, diagnosis, and treatment of diseases. To this end, the WIBE endeavors to enhance the collaboration between basic science and clinical medicine and the cooperation between academia and industry. The WIBE Industrial Advisory Board was formed in 1993. With the help of the Board, an Industrial Affiliates Program was formed to facilitate the participation of biomedical engineering-related companies in WIBE activities. The Program currently has twenty member companies in San Diego and elsewhere. The enhanced academiaindustry liaison has helped to facilitate collaborative research, student internship training, and scientific interchange through symposia, seminars, and meetings.

The WIBE received a $\$ 5$-million Whitaker Foundation Development Award in September 1993. The award made possible the recruitment of new faculty, increase of graduate student fellowships, enhancement of research cooperation among scientists on campus and in neighboring institutions, facilitation of industrial liaison, and the holding of symposia and workshops. The fostering of interdisciplinary collaborations by WIBE has also led to increased research funding from federal and industrial sources.

The WIBE played an important role in the successful application of the Whitaker Foundation Leadership Award by the Department of Bioengineering. The Leadership Award provides $\$ 18.2$ million for the construction of a new bioengineering building (the Powell-Focht Bioengineering Hall), establishment of new core facilities for research and education, and recruitment of new faculty with joint appointments in the School of Medicine and Department of Bioengineering.

The WIBE is leading an effort to establish a University of California system-wide Multicampus Organized Research Unit (MRU) on bioengineering.

Centers

The UCSD Cancer Center (CC), active in the fight against cancer since 1979, is a National Cancer Institute-designated Clinical Cancer Center. The specific goals of the Cancer Center are to enhance the present level of basic research, increase collaborative research, increase the application of basic science to solve clinical problems through translational research, diseminate new knowledge to oncology professionals and scientists in the San Diego community, enable the biomedical industry to transfer new technology to the clinical setting, develop a strong effort in cancer prevention and control, and educate and train undergraduate and postgraduate physicians, and basic scientists. Under the auspices of a Cancer Center Support Grant from the National Cancer Institute, there are seven active program areas within the Cancer Center. These include Cancer Biology, Cancer Genetics, Cancer Prevention and Control, Cancer Pharmacology, Cancer Symptom Control, Translational Oncology, and Viral Malignancy. Shared resources at the Cancer Center include Behavioral Assessment and Counseling,

Biostatistics, Clinical Trials, Data Compilation and Analysis, Digital Imaging, DNA Sequencing, Flow Cytometry, Histology and Immunohistochemistry, Microarray, Molecular Pathology, Nurition, Radiation Medicine, and Transgenic Mouse.

Research and educational grants support the training of postdoctoral fellows and medical students. The Clinical Trials Office coordinates clinical research trials involving cancer patients at UCSD and is the focal point for a large Oncology Outreach Network which provides state-of-theart protocol treatment opportunities for patients in a broad geographic area. Patient care activities of the Cancer Center are located in the Combined Oncology Clinic at the Theodore Gildred Facility and in UCSD Medical Center, both located in Hillcrest, and at the Oncology Clinic of the Periman Ambulatory Care Center and in UCSD Thornton Hospital, both located in La Jolla. Basic research activities of the Cancer Center are carried out at a variety of other locations on or adjacent to the La Jolla campus. Total membership of the Cancer Center exceeds 213 laboratory investigators and clinical physicians from nineteen academic departments. The research funding for Cancer Center members exceeds $\$ 88$ million.

The Center for Astrophysics and Space
Sciences (CASS) is an interdisciplinary research unit established in 1979. The center brings together academic and research staff from the Departments of Physics, Chemistry, and Electrical and Computer Engineering. Research is conducted in the scientific areas of theoretical astrophysics; infrared, optical, and ultraviolet astronomy; solar observational and theoretical studies; X-ray and gamma-ray astrophysics; experimental and theoretical magnetospheric and space plasma physics; radio astronomy and cosmochemistry, including the chemistry of interstellar matter.

CASS provides a jointly shared facility which has office, laboratory, and computer space to enhance the interchange of expertise. Researchers in CASS have access to many University of Calif-ornia observing facilities, including Lick Obser-vatory and the Keck Telescopes, and have contributed experiments to many major NASA space missions including the Hubble Space Telescope and the Rossi X-Ray Timing Explorer. Associated with CASS are included seventeen faculty, about twenty-five Ph.D.-level research staff, twelve graduate stu-
dents, and thirty technical and administrative support personnel.

The center's facilities, faculty, and research staff are available to graduate students in the Departments of Physics, Electrical and Computer Engineering, and Chemistry who have chosen to write their dissertation on subjects of research encompassed by CASS. Graduate and undergraduate courses in astrophysics, astronomy, and space sciences are developed and taught by the academic staff of CASS. The total yearly budget is about $\$ 4$ million, mostly from federal funding sources.

The Marlar Foundation provides several enhancements to the academic program, including support of the astrophysics and space science library, and funding for a yearly public lecture given by an eminent astrophysicist.

The overall objective of the Center for
Energy Research (CER) is to provide an academic research unit for interdisciplinary interactions among UCSD faculty, research staff, and students aimed at promoting and coordinating energy research and education. Approximately sixty-one faculty, staff, and students are affiliated with the CER. The goals of the CER are complementary to academic departments of instruction and research with an emphasis on bridging the various disciplines related to energy research on the campus. Emphasis is currently on combustion and fusion energy research. The CER will also provide a vehicle for developing other dimensions of energy research, including energy policy research. The specific goals of the CER are: (1) to provide an inter-departmental coordinating function for energy research groups and projects at UCSD (2) to enhance the prospects of extramural research funding involving interdepartmental and multi-disciplinary collaborations in energy research (3) to promote the visibility of energy topics in undergraduate and graduate programs at UCSD (4) to provide a mechanism for interacting with other institutions involved in energy research with particular attention to potential industrial partners and (5) to promote the visibility of energy research at UCSD to potential sponsors and funding agencies.

A number of graduate research assistantships are available. Applications for graduate study in any of the disciplines covered by the CER should be directed to the academic department in which graduate study is to be undertaken.

The Center for Environmental Research and Training (CERT) coordinates the broad range of
environmental research activities across the university. Departmental participation includes the Departments of Anthropology, Biology, Chemistry and Biochemistry, Economics, School of Engineering, School of Medicine, Scripps Institution of Oceanography, the Center for U.S.Mexican Studies, and the Graduate School of International Relations and Pacific Studies. This extensive group offers an opportunity to address environmental issues across traditional disciplinary boundaries. This opportunity is particularly crucial for understanding the complex interactive nature of global and regional environmental issues. The CERT also provides an interface for interaction with environmental agencies outside the university, including the environmental technology sector and governmental agencies.

The Center for Human Development (CHD) is an interdisciplinary, research-centered unit designed to meet the growing needs for interdisciplinary exchange on issues related to human development. The goal of CHD is to provide a forum for interdisciplinary exchange that creates dialogue between members of diverse disciplines. The Center is organized around five structurally distinct components, but with integrated functions. Each function is designed to serve a specific set of needs and to make unique contributions to the larger enterprise. These components are the following: (1) research support and infrastructure, (2) enrichment of human development's instructional counterparts-the undergraduate Human Development Program and a proposed interdisciplinary graduate program, (3) dissemination activities focused on but not limited to local community needs, (4) public policy analysis, and (5) assessment activities. In addition, the Center serves as a focal point for research, evaluation, and assessment activities associated with the campuswide Center for Research in Educational Equity, Assessment, and Teaching Excellence (CREATE).

The Center for Human Information

Processing (CHIP) is a center for the study of the neural basis of perceptual and cognitive processes in the brain. It has two missions. The first is theoretical; we hope to understand the neural basis of perception, language, memory, and other mental processes by studying neurological patients as well as normal subjects. Second, we have the practical goal of developing new treatments for neurological and psychiatric disorders. It is composed of four subdivisions, each operating with the common goal of fur-
thering our understanding of human cognitive processes and the neurological bases of these processes. The subdivisions are: Brain and Perception Division, the Cognitive Processes Division, Division of Neuropharmacology and Alternative Medicine, and the Language Processing Division.

CHIP provides facilities for visiting scholars and supports workshops, conferences, and brownbag discussion groups centering on the theoretical and empirical issues in each of these areas.

The Laboratory of Comparative Human Cognition (LCHC) operates under the auspices of CHIP. From its inception at UCSD in 1978, the focus of the LCHC's theoretical and empirical work has been the role of culture in shaping human development and human cognition. Members of the LCHC elaborate on culture as the species-specific medium of human exitence, constituted of systems of artifacts and acting as both a constraint on and a tool kit for human action. Research sites focus on adult development, the organization of learning, and connecting theory and practice in community-based activity systems.

Within psychology, the approach adopted by LCHC is variously referred to as cultural-historical psychology, cultural psychology, or a cultural context approach to mind. It treats the mind as a phenomenon distributed among people and their artifacts, including language and social institutions. This approach is closely linked to social science movements referred to as activity theory, constructivism, and distributed cognition, which ground their analyses in people's everyday culturally organized activities.

Current research projects are grouped around five major areas: (1) the creation of experimental educational activities in community settings to promote the development of numerous forms of literacy; (2) investigation of cultural and linguistic factors in cognitive and social development; (3) computer networking and joint activity; (4) intervention studies of work and expertise as collaborative activity; and (5) analyses of discourse and representation. The LCHC published fifteen
volumes of The Quarterly Newsletter of the Laboratory of Comparative Human Cognition. It now publishes a journal, Mind, Culture, and Activity: An international Journal. The LCHC also coordinates several international electronic discussion conferences which currently includes more than 400 researchers from sixteen coun-
tries. The LCHC conducts a weekly seminar and workshops focused on special topics, including cutting-edge research reports from members of an interdisciplinary, international group of LCHC alumni who visit periodically.

The Center for Iberian and Latin American

Studies (CILAS) coordinates and promotes Latin American and Iberian research and service activities for faculty and students in all departments at the university. It sponsors multi-disciplinary colloquia, conferences, projects and publications, as well as library expansion. Its most recent major initiative has been a multi-year project on Latin America and the Pacific Rim. The center also hosts visiting scholars, and it awards grants and fellowships each year to promising graduate students.

The Center for Magnetic Recording

Research (CMRR) is devoted to multidisciplinary research and education in areas of science and engineering that form the foundation for information storage technologies for computer disk and tape drives. Founded in 1983 in partnership with a consortium of industrial sponsors, the center's continuing mission is to advance the state-of-the-art in magnetic disk and tape storage technologies, while producing highly trained graduate students and postdoctoral professionals. Together, the center's faculty and graduates have made major contributions to the remarkable progress that storage systems have achieved in storage capacity, data transfer rate, and cost efficiency over the past two decades.

CMRR supports four endowed professorial chairs, currently in the areas of magnetic materials, recording physics, tribology and mechanics of the head/medium interface, and signal processing and coding. The chaired professors also hold faculty appointments in the Departments of Physics, Electrical and Computer Engineering, and Mechanical and Aerospace Engineering. Graduate student researchers, post-graduate researchers, professional scientists, and visiting scholars representing international academic institutions and industrial laboratories contribute to a research and educational environment that is dynamic and varied.

As part of the center's mission to educate future leaders in the vital information storage industry, the faculty teach specialized classes at the undergraduate and graduate levels that train students in the theoretical methods and experimental techniques underlying advanced magnetic recording technology. In addition, the center contributes to the continuing education
of professionals in the storage industry through regular seminars, research reviews, and focused workshops.

Virtually all major information storage companies are sponsors of CMRR, and they provide substantial research support through their membership fees, focused research grants, and graduate student fellowships. "Real-world" research opportunities are also available to students through academic-year and summer internships with selected sponsors. Additional support has come from private foundations, state, and federal funding agencies, as well as from active participation in joint university-industry programs, such as those coordinated by the National Storage Industry Consortium (NSIC).

Through cooperative research projects and the associated faculty program, the center also fosters interactions with researchers in other campus organizations, including the Department of Chemistry and Biochemistry, the Department of Computer Science and Engineering, the San Diego Supercomputer Center, and the Information Storage Industry Center in the Graduate School of International Relations and Pacific Studies. The interests of these affiliates cover a broad spectrum, including novel materials for data recording, disk-drive failure prediction, computational analysis of the recording process, and the globalization of the magnetic recording industry.

CMRR also supports a world-class Library/Information Center for information storage technology that provides a range of services to sponsors, resident researchers, and students. Services include licensed database searching, patent searching, document retrieval, and expedited access to proprietary technical resources.

The Center for Molecular Agriculture (CMA) promotes research and education in plant genetics and plant molecular biology with an eye to the application of that research to the improvement of crops. Crop improvement cannot any longer rely exclusively on traditional plant breeding methods but requires the application of new technologies that include but are not limited to genetics and genomics, informatics, molecular gene isolation, and plant transformation. The CMA brings together researchers from UCSD and the Salk Institute and is a resource for the entire San Diego community. It provides a focal point for interaction with the local and statewide agricultural biotechnology industry. The Center wishes to play an active role in the debate about
the safe cultivation and use of genetically modified crops.

Center for Molecular Genetics (CMG) promotes molecular genetic research and the training of graduate students and postdoctoral fellows in the biological, chemical, and biomedical sciences. The center's research focus integrates basic science, including work on model developmental systems, with clinical applications aimed at understanding the molecular bases of human diseases. The latest techniques of gene isolation, gene manipulation (including control of gene expression), and the genetic transformation of cells and organisms are further developed and applied to major problems in biology and medicine. The center serves as a resource for the entire campus for molecular genetic techniques, materials, and facilities, and it encourages interactions with other ORUs in the biomedical area.

The center also strives to promote interactions between laboratories at UCSD and the biotechnology community and to facilitate the prompt and orderly transfer of new information resulting from innovative research into the private sector. The center reaches out to its supporters in the biotechnology and biopharmaceutical sectors through its industrial affiliates program, Biotechnology Origen. This unique program brings together scientists, business executives, and lawyers from both the for-profit and not-for-profit sectors of the industry to participate in a variety of meetings, conferences, and symposia throughout the year.

The Center for Research in Biological Structure (CRBS) is an interdisciplinary research unit focused on learning more abut the nature and interrelationship of increasingly complex levels of biological structure, from the atomic and molecular level to the cellular and tissue level. Researchers involved with this center are studying the arrangements of atoms that determines the structures of enzymes, proteins, and the body's vast chemical communications network to the tissues and organs that provide an organism's inner strength and outside support. The center's goals include creating new tools to understand cell functions such as those involved in muscle contraction, cardiovascular networking, and the activities of the central nervous system such as thinking, memory, and emotion. Longer-term goals include providing a structural and computational basis for understanding signal transduction at all levels. A key aspect of this
work will be to provide a state-of-the-art interdisciplinary environment in which biology and medicine merge with chemistry, physics, and computation.

Researchers participating in the center are applying the most sophisticated computer assisted technologies. These technologies include a high-power electron microscope capable of revealing the three-dimensional structures of living cells and their internal components, state-of-the-art resources for X-ray crystallography and magnetic resonance analysis that define highresolution structures of simple and complex proteins, and confocal light microscopes that allow researchers to visualize molecules tagged with fluorescent markers as they pass chemical messages to each other. The researchers are also using the powerful computing resources of the San Diego Supercomputer Center (SDSC) to simulate the activity of such systems, analyze the results, and organize and make accessible the growing storehouse of biological information for the benefit of all. These resources include the highest-performance supercomputers, visualization and database technologies, large archival storage systems, and high-speed networks.

Established in 1996, the center involves researchers from a cross section of disciplines across the campus, the UCSD Medical School, the Salk Institute for Biological Studies, and SDSC, including from bioengineering, biology, chemistry, computer science, mathematics, neuroscience, pharmacology, psychiatry, and physics. This group also seeks to forge new interactions with the biotechnology and biocomputingrelated companies to effect technology transfer. The interaction among these researchers is expected to produce new perspectives, point out fruitful research topics, lead to the development of new technologies and drugs, and train a new generation of researchers interested in biological structures and how they interact with each other.

The Center for Research in Computing \& the Arts (CRCA) is an organized research unit of UCSD whose mission is to foster advanced research and production at the crossroads between digital technology and new art forms.Current areas of interest include interactive networked multimedia, virtual reality, com-puter-spatialized audio, and live performance techniques for computer music and graphics.As the University of California's oldest arts research center, CRCA pursues innovative approaches to the arts, and crosses the boundaries of the
humanities and the sciences. Our faculty research pool represents the computing interests from such diverse departments as music, visual arts, theatre, psychology, computer science, and engineering. Faculty members are creating new models of artistic practice through their liaisons with cultural institutions, high-tech industries, and interdisciplinarycollaborations. We host artist researchers from around the world and service the research interests of faculty and graduate students. Ourresearch members produce research results and art experiences that challenge conventional thinking both within the artistic and scientificrealms.

CRCA's facility offers a broad array of computing platforms and tools. Research areas allow for in-depth, individualized work in digital audio, digital video, multimedia development, spatialized sound, software development, and high bandwidth curriculum development. The Center presents the outcome of research efforts via exhibitions and performances at international venues, as well as on the internet, in publications, and events offered in our performance space.

More information about the Center, our researchers, the facility, and the process for engagement, may be found at: http://wwwcrca.ucsd.edu.

Center for Research in Language (CRL). The foci of the center are on language processing,
language learning, language disorders, and simulations of all these aspects of language in artificial systems. Research in the center is interdisciplinary and draws upon the fields of linguistics, psychology, cognitive science, neurosciences, computer science, and communication.

The center's facilities are designed to accommodate laboratory research projects by the faculty and graduate students; facilities include a number of high-performance work stations, a transputer laboratory, extensive equipment for audio recording and analysis, and equipment for psycholinguistic experimentation.

Current research projects include studies of language and cognitive development in children; language impairment in children and adults; word and sentence processing in bilinguals; foreign vocabulary in American Sign Language; development of neurally inspired parallel processing models of speech perception; studies in first language acquisition; crossliguistic comparisons of the process of language acquisition and aphasia; research on the integration of grammatical analyses and theories; a project to collect large-scale text corpora in electronic form; a study of expectancy generation in sentence processing, and the compilation of an Albanian-English dictionary. The center administers an NIH pre- and postdoctoral training grant, "Language, Communication and Brain." CRL has also entered into several institutional agree-
ments with research institutions in Europe, Asia, and the Americas, providing for the exchange of personnel and support for projects of mutual interest. An ongoing speaker series presents a broad range of experimental approaches to the study of language. The center publishes a monthly electronic newsletter.
The Project in Cognitive and Neural Development is an activity of CRL. Its purpose is to provide a forum for interdisciplinary research on brain and cognition in human children, including rese-arch on the neural bases of language and communication. The project brings together faculty and research staff from the UCSD Departments of Cognitive Science, Communication, Linguistics, Neurosciences, Psychology, Psychiatry and Sociology, the San Diego State University Depar-tments of Psychology and Communication Disorders, and the Salk Institute for Biological Studies.

The Center for U.S.-Mexican Studies

 (CUSMS), established in 1979, is the nation's largest program devoted to the study of Mexico and U.S.-Mexican relations. It supports research in the social sciences and history, graduate student training, publications, and public education activities that address the full range of problems affecting economic and political relations between Mexico and the United States. The center also studies the history, economy, politics, and social structure of Mexico, and aspects of the U.S. economy and U.S. public policy that affect Mexico.

Through its program of researchers-in-residence, the center each year sponsors the research of twenty-five to thirty predoctoral and postdoctoral scholars, who spend three to nine months in residence. Typically, people from Mexico receive over half of these awards, which are made through an open, international competition. Other visiting fellows come from Europe, Canada, Latin America, and East Asia. The center's permanent academic staff also conducts long-term studies of political change in Mexico, the U.S.-Mexico border environment, Mexican migration to the U.S., and social and economic consequences of North American economic integration. The center publishes much of the research conducted under its auspices.

Each summer, the center conducts a six-week seminar in studies of the United States for twenty to twenty-five Latin American social scientists and nonacademic professionals.

The center's interdisciplinary Research Seminar on Mexico and U.S.-Mexican Relations, which meets weekly throughout the academic year, and its research library attract leading researchers from throughout the United States, Mexico, and other countries. In addition, several research workshops on specialized subjects are held each year.

The center has a very active public education program, which includes frequent briefings for journalists, public officials, and community groups.

The Glycobiology Research and Training

 Center (GRTC) seeks to facilitate and enhance glycobiology research and training at UCSD. Current faculty membership includes many UCSD faculty from several departments across the School of Medicine, SIO, and the general campus as well as adjunct faculty at nearby institutions. Affiliate members include interested scientists in the La Jolla area as well as faculty from other UC campuses.Glycobiology is the study of the structure, biosynthesis, and biology of sugar chains (called oligosaccharides or glycans) that are widely distributed in nature. All cells and many proteins in nature carry a dense and complex array of covalently attached glycans. These are often on the outer surface of cellular and secreted macromolecules, in an optimal position to modulate or mediate events in cell-cell and cell-matrix interactions that are crucial to the development and function of a complex multicellular organisms. They can also mediate interactions between
organisms (e.g., between host and parasite). In addition, simple, rapidly turning-over proteinbound glycans are abundant in the nucleus and cytoplasm, where they appear to serve as regulatory switches. The development of a variety of new technologies for exploring the structures of these glycans has recently opened up this new frontier of molecular biology.

The GRTC seeks to foster interactive research in glycobiology by coordinating the availability of state-of-the-art instrumentation and expertise in the structural analysis of glycans through a Glycotechnology Core Resource, increasing intellectual and collaborative interactions by organizing symposia, joint programs and seminars, coordinating joint applications for extramural support, improving access to relevant informatics, and facilitating the transfer of basic glycobiology research to practical applications. The Center also strongly emphasizes graduate, postgraduate, and medical student education in glycobiology, including contributions by the faculty to core curricula, as well as to elective courses and journal clubs.
The San Diego Supercomputer Center (SDSC) is an organized research unit of UCSD focusing on computational science and engineering. Its mission is to advance knowledge through the development and application of high-performance computing technologies. With a staff of 280 scientists, software developers, and research, operations, and user support staff, SDSC is a recognized world leader in bioinformatics, computational chemistry, environmental informatics, data-intensive computing, Internet infrastructure research, and computer security. Researchers around the country also use SDSC resources, including the nation's most powerful academic-use supercomputer, to study problems in various scientific applications areas and investigate new paradigms of computing.

SDSC research activities are typically undertaken jointly with faculty from relevant departments across campus, including computer science and engineering, bioengineering, biochemistry and chemistry, pharmacology, and Scripps Institution of Oceanography.

Information Technology Activities at SDSC focus on data-intensive computing, networking, and computer security.

SDSC's Data-intensive Computing Environments group is a world leader in promoting the ability to publish scientific data by integrating
mass storage systems, distributed data-handling systems, data collections, digital libraries, and data grids. SDSC technology is being used to create scientific data collections, federate digital libraries, and build persistent digital archives. The systems will provide integrated access to data sets and allow remote application of digital library and presentation services on the data collections. In 2000, fifteen data collections aggregating more than twenty terabytes of data were assembled at SDSC. The collections include astronomical images from the 2-Micron All Sky Survey, art images from the Art Museum Image Consortium, Chinese text from the Pacific Rim Digital Library Alliance, and human brain images. The technology is also being used to prototype persistent digital archives for the National Archives and Records Administration. http://www.sdsc.edu/DICE/.

Networking: With the goal of promoting a more robust, scalable Internet infrastructure by fostering engineering and technical collaborations among Internet providers, vendors, and users, the Cooperative Association for Internet Data Analysis (CAIDA) works with the community to develop and transfer tools and technologies that provide engineering and other insights relating to the operation and evolution of the Internet infrastructure. CAIDA is collaborating with providers and researchers to refine traffic metrics, foster collaborative research environments, and encourage the development and testing of advanced networking technologies. http://www.caida.org.

SDSC's Applied Network Research group is currently conducting two projects of short- to medium-term concern to the Internet. The first, as part of the National Laboratory for Applied Network Research (NLANR), is a network measurement and analysis activity that focuses on performance aspects of the high-performance networking community and owns and operates a vast network analysis infrastructure, including more than 100 dedicated measurement machines throughout the U.S. and abroad. The project continuously makes its data publicly available (http://moat.nlanr.net/). The second activity is UCSD's High Performance Wireless Research and Education Network (HPWREN), which is creating, demonstrating, and evaluating a non-commercial, prototype, high-performance, wide-area, wireless network. The NSF-funded network includes backbone nodes at UCSD and
hard-to-reach areas of San Diego County. The HPWREN (http://hpwren.ucsd.edu/) will be used for network analysis research and to provide high-speed Internet access to field researchersfrom geophysics, astronomy, and ecology-and to rural Indian reservations and schools.

Security: The Pacific Institute for Computer Security (PICS) conducts and publishes research on real-world computer and network security issues, emphasizing solutions to real security problems. This project has produced several CERT advisories and numerous security tools, available via the Web and FTP, to help system administrators analyze and investigate intrusions. http://security.sdsc.edu.

Computational Science Activities at SDSC focus on computational biology and bioinformatics, computational chemistry, and environmental informatics and computational ecology. SDSC is particularly strong in biology (see http://biology.sdsc.edu/) with the following representative activities:

- The Protein Data Bank is the world's central scientific repository of biological 3-D macromolecular structure data determined experimentally by X-ray crystallography and nuclear magnetic resonance.
- The Biology Workbench is a revolutionary Web-based tool to help biologists search many popular protein and nucleic acid sequence databases.
- The Computational Center for Macromolecular Structure develops and distributes software to analyze the structure of biological molecules.
- The National Biomedical Computation Resource facilitates biomedical research by making advanced computational and visualization capabilities easy to access and use.
- Most recently, SDSC is playing the key bioinformatics role in two new multi-institutional projects, the Alliance for Cell Signaling, led by the University of Texas, Southwestern, and the Joint Center for Structural Genomics, led by The Scripps Research Institute.
SDSC's computational chemistry activities focus on quantum and atmospheric chemistry and building bridges between chemistry and molecular biology.

In environmental informatics and computational ecology, SDSC supports projects such as Biodiversity Insight, which develops software
tools to support research, data analysis, and visualization related to biodiversity issues (http://biodi.sdsc.edu/) and the Long-Term Ecological Research Network, by facilitating the use of high-performance computing resources in support of long-term ecological research (http://www.sdsc.edu/sdsc-lter).
The SDSC Fellows Program promotes computational science and engineering activities across campus and seeks to strengthen intellectual ties between SDSC staff and campus faculty. Faculty members are encouraged to apply to join this program. For more information, please contact Peter Arzberger, parzberg@sdsc.edu, (858) 822-0935.

Research Experiences for Undergraduates, funded by NSF, provides an opportunity for undergraduates to work on computational science research projects under the guidance of SDSC mentors and their campus advisers. Students can participate in a full-time summer program or a part-time program during the academic year, and they must apply for and be accepted into the program. Stipends are provided. For more information, please contact Ann Redelfs, redelfs@sdsc.edu, (858) 534-5032.

Projects

The goal of the African and AfricanAmerican Studies Research Project is to facilitate faculty, postgraduate, and graduate research in the areas of Africa and African diaspora studies in the social sciences and the humanities, and to foster the comparative, crossnational, and interdisciplinary dimensions of research, with a core group of scholars drawn from several fields in the social sciences and humanities. These research efforts are linked directly to larger local and international community concerns.

The project sponsors visiting scholars, focused research groups, a seminar, and symposia. Faculty from seven university departments are involved. The project oversees the African Studies Minor. The project is also part of the UC Systemwide Consortium of African Studies Programs and the national Association of African Studies Programs. It provides the basis for the establishment of an organized research unit on African and African-American Studies at a later time.

The Project for Explaining the Origin of
Humans is a broad-based multidisciplinary coalition of individuals in the La Jolla area (from UCSD as well as surrounding institutions) who are interested in defining and explaining the evolutionary origins of humans and in generating testable hypotheses and new agendas for research regarding this matter. Areas of current interest include primate genetics and evolution, paleoanthropology and hominid origins, mammalian and primate neurosciences, primate biology and medicine, the roles of nature and nurture in language and cognition, human and primate society and culture, comparative primate reproductive biology, geographic, environmental and climatic factors in hominid evolution, as well as general theories for explaining humans. The group includes faculty from the Departments of Anthropology, Biology, Chemistry and Biochemistry, Cognitive Science, Linguistics, Medicine, Neurosciences, Oceanography, Pathology, and Psychology.

The Project in Display Phosphor Research provides a forum for research on the synthesis, characterization, and processing of phosphors for high definition display applications. The project brings together faculty and researchers from the UCSD Departments of Chemistry and Biochemistry, Mechanical and Aerospace Engineering (MAE), and Electrical and Computer Engineering (ECE). The project was organized in 1992 in order to expand collaboration with other colleagues at UCSD and to extend research efforts to address both near-term and future research issues concerning phosphor materials and advanced displays.

The Project In Econometric Analysis (PEA) is concerned with the analysis of economic data and with techniques for modeling relationships between economic variables and testing economic theories. As economic variables have properties not generally found in other fields, standard procedures from mainstream statistics are often not appropriate. The field of econometrics has been developed to deal with these issues. Its importance is indicated by its effect on the methodologies in other social sciences, such as political science and empirical history, and the fact that several Nobel Prize winners in economics have been econometricians.

The Project in Econometric Analysis (PEA) supports the work of an active group of researchers and provides opportunities for productive inter-
action among faculty and students. Areas of active research include financial econometrics, non-linear time series modeling, properties of neural network models, the theory of economic forecasting and various actual applications including evaluations of models and forecasts in finance and economics. The PEA allows links with workers from other universities in this and other countries. In 1999-2000 and 2000-2001 the project had visitors from Europe, Asia, North America, and Australia; some were senior and some were pre- and post-doctoral students. Faculty members and graduate students associated with the project presented their research at workshops and conferences worldwide. In addition, PEA facilitates the submission of grant proposals to outside agencies.

The Project in Geometry and Physics (PGP), established in 1987, provides opportunities for increased collaboration between mathematicians and physicists. The project hosts several scientific meetings each year and also sponsors a number of research seminars with distinguished scientists from inside and outside the UCSD community.
The Project on International and Security
Affairs (PISA) is the campus affiliate of the Institute on Global Conflict and Cooperation (IGCC), a UC systemwide institute based at UCSD. PISA's mission is to encourage research, teaching and public discussion on international relations. PISA accomplishes this mission through the sponsorship of conferences, seminars, and lectures on world affairs for faculty, students, and the general public. PISA collaborates extensively with other campus research and teaching units. Recent activities have included a seminar on international relations theory, a workshop and seminar series on globalization, and support for international relations programming at Eleanor Roosevelt College.

The Public Policy Research Project was established to facilitate interdisciplinary research and educational opportunities in public policy and business-government interaction. Through conferences, focused research groups, and lecture series, the project acts as a catalyst for interaction among economists, political scientists, moral philosophers, historians, cognitive scientists, anthropologists, and sociologists. The project supports programs that: (1) help faculty obtain funding that are engaged in policyrelated research, (2) conduct research appren-
ticeships for doctoral students working on research projects dealing with issues and processes of public policy, and (3) provide technical support and arrange faculty-proposed conferences within the scope of the project's mission statement.

Natural Reserve System (NRS)

The Natural Reserve System (NRS) was founded to establish and maintain significant examples of California's diverse ecosystems and terrain. These reserves are used for teaching and research in all disciplines, from geology and environmental sciences to anthropology and art. Faculty and students of the University of California and other institutions are encouraged to use any of the thirty-four reserves in the system for serious academic pursuits. The San Diego campus administers the following four reserves:

Dawson Los Monos Canyon Reserve: This 200 -acre reserve is located in the cities of Carlsbad and Vista in north coastal San Diego County. Its young, stream-cut valley contains a year-round creek with precipitous north- and south-facing slopes. The major habitat types are Southern Riparian Woodland, Diegan Coastal Sage Scrub, Perennial Coastal Stream, Coast Live Oak Woodland, Mixed Grassland of native bunchgrass and introduced annuals, and South Coastal Mixed Chaparral. This area is also of unique and significant historical and archaeological value.

Elliott Chaparral Reserve: Located ten miles to the east of campus, this 107-acre reserve, adjacent to the large expanse of Marine Corps Air Station Miramar that is undeveloped, features Chamise Chaparral typical of the Southern Calif-ornia coastal plain and a large stand of mature planted eucalyptus. It is readily available during a normal three-hour lab period or for term paper-length field studies as well as for more lengthy projects.

Kendall-Frost Mission Bay Marsh Reserve: This sixteen-acre reserve, together with the city of San Diego's contiguous Northern Wildlife Preserve, constitute the last remaining forty acres of tidal salt marsh on Mission Bay and one of the few such wetlands remaining in Southern California. It is recognized for the habitat it provides for several rare and endangered birds
including the light-footed clapper rail, Belding's savannah sparrow, and the California least tern, as well as many resident and migratory shorebirds and waterfowl, and several fish species. An on-site trailer houses limited residential and laboratory faciilies, and extensive facilities exist within ten miles on the UCSD main campus and at the Scripps Institution of Oceanography. There are opportunities for studying restoration ecology of upland and tidal habitats.

Scripps Coastal Reserve: This reserve consists of disjunct shoreline and cliff-top (or "knoll") portions. The shoreline part consists of the sixtyseven acre San Diego Marine Life Refuge extending seaward 1,000 feet from the high tide line, and surrounding the Scripps Institution of Oceanography (SIO) Pier. Habitats include sandy beach and submerged plain, to 60 feet below mean lower low water, seasonally exposed cobble beach, rocky reef, pier pilings, and upper submarine canyon ledges. Habitats of the clifftop knoll and canyons include coastal sage scrub, maritime succulent scrub, southern coastal mixed chaparral, and disturbed grassland. The latter is particularly suitable for ecological restoration experiments. This reserve is enhanced by the availability of the laboratories and facilities of adjacent SIO and the main San Diego campus.

Campuswide Research Facilities

Academic Computing Services

See page 97.

San Diego Supercomputer Center

See page 100 .

The UCSD Libraries

See page 106.

The School of Medicine

The faculty of the School of Medicine is committed to nurturing and reinforcing the attributes that are important in the making of a doctor-dedication, compassion, and intellectual curiosity.

The goal of the medical school curriculum, clinical experience, and faculty-student interactions is to develop well-trained, objective, and conscientious physicians prepared for the changing conditions of medical practice and continuing self-education. Students acquire understanding of the basic medical sciences and clinical disciplines and are encouraged to choose their own areas of interest for eventual development into careers in the broadly diversified medical community. Required course offerings are designed to provide students with a broad background suitable for general practice, and all students are trained in the delivery of primary care.

The School of Medicine accepted its charter class in 1968. The founding faculty drew upon the strength of UCSD's existing basic science departments rather than recreating such departments for the new school. Today this unique relationship continues with faculty from campus departments joining faculty from the School of Medicine's fourteen departments in teaching the core courses in medicine. Both preclinical and clinical courses are taught by UCSD faculty physicians who also have active patient caseloads. Courses are continually evaluated and updated by interdisciplinary course committees.

An honors, pass, fail grading system puts the emphasis on mastering the knowledge students need to practice medicine. The honors grade is not used to rank the class numerically but to acknowledge students who have demonstrated superior academic performance. Students receive individual evaluations written by the faculty.

Students at the UCSD School of Medicine are encouraged to explore a variety of clinical, laboratory, and community-based experiences.

UCSD facilities are the main sites for clinical education and are licensed for 500 beds. The majority of UCSD inpatients are admitted at UCSD Medical Center-Hillcrest, where a number of Regiona! Care Centers are located, including San Diego and Imperial Counties' only Level I

Trauma Center. The UCSD Ambulatory Care Center is located across the street from the hospital tower.

In July 1993, a 120-bed general medicalsurgical hospital, The John M. and Sally B. Thornton Hospital, opened at UCSD Medical Center-La Jolla which is located on the La Jolla campus. Adjacent to the Thornton Hospital is the Perlman Ambulatory Care Center and the Shiley Eye Center.

The Veterans Affairs Medical Center, located adjacent to the School of Medicine campus in La Jolla, also is an important training site.

Outpatient experiences include private medical practice, community clinics, and home visitation programs. Students see patients in many of San Diego's most modern hospitals and outpatient facilities, as well as in some of the disadvantaged neighborhoods of San Diego and Baja California, Mexico.

In all of their clinical experiences UCSD medical students have an opportunity to see how physicians work as a team with physician assistants, nurses, nurse practitioners, laboratory technicians, social workers, physical and occupational therapists, pharmacists, and other health care professionals to provide health care. In many cases they also can see how the trend toward "managed care" affects both patients and the practice of medicine.

San Diego ranks third nationally in the biotechnology industry. There are many opportunities for students to participate in cuttingedge research in laboratories of UCSD School of Medicine researchers, as well as in the laboratories of scientists from the general UCSD campus, the Veterans Affairs Medical Center, The Salk Institute, Scripps Clinic and Research Foundation, and some of the many private biomedical research companies in the region.

The medical school curriculum provides flexibility so that the individual needs and goals of each student can be met. The curriculum is divided into two major components: the core curriculum and the elective programs.

Elective opportunities constitute a substantial portion of classes during the first two years and close to 50 percent during the last two years. The core curriculum of the first two years is designed to provide each entering student an essential understanding of the fundamental disciplines underlying modern medicine. The core curriculum of the last two years is composed of the major clinical specialties taught in hospital settings, outpatient situations, and relevant extended-care facilities. A Medical Scientist Training Program provides the opportunity for a limited number of students to earn both the M.D. and Ph.D. degrees over a six- to seven-year period of study.

Each student is expected to develop an individualized program of independent study in conjunction with a faculty member and to describe it in writing.

Freshman student enrollment is 122 , and a total of 487 medical students were enrolled in 2000-2001.

Selection Factors

Selection is based upon the nature and depth of scholarly and extracurricular activities undertaken, academic record, performance on the

MCAT, letters of recommendation, and personal interviews.

The Admissions Committee gives serious consideration only to those applicants with above average GPA values and MCAT scores. The School of Medicine is seeking a student body with a broad diversity of backgrounds and interests reflecting our diverse population.

A complete catalog and information on the foregoing programs are available for purchase at the UCSD Bookstore for $\$ 5.00$, plus $\$ 2.50$ for shipping and handling (make checks payable to the UC Regents). Send School of Medicine catalog requests to: UCSD Bookstore 0008, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0008, or for more information, call the UCSD Bookstore at (858) 534-7326.

For additional information about the UCSD School of Medicine and its programs, write or call:

The Office of Admissions
School of Medicine, 0621
University of California, San Diego
9500 Gilman Drive
La Jolla, California 92093-0621
(858) 534-3880
somadmissions@ucsd.edu
http://medicine.ucsd.edu

Programs for Prospective Medical Students

UCSD offers no special premedical major. An undergraduate student considering medicine as a career may choose any major or concentration area leading to the bachelor's degree, provided that he or she elects those additional courses which the medical school of his or her choice may require for admission. Admission requirements differ among medical schools, but most desire a solid foundation in the natural sci-ences-biology, chemistry, physics, mathemat-ics-and a broad background in the humanities, social sciences, and communication skills. A premedical/dental advisory program is available through the campus-wide Career Services Center.

MASTER OF ADVANCED STUDIES (MAS) IN LEADERSHIP OF HEALTHCARE ORGANIZATIONS

The UCSD Department of Family and Preventive Medicine in the School of Medicine offers a Master of Advanced Studies (MAS) in the Leadership of Healthcare Organizations. The degree is designed to meet the needs of health care professionals who have clinical and executive or management responsibilities. All courses will be held in the late afternoon, evenings, and weekends for the convenience of working professionals. Extension's EdVantage provides administrative support for the program. Further information on the degree program may be obtained by contacting UCSD.

Scripps Institution of Oceanography

Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for marine science research, graduate training, and public service in the world. Its preeminence in the marine sciences is reflective of its excellent programs, distinguished faculty, and outstanding facilities.

In all, Scripps occupies sixty-seven buildings on 230 acres mostly along the Pacific coastline below the mesa on which UCSD is located. Its staff numbers approximately 1,300 , including approximately 190 graduate students. The institution's annual expenditures exceed $\$ 100$ million.

Scripps Institution was founded in 1903 as an independent biological research laboratory, which became an integral part of the University of California in 1912. At that time the laboratory was given the Scripps name in recognition of Ellen Browning Scripps and E.W. Scripps.

Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans. Ongoing investigations include the topography and composition of the ocean bottom, waves and currents, and the flow and interchange of matter between seawater and the ocean bottom or the atmosphere. Scripps's research ships are used in these investigations throughout the world's oceans. Among the more than 300 programs that may be under way at any one time are studies of air-sea interaction, climate prediction, earthquakes, the physiology of marine animals, marine chemistry, beach erosion, the marine food chain, the ecology of marine organisms, the geological history of the ocean basins, and the multidisciplinary aspects of global change and the environment.

Scripps operates four ships and one platform for oceanographic research primarily in support of programs by Scripps researchers, although a significant part of their work is for oceanographers from other institutions throughout the world. Cruises range from local, limited-objective trips to far-reaching expeditions in the world's oceans.

Investigations supported by contracts and grants, primarily federal, cover a wide latitude of marine research. The general research effort is conducted by five divisions: Climate Research Division, Geosciences Research Division, Marine Biology Research Division, Marine Research

Division, and Physical Oceanography Research Division. The diversity of Scripps's work is extended by two special purpose laboratories: Marine Physical Laboratory and Center for Marine Biotechnology and Biomedicine. Other specialized groups also are located on campus: Center for Coastal Studies, Marine Life Research Group, and Center for Atmospheric Sciences. A ship operations and marine technical support unit provides essential services and facilities to all research units of the institution.

Scripps's educational program has grown hand in hand with the research programs. Instruction is on the graduate level, and students are admitted as candidates for a Ph.D. degree. Academic work is conducted through an organizational segment of the institution known as the Graduate Department of SIO and its eight curricular groups: biological oceanography, physical oceanography, marine biology, geological sciences, marine chemistry and geochemistry, geophysics, climate sciences, and applied ocean sciences. Approximately ninety professors are complemented by an academic staff of more than 200 research scientists, many of whom have a regularly scheduled role in the instructional program.

The Birch Aquarium at Scripps provides a wide variety of educational courses in the marine sciences for students from primary grades to high school level. UCSD students also may become involved in work-study programs or serve as volunteers or aquarist trainees. A limited number of students can be accommodated for a four-unit course in independent study by arrangement with a faculty member and the aquarium director. The facility's resources include natural habitat groupings of marine life from local and Gulf of California waters; many of these marine groups are on display in the aquarium. The museum exhibits present basic oceanographic concepts and explain research undertaken at Scripps. The aquarium is open from 9:00 a.m. to 5:00 p.m. daily.

The La Jolla Laboratory of the University of California's Institute of Geophysics and Planetary Physics, and UC's California Space Institute, although organizationally separate, are closely affiliated with Scripps. The California Sea Grant College System, a systemwide program with more than forty projects and approximately forty-five trainees supported on California campuses and in several specialized research units, is
headquartered at Scripps. The Southwest Fisheries Science Center (SWFSC), located near the Scripps campus, is one of thirty major laboratories and centers operated by the National Marine Fisheries Service, a component of the National Oceanic and Atmospheric Administration of the U.S. Department of Commerce. Also, the Inter-American Tropical Tuna Commission is colocated at SWFSC.

Students enter oceanography with extremely varied interests and backgrounds-naturalists, explorers, engineers, and theorists from the United States and many foreign countries. One thing they have in common, however, is that they come to Scripps with a very strong understanding of science. Most students select positions as research assistants when they enter the program-a practice that not only gives them an early involvement with research, but also provides salaries. The student-faculty ratio at Scripps is about two-to-one; consequently, classes are small, and the student has the opportunity to work closely with his or her thesis adviser. Oceanography is an interdisciplinary field that allows for informal exchange and interaction on a variety of levels.

While at Scripps, students have for their use some of the nation's most sophisticated and complete special laboratories and facilities for oceanographic studies covering a wide range of disciplines from biology and physiology to geophysics and atmospheric sciences. A hydraulics laboratory features a unique ninety-foot stratified wave-and-current channel, and an analytical facility has a host of scanning electron micro-
scopes and other high-precision instruments. Among the many computer resources is access to the San Diego Supercomputer Center. The Scripps Library is the University of California's major collection of marine science materials, with outstanding collections in oceanography, marine biology, and marine technology. It also specializes in atmospheric sciences, fisheries, geology, geophysics, and zoology. The various marine life and geological specimens housed at Scripps form a vast "library" of oceanographic resources available for investigations. Two underwater research areas that are part of the UC Natural Reserve System are adjacent to the Scripps campus. During a student's tenure at Scripps, he or she will have the opportunity to go to sea on any of Scripps's four research vessels as well as those from other oceanographic institutions.

The combination of the large scientific staff and extensive facilities at Scripps provides an extraordinary opportunity for each student to enjoy close contact with existing oceanographic concepts and active participation in research.
See "Scripps Institution of Oceanography" in "Courses, Curricula, and Programs of Instruction" for further details on study programs, requirements, degrees, and courses.

For additional information, write:
Graduate Student Information
Scripps Institution of Oceanography
University of California, San Diego
9500 Gilman Drive, Dept. 0208
La Jolla, California 92093-0208

Graduate School of International Relations and Pacific Studies

The Graduate School of International Relations and Pacific Studies (IR/PS), at the University of California, San Diego was created by the Board of Regents in 1986 as the University of California's first professional school of international affairs. The school's regional focus is on the Pacific Rim, which extends from the southernmost tip of Latin America northward, across the United States and Canada, down through the Soviet Union, Japan, China, Korea, the Philippines, Australia, New Zealand, and the other nations of Oceania.

The school's programs have been developed in response to the increasing participation of the United States in global economic and political affairs. The United States wields less economic and political influence than it did in the immediate postwar years; at the same time, American industries face increasing competitive pressures in domestic and international markets. As a result, professionals who can understand and work in an internationalized environment are needed in both the public and private sectors. Moreover, while the United States once looked primarily to Europe as the site of its major commercial, financial, and strategic interests, the United States now has large stakes in the Pacific Basin, a likely source of both our greatest national challenges and possibilities in the next decades. These changes create both a need and an opportunity: a need for new programs of training and research in international affairs and an opportunity for a new school of international affairs and management to develop a distinctive, modern program that links professional training with international competence and gives greater prominence to the Pacific Basin.

The school's primary objectives are to prepare students with an interest in the Pacific Rim countries for positions of leadership in business, government, journalism, diplomacy, public service, and other fields; to serve as a center of excellence for research on economic, political, social, technological, and security issues confronting those nations; and to promote dialogue on Pacific region issues of common concern.

1. The degree programs provide students with professional training for careers in international affairs and management, including jobs in industry, government, international organi-

zations, foundations, schools, and research institutes. Whatever their specific goals, students receive a broad training across professional areas so that those headed for the government have a grasp of decisions in the private sector and those planning business careers acquire a grasp of decision-making in public organizations. A program combining applied social science and professional subjects with courses on Pacific region countries provides students with both general skills and particular knowledge of the history, culture, language, and contemporary situations of those countries.
2. The school serves as a center for research on issues of common concern to the nations of the Pacific Rim. Since the Pacific Rim countries have become important foci of economic and security relations, the need for information and research centered on this dynamic region has become urgent. The diversity of national experiences represented by the Pacific region countries suggests a research agenda that includes comparisons of different approaches to economic management, foreign relations, policymaking, and development.
3. As part of the University of California, the school plays an important role in developing public awareness and understanding of the Pacific region. Programs of public outreach contribute to the information available to citizens and specialized groups about international issues that affect their lives.

Degree Programs

The degrees offered by the school include a professional Master of Pacific International Affairs (M.P.I.A.), a Ph.D. in Political Science and International Affairs offered jointly with the Department of Political Science, and a Ph.D. in Economics and International Affairs offered jointly with the Department of Economics. Training emphasizes international relations, economics and management, international technology management, policy, knowledge of specific countries or regions, analytical and research skills, and foreign language.

Mid-career and other executive certificate programs are also offered by IR/PS. In particular, the International Career Associates Program (ICAP) is designed for working professionals seeking additional study in international man-
agement, international relations, and comparative public policy. Participants in the program spend an academic year at IR/PS beginning in mid-September and ending in mid-June. Under the auspices of the program, associates have the opportunity to further internationalize their knowledge and experience as well as enhance their professional development in such areas as finance, accounting, quantitative methods, econometrics, and long-range strategic planning The program of study is tailored to individual interests under the guidance of the program's director and faculty advisers.

The M.P.I.A. program is distinctive in several respects. The program:

1. Exposes students to the perspectives of both private business and public policymaking.
2. Offers specialized training in economics, management, international relations, and political analysis and integrates the languages, history, and cultures of the Pacific region into the curriculum.
3. Creates a laboratory for comparative analysis of economic management, foreign relations, policymaking, and development in the diverse countries of the Pacific region.
4. Offers language skills training necessary for international affairs professionals specializing in Pacific Rim countries.

The Ph.D. in International Affairs is offered only in conjunction with either the Ph.D. in Political Science or the Ph.D in Economics. These Ph.D. programs are designed for students who seek a rigorous training in a discipline (either Economics or Political Science) along with a specialization in a specific policy area and regional expertise. Ph.D. students will be required to demonstrate knowledge of a foreign language linked to their regional specialization.

The master's and Ph.D. programs are distinct and separate. There is little overlap in the structure or requirements of the two programs because their objectives are very different. The master's program provides professional training for graduates who will pursue international careers in business, government, journalism, and other fields. The Ph.D. programs offer an academic education to a small number of students who will pursue international careers requiring advanced research capabilities in universities, corporations, government agencies, consulting firms, or other research organizations.

The master's and Ph.D. programs do share a common intellectual framework. Both the professional master's curriculum and the academic Ph.D. curriculum are designed to bring the theories, methods, and insights of various disciplines together to analyze policy issues of the Pacific region and to blend the perspectives of public policy makers and private managers. The same faculty teach and advise students in both the master's and Ph.D. programs.

The Faculty

The school has attracted an interdisciplinary faculty from such fields as economics, linguistics, management sciences, international relations, comparative politics, and public policy. The various programs draw upon and contribute to research which focuses on the regions of the Pacific Rim and on major issues that affect the region.

The school places special emphasis on research in and teaching of topics of particular importance to the program. These topics currently include:

1. The Pacific Rim as system, including the interaction of the countries and regions within it (e.g., Latin American-Japanese economic relations, U.S. relations with both East Asia and Latin America, and the placement of the Pacific in the global system of international relations, both contemporary and historical).
2. Studies in international economics, management, and finance, including such subject areas as international competition, comparative industrial organizations, international trade and development, industrial relations, technological innovation, international financial structures, policies, institutions, and historical patterns of development.
3. Comparison of the trajectories of socioeconomic development among the countries of Asia and Latin America, including the exploration of differences and similarities in statesociety relations, culture, entrepreneurship, linkage to the global economy, and geopolitical position.
4. Comparative analysis of patterns of policymaking in the countries of the Pacific region to understand how different governmental structures, economic systems, and social group interests shape the policy process and influence policy choices in such areas as budget allocation, regulation of industry, and foreign trade.

For further information, contact the Office of Admissions, Graduate School of International Relations and Pacific Studies, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0520. (858) 534-5914, email: irps-apply@ucsd.edu, Web site: http://www-irps.ucsd.edu.

UCSD Faculty Members

NAME
Abarbanel, Henry D. I.
Abramson, lan S.
Acampora, Anthony
Ackerman, Farrell
Adler, Steve
Agler, Jim
Agnew, Duncan C.
Alexander, Nicholas M.
Algaze, Guillermo
Allison, Henry E.
Allison, William S.
Aluwihare, Lihini
Alvarez, Robert
Anagnostopoulos, Georgios H.
Ancoli-Israel, Sonia
Anderson, Donald W.
Anderson, Norman H.
Anderson, Victor C.
Anstis, Stuart
Antin, David A.
Antin, Eleanor
Antonovics, Kate
Appelbaum, Mark
Armi, Laurence
Arneson, Richard J.
Arnold, James R.
Aroian, Raffi V.
Arovas, Daniel P.
Arrhenius, Gustaf
Asaro, Robert J.
Asbeck, Peter M.
Ashford, Scott
Atkinson, Richard C.
Attiyeh, Richard E.
Azam, Farooq
Backus, George E.
Bada, Jeffrey L.
Baden, Scott B.
Bailey, Frederick G.
Baird, Stephen M.
Bakovic, Eric
Balzano, Gerald J.
Bank, Randolph E.
Baouendi, M. Salah
Barbeau, Katherine
Barker, Chris

TITLE

Professor
Associate Professor
Professor
Associate Professor
Senior Lecturer (SOE)
Professor
Professor
Professor Emeritus
Professor
Professor Emeritus
Professor
Assistant Professor
Associate Professor
Professor
Professor-in-Residence
Professor Emeritus
Professor Emeritus
Professor Emeritus
Professor
Professor Emeritus
Professor Emeritus
Assistant Professor
Professor
Professor
Professor
Professor Emeritus
Assistant Professor

Associate Professor
Professor
Professor
Professor
Assistant Professor
Professor/Chancellor Emeritus/UC President
Professor/Dean/Vice Chancellor
Professor

Professor Emeritus
Professor
Associate Professor
Professor Emeritus
Professor of Clinical Pathology
Assistant Professor
Associate Professor
Professor
Professor
Assistant Professor
Assistant Professor

DEPARTMENT	COLLEGE
Physics	Revelle
Mathematics	Muir
ECE	Roosevelt
Linguistics	Marshall
Theatre and Dance	Roosevelt
Mathematics	Muir
SIO	SIO
Pathology	SchMed
Anthropology	Roosevelt
Philosophy	Revelle
Chemistry and Biochemistry	Muir
SIO/MRD	SIO
Ethnic Studies	Roosevelt
Philosophy	Warren
Psychiatry	SchMed
CSE/Mathematics	Muir
Psychology	Muir
ECE/SIO	SIO/Muir
Psychology	Roosevelt
Visual Arts	Muir
Visual Arts	Muir
Economics	Muir
Psychology	Muir
SIO	SIO
Philosophy	Marshall
Chemistry and Biochemistry	Revelle
Biology-Cellular and Developmental Biology	Marshall
Physics	Revelle
SIO	SIO
SE	Revelle
ECE	Marshall
SE	Roosevelt
Psychology/Cognitive Science	Marshall
Economics/Graduate Studies/Research	Revelle
SIO	SIO
510	SIO
SIO	SIO/Warren
CSE	Warren
Anthropology	Muir
Pathology	SchMed
Linguistics	Muir
Music	Muir
Mathematics	Warren
Mathematics	Warren
SIO/MRD	SIO
Linguistics	Marshall

Barnes, Eva W.	Lecturer (SOE)
Barnes, Eric	Lecturer
Barrett, Kim	Professor
Bartlett, Douglas H.	Associate Professor
Bassov, Dimitri N.	Professor
Batali, John D.	Associate Professor
Bates, Elizabeth A.	Professor
Bear, Donald V. T.	Professor Emeritus
Beck, Nathaniel L.	Professor
Behar, Jack	Associate Professor Emeritus
Belew, Richard K.	Associate Professor
Belgrader, Andrei	Professor
Bellare, Mihir	Associate Professor
Bender, Edward A.	Professor
Benirschke, Kurt	Professor Emeritus
Benson, Andrew A.	Professor Emeritus
Benson, David J.	Professor
Berg, Darwin K.	Professor
Berger, Bennett M.	Professor Emeritus
Berger, Wolfgang H.	Professor
Berkowitz, Ami E.	Professor Emeritus
Berman, Francine D.	Professor
Berman, Ronald S.	Professor
Bernstein, Michael A.	Professor
Bertram, H. Neal	Professor
Betts, Julian	Associate Professor
Bewley, Thomas R.	Assistant Professor
Bhatia, Sangeeta N.	Assistant Professor-in-Residence
Bier, Ethan	Professor
Biernacki, Richard	Associate Professor
Biess, Frank P.	Acting Assistant Professor
Bitmead, Robert	Professor
Blanco-Aguinaga, Carlos	Professor Emeritus
Blantz, Roland C.	Professor
Bloor, Colin M.	Professor
Blumberg, Rae L.	Professor Emeritus
Bohn, Roger E.	Associate Professor
Boland, Richard C.	Professor
Bond, F. Thomas	Associate Professor/Provost
Borges, Dain	Associate Professor
Boss, Gerry R.	Professor
Both, Andrei	Professor
Bowker, Geoffrey C.	Professor
Bowles, Kenneth L.	Professor Emeritus
Boynton, Robert M.	Professor Emeritus
Brace, Robert A.	Professor
Bradbury, Jack W.	Professor Emeritus
Bradner, Hugh	Professor Emeritus
Braff, David L.	Professor
Branson, James G.	Professor
Brenner, Suzanne A.	Associate Professor

Theatre and Dance	Marshall
Theatre and Dance	Marshall
Medicine	SchMed
SIO	SIO
Physics	Warren
Cognitive Science	Warren
Cognitive Science/Psychology	Marshall
Economics	Revelle
Political Science	Warren
Literature	Revelle
CSE	Marshall
Theatre and Dance	Muir
CSE	Muir
Mathematics	Muir
Reproductive Medicine/Pathology	SchMed
SIO	SIO
MAE	Marshall
Biology-Neurobiology	Warren
Sociology	Muir
SIO	SIO
Physics	Warren
CSE	Revelle
Literature	Muir
History	Warren
ECE	Revelle
Economics	Marshall
MAE	Muir
Bioengineering	Revelle
Biology-Cellular and Developmental	Roosevelt
Biology	Biology
Sociology	Roosevelt
History	Warren
MAE	Warren
Literature	Marshall
Medicine	SchMed
Pathology	SchMed
Sociology	Marshall
IRPS	IRPS
Medicine	SchMed
Chemistry and Biochemistry/Revelle	Revelle
History	Roosevelt
Medicine	SchMed
Theatre and Dance	Marshall
Communication	Revelle
CSE	Muir
Psychology	Roosevelt
Reproductive Medicine	SchMed
Biology-Ecology, Behavior, and Evolution	Muir
MAE	Revelle/SIO
Psychiatry	SchMed
Physics	Marshall
Anthropology	Warren

Bridges, Amy	Professor
Briggs, Charles	Professor
Brink, David O.	Professor
Britton, Karen T.	Professor-in-Residence
Brodkey, Linda	Professor
Brody, Stuart	Professor
Brooks, Daphne Ann	Assistant Professor
Brown, Gregory	Professor-in-Residence
Brown, Joan Heller	Professor
Brown, Kevin M.	Associate Professor
Brown, Sandra A.	Professor
Brown, Sheldon G.	Associate Professor
Brown, Willie C.	Associate Professor Emeritus
Brueckner, Keith A.	Professor Emeritus
Brunton, Laurence L.	Professor
Buckingham, Michael J.	Professor
Bullock, Theodore H.	Professor Emeritus
Bunch, James R.	Professor
Burbidge, E. Margaret	University Professor Emeritus
Burbidge, Geoffrey R.	Professor
Burkhard, Walter A.	Professor
Burton, Ronald S.	Professor
Buss, Samuel R.	Professor
Caciola, Nancy	Assistant Professor
Calcutt, Nigel	Assistant Professor
Calder, Bradley	Associate Professor
Callender, Craig	Assistant Professor
Cancel, Robert	Associate Professor
Cande, Steven C.	Professor
Carmody, James	Associate Professor
Carson, Dennis A.	Professor
Carson, Richard T, Jr.	Professor
Carter, J. Lawrence	Professor
Cartwright, Nancy D.	Professor
Case, Ted J.	Professor
Caserio, Marjorie C.	Professor Emeritus/Vice Chancellor Emeritus
Cassedy, Steven D.	Professor
Castillo, Paterno R.	Associate Professor
Catalan, Diego	Professor Emeritus
Catanzarite, Lisa M.	Assistant Professor
Cattolica, Robert J.	Professor
Caulfield, Colm P.	Assistant Professor
Cavanee, Webster K.	Professor
Cespedes, Guillermo	Professor Emeritus
Cessi, Paola	Associate Professor
Chakravartty, Paula U.	Assistant Professor
Chandler, Marsha A.	Professor/Senior Vice Chancellor
Chandier, William M.	Senior Lecturer (SOE)
Chang, William S. C.	Professor Emeritus

Political Science	Marshall
Ethnic Studies	Marshall
Philosophy	Muir
Psychiatry	SchMed
Literature	Warren
Biology-Molecular Biology	Muir
Literature	Warren
Psychiatry	SchMed
Pharmacology	SchMed
SIO	SIO
Psychology/Psychiatry	Marshall/SchMed
Visual Arts	Warren
Biology-Cellular and Developmental Biology	Marshall
Physics	Revelle
Pharmacology/Medicine	SchMed
SIO	SIO
Neurosciences	SchMed/SIO
Mathematics	Warren
Physics	Revelle
Physics	Revelle
CSE	Warren
SIO	SIO
Mathematics	Roosevelt
History	Revelle
Pathology	SchMed
CSE	Roosevelt
Philosophy	Muir
Literature	Marshall
SIO	SIO
Theatre and Dance	Warren
Medicine	SchMed
Economics	Muir
CSE	Revelle
Philosophy	Roosevelt
Biology-Ecology, Behavior, and Evolution	Revelle
Chemistry and Biochemistry/ Academic Affairs	Roosevelt
Literature	Roosevelt
SIO	SIO
Literature	Revelle
Sociology	Marshall
MAE	Warren
MAE	Roosevelt
Medicine	SchMed
History	Revelle
SIO	SIO
Communication	Revelle
Political Science/Academic Affairs	Roosevelt
Political Science/IRPS	Warren
ECE	Warren

Chao, Lin	Professor	Biology-Ecology, Behavior, and Evolution	Warren
Charles, Christopher D.	Associate Professor	SIO	SIO
Charles, Maria	Associate Professor	Sociology	Muir
Chau, Pao C.	Professor	MAE	Revelle
Chau, Paul M.	Associate Professor	ECE	Revelle
Cheatham, James R.	Senior Lecturer (SOE) Emeritus	Music	Marshall
Checkley, David M.	Associate Professor	SIO	SIO
Chen, Joseph C. Y.	Professor	Physics	Roosevelt
Chen, Matthew Y. C.	Professor Emeritus	Linguistics	Muir
Cheng, Chung-Kuan	Professor	CSE	Muir
Cheng, Li-Tien	Assistant Professor	Mathematics	Roosevelt
Chiba, Andrea	Assistant Professor	Cognitive Science	Revelle
Chien, Andrew	Professor	CSE	Marshall
Chien, Kenneth R.	Professor	Medicine	SchMed
Chien, Shu	Professor	Bioengineering	SchMed
Chodorow, Stanley A.	Professor Emeritus	History	Revelle
Chojkier, Mario	Professor-in-Residence	Medicine	SOM
Chow, Bennett	Professor	Mathematics	Warren
Chrispeels, Maarten J.	Professor	Biology-Cellular and Developmental Biology	Muir
Christenfeld, Nicholas	Associate Professor	Psychology	Roosevelt
Chun, Jerold J. M.	Professor	Pharmacology	SchMed
Churchland, Patricia S.	Professor	Philosophy	Muir
Churchland, Paul M.	Professor	Philosophy	Warren
Cicourel, Aaron V.	Professor Emeritus	Cognitive Science/Sociology	Revelle
Clark, Leigh B.	Professor Emeritus	Chemistry and Biochemistry	Revelle
Clementz, Brett A.	Professor	Psychology	Marshall
Cleveland, Don W.	Professor	Medicine/Neurosciences	SchMed
Cohen, Alain J.-J.	Professor	Literature	Muir
Cohen, Harold	Professor Emeritus	Visual Arts	Muir
Cohen, Jonathan D.	Assistant Professor	Philosophy	Roosevelt
Cohen, Richard S.	Assistant Professor	Literature	Roosevelt
Cohen, Seth	Assistant Professor	Chemistry and Biochemistry	Warren
Cole, Michael	University Professor	Communication	Roosevelt
Coles, William A.	Professor	ECE	Muir
Comisso, Ellen T.	Professor	Political Science	Roosevelt
Concha, Jaime	Professor	Literature	Muir
Conlisk, John	Professor Emeritus	Economics	Revelle
Conn, Robert W.	Professor/Dean	MAE/School of Engineering	Warren
Constable, Catherine G.	Professor	SIO	SIO
Constable, Steven	Professor-in-Residence	IGPP-SIO	SIO
Continetti, Robert E.	Professor	Chemistry and Biochemistry	Warren
Cooper, Charles R.	Professor Emeritus	Literature	Marshall
Corbeil, Lynette B.	Professor	Pathology	SchMed
Cornelius, Wayne A.	Professor	Political Science	Roosevelt
Corrigan, Mary K.	Associate Professor Emeritus	Theatre and Darice	Warren
Cosman, Pamela	Associate Professor	ECE	Marshall
Cottrell, Garrison W.	Professor	CSE	Revelle
Coulson, Seana	Assistant Professor	Cognitive Science	Warren
Courchesne, Eric	Professor	Neurosciences	SchMed
Covell, James W.	Professor	Medicine	SchMed
Cowhey, Peter F.	Professor	IRPS	IRPS

Cox, Charles S.	Professor Emeritus	SIO	SIO
Cox, Gary W.	Professor	Political Science	Muir
Cox, Stephen D.	Professor	Literature	Revelle
Craig, Ann L.	Associate Professor/Provost	Political Science/Roosevelt	Roosevelt
Craig, Harmon	Professor Emeritus	SIO	Revelle/SIO
Crawford, Nigel	Professor	Biology-Cellular and Developmental Biology	Warren
Crawford, Vincent P.	Professor	Economics	Warren
Crowell, John E.	Associate Professor	Chemistry and Biochemistry	Revelle
Crowne, David K.	Associate Professor Emeritus	Literature	Revelle
Crutzen, Paul J.	Professor	SIO/CAS	SIO
Cruz, René L.	Professor	ECE	Marshall
Curiel, Anthony	Associate Professor	Theatre and Dance	Marshall
Curray, Joseph R.	Professor Emeritus	SIO	SIO
Curtis, Charles	Acting Associate Professor	Music	Marshall
Czernowin, Chaya	Assistant Professor	Music	Roosevelt
D'Andrade, Roy G.	Professor	Anthropology	Roosevelt
David, Michael	Assistant Professor	Biology-Molecular Biology	Warren
Davidson, R. Michael	Professor	Literature	Revelle
Davis, Anthony C.	Professor	Music	Marshall
Davis, Charles E.	Professor Emeritus	Pathology/Medicine	SchMed
Davis, Zeinabu	Professor	Communication	Roosevelt
Dayton, Paul K.	Professor Emeritus	SIO	SIO
de Callafon, Raymond	Assistant Professor	MAE	Muir
Deak, Frantisek J.	Professor/Dean	Theatre and Dance/Arts and Humanities	Warren
Deak, Gedeon 0.	Assistant Professor	Cognitive Science	Marshall
Deftos, Leonard J.	Professor-in-Residence	Medicine	SchMed
Delis, Dean C.	Professor-in-Residence	Psychiatry	SchMed
den Haan, Wouter	Professor	Economics	Marshall
Dennis, Edward A.	Professor	Chemistry and Biochemistry	Revelle/SchMed
Deutsch, Diana	Professor	Psychology	Warren
Deutsch, J. Anthony	Professor Emeritus	Psychology	Muir/SchMed
Dey, Sugit	Associate Professor	ECE	Muir
Diamond, Patrick H.	Professor	Physics	Roosevelt
Dickson, Andrew	Associate Professor-in-Residence	SIO	SIO
Diez-Medrano, Juan	Associate Professor	Sociology	Marshall
Dijkstra, Abraham J.	Professor	Literature	Revelle
Dillmann, Wolfgang H.	Professor	Medicine	SchMed
Dimsdale, Joel E.	Professor-in-Residence	Psychiatry	SchMed
Dobkins, Karen	Assistant Professor	Psychology	Revelle
Dolan, Judith A.	Professor	Theatre and Dance	Muir
Donnelly, Kyle	Professor	Theatre and Dance	Warren
Donoghue, Daniel J.	Professor	Chemistry and Biochemistry	Revelle/SchMed
Doolittle, Russell F.	Professor Emeritus	Chemistry and Biochemistry/BiologyMolecular Biology	Revelle/SchMed
Doppelt, Gerald D.	Professor	Philosophy	Warren
Dorman, LeRoy M.	Professor	SIO	SIO
Douglas, Jack D.	Professor Emeritus	Sociology	Muir
Drake, Paul W.	Professor/Dean	Political Science/Social Sciences	Roosevelt
Driscoll, C. Fred	Professor	Physics	Warren
Driscoll, Neal W.	Associate Professor	SIO/GRD	SIO
Driver, Bruce K.	Professor	Mathematics	Marshall
Droge, Arthur	Professor	Literature	Roosevelt
Dryden, Deborah M.	Professor Emeritus	Theatre and Dance	Muir

Dubin, Daniel H.	Professor	Physics	Muir
duBois, Page A.	Professor	Literature	Muir
Dunseath, Thomas K.	Associate Professor Emeritus	Literature	Revelle
Dutnall, Robert N.	Assistant Professor	Biology-Molecular Biology	Warren
Dutton, Richard W.	Professor Emeritus	Biology	SchMed
Dynes, Robert C.	Professor/Chancellor	Physics	Warren
Ebbesen, Ebbe B.	Professor	Psychology	Muir
Ebenfelt, Peter F.	Associate Professor	Mathematics	Roosevelt
Edelman, Robert S.	Professor	History	Revelle
Edwards, Anthony	Associate Professor	Literature	Marshall
Elgamal, Ahmed-W. M.	Professor	SE	Roosevelt
Elkan, Charles P.	Associate Professor	CSE	Muir
Elliott, Graham	Associate Professor	Economics	Muir
Ellisman, Mark H.	Professor	Neurosciences	SchMed
Elman, Jeffrey L.	Professor	Cognitive Science	Muir
Emr, Scott D.	Professor	CMM	SchMed
Engestrom, Yrjo H.	Professor	Communication	Marshall
Engle, Robert F.	Professor	Economics	Marshall
Enright, James T.	Professor Emeritus	SIO	SIO
Enright, Thomas J.	Professor	Mathematics	Marshall
Epstein, Steven	Associate Professor	Sociology	Warren
Erickson, Gregory F.	Professor	Reproductive Medicine	SchMed
Erie, Steven P.	Associate Professor	Political Science	Marshall
Esener, Sadik C.	Professor	ECE	Warren
Esherick, Joseph	Professor	History	Roosevelt
Esko, Jeffrey	Professor	CMM	SchMed
Espiritu, Yen Le	Professor	Ethnic Studies	Marshall
Evans, Ivan T.	Associate Professor	Sociology	Roosevelt
Evans, John W.	Professor Emeritus	Mathematics	Muir/SchMed
Evans, Ronald J.	Professor	Mathematics	Marshall
Fagin, Steve	Professor	Visual Arts	Marshall
Fahey, Robert C.	Professor Emeritus	Chemistry and Biochemistry	Revelle
Fainman, Yeshaiahu	Professor	ECE	Warren
Fanestil, Darrell D.	Professor Emeritus	Medicine	SchMed
Fantino, Edmund J.	Professor	Psychology	Muir
Farber, Manny	Professor Emeritus	Visual Arts	Muir
Farquhar, Marilyn G.	Professor	CMM	SchMed
Farrell, Peter	Professor Emeritus	Music	Warren
Fauconnier, Gilles R.	Professor	Cognitive Science	Marshall
Faulkner, D. John	Professor	SIO	SIO/Revelle
Feher, George	Professor Emeritus	Physics	Revelle
Feinberg, Richard E.	Professor	IRPS	IRPS
Fejer, Jules A.	Professor Emeritus	ECE	Muir
Felbeck, Horst	Professor	SIO	SIO
Feldman, Daniel E.	Assistant Professor	Biology-Neurobiology	Roosevelt
Feller, Marla B.	Assistant Professor	Biology-Neurobiology	Marshall
Fenical, William H.	Professor	SIO	SIO
Fenner-Lopez, Claudio E.	Lecturer (SOE) Emeritus	Visuai Arts/Communication	Marshall
Feramisco, James R.	Professor	Medicine/Pharmacology	SchMed
Ferrante, Jeanne	Professor	CSE	Roosevelt
Ferreira, Victor	Assistant Professor	Psychology	Marshall

Fialko, Yuri
Fierer, Joshua
Filiatrault, Andre
Fillmore, Jay P.
Finney, Nathaniel
Firtel, Richard A.
Fisk, Zachary
FitzGerald, Carl H.
Fitzsimmons, Patrick J.
Flavin, Marjorie
Fonville, John W.
Forbes, Douglass Jane
Fortes, P. A. George
Frangos, John A.
Frank, Ross H.
Frankel, Theodore T.
Franks, Peter J. S.
Fredkin, Donald R.
Freedman, David Noel
Freedman, Michael H.
Frenk, Margit
Friedkin, Morris E.
Friedman, Richard E.
Friedmann, Theodore
Frieman, Edward A.
Frymer, Paul
Fu, Xiang-Dong
Fujitani, Takashi
Fuller, George M.
Fung, Yuan-Cheng B.
Fussell, Edwin S.
Gaffney, Floyd
Galambos, Robert
Gill, Philip E.
Gille, Sarah T.
Gillin, J. Christian
Galbraith, John S.
Galton, lan
Garsia, Adriano M.
Geiduschek, E. Peter
George, Rosemary M.
Gerber, Elisabeth
Getoor, Ronald K.
Geyer, Mark A.
Ghosh, Gourisankar
Ghosh, Partho
Gibson, Carl H.
Gilberis M.T.M.

Assistant Professor
Professor-in-Residence
Professor
Professor
Assistant Professor
Professor

Professor Emeritus
Professor
Professor
Associate Professor
Professor
Professor

Associate Professor
Professor
Associate Professor
Professor Emeritus
Associate Professor
Professor
Professor
Professor
Professor Emeritus
Professor Emeritus
Professor
Professor
Professor/Vice Chancellor Emeritus
Assistant Professor
Associate Professor
Associate Professor
Professor
Professor Emeritus
Professor Emeritus

Professor Emeritus
Professor Emeritus
Professor Emeritus
Associate Professor
Professor
Professor Emeritus
Associate Professor
Associate Professor
Professor Emeritus
Professor-in-Residence
Assistant Professor
Assistant Professor
Professor
Professor
Professor
Professor
Professor
Assistant Professor
Professor

SIO/IGPP	SIO
Medicine/Pathology	SchMed
SE	Roosevelt
Mathematics	Muir
Chemistry and Biochemistry	Muir
Biology-Cellular and Developmental Biology	Revelle
Physics	Muir
Mathematics	Revelle
Mathematics	Marshall
Economics	Roosevelt
Music	Revelle
Biology-Cellular and Developmental Biology	Muir
Biology-Neurobiology	Marshall
Bioengineering	Warren
Ethnic Studies	Marshall
Mathematics	Revelle
SIO	SIO
Physics	Revelle
History	Revelle
Mathematics	Revelle
Literature	Marshall
Biology-Molecular Biology	Revelle/SchMed
Literature	Muir
Pediatrics	SchMed
SIO/Marine Sciences	SIO
Sociology	Revelle
CMM	SchMed
History	Roosevelt
Physics	Roosevelt
Bioengineering	Revelle
Literature	Muir
Theatre and Dance	Marshall
Neurosciences	SchMed
History	Reveile
ECE	Muir
Mathematics	Revelle/SchMed
Biology-Molecular Biology	SchMed/Roosevelt
Literature	Roosevelt
Political Science	Marshall
Mathematics	Revelle/SchMed
Psychiatry	SchMed
Chemistry and Biochemistry	Marshall
Chemistry and Biochemistry	Roosevelt
MAE/SIO	Revelle/SIO
SIO	SIO
SIO	SIO
Medicine/CMM	SchMed
Mathematics	Marshall
SIO/MAE	SIO/Revelle
Psychiatry	SchMed

Gilpin, Michael E.	Professor
Glass, Christopher K.	Professor
Gleditsch, Kristian	Assistant Professor
Glymour, Clark	Professor
Goda, Yukiko	Assistant Professor
Goddard, Joseph D.	Professor
Goguen, Joseph	Professor
Goldberg, Edward D.	Professor Emeritus
Goldberger, Marvin	Professor
Goldman, Harvey S.	Professor
Goldstein, Lawrence S.B.	Professor
Goodblatt, David	Professor
Goodkind, John M.	Professor
Goodman, Murray	Professor
Goodson, James	Assistant Professor
Gordon, Roger H.	Professor
Gorin, Jean-Pierre	Professor
Gorman, Michael R.	Assistant Professor
Gough, David A.	Professor
Gould, Robert J.	Professor Emeritus
Goulian, Mehran	Professor Emeritus
Gourevitch, Peter A.	Professor
Graham, Fan Chung	Professor
Graham, Ronald L.	Professor
Granger, Clive W.J.	Professor
Granholm, Eric L.	Associate Professor-in-Residence
Grant, Igor	Professor
Green, Melvin H.	Professor
Greenstein, Jack M.	Associate Professor
Griest, Kim	Professor
Grinstein, Benjamin	Professor
Griswold, William G.	Associate Professor
Groves, Philip M.	Professor
Groves, Theodore	Professor
Grush, Rick	Assistant Professor
Guest, Clark C.	Associate Professor
Gusfield, Joseph R.	Professor Emeritus
Gutierrez, David G.	Associate Professor
Gutierrez, Ramón A.	Professor
Guy, Nancy	Assistant Professor
Guza, Robert T.	Professor
Haas, Richard H.	Professor
Haff, Leonard R.	Professor
Haggard, Stephan M.	Professor
Haiman, Mark D.	Professor
Halberstam, Judith M.	Professor
Halkin, Hubert	Professor Emeritus
Halleck, DeeDee	Professor
Hallin, Daniel C.	Professor
Hamburger, Robert N .	Professor Emeritus
Hamilton, James D.	Professor

Biology-Ecology, Behavior, and Evolution	Muir
Medicine	SchMed
Political Science	Warren
Philosophy	Roosevelt
Biology-Neurobiology	Roosevelt
MAE	Marshall
CSE	Roosevelt
SIO	SIO
Physics	Warren
Sociology	Marshall
Pharmacology	SchMed
History	Muir
Physics	Revelle
Chemistry and Biochemistry	Revelle
Psychology	Warren
Economics	Warren
Visual Arts	Marshall
Psychology	Roosevelt
Bioengineering	Marshall
Physics	Revelle
Medicine	SchMed
IRPS/Political Science	IRPS/Roosevelt
Math/CSE	Muir
CSE	Roosevelt
Economics	Warren
Psychiatry	SchMed
Psychiatry	SchMed
Biology	Revelle
Visual Arts	Muir
Physics	Roosevelt
Physics	Muir
CSE	Warren
Psychiatry/Neurosciences	SchMed
Economics	Revelle
Philosophy	Roosevelt
ECE	Warren
Sociology	Muir
History	Marshall
Ethnic Studies	Marshall
Music	Roosevelt
SIO	SIO
Neurosciences/Pediatrics	SchMed
Mathematics	Marshall
IRPS/Interim Dean	IRPS
Mathematics	Roosevelt
Literature	Revelle
Mathematics	Revelle
Communication	Warren
Communication	Marshall
Pediatrics	Revelle/SchMed
Economics	Roosevelt

Hamilton, Richard S.	Professor
Hammel, Harold T.	Professor Emeritus
Hampton, Randolph	Assistant Professor
Hanson, Gordon	Professor
Hanson, Marta E.	Assistant Professor
Hardimon, Michael	Associate Professor
Harel, Guershon	Professor
Harkins, Edwin L., Jr.	Professor
Harper, Elvin	Professor Emeritus
Harris, Thomas A.	Associate Professor
Harrison, Helen M.	Professor Emeritus
Harrison, Newton A.	Professor Emeritus
Hartouni, Valerie A.	Associate Professor
Harvey, Daniel F.	Associate Professor
Hasson, Tama	Assistant Professor
Hastings, Philip A.	Associate Professor
Haubrich, Richard A.	Professor Emeritus
Hauger, Richard L.	Professor-in-Residence
Havis, Allan	Associate Professor
Hawkins, James W.	Professor
Haxo, Francis T.	Professor Emeritus
Hayashi, Masaki	Professor Emeritus
Haydu, Jeffrey M.	Professor
Haygood, Margo G.	Associate Professor
He , Zheng-Xu	Professor
Heaton, Robert K.	Professor
Hedrick, Stephen M.	Professor
Hegemier, Gilbert A.	Professor
Helinski, Donald R.	Professor Emeritus
Heller, Michael	Professor
Hellman, Frances	Professor
Helstrom, Carl W.	Professor Emeritus
Helton, J. William	Professor
Henaff, Marcel	Professor
Hendershott, Myrl C.	Professor
Hendrickson, David N.	Professor
Herz, Richard K.	Associate Professor
Hessler, Robert R.	Professor
Heyman, Gail D.	Assistant Professor
Hildebrand, John A.	Professor
Hillyard, Steven A.	Professor
Hilton, David R.	Assistant Professor
Hirsch, Harry N.	Professor
Hirsch, Jorge E.	Professor
Hiscox, Michael	Assistant Professor
Ho, Steffan	Assistant Professor
Hock, Louis J.	Professor
Hodgkiss, William S., Jr.	Professor
Hofmann, Alan F.	Professor Emeritus
Hoger, Anne	Professor

Mathematics	Warren
SIO	SIO/SchMed
Biology-Cellular and Developmental Biology	Warren
IRPS	IRPS
History	Muir
Philosophy	Marshall
Mathematics	Marshall
Music	Muir
Chemistry and Biochemistry	Marshall
Visual Arts	Muir
Visual Arts	Roosevelt
Visual Arts	Roosevelt
Communication	Muir
Chemistry and Biochemistry	Marshall
Biology-Cellular and Developmental Biology	Roosevelt
SIO	SIO
SIO	SIO
Psychiatry	SchMed
Theatre and Dance	Muir
SIO	Revelle/SIO
SIO	SIO
Biology-Cellular and Developmental Biology	Revelle
Sociology	Roosevelt
SIO	SIO
Mathematics	Marshall
Psychiatry	SchMed
Biology-Molecular Biology	Marshall
SE	Revelle
Biology-Molecular Biology	Marshall
Bioengineering/ECE	Revelle
Physics	Marshall
ECE	Muir
Mathematics	Marshall
Literature	Warren
SIO	SIO
Chemistry and Biochemistry	Muir
MAE	Warren
SIO	SIO
Psychology	Warren
SIO	SIO
Neurosciences	SchMed
SIO	SIO
Political Science	Warren
Physics	Revelle
Political Science	Revelle
Pathology	SchMed
Visual Arts	Marshall
SIO	SIO
Medicine	SchMed
MAE	Warren

Hollan, James D.
Holland, John J. Holland, Nicholas D.
Holst, Michael
Holston, James
Horwitz, Robert B.
Hoshi, Takeo
Hoston, Germaine A.
Houston, Alan C.
Howden, William E.
Howe, Fanny Q.
Howell, Stephen B.
Hu, Ping C.
Hu, Te C.
Huber, Gary
Huerta, Jorge A.
Hughes, Judith M.
Humphries, Tom L.
Hunefeldt, Christine F.
Hutchins, Edwin L., Jr.
Hwa, Terence T.
lerley, Glenn R. Impagliazzo, Russell Inman, Douglas L. Insel, Paul A.
Intaglietta, Marcos Intriligator, Kenneth Iragui-Madoz, Vicente J. Irons, Peter H. Irwin, Michael R.

Jackson, Gabriel
Jackson, Jeremy
Jacobson, Gary C.
Jain, Ramesh C.
James, Luther
Jameson, Kimberly
Jed, Stephanie H.
Jenik, Adriene
Jenkins, Elizabeth
Jennings, Patricia
Jernigan, Terry L. Jeste, Dilip V.
Johns, Adrian D. S.
Johnson, Catherine
Johnson, Chalmers
Johnson, Randall S.
Jones, Barbara
Jones, Walton
Jordan, David K.
Joseph, Simpson
Judd, Lewis L.
Jules-Rosette, Bennetta W.

Professor
Professor Emeritus
Professor
Professor
Associate Professor
Professor
Professor
Professor
Associate Professor
Professor
Professor
Professor
Lecturer (SOE)
Professor
Assistant Professor
Professor
Professor
Lecturer (SOE)
Professor
Professor
Professor

Professor
Professor
Professor Emeritus
Professor
Professor
Associate Professor
Professor of Clinical Neurosciences
Professor
Professor-in-Residence

Professor Emeritus
Professor
Professor
Professor Emeritus
Associate Professor Emeritus
Assistant Professor
Associate Professor
Assistant Professor
Associate Professor
Associate Professor
Professor-in-Residence
Professor-in-Residence
Professor
Assistant Professor
Professor Emeritus
Assistant Professor
Professor
Professor
Professor/Provost
Assistant Professor
Professor
Professor

Cognitive Science	Revelle
Biology	Warren
SIO	SIO/Revelle
Mathematics	Warren
Anthropology	Warren
Communication	Marshall
IRPS	\|RPS/Roosevelt
Political Science	Revelle
Political Science	Roosevelt
CSE	Muir
Literature	Warren
Medicine	SchMed
History	Muir
CSE	Warren
Bioengineering	Roosevelt
Theatre and Dance	Marshall
History	Roosevelt
TEP/Communication	Marshall
History	Marshall
Cognitive Science	Revelle
Physics	Revelle
SIO	SIO
CSE	Marshall
SIO	SIO
Pharmacology/Medicine	SchMed
Bioengineering	Revelle/SchMed
Physics	Muir
Neurosciences	SchMed
Political Science	Marshall
Psychiatry	SchMed
History	Revelle
SIO	SIO
Political Science	Marshall
ECE/CSE	Roosevelt
Theatre and Dance	Muir
Psychology	Roosevelt
Literature	Muir
Visual Arts	Roosevelt
Physics	Muir
Chemistry and Biochemistry	Roosevelt
Psychiatry/Radiology	SchMed
Psychiatry	SchMed
Sociology	Revelle
SIO/IGPP	SIO
IRPS	IRPS/Roosevelt
Biology-Molecular Biology	Marshall
Physics	Muir
Theatre and Dance	Muir
Anthropology/Warren	Warren
Chemistry and Biochemistry	Roosevelt
Psychiatry	SchMed
Sociology	Muir

Kadonaga, James T.	Professor
Kagnoff, Martin F.	Professor
Kahler, Miles E.	Professor
Kahng, Andrew	Professor
Kahr, Madlyn M.	Professor Emeritus
Kamen, Martin D.	Professor Emeritus
Kamps, Mark P.	Associate Professor
Kane, Alex	Professor
Kaplan, Robert M.	Professor
Kaprow, Allan	Professor Emeritus
Karbhari, Vistasp M.	Professor
Karin, Michael	Professor
Karin, Sidney	Professor-in-Residence
Karis, Aleck	Professor
Karpishin, Timothy	Assistant Professor
Karten, Harvey J.	Professor
Kastner, Miriam	Professor
Katzman, Robert	Professor Emeritus
Kayali, Hasan	Associate Professor
Kearns, David R.	Professor Emeritus
Keeling, Charles D.	Professor
Keeling, Ralph F.	Associate Professor
Kehler, Andrew	Assistant Professor
Kelly, Carolyn J.	Professor-in-Residence
Kelner, Michael J.	Professor
Kelsoe, John R., Jr.	Associate Professor
Kennel, Charles F.	Professor/Vice Chanceilor/Director
Kernell, Samuel H.	Professor
Kester, Grant	Assistant Professor
Kim, Euysung	Assistant Professor
King, Nicole R.	Associate Professor
Kipps, Thomas J.	Professor
Kirkland, Theo N., III	Professor-in-Residence
Kirkpatrick, Susan	Professor/Associate Chancellor
Kirsch, David J.	Associate Professor
Klatch, Rebecca E.	Professor
Klein, Rachel	Associate Professor
Kleinfeld, David	Professor
Klima, Edward S.	Professor Emeritus
Klimenko, Mikhail M.	Assistant Professor
Kluender, Robert E.	Associate Professor
Knowlton, Nancy	Professor
Kohn, Joshua R.	Associate Professor
Kokotovic, Milos	Assistant Professor
Kolodner, Richard D.	Professor
Komives, Elizabeth A.	Professor
Konecni, Vladimir J.	Professor
Kontje, Todd C.	Professor
Koo, Edward	Professor
Kooyman, Gerald L.	Professor-in-Residence Emeritus
Kosmatka, John B.	Professor
Krasheninnikov, Sergei	Professor
Krause, Lawrence B.	Professor

Professor
Professor
Professor

Emeritus
Assesor Emertus
Professor
Professor
Professor Emeritus
Professor
Professor
Professor-in-Residence
Professor
Assistant Professor
Professor
rofessor

Associate Professor
Associate Professor
Professor
Associate Professor
Assistant Professor
Professor-in-Residence
Professor
Associate Professor
Professor/Vice Chancellor/Director
Professor
Assistant Professor
Assistant Professor
Associate Professor

Professor-in-Residence
Professor/Associate Chancellor
e Professor

Associate Professor
Professor
Professor Emeritus
Assistant Professor
Associate Professor
Professor
Associate Professor

Assistant Professor
Professor

Professor
Professor
Professor-in-Residence Emeritus

Professor
Professor

Biology-Molecular Biology	Revelle
Medicine	SchMed
IRPS	IRPS
CSE/ECE	Revelle
Visual Arts	Warren
Chemistry and Biochemistry	Revelle
Pathology	SchMed
IRPS	IRPS/Roosevelt
Family and Preventive Medicine	SchMed
Visual Arts	Warren
SE	Muir
Pharmacology	SchMed
CSE	Warren
Music	Warren
Chemistry and Biochemistry	Warren
Neurosciences/Psychiatry	SchMed
SIO	SIO/Revelle
Neurosciences	SchMed
History	Roosevelt
Chemistry and Biochemistry	Revelle
SIO	SIO
SIO	SIO
Linguistics	Roosevelt
Medicine	SchMed
Pathology	SchMed
Psychiatry	SchMed
SIO/Marine Sciences	SIO
Political Science	Warren
Visual Arts	Roosevelt
IRPS	IRPS
Literature	Marshall
Medicine	SchMed
Pathology/Medicine	SchMed
Literature	Muir
Cognitive Science	Roosevelt
Sociology	Muir
History	Warren
Physics	Warren
Linguistics	Muir
IRPS	IRPS
Linguistics	Warren
SIO	510
Biology-Ecology, Behavior, and Evolution	Warren
Communication	Muir
Medicine	SchMed
Chemistry and Biochemistry	Roosevelt/SchMed
Psychology	Muir
Literature	Marshall
Neurosciences	SchMed
SIO	SIO
SE	Warren
MAE	Muir
IRPS	IRPS/Roosevelt

Krauss, Ellis S.	Professor
Kraut, Joseph	Professor Emeritus
Kreutz-Delgado, Kenneth	Professor
Kripke, Daniel F.	Professor-in-Residence
Kristan, William B., Jr.	Professor
Kroll, Norman M.	Professor Emeritus
Kronick, Richard G.	Associate Professor
Krstic, Miroslav	Professor
Krysi, Peter	Assistant Professor
Ku , Walter H .	Professor
Kubiak, Clifford P.	Professor
Kuczenski, Ronald T.	Professor-in-Residence
Kulik, James A.	Professor
Kummel, Andrew C.	Professor
Kuperman, William A.	Professor
Kuroda, Sige-Yuki	Professor Emeritus
Kutas, Marta	Professor
Kuti, Julius G.	Professor
Kyte, Jack E.	Professor
Lake, David A.	Professor
Lakoff, Sanford A.	Professor Emeritus
Lal, Devendra	Professor
Lampland, Martha	Associate Professor
Lande, Russell S.	Professor
Lane, Thomas A.	Professor
Langacker, Ronald W.	Professor
Langdon, Margaret H.	Professor Emeritus
Lanza di Scalea, Francesco	Assistant Professor
Larsen, Susan	Assistant Professor
Larson, Lawrence	Professor
Larson, Philip C.	Professor
Lasheras, Juan C.	Professor
Lau, Silvanus S.	Professor
Lawder, Standish D.	Associate Professor Emeritus
Ledden, Patrick J.	Senior Lecturer (SOE)/Provost
Lee, Edward N.	Professor Emeritus
Lee, Jin-Kyung	Assistant Professor
Lee, Sing H.	Professor
Leffert, Hyam L.	Professor
Lehmann, Bruce N.	Professor
Leichter, James	Assistant Professor
Levin, Lisa	Professor
Levin, Paula	Lecturer (SOE)
Levine, Fred	Associate Professor-in-Residence
Levine, Herbert	Professor
Levy, Robert I.	Professor Emeritus
Levy, Thomas E.	Professor
Lewak, George J.	Associate Professor Emeritus
Lewin, Ralph A.	Professor Emeritus
Lewis, George	Professor
Libby, Paul A.	Professor Emeritus
Lieber, Richard L.	Professor

IRPS	IRPS
Chemistry and Biochemistry	Revelle
ECE	Warren
Psychiatry	SchMed
Biology-Neurobiology	Marshall
Physics	Revelle
Family and Preventive Medicine	SchMed
MAE	Muir
SE	Muir
ECE	Revelle
Chemistry and Biochemistry	Warren
Psychiatry	SchMed
Psychology	Warren
Chemistry and Biochemistry	Muir
SIO	SIO
Linguistics	Muir
Cognitive Science	Muir
Physics	Marshall
Chemistry and Biochemistry	Warren
Political Science	Marshall
Political Science	Warren
SIO	SIO
Sociology	Roosevelt
Biology-Ecology, Behavior, and Evolution	Roosevelt
Pathology	SchMed
Linguistics	Revelle
Linguistics	Warren
MAE	Roosevelt
Literature	Roosevelt
ECE	Roosevelt
Music	Roosevelt
MAE	Marshall
ECE	Muir
Visual Arts	Warren
Mathematics/Muir	Muir
Philosophy	Revelle
Literature	Warren
ECE	Muir
Pharmacology	SchMed
IRPS	IRPS
SIO/MLRG/CCS	SIO
SIO	SIO
Teacher Education Program	Marshall
Pediatrics	SchMed
Physics	Marshall
Anthropology	Muir
Anthropology	Revelle
ECE	Muir
SIO	SIO
Music	Marshall
MAE	Revelle
Orthopaedics	SchMed

Liebermann, Leonard N.	Professor Emeritus	Physics	Revelle
Lijphart, Arend	Professor Emeritus	Political Science	Revelle
Lin, Bill	Associate Professor	ECE	Roosevelt
Lin, James P.	Professor	Mathematics	Muir
Lin, Shao-Chi	Professor Emeritus	MAE	Revelle
Lindblad, Hans	Associate Professor	Mathematics	Roosevelt
Linden, Paul	Professor	MAE	Muir
Lindenberg, Katja	Professor	Chemistry and Biochemistry	Marshall
Lindsley, Dan L.	Professor Emeritus	Biology-Cellular and Developmental Biology	Revelle/SchMed
Lipsitz, George	Professor	Ethnic Studies	Marshall
Livingston, Robert B.	Professor Emeritus	Neurosciences	SchMed
Llewellyn Smith, Stefan G.	Assistant Professor	MAE	Warren
Lo, Yu-Hwa	Professor	ECE	Marshall
Lonidier, Fred S.	Professor	Visual Arts	Revelle
Lonsdale, Peter F.	Professor	510	SIO
Loomis, William F., Jr.	Professor	Biology-Cellular and Developmental Biology	Revelle
Lopez, Marcel J.	Assistant Professor	IRPS	IRPS
Lovberg, Ralph H.	Professor Emeritus	Physics	Revelle
Lowe, Lisa M.	Professor	Literature	Muir
Luco, J. Enrique	Professor/Associate Dean	MAE/School of Engineering	Marshall
Luft, David S.	Professor	History	Revelle
Lugannani, Robert	Professor	ECE	Warren
Luo, Huey-Lin	Professor	ECE	Muir
Lupia, Arthur W.	Professor	Political Science	Marshall
Lyon, James K.	Professor Emeritus	Literature	Roosevelt
Lytle, Cecil W.	Professor/Provost	Music/Marshall	Marshall
Macagno, Eduardo R.	Professor/Dean	Biology--Cellular and Developmental Biology	Roosevelt
MacConnel, Kim R.	Professor	Visual Arts	Marshall
Macdougall, J. Douglas	Professor	SIO	Revelle/SIO
MacFarlane, David B.	Professor	Physics	Marshall
Machina, Mark J.	Professor	Economics	Revelle
Macintyre, Andrew J.	Associate Professor	IRPS	IRPS
MacLeod, Carol L.	Professor-in-Residence	Medicine	SchMed
MacLeod, Donald I.A.	Professor	Psychology	Muir
Madsen, Richard P.	Professor	Sociology	Roosevelt
Magagna, Victor V.	Associate Professor	Political Science	Muir
Magde, Douglas	Professor	Chemistry and Biochemistry	Warren
Malhotra, Vivek	Professor	Biology-Cellular and Developmental Biology	Revelle
Manaster, Alfred B.	Professor	Mathematics	Revelle
Mandler, George	Professor Emeritus	Psychology	Muir
Mandler, Jean M.	Professor	Cognitive Science	Revelle
Mangolte, Babette M.	Professor	Visual Arts	Marshall
Manohar, Aneesh V.	Professor	Physics	Marshall
Manovich, Lev	Assistant Professor	Visual Arts	Revelle
Maple, M. Brian	Professor	Physics	Revelle
Marchetti, Karen E.	Assistant Professor	Biology-Ecology, Behavior, and Evolution	Revelle
Mares, David R.	Professor	Political Science	Muir
Marino, John A.	Associate Professor	History	Revelle

Mariscal, George L. Markenscoff, Xanthippe Marquardt, Diana L. Marshall, Margaret C. Marth, Jamey D.
Marti, Kurt
Martin, Paul T.
Martin, Wayne M.
Marzullo, Keith
Masek, George E.
Masliah, Eliezer
Masouredis, Serafeim P.
Masry, Elias
Masters, T. Guy
Mathieu-Costello, Odile
Mayford, Mark
McCammon, James Andrew
McCubbins, Mathew D.
McCulloch, Andrew D.
McDaniel, Timothy L.
McDonald, Marianne
McGinnis, William J.
McGowan, John A.
Mcllwain, Carl E.
McKenzie, Craig R.M.
McKittrick, Joanna M.
McMorris, Trevor C.
Meeker, Michael E.
Mehan, Hugh B., Jr.
Mellon, Pamela L.
Melville, W. Kendall
Mendis, D. Asoka
Meranze, Michael
Metzger, Thomas A.
Meyer, Karsten
Meyer, Ursula
Meyers, Marc A.
Micciancio, Daniele
Middleman, Stanley
Miles, John W.
Miller, Arnold L.
Miller, David R.
Miller, Stanley L.
Mills, Stanley E.
Milstein, Laurence B.
Minster, Jean-Bernard
Mitchell, Allan
Miyai, Katsumi
Miyoshi, Masao
Mizisin, Andrew P.
Molina, Natalia
Montal, S. Mauricio

Associate Professor
Professor
Associate Professor-in-Residence
Senior Lecturer (SOE)
Professor
Professor
Assistant Professor
Associate Professor
Associate Professor
Professor Emeritus
Professor
Professor Emeritus
Professor
Professor
Professor-in-Residence
Assistant Professor
Professor
Professor
Professor
Professor
Professor
Professor

Professor Emeritus
Professor Emeritus
Associate Professor
Professor
Professor
Professor
Professor
Professor
Professor
Professor Emeritus
Associate Professor
Professor Emeritus
Assistant Professor
Lecturer (SOE)
Professor
Assistant Professor
Professor
Professor Emeritus
Professor
Professor/Associate Vice Chancellor
Professor Emeritus
Professor Emeritus

Professor
Professor
Professor Emeritus
Professor
Professor
Associate Professor
Assistant Professor
Professor

Literature	Warren
MAE	Revelle
Medicine	SchMed
Theatre and Dance	Marshall
CMM	SchMed
Chemistry and Biochemistry	Revelle
Neurosciences	SchMed
Philosophy	Muir
CSE	Marshall
Physics	Revelle
Neurosciences/Pathology	SchMed
Pathology	SchMed
ECE	Muir
SlO	SIO
Medicine	SchMed
Neurosciences	SchMed
Chemistry and Biochemistry/ Pharmacology	Revelle/SchMed
Political Science	Marshall
Bioengineering	Muir
Sociology	Roosevelt
Theatre and Dance	Revelle
Biology-Cellular and Developmental Biology	Marshall
SIO	SIO
Physics	Revelle
Psychology	Revelle
MAE	Warren
Chemistry and Biochemistry	Marshall
Anthropology	Revelle
Sociology	Marshall
Reproductive Medicine/Neurosciences	SchMed
SIO	SIO
ECE	Muir
History	Marshall
History	Muir
Chemistry and Biochemistry	Warren
Theatre and Dance	Warren
MAE	Revelle
CSE	Marshall
MAE	Warren
MAE	Warren/SIO
Neurosciences	SchMed
MAE	Revelle
Chemistry and Biochemistry	Revelle
Biology-Cellular and Developmental Biology	Muir
ECE	Warren
SIO	SIO
History	Roosevelt
Pathology/Medicine	SchMed
Literature	Marshall
Pathology	SchMed
Ethnic Studies	Roosevelt
Biology-Neurobiology	Revelle

Monteón, Michael P.	Professor	History	Muir
Montrose, Louis A.	Professor	Literature	Revelle
Moore, F. Richard	Professor	Music	Revelle
Moore, James J.	Associate Professor	Anthropology	Warren
Moore, John C.	Associate Professor	Linguistics	Muir
Mosshammer, Alden A.	Professor	History	Revelle
Movellan, Javier R.	Assistant Professor	Cognitive Science	Warren
Mukerji, Chandra	Professor	Communication/Sociology	Marshall
Munk, Walter H.	Professor Emeritus	SIO	SIO/Warren
Murakami, Hidenori	Professor	MAE	Revelle
Murre, Cornelis	Professor	Biology - Molecular Biology	Revelle
Myers, Robert R.	Professor	Anesthesiology/Pathology	SchMed
Nachbar, William	Professor Emeritus	MAE	Revelle
Najmabadi, Farrokh	Professor	ECE	Roosevelt
Naughton, Barry J.	Professor	IRPS	IRPS
Nee, Thomas B.	Professor Emeritus	Music	Warren
Négyesy, János	Professor	Music	Muir
Nemat-Nasser, Siavouche	Professor	MAE	Revelle
Nesbitt, Muriel N.	Associate Professor	Biology-Neurobiology	SchMed/Warren
Nesterenko, Vitali	Professor	MAE	Roosevelt
Newman, William A.	Professor	SIO	SIO
Newmark, Leonard D.	Professor Emeritus	Linguistics	Revelle
Newport, John W.	Professor	Biology-Cellular and Developmental Biology	Muir
Newsome, Elizabeth	Assistant Professor	Visual Arts	Revelle
Newton, Alexandra	Professor	Pharmacology	SchMed
Nguyen, Truong	Professor	ECE	Marshall
Nguyen-Huu, Xuong	Professor	Biology-Molecular Biology/Chemistry and Biochemistry/Physics	Revelle/SchMed
Nicolaides, Becky M.	Assistant Professor	History	Marshall
Nicolaou, Kyriacos C.	Professor	Chemistry and Biochemistry	Muir
Nieh, James C.	Assistant Professor	Biology-Ecology, Behavior, and Evolution	Marshall
Niiler, Pearn P.	Professor	SIO	SIO
Nodelman, Sheldon A.	Professor	Visual Arts	Warren
Nomura, Keiko	Associate Professor	MAE	Marshall
Norman, Donald A.	Professor Emeritus	Cognitive Science/Psychology	Revelle
Norman, Michael L.	Professor	Physics	Marshall
Norris, Joel R.	Assistant Professor	SIO/CAS	SIO
Northcutt, R. Glenn	Professor	Neurosciences	SchMed/SIO
Oates, Charles	Senior Lecturer (SOE)	Theatre and Dance	Revelle
O'Brien, William A.	Associate Professor	Literature	Muir
0^{\prime} Connor, Daniel T.	Professor-in-Residence	Medicine	SchMed
O'Connor, Joseph M.	Professor	Chemistry and Biochemistry	Marshall
Oesterreicher, Hans K.	Professor	Chemistry and Biochemistry	Muir
Ogdon, Wilbur L.	Professor Emeritus	Music	Muir
Ohman, Mark D.	Professor	SIO	SIO
Okamura, Melvin Y.	Professor	Physics	Revelle
Okikiolu, Kate	Associate Professor	Mathematics	Revelle
Olafson, Frederick A.	Professor Emeritus	Philosophy	Revelle
Olefsky, Jerrold M.	Professor	Medicine	SchMed
Olfe, Daniel B.	Professor Emeritus	MAE	Revelle

O'Neil, Thomas M.	Professor	Physics	Warren
Onuchic, José N.	Professor	Physics	Muir
Opella, Stanley J.	Professor	Chemistry and Biochemistry	Muir
O'Quigley, John	Professor	Mathematics	Muir
Orailoglu, Alex	Professor	CSE	Revelle
Orcutt, John A.	Professor	SIO	SIO
Oreskes, Naomi	Associate Professor	History	Warren
Orlitsky, Alon	Professor	ECE	Marshall
Orloff, Marshall J.	Professor	Surgery	SchMed/Muir
Oxman, Michael N .	Professor	Medicine/Pathology	SchMed
Paar, Hans P.	Professor	Physics	Roosevelt
Padden, Carol A.	Professor	Communication	Marshall
Palade, George	Professor-in-Residence Emeritus	CMM	SchMed
Palenik, Brian	Associate Professor	SIO	SIO
Palsson, Bernhard O.	Professor	Bioengineering	Warren
Papakonstantinou, Yannis	Assistant Professor	CSE	Roosevelt
Parish, Steven	Associate Professor	Anthropology	Roosevelt
Parker, Robert L.	Professor	SIO	SIO
Parra, Max	Associate Professor	Literature	Marshall
Parrish, Michael E.	Professor	History	Muir
Parry, Chris N.	Professor	Theatre and Dance	Roosevelt
Pashler, Harold E.	Professor	Psychology	Muir
Pasler, Jann C.	Professor	Music	Roosevelt
Pasquale, Joseph C.	Professor	CSE	Marshall
Patterson, Patricia A.	Professor Emeritus	Visual Arts	Muir
Paturi, Ramamohan	Professor	CSE	Warren
Pearce, Roy Harvey	Professor Emeritus	Literature	Roosevelt
Penn, Nolan E.	Professor Emeritus	Psychiatry	SchMed
Penner, Stanford S.	Professor Emeritus	MAE	Revelle
Perlmutter, David M.	Professor	Linguistics	Revelle
Perrin, Charles L.	Professor	Chemistry and Biochemistry	Revelle
Peterson, Laurence E.	Professor Emeritus	Physics	Revelle
Pevzner, Pavel	Professor	CSE	Marshall
Phillips, David P.	Professor	Sociology	Revelle
Piccioni, Oreste	Professor Emeritus	Physics	Revelle
Pickowicz, Paul G.	Professor	History	Muir
Pillus, Lorraine	Associate Professor	Biology-Molecular Biology	Revelle
Pilz, Renate B.	Associate Professor-in-Residence	Medicine	SchMed
Pineda, Jaime A.	Associate Professor	Cognitive Science	Roosevelt
Pinkel, Robert	Professor	SIO	SIO
Pinon, Ramón, Jr.	Associate Professor Emeritus	Biology	Marshall
Plantamura, Carol	Professor	Music	Revelle
Pogliano, Kit	Assistant Professor	Biology-Cellular and Molecular Biology	Roosevelt
Polinsky, Maria	Professor	Linguistics	Revelle
Politis, Dimitris	Associate Professor	Mathematics	Roosevelt
Polyzos, George C.	Professor	CSE	Roosevelt
Pomeroy, Earl	Professor Emeritus	History	Warren
Popkin, Samuel L.	Professor	Political Science	Marshall
Posakony, James W.	Professor	Biology-Neurobiology	Marshall
Powell, Frank L., Jr.	Professor	Medicine	SchMed
Powell, Henry C.	Professor	Pathology	SchMed
Pozrikidis, Constantine	Professor	MAE	Muir
Price, Paul A.	Professor	Biology-Molecular Biology	Muir

Price, Trevor D.	Professor
Priestley, M. J. Nigel	Professor Emeritus
Printz, Morton P.	Professor
Propp, William H.	Professor
Puckette, Miller S.	Professor
Quest, Kevin B.	Professor
Quirrenbach, Andreas	Professor
Rabin, Jeffrey M.	Professor
Radcliff, Pamela B.	Associate Professor
Rafael, Vicente L.	Professor
Ramachandran, Vilayanur S.	Professor
Ramanathan, Ramachandra	Professor Emeritus
Ramanathan, Veerabhadran	Professor
Ramey, Garey	Professor
Ramey, Valerie A.	Professor
Randel, Fred V.	Associate Professor
Rangan, Venkat P.	Professor
Rao, Bhaskar D.	Professor
Rao, Ramesh	Professor
Rapaport, Samuel I.	Professor Emeritus
Rauch, James E.	Professor
Rearden, C. Anne	Professor
Reid, Joseph L.	Professor Emeritus
Reid, Roddey	Associate Professor
Remmel, Jeffrey D.	Professor
Restrepo, José	Associate Professsor
Reynolds, Edward	Professor
Reynolds, Roger L.	Professor
Rhodes, Jane	Associate Professor
Richman, Douglas D.	Professor-in-Residence
Rickard, Timothy	Assistant Professor
Rickert, Robert	Assistant Professor
Rickett, Barnaby J.	Professor
Ride, Sally K.	Professor
Rincón, Patricia A.	Lecturer (SOE)
Ringgold, Faith	Professor
Ringrose, David R.	Professor
Rinott, Yosef	Professor Emeritus
Robbins, Joel	Assistant Professor
Robbins, Paul E.	Assistant Professor
Roberts, Justin D.	Acting Associate Professor
Rodin, Burton	Professor Emeritus
Roeder, Philip G.	Associate Professor
Roemmich, Dean H.	Professor
Rohrl, Helmut	Professor Emeritus
Rona-Tas, Akos	Associate Professor
Rose, Sharon	Assistant Professor
Rosenblatt, Murray	Professor Emeritus
Rosenblatt, Richard H.	Professor Emeritus
Rosenbluth, Marshall N .	Professor Emeritus
Rosenfeld, Michael Geoff	Professor

Biology-Ecology, Behavior, and Evolution	Muir
SE	Warren
Pharmacology	SchMed
History	Muir
Music	Warren
ECE	Warren
Physics	Roosevelt
Mathematics	Revelle
History	Roosevelt
Communication	Marshall
Psychology	Marshall
Economics	Revelle
SIO	SIO
Economics	Warren
Economics	Marshall
Literature	Revelle
CSE	Revelle
ECE	Revelle
ECE	Revelle
Medicine/Pathology	SchMed
Economics	Marshall
Pathology	SchMed
SIO	SIO
Literature	Muir
Mathematics	Muir
SE	Revelle
History	Marshall
Music	Muir
Ethnic Studies	Marshall
Pathology/Medicine	SchMed
Psychology	Roosevelt
Biology-Molecular Biology	Revelle
ECE	Muir
Physics	Marshall
Theatre and Dance	Roosevelt
Visual Arts	Muir
History	Revelle
Mathematics	Revelle
Anthropology	Marshall
SIO/PORD	SIO
Mathematics	Warren
Mathematics	Muir
Political Science	Marshall
SIO	SIO
Mathematics	Revelle
Sociology	Roosevelt
Linguistics	Roosevelt
Mathematics	Muir
SIO	SIO
Physics	Roosevelt
Medicine	SchMed

Ross, Lola R.	Professor
Rotenberg, Manuel	Professor Emeritus
Rothenberg, Jerome D.	Professor Emeritus
Rothschild, Linda P.	Professor
Rouse, John	Associate Professor
Roy, Kaustuv	Assistant Professor
Rudee, M. Lea	Professor Emeritus
Rudnick, Daniel L.	Associate Professor
Rudwick, Martin J.S.	Professor Emeritus
Ruiz, Ramón E.	Professor Emeritus
Rumsey, Victor H.	Professor Emeritus
Russell, Percy J.	Associate Professor Emeritus
Rutherford, Donald P.	Associate Professor
Sah, Robert L.Y.	Associate Professor
Saier, Milton H., Jr.	Professor
Sailor, Michael J.	Professor
Saito, Leland	Associate Professor
Sala-Gomez, Enric	Assistant Professor
Salmon, David P.	Professor-in-Residence
Salmon, Richard L.	Professor
Sánchez, Marta E.	Associate Professor
Sánchez, Rosaura	Professor
Sandwell, David T.	Professor
Sarkar, Sutanu	Professor
Savage, Stefan	Acting Assistant Professor
Saville, Jonathan	Associate Professor Emeritus
Savitch, Walter J.	Professor
Sawrey, Barbara	Senior Lecturer (SOE)
Scanga, Italo	Professor
Schaede, Ulrike	Associate Professor
Schafer, William	Assistant Professor
Schane, Sanford A.	Professor Emeritus
Scheffler, Immo E.	Professor
Schick, Steven E.	Professor
Schmid-Schoenbein, Geert W.	Professor
Schmidt, Robert J.	Professor
Schneider, Alan M.	Professor Emeritus
Schneider, Jerry A.	Professor/Dean
Schoeninger, Margaret	Professor
Schrauzer, Gerhard N.	Professor Emeritus
Schreibman, Laura E.	Professor/Associate Chancellor
Schroeder, Julian I.	Professor
Schuckit, Marc A.	Professor
Schudson, Michael S.	Professor
Schuller, Ivan K.	Professor
Schultz, Sheldon	Professor Emeritus
Schwartz, Theodore	Professor Emeritus
Sclater, John G.	Professor
Scull, Andrew T.	Professor

Family and Preventive Medicine	SchMed/Muir
ECE	Muir
Literature/Visual Arts	Roosevelt
Mathematics	Warren
Theatre and Dance	Roosevelt
Biology-Ecology, Behavior, and Evolution	Roosevelt
ECE	Warren
SIO	SIO
History	Warren
History	Muir
ECE	Muir
Biology	SchMed
Philosophy	Revelle
Bioengineering	Muir
Biology	Muir
Chemistry and Biochemistry	Revelle
Ethnic Studies	Marshall
SIO/MLRG	SIO
Neurosciences	SchMed
SlO	SIO
Literature	Marshall
Literature	Marshall
SIO	SIO
MAE	Warren
CSE	Marshall
Theatre and Dance	Revelle
CSE	Muir
Chemistry and Biochemistry	Revelle
Visual Arts	Muir
IRPS	IRPS
Biology-Neurobiology	Roosevelt
Linguistics	Roosevelt
Biology-Molecular Biology	Revelle
Music	Muir
Bioengineering	SchMed
Biology-Cellular and Developmental Biology	Warren
MAE	Warren
Pediatrics/Academic Affairs	SchMed
Anthropology	Marshall
Chemistry and Biochemistry	Revelle
Psychology	Warren
Biology-Cellular and Developmental Biology	Warren
Psychiatry	SchMed
Communication	Marshall
Physics	Revelle
Physics	Marshall
Anthropology	Muir
SIO	SIO
Sociology	Roosevelt

Sebald, Anthony V.
Segal, David S.
Seible, Frieder
Seiter, Ellen E.
Sejnowski, Terrence J.
Selverston, Allen I.
Semendeferi, Katerina
Sereno, Martin I.
Seshadri, Kalyanasundaram
Severinghaus, Jeffrey
Shachat, Jason
Shadwick, Robert E.
Shafir, Gershon
Shah, Nayan B.
Sham, Lu Jeu
Shank, Adele E.
Shank, Theodore J.
Shapin, Steven
Shapiro, Vitali
Sharma, Vivek A.
Sharpe, Michael J.
Shearer, Peter M.
Shenk, Norman AI
Sher, Gila
Shevelow, Kathryn
Shiffman, Gary A.
Shirk, Susan L.
Shor, George G., Jr.
Shugart, Matthew F.
Shuler, Kurt E.
Shults, Clifford W.
Siegel, Jay S.
Siegel, Paul
Silber, John J.
Silva, Denise Ferreira da
Silva, Ernest R.
Silverman, Gregg J.
Singer, S. Jonathan
Sinha, Amitabha
Skelton, Robert E.
Skrentny, John D.
Small, Lance W.
Smallwood, Dennis E.
Smallwood, Stephanie E.
Smarr, Janet
Smarr, Larry
Smith, Donald R.
Smith, Douglas E.
Smith, Douglas W.
Smith, Harding E.
Smith, Laurie G.

Smith, Peter H.

Associate Professor
Professor
Professor
Professor
Professor
Professor Emeritus
Assistant Professor
Associate Professor
Professor
Associate Professor
Assistant Professor
Professor
Professor
Associate Professor
Professor
Professor
Professor Emeritus
Professor
Professor
Associate Professor
Professor
Professor
Lecturer (SOE)
Associate Professor
Associate Professor
Assistant Professor
Professor
Professor Emeritus
Professor
Professor Emeritus
Professor
Professor
Professor
Professor Emeritus
Assistant Professor
Professor
Associate Professor-in-Residence
University Professor Emeritus
Associate Professor
Professor
Associate Professor
Professor
Associate Professor Emeritus
Assistant Professor
Professor
Professor
Professor
Assistant Professor
Professor
Professor
Assistant Professor
Professor

ECE	Marshall
Psychiatry	SchMed
MAE	Marshall
Communication	Roosevelt
Biology-Neurobiology	Muir
Biology-Neurobiology	Warren
Anthropology	Marshall
Cognitive Science	Warren
MAE	Marshall
SIO	SIO
Economics	Marshall
SIO	SIO
Sociology	Roosevelt
History	Warren
Physics	Warren
Theatre and Dance	Marshall
Theatre and Dance	Revelle
Sociology	Revelle
ECE/Physics	Roosevelt
Physics	Muir
Mathematics	Muir
SIO	SIO
Mathematics	Revelle
Philosophy	Warren
Literature	Muir
Political Science	Roosevelt
IRPS/Political Science	IRPS/Roosevelt
SIO	SIO
IRPS	IRPS
Chemistry and Biochemistry	Revelle
Neurosciences	SchMed
Chemistry and Biochemistry	Muir
ECE	Roosevelt
Music	Roosevelt
Ethnic Studies	Revelle
Visual Arts	Warren
Medicine	SchMed
Biology-Cellular and Developmental Biology	Revelle/SchMed
Chemistry and Biochemistry	Warren
MAE	Roosevelt
Sociology	Warren
Mathematics	Revelle
Economics	Warren
History	Muir
Theatre and Dance	Revelle
CSE	Roosevelt
Mathematics	Revelle
Physics	Roosevelt
Biology-Molecular Biology	Muir
Physics	Revelle
Biology-Cellular and Developmental Biology	Roosevelt
Political Science	Marshall

Smith, Susan L.
Sobel, Joel Solis, Faustina Sollberger, Harvey Somero, George N . Somerville, Richard C. J.
Song, Bang-Sup
Sorensen, Alan T.
Sorensen, Harold W.
Souviney, Randall J.
Spector, Deborah H.
Spector, Stephen A.
Spiess, Fred N.
Spiro, Melford E.
Spitzer, Nicholas C. Squire, Larry R.
Stammer, Detlef B.
Star, Susan Leigh
Stark, Harold M.
Starr, Ross M.
Steiger, Rand
Steinberg, Daniel
Steinmetz, Phel
Stern, Lesley
Stevens, Jane
Stewart, John L.
Stiles, Joan
Storms, Lowell H.
Stramski, Dariusz
Streeby, Shelley
Stroll, Avrum
Strom, Kaare
Strong, Tracy B.
Strum, Shirley C.
Subramani, Suresh
Subramaniam, Shankar
Sugihara, George
Suhl, Harry
Sung, Lanping Amy
Surko, Clifford M.
Swanson, Robert A.
Swartz, Marc J.
Swerdlow, Neal R.
Swinney, David A.
Sworder, David D.

Talbot, Jan B.
Talke, Frank E.
Talley, Lynne D.
Tanaka, Stefan
Tarin, David
Tauxe, Lisa
Tay, William Shu-Sam Taylor, Palmer W.

Associate Professor
Professor
Professor Emeritus
Professor
Professor Emeritus
Professor
Professor
Assistant Professor
Professor Emeritus
Senior Lecturer (SOE)
Professor
Professor
Professor Emeritus
Professor Emeritus
Professor
Professor-in-Residence
Associate Professor
Professor
Professor
Professor
Professor
Professor Emeritus
Associate Professor
Professor
Associate Professor
Professor Emeritus
Professor
Professor-in-Residence
Associate Professor
Assistant Professor
Professor Emeritus
Professor
Professor
Professor
Professor
Professor
Professor
Professor Emeritus
Associate Professor
Professor
Professor Emeritus
Professor
Professor
Professor
Professor/Associate Dean

Professor
Professor
Professor
Associate Professor
Professor
Professor
Professor Emeritus
Professor

Visual Arts	Muir
Economics	Revelle
Family and Preventive Medicine	Marshall
Music	Muir
SIO	SIO
SIO	510
ECE	Warren
Economics	Warren
MAE	Revelle
TEP	Marshall
Biology-Molecular Biology	SchMed/Roosevelt
Pediatrics	SchMed
SIO	SIO
Anthropology	Muir
Biology-Neurobiology	Muir
Psychiatry/Neurosciences/Psychology	SchMed/Warren
SIO	SIO
Communication	Revelle
Mathematics	Muir
Economics	Warren
Music	Warren
Medicine	SchMed
Visual Arts	Revelle
Visual Arts	Roosevelt
Music	Revelle
Literature	Muir
Cognitive Science	Muir
Psychiatry	SchMed
SIO	SIO
Literature	Roosevelt
Philosophy	Revelle
Political Science	Roosevelt
Political Science	Roosevelt
Anthropology	Revelle
Biology-Molecular Biology	Warren
Bioengineering	Roosevelt
SIO	SIO
Physics	Revelle
Bioengineering	Warren
Physics	Marshall
Physics	Revelle
Anthropology	Muir
Psychiatry	SchMed
Psychology	Roosevelt
ECE/Graduate Studies \& Research	Revelle
MAE	Muir
MAE	Warren
SIO	SIO
History	Roosevelt
Pathology	SchMed
SIO	SIO
Literature	Roosevelt
Pharmacology	SchMed

Taylor, Peter R.	Professor-in-Residence	Chemistry and Biochemistry	Revelle
Taylor, Susan S.	Professor	Chemistry and Biochemistry	SchMed/Roosevelt
Teichner, Peter	Professor	Mathematics	Roosevelt
Teilhet-Fisk, Jehanne H.	Professor Emeritus	Visual Arts	Roosevelt
Terras, Audrey A.	Professor	Mathematics	Revelle
Terry, Robert D.	Professor Emeritus	Neurosciences/Pathology	SchMed
Thal, Leon J.	Professor	Neurosciences	SchMed
Theodorakis, Emmanouil	Assistant Professor	Chemistry and Biochemistry	Muir
Thiemens, Mark H.	Professor/Dean	Chemistry and Biochemistry/ Physical Sciences	Marshall
Thiess, Frank B.	Senior Lecturer (SOE) Emeritus	Mathematics	Marshall
Ticho, Harold K.	Professor Emeritus/Vice Chancellor Emeritus	Physics/Academic Affairs	Marshall
Timmer, C. Peter	Professor	IRPS	IRPS
Timmerman, Allan	Associate Professor	Economics	Muir
Tohsaku, Yasu-Hiko	Professor	IRPS	IRPS/Roosevelt
Tokuyasu, Kiyoteru	Professor-in-Residence Emeritus	Biology-Cellular and Developmental Biology	Revelle
Tomlinson, Barbara	Associate Professor	Literature	Muir
Tonkovich, Nicole	Associate Professor	Literature	Roosevelt
Tor, Yitzhak	Associate Professor	Chemistry and Biochemistry	Marshall
Trauner, Doris A.	Professor	Neurosciences/Pediatrics	SchMed
Trivedi, Mohan	Professor	ECE	Warren
Trogler, William C.	Professor	Chemistry and Biochemistry	Revelle
Troupe, Quincy	Professor	Literature	Marshall
Truant, Cynthia M.	Associate Professor	History	Roosevelt
Tsien, Roger K.	Professor	Pharmacology/Chemistry and Biochemistry	SchMed/Revelle
Tu, Charles W.	Professor	ECE	Marshall
Tukey, Robert H.	Professor-in-Residence/Professor	Pharmacology/Chemistry and Biochemistry	SchMed/Marshall
Tullsen, Dean	Assistant Professor	CSE	Warren
Turetzky, Bertram J.	Professor	Music	Muir
Turner, Christena L.	Associate Professor	Sociology	Roosevelt
Tuzin, Donald F.	Professor	Anthropology	Revelle
Tynan, George	Assistant Professor	MAE	Muir
Tytler, David R.	Professor	Physics	Muir
Uang, Chia-Ming	Professor	SE	Warren
Ung, Chinary	Professor	Music	Roosevelt
Vacquier, Victor	Professor Emeritus	SIO	SIO
Vacquier, Victor D.	Professor	SIO	SIO
Van Atta, Charles W.	Professor Emeritus	MAE/SIO	Revelle/SIO
Van der Geer, Peter	Assistant Professor	Chemistry and Biochemistry	Roosevelt
Van Young, Eric	Professor	History	Roosevelt
Vardy, Alexander	Associate Professor	ECE/CSE	Warren
Varghese, George	Professor	CSE	Muir
Varki, Ajit P.	Professor	Medicine/CMM	SchMed
Varni, James W.	Professor-in-Residence	Psychiatry	SchMed
Varon, Silvio S.	Professor Emeritus	Biology-Neurobiology	SchMed
Vasquez, Olga A.	Associate Professor	Communication	Marshall
Vecchio, Kenneth S.	Professor	MAE	Roosevelt
Vehrencamp, Sandra L.	Professor Emeritus	Biology-Ecology, Behavior, and Evolution	Muir
Vendler, Zeno	Professor Emeritus	Philosophy	Muir

Verdicchio, Pasquale
Vernon, Wayne
Vianu, Victor D.
Vickers, Daniel F.
Vidal, Mary
Viterbi, Andrew J.
Voelker, Geoffrey
Wadsworth, Adrian R.
Wagner, Arthur
Wagner, Peter D.
Wahlen, Martin
Waisman, Carlos H.
Walk, Cynthia
Wallach, Nolan R.
Walter, Barbara F.
Walter, Gernot F.
Wang, Jean Yin Jen
Ward, John F.
Wasserman, Stephen I.
Wasserman, Steven A.

Waters, Les
Watkins, Eric
Watson, Joel
Watson, Joseph W.
Watson, Kenneth M.
Wavrik, John J.
Wayne, Don E.
Weare, John H.
Webster, Nicholas J. G.
Weiss, Ray F.
Welchman, John C.
Wenkert, Ernest
Wenzl, Hans G.
Werner, Bradley T. Wesling, Donald T. West, John B.
Westman, Robert S .
Wheeler, John C.
White, Fred N .
White, Halbert L.
White, Michelle
Whitehead, Mark C.
Wieder, Harry H.
Wienhausen, Gabriele
Williams, Ben A.
Williams, Forman A.
Williams, Ruth J.
Williamson, S. Gill
Wills, Christopher

Associate Professor
Professor Emeritus
Professor
Professor
Associate Professor
Professor Emeritus
Assistant Professor

Professor
Professor Emeritus
Professor
Professor
Professor
Associate Professor
Professor
Assistant Professor
Professor
Professor
Professor Emeritus
Professor
Professor

Professor
Associate Professor
Associate Professor
Professor/Vice Chancellor
Professor Emeritus
Associate Professor
Associate Professor
Professor
Associate Professor-in-Residence
Professor/Associate Dean
Professor
Professor Emeritus
Professor
Associate Professor
Professor
Professor
Professor
Professor
Professor Emeritus
Professor
Professor
Associate Professor
Professor-in-Residence Emeritus
Senior Lecturer (SOE)/Provost
Professor
Professor
Professor
Professor
Professor

Literature	Roosevelt
Physics	Revelle
CSE	Marshall
History	Muir
Visual Arts	Revelle
ECE	Warren
CSE	Muir
Mathematics	Warren
Theatre and Dance	Muir
Medicine	SchMed
SIO	SIO
Sociology	Marshall
Literature	Roosevelt
Mathematics	Roosevelt
IRPS	IRPS
Pathology	SchMed
Biology-Molecular Biology	SchMed/Roosevelt
Radiology	SchMed
Medicine	SchMed
Biology-Cellular and Molecular Biology	Warren
Theatre and Dance	Revelle
Philosophy	Revelle
Economics	Muir
Chemistry and Biochemistry/Student Affairs	Marshall
SIO	SIO
Mathematics	Muir
Literature	Muir
Chemistry and Biochemistry	Revelle
Medicine	SchMed
SIO	SIO
Visual Arts	Muir
Chemistry and Biochemistry	Revelle
Mathematics	Marshall
SIO	SIO
Literature	Roosevelt
Medicine	SchMed
History	Muir
Chemistry and Biochemistry	Revelle
Medicine	SchMed/SIO
Economics	Revelle
Economics	Roosevelt
Surgery	SchMed
ECE	Muir
Biology-Cellular and Developmental Biology/Sixth	Marshall
Psychology	Muir
MAE	Marshall
Mathematics	Warren
CSE	Roosevelt
Biology-Ecology, Behavior, and Evolution	Warren/SchMed

Winant, Clinton D.	Professor
Winker, James R.	Professor
Winterer, Edward L.	Professor Emeritus
Wiseman, Jacqueline P.	Professor Emeritus
Witztum, Joseph L.	Professor
Wixted, John T.	Professor
Wolf, Jack K.	Professor
Wolfe, Arthur M.	Professor
Wolynes, Peter G.	Professor
Wong, David Y.	Professor Emeritus
Wong-Staal, Flossie	Professor
Woodhull, Winifred	Associate Professor
Woodruff, Christopher M.	Associate Professor
Woodruff, David S.	Professor
Woods, Virgil L.	Associate Professor
Woolard, Kathryn A.	Professor
Wright, Andrew	Professor Emeritus
Wulbert, Daniel E.	Professor
$X u, Y a n g$	Assistant Professor
Yaffe, Michael P.	Professor
Yaksh, Tony L.	Professor
Yanofsky, Martin F.	Professor
Yayanos, Aristides	Professor-in-Residence
Yee, Bennet S.	Assistant Professor
Yen, Samuel S.C.	Professor Emeritus
Yguerabide, Juan	Professor Emeritus
Yip, Wai-Lim	Professor
Yoneyama, Lisa	Associate Professor
York, Herbert F.	Professor Emeritus
Young, William R.	Professor
Yu, Edward	Professor
Yu, Paul K. L.	Professor
Yuasa, Joji	Professor Emeritus
Yun, Kenneth Y.	Associate Professor
Zamosc, Leon	Associate Professor
Zanetti, Maurizio	Professor-in-Residence
Zeger, Kenneth A.	Professor
Zhao, Yuezhi	Assistant Professor
Zhiri, Oumelbanine	Professor
Zimm, Bruno H.	Professor Emeritus
Zipser, David	Professor
Zisook, Sidney	Professor
Zivin, Justin A.	Professor
Zola, Stuart M.	Professor-in-Residence
Zuker, Charles	Professor

SIO	SIO
Theatre and Dance	Marshall
SIO	SIO
Sociology	Warren
Medicine	SchMed
Psychology	Revelle
ECE	Roosevelt
Physics	Warren
Chemistry and Biochemistry	Warren
Physics	Warren
Biology-Molecular Biology/Medicine	Revelle/SchMed
Literature	Warren
IRPS	IRPS
Biology-Ecology, Behavior, and Evolution	Roosevelt
Medicine	SchMed
Anthropology	Muir
Literature	Revelle
Mathematics	Marshall
Biology-Molecular Biology	Marshall
Biology-Cellular and Developmental Biology	Marshall
Anesthesiology/Pharmacology	SchMed
Biology-Cellular and Developmental Biology	Warren
SIO	SIO
CSE	Muir
Reproductive Medicine	SchMed
Biology	Marshall
Literature	Muir
Literature	Roosevelt
Physics	Warren
SIO	SIO
ECE	Marshall
ECE	Revelle
Music	Warren
ECE	Revelle
Sociology	Roosevelt
Medicine	SchMed
ECE	Roosevelt
Communication	Revelle
Literature	Roosevelt
Chemistry and Biochemistry	Revelle
Cognitive Science	Roosevelt
Psychiatry	SchMed
Neurosciences	SchMed
Psychiatry/Neurosciences	SchMed
Biology-Neurobiology/Neurosciences	Revelle/SchMed

Interviews

The distinguished faculty, excellent academic programs, and high quality of the student body, together with the splendid physical setting of the UCSD campus, offer an incomparable university experience. The following interviews provide interesting insights by faculty, staff, and students.

Wendy Reynolds-Dobbs

Thurgood Marshall College Junior

Wendy Reynolds-Dobbs has a wide range of interests, from contemporary poetry to working out at RIMAC. Currently a junior, Wendy thrives on a balanced schedule between social and academic life. For this upbeat Thurgood Marshall College student, getting involved is essential to experiencing UCSD fully.

2. Tell us about adjusting to living on campus.

_eaving home and being away from friends and family the first quar:er was difficult. The biggest adjustment was living with other people vecause I'm an only child. I earned to compromise with others and adjust to their ifestyles. After that, it was so nuch better because I made friends and had a good
time here.

Q. How did UCSD make you feel welcome?

When I was considering universities, a representative

"Academics at UCSD have been a lot of work, but any good college is like that. You just have to keep up with the work and create a schedule that's going to help you."

Q. Tell us about your experience as a resident adviser (RA).

This year, I'm an RA in a residence hall for thirty-two students. I'm also the RA representative on the Thurgood Marshall College Council. I never lived in the dorms; my first two years I lived in the on-campus apartments. It's a brand-new experience and a big change, but I love my student residents and haven't had one problem with them.
Q. How does Thurgood Marshall College support student life on campus?
from UCSD came to my house
and invited me to visit the campus. Visiting the school on Admit Day was the deciding factor. It was so much fun. I loved the school when I saw it, and the weather was great. I really liked how everyone cared about me.

Q. Have you taken advantage of UCSD's

 academic opportunities?I've participated in the MBRS (Minority Biomedical Research Support) Program and enrolled in "199" (independent study) research.
Currently, I work at the Veterans Administration Medical Center as a research assistant with one of the top psychiatrists. We work with elderly patients who suffer from mental disorders. I also do research in the biomedical library using all kinds of new software. It's
really exciting.

Q. When did you know you wanted to be

 a psychologist?I'm a psychology major and an ethnic studies minor. Growing up, I always wanted to be a psychologist, even before I could spell the word! I always like to give advice; people's minds and behaviors are so interesting. I'm hoping to get a doctorate in clinical psychology and perhaps go into drug abuse prevention.

I'm so glad to be a part of Thurgood Marshall because of its philosophy and diversity. You can participate in so many different social events and organizations. I'm a drug and alcohol peer counselor for my college. We do intervention programs for students.

Q. You've found a balance between social and academic life? Tell us about it.

Academics at UCSD have been a lot of work, but any good college is like that. You just have to keep up with the work and create a schedule that's going to help you. UCSD puts forth a lot of effort trying to create a nice social atmosphere for its students. Because I'm usually busy with work and school, I try to balance my life by trying to relax or going out with my friends; it's my little reward.

Q. What has been your most memorable experience at UCSD so far?

My most memorable experiences come from social activities. I'm in Sigma Gamma Rho, an African-American sorority on campus. Last Admit Day we stayed up all night making forty sweet-potato pies by hand. We were trying to raise money by selling them at Thurgood Marshall's Cultural Celebration, so we stopped the chancellor, every faculty member, and everybody else to buy one. We sold every single pie!

After more than sixteen years as a biomedical researcher and educator, Francisco Villarreal has some timely advice for science majors: "In academics, just as in life, you don't necessarily have to be brilliant to succeed, but you do have believe in yourself, work hard, and focus like a laser beam on your goals." Earning his medical degree from the University of Baja California (Mexico), he soon realized his interests lay more with medical research than with the clinical practice of medicine. Villarreal, born in Mexico and the son of a Tijuana physician, knew that to get the training he desired as a scientist he would have to leave his native country. He was admitted to UCSD as a graduate student in biomedical sciences in 1984, specializing in cardiovascular physiology and pharmacology. After earning his doctorate in 1989 and serving as a postdoctoral fellow for two years, he advanced
through the research and teaching ranks at UCSD to his current pos tion of associate adjunct professor of medicine. The major thrust of his research is the abnormal growth (or "pathological remodeling") of the heart. This major form of heart disease is marked in its late stages by the formation of harmful fibrous tissue in the heart, and can result in the heart swelling three to four times its normal size, which can ultimately lead to cardiac failure. Villarreal teaches at the undergraduate, graduate, and medical school level. In addition, he serves as a member of the university's Biomedical Sciences Graduate School Admissions Committee, and is a past member of the UCSD School of Medicine's Admissions Committee.

Q. What excites you most about your work?

Most exciting are my research and the opportunity to make a significant contribution to the better understanding and treatment of a major form of heart disease: abnormal growth of the heart. This condition can cause the human heart to balloon up to massive pro-portions-to about the size of a mule's heart-and leads to excessive production of fibrous "scar" tissue in and around the heart, all of which prevent the heart from pumping adequately. This can ultimately lead to heart failure and is a major factor leading to heart transplant surgery.

Q. What causes the heart to grow abnormally?

The cause is still being studied, but we do know that conditions such as high blood pressure, heart valve disease, and complications following heart attack cause the heart to work overtime, which tends to lead to abnormal heart growth. In addition, hormonal factors may also play a role.

Q. How would you describe the research environment at UCSD?

The research climate is very exciting, cooperative, and stimulating. In fact, it's probably UCSD's strongest characteristic. It's very rewarding to me when I can go across the hall to a colleague working on another project or working in a different field of study and get advice, direction, and training if needed. You come to appreciate this when you realize how territorial and competitive other research institutions can be.

Q. Tell us more about your teaching endeavors at UCSD.

Teaching is another area I'm especially excited about. I have the opportunity to train and teach students in laboratory and biomedical science from the undergraduate level to the doctoral and medical school level. It gives me the chance to give back and share with others the knowledge and skills l've acquired. I've taught an animal physiology lab for undergraduate biology students, a physiology lab for graduate students, and a clinical case-based physiology lab for medical school students.

Q. How important is animal research to your scientific investigation?

We rely significantly on animal research to understand the pathology, or disease process, of excess growth of the heart. Animal models, such as mice and rats, help us better understand this condition at the cellular level, and larger animals, such as pigs, give us a more detailed look at the problem on a physiological level. These larger animals' cardiovascular systems are more similar to those in humans. We also continue to use and explore the value of nonanimal substitutes such as computer models when feasible; however, when it comes to testing our results in live cardiovascular systems, animal models often prove to be the most effective mode.

Q. What advice would you give students considering a career in medicine or biomedical research?

As you decide on your major field of study, stay focused. Don't dilute your efforts in an area that won't impact your major. For instance, if you are thinking about a career in life sciences, don't work in the university cafeteria. Get an entry-level job working in a lab. Lab experience is worth its weight in gold.

Q. What other advice would you give students?

Don't underestimate the power of a good letter of recommendation from the lab at which you worked. Many students don't realize that a glowing letter of recommendation can open doors for them in being admitted to the graduate school of their choice and hired in the biomedical and biotechnology field. A good letter signed by the lab's leading scientist is an important measure of a student's individual skills, ethics and sense of responsibility, and dedication.

> "The research climate is very exciting, cooperative, | 5 |
| :---: |
| 3 | and stimulating. In fact, it's probably UCSD's strongest characteristic."

Keiko
Nomura
Associate Professor
Department of Mechanical and
Jacobs School of Engineering

Keiko Nomura joined the faculty of mechanical and aerospace engineering
(MAE) at UCSD after completing her
doctorate in mechanical engineering at
the University of California, Irvine, in
1994. She worked at Battelle Pacific

Northwest Laboratories from 1983 to
1987, and received her master's in mechanical engineering from the University of Wisconsin. In 2000, UCSD's Tau Beta Pi chapter named Nomura "Teacher of the Year" for her effective, inspirational teaching methods and her strong interest in student learning. Tau Beta Pi is one of the top three engineering honor societies in the nation. Nomura's research interests are
in the area of fluid mechanics. She performs detailed computer simulations to investigate the structure and dynamics of turbulence in complex flows such as those with chemical reaction and buoyancy effects. Such new information will lead to a better understanding of the physics of turbulence and form the basis of more accurate engineering models.

Q. What is turbulence, and why is it important?

Turbulent flows are complex irregular fluid motions that can cause rapid mixing. Most flows in engineering devices and in the environment are turbulent, so by understanding turbulence, we can better analyze and control things like burning fuel in engines, drag on aircraft, or pollutant dispersion in the atmosphere. We often think of turbulence as random, disordered motion, but there is evidence of remarkable coherence and order in the flow. At regions where fluid rotates at moderate rates, sheetlike structures exist. Where it rotates at very high rates, it may form filaments ("worms"), horseshoe, or hairpinlike structures. These structures might be the most active sites for transport of momentum, mass, and heat.

Q. What approach are you taking in your research?

We use the power of high-performance computers to solve equations of fluid motion. The great thing about numerical simulations is that we can get information about the entire flow field. This would be very difficult to get by experimental measurement. We can also sim-
plify the problem and study each process separately and then systematically introduce more complexity. In one study, I'm using this method to investigate the ways turbulence interacts with chemical reactions, such as how turbulence mixes fuel and air, and how the subsequent heat release from combustion feeds back on the flow and turbulence. In another study, I'm investigating buoyancy effects in turbulence that have application in geophysical flows (i.e., flows in the ocean and atmosphere).
Q. So from what you have said, computers have had a dramatic impact on your work and continue to shape it?

Without a doubt. Computers have changed the very nature of my research and the level of understanding and analysis that is possible. As computers develop, so do our methods of computation. I'm fortunate to have resources and assistance available from our computer science and engineering department and the San Diego
Supercomputer Center. I really appreciate the value and advantages of numerical computation, and enjoy passing this appreciation to my
> "We often think of turbulence as random, disordered motion, but there is evidence of remarkable coherence and order in the flow."
students in the computer programming class for MAE. In the class, we talk about how to use computers to solve engineering problems. Programming is a fundamental skill that today's engineer must have, and it's great to see students learn it and have fun at the same time.

Q. What is mechanical engineering?

Mechanical engineering is probably the broadest of the engineering disciplines. It encompasses so many different areas, and is one of the most challenging of the undergraduate curriculums because of the wide range of subjects and skills. In the past, mechanical engineers were primarily involved with the design of machines. Now, we're involved in so many different areas of application and technologybiomedical, computer, robotics, aerospace, energy, and environmental

engineering. There are a lot of opportunities ahead for mechanical engineers.
 Q. After spending time in industry, what made you decide to become a professor?

Actually, I wasn't planning on going back to school after my master's degree. But while I was working at Battelle Pacific Northwest Laboratories, I developed new interests and saw the need for furthering my technical background. In particular, I wanted to have knowledge of combustion so I could work on reacting flows. That's when I decided to go back to school to get my doctorate. I've always been interested in doing research. But it wasn't until I began working as a teaching assistant in graduate school that I really discovered my love for teaching and decided to become a professor.

Q. What was it like to receive the Tau Beta Pi Teacher of the Year Award?

It meant so much to me to receive this recognition from the students. It is quite an honor to be selected out of a group of so many great professors here at the Jacobs School of Engineering. I would say the most rewarding aspect of my academic career is the interaction with students.

Revelle College Freshman

Vasudev Mandyam was introduced to UCSD on a backpacking trip in the High Sierras through UCSD's Outback Adventures "wilderness orientation." The guides were students and graduates who shared their UCSD experiences with the group of incoming freshmen, as waterfalls plunged down the mountains nearby. This Regents Scholar and National Merit Scholar says it was a great way to start life at UCSD.

Q. You have an unusual story about enrolling at UCSD. Tell us about it.

Getting into UCSD's Medical Scholars Program was the deciding factor in choosing UCSD. You don't apply for it--they find you. I sent in an essay and some paperwork and was interviewed by two faculty members from the UCSD School of Medicine. Getting into this program means I'm guaranteed admission to UCSD's medical school without having to take the MCAT (Medical College Admissions Test) or fill out medical school applications. As an undergraduate, I just have to maintain a certain GPA.
the great things is that there are so many organizations, like Revelle TV. The Revelle College Council makes it easy to get involved in student government.

Q. How have you already gotten involved in college life?

I'm in the Ultimate Frisbee Sports Club. We compete against other colleges and play in tournaments. I sing a cappella, and I'm looking into joining a singing group. I'm part of the Indian Club, Sangam. Community service is a focus for me. I'd like to be involved with the Flying Sams (Samaritans), a UCSD
Q. As a freshman, how are you adjusting to life at UCSD?

It was a smoother transition than expected. One thing I was nervous about was living on my own, but the suite lifestyle makes a difference. I got lucky-the people around me are really nice and my suitemates are great. My roommate and I requested each other-we were high school friends. I was. (I still carry a map for the odd places!). If you ever have any questions or need help, the resident adviser is there.

Q. Have you decided on a major yet?

Right now my major is undeclared. I'm taking physics this quarter. And there's biology. The Environmental Systems Program also looks neat to me. I always wanted to be a surgeon, but I've learned you can get a medical degree and there are hundreds of things you can do with it.

Q. Why did you choose Revelle College?

Revelle's general-education requirements make us well-rounded. Being a "science" person, if I hadn't been in Revelle, I wouldn't have taken any literature or humanities classes. Having Revelle Humanities (the college's core course), you get to know Revelle people. One of
> "I always wanted to be a surgeon, but l've learned you can get a medical degree and there are hundreds of things you can do with it." organization that goes on humanitarian trips to Ensenada, Mexico, and other places.
Q. How are you finding UCSD's academic life?

The classes go surprisingly fast and midterms come suddenly. But it's refreshing to change classes. At first I thought, "Wow, how are the professors ever going to get to know me in a lecture hall this size?" And then I went to the faculty office hours and it really inspired me how much they care about their work. One of the most important things is to read ahead of the lectures. If you just do a little homework in each class every night, you'll find it's easy to keep up and the lectures mean a whole lot more.

Q. Do you have any tips for incoming freshmen?

You may as well try something and find out you don't like it rather than not try anything at all. And there are more than enough opportunities at UCSD.

Q. How did you come to work for the University Events Office and what is your current role?

When I was a student, the University Events Office was THE placethey did every kind of performing art, had a film program, and needed an artist/public relations person. I needed a job, they had an opening, and things evolved. Now I am the artistic director and founder of the San Diego International Film Festival, as well as graphic artist, public relations representative, and Web designer for the University Events Office.
Q. Your name is synonymous with the San Diego International Film Festival sponsored by UCSD, its pioneering days and continued success. How did the festival come about?

The inspiration for our film festival came from the San Diego International Film Festival that survived for about three years back in the 1980s. It was a great program, housed at the La Jolla Museum of Contemporary Art (currently, the Museum of Contemporary Art, San Diego), but didn't make it for a variety of reasons. A student and I were talking about the dearth of foreign films in San Diego and decided to present a small festival of second films—big foreign titles people might like
of negotiating, and some distributors are delighted to be asked. We are making a big change this year by condensing the film festival into two weeks at an off-campus site where we will follow a Latino Film Festival. We're always open to new ideas.

Q. What are some of the other activities arranged and sponsored by UEO?

Our office also presents world-class chamber music ensembles, dance companies, world music, and comedians. We also work with and advise students, and, of course, we listen to students and welcome their ideas.

Q. What is the biggest challenge in selecting and organizing these extracurricular events?

Choosing artists who are cutting edge, exciting, and will either appeal to the students straight off, or will really open their eyes and hearts to something new when they see them.
to see again. That worked, but wasn't interesting enough, so we sent a mass international mailing to every film board, every distributor/producer we could find and received titles of excellent films that no U.S. distributor had optioned. If you don't see these movies at a festival, you will probably never see them. Now we are in our seventeenth season.
Q. What process do you go through to find these unique, in many cases, award-winning films? And what determines the structure of the festival?

We do anything and everything to secure a title; we often have surprises from old established contacts but also track new companies very persistently. We are always interested in prize-winners from Cannes, Locarno, Venice, and Berlin. Some films take a huge amount
> "We hope to bring parts of the world-in the persona of great performing artistsstraight to the students' and the community's doorstep."
Q. What role do you see UEO playing in the lives of UCSD students and in the San Diego community?

We hope to bring parts of the world-in the persona of great performing artists-straight to the students' and the community's doorstep. World music, for example, even in a rare sad moment, is a celebration of life. We want to educate, entertain, broaden horizons, and expand imaginations.
Q. What advice might you give to students who may be interested in a career similar to yours?

Get an internship in the industry you are interested in. Learn as much as you can and make sure as many people as possible know who you are and that you are good at what you do. Every student we've had who has gone on to a career in the entertainment industry had an internship(s) while he or she was a student.

As the founding dean of the Division of Biology, Eduardo R. Macagno heads a diverse group of leading researchers whose work has contributed to the current revolution in biology-a discipline that has already begun to dominate technological and social progress in this century, much as physics did during the twentieth century. Initially trained in physics, Macagno picked up on this trend early and switched his focus to neurobiology, a field now generating dramatic new insights into the rich complexity of mechanisms that influence how we think, feel, and act. That interdisciplinary training has given him a true appreciation of the value of cross-disciplinary collabora-tions-one of the hallmarks of the way science is conducted and taught at UCSD. As a developmental neurobiologist, Macagno remains active in research, maintaining a laboratory on campus and serving as coeditor of the Journal of Neurobiology, a position he has held since 1986. He began his career at UCSD in February 2001, after thirty-seven years at Columbia University, first as a doctoral student in physics in 1963, then as a postdoctoral student in neurobiology in 1968, and finally as a professor of biological sciences, associate vice president of arts and sciences for research and graduate education, and dean of Columbia's Graduate School of Arts and Sciences. A native of Argentina, Macagno immigrated with his family in 1956 and became a U.S. citizen in 1961. He received his bachelor's degree in physics in 1963 at the University of lowa, where he worked with James Van Allen's team on the early exploration of the Earth's radiation belts. As a graduate student at Columbia, he studied astrophysics under a NASA fellowship and then switched to a project involving the use of muonic X-rays to study nuclear structure. He carried out his postdoctoral studies in Columbia's Department of Biological Sciences, working on the development of computer-based systems for the three-dimensional reconstruction of neuronal assemblies and beginning a series of studies of the structure, function, and development of a crustacean visual system. His laboratory now employs a range of molecular, cellular, anatomical, and physiological techniques to investigate cell-cell interactions and how individual neurons find and innervate their correct targets in the developing nervous system of the medicinal leech.

Q. What convinced you to come to UCSD after thirty-seven years at Columbia University?

It was the unique opportunity for me to participate in an important period of growth for the newly formed Division of Biology that ultimately convinced me to move to UCSD. The faculty and I can work together to define new approaches to biological research and to map out how biology ought to be done in the coming decades. Moreover, UCSD is among the top research universities in biology in the United States-it is great to begin with success!

Q. What prompted you to switch from physics to biology?

I had become a bit disenchanted with the way experimental physics required large groups and huge budgets, and sought some other areas of science where I would feel more comfortable. I then became fascinated by neuroscience, and in the early 1970s, understanding how the brain functions was beginning to look like a feasible venture. New tools for explaining how the brain works and how it's put together were being developed along with computers, and I thought that my background in physics would be useful in entering this new area.
Q. What plans are in store for the Division of Biology that undergraduate and graduate students should know about?

One important area is the recruitment of new faculty and the expansion of our research facilities, which will provide both graduate and undergraduate students with some exciting new research opportunities. We also plan to strengthen our ties with the other science units on campus-the Division of Physical Sciences, Scripps Institution of Oceanography, the School of Medicine, and the Jacobs School of Engineering-in ways that will create a scientific enterprise without peer and foster new educational opportunities for undergraduates
> "Biology is in such a wonderful state these days, that there seem to be exciting developments in most different areas all at the same time."
and graduate students. Also of importance is improving our ties to local industry and the community. This will provide more opportunities for student internships, as well as paths to very good jobs when the students graduate.

Q. What subdisciplines of biology do you think will see exciting developments in the near future and how is the Division of Biology positioning itself to take advantage of these developments?

Biology is in such a wonderful state these days, that there seem to be exciting developments in most different areas all at the same time. The recent advances in genomics and now in the related area of proteomics are yielding enormous amounts of information that will be very useful in designing new experiments to test the function of novel proteins in normal and diseased states. New techniques in bioinformatics are being developed to deal with the large volume of genomic data. New physical tools are allowing us to explore dynamically the structure of the cytoskeleton and the traffic of molecules within cells. Our level of resolution in many instances is now the single molecule. And emerging technologies for sensing and monitoring biological variables will allow us to gain new insights into the biological environment within us and around us. Pick an area of biology, and something very exciting is probably going on!
Q. What advice would you give to an incoming student interested in studying biology?

Take the Introduction to Biology series with an open mind, read widely in texts and journals like Science and Nature that discuss the current state of biological subjects, and ask lots of questions of the faculty and TAs. Come up with ten questions that seem intellectually exciting from the readings and lectures, and then check the course catalogue to see what advanced courses could provide answers to these questions. Then corral faculty members teaching these courses and ask for advice on how to go forward and design a path to a career in the area of biology that seems most attractive.

Rita Miranda is the first member of her family to go to college. With great ambition, Rita applied for seventy scholarships and received ten. Double-majoring in animal
physiology-neuroscience and ethnic studies, she is on a mission to become an academically diverse student. This senior will attend medical school next fall.
Q. How did your family respond to your decision to go away to college?

My parents didn't want me to go away to college, but I was so excited to come to this new place. It was hard for them because I was seventeen and the first one in the family to move out of the house. We're very close, and I try to make it home for all the birthdays and anniversaries. When I decided to go to college, cost was the primary concern. Through UCSD's financial aid program, I paid for my first year through scholarships.

Q. What attracted you to UCSD?

Labsolutely fell in love with the campus; it was just so beautiful. I brought my parents here and they loved it too. The five-college system was like the private university I wanted, with all the resources of a large university.

Q. How have you adapted to academic life?

Ifinally learned how to work with the quarter system by studying efficiently. I have good friends who respect the fact that I'm "premed" and need to study a lot. I tried a lot of different learning styles, but I make more progress by myself. Ialso went to OASIS (Office of Academic Support and Instructional Services) and received free tutoring. Now I tutor at OASIS!

Q. What has helped you feel at home on the campus?

Clubs and activities helped me find people with whom I felt most relaxed. I joined cultural organizations like MEChA
(Movimiento Estudiantil Chicano de Aztlan). Summer Bridge (a transitional program for new freshmen from underrepresented backgrounds) made me feel comfortable with the campus; I had one foot in the door before fall. Later I became a Summer Bridge tutor. I was also an orientation leader and a senior 'O.L.' for Muir.
> "I like being around people, and I want to work with those who need good health care but can't afford it."

Q. How has UCSD helped with your goal to be a doctor?

When I arrived at UCSD, I asked my advisers, "Okay, what do I need to do to be a doctor?" I didn't even know the MCAT exam existed! Through the health professions program on campus I was matched with an orthopedic surgeon who served as my mentor. I also volunteered at a center for children. I like being around people, and I want to work with those who need good health care but can't afford it.

Q. What has your experience at Muir College been like?

Muir staff is incredible, very friendly and personal. The provost makes himself available and really cares about all of his students. My first year I joined the house board where we organized events and activities for the dorms. The residence halls are set up like suites, with eight suites to a house. They even face the beach!

Q. Tell us about your study abroad experience.

I studied for a semester in Granada, Spain, through UCSD's Opportunities Abroad Program. I lived with a Spanish family and got a job as a student worker with the school. While studying abroad, I learned so much about myself because I was alone there. It was the most incredible experience of my life.

Q. What's the best thing you could take from UCSD?

The people I've met here, the experiences we've shared together-academic and social-have just been priceless. These people are going to do great things with their lives, and the friendships I've made here are going to last forever.

Q. Do you have any advice for new freshmen?

Be self-motivated. The quarter system goes so fast that it'll catch up with you if you're falling behind in your schoolwork. Before you know it, the quarter is over. If you're having trouble, get help.

Pianist, improviser, and composer Anthony Davis joined the faculty of the UCSD Department of Music as a member of the Critical Studies and Experimental Practices (CSEP) program in 1998. Active in a variety of media, including operatic, symphonic, choral, chamber, dance, and theater, he has focused on the integration of improvised and notated expressive resources. His work embodies an intercultural approach, drawing on traditional and current African-American sources, in addition to the Javanese gamelan, American minimalism, and the Euro-American avant-garde. A graduate of Yale

University, Davis has taught at Yale and served as a visiting composer there. He was a senior fellow in the Society for the Humanities at Cornell University and a visiting lecturer in Afro-American studies at Harvard University. Davis composed four operas prior to his current, Broadway-bound musical, Tupelo, about Elvis Presley. These included Amistad; X: The Life and Times of Malcolm X; Under the Double Moon; and Tania, based on the Patty Hearst kidnapping. He also composed the music for the Pulitzer Prize-winning Broadway production of Angels in America.
Q. What in your background and upbringing got you interested in music? Was music inherent in your family? Where did you receive your early and high school education?

My father was a professional musician before becoming a scholar in American and African-American literature. He played piano and violin. By the time I was born he had given up his professional aspirations on the violin and played some favorite pieces on the piano. He loved Chopin and Liszt, had an extensive jazz collection, and especially admired Art Tatum. He had a close friendship with pianist Billy Taylor who lived in our apartment building in New York. I began my formal education in music in Princeton, New Jersey, at the Frances Clark School. I began to experiment with composition and improvisation when I was sixteen and performed my first concert at the United States mission in Torino, Italy, during the year my family spent in that country. I attended the Phillps Exeter Academy for the final two years of high school.

Q. How did you end up on an academic path rather

 than becoming a jazz or chamber music musician?I have never found that the academy precludes a career in music. Teaching has been a common thread in my family's history, which emphasized the importance of sharing and passing on the tradition and history of African-American music. Interaction with students is very important to me and a necessary responsibility to sustain a musisal tradition.

Q. How extensive was your newest work, Tupelo?

Tupelo is truly a work in progress and is probably my most risky undertaking to date. I studied all the musical influences on Elvis Presley from jump-blues, gospel quartets, and Texas swing to country music. Memphis was a hotbed of musical traditions. As a composer, I translate this information into musical characters.
> "Music can be visual or theatrical and the artist today needs to be firmly grounded in critical discourse across the artistic boundaries."
Q. What classes do you teach? How do you bring research into the classroom?

I teach a series of lecture classes on the African-American musical tradition. The first course introduces students to the blues and the myriad of musical forms inspired by this centrally American musical form. Two other lecture courses discuss the evolution of the jazz tra- dition. I have also started a music-theater workshop that is taught with Adele Shank in theatre. Composers and performers from the music department collaborate with playwrights from the theatre and dance department. In addition, I have offered seminars in improvisation and composition for improvisers and a course on twentieth-century opera.

Q. What kinds of career paths are available in your field?

Music is a very open field today. There are new opportunities in music technology and, of course, in the creation of music. Art today is more collaborative and the boundaries between disciplines are far less defined. Music can be visual or theatrical and the artist today needs to be firmly grounded in critical discourse across the artistic boundaries.

Q. What exciting developments/challenges are in your personal future, and in the field?

I am extremely excited about the future and particularly the future here at UCSD. I have personal plans to complete Tupelo and begin work on a new opera, Suddenly, Last Summer, based on the Tennessee Williams play. I have begun to explore electro-acoustical instruments and hope to employ this research in my new pieces. At UCSD, we hope to be a center for exploration of new compositional and improvisational musical forms and foster collaborations among the students.

Susan L. Shirk is a UCSD professor who feels that everyone should plan to have at least two careers, and she feels fortunate that she has already had three. Currently, Shirk is a professor of U.S.-China relations/Chinese politics, economics and trade policies/Pacific international affairs in UCSD's Graduate School of International Relations and Pacific Studies (IR/PS). From 1992 to 1997 she served as director of the UC system's Institute on Global Conflict and Cooperation, and now serves as its research director. From 1997 to 2000 she was deputy assistant secretary for China, Taiwan, Hong Kong, and Mongolia in the Bureau of East Asian and Pacific Affairs of the U.S. State Department, working out of Washington, D.C., and doing government service on leave from the university. A native of the East Coast, Shirk grew up in Port Washington, New York. She received a bachelor's degree in political science from Mount Holyoke College, a master's degree in Asian studies from the University of California, Berkeley, and a doctorate in political science from the Massachusetts Institute of Technology. Shirk came to UCSD in 1975 with her husband, Samuel L. Popkin, a UCSD political science professor and a political consultant and analyst.

Q. What made you decide on a career in political science?

I had no background in political science. My mother hadn't gone to college. My father was in business and went to college at night. It was a high school history teacher who got me interested in politics and international affairs. I think the formative event in crystallizing my interest was an opportunity to be an exchange student for a summer on the Experiment in International Living in Japan after I graduated from high school. I had an experience like the novel Shogun where I learned how highly civilized Japanese society is, and yet I had really been taught nothing about it in school. It motivated me to want to learn more.
Q. How did you come to select China as your area of specialization in comparative politics and international relations?

I became interested in China through that experience in Japan. Then I had the opportunity to study Chinese during my junior year in college in the Critical Languages Program at Princeton University. So I do speak Chinese.

Q. From July 1997 to July 2000 you

 served as deputy assistant secretary in the Bureau of East Asian and Pacific Affairs, U.S. Department of State. What were your responsibilities and what do you view as the accomplishments during your service and as a consequence of it?I was the point person for China policy supported by the secretary of state. This was a period when we were striving to improve relations with China and to encourage China to make major steps forward in nonproliferation, human rights, and trade. It was a tumultuous period in U.S.-China relations. We made major steps forward, connected with two state visits, but we also had our accidental bombing of the Chinese Embassy in Belgrade, which dealt a serious blow to U.S.-China
> "Having been involved in policy process, I see that personal relationships between Chinese and American diplomats, for example, play a very important role in clearing up misconceptions, misunderstandings, and solving concrete problems."
relations that we had to confront. The accomplishments include obtaining major Chinese commitments on nuclear nonproliferation export control, and now, on missile nonproliferation export control. And of course, the bilateral agreement between the U.S. and China for China's accession to the World Trade Organization, and Congress's passing of permanent normal trade relations (PNTR) with China.
Q. How would you say that international relations reflect interpersonal relationships? Or do they?

Having been involved in policy process, I see that personal relationships between Chinese and American diplomats, for example, play a very important role in clearing up misconceptions, misunderstandings, and solving concrete problems. Ultimately, policy involves many people on each side. Individual characteristics and individual relationships matter immensely.
Q. What advice might you give to incoming students in considering career paths?

Plan to have at least two careers. You use different abilities in each that may have been lying dormant in the other. Especially for women, but for anyone really, I think academic professions are great. You get to study whatever you choose and pursue your own intellectual interests freely. You have almost complete autonomy and flexible hours. Much of what we do in academia is sit in a room in front of a keyboard and write by ourselves. More active professions in the private sector, government, and business involve working with other people and using skills not often used in academic life. The ideal is to be able to do both.

Chang
Eleanor Roosevelt College
Freshman

Oliver Chang enjoyed sharing his knowledge of UCSD with new freshmen as an orientation leader. He also finds that the diverse Southern California climate suits him perfectly. He divides his leisure time between the warm sunshine of the coast and the snowboarding slopes of the nearby mountains.

Q. How was the transition from high school to UCSD?

I was prepared academically because I come from a traditional Asian background with a huge emphasis on academics. My parents came to the United States from Taiwan for my dad to attend graduate school. I came to UCSD not knowing anything about college. I was just excited to be here. It's like a clean slate. I was really quiet in high school and then I kind of blossomed. My friends would describe me as outgoing now.

Q. What made you choose UCSD?

UCSD is my type of atmosphere because I'm laid back. The university is academic but everyone's really relaxed here, and sociable and friendly. I came for Admit Day with a friend who had just been accepted to Cornell. We both thought the campus was gorgeous and looked so new and clean. We both ended up coming here because we fell in love with it that day.
Q. How was your experience as an orientation leader?

I became an orientation leader because I had so much fun at my own orientation. Being an "O.L." at Eleanor Roosevelt College was definitely one of the highlights of my college career so far. I feel like it's my job to help everyone have a good time. Orientation gives freshmen a lot of time to get to know the people they will live with.

Q. Tell us about your majors.

In high school my aspiration was to become a doctor. But my senior year I started to get more and more into computers. My major is now electrical engineering. The "EE" curriculum is pretty rigid; engineering at most universities is a five-year program. In upper-division engineering, we choose a "depth," like a specialization (artificial intelligence, wireless communication, etc.). There's a lot of opportunity and job security. People actually come on campus and scout you!

Q. What do you like about Eleanor Roosevelt College?

I'm a fan of the five-college system. As an orientation leader, I've come to know the provost, the academic advisers, and the dean. Roosevelt's residence halls are like a small community; it's easy to meet people. I feel that I would definitely not have this opportunity at another university.

Q. Besides orientation, how does UCSD help new students get to know one another?

Every day of Welcome Week, there are activities. In the Un-Olympics, the freshmen from every college go up to RIMAC (UCSD's recreation complex) and compete in different events, like relays and tug-of-war. There's even a school spirit event; each college does a cheer. And UCSD has festivals and concerts. To see a band that you like and see it for free is awesome.

Q. You like to study

> "I learn a lot in study groups, especially when I can teach someone else something I am learning." with a group of students. Why is that?

I learn a lot in study groups, especially when I can teach someone else something I am learning. It reinforces your understanding of the subject. Sometimes we'll allot ourselves a break. Or sometimes we'll just let ourselves talk until the sun comes up.

Q. Can you pass along the tips you gave your orientees?

If you want to do well in class, go to class! I had to adjust to studying more instead of cramming at the last minute. Keep up with homework, because it's easy to get behind on the quarter system. Spend some time in extracurricular activities, or just hang out with your suitemates. Take advantage of your opportunities.

Enric Sala

Assistant Professor Scripps Institution of Oceanography (SIO)

Enric Sala, a marine ecologist and conservation biologist, was appointed assistant professor at Scripps Institution of Oceanography in July 2000. His primary research interests include the impact of human activities on coastal environments, the ecology of coastal fishes, and interactions between species. Sala analyzes the direct and indirect effects of fishing. He also investigates ecological processes critical for coastal fishes, including reproduction, larval dispersal, and nurseries. Born in Girona, Spain, Sala received an undergraduate degree in biology from the University of Barcelona. He received a doctoral degree in ecology from the University of Aix-Marseille II in France in 1996. The same year, he served as assistant researcher at the University of Barcelona. He joined SIO in 1997 as a visiting scholar and then became a postgraduate researcher from 1997 to 1999, followed by his appointment as assistant professor in 2000. Sala also serves as deputy director of the Scripps Center for Marine Biodiversity and Conservation, a proposed new center dedicated to the understanding, conservation, and management of global marine biodiversity. The author or coauthor of more than twenty research papers, Sala received the Award of the Catalan Government, Spain, for research in the Medes Islands, western Mediterranean, in 1995.

Q. What was behind your decision to come to UCSD's Scripps Institution of Oceanography?

I wanted to expand my postdoctoral education and come to a place where, besides joining an amazing adviser and mentor, Paul Dayton, I could take advantage of a really rich and diverse research environment.

Q. How did you become interested in science and marine biology?

I grew up close to the sea in the Mediterranean and I spent all my summers at the coast when I was a child. I learned to snorkel before I learned to swim! Jacques Cousteau and other heroes helped a lot in my early career decisions.

Q. Describe your research.

I study the impacts of human activities on coastal environments. I am trying to understand the direct and indirect effects of fishing on fishes, invertebrates, and entire communities. I also study the ecological processes that are critical for the survival of coastal fishes. I study the places where they reproduce, disperse their larvae, and the nurseries where juvenile fishes live. Knowing these habitats can help us understand all the processes that can create marine reserves and protect the populations of these species. I am also trying to understand the strength of the interactions between species and food webs.
Q. How is your research important to the public?

First, coastal fishes are an important food resource, but unfortunately, some of the fish we bought not so long ago are now endangered. I'm trying to make sure these species are conserved for conservation's sake, but also to sustain the fisheries. And then there is also the goal of conserving marine biodiversity. We know that ecosystems with more species are more resistant to invasions and to disturbances than ecosystems that are perturbed. There are so many species and we are impacting them. And, we need to conserve all these ecosystems because we need to know how the system functions with all its components and without human disturbance. This
is the only way we will be able to understand how the whole ecosystem works and to predict future changes due to our activities.

Q. How much of your research is conducted in the field?

Some years I spend most of my time in the water. One year 50 percent of my time was in the field. During my first thesis year I logged 250 diving days. This year I will only spend about 30 percent in the field and 70 percent in the lab, writing and conducting data analysis.

Q. Where are your favorite locations to study?

There are several really isolated places in the Sea of Cortés, desert islands with very rich underwater communities, that are beautiful. And then there are a few islands in the Mediterranean that are full of history and have special charm. And also I study fishes in a coral reef atoll in Belize that is, were it not for the sand flies, the closest place to paradise I know.
Q. What advice do you have for a student interested in pursuing marine biology?

We need more good people to help us in marine conservation. There is a place for everyone, and if you really want to be in marine biology and you are determined, don't listen to people who discourage you. If you really want to do it, go for it.
Q. Is there a particular area of study that you recommend?

I was lucky to receive my undergraduate degree in Barcelona, where we were required to take everything. It's a different system and I studied geology, chemistry, physical oceanography, general physics, two courses of math, microbiology, genetics, molecular biology, limnology, ecology. . .
everything. I would encourage students to take a curriculum as diverse as possible before you specialize.

I am trying to understand the direct and indirect effects of fishing on fishes, invertebrates, and entire communities.

Q. How did you, as a psychologist, first become interested in working as a statistician?

I was a chemistry major as an undergraduate and had many mathematics and statistics courses as part of that major. I took elective courses in psychology. I liked both areas and instead of picking between them, I found a program where I could combine them. My graduate degree was in quantitative psychology and so my advanced training was simultaneously in psychology and statistics, but it was my undergraduate background in mathematics that made it possible.
Q. Over the last few years, you have been involved with activities at CREATE, The Preuss School (UCSD's on-campus charter school), and other K-12 outreach activities. Describe the kind of work you are doing in this area.

We have been working closely with colleagues in many disciplines (including sociology, anthropology, education, economics, medicine, and the natural sciences) to develop methods for evaluating the success of our programs that improve K-12 education, particularly for students with a background of educational and economic disadvantage.
Q. With the Internet and other technological innovations, it has become much easier to gather information on just about anything. How has this impacted your work as a statistician?

Both the Internet specifically and computers in general have revolutionized the work of statisticians. When I was a student, much of our time was spent doing calculations. Computers now perform calculations faster and more accurately than we could. We use our time to design better studies and interpret the results of completed studies. Also, the Internet allows us to communicate rapidly and efficiently
with our colleagues worldwide and to find information that would have been almost impossible to obtain even ten years ago.
Q. Are there greater career opportunities for statisticians today than there were ten years ago?

Yes, the opportunities for peo-
 disciplines to develop methods for evaluating the success of our programs that improve K-12 education, particularly for students with a background of educational and economic disadvantage." ple well-trained in statistics, data management, and other aspects of the quantitative treatment of data are practically unlimited, and the demand keeps growing. There is hardly any area of science, business, technology, government, medicine, or education that does not have growing needs for individuals who can deal with data in a careful, systematic, and quantitative way.
Q. What kind of advice would you give to undergraduates who are interested in statistics but perhaps are not
sure whether to major in economics, psychology, or some other discipline?

First, get as many mathematics courses under your belts as possible and as early as possible. Second, sample courses from the disciplines that seem to interest you. And third, and most important, get involved in a research lab in which statistics are an important tool. When you take the initiative to become involved in the process of doing research (be it through the 199 series of research/reading courses, volunteer work in research laboratories, or research apprentice employment), you have the opportunity to gain knowledge and experience that will be valuable no matter which direction you choose.

San Diego's beautiful weather and luscious scenery were an instant attraction for Talin Yesaie. However, she soon discovered that UCSD offers more than just a beautiful landscape. Now in her junior year, Talin enjoys contributing to the community and university. After exploring a variety of courses, she found her niche as a human development major.

Q. What intrigues you about the human development major?

I was a general biology major, but then I started to look at human development courses. The major offers a broad range of classes. You can take psychology, sociology, or anthropology classes as well as biology classes. In the Human Development 1 course we had professors from different academic departments give lectures. Once a hearingimpaired professor talked about how deaf children learn. There were many times when I just walked out of class amazed.
Q. Do professors interact on a personal level despite some of the large class sizes?

Many of my professors are good about answering questions during the lecture. In addition, professors and TAs (teaching assistants) usually hold office hours because they want you to succeed and they want you to understand the material. In addition to the lectures, you are also enrolled in "sections" with about twenty students where your questions are always answered. Some professors even have extra office hours and review sessions.

Q. What do you think of the quarter system?

The quarter system is extremely fast; there is no time to slack off. You change classes more often, so you're not stuck in a class for an entire semester that you might not enjoy. But you have to study every day and get into the habit of reading. Studying with other people has also helped me a lot.

Q. Are there a variety of opportunities for students' diverse interests?

It's easy to get involved and meet people at UCSD no matter what interests you have. Posters advertise all the different activities you can participate in and all the different clubs you can join. Currently, I'm volunteering at Children's Hospital in the urgent care unit. I also mentor a sixth-grade student from a local middle school through the Friends Understanding Needs (FUN) program at UCSD.

Q. Tell us why you feel connected to Warren College.

i chose Warren based on its philosophy. This college concentrates on your future-what you're going to do with your degree once you graduate from UCSD. Currently, I work for Warren's academic advising
office. The advisers are very helpful with all types of problems and they refer students to different services on campus that might fit their needs better.

Q. Are there a lot of activities for on-campus residents?

During my first two years at UCSD, I lived on campus. The resident advisers always organized activities. Each college has a Spirit Week. The RAs made it easy to meet people through ice cream socials or even going kayaking. The five colleges create a unity throughout our large university.

Q. What are your future career or graduate school plans?

I'm considering a career in child psychology, or marriage and family counseling. During a seminar at UCSD's Career Services Center, I learned about careers for human development majors and plan to do an internship in marriage and family counseling during the summer. After graduating from UCSD, l'll probably take a year off and then go on to graduate school for my master's degree.
> "Once a hearing-impaired professor talked about how deaf children learn. There were many times when I just walked out of class amazed."

A professor of physics popular with undergraduate students, José Onuchic is a scientist fluent in Portuguese, English, and a number of seemingly disparate scientific fields-biology, chemistry, mathematics, physics, and engineering. Born and raised in Brazil by two professors of mathematics, he completed his undergraduate education at the University of São Paulo in physics and electrical engineering, and finished his doctoral studies at the California Institute of Technology in chemistry and theoretical biological physics. He then spent six months at the Institute for Theoretical Physics at the University of

California, Santa Barbara, before returning to Brazil to teach and do research at the University of São Paulo for two and a half years. He came to UCSD in 1990 to accept a faculty position in theoretical biophysics. In 1989, he was awarded the International Centre for Theoretical Physics Prize in honor of Werner Heisenberg; in 1992, he received a Beckman Young Investigator Award; and in 1995, he was named a fellow of the American Physical Society. His research centers on theoretical and computational methods for molecular biophysics and the chemical reactions in solid-state materials.

Q. How did you first become interested in science?

Both of my parents were professors of mathematics at the University of São Paulo in Brazil. since I was a young child, I have always enjoyed being challenged by math questions. As I got older, my interests were in theoretical physics and chemistry. At age eighteen, I knew what I wanted to do with the rest of my life. Though 1 double majored in physics and electrical engineering, science was where my interests were.
"Biophysics has many meanings. My personal approach is to use physical methods and the physical way of doing science to
 try to obtain a quantitative
understanding of biological
problems."

Q. What sort of opportunities do you see in biophysics for students who might want to go into the field?

Q. What brought you to the United States?

During my last two years of college, I became interested in theoretical biological physics and chemistry. During that time, I felt I could not get the appropriate training in this field in Brazil. I came to Caltech to work under the supervision of John Hopfield, a pioneer in theoretical biological physics.

Q. Why did you come to UCSD?

When I finished my doctoral degree, a position as an assistant professor at the University of São Paulo was waiting for me. I spent an extra six months visiting the Institute for Theoretical Physics at UCSB, where I had the opportunity of working with Peter Wolynes. After that I returned to Brazil with the intent to stay permanently. One year later, however, UCSD opened a position in theoretical biophysics. I felt that San Diego had the potential to become the leader in this field (something that is now being confirmed).
Q. What is biophysics and how did you become interested in the field?

Biophysics has many meanings. My personal approach is to use physical methods and the physical way of doing science to try to obtain a quantitative understanding of biological problems. It is a real interdisciplinary science that would not be possible without the interplay between physics and biology.

Until recently, biology was a descriptive and observational science. Currently, it is becoming a quantitative science with a strong need of theoretical frameworks and predictive models, which UCSD realized early on. Physics, however, can go beyond the present scope of quantitative biology. By training, physicists search for the essential features that describe complex problems and use them to develop successful models, theories, and/or new experimental techniques. This physics method is showing real success with several problems in biology. Someone with these skills is becoming very desirable both by industries and universities. The success of our graduate students and postdoctoral fellows in securing outstanding positions and the fact that more jobs require scientists with interdisciplinary training are the best measures of the success of our training program.

Q. What kinds of developments do you foresee in your field in the next ten years?

As biology becomes more quantitative, our approach towards training at the interface of sciences will become more and more important. Since UCSD has taken a leading role in this new way of doing science, I see a great growth in this direction and a very exciting next ten years.

Q. What advice would you give to an entering freshman interested in science?

Since you have joined this great research university, make sure you get involved in research as early as possible!

As far back as she can remember, Sacha Lewis has wanted to be a physician. She was born in Tucson, Arizona, but moved to San Diego at an early age. At Gompers Secondary School, Sacha participated in the Math Engineering and Science Achievement (MESA) and Advanced via Individual Determination (AVID) programs which help students prepare for college. By the time she was a freshman in high school, she knew she wanted to pursue a career as an obstetrician/gynecologist. After high school she attended Cal State University, Long Beach, and then transferred to San Diego Community College, so she could earn her degrees from UCSD. In junior college, she took an active role in learning what was necessary to become a physician, participating in the Minority Academic Advancement Medical School and MCAT preparation program at the University of Virginia and the Summer Minority Access to Research Training at the University of Colorado, Boulder. Upon completing these programs she transferred to Revelle College via the Transfer Admission Guarantee (TAG) program as a junior, and was able to graduate from UCSD in two years. She spent her last year at UCSD doing research and serving as a teacher's assistant in cell biology while applying to medical schools. With the enthusiastic help of her advisers and the supportive staff at Revelle, she received multiple acceptances, but chose to remain at UCSD for her medical education because of the school's reputation for academic excellence and its location.

Sacha

 LewisUCSD School of Medicine First-Year Student
Q. You are a reentry transfer student. How did that work for you? What led you to UCSD?

I chose to transfer to UCSD because of its impeccable reputation. Medical school admission board members from around the country strongly recommended this university. There is a good support network here for premedical students, as well as research opportunities and clubs designed for students interested in careers in medicine. There were also active minority organizations on campus that embraced me and aided in my transition.

Q. Why did you choose biology as a major?

My first biology class provided me with a wealth of knowledge and left me yearning for more, so I joined Bridges to the Future, a three-semester-long program that provided my primary exposure to the world of biomedical research. Through this program I was able to experience the power of science, and I was thrilled.
Q. How did you first become interested in medicine?
frustration, was instrumental in my coming to terms with the possibility of facing cancer.

Q. How do you manage to work while maintaining a heavy UCSD School of Medicine schedule?

Throughout my career I have maintained employment; however, my single most rewarding job has been working for the San Diego City School District drop-out recovery and prevention program "Connections." As an outreach consultant, I play an integral role as mentor, tutor, and counselor to my students. Because I work in Southeast San Diego, a predominantly minority populated area, I have seen how important it is for my students to identify with a person who looks like them and has lived a life similar to theirs. For the last three years I have maintained a caseload of forty to fifty students that I see weekly at their homes. Through these visits with my students I have learned to manage issues such as child abuse, suicide, depression, and teenage pregnancy, Moreover, working with these students has increased my cultural awareness and given me an insight into potential health risks and subsequent problems in these communities, which will be invaluable when I practice medicine in the future.

Q. What are your future plans?

My long-term goal is to establish a community center in the inner city that focuses on total health care and is intimately involved in the community. In this atmosphere people can see a physician and in the same place, take a class that shows them how to cook healthier, or exercise in a gym. I believe providing a mechanism through which people are active participants in their health, can alleviate conditions in the inner city.

Key to Course Listings

Courses numbered 1 through 99 are lowerdivision courses and are normally open to freshmen and sophomores.

Courses numbered 100 through 199 are upper-division courses and are ordinarily open only to students who have completed at least one lower-division course in the given subject, or six quarters of college work.

Courses numbered 200 through 299 are graduate courses and are ordinarily open only to students who have completed at least eighteen upper-division units basic to the subject matter of the course.

Courses numbered 300 through 399 are professional courses for teachers, which are specifically designed for teachers or prospective teachers.

Courses numbered 400 through 499 are other professional courses.

Sample Course Listing:
100 (see above) Title of Course (4) (number of quarter hours or units of credit)
Course Description. Prerequisites: [listed]. (F) [Quarter the course is taught].

Academic Internship Program

OFFICE: Literature Building, Second Floor, Warren College
http://provost.ucsd.edu/warren

THE PROGRAM

The Academic Internship Program (AIP) offers qualified juniors and seniors the opportunity to acquire valuable work experience related to academic and career interests. Although most internships are in the San Diego area, the Academic Internship Program is national in scope, including the popular Washington, D.C. program, and international, including the London program. Housing arrangements and orientations are parts of both programs. An extensive library lists more than 2000 available internships in varied settings including, but not limited to, TV and radio stations, law offices, medical research labs and
clinics, government agencies, high-tech and biotech companies, engineering, advertising and public relations firms, and financial institutions.
Students also can work with the internship office to set up their own positions.

The program operates all four quarters; students intern a minimum of ten hours per week and can earn units of upper-division credit ranging from one to twelve. Students may enroll in a maximum of four internships and/or earn sixteen units of internship credit during the course of their junior and senior years. The number of units earned corresponds to the number of hours worked, actual job description and the length of a research paper/project. The research paper/project and relevant readings comprise the academic component of the program, which is directed by a faculty adviser. selected by the student. One-unit internships require assigned faculty advisers and extended program evaluations. All students earn grades of P / NP and receive transcript notations.

The AIP serves students from all five colleges and handles all undergraduate majors. Students planning to participate in the Academic Internship Program should apply at least one quarter before they want to be enrolled in the program, or two quarters prior to a Washington, D.C. or London internship. Students planning to set up their own out-of-town internships are encouraged to apply two quarters in advance. In cooperation with AIP and UCSD's Programs Abroad Office, students also may participate in, and earn academic credit for, other established internships abroad.

To be eligible for the program, students must have completed at least ninety units of credit with some related upper-division course work and have a minimum 2.5 GPA at the date of application.
197. Academic Internship Program (1-12) Individual placements for field learning which are integrated with academic programs will be developed and coordinated by the program. A written contract involving all parties will include learning objectives, a project outline, and means of supervision and progress evaluation, and must be received prior to the beginning of the internship. Prerequisites: consent of instructor and submission of a written contract.

African Studies Minor

OFFICE: 3311 Literature Building,
Warren Campus
(858) 822-0265

PARTICIPATING FACULTY

Professors

Bennetta Jules-Rosette, Ph. D., Sociology, Coordinator
Thomas E. Levy, Ph. D., Anthropology
Maria Polinsky, Ph.D., Linguistics
Edward Reynolds, Ph. D., History
Marc J. Swartz, Ph. D., Anthropology
Quincy Troupe, B.A., Literature

Associate Professors

Robert Cancel, Ph. D., Literature
Zeinabu Davis, M.F.A., Communication
Ivan Evans, Ph. D., Sociology
Robert Horwitz, Ph. D., Communication

Assistant Professor

Sharon Rose, Ph. D., Linguistics
African Studies is an interdisciplinary minor that covers African topics and issues through a coordinated set of courses offered in the Departments of Anthropology, Communication, Ethnic Studies, History, Literature, Music, Political Science, Sociology, Theatre and Dance, and Visual Arts. In addition to the offerings at UCSD, opportunities for further study in Africa and Europe are available through the University of California Education Abroad Program, with programs in Ghana and South Africa as well as at the National University of Côte d'lvoire, the Université de Paris V, the Université de Bordeaux II, and study abroad programs offered through other U.S. universitites. A number of African languages are available through the UCSD Department of Linguistics. Students may take independent study units and tutorials with faculty in the program to learn the languages of their respective areas of interest. In addition, students are encouraged to participate in special seminars and presentations offered annually by the African and African-American Studies Research Project. Students may take the seminars for credit by signing up for a 198/199 with a qualified African Studies professor. A minor in African Studies consists of seven total courses. Students may take no more than four courses in
any one department. Also, a minimum of one course each from of the following three groups is required: Group A-Traditional Cultures and PreModern Africa, Group B-African Society and Politics, and Group C-African Expressive Culture.

The African Studies Minor provides students with a broad background in African history, societies, culture, and politics. Please contact Professor Bennetta Jules-Rosette in the Department of Sociology (Social Science Building, Rm. 471), (858) $534-4790$ or the African Studies Office at (858) 822-0265 for more information. Quarterly course offerings are subject to change. Interested students should consult the program faculty for an up-to-date list.

COURSES

Group A:Taditional Cultures and Pre-modern Africa

ANRG 104. Traditional African Societies and Cultures (4)
Com/Cul 118. Oral History (4)
Ethnic Studies 142. Languages of Africa
(4)

HIAF 110. History of Africa to 1880 (4)
HIAF 120. History of South Africa (4)
HIUS 135. Slavery and the Atlantic World (4)
(4)

Group B: African Society and Politics
ANGN 183. Chiefdoms, States and the Emergence of Civilizations (4)

Com/Cul 179. Colonialism and Culture (4)
Ethnic Studies 157. Ethnic Conflict in the Third World (4)
HIAF 111. Modern Africa Since 1880 (4)
HIAF 130. African Society and the Slave Trade (4)
HIAF 140. Economic History of Africa (4)
HIUS 136. Slavery and Freedom in Nineteenth-Century U.S.: Images and Realities (4)

Political Science 132A. Political Modernization Theory (4)
Political Science 135A. Ethnic Conflict in the Third World (4)

Political Science 136B. Comparative Politics and Political Culture (4)
Soc C/148C. Power, Culture, and Social Revolt (4)
Soc C/157. Religion in Contemporary Society (4)
Soc D/158. Islam in the Modern World (4)
Soc D/188A. Community and Social Change in Africa (4)
Soc D/188J. Change in Modern South Africa (4)

Group C: African Expressive Culture

Com/Cul 127. Folklore and Communication (4)
Com/Cul 146. Culture and Thought (4)

Com/Cul 181. Colonialism and Culture 181 (4)
Ethnic Studies 176. Black Music/Black Text: Communication and Cultural Expression (4)
LTGN 130. Novel and History in the Third World
LTGN 132. African Oral Literature (4)
LTGN 133. Introduction to Literature and Film of Modern Africa (4)
LTGN 185. Literature and Ideas (4)
LTGN 186A-B-C. Modernity and Literature (4-4-4)
LTEN 187. Black Music/Black Text: Communication and Cultural Expression (4)

LTEN 188. Contemporary Caribbean Literature (4)
MUS 13AF. World Music/Africa (4)
MUS 111. World Music Traditions (4)
MUS 126. Introduction to Oral Music (4)
MUS 127A-B. Music of Black Americans (4-4)
Soc A/105. Ethnographic Film and Media Methods (6)
Soc D/187. African Societies Through Film (4)
TH/HS 109. Modern Black Drama (4)
TH/HS153. Dance History-Jazz Dance \& Related Ethnic Studies (4)

Visual Arts 126A. African and Afro-American Art (4)
Visual Arts 127B. Western \& Non-Western Rituals \& Ceremonies (4)

Visual Arts 127D. Primitivism and Exoticism in Modern Art (4)

Visual Arts 128E. Topics in Non-Western Art (4)

Anthropology

Office: Social Science Building
Thurgood Marshall Campus
http://anthro.ucsd.edu

Professors

Guillermo Algaze, Ph.D., Chair
F. G. Bailey, Ph.D., Professor Emeritus, Academic

Senate Career Distinguished Teaching Award
Roy G. D'Andrade, Ph.D.
David K. Jordan, Ph.D., Provost, Warren College
Robert I.Levy, M.D., Professor Emeritus
(No longer in San Diego.)
Thomas E. Levy, Ph.D.
Michael E. Meeker, Ph.D.
Margaret J. Schoeninger, Ph.D.
T. Schwartz, Ph.D., Professor Emeritus (Retired, not available.)
Melford E. Spiro, Ph.D., Professor Emeritus
Shirley C. Strum, Ph.D.
Marc J.Swartz, Ph.D.

Donald F.Tuzin, Ph.D.
Kathryn A. Woolard, Ph.D.

Associate Professors

Suzanne A. Brenner, Ph.D. James Holston, Ph.D.
Jim Moore, Ph.D.
Steven M. Parish, Ph.D.

Assistant Professors

Joel Robbins, Ph.D.
Katerina Semendeferi, Ph.D.

Adjunct Faculty

Robert McC. Adams, Ph.D., Adjunct Professor, Anthropology
Brian F. Byrd, Ph.D., Associate Adjunct Professor, Anthropology
Alan Dixson, Ph.D., Adjunct Professor, Anthropology

Associated Faculty

Charles Briggs, Ph.D., Professor, Ethnic Studies
Edwin L. Hutchins, Ph.D., Professor, Cognitive Science
Martha Lampland, Ph.D., Associate Professor, Sociology
Paula F.Levin, Ph.D., Lecturer, S.O.E., Teacher Education Program
Lawrence A. Palinkas, Ph.D., Professor, Family and Preventive Medicine, UCSD School of Medicine
Lola Romanucci-Ross, Ph.D., Professor, Family and Preventive Medicine, UCSD School of Medicine
Christena Turner, Ph.D., Associate Professor, Sociology
Lisa Yoneyama, Ph.D., Associate Professor, Literature
Anthropology is a humanistic social science dedicated to understanding the worldwide diversity of social institutions and cultural traditions.
Because there is increasing awareness of the importance of sociocultural factors in domestic and international relations, a bachelor's degree in anthropology has become accepted as a valuable preparation for careers in law, medicine, education, business, government, and various areas of public service. Anthropology majors can qualify for a California teaching credential from UCSD through the Teacher Education Program. The department offers a full range of courses in cultural, social, psychological and biological anthropology, as well as archaeology. Courses include offerings which focus on specific societies or regions of the world as well as more theoretically oriented materials. The department offers under-
graduate minor and major programs, a senior thesis program, an undergraduate internship program, and a graduate program leading to the doctoral degree. Students may also enroll in a UCSD Archaeological Field School held in Israel, Jordan, and other regions.

The Undergraduate Program

Lower-Division

Lower-division offerings in anthropology are concentrated mainly in the core series, ANLD 1,2, 3. These courses are designed to provide a comprehensive orientation to the ideas and methods of anthropological investigation and a familiarity with case materials from a number of different societies and historical periods.

Students who intend to major or minor in archaeological anthropology are advised to take ANLD 3.

Students who intend to major or minor in biological anthropology must take ANLD 2 (or equivalent), which is prerequisite to most upper-division biological anthropology courses.

ANLD 23, which may not be offered every year, satisfies the campus-wide requirement for a course in American Cultures.

Students who have already completed ANPR 105,106 , and 107 may not receive academic credit for ANLD 1.

Other lower-division courses are offered from time to time and will vary from year to year.

The Minor

Students may choose a minor in general anthropology, archaeological anthropology, or biological anthropology. Each consists of seven anthropology courses. At least five courses must be upper-division; at least four should be taken at UCSD. The list of courses offered for each minor is available from the undergraduate coordinator. Transfer credits from other anthropology departments are usually accepted. Education Abroad Program credits are acceptable at the discretion of the undergraduate adviser.

The Major

To receive a B.A. degree with a major in anthropology, the student must meet the requirements of Revelle, John Muir, Thurgood Marshall, Earl Warren, or Eleanor Roosevelt College, including
the following requirements of the Department of Anthropology:

1. A minimum of twelve four-unit upper-division courses in the Department of Anthropology must be completed.
2. ANPR 105,106 , and 107 must be completed (included as three of the twelve courses required under No. 1, above). All or some of the courses in this sequence are prerequisites for some other upper-division courses. This sequence consists of:
105 Social Anthropology
106 Cultural Anthropology
107 Psychological Anthropology
3. No courses taken in fulfillment of the above requirements may be taken on a Pass/Not Pass (P/NP) basis. (An exception is made for some courses accepted from other schools and for one independent study course (199), or one directed group study course (198), and a combination of one internship seminar (ANBI 187A, C or ANPR 187B) with the corresponding academic internship project (AIP 197). However, this exception does not extend to ANPR 105, 106 and 107 , or to transfer credits accepted in lieu of them. These must be taken for a letter grade.)
4. For the B.A. degree, a minimum average of 2.0 is required, both as an overall average in all anthropology courses and in the ANPR 105-106-107 sequence considered separately.
5. At least seven of the upper-division courses submitted for the major must be taken at the University of California, San Diego. The seven normally must include ANPR 105, 106, and 107. A transfer course may be accepted in lieu of one of these "core" courses, if, in the opinion of the undergraduate adviser, the content is substantially the same. In no case will transfer credit be accepted in lieu of more than one of these courses.
6. Majors are required to obtain a background in basic statistical techniques. Sociology 60 and BIEB 100 are recommended as courses to fulfill this requirement.

The Major in Anthropology with Concentration in Archaeology

The department offers an additional B.A. degree, "Anthropology with Concentration
in Archaeology." This degree requires the following:

1. The Anthropology Core Sequence: ANPR 105, 106, 107.
2. The Archaeology Core Sequence: ANGN 181, 182, 183.
3. An additional upper-division course in sociocultural anthropology.
4. Five elective courses, three of which must be in archaeology, and the remaining two can be either from offerings in archaeology or in related disciplines. A handout listing these courses is available from the department's undergraduate coordinator. Students are encouraged to participate in the department's Archaeological Field School (ANPR 194) opportunities in the eastern Mediterranean region.

The Major in Anthropology with Concentration in Biological Anthropology

The department offers another B.A. degree, "Anthropology with Concentration in Biological Anthropology." This degree requires the following:

1. The Core Sequence: ANPR 105, 106, 107.
2. Five four-unit anthropology courses identified as biological anthropology courses; ENVR 110 may be substituted for one of these. A handout listing these courses is available from the department's undergraduate coordinator.
3. Four four-unit courses in the Department of Biology; ECON 131 may be substituted for one of these. Courses which are applicable are also listed in the biological anthropology handout.
4. Items 3 through 6 in the above section ("The Major in Anthropology") also apply to the major in anthropology with concentration in biological anthropology.

Senior Thesis Program

The senior thesis is prepared during two successive quarters of ANPR 196, senior thesis research, and is counted as two of the twelve upper-division courses required for a major. Students are admitted to the program by invitation of the faculty. Under normal circumstances, eligibility for the program requires the student (1) to have completed eight upper-division courses, including the core sequence, and (2) to have
achieved grade point averages of at least 3.6 both overall and in the anthropology major by the end of the junior year. Some of these requirements may be waived by vote of the faculty. During the first quarter of the program (fall quarter), students select their research topic and write a preliminary paper. Those who receive a $B+$ or better will be invited to continue in the program and complete a thesis on the chosen topic by the end of the winter quarter. The thesis will be evaluated by a committee consisting of the thesis adviser and one other faculty member appointed by the department chair in consultation with the thesis coordinator. The thesis adviser has the sole responsibility for the grade the student receives in the winter quarter. The reading committee advises the faculty on the merit of the thesis for departmental honors.

Students who wish to be considered for the Senior Thesis Program should notify the department's undergraduate adviser by the second week of the spring quarter prior to the senior year.

Internship Program

The department sponsors an internship program that allows students to gain academic credit for supervised work in the Museum of Man, the San Diego Zoo, or the Wild Animal Park. The three tracks of the program allow internship experience in (1) biological anthropology, (2) ethnology and archaeology at the museum, or (3) primate behavior and conservation at the Zoo or Wild Animal Park. A combination of on-campus and on-site supervision makes these courses intellectually provocative but practical and applied. They are an especially valuable complement to a major or minor in anthropology. One four-unit internship (AIP 197) taken with the corresponding two-unit internship seminar (ANBI 187A, C and ANPR 187B) can be counted as one of the twelve upper-division courses for the anthropology major or minor. Applications to these programs are accepted during the first seven weeks of the quarter before the one in which the internship is to be done.

Academic Enrichment Programs

Faculty Mentor Program

The program offers research experience to any junior or senior with a GPA of 2.7 or higher who
wants to prepare for graduate or professional school. Participants work as research assistants to UCSD faculty members during the winter and spring quarters. Students present their research papers at the Faculty Mentor Research Symposium at the conclusion of the program in the spring.

Summer Research Program

The program offers full-time research experience to under-represented (i.e., minorities, women, and low-income, first-generation college) students who are interested in preparing for careers in research or university teaching. Juniors and seniors who have a 3.0 GPA or above and plan to attend graduate or professional school are eligible to participate.

Education Abroad Program

One of the best ways to understand the concept of "culture" is to live in a different culture for a time. Anthropology majors are encouraged to participate in the UC Education Program (EAP) or UCSD's Opportunities Abroad Program (OAP). Students considering this option should discuss their plans with the faculty undergraduate adviser before going abroad, and courses taken abroad must be approved for credit to the major by the adviser upon return. More information on EAP and OAP is provided under the Education Abroad Program in the UCSD General Catalog. Interested students should contact the EAP staff in the International Center.

The Graduate Program

The Department of Anthropology offers graduate training in social, cultural, and psychological anthropology, anthropological archaeology, and biological anthropology. The graduate program is designed to provide the theoretical background and the methodological skills necessary for a career in research and teaching anthropology at the university level, and for the application of anthropological knowledge to contemporary problems. It is assumed that all students enter with the goal of proceeding to the doctoral degree.

Admission to the graduate program occurs in the fall quarter only.

Graduate Advising

One member of the departmental faculty functions as the graduate adviser. The role of graduate adviser is to inform students about the graduate program, approve individual registration forms, and give assistance with respect to administrative matters. After completion of the requirements for the master's degree, the chair of the student's doctoral committee serves as the student's major adviser.

Any decision to waive a requirement for either the master's degree or the Ph.D. must be made by a majority of the full faculty.

Evaluation

In the spring of each year, the faculty evaluate each student's overall performance in course work, apprentice teaching, and in research progress. A written assessment is given to the student after the evaluation. If a student's work is found to be inadequate, the faculty may determine that the student should not continue in the graduate program.

Teaching

In order to acquire teaching experience, each student in the graduate program is required to participate as an assistant in the teaching activities designated by the department during one quarter in the student's first two years of residence unless the requirement is waived by the faculty. This obligation is discharged under the auspices of the course entitled "ANGR 500: Apprentice Teaching."

The Master of Arts Degree

Students entering the doctoral program must complete a master's degree before continuing toward the doctorate. Entering students who already have a master's degree in anthropology are not permitted by university regulations to receive a second social science or related field master's degree, but are required by the department to complete the requirements for the master's degree. Rare exceptions may be made on a case by case basis by the consent of the majority of the faculty and approval of the Office of Graduate Studies and Research.

Requirements for Master's Degree

Required Courses:

230A	Departmental Colloquium (4 quarters, 1 unit each) Introductory Seminars (1 unit each)
281 A-B	
295	Master's Thesis Preparation (1-12 units)
500	Apprentice Teaching (1 quarter, 4 units)

Four of the following six core courses, as designated by the sub-field to which the student has been admitted:

Students must take four core courses out of a total pool of six courses identified as "Core." One of these will be an integrated core course to be taken during the first year. The other three required courses will be specified by faculty of the three sub-fields now identified within the department (Socio-cultural, Anthropological Archaeology, and Biological Anthropology) for the students admitted to their respective tracks.
ANGR 280A. Core Seminar in Social Anthropology (4 units)
ANGR 280B. Core Seminar in Cultural
Anthropology (4 units)
ANGR 280C. Core Seminar in Psychological Anthropology (4 units)
ANGR 280D. Core Seminar in Anthropological Archaeology (4 units)
ANGR 280E. Core Seminar in Biological
Anthropology (4 units)
ANGR 280F. Integrated Core Seminar (4 units)
(Required for all first year students)

Elective Courses

Four elective, letter grade courses are required. Required courses may not be counted as elective courses, although the Integrated Core Seminar (ANGR 280F) may be repeated in another year for elective credit (provided the teaching staff for the course have changed). Two of these elective courses must be within the anthropology department. Other electives may be taken outside of the department with the approval of the department chair or the graduate adviser.

Master's Thesis

Students must complete a master's thesis of roughly sixty pages which will be due on the first day of the winter quarter of the student's second year. They must have completed three quarters of
coursework in order to begin writing a master's thesis. By the end of the spring quarter of the student's first year, he/she will have a master's committee in consultation with whom he/she will design the thesis. The graduate adviser will be responsible for organizing the masters' committees. The thesis will be literature based but will have its own argument, and will not simply be a review of the literature.

An option open only to anthropological archaeology and biological anthropology students is to make the literature-based thesis (defended by the beginning of the winter quarter of the second year) one component of a larger project involving the collection of original data. Data collection could begin in the summer after the student's first year and analysis of it could continue after the master's thesis has been defended. If the thesis includes the analysis of original data which must be shipped back from the field, the student would write the thesis during the winter quarter and hand it in on the first day of the spring quarter.

The Doctoral Degree

Continuation in the doctoral program is granted to students who have satisfactorily completed the master's program and who have completed courses and the master's thesis at a level of excellence which indicates promise of professional achievement in anthropology.

Requirements for the Doctoral Degree

1. Required Courses

In order to achieve candidacy, students must complete two additional letter grade electives beyond the four required for the Masters.

Only one 290-level course may be taken in any one quarter until a student attains Ph.D. candidacy.

2. Research Methods

Students are required to develop a plan for their training in research methods and present it to the anthropology department faculty on their proposed dissertation committee in the spring quarter of their second year.

3. Foreign Language

Unless a student is planning on fieldwork in English-speaking areas, knowledge of one or more
foreign languages may be essential for the successful completion of a Ph.D. in anthropology at UCSD. Students will determine specific language requirements for their degree in consultation with the faculty and their doctoral committee.

4. Formation of the Doctoral Committee

Students should choose their doctoral committee by the end of the second year. They must have the completed committee by the end of the first week of the fall quarter of their third year. In consultation with the chair of the doctoral committee, two more departmental committee members are selected, and two faculty members from outside of the department are added. One of the outside members must be tenured.

Anthropologists in other departments who are identified by the faculty may serve as either inside members or outside members of the committee. However, there must be at least two inside members from within the department, and only one outside member may be an anthropologist. The final composition of the committee is approved by the Office of Graduate Studies and Research.

The chair of the doctoral committee serves as the student's adviser for the remainder of the student's program.

5. The Fieldwork Proposal

Advancement to Candidacy will be based on the submission of a research proposal of fifteen to thirty double-spaced pages and three papers of fifteen to twenty double-spaced pages in length.

One paper must be submitted in each quarter. The papers should be fifteen to twenty double spaced pages in length. They will usually be in the areas of theory, methods and area, though in some cases a different breakdown of the papers will be allowed in consultation with the student's committee. Three directed reading courses will be allowed in the preparation of the papers (one each in the spring of the second year and the fall and winter of the third year.) All papers and the exam must be completed by the end of a student's third year, though they may be completed earlier. The proposal and all papers must be turned in three weeks prior to the examination.

6. Advancement to Candidacy

In the spring quarter of the third year, after completion of all of the above requirements and submission of the papers and proposal, the student sits for the oral qualifying examination administered by the student's committee, as
required by the Office of Graduate Studies and Research. This examination may contain questions on any aspect of anthropology, but focuses particularly upon the merits of the student's field research proposal, areas covered in the papers, and accompanying field statements. Successful completion of this examination marks the student's advancement to doctoral candidacy. These exams will be open to the extent that university regulations allow.

7. Dissertation and Dissertation Defense

Upon completion of the dissertation research project, the student writes a dissertation which must be successfully defended in an oral examination conducted by the doctoral committee and open to the public. This examination may not be conducted earlier than three quarters after the date of advancement to doctoral candidacy. A full copy of the student's dissertation must be in the hands of each of the student's doctoral committee members four weeks before the dissertation hearing. An abstract of the student's dissertation must be in the hands of all faculty members ten days before the dissertation defense. It is understood that the edition of the dissertation given to committee members will not be the final form, and that the committee members may suggest changes in the text at the defense. Revisions may be indicated, requiring this examination to be taken more than once. Acceptance of the dissertation by the university librarian represents the final step in completion of all requirements for the Ph.D.

8. Time Limits

Pre-candidacy status is limited to three years. Candidates for the doctorate remain eligible for university support for eight years. Instructional support (teaching assistantships) is limited to six years (eighteen quarters). The doctoral dissertation must be submitted and defended within nine years. This is in accordance with university policy.

Introduction to Required Core Courses

ANGR 280A. Core Seminar in Social Anthropology. First-year core seminar focuses on individual action and social institutions.
ANGR 280B. Core Seminar in Cultural
Anthropology. First-year core seminar focuses on personal consciousness and cultural experience.

ANGR 280C. Core Seminar in Psychological

Anthropology. First-year core seminar focuses on motives, values, cognition, and qualities of personal experience.

ANGR 280D. Core Seminar in Anthropological Archaeology. Integral part of the training for graduate students focusing on Anthropological Archaeology. It is one of a set of core anthropology courses available to graduate students; required of first-year anthropological archaeology students but open for students in other sub-fields.

ANGR 280E. Core Seminar in Biological Anthropology. This seminar will examine the central problems and concepts of biological anthropology, laying the foundation for first-year graduate students in Biological Anthropology as well as providing an overview of the field for graduate students in other areas of anthropology.

ANGR 280F. Integrated Core Seminar. Two faculty members from different sub-fields (sociocultural, anthropological archaeology, and biological anthropology) address issues of mutual interest, illustrating areas of overlap between the aspects of anthropology. REQUIRED OF ALL FIRSTYEAR STUDENTS.

ANGR 281 A-B. Introductory Seminars. These seminars are held in the first two quarters of the first year of graduate study. Faculty members will present an account of their current research and interests. When appropriate a short preliminary reading list will be given for the particular lecture.

NOTE: Not all anthropology courses are offered every year. Please check the quarterly UCSD Schedule of Classes issued each Fall, Winter, and Spring, for specific courses.

The Melanesian Studies Resource Center and Archive

These facilities embody the substantial interests in the Pacific Basin that are represented on the UCSD campus and the special prominence of the UCSD Department of Anthropology in the study of cultures and societies of Oceania and especially of Melanesia. In cooperation with the UCSD libraries, the Melanesian Studies Resource Center and Archive has two major projects. First, there is an ongoing effort to sustain a library collection of monographs, dissertations, government documents, and journals on Melanesia that make UCSD the premier center for such materials in the United States. Second, there is an endeavor to col-
lect the extremely valuable unpublished literature on Melanesia, to catalog such materials systematically, to produce topical bibliographies on these holdings, and to provide microfiche copies of archival papers to interested scholars and to the academic institutions of Melanesia. This innovative archival project is intended to be a model for establishing special collections on the traditional life of tribal peoples as dramatic social change overtakes them. In the near future, anthropological research on tribal peoples will take place largely in archives of this kind. These complementary collections will support a variety of research and teaching activities and are already attracting students of Melanesia to this campus.

The Melanesian Studies Resource Center and Archive are directed by members of the Department of Anthropology faculty, in collaboration with Geisel Library.

The Archaeological Research Laboratory

An archaeological laboratory was established at UCSD in 1995. The facility is geared to the study of lithics, ceramics, biological remains, and other small finds retrieved on faculty expeditions in the old world, including Anatolia, Israel, and Jordan. Multimedia research, AutoCAD, and other computer based studies are carried out in the lab. Undergraduate and graduate students are encouraged to participate in lab studies.

The Biological Anthropology Laboratory

The biological anthropology laboratory has twin missions in teaching research. It houses a collection of modern skeletal material and fossil hominid casts used for teaching both at the lab and in local outreach presentations. The primary research focus involves a large collection of histological sections and computerized images of living and postmortem human and non-human primate brains that were obtained through magnetic resonance scans. These are reconstructed in 3D using state-of-the-art equipment for comparative analysis and study of the evolution of the human brain. Undergraduate and graduate student involvement in the lab is welcomed.

The Anthropology of Modern Society

The Anthropology of Modern Society is an interdepartmental project of graduate training and research dedicated to the study of modernity and its counterpoints in the late twentieth century. The group sees the social life of cities as making manifest this problem in issues of citizenship and democracy, social formations in tension with the nation-state, modern subjectivities, social and religious movements, transnational markets and migrations, and relations of local to global processes. Participants are committed to reorienting anthropological theory and ethnographic practice towards such contemporary social and political problems.

Refer to Comparative Studies in Language, Society, and Culture for more information.

COURSES

Note: Not all courses are offered every year. Please check the quarterly Schedule of Classes for specific courses issued fall 2001, winter 2002, and spring 2002.

ANTHROPOLOGY:LOWER-DIVISION

ANLD 1. Introduction to Culture (4)

An introduction to the anthropological approach to understanding human behavior, with an examination of data from a selection of societies and cultures.

ANLD 2. Human Origins (4)

An introduction to human evolution from the perspective of physical anthropology, including evolutionary theory and the evolution of the primates, hominids, and modern humans. Emphasis is placed on evidence from fossil remains and behavioral studies of living primates. Prerequisite for upper-division biological anthropology courses.

ANLD 3. World Prehistory (4)

This course examines theories and methods used by archaeologists to investigate the origins of human culture. A variety of case studies from around the world are examined. (Recommended for many upper-division archaeology courses.)

ANLD 5: The Human Skeleton (4)
This course will introduce students to all the bones in the body with an emphasis on function by detailing areas of muscle attachment and bone shape.

ANLD 8. Freshman Honors Seminar (4)
Special seminar for a select group of outstanding firstyear undergraduates. Course content will shift according to the interests of the instructor. Prerequisites: freshman standing, ANLD 1 or Making of the Modern World 1, and by invitation.

ANLD 23. Debating Multiculturalism: Race, Ethnicity, and Class in American Societies (4)
This course focuses on the debate about multiculturalism in American society. It examines the interaction of race, ethnicity, and class, historically and comparatively, and considers the problem of citizenship in relation to the growing polarization of multiple social identities.

ANLD 42. The Study of Primates in Nature (4)

Major primate field studies will be studied to illustrate common features of primate behavior and behavioral diversity. Topics will include communication, female hierarchies, protocultural behavior, social learning and tool use, play, cognition and self-awareness. (Prerequisite for several upper-division biological anthropology courses.)

ANLD 90. Undergraduate Seminar (1)
The seminar will focus on a variety of issues and special areas in the field of anthropology. The seminar will meet a total of eight hours during the quarter.

ANTHROPOLOGY: PROGRAM COURSES

ANPR 105. Social Anthropology (4)
A systematic analysis of social anthropology and of the concepts and constructs required for cross-cultural and comparative study of human societies. Prerequisite: upper-division standing. (Required for all majors in anthropology.)

ANPR 106. Cultural Anthropology (4)

A web of problematic meanings lies behind social relationships and institutional frameworks. This perspective plays an important role in the discussion of human affairs. Course considers the concept of culture in anthropology as a particularly forceful statement of such a perspective. (Required for all majors in anthropology.)

ANPR 107.Psychological Anthropology (4)
Interrelationships of aspects of individual personality and various aspects of sociocultural systems are considered. Relations of sociocultural contexts to motives, values, cognition, personal adjustment, stress and pathology, and qualities of personal experience are emphasized. (Required for all majors in anthropology.)

ANPR 187B. Intern Seminar in Ethnography and

Archaeology (2)
Seminar complements students' research in the Academic Internship Program in ethnography and archaeology at the Museum of Man. Readings and discussions focus on problems in the analysis of material culture and classifications of artifacts and site excavations. Research paper required. Prerequisites: ANPR 106 and simultaneous enrollment in Warren 197: Ethnography Archaeology-Museum of Man. (P/NP grades only.) Department approval required.

ANPR 194. Archaeological Field School (12)
The archaeological field school will take place in Israel or Jordan. It is an introduction to the design of research projects, the techniques of data collection, and the methods of excavation. Includes post-excavation lab work, study trips and field journal. Prerequisite: none.

ANPR 195. Instructional Apprenticeship in
Anthropology (4)
Course gives students experience in teaching of Anthropology at the lower-division level. Students, under direction of instructor, lead discussion sections,
attend lectures, review course readings, and meet regularly to prepare course materials and evaluate examinations and papers. Course not counted toward minor or major. Prerequisites: consent of instructor and department stamp, upper-division standing, grade of A in course to be taught or equivalent.

ANPR 196A. Thesis Research (4)

Independent preparation of a senior thesis under the supervision of a faculty member. Completion of this course with a grade of at least $B+$ is a prerequisite to ANPR 196B. Prerequisites: students will be admitted by invitation of the department. Department approval required.

ANPR 196B. Thesis Research (4)
Independent preparation of a senior thesis under the supervision of a faculty member. Students begin twoquarter sequence in fall quarter. Prerequisite: completion of ANPR 196A with grade of $B+$ or better.

ANPR 197. Field Studies (4)
Individually arranged field studies giving practical experience outside the university. Prerequisites: consent of instructor and department approval required. (P/NP grades only.)

ANPR 198. Directed Group Study (2-4)
Directed group study on a topic or in a field not included in the regular departmental curriculum by special arrangement with a faculty member. Prerequisites: consent of instructor and upper-division standing. (P/NP grades only.) Department approval required.

ANPR 199. Independent Study (2-4)

Independent study and research under the direction of a member of the faculty. Prerequisites: consent of instructor. (P/NP grades only.) Department approval required.

ANTHROPOLOGY: BIOLOGICAL ANTHROPOLOGY

These courses can be counted for the biological anthropology minor or concentration.

ANBI 100: Special Topics in Biological
Anthropology (4)
Course usually taught by visiting faculty in biological anthropology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes and the anthropology department Web site. (Can be taken a total of four times as topics vary.)

ANBI 101: Special Topics in Bio-Medical

Anthropology (4)
Course usually taught by visiting faculty in bio-medical anthropology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes and the anthropology department Web site. (Can be taken a total of four times as topics vary.)

ANBI 110. Perspectives on Human Evolution (4) Special seminar for students who wish to explore advanced topics in biological anthropology. Course focus will change year to year. May be repeated one time for credit. Prerequisites: ANLD 2, one other course in biological anthropology, and consent of instructor. Department approval required.

ANBI 116: The Evolution of Primate Reproduction (4)
This course examines reproductive biology and its evolution among the Order Primates. Lectures cover the hormonal control of sexual and parental behavior, the evolution of mating systems, mating tactics, and sexual selection. Human reproduction is considered in the comparative perspective. Prerequisites: upper-division standing, ANLD 2: Human Origins or comparable, or consent of instructor.

ANBI 132. Conservation and the Human Predicament (4) (Same as BIEB 176.) Interdisciplinary discussion of the human predicament, biodiversity crisis, and importance of biological conservation. Examines issues from biological, cultural, historical, economic, social, political, and ethical perspectives emphasizing new approaches and new techniques for safeguarding the future of humans and other biosphere inhabitants. Prerequisite: ANLD 2 or consent of instructor.

ANBI 133. The Cultural Ecology of Health (4)

The goal of this course is to place health in a cultural and ecological framework, using an evolutionary (through time) and worldwide perspective.

ANBI 139. Introduction to the Primate Brain (4)
Examination of the basic organization of the human and non-human primate brain with an emphasis on structures involved in cognitive behaviors, emotions, and responses to social stimuli. Introduction to the field of comparative neuroanatomy as applied on selected anthropoid species. Prerequisite for ANBI 140. Prerequisite: none

ANBI 140. The Evolution of the Human Brain (4) Introduction to the organization of the brain of humans and apes. Overview of the theoretical perspectives on the evolution of the primate cortex and limbic system. Exposure to contemporary techniques applied to the comparative study of the hominoid brain. Prerequisite: ANBI 139 or consent of instructor

ANBI 141: The Evolution of Human Diet (4)

The genotype of our ancestors had no agriculture or animal domestication, or rudimentary technology. Our modern diet contributes to heart disease, cancers, and diabetes. This course will outline the Natural Diet of Primates and compare it with early human diets.

ANBI 142:The Primate Skeleton (4)
This course will compare long bones, head, and torso shape in tree-living and ground-living primates. The emphasis is on correlating locomotion with bone shapes. Prerequisite: ANLD 42: The Study of Primates in Nature

ANBI 144: Human Anatomy (4)
This course will introduce students to the internal structure of the human body through dissection tutorials on CD ROM. Prerequisite: ANLD 5: The Human Skeleton or related course.

ANBI 145: Bio-Archaeology (4)

Course focuses on using human skeletal remains to reconstruct human lives throughout prehistory. It will consider the effects of growth, use, and pathology on morphology and the ways that the study of human skeletal materials is viewed by different modern groups. Prerequisite: ANLD 5: The Human Skeleton or related course.

ANBI 146: Stable Isotopes in Ecology (4)

The stable isotopes of carbon, nitrogen, oxygen, and hydrogen in animal tissues, plant tissues, and soils indi-
cate aspects of diet and ecology. The course will introduce students to this approach for reconstructing paleo-diet, paleo-ecology, and paleo-climate.

ANBI 147: American Creationism (4)

Over the last several decades in North America an attack has been directed toward organic evolution as the explanation for the origin of life, especially as it relates to humans. The course will review the history of the movement and its implications.

ANBI 148. Primate Behavioral Ecology (4)

The course examines various behaviors (e.g., group formation, dispersal, parenting, coalition formation) from a comparative and evolutionary perspective. Observational methodology and analytical methods will also be discussed. Lab sections are required. Prerequisites ANLD 42. Strongly recommended: BIEB 100, Biometry or comparable statistics course, and BIEB 164, Sociobiology.

ANBI 159. Biological and Cultural Perspectives on Intelligence (4)

Attitudes toward other individuals (and species) are often shaped by their apparent "intelligence." This course discusses the significance of brain size/complexity, I.Q. tests, communication in marine mammals and apes, complex behavioral tactics, and the evolution of intelligence. Prerequisites: any one of the following: ANLD 2,42, BILD 3 , or consent of instructor.

ANBI 161. Human Evolution (4)
Interpretation of fossil material-its morphology, varia tion, phylogenetic relationships, reconstruction of ecological settings and cultural patterns of early human life-demands the integration of many disciplines Lectures cover major stages of human evolution, time ranges, distribution, archaeology, and distinctive morphology. Prerequisite: ANLD 2 or consent of instructor.

ANBI 173. Cognition in Animals and Humans (4)
(Previously titled: The issues of consciousness in animals and humans.) The last divide between humans and other animals is in the area of cognition. A comparative perspective to explore recent radical reinterpretations of the cognitive abilities of different primate species, including humans and their implications for the construction of evolutionary scenarios. Prerequisite. ANLD 2 or introductory course in evolution/animal behavior or consent of instructor.

ANBI 175. Modeling the Behavior of our Early

 Ancestors (4)Models of human evolution combine science and myth This course examines methods used in reconstructions of human evolution. Models such as "man the hunter" and "woman the gatherer" are examined in light of underlying assumptions, and cultural ideals. Prerequisite: ANLD 2 or equivalent.

ANBI 180. Anthropology of Aging (4)

This course examines aging from an anthropologica perspective. Course material includes evolutionary theories regarding life span and senescence, overviews of biological and social aspects of aging in humans, and studies of aging in other societies from biological and cultural perspectives.

ANBI 187A. Intern Seminar in Physical Anthropology (2) Seminar complements students' research in the Academic Internship Program in physical anthropology at the Museum of Man. Readings and discussions focus on anatomy, pathology, and classification and x-ray analyses of skeletal remains. Research paper required Prerequisites: ANLD 2 and simultaneous enrollment in

Warren 197: Physical Anthropology-Museum of Man (P/NP grades only.) Department approval required.

ANBI 187C. Intern Seminar in Ethology (2)

Seminar complements students' research in the Academic Internship Program at the San Diego Wild Animal Park and/or Zoo. Focus on problems of analysis in observational study of animal behavior and conservation in relation to ethological studies. Research paper required. Prerequisites: ANLD 2 and one upper-division course in animal behavior, either in anthropology or biology. To qualify, must be last-quarter junior or senior with a 3.3 GPA. Simultaneous enrollment in Warren 197: Ethology Zoo. (P/NP grades only.) Department approval required.

ANTHROPOLOGY: GENERAL

ANGN 100: Special Topics in Socio-Cultura

Anthropology (4)
Course usually taught by visiting faculty in socio-cultural anthropology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes and the anthropology department Web site. (Can be taken a total of four times as topics vary.)

ANGN 101: Special Topics in Anthropological

 Archaeology (4)Course usually taught by visiting faculty in anthropological archaeology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes and the anthropology department Web site. (Can be taken a total of four times as topics vary.)

ANGN 103: The Archaeology of Hunters-Gatherers (4) Course examines current theoretical issues in the field of hunter-gatherer archaeology. Considerable empha sis is given to ethnographic and ethno-archaeological sources for understanding such topics as prehistoric hunter-gatherer adaptations, culture change, social organization, and inter-group interaction. Prerequisite: none. ANLD 3 recommended.

ANGN 104. Anthropology of Fantasy (4)

A theoretical examination of the sources and relationships of public and private fantasy, based on crosscultural studies of dreams, myths, and ritual.

ANGN 112. Language, Identity, and Community (4)
This course examines the use of language difference in negotiating identity in bilingual and bidialectal communities, and in structuring interethnic relations. It addresses social tensions around language variation and the social significance of language choices in sev eral societies.

ANGN 113. Theories of Modern Subjectivity (4)
The course will examine selected writings that have influenced anthropological theories of modern subjectivity. Topics will include capitalism, religion, and nationalism. Readings will include excerpts from the work of major theories of society as well as ethnographic studies.

ANGN 114: Culture and Human Values (4)

The role of values in human society will be analyzed Class work will include projects to develop ways of measuring values, as well as collecting and analyzing data.

ANGN 117. Anthropology of Education (4)
This course considers ways in which language and culture influence educational goals and processes. Cultural and sociolinguistic explanations of school sucesses and failures are examined.

ANGN 118. Cognitive Anthropology (4)

This course explores the relation between culture and cognition. Topics include cultural influences on belief systems, reasoning, perception, and motivation. The teaching style for the course is discussion and lecture, with simple classroom demonstrations.

ANGN 120. Anthropology of Religion (4)

Explores religious life in various cultures. Topics addressed include the problem of religious meaning, psychocultural aspects of religious experience, religious conversion and revitalization, contrasts between traditional and world religions, religion and social change.

ANGN 123. National Character (4)
The course surveys work done on the national character of a selection of modern nations, including the United States. A variety of types of data will be examined, including movies and novels. Theoretical and methodological issues will be discussed. Prerequisite: ANLD 1 or consent of instructor.

ANGN 125: Gender, Sexuality, and Society (4)
How are gender and sexuality shaped by cultural idealogies, social institutions, and social change? We explore their connections to such dimensions of society as kinship and family, the state, religion, and popular culture. We also examine alternative genders/ sexualities cross-culturally. (Note: Students who have taken ANRG 117: Gender Across Cultures may not take this course for credit.)

ANGN 128. The Anthropology of Medicine (4)
(Same as Cont. Issues 136.) We examine the medical profession, the sick and the healers, and culture as communication in the medical event through aspects of medical practice and medical research of medicine as well as primitive and peasant systems.

ANGN 130. The Political Economy of Early Empires (4) Archaeological and textual evidence for selected early empires of pre-Columbian America and the Ancient Near East will be used to illuminate cross-cultural similarities and differences in the ways complex precapitalistic societies acquired, produced, and distributed wealth. Prerequisite: ANLD 3 is recommended.

ANGN 134. Paleolithic Cultures of the World (4)
Examines the archaeological background to human evolution and the foundation of regional prehistoric cultures in the Old World and the peopling of the Americas. Prerequisites: ANLD 2 and ANLD 3 are recommended.

ANGN 135. Bodies and Boundaries: Symbols in Ritual and Everyday Life (4)
This course looks at symbols in sacred and mundane spheres of life. Topics include ritual and religious symbolism; the symbolism of gender, sex, and body; representations in popular culture; and the manipulation of symbols to establish and transgress boundaries.

ANGN 142. Pastoralism in Archaeological and Ethnographic Perspective (4)

Pastoralism is a distinctive form of human subsistence which evolved and is often intertwined with farming
societies. These societies are examined using archaeological and ethnographic materials from the Near East and Africa. Prerequisite: ANLD 3 is recommended.

ANGN 147. Ritual and Symbolism (4)
An examination of the place of symbols in the ritual systems of small-scale societies, and a critical evaluation of theoretical models commonly applied to their analysis and interpretation.

ANGN 149. Language in Society (4)
After a brief introduction to linguistic concepts, the course covers the relations between culture and language, how languages reflect culture, how languages change, language and social life, language and political policy.

ANGN 151. Political Anthropology (4)
Humans are goat seekers, some with public goals. Course considers ways goals are pursued, which are desirable, and how this pursuit is carried out at the local level with attention to the parts played by legitimacy and coercion.

ANGN 154. Patterns of Conquest and Colonization (4)

 Centuries of European worldwide expansion, resting largely on military superiority, had profound effects on indigenous ecosystems, states, and peoples. The rise, decline, and continuing effects of this are traced in subsistence, demography, economic relationships, and colonial and post-colonial political systems.ANGN 157. The Analysis of Systematic Data (4)
This course will examine the techniques and logic of statistical methods used by anthropologists, including correlation and various measures of association, ANOVA, principal components, cluster analysis, and correspondence analysis. Simple graphic techniques will also be considered. Prerequisite: basic lower-division course in statistics.

ANGN 160. Nature, Culture, and Environmentalism (4) Course examines theories concerning the relation of nature and culture. Particular attention is paid to explanations of differing ways cultures conceptualize nature. Along with examples from non-western societies, the course examines the western environmental ideas embedded in contemporary environmentalism.

ANGN 163. Evolution of Technology (4)

(Formerly titled Technological Revolutions and Evolution) While not really existing outside the social order, technological systems are basic to civilization. Across six millennia, this course examines their growth--complex, largely indeterminate, and marked by irregular spurts of acceleration. While comparative, it concentrates on England and America.

ANGN 167. Rituals and Celebrations (4)

Explores the nature and significance of ritual. The course will examine religious rituals, civic festivals, and popular celebrations. Topics include ritual symbolism, social and psychological aspects of ritual, life cycle rites, urban festivals, ritual theory.

ANGN 170. Research Design in Anthropological Archaeology (4)
This course trains students to design, implement, and conduct research in anthropological archaeology. Writing and presenting work in progress will take place in a seminar like forum. Prerequisite: junior/senior standing.

ANGN 172. Life-History Seminar and Practicum (4) Examines life-history research as a method for understanding the cultural and psychological experience of people. Combines reading of life-histories with training in life-history research methods. Students develop a life-history project, conduct interviews, and analyze data. Prerequisites: upper-division. ANPR107 or concurrent enrollment in ANPR 107. Consent of instructor.

ANGN 173. General Theory (4)
(Previously numbered ANGN 106.) This course will consider theories in anthropology and related fields which treat culture, society, and personality as causal factors in explaining human action. Emphasis will be on the propositional structures of such theories rather than the comparison of particular theorists.

ANGN 181. Anthropological Archaeology (4)

As part of the broad discipline of anthropology, archaeology provides the long chronological record needed for investigating human and social evolution. The theories and methods used in this field are examined. (Archaeology core sequence course.) Prerequisite: ANLD 3 is recommended.

ANGN 182. Origins of Agriculture and Sedentism (4) Varying theoretical models and available archaeological evidence are examined to illuminate the socioevolutionary transition from nomadic hunter-gathering groups to fully sedentary agricultural societies in the Old and New World. (Archaeology core sequence course.) Prerequisite: ANLD 3 is recommended.

ANGN 183. Chiefdoms, States, and the Emergence of Civilizations (4)
The course focuses on theoretical models for the evolution of complex societies and on archaeological evidence for the development of various pre- and protohistoric states in selected areas of the Old and New Worlds. (Archaeology core sequence course.) Prerequisite: ANLD 3 is recommended.

ANGN 189. The Anthropology of the End of the World: Millenarian Movements Across Cultures (4)
Course focuses on historical and contemporary millenarian movements in the western and non-western world. Topics addressed include origins, role of prophets, conceptions of time, relation to politics and influence on social change. Examples include Christian and non-Christian movements.

ANTHROPOLOGY: REGIONAL

ANRG 104. Traditional African Societies and Cultures (4) Attention to three main sociopolitical types of societies: egalitarian hunting and gathering groups, loosely organized agricultural and herding groups, and centrally organized kingdoms. Representatives are considered, and societies from all parts of sub-Saharan Africa studied intensively.

ANRG 108. Hinduism (4)

An anthropological introduction to Hinduism, focusing on basic religious concepts and practices. Topics include myth, ritual, and symbolism; forms of worship; gods and goddesses; the roles of priest and renouncer; pilgramages and festivals; the life cycle; popular Hinduism, Tantrism.

ANRG 114.Urban Cultures in Latin America (4)

This course examines four interrelated and historically structured themes of urban culture in Latin America: the role of cities in organizing national space and soci-
ety; immigration and race; modernism; and popular culture as new religion, music, and film.

ANRG 114-XL. Foreign Language Discussion-Urban

 Cultures in Latin America (1)Students will exercise advanced foreign language skills to discuss materials and the correspondingly numbered anthropology language foreign area course. This section is taught by the course instructor, has no final exam, and does not affect the grade in the course, ANRG 114. Urban Cultures in Latin America. Prerequisite: Concurrent enrollment in ANRG 114.

ANRG 115. The Foundations for Social Complexity in the Near East (4)
This course critically examines the theoretical models and archaeological evidence for nascent social complexity and inequality in the Near East. The time period under consideration encompasses the shift from generalized hunting and gathering through complex hunter-gatherers to large scale agricultural comm unities.

ANRG 116. The Archaeology of Society in

Syro-Palestine (4)
Syro-Palestine, the area which includes Israel and adjacent regions, provides a microcosm of social evolution in the eastern Mediterranean. Course examines the archaeological evidence for social change from the emergence of complex societies (ca. 10,000 B.C.E.) to the Israelite kingdoms (ca. 586 B.C.E.).

ANRG 121. The Archaeology of South America (4)
This course will examine archaeological evidence for the development of societies in the South American continent. From the initial arrival of populations through to the Inca period and the arrival of the Spaniards.

ANRG 124. Paths to European Hegemony (4)

Diverse, mostly traumatic cultural encounters accompanied European expansion across most of the world from the later Middle Ages onward. Historically and geographically wide-ranging, this course examines how the asymmetric patterns of interaction then imposed are only slowly being replaced.

ANRG 126. The Rise of New World Civilizations:

 Mesoamerica and the Andes (4)This course is a comparative introduction to the prehistory of the great ancient civilizations of Central and South America. It will focus on the development of complex societies in Central Mexico, the Mayan areas, and the Andes. Prerequisite: ANLD 3 is recommended.

ANRG 137. Societies and Cultures of Melanesia (4)
Consideration of the history and development of Melanesia and of selected societies within that area of the Pacific, with particular reference to the cultures and social structures which have developed there.
ANRG 150. The Rise and Fall of Ancient Israel (4)
(Previously titled: The Archaeology of Israel in the Iron Age.) The emergence and consolidation of the state in ancient Israel is explored by using archaeological data, Biblical texts, and anthropological theories. The social and economic processes responsible for the rise and collapse of ancient Israel are investigated. Prerequisite: ANLD 3 is recommended.

ANRG 162. Peoples of the Middle East (4)

An introduction to the social and political traditions of the tribal and peasant peoples of the Middle East. Some attention will be devoted to an interpretation of the
oral literature of these peoples as a means for understanding these traditions.

ANRG 170. Traditional Chinese Society (4)
Course examines major institutions and culture patterns of traditional China, especially as studied through ethnographic sources. Topics include familism, religion, agriculture, social mobility, and personality. (This introductory course is a prerequisite to other upper-division anthropology courses on China.) Prerequisite: consent of instructor.

ANRG 173. Chinese Popular Religion (4)

The religious world of ordinary Chinese of precommunist times, with some reference to major Chinese religious traditions. Particular emphasis on the relation between popular religion and other aspects of Chinese personality or culture. Prerequisite: ANRG 170 or consent of instructor.

ANRG 182. Ethnography of Island Southeast Asia (4)

This is an introduction to the diverse cultures of island and peninsular Southeast Asia, including those of Indonesia, the Philippines, and Malaysia. We look at ritual, politics, gender, popular culture, and social change in agrarian and urban societies. Prerequisite: lower-division anthropology or consent of instructor.

ANTHROPOLOGY: GRADUATE

ANGR 207. Taiwan (4)

History and ethnography of Chinese society in Taiwan. This seminar includes discussions of a shared reading list and papers by seminar participants on specialized topics relating to Taiwan. Prerequisite: graduate standing or consent of instructor.

ANGR 212. Character and Institutions (4)
This seminar will examine the literature concerning the effects of sociocultural institutions on the formation of character. The emphasis will be on data from complex societies. Problems concerning character assessment under field conditions will be considered. Prerequisite: graduate standing.

ANGR 216. Law and Society (4)
This course emphasizes the importance of social conflict and cultural values in constituting legal systems. It also examines the role of law in defining forms of rule and processes of change, especially in the context of democratization. Prerequisites: graduate standing. Undergraduates with permission of instructor.

ANGR 218. Cognitive Anthropology (4)
This seminar will consider the relation between cognition and culture. Topics will include cultural influences on categorization, reasoning, and motivation. Prerequisite: graduate standing.

ANGR 219: Seminar in Political Anthropology (4)

The focus here is "politics," broadly constructed, in various societies. Analysis is from the perspective of the resourses deployed by all involved, including but not limited to power, with emphasis on the role of culture and social structure. Prerequisites: Graduate Standing

ANGR 224. Advanced Topics in the Anthropology of

 Gender (4)A critical analysis of ethnographic and theoretical texts focusing on the sociocultural study of gender. We will also draw on studies of gender and feminist theory from other disciplines (e.g., history, philosophy) to illuminate issues relevant to anthropology. Prerequisite:
graduate standing in anthropology or permission of instructor.

ANGR 226. Ethnography of Christianity (4)

Directed to graduate students planning ethnographic work in Christian societies, this course explores variations in the interpretation and expression of Christianity using historical and ethnographic sources. Prerequisite: graduate standing or consent of instructor.

ANGR 230A. Department Colloquium (1)

A forum to present work by faculty, students, and guests. Course will be offered quarterly. Prerequisite: anthropology graduate student at pre-candidacy level. (S/U grades only.)

ANGR 230B. Department Colloquium (1)
A forum to present work by faculty, students, and guests. Course will be offered quarterly. Prerequisite: anthropology graduate student at candidacy level. (S/U grades only.)

ANGR 231. The Social and Cultural Works of Sigmund

 Freud (4)In this seminar we shall examine Freud's works on culture, gender, morality, religion, sex, society, and the arts, and assess their contemporary anthropological relevance. Prerequisite: graduate standing.

ANGR 232. Current Research Topics in Psychological

 Anthropology (2)Discussion of current work in psychological anthropology. Topics will include research by faculty and students as well as work reported in conferences and recent publications. Prerequisite: graduate standing. (S / U grades only.)

ANGR 233. Research Seminar on Aspects of Ancient Complex Society (4)

This course will take an explicitly interdisciplinary and comparative approach to the analysis of early complex societies. Literacy, militarism, the organization of labor, and the state's role in subsistence management and resource procurement are examples of topics to be explored. Prerequisite: graduate standing.

ANGR 234: Dynamics of Culture (4)

Examination of the actual operation of culture with attention to the importance of cultural Products and social structures. Course goal is to develop skill in understanding the Influence, direct and indirect, of culture and behavior. Prerequisites: Graduate standing

ANGR 235. The Anthropology of Modernity (4)

The seminar considers the theorizing of modern society as an anthropological project. Topics include issues of modernity current theory and method, their place in the foundations of anthropology, and prospects for future work. Lectures and readings change yearly. Prerequisite: graduate standing.

ANGR 237: Enduring Issues in Anthropological Theory (4)
The seminar focuses on a number of fundamental issues that have long been at the core of inquiry and explanation in the discipline including the place of the individual in society, the role of values, the effects of group structure, and the ways in which cultures change. Prerequisite: none.

ANGR 238. Citizenship and the Nation State (4)
This course examines various conceptions of citizenship, nation, and state and considers their historical development as fundamental to the organization of
most contemporary societies. It covers a range of theoretical readings, recent debates, and case studies Prerequisite: graduate standing.

ANGR 239. Person-Centered Ethnography (4)
Person-centered ethnography takes the person as a unit of analysis and description, exploring personal experience in sociocultural context. This course examines selected works in this tradition and assesses the descriptive and theoretical contributions these studies make. Prerequisite: graduate standing.

ANGR 243. Voice and Text in the Practice of Authority (4) A claim to social or political legitimacy is founded on presuppositions about the relationship of voice and text. The seminar will explore this proposition by considering recent ethnographic and theoretical works on oral and written media in different societies. Prerequisite: graduate standing.

ANGR 248. Research Practicum in the Assessment of Personality in Cross-Cultural Context (4)
This practicum will be devoted to developing the techniques and skills needed for personality assessment in anthropological field work. A variety of assessment models will be used and problems of reliability and validity stressed. Prerequisites: graduate standing in anthropology. Completion of ANGR 280C.

ANGR 250. Anthropology and "The Web" (2)
Critically examines the resources for anthropology through the World Wide Web and other electronic databases. Course also includes an introduction to HTML. and each student will be guided in developing an individual web page including information about anthropological interests. Prerequisite: graduate standing in anthropology. (S/U grades only.)

ANGR 251. Ethnographies of Modern Society (4)
This seminar explores the experience and representation of modernity through ethnography. Readings will highlight such issues as: the social dynamics of the city; postcoloniality; globalization and transnationalism; the politics of culture; contemporary religious movements; and gender and modernity. Prerequisite: graduate standing or permission of the instructor.

ANGR 253. History of Anthropology (4)

A synoptic treatment of the intellectual currents affecting anthropology during its premodern period, between approximately 1880 and 1940. Coverage will include developments in American, British, and Continental traditions of the discipline. Prerequisite: graduate standing.

ANGR 259. Europeans and Others (4)

Interaction between peoples and powers of Europe and those of Asia, Africa, and the Americas until the end of the colonial epoch. Varying character of the encounter, modes of maintenance of European hegemony, and representations and rationalizations of the process.

ANGR 260. Psychodynamic Anthropology (1)
The focus of the seminar will be on the relation between psychodynamic models and culture and society. Readings and discussion. Prerequisite: graduate standing. ($5 / \cup$ grades only.)

ANGR 263. The Anthropology of Language and

Discourse (4)

This course emphasizes the importance of linguistic and discursive processes in constituting social relations and systems. We examine different approaches to ana-
lyzing this relationship of social and linguistic structures. Prerequisite: graduate standing.

ANGR 266: Classics in "Culture and Personality" (4) This seminar will examine the classic studies of "Culture and Personality," such as Cora DuBois' study of Alor and Gregory Bateson's and Margaret Mead's study of Bali, which laid the foundation for the psycho-dynamic approach to psychological anthropology. Prerequisite: graduate standing.

ANGR 268: Anthropology of Cities (4)

Although cities are fundamental sites of emergent social relations and cultural forms, the anthropological study of modern urban society remains problematic. This seminar aims to develop an anthropological understanding of cities, focusing on recent ethnographies, methodological problems, and theoretical debates. Prerequisite: graduate standing.

ANGR 270A-B-C. Psychiatry and Anthropology (0-4) Introduction to interviewing and diagnostic techniques in psychiatry and their application to anthropological research. Content will vary from quarter to quarter. Students must begin the program in the fall quarter. (Fall and winter, S/U grades only. Spring quarter S / U optional.) Prerequisites: graduate standing in anthropology and consent of instructor.

ANGR 271: Muslims and Modernity (4)
Have Muslim peoples responded in some special way to the global trends of the late twentieth century? Does an understanding of their responses lead to new definitions and evaluations of modernity? These questions are explored through recent ethnographies. Prerequisite: graduate standing.

ANGR 273: General Theory (4)

This seminar will be concerned with theories that attempt to construct an integrated account of personality, culture, and society, and how such general theories can be applied to the modern world. Classic and current theorists of modernization will be examined.

ANGR 274. Debates in Anthropology (4)
This seminar will review a series of current or recent significant debates in anthropology. The debates will be examined in the light of their substantive, theoretical, and epistemological implications, with some attention to the rhetorical elements of the arguments themselves. Prerequisite: graduate student in anthropology.

ANGR 280A: Core Seminar in Social Anthropology (4) First-year core seminar focuses on individual action and social institutions. Prerequisite: first-year graduate student in anthropology.

ANGR 280B: Core Seminar in Cultural Anthropology (4)
First-year core seminar focuses on personal consciousness and cultural experience. Prerequisite: first-year graduate student in anthropology.

ANGR 280C: Core Seminar in Psychological

Anthropology (4)
First-year core seminar focuses on motives, values, cognition, and qualities of personal experience. Prerequisite: first-year graduate student in anthropology.

ANGR 280D. Core Seminar in Anthropological

Archaeology (4)
(Formerly numbered ANGR 285.) Integral part of the training for graduate students focusing on Anthropological Archaeology. It is one of a set of core anthropology courses available to graduate students;
required of first-year anthropological archaeology students but open for students in other sub-fields. Prerequisite: anthropology graduate students.

ANGR 280E. Core Seminar in Biological Anthropology (4) (Formerly numbered ANGR 284.) This seminar will examine the central problems and concepts of biological anthropology, laying the foundation for first-year graduate students in Biological Anthropology as well as providing an overview of the field for graduate students in other areas of anthropology. Prerequisite: graduate standing in anthropology.

ANGR 280F. Integrated Core Seminar (4)
(Formerly numbered ANGR 282.) Two faculty members from different sub fields (sociocultural, anthropological archaeology, and biological anthropology) address issues of mutual interest, illustrating areas of overlap between the aspects of anthropology. Prerequisite: required core seminar for first year anthropology graduate students.

ANGR 281 A-B. introductory Seminar (1)
These seminars are held in the first two quarters of the first year of graduate study. Faculty members will present an account of their current research and interests. When appropriate a short preliminary reading list will be given for the particular lecture. Prerequisite:first-year graduate standing in anthropology.

ANGR 286. Topics in Anthropological Archaelogy (4)
Seminar examines the central problems and concepts of archaeological anthropology, laying the foundation for first-year graduate students. Also provides an overview of the field in other areas of archaeology. Entire anthropological archaeology faculty and graduate students participate. Prerequisite: graduate standing in anthropology.

ANGR 295. Master's Thesis Preparation (1-12)
The student will work on the master's thesis under the direction of the departmental committee chair. The course will be taken in the student's second year. Prerequisites: graduate student in anthropology and permission of master's thesis chair. (S/U grades only.)

ANGR 296A. Fieldwork Proposal Preparation (4)
The student will work in cooperation with his or her departmental committee to develop a research proposal for the doctoral research project. Prerequisites: graduate standing in anthropology and permission of departmental committee chair. (S/U grades only.)

ANGR 296B. Fieldwork Proposal Preparation (4)

The student will work in cooperation with his or her departmental committee to develop a research proposal for the doctoral research project. Prerequisites: advanced graduate standing in anthropology and permission of departmental committee chair. (S / U grades only.)

ANGR 297. Research Practicum (1-4)

Supervised advanced research studies with individual topics to be selected according to the student's special interests. Prerequisite: for anthropology graduate students who have returned from their field research. (S/U grades permitted.)

ANGR 298. Independent Study (1-4)
Supervised study of individually selected anthropological topics under the direction of a member of the fac ulty. Prerequisite: graduate standing. ($\$ / \mathrm{U}$ grades only.)

ANGR 299. Dissertation Research (1-12)
Prerequisite: Ph.D. candidacy in anthropology. (S/U grades only.)

ANGR 500. Apprentice Teaching (4)
Anthropology graduate students participate in the undergraduate teaching program during one quarter in the student's first two years of residence. Equivalent to duties expected of a 50 percent T.A. Enrollment in four units documents the Ph.D. requirement. Prerequisite: graduate standing in anthropology. (S/U grades only.)

See Engineering, School of. Program name changed to Mechanical and Aerospace Engineering (MAE).

Applied Ocean Science

OFFICE: 22 Old Scripps Bldg., Scripps Institution of Oceanography

ASSOCIATED FACULTY

Professors

Michael J. Buckingham, Ph.D., SIO; MPL
LeRoy M. Dorman, Ph.D., SIO; GRD
Carl H. Gibson, Ph.D., MAE; SIO
Robert T. Guza, Ph.D., SIO; CCS
John A. Hildebrand, Ph.D. SIO; GRD; MPL
William S. Hodgkiss, Ph.D., SIO; MPL
William A. Kuperman, Ph.D., SIO; MPL
W. Kendall Melville, Ph.D., SIO; MPL

Robert Pinkel, Ph.D., SIO; MPL
Richard C.J. Somerville, Ph.D., SIO; CRD
Clinton D. Winant, Ph.D., SIO; CCS

Professors Emeritus

Hugh Bradner, Ph.D., MAE; IGPP
Douglas L. Inman, Ph.D., SIO; CCS
George G. Shor, Jr., Ph.D., SIO; MPL
Fred N. Spiess, Ph.D., SIO; MPL
Kenneth M. Watson, Ph.D., SIO; MPL

Associate Professor

Dariusz Stramski, Ph.D., SIO;MPL
Bradley T.Werner, Ph.D., SIO; IGPP

Lecturers

Christian P. de Moustier, Ph.D., SIO;MPL

Jules S. Jaffe, Ph.D., SIO; MPL
John L. Largier, Ph.D., SIO; CCS

Associated Research Groups

Marine Physical Laboratory, MPL
Institute of Geophysics and Planetary Physics, IGPP
Marine Research Division, MRD
Geosciences Research Division, GRD
Center for Coastal Studies, CCS
Climate Research Division, CRD

The Graduate Program

Applied Ocean Science (AOS) is an interdepartmental Ph.D. program concerned with humans' purposeful and useful intervention in the sea. It is administered by an interdepartmental group composed of members of the faculties of cooperating departments: the Graduate Department of the Scripps Institution of Oceanography (SIO), the Department of Mechanical and Aerospace Engineering (MAE), the Department of Structural Engineering (SE), and the Department of Electrical and Computer Engineering (ECE).

This interdepartmental curriculum combines the resources of these departments to produce oceanographers who are knowledgeable about modern engineering and instrumentation, as well as marine oriented engineering scientists who are familiar with the oceans. Since physical, chemical, geological, and biological aspects of the oceans and all forms of engineering may be involved, the curriculum provides maximum flexibility in meeting the needs of each individual student.

Candidates for admission should apply directly to one of the departments participating in the Applied Ocean Science program, listing Applied Ocean Science as an area of specialization. The choice of department should be based on the individual student's planned area of major emphasis. Applicants will be expected to meet the admission requirements of the department to which they have applied.

The program is primarily directed toward the Ph.D. degree. However, both the candidate of philosophy and master of science degree (either Plan I, thesis, or Plan II, comprehensive examination) also will be offered under special circumstances. Students applying for a terminal master's program should be aware of any special requirements for the department to which they apply.

The degrees completed under this program in the Department of SIO will carry the title
"Oceanography."Those degrees completed in the
other cooperating departments will have the parenthetical title "(Applied Ocean Science)" appended to the appropriate authorized title.

COURSES

All students enrolled in the program are required to take or demonstrate proficiency in the following core courses or their equivalent:

SIO 210 (Physical Oceanography)

SIO 240 (Marine Geology)
SIO 260 (Marine Chemistry)
SIO 280 (Biological Oceanography)
MAE 294A-B-C (Methods in Applied Mechanics) or
Math. 210A-B-C (Mathematical Methods in Physics and Engineering) or

SIO 203A-B-C (Methods of Applied Analysis)

The students are expected to enroll in the Applied Ocean Science Seminar (SIO 208) throughout their period of residency. This seminar will make use of outside speakers, faculty members, and students in presenting various topics on applied ocean science and related fields. It provides a central forum in which all AOS students can participate. In addition to these basic requirements, the student will be subject to whatever additional requirements are prescribed by his or her department.

Course work occupies much of the first one and one-half to two years of graduate study. During this period there are numerous opportunities for students to investigate the research programs of the various research groups on the campus, and cultivate association with professors and research groups which can provide support and guidance for thesis research in their selected field of specialization. In consultation with an adviser, students will plan a curricular path of courses which will adequately prepare them in their field of specialization. The courses may be selected from the entire catalog of courses available on the UCSD campus or where appropriate from other UC campuses and other universities.

Biochemistry

Students wishing to major in biochemistry should refer to programs offered by the Department of Biology, which has an undergraduate
major in biochemistry and cell biology, or the Department of Chemistry and Biochemistry, which has an undergraduate major in biochemistry/chemistry.

Both the Department of Biology and the Department of Chemistry and Biochemistry offer graduate programs with specialization in biochemistry. Those programs are described in the biology and chemistry and biochemistry sections of this catalog.

Bioengineering

See Engineering, School of.

Biology, Division of

STUDENT AFFAIRS OFFICE
1128 Pacific Hall
(858) 534-0557 (undergraduate)
(858) 534-0557 (graduate)

FINANCIAL AND ADMINISTRATIVE OFFICES
1610 Urey Hall, Revelle College
http://www-biology.ucsd.edu/

Professors

Darwin K. Berg, Ph.D.
Ethan Bier, Ph.D.
Jack W. Bradbury, Ph.D., Emeritus
Stuart Brody, Ph.D.
Ted J. Case, Ph.D.
Lin Chao, Ph.D.
Maarten J. Chrispeels, Ph.D.
Nigel M. Crawford, Ph.D.
Russell F. Doolittle, Ph.D., Research Professor
Richard W. Dutton, Ph.D., Emeritus
Richard A. Firtel, Ph.D., Chair, Cell and
Developmental Biology Section
Douglass J. Forbes, Ph.D.
Morris E. Friedkin, Ph.D., Emeritus
E. Peter Geiduschek, Ph.D., Research Professor

Michael E. Gilpin, Ph.D.
Melvin H. Green, Ph.D.
Masaki Hayashi, Ph.D., Emeritus
Stephen M. Hedrick, Ph.D.
Donald R. Helinski, Ph.D., Research Professor John J. Holland, Ph.D., Emeritus

James T. Kadonaga, Ph.D.
William B. Kristan, Jr., Ph.D.
Russell S.Lande, Ph.D.
Dan L.Lindsley, Ph.D., Research Professor
William F. Loomis, Jr., Ph.D.
Eduardo R. Macagno, Ph.D., Dean
Vivek Malhotra, Ph.D.
William J.McGinnis, Ph.D.
Stanley E. Mills, Ph.D., Emeritus
S. Mauricio Montal, M.D., Ph.D.

Cornelis Murre, Ph.D.
John W. Newport, Ph.D.
Xuong Nguyen-Huu, Ph.D.
James W. Posakony, Ph.D.
Paul A. Price, Ph.D.
Trevor D. Price, Ph.D.
Milton H. Saier, Ph.D.
Immo E. Scheffler, Ph.D., Academic Senate Distinguished Teaching Award
Robert J. Schmidt, Ph.D.
Julian I. Schroeder, Ph.D.
Terrence J. Sejnowski, Ph.D.
Allen I. Selverston, Ph.D., Emeritus
S. Jonathan Singer, Ph.D., Research Professor/ University Professor Emeritus
Douglas W. Smith, Ph.D.
Deborah H. Spector, Ph.D., Chair, Molecular Biology Section
Nicholas C. Spitzer, Ph.D., Chair, Neurobiology Section
Suresh Subramani, Ph.D.
Kiyoteru Tokuyasu, Ph.D., Emeritus
Silvio S. Varon, M.D., Research Professor
Sandra L. Vehrencamp, Ph.D., Emeritus
Jean Y. J. Wang, Ph.D.
Steven A. Wasserman, Ph.D.
Christopher J.Wills, Ph.D.
Flossie Wong-Staal, Ph.D.
David S. Woodruff, Ph.D., Chair, Ecology, Behavior, and Evolutionary Biology Section
Michael P. Yaffe, Ph.D.
Martin F. Yanofsky, Ph.D.
Juan Yguerabide, Ph.D., Emeritus
Charles S. Zuker, Ph.D.

Senior Lecturer (LSOE)

Gabriele K. Wienhausen, Ph.D., Provost, Sixth College, Academic Senate Distinguished Teaching Award, Chancellor's Associates Faculty Excellence Award for Excellence in Teaching

Associate Professors

Willie C. Brown, Ph.D., Emeritus, Academic Senate Career Distinguished Teaching Award P.A.G. Fortes, M.D., Ph.D.

Randolph Y. Hampton, Ph.D.

Joshua R. Kohn, Ph.D.
Muriel N. Nesbitt, Ph.D.
Lorraine Pillus, Ph.D.
Ramón Piñón, Ph.D., Emeritus
Percy J. Russell, Ph.D., Emeritus

Assistant Professors

Raffi V. Aroian, Ph.D.
Michael David, Ph.D.
Robert N. Dutnall, Ph.D.
Marla B. Feller, Ph.D.
Daniel E. Feldman, Ph.D.
Yukiko Goda, Ph.D.
Tama Hasson, Ph.D.
Randall S. Johnson, Ph.D.
Karen E. Marchetti, Ph.D.
James C. Nieh, Ph.D.
Kit J. Pogliano. Ph.D.
Robert C. Rickert, Ph.D.
Kaustuv Roy, Ph.D.
William R. Schafer, Ph.D.
Laurie G. Smith, Ph.D.
Yang Xu, Ph.D.

Adjunct Faculty

Carrolee Barlow, Ph.D.
Suzanne H. Bourgeois, Ph.D.
Steven Briggs, Ph.D.
Frederic Bushman, Ph.D.
Edward M. Callaway, Ph.D.
Seunghyon Choe, Ph.D.
Joanne Chory, Ph.D.
Walter Eckhart, Ph.D.
Scott Emr, Ph.D.
Ronald M. Evans, Ph.D.
Susan Forsburg, Ph.D.
Fred Gage, Ph.D.
Meredith Gould, Ph.D.
Martyn D. Goulding, Ph.D.
Douglas R. Green, Ph.D.
Michael Gribskov, Ph.D.
Martin Haas, Ph.D.
Anthony R. Hunter, Ph.D.
Juan Carlos Izpisœa-Belmonte, Ph.D.
Gary Karpen, Ph.D.
Christopher Kintner, Ph.D.
Mitchell Kronenberg, Ph.D.
Nathaniel Landau, Ph.D.
Kuo-Fen Lee, Ph.D.
Marc R. Montminy, Ph.D.
Joseph Noel, Ph.D.
Dennis D.M. O'Leary, Ph.D.
Samuel Pfaff, Ph.D.
Thomas Pollard, Ph.D.
Michael Geoffrey Rosenfeld, M.D.

Oliver A. Ryder, Ph.D.
Bartholomew M. Sefton, Ph.D.
John B.Thomas, Ph.D.
Ian Trowbridge, Ph.D.
Wylie W. Vale, Ph.D.
Inder Verma, Ph.D.
Geoffrey M.Wahl, Ph.D.
Carl Ware, Ph.D.
Detlef Weigel, Ph.D.
Matthew Weitzman, Ph.D.
David J.Western, Ph.D.
Darcy B. Wilson, Ph.D.

Major Programs in Biology

For more information, please see biology's web page, http://www-biology.ucsd.edu/

The UCSD Division of Biology is structured around the different levels of biological organiza-tion-biochemical, cellular, physiological, and ecological. The research and teaching of the division emphasize the fundamentally important processes that occur at each of these levels. With a solid foundation in these processes future training and study in any area of biology is possible, from plant breeding to genetic counseling, from medical microbiology to ecological epidemiology, from veterinary science to cancer research. The UCSD campus is situated among some of the finest research institutions in the world. The Division of Biology is fortunate in having close ties with the Scripps Institution of Oceanography, the Salk Institute of Biological Studies, and the Scripps Clinic and Research Foundation, all of which open interesting avenues for motivated students.

The division offers six different major programs, each of which provides an excellent background for future graduate or professional study. They are (1) general biology, (2) animal physiology and neuroscience, (3) biochemistry and cell biology, (4) molecular biology, (5) microbiology, and (6) ecology, behavior, and evolution. The requirements of each of the majors are designed to meet the needs of a different group of students. These requirements are quite concordant, reflecting the division's philosophy that familiarity with certain basic aspects of the subject is fundamental to all specialized understanding. Bachelor of science degrees granted in each of these majors will be so designated.

The Student Affairs Office (1128 Pacific Hall) administers the undergraduate biology program
for all five colleges. For complete details regarding policies and procedures pertaining to the biology programs, please contact Biology Student Affairs.

Admission to the Division of Biology

Student demand exceeds program capacity in all biology majors. Therefore, admission to a biology major is based on academic excellence demonstrated either in high school and standardized testing or as a pre-major at UCSD.

Freshmen

Effective fall 1998, entering freshmen who have indicated the desire to major in biology will either be admitted directly to the biology major of their choice, or admitted to the biology pre-major, depending upon their UCSD admission credentials. Undeclared and other majors who wish to major in biology will be designated as pre-majors. Those designated as pre-majors must complete the following screening courses within six quarters (by the end of the sophomore year) and achieve a GPA of 2.75 or better in these courses in order to be formally admitted to a biology major:

Math 10A and 10B (or 20A and 20B)
Physics 1A and 1B (or 2A and 2B)
Chemistry $6 A$ and $6 B$
BILD 1 and 2 (or 1 and 3)
At the end of their sophomore year, those who desire to enter the biology major must formally apply at the Biology Student Affairs Office.
(NOTE:These are the minimal screening requirements, and do not satisfy all of the lower-division requirements of any biology major. Please consult the section regarding your particular major to ensure that you satisfy all lower-division and upper-division requirements.)

Continuing Students

Students admitted to UCSD prior to fall 1998 may continue to declare any of the six biology majors by submitting a completed Change of Major form at the Registrar's Office.

Transfer Students Entering Fall 2000

Effective fall 2000, applicants seeking admissions as transfer students to the Division of Biology at UCSD will be subject to the division's admission policies. In order to be admitted to a biology major at UCSD, students must have completed the following courses, or course equivalency, with an overall GPA of 2.75 .

- Math. 10A-B (or 20A-B)
- Physics 1A-B (or 2A-B)
- Chemistry 6A-B
- BILD 1 and 2 (or BILD 1 and 3)

Those who have not completed all of the above requirements will only be admitted as premajors, and will be allowed a maximum of three quarters to satisfy any unmet pre-major requirements. Transfer students are therefore strongly encouraged to complete these requirements at their community college.

Satisfactory Progress

All students admitted into a biology major must maintain satisfactory progress in order to remain in a biology program. If the GPA in biology courses for such a student falls below 2.0, he or she will be placed on probation during the quarter after the average fell below the line. If the GPA is not brought above the 2.0 level during the quarter on probation, the student will be dropped from the major.

Prerequisites

All students are expected to have completed all prerequisites prior to enrolling in any biology course. Please visit the student affairs office or consult our Web page for the most current information.

Exceptions

The division will accept petitions from premajors for admission to the major with less than the required GPA, and the success of such petitions will be evaluated based upon academic promise that is not reflected in the GPA. Exceptions might also be made to accommodate students who showed exceptional promise in laboratory experimentation, or students who had overcome extraordinary hardship while taking the lower-division courses.

Enrollment in Upper Division Biology Classes by Non-Biology Students

Because biology is an impacted major, enrollment in upper-division biology courses is limited to biology majors, and those majors for which upper-division biology courses are required for graduation. Every effort will be made, on a space available basis, to enroll students from other majors in those biology lecture and laboratory courses which may be required for postgraduate study.

Division of Biology Residency Requirement

To receive a bachelor of science degree in biology from UCSD, all students must complete at least nine upper-division biology courses (fourunits each) in the Division of Biology while officially enrolled at UCSD. (Students participating in the Education Abroad Program (EAP), and courses at other UC campuses, may petition up to three of these courses to count toward their residency minima.) Biology courses completed through the UC Extension program (concurrent enrollment) will not be counted toward this residency requirement.

Grade Requirements for the Majors

The minimum GPA requirement (for both the major and overall UC) for graduation is 2.0.D grades in courses required for the major are acceptable, providing that the student's major GPA and overall UC GPA is at least 2.0. Students who received D and/or F grades should contact one of the Division of Biology's undergraduate advisers to determine the effect of such grades on their GPAs. The biology major GPA calculation is based on upper-division courses required for the major. (Upper-division courses from other UCs, other UCSD departments, and EAP which have been approved via petition to count toward the major are counted into the major GPA. Other transfer courses do not count toward the UC or major GPA.) All courses, required for any of the six majors, must be taken for a letter grade with the exception of BISP 195, 196, or 199.

Students with Transfer Credit

All courses (including prerequisites) taken at other institutions must be reviewed by the Division of Biology before they can be applied toward any major requirement. Students must obtain approval from the Biology Student Affairs office prior to taking courses outside of UCSD (for example, students wishing to take a Chem.6BL equivalent at another institution must consult with Biology Student Affairs before enrolling in the substitute course). In addition, any student wishing to satisfy a major requirement with upper-division transfer work (with the exception of organic chemistry) must first submit a General Petition. Contact Biology Student Affairs (1128 Pacific Hall) for specific information regarding transfer documentation and petition procedures.

Programs Abroad

The Division of Biology strongly encourages students to participate in the Education Abroad Program (EAP) or the UCSD Opportunities Abroad Program (OAP). It is very important that students who plan to participate in the UC Education Abroad Program (including the Costa Rica Tropical Ecology program) or the UCSD Opportunities Abroad Program obtain the name of a faculty adviser from the Biology Student Affairs Office in order to discuss the proposed program of study. For most EAP programs, it is strongly recommended that biology majors complete biochemistry (BIBC 100 or 102) and genetics (BICD 100) and their prerequisites before going abroad.

Special Studies Courses

Only one quarter of BISP 195 and one quarter of BISP 196 or 199 may be counted toward any biology major. For information on requirements and application procedures for special studies courses students should go to the Biology Student Affairs Office (1128 Pacific Hall).

BISP 195

Being a teaching assistant is an important task and can provide students with experience and faculty contact which can be valuable when applying for graduate school. Students who are interested in being a T.A. should have received a strong grade in the course which they want to teach, have an overall GPA of at least 3.0, and have taken at least ninety total units. Students should apply very early in the quarter prior to the quarter they wish to teach. Applications are available at the Biology Student Affairs Office.

BISP 197

The Division of Biology, in collaboration with local biotech industries, created Biotechnology Internship Opportunities (BIO). The mission of BIO is to provide biology majors with an opportunity to participate in research in an industrial setting. We believe that working as an intern in the private sector will enrich a student's educational experience. Students will gain valuable insight into the relationship between theory and practice, and hence, a better understanding of the relevance of course work in their major. Most importantly, students will learn the importance of outstanding oral and wirtten communication skills.

BISP 199

Independent Study BISP 199 is intended to provide interested and qualified biology students with an opportunity to work closely with faculty and professionals in their chosen field and can be a valuable contribution to the student's preparation for graduate school or career goals. To enroll in BISP 199, students must have accrued at least ninety quarter-units with an overall UC GPA of at least 3.0. Students may select for their instructor any professor at UCSD, but the BISP 199 application must be submitted for approval to the Division of Biology. The deadline to apply for BISP 199 is the eighth week of the quarter prior to the quarter in which the research will begin.

AIP 197

Because the undergraduate research conducted through the Academic Internship Program is generally done at a site not affiliated with the UCSD Division of Biology, students who wish to request that an AIP 197 course be counted toward their major must submit a General Petition for their request before the end of the eighth week of the quarter prior to the quarter in which research will begin. This early deadline allows time for the biology faculty to review and contribute to the student's research proposal and ascertain the project's compatibility with the student's academic goals. If an AIP 197 course is approved for the student's major, no other special studies course (BISP 196 or 199) can be used toward the major.

General Biology Major

Please refer to the "Admission to the Majors" notice detailed earlier in the Division of Biology section of this catalog.

This program allows the most diversified exposure to biology of any of the majors offered by the Division of Biology. It is designed for students with broad interests who do not wish to be constrained by the specialized requirements of the other majors and who desire maximum freedom to pursue their particular educational goals.

Lower-Division Requirements

Lower-division requirements are designed to provide the foundations in mathematics, physics, and chemistry that are fundamental to the study of biology. In addition, an introduction to biology is required to provide the appropriate back-
ground for upper-division biology courses. The lower-division requirements are subsumed in large part under those of the various colleges.

Mathematics 10A-B-C or 20A-B, and 20 C or 21 C
Chemistry 6A-B-C, and one lab
Physics $1 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ or $2 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ and one lab
BILD 1 and 2 or BILD 1 and 3

Upper-Division Requirements

Listed below are the upper-division course requirements for the general biology major. Specific requirements have been held to a minimum for this major in order to allow students maximum freedom in fitting course schedules to their particular educational goals. Because of the central positions of biochemistry and genetics in all of modern biological thought, only Biochemistry (BIBC 100 or 102), its organic chemistry prerequisites (Chemistry 140A and B), and Genetics (BICD 100) are prescribed requirements for general biology majors.

1. Organic Chemistry (Chemistry 140A and 140B)
2. Effective fall 2000, entering freshmen are required to complete Metabolic Biochemistry (BIBC 102). Transfer students will be held to the new requirements beginning fall 2002. Students entering prior to fall 2000 may complete either Structural Biochemistry (BIBC 100) or Metabolic Biochemistry (BiBC 102). Both are recommended.
3. Genetics (BICD 100)
4. One upper-division biology lab to be chosen from the following: BIBC 103, 105, BICD 101, $111,123,131,133,145$, BIEB 121, 165, 167,179, BIMM 101, 103, 121, 127, BIPN 105, or 145. Independent Research (BISP 196,199) is encouraged, but may not replace one of the formal laboratory courses listed above.
5. Nine additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biology are required. Only one quarter of BISP 195 and one quarter of either BISP 196 or 199 may be applied toward this requirement. (Subsequent quarters of 195,196 , or 199 may be applied toward college and university requirements.) Although students are free to design upperdivision curricula which meet their individual educational goals, Molecular Biology (BIMM 100) and Cell Biology (BICD 110) are strongly recom-
mended for those contemplating applying to graduate or professional schools.

Animal Physiology and Neuroscience Major

Please refer to the "Admission to the Majors" notice detailed earlier in the Division of Biology section of this catalog.

The animal physiology and neuroscience major provides a program for studying the bodily and neural functions of complex organisms. Within this major, a student may concentrate upon more specialized areas of study, such as human biology, neurobiology, or endocrinology. This major is most directly applicable to health-related professions such as medicine, nursing, dentistry, veterinary medicine, pharmacy, physical therapy, and medical technology. Animal physiology and neuroscience majors are also well prepared to enter other professions such as physiological research, physical education, agriculture, and wildlife management.

Lower-Division Requirements

Mathematics $10 \mathrm{~A}-\mathrm{B}-\mathrm{C}$, or $20 \mathrm{~A}-\mathrm{B}$, and 20 C or 21 C

Chemistry 6A-B-C, and one lab
Physics 1A-B-C or 2A-B-C, and one lab
BILD 1 and 2 or BILD 1 and 3

Upper-Division Requirements

Listed below are the upper-division courses required for the animal physiology and neuroscience major. The first four requirements provide exposure to the current understanding of subcellular function that should be at the command of all modern biologists. Requirements 5 and 6 constitute the core of the animal physiology and neuroscience major. By choosing four optional fourunit upper-division biology courses (requirement 7), a program geared to the needs of the individual student can be formulated.

1. Organic Chemistry (Chemistry 140A, 140B, and 143A)
2. Effective fall 2000 , entering freshmen will be required to complete Metabolic Biochemistry (BIBC 102). Students entering prior to fall 2000 may complete either Structural Biochemistry (BIBC 100) or Metabolic Biochemistry (BIBC
102). Both are recommended. Transfer students will be held to the new requirements beginning fall 2002.
3. Molecular Biology (BIMM 100)
4. Genetics (BICD 100)
5. Four from the following seven courses:
a. Mammalian Physiology 1 (BIPN 100)
b. Mammalian Physiology II (BIPN 102)
c. Comparative Physiology (BIPN 106)
d. Cellular Neurobiology (BIPN 140)
e. Systems Neurobiology (BIPN 142)
f. Developmental Neurobiology (BIPN 144)
g. Computational Neurobiology (BIPN 146)
6. One of four Physiology Laboratories (BIPN 105, BICD 131, BICD 133, or BIPN 145). BISP 196 or 199 or an AIP 197 may substitute for a laboratory upon petition approval by the faculty adviser.
7. Four additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biology are required and may include the above (number 5-6). These may include no more than one quarter of BISP 195 and one quarter of either BISP 196 or 199 (AIP 197 may be used in place of BISP 196 or 199 upon approval by the faculty adviser). (Subsequent quarters of 195, 196, or 199 may be applied toward college and university requirements.)

Biochemistry and Cell Biology Major

Please refer to the "Admission to the Majors" notice detailed earlier in the Division of Biology section of this catalog.
This major is designed to provide students with the fundamental courses required for entry into a school of medicine or into postgraduate training in a wide variety of areas of biological and biomedical sciences: biochemistry, biophysics, genetics, molecular biology, cell biology, developmental biology, microbiology, virology, human biology (physiology, metabolism, genetic disorders), cancer biology, pharmacology, and others. The emphasis is on basic principles which help us understand those processes unique to living organisms at the molecular level.

The program includes two required upperdivision biology laboratory courses to provide practical experience with modern techniques and useful technology for those seeking positions as lab technicians in clinical and basic research laboratories. The opportunity to select five elective courses allows students either to seek a still broader background in a variety of biology courses or to begin specialization in a chosen field of study.

Lower-Division Requirements

Mathematics 10A-B-C, or 20A-B, and 20 C or 21 C
Chemistry 6A-B-C, and one lab
Physics 1A-B-C or 2A-B-C, and one lab
(Mathematics 20A-B-C, and Physics 2A-B-C are recommended)
BILD 1 and 2 or BILD 1 and 3

Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A and 140B)
2. One chemistry laboratory: Organic Chemistry (Chemistry 143A) or Physical Chemistry (Chemistry 105A)
3. Structural Biochemistry (BIBC 100) or Physical Biochemistry (BIBC 110) or
Physical Chemistry (Chemistry 126)
4. Metabolic Biochemistry (BIBC 102)
5. Biochemical Techniques (BIBC 103)
6. Molecular Biology (BIMM 100)
7. Cell Biology (BICD 110)
8. Genetics (BICD 100)
9. One upper-division biology lab to be chosen from the following: Signal Transduction (BIBC 105), Eukaryotic Genetics (BICD 101), Cell Biology (BICD 111), Plant Molecular Genetics and Biotechnology (BICD 123), Embryology (BICD 131), Developmental Biology Lab (BICD 133), Laboratory in Molecular Medicine (BICD 145), Recombinant DNA Techniques (BIMM 101), Advanced Techniques in Molecular Genetics (BIMM 103), Microbiology (BIMM 121), Environmental Microbiology (BIMM 127), Animal Physiology Lab (BIPN 105), Neurobiology Lab (BIPN 145), or Organic Chemistry (Chemistry 143C). Students completing a BISP 199 research project prior to fall 2000 may use this to satisfy the upper-division lab require-
ment. Students completing a BISP 199 fall 2000 or later may count the BISP 199 as an upperdivision elective only.
10. Five additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biology are required. Only one quarter of BISP 195 and one of BISP 196 or 199 may be applied toward the fulfillment of this requirement. Students may use only one BISP 199 for meeting major requirements. (Subsequent quarters of BISP 195, 196, or 199 may be applied toward college and university requirements.)
The following courses offered by the Department of Chemistry and Biochemistry are recommended as electives for the biochemistry and cell biology major: Chemistry 115, 116, 122, 124, 126,127 . Please note that these courses will not count towards the Division of Biology residency requirement.

Molecular Biology Major

Please refer to the "Admission to the Majors" notice detailed earlier in the Division of Biology section of this catalog.

The program for molecular biology is designed to provide an intensive exposure to the theoretical concepts and experimental techniques of molecular biology. The concepts and techniques of molecular biology are the foundation for the studies of all aspects of biology in modern time. A focus on molecular biology, therefore, provides an excellent preparation for a wide range of advanced studies including basic research, medicine, bioengineering, and biotechnology. Considerable emphasis is placed on chemistry, biochemistry, and genetics for students enrolled in the program. As such, it is recommended for those students who have a particularly strong interest in this field of study.

Lower-Division Requirements

Mathematics $20 A-B$, and $20 C$ or $21 C$
Chemistry $6 A-B-C$, and lab
Physics 1A-B-C or 2A-B-C, and one lab.
The 2 sequence is recommended.
BILD 1 and 2 or BILD 1 and 3

Upper-Division Requirements

2. Organic Chemistry Laboratory (Chemistry 143A) or Physical Chemistry Laboratory (Chemistry 105A)
3. Genetics (BICD 100)
4. Structural Biochemistry (BIBC 100)
5. Metabolic Biochemistry (BIBC 102)
6. Molecular Biology (BIMM 100)
7. Cell Biology (BICD 110)
8. Microbial Genetics (BIMM 122)
9. Regulation of Gene Activity in Eukaryotic Cells (BIMM 112)
10. Biochemical Techniques (BIBC 103)
11. Recombinant DNA Techniques (BIMM 101).
12. Four additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biology are required. Attention is drawn to BICD 120, BICD 122, BICD 140, BIMM 110, and BIMM 114. Only one quarter of BISP 199 or 196 and one of BISP 195 may be used to fulfill this requirement. (Subsequent quarters of BISP 195, 196, or 199 may be applied toward college and university requirements.)

Microbiology Major

Please refer to the "Admission to the Majors" notice detailed earlier in the Division of Biology section of this catalog.
The microbiology major is designed to prepare students for graduate studies and for professional careers in a variety of health-related programs. The specialization in microbiology can provide the basic background for work in medical technology, or for further training in public health or other health-related specialties. The program is also designed to provide a foundation for graduate studies in microbiology, virology, and a variety of allied fields as well as for medical and dental school.

Lower-Division Requirements

Mathematics 10A-B-C, or 20A-B,
and 20 C or 21 C
Chemistry $6 \mathrm{~A}-\mathrm{B}-\mathrm{C}$, and one lab
Physics $1 \mathrm{~A}-\mathrm{B}-\mathrm{C}$, or $2 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ and one lab BILD 1 and 2 or BILD 1 and 3

Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A-B)
2. Organic Chemistry Laboratory (Chemistry 143A)
3. Effective fall 2000 , entering freshmen are required to complete Metabolic Biochemistry (BIBC 102). Transfer students will be held to the new requirements beginning fall 2002. Students entering prior to fall 2000 may complete either Structural Biochemistry (BIBC 100) or Metabolic Biochemistry (BIBC 102). Both are recommended.
4. Biochemical Techniques (BIBC 103)
5. Molecular Biology (BIMM 100)
6. Immunology (BICD 140)
7. Genetics (BICD 100)
8. Bacteriology (BIMM 120)
9. Laboratory in Microbiology (BIMM 121)
10. Virology (BIMM 114)
11. Medical Microbiology (BIMM 124)
12. Three additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biology are required. These may include no more than one quarter of BISP 195 and one quarter of BISP 196 or 199. (Subsequent quarters of 195, 196 , or 199 may be applied toward college and university requirements.) Other courses of special interest to microbiology majors are listed below:

Cell Biology (BICD 110)
Regulation of Gene Activity in Eucaryotic Cells (BIMM 112)
Microbial Genetics (BIMM 122)
Recombinant DNA Techniques (BIMM 101)

Ecology, Behavior and Evolution Major

Please refer to the "Admission to the Majors" notice detailed earlier in the Division of Biology section of this catalog.

This major includes the fields of population biology, ecology, conservation biology, animal behavior, population genetics, biogeography, and evolution. These fields have in common a focus on evolutionary processes and whole organisms in relation to each other and to their environments. Research careers in ecology, behavior, and
evolution can be found in universities, government agencies, and the biotechnology industry. More applied careers for ecologists are equally varied: recent graduates now work in forestry and wildlife management, as ecological consultants for U.S. and foreign governments and private industry, as teachers, or in new fields such as ecological medicine and epidemiology, environmental design and planning, and conservation biology. Because organismal biology spans such a wide variety of topics, this major has been designed to provide the basic fundamentals while allowing maximum flexibility within the general topic areas.

Lower-Division Requirements

Mathematics: Three quarters of calculus are required. Mathematics $20 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ or 21 C are strongly recommended, but Mathematics 10A-B-C are acceptable.
Chemistry: Chemistry 6A-B-C. Laboratories in chemistry are not required.
Physics: Physics 1A-B-C or Physics 2A-B-C. Laboratories in physics are not required.
BILD 1 and 3

Upper-Division Requirements

1. Genetics (BICD 100). This course should be taken at the end of the second year.
2. Biometry (BIEB 100). This course is a prerequisite for several core courses in ecology, behavior, and conservation, and should be taken in the second year.
3. Effective fall 2000 , entering freshmen are required to complete Metabolic Biochemistry (BIBC 102). Transfer students will be held to the new requirements beginning fall 2002. Students entering prior to fall 2000 may complete either Structural Biochemistry (BIBC 100) or Metabolic Biochemistry (BIBC 102). Both are recommended. Please note that organic chemistry (Chemistry 140A-B) is a prerequisite for biochemistry. These prerequisite courses may be applied as elective courses under requirement number five listed below.
4. Ecology, Behavior, and Evolution. Seven courses to be chosen from BIEB 120-180 are required. At least two of these courses must be laboratory or field courses (BIEB 121, 165, 167, and/or 179). BIEB $120,126,130,140,150,164,166,178$, and 180 are designed to be taken by third-year
students; BIEB 121, 154, 156, 165, 167, 176, and 180 are designed to be taken by more advanced students. For students graduating on or before summer 2002, however, an EBE core lecture course may be substituted for one of the two laboratory courses. Although two laboratory or field courses are recommended, one such course and six EBE core lecture courses will satisfy the seven core course requirement. Laboratory courses may be taken either concurrently with the prerequisite lecture course if Biometry (BIEB 100) has been taken, or during the subsequent academic year. Note that some of the laboratory courses may not be offered every year. For that reason, it is recommended that students take as many required courses as possible when the courses are offered.
5. Four additional upper-division courses (each course must be at least four units) in biology, chemistry, mathematics, or related sciences are required. Students are requried to meet the Division of Biology residency requirement. Courses to be completed outside of the UCSD Division of Biology must be petitioned (prior to commencement of the course) to satisfy this requirement. Transfer courses are considered to be outside of the division. Students participating in the Education Abroad Program should refer to the biology section of that topic or contact the undergraduate adviser. Courses outside the Division of Biology that are particularly appropriate and that have been approved in the past include: Chemistry 122, 140A-B, and 149A, Mathematics 111A-B-C, 180A-B-C, and 181A-B-C; Biological Anthropology (most courses); and Earth Sciences (most courses); Economics 131; Scripps Institution of Oceanography (consent of instructor required). Only one quarter of BISP 196 or 199 and one quarter of BISP 195 may be used to fulfill this requirement. (Subsequent quarters of 195, 196, or 199 may be applied toward college and university requirements.) Certain intensive spring and summer session courses offered at various universities and field stations throughout the country may be used to help satisfy this requirement if prior approval is obtained from the faculty adviser of the major by petition. A good example is the field course in tropical biology offered in Costa Rica each spring and fall quarter. Prerequisites for the Costa Rica program are: BIEB 100, 120 and familiarity with Spanish; some type of field research experience, such as BIEB 121, 165 and/or 167, a field
oriented BISP 199, or participation in a field research project, is strongly recommended. Biology courses taken through the Costa Rica program will be counted toward the major as one core course, one laboratory/field course, and one elective. These courses must be petitioned upon completion. Consult the Education Abroad Program Office at the UCSD International Center for details.
A new systemwide supercourse in environment biology held at the White Mountain Research station provides another attractive alternative to gaining field experience. For more information, consult http://www.wmrs.edu/

Honors Thesis in Biology

Students in any one of the six biology major programs who have a 3.7 grade-point average or above in upper-division science courses, the biology major, and overall UC at the end of their junior year are eligible to undertake the honors thesis. This program covers the senior year of undergraduate study and involves a maximum of twelve units of senior thesis research (BISP 196) taken in addition to the major requirements for graduation. (Four units of senior thesis research BISP 196 are to be taken during three consecutive quarters.) Research is conducted under the supervision of a faculty member of the Division of Biology only and cannot be performed in the research labs of other departments such as the School of Medicine, SIO, etc. If there are any questions as to which faculty members are eligible, students should consult with Biology Student Affairs. The research will culminate in a senior thesis and an oral report (see below). Students who complete the program satisfactorily will have "Distinction in Biology" recorded on their transcript. Students who fail to make satisfactory progress will be advised to withdraw from the program and, if eligible, will receive four units per quarter of BISP 199. Students may also withdraw voluntarily from the program and, if eligible, receive appropriate credit for BISP 199. Grades for BISP 196 are P, NP, or I only.

APPLICATION TO THE HONORS THESIS PROGRAM

1. Students interested in the program who are eligible as of the end of the spring quarter of their junior year (the fourth quarter prior to graduation) need to find a Division of Biology faculty member willing to act in the capacity of
thesis adviser and inform the Biology Student Affairs Office of their intent.
2. After an adviser is selected, the student and the adviser should complete the Special Studies application form (available from the Biology Student Affairs Office, 1128 Pacific Hall). The form should contain the research proposal.
3. The application form should then be submitted to the Biology Student Affairs Office. The deadline for submitting this form is the end of the eighth week of the quarter prior to the quarter the research will begin.
4. The application will be submitted to the honors thesis coordinator after eligibility has been determined.
5. If the student is approved for admission to the program, he or she will then be authorized to register for BISP 196.

Entry into the second and third quarter of the program will require submission to the honors thesis adviser of a written report in which the student summarizes the data obtained in the first quarter. A brief oral interview with the student on this report can also be expected. If the progress made appears reasonable for an honors student, then the 196 petition will be signed. If not, conversion of the 196 credit to BISP 199 will be recommended. Completion of the program will require a final written report by the student at the end of the third quarter in addition to an oral presentation in the middle of the quarter to a suitable group of faculty and students, including the honors thesis adviser.

Minor in Biology

To receive a minor from the Division of Biology, a student must complete at least seven four-unit biology courses, including at least five four-unit upper-division biology courses (for a total of at least twenty-eight units of course work). Students may apply transferable biology courses from another institution toward the lower-division requirement, after obtaining approval from both the UCSD Division of Biology and the student's college. Upper-division courses must be taken for letter grade. No courses taken outside of the Division of Biology may be applied toward the biology minor (i.e., Chemistry 140A, Psychology 106 , etc.). Advanced placement biology scores of four or five may be counted in lieu of two lowerdivision biology courses for the division.

Secondary School Biology Teaching

UCSD's biology division is committed to the education of future biology teachers and offers an excellent preparation for teaching biology in secondary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program for information about the prerequisite and professional preparation requirements. It is recommended that you contact TEP and the Biology Student Affairs Office early in your academic career to help you plan a suitable biology curriculum. If you plan to get your credential at another institution, keep in mind that a broad education in biology is the best preparation to become a teacher.
We suggest that students take courses in plant and animal biology, microbiology, ecology, population biology, evolution, marine biology, genetics, and biochemistry. Courses in cellular and molecular biology are also advisable. After completion of BILD 1,2 , and 3 , a suggested program of upperdivision courses would be: BIBC 100 or 102, BICD $100,120,130$, BIEB 120,150 , BIPN 106 , SIO 275B (or BILD 82). This would give you as a prospective teacher the required breadth of education.

Integrated Bachelor's/ Master's Degree Program

An integrated program leading to a bachelor of science degree and a master of science degree in biology is offered to those undergraduate students who are enrolled in any of the major programs offered by the Division of Biology at UCSD. Qualified students are able to obtain the M.S. degree within one year following receipt of the B.S. degree. Students interested in applying to this program must meet with the $B S / M S$ adviser in the Biology Student Affairs Office BEFORE the end of their junior year.

The program is open only to UCSD undergraduates. The Division of Biology does not have financial aid available for students enrolled in this program.

Eligibility and Enrollment

To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and must have an overall UC GPA of at least 3.0. Students' major GPA should be at
least 3.3. Students must demonstrate excellent performance in upper-division biology core courses during their undergraduate program to be eligible to enroll in biology graduate core courses.

It is the responsibility of the prospective B.S./M.S. student to select a faculty member (from the Division of Biology) who would be willing to serve as the student's adviser and in whose laboratory the student would complete at least twenty-four units of research over a two-year period. The units of research which must be completed during the student's senior undergraduate year, must be taken IN ADDITION to the requirements for the bachelor's degree. These units will count toward the requirements for the master's degree only. Students must complete six consecutive quarters of research to fulfill the research component of the program. Any deviation from this plan, such as a break in enrollment for one or more quarters, will be cause for the student to be dropped from the program.

Students who have been approved (by both the Division of Biology and the UCSD Office of Graduate Admissions) for the program must enroll in a Special Studies Course, BGGN 271, for each, and every, quarter of participation in the B.S/M.S. program. Students can obtain the appropriate course code and division stamp at the Biology Student Affairs Office.

Research work (BGGN 271) will be credited toward the B.S./M.S. program requirements only if it is completed during the time a student is officially enrolled at UCSD and has paid tuition for that quarter.

Requirements for the Master of Science Degree

1. Completion of six consecutive quarters of research during the senior undergraduate year and the graduate year.
2. Completion of at least thirty-six units of graduate course work (BGGN 200-level or higher, or approved [via petition] graduate courses offered by related departments at a similar level) during the graduate year. The course of study must be approved by the faculty adviser.
3. Twelve of the thirty-six units must be in courses other than BGGN 271 (BGGN 297 and BGGN 299 may not be used to satisfy this requirement).
4. Serve as a graduate teaching assistant.
5. Maintenance of a grade-point average (both overall and in the major) of at least 3.0 for all course work, both cumulatively and for each quarter of enrollment in the B.S./M.S. program. If the student's GPA falls below 3.0 (for either overall or in the major), he or she will be automatically dropped from the program.
6. Completion of a thesis, with an oral presentation to, and approval of, a three-member Thesis Committee. A student may have any regular faculty at UCSD or any adjunct faculty as their adviser and chair of their Thesis Committee. The Thesis Committee must contain at least two regular faculty from the Division of Biology and no more than one adjunct faculty can serve on the committee. If an adjunct faculty serves as chair of the Thesis Committee, one of the biology members must serve as co-chair.
7. At least three complete, separate, and consecutive quarters of residency as a graduate student which will commence the quarter immediately following the quarter in which the B.S. degree is awarded. (Note:The summer session is not considered an official quarter during the graduate year.)
8. Students who have been approved for the B.S./M.S. program must provide the Office of Graduate Admissions with a copy of their official UCSD transcripts with the B.S. degree posted, PRIOR TO THE COMMENCEMENT OF THE GRADUATE YEAR IN THE PROGRAM.

Non-Degree Program

The Division of Biology will accept applicants into the non-degree program for a maximum of one year only. Qualified applicants must have at least a 3.0 GPA in their upper-division work to be accepted. Justification will not be made for those who fall below the GPA minimum.

Students who wish to apply to the UCSD biology Ph.D. program at a later date should not apply for this program. However, students who have applied to graduate or medical schools elsewhere, but have not yet been accepted, are welcome to apply.

Once accepted into this program, the student has graduate status for the academic year. Courses may be taken on the undergraduate or graduate level with consent of the instructor. Students will not be assigned faculty advisers and must make their own academic plans.

The Doctoral Program

Graduate studies for a Ph.D. degree in the Division of Biology in affiliation with the Salk Institute are oriented mainly toward the development of the capacity for independent research and for teaching in the biological sciences.

The requirements for entrance to graduate study in the Division of Biology are flexible, but a strong background in mathematics, chemistry, and physics is recommended.

Formal course work and opportunities for dissertation research include most basic areas of experimental biology, with emphasis in the general areas of biochemistry, biophysics, cell biology, developmental biology, genetics, immunology, molecular biology, neurobiology, plant molecular biology, ecology, behavior and evolution, virology, and cancer biology.

During the first year of graduate study, each student undertakes a research project in the laboratory of each of four to six different faculty members, and is expected to spend a major portion of his or her academic time on this project. The laboratories are selected by the student in consultation with the first year adviser to provide a broad view of the research interests of the division. The student is also expected to enroll in the first-year graduate biology sequence which includes advanced material in genetics, developmental biology, plant biology, neurobiology, molecular biology, cell biology, virology, and immunology. The only other general course requirement for the Ph.D. is a minimum of twelve units of $B G G N$ 500 (Apprentice Teaching in Biology). A program of further study, including seminars and courses appropriate to a student's background and interests, is arranged through consultation between the student and the faculty. Much reliance is placed on informal instruction through early and close association of the student with the faculty and research staff, and through regular seminars. After becoming familiar with the research activities of the faculty through the laboratory rotation program, the student begins work on a thesis research problem of his or her choice no later than the end of the first year. The student is free to choose for the thesis adviser a regular member of the UCSD faculty or an adjunct member of the Division of Biology faculty. The student is required to have completed a two-part examination in order to be admitted to candidacy for the Ph.D. degree. The purpose of the examinations is for the
student to demonstrate competence in the field of major interest and in related fields of biology. The major remaining requirement for the Ph.D. degree is the satisfactory completion of a dissertation consisting of original research carried out under the guidance of a faculty member.

Close collaboration with members of the Department of Chemistry and Biochemistry is a vital and stimulating aspect of the biology program. Additional strength and breadth in biology are gained by collaborating with the Department of Marine Biology of the Scripps Institution of Oceanography, with the Scripps Research Institute, and with the Salk Institute for Biological Studies.

Divisional Ph.D. Time

Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed seven years.

Joint Doctoral Program with San Diego State University

The Division of Biology at UCSD participates in a joint graduate program with the Department of Biology at SDSU, primarily in the areas of cell and molecular biology, and leading to the Ph.D. degree in biology. Graduate student participants in the joint doctoral program are required to spend one year enrolled at UCSD; thesis research is carried out under the supervision of the SDSU faculty.

Information regarding admission is found in the current edition of the San Diego State University Graduate Bulletin.

COURSES

NOTE: The division will endeavor to offer the courses as outlined below; however, unforeseen circumstances sometimes mandate a change of scheduled offerings, especially the quarter offered (F, W, S). Students are strongly advised to check the Schedule of Classes or with the division's Student Affairs Office (1128 Pacific Hall, (858) 534-0557) before relying on the following schedule. This is of particular importance in planning schedules for graduation requirements. It is the student's responsibility to contact the Student

Affairs Office to determine the specific quarter that certain courses will be offered. The following schedule is tentative for the academic year 2000-2001 only. It should not be assumed that the same schedule will continue after this academic year.

Students who have satisfied the prerequisites for courses at another college or by AP credit need to be pre-authorized to register for the course. Please come to the Biology Student Affairs Office before your registration time to be authorized. If the class is full please place your name on the waitlist and attend the first class meeting.

Students who do not attend the first thirty minutes of the first scheduled meeting (be it lab or lecture) will be considered not enrolled in the course. Prior written notification to the instructor regarding an anticipated absence will ensure a space. However, responsibility for officially dropping the lab from the registrar's records belongs to the student.

IF A STUDENT DROPS A LAB COURSE AFTER THE END OF THE SECOND SESSION, THE DEPARTMENT WILL REPORT A "W" FOR THE COURSE.

LOWER-DIVISION

BILD 1. The Cell (4)
An introduction to cellular structure and function, to biological molecules, bioenergetics, to the genetics of both procaryotic and eucaryotic organisms, and to the elements of molecular biology. Three hours of lecture and one hour of recitation. Prerequisites: two quarters of general chemistry (second quarter of chemistry may be taken concurrently). (F,W,S)

BILD 2. Multicellular Life (4)
An introduction to the development and the physiological processes of plants and animals. Included are treatments of reproduction, nutrition, respiration, transport systems, regulation of the internal environment, the nervous system, and behavior. Three hours of lecture and one hour of recitation. Prerequisites: two quarters of general chemistry (Chem. $6 A-B$, second quarter of chemistry [Chem. 6B] may be taken concurrently.) (F,W,S)

BILD 3. Organismic and Evolutionary Biology (4)
The first principles of evolutionary theory, classification, ecology, and behavior; a phylogenetic synopsis of the major groups of organisms from viruses to primates. Three hours of lecture and one hour of lab. Prerequisite: a full year of high school biology. Note: E.B.E. majors should complete this course during their first year at UCSD. (F, S)

BILD 7.The Beginning of Life (4)
An introduction to the basic principles of plant and animal development, emphasizing the similar strategies by which diverse organisms develop. Practical applications of developmental principles as well as ethical considerations arising from these technologies will be discussed. (S)

BILD 10. Fundamental Concepts of Modern Biology (4) An introduction to the biochemistry and genetics of cells and organisms; illustrations are drawn from microbiology and human biology. Three hours of lecture and one hour of discussion. This course is designed for nonbiology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 10 after receiving credit for BILD 1. (F,W)

BILD 12. Neurobiology and Behavior (4)
An introduction to the organization and functions of the nervous system; topics include molecular, cellular, developmental, systems, and behavioral neurobiology. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-divison requirement for any biology major.

BILD 14. Introduction to Plant Biology (4)
Plant biology for non-majors with emphasis on human concerns. Plants as food for a growing population; plant growth, development and reproduction; the soil ecosystem; genetically engineered plants; organic farming; environmental concerns of agriculture. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 14 after receiving credit for BICD 120.

BILD 16. History of Life (4)

Life has a very long history on earth and this course will chronicle patterns of biological diversity from its origin over 3 billion years ago to the present day. Topics covered witl include methods for reconstructing the history of life on this planet, the origin and evolution of major groups of plants and animals, dinosaur paleobiology, past environmental changes and their effects on species and communities, and extinctions. We will also explore how insights from the past can be used to understand how present and future environmental changes will impact biological diversity. This course is designed for non-biology majors. (W)

BILD 20. Human Genetics in Modern Society (4)
Fundamentals of human genetics and introduction to modern genetic technology such as gene cloning and DNA finger printing. Applications of these techniques, such as forensic genetics, genetic screening, and genetic engineering. Social impacts and ethical implications of these applications. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 20 after receiving credit for BICD 100.(S)

BILD 22. Human Nutrition (4)

A survey of our understanding of the basic chemistry and biology of human nutrition; discussions of all aspects of food: nutritional value, diet, nutritional diseases, public health, and public policy. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 22 after receiving credit for BIBC 120. (S)

BILD 24. Biology of Human Reproduction (4)
The topics covered are: sexual development in embryo and fetus, the nature and regulation of changes at puberty, the functioning of the mature sexual system. Three hours of lecture. This course is designed for nonbiology students and does not satisfy a lower-division
requirement for any biology major. Note: Students may not receive credit for BILD 24 after receiving credit for BICD 134. (W)

BILD 26. Human Physiology (4)
Introduction to the elements of human physiology and the functioning of the various organ systems. The course presents a broad, yet detailed, analysis of human physiology, with particular emphasis towards understanding disease processes. Three hours of lecture and one hour of discussion. This course is designed for nonbiology students and does not satisfy a lower-division requirement for any biology major. (F)

BILD 30. Biomedicine/Microbes (4)
General principles of microbiology with emphasis on the cell biology of microorganisms and of the cells with which they interact in causing diseases of man and animals. A discussion of infection by bacteria fungi and viruses, and host responses to infection. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 30 after receiving credit for BIMM 120. (W)

BILD 32. Biomedicine/Cancer (4)
An introduction to molecular, cellular, and immunological aspects of cancer and a consideration of the sociological and psychological impact of cancer on the individual and general society. Three hours of lecture This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 32 after receiving credit for BIMM 134. (S)

BILD 36. AIDS Science and Society (4)
An introduction to all aspects of the AIDS epidemic. Topics include the epidemiology, biology, and clinical aspects of HIV infection; HIV testing; education and approaches to therapy; and the social, political, and legal impacts of AIDS on the individual and society. In order to count for their major, biology majors must take the upper-division course, BICD 136. (F)

BILD 90. Undergraduate Seminar (1)
This seminar is restricted to lower-division undergraduate students (freshmen and sophomores). The course introduces current biological topics. The topics vary with instructors and for each quarter. Examples of topics which may be discussed are: wildlife conservation, signalling within and between cells, mapping the human genome, etc. This course does not satisfy any requirement for the biology major, biology minor, or college general/education. (F,W,S)

BILD 92. Professional Topics (1)
This seminar will introduce students to the various sub disciplines and their research methodology in the biological sciences. Emphasis will be on bioinformatics, neurophysiology, and biotechnology. Current research topics in the specialized areas in academe and industry will be discussed. The role and professional identity of biologists in research, consulting, government, management, and teaching will be reviewed. In addition issues surrounding professional ethics will be discussed.

BILD 95.Undergraduate Workshops (1)
The workshops will be restricted to lower-division undergraduates. The course will introduce students to the methods of scientific research and to a variety of research topics in the biological/biomedical sciences. Examples of topics are: Introduction to Scientific

Research, AIDS, Medical and Social Aspects, Is the Mind the Same as the Brain, Wildlife Conservation. (F,W,S)

BILD 99. Horticulture and Animal Husbandry (4)
The practical and theoretical aspects of plant and ani mal propagation, maintenance, and behavior in a typical Southern California farm community. Animals to be studied include bees, rabbits, sheep, goats, pigs, horses, chickens, ducks, geese, and turkeys. Behavioral and social aspects are emphasized. Plants to be studied include a variety of fruit trees, bushes, and vegetables. Emphasis is on propagation and culture conditions. Each student chooses a principal project and area of study. One hour of lecture and fourteen hours of farm work, research and/or study per week. Oral reports and final paper required

UPPER-DIVISION

Biochemistry

BIBC 100. Structural Biochemistry (4)
The structure and function of biomolecules. Includes protein conformation, dynamics, and function; enzymatic catalysis, enzyme kinetics, and allosteric regula tion; lipids and membranes; sugars and polysaccarides; and nucleic acids. Three hours of lecture and one hour of recitation. Prerequisites: two quarters of organic chemistry (second quarter may be taken concurrently). (Note: Students may not receive credit for both BIBC 100 and Chem. 114A.) (F,W.S)

BIBC 102. Metabolic Biochemistry (4)
Energy-producing pathways-glycolysis, the TCA cycle, oxidative phosphorylation, photosynthesis, and fatty acid oxidation; and biosynthetic pathways-gluconeogenesis, glycogen synthesis, and fatty acid biosynthesis. Nitrogen metabolism, urea cycle, amino acid metabolism, neucleotide metabolism, and metabolism of macromolecules. Three hours lecture and one hour recitation. Prerequisites: two quarters of organic chemistry (second quarter may be taken concurrently). Note: Students may not receive credit for both BIBC 102 and Chem. 114B.) (F,W,S)

BIBC 103. Biochemical Techniques (4)
Introductory laboratory course in current principles and techniques to biochemical/molecular biological research problems. Techniques include protein and nucleic acid purification and identification methods such as centrifugation, chromatography, and electrophoresis. Techniques covered also include immunological, spectrophotometric, enzyme, and radioisotopes techniques. Note: Students may not receive credit for both BIBC 103 and Chem. 112A. (F,W,S)

BIBC 105. Signal Transduction Laboratory (6)
A laboratory course involving the application of molec ular, cellular, and biochemical techniques to explore signal transduction mechanisms in mammalian cells. The events between ligand-biding to a cell surface receptor and activation of gene transcription in the nucleus will be studied. Prerequisites: $B I B C 100, B I B C 103$ and $B I M M$ 100. (S)

BIBC 110. Physical Biochemistry (4)
The theory and applications of physical chemistry to biological molecules, process and systems and techniques used in biochemistry and physiology. Topics include reversible and irreversible thermodynamics, bioenergetics, energy coupling and transduction, solutions of macromolecules, sedimention, chromatogra-
phy, electrophoresis, passive and active membrane transport, spectroscopy, and chemical kinetics. Three hours of lecture and one hour of recitation. Prerequisites: calculus and organic chemistry. (S)

BIBC 115. Computer Programming in Biology (4) Use of computer programming in the analysis and pres entation of biological data (computation of best value and standard deviation, histogram, least squares fitting procedure, simulation of genetic experiments, etc.) Students learn the C++ computer language and run their programs at the Computer Center. There are some visits to laboratories and hospitals to see applications of computers in biology and medicine. Three hours of lecture and about ten hours of homework per week limited enrollment. Prerequisite: upper-division standing or consent of instructor. (Note: Students may not receive credit for both BIBC 115 and Chem. 134.)

BIBC 116 Evolution of Genes and Proteins (4)
The history of an organism can be found in its genome Analyses of the primary sequences will be used to recognize families of genes that arose by duplication and divergence. Topics include comparisons of amino acid sequences and three dimensional structures and range from the oldest and most widely distributed proteins to modem mosaics. Where possible, specific motifs and folds will be traced to their ancestral beginnings Prerequisites: BIBC 100, BIMM 100.

BIBC 120. Nutrition (4)
Emphasis is on the biochemical aspects of nutrition. The known functions of vitamins, minerals, fats, carbohydrates, and protein are discussed in terms of experiments in nutrition and an evaluation of the relation of the knowledge to nutrition in man. Three hours of lecture. Prerequisite: BIBC 102 (may be taken concurrently). (F)

BIBC 130 Marine Biochemistry (4)

Biochemical mechanisms of adaptation in organisms to the marine environment. Special emphasis will be on the effects of pressure, temperature, salinity, oxygen and light on the physiology and biochemistry Prerequisites: BIBC 102 or consent of instructor.

BIBC 153. Topics in Biophysics/Photobiology (4)
(Same as Chemistry 153 and Physics 153.)
Basic principles of photobiology and photochemistry Photochemical mechanisms in photosynthesis. Photoreceptor pigment systems and photobiological contro mechanisms in living organisms. Prerequisite: upperdivision standing in biology, chemistry or physics, or consent of instructor. (S)

Genetics, Cellular and Developmental Biology of Plants and Animals

BICD 100.Genetics (4)
An introduction to the principles of heredity in diploid organisms, fungi, bacteria, and viruses. Mendelian inheritance; population genetics; quantitative genetics; linkage; sex determination; meiotic behavior of chromosome aberrations, gene structure, regulation, and replication; genetic code. Three hours of lecture and one hour of recitation. Prerequisite: BILD 1 or the equivalent. (F,W,S)

BICD 101. Eucaryotic Genetics Laboratory (4)
This course emphasizes the principles of Mendelian inheritance and requires the student to apply both cytological and genetic analysis to the solution of prob lems in transmission genetics. One hour of lecture and
seven hours of laboratory. Prerequisite: BICD 100. Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course. (S)

BICD 110. Cell Biology (4)

The structure and function of cells and cell organelles, cell growth and division, motility, cell differentiation and specialization. Three hours of lecture and one hour of recitation. Prerequisites: $B I B C 100$ or $B I B C 102$, and $B I C D$ 100. (F,W,S)

BICD 111. Cell Biology Laboratory (4)

A laboratory course in the application of cellular techniques to biological problems. The establishment, growth, transformation, immortalization, and senescence of mammalian cells will be studied at the molecular and the cellular level. Ten hours of laboratory. In addition to the formal lab hours listed above, there will be an average of two hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisite: $B I C D 110$ (may be taken concurrently); BIBC 103 is strongly recommended. (F) Attendance at the first lecture/lab is required. Non-attendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 120. Fundamentals of Plant Biology (4)
An introduction to the biology of plants. Basic principles of plant anatomy, physiology, development, and diversity are covered as well as specialized topics, including plant genetic engineering, plant disease and stress, medicinal plants, plants and the environment, and sustainable agriculture. Prerequisites: BILD 1 and 2. (F)

BICD 122. Plant Cellular and Molecular Biology (4)
The cellular and molecular basis of plant development, including plant hormones, signal transduction mechanisms, light and plant growth, plant microorganism interaction, plant transformation, genetic engineering of plants. Prerequisite: BIBC 102 required. (W)

BICD 123. Plant Molecular Genetics and Biotechnology

 Laboratory (6)Techniques in plant cell and tissue culture, plant transformation, genetic selection and screening of mutants, host pathogen interactions, gene regulation, organelle isolation, membrane transport. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab hours, there will be at least eight hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisites: upper-division standing; BICD 120 strongly recommended. (S) Attendance at the first lecture/lab is required. Non-attendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 130.Embryos, Genes, and Development (4)
Developmental biology of animals at the tissue, cellular, and molecular levels. Basic processes of embryogenesis in a variety of invertebrate and vertebrate organisms. Cellular and molecular mechanisms that underlie cell fate determination and cell differentiation. More advanced topics such as pattern formation and sex determination are discussed. Open to upper-division students only. Three hours of lecture and one hour of recitation. Prerequisites: BICD 100, upper-division standing, BIBC 100 or BIBC 102; BICD 110, BIMM 100 strongly recommended. (W)

BICD 131. Embryology Laboratory (6)
Descriptive and experimental embryology of marine invertebrates and of vertebrates. One and one-half hours of lecture and ten hours of laboratory each week. In addition to the formal lab hours, there will be at least six and a half hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisites: BILD 1 and 2 or BIPN 100 or the equivalent. (F) Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 132. Molecular Basis of Development (4)
Explores the molecular mechanisms that underlie cell fate determination and cell differentiation during animal development. Emphasizes the action of key regulatory networks in directing developmental events in a variety of vertebrate and invertebrate systems. This course is open to upper-division students only. Three hours of lecture and one hour of recitation. Prerequisites: BIMM 100, upper-division standing.

BICD 133. Developmental Biology Lab (6)

Explore fundamentals of embryonic development using advanced techniques in light and fluorescent microscopy and by analyzing developmental mutants. Course includes selecting and knocking out genes of interest followed by phenotypic analyses. Invertebrate and vertebrate organisms covered. Prerequisites: BILD 1 and BILD 2 or BIPN 100. BIMM 100 and BIMM 110 are rec ommended. (W) Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 134. Human Reproduction and Development (4)
This course is addressed to the development of the human sexual system, including gametogenesis, fertilization, and embryo implantation. Emphasis is placed on the physiology of reproductive functions. Three hours of lecture and one hour of discussion. Prerequisites: $B / B C 102$ and $B I C D$ 100. (F)

BICD 136. AIDS Science and Society (4)
An introduction to all aspects of the AIDS epidemic. Topics will include the epidemiology, biology, and clinical aspects of HIV infection, HIV testing, education and approaches to therapy, and the social, political, and legal impacts of AIDS on the individual and society. In order to count for their major, biology majors must take the upper-division course, BICD 136. Prerequisites: BILD 1,BILD 2 recommended. (F)

BICD 140. Immunology (4)

Formation and function of the mammalian immune system, molecular and cellular basis of the immune response, infectious diseases and autoimmunity. Prerequisites: BICD 100, BIMM 100. BIBC 100 recommended. (F,W)

BICD 142. Topics in Immunology (4)
This course covers selected topics in molecular and cellular immunology at a more advanced level, and is a sequel to Immunology (BICD 140). Prerequisites: BICD 140 and upper-division standing. (S)

BICD 145 Laboratory in Molecular Medicine (4)
This course focuses upon a molecular and immunological approach to study problems in modern medical research. The emphasis will be on novel approaches in medicine, including lymphocyte biology, cancer biology, and gene transfer. Prerequisites: BIBC 103, BIMM 100 (W) Attendance at the first lecture/lab is required.

Nonattendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 150. Endocrinology (4)
Topics are hormone biosynthesis, metabolism and mechanisms of action, neuroendocrinology, regulation of intermediary metabolism and body size, water and electrolyte, calcium and phosphate homeostasis. This course is restricted to upper-division students. Three hours of lecture and one hour of discussion. Prerequisite: BILD 1, BILD 2. BIBC 100, BIPN 100 recommended. (F)

BICD 162. Critical Reading and Writing in the Biological
Sciences (2)
Students will read primary literature in the field of cell transport and will be instructed how to approach a scientific paper, how to interpret results, and how to write a paper that summarizes scientific research. Prerequisites: Chem. 140A, 140B, 143A; either BIBC 100 or BIBC 102; BIMM 100; either BICD 100 or BICD 110; plus one laboratory course (BIBC 103 or BIMM 101 or BIPN 105 or BIMM 121) or other example of research experience (BISP 199 or research experience in industry). Upper-division standing is required. (F)

BICD 170. Topics in Human Genetics (4)
An advanced course covering aspects of human genetics in detail and using papers from the scientific literature as the major source of information. A review of basic genetics as applied to the human species is followed by the consideration of recent genetic insights into a number of human conditions which illustrate the principles covered in the first part of the course. Prerequisites: BICD 100 (may not be taken concurrently), BIMM 100 is strongly recommended. (F)

BICD 180. Genetics of Model Organisms (4)
Survey of various organisms used in current biological/biomedical research. Biology faculty experts discuss organisms used in their research, outline history as genetic models, tools used for laboratory study, and contributions to the wider understanding of biological systems. Prerequisite: BICD 100. (S)

Ecology, Behavior, and Evolution

BIEB 100. Biometry (4)
Application of statistics in biological problems. Topics: parametric statistics, (t-test, correlation, regression, ANOVA), non-parametric statistics resampling methods, experimental design. Mandatory homework to apply theory using statistical Macintosh-based programs. Instructor conducts mandatory two-hour discussion session in computer lab. Three hours of lecture and two hours of laboratory section. Prerequisite: BILD 3 recommended. (F,W)

BIEB 102. Introductory Ecology-Organisms and

Habitat (4)
This course emphasizes principles shaping organisms, habitats, and ecosystems. Topics covered include population regulation, physiological ecology, competition, predation, and human exploitation. This will be an empirical look at general principles in ecology and conservation with emphasis on the unique organisms and habitats of California. Prerequisite: BILD 3 or equivalent.

BIEB 120. General Ecology (4)
A study of the factors affecting species' distributions and abundances, with a special emphasis on population dynamics. Three hours of lecture and one hour of section. Prerequisite: BIEB 100 (may be taken concurrently). (W)

BIEB 121. Ecology Laboratory (6)
A laboratory course to familiarize students with ecological problem solving and methods. Sections will use the Macintosh computer and also perform outdoor field work. Two hours of lecture and eight hours of labora tory each week. In addition to the formal lab hours, there will be at least nine hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisites: BIEB 100 and 120. (BIEB 120 may be taken con currently). (W,S)

BIEB 126. Plant Ecology (4

This course begins with an introduction to plant population biology including whole-plant growth and physiology. We then focus on three classes of ecological interactions: plant-plant competition, plant-herbivore coevolution, and plant reproductive ecology including animal pollination and seed dispersal. Prerequisite: BILD 3. (W)

BIEB 130. Introductory Marine Ecology (4)
An introduction to the marine environment-its physics and chemistry, the organisms which live there, and the ecological processes affecting the distributions and abundances of these organisms. Prerequisites: BILD 3 high school physics, and chemistry. (F)

BIEB 140. Biodiversity (4)
An introduction to the patterns of geographic distribution and natural history of plants and animals living in terrestrial and marine ecosystems. We will explore: eco logical and evolutionary processes responsible for generating and maintaining biological diversity; and the nature of extinction both in past and present ecosys tem. Prerequisite: BILD 3. (S)

BIEB 150. Evolution (4)
Evolutionary processes are discussed in their genetic historical, and ecological contexts. Microevolution, spe ciation, macroevolution, and the evolution of adapta tions. Three hours of lecture and one hour of recitation Prerequisite: BILD 3 or equivalent. (F)

BIEB 154. Molecular Evolution (4)
This course deals with the evolution of genes and the molecules they encode. The role of mutation, selection and drift at the molecular level are discussed. Molecular phylogenies, jumping genes, viral evolution, and searches for molecular homologies are a few of the top ics covered. Three hours of lecture and one hour of discussion. Prerequisites: BIBC 102, BICD 100, and BIMM 100 recommended.

BIEB 156. Population Genetics (4)
The first two-thirds of the course will cover the basic theory of population genetics, including selection genetic drift, mutation, and migration. The last one third of the course provides an introduction to quantitative genetics, including measurements of heritability and selection. The theory is illustrated throughout with biological examples. Prerequisite: BICD 100. BIEB 100 is recommended. (F)

BIEB 164. Behavioral Ecology (4)
A survey of the patterns of social behavior in animals and a discussion of the ecological principles underlying the evolution of animal societies. Three hours of lecture and one hour of discussion. Prerequisite: BILD 3 recom mended. (W)

BIEB 165. Behavioral Ecology Laboratory (6)
This course will deal with quantitative methods for the study of animal social behaviors. Topics include spatial
patterns, mating systems, and cooperation. The course includes both lab exercises and field trips. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab hours, there will be at least nine hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisites: BIEB 100 and BIEB 164. (BIEB 164 may be taken concurrently.) (S)

BIEB 166. Animal Communication (4)

An integrated approach to animal communication, including the physics and physiology of signals, optimal strategies for signalling and receiving, and the ecological and social contexts of signal evolution. Three hours of lecture and one hour of section. Prerequisite: BILD 3 recommended.

BIEB 167. Animal Communication Laboratory (6)
Laboratory exercises will introduce students to quantitative methods of visual, auditory, and olfactory signal analysis and to lab and field studies of animal signalling. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab hours, there will be at least nine hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisites: BIEB 100 and BIEB 166. (BIEB 166 may be taken concurrently.)

BIEB 170. Field Ecology (4)

Designed to instruct and demonstrate to students the value and approaches of experimental field research using hypothetico-deductive experimental approach May be taken only as part of the White Mountain Research Supercourse. Prerequisite: consent of instructor. For more information, consult http://www.wmrs.edu

BIEB 171. Physiological Ecology (4)

An examination of the functional means by which animals and plants cope with their environments, the physiological limits that determine the boundary conditions of various ecological riches. Unifying principles that describe the regulatory features of all animals and plants are emphasized. May be taken only as part of the White Mountain Research Supercourse. Prerequisite: consent of instructor. For more information, consult http://www.wmrs.edu

BIEB 172. Applied Conservation Biology (4)
Designed to introduce students to the complexities, and realities, of natural resource exploitation and preservation, emphasizing the trade-offs between economic benefits and ecosystem stability and sustainability. May be taken only as part of the White Mountain Research Supercourse. Prerequisite: consent of instructor For more information, consult http://www.wmrs.edu

BIEB 176. Conservation and the Human

Predicament (4)

(Cross-listed with ANTH/BIO 132; however, biology majors must take the course as Biology 176.) An interdisciplinary discussion of the human predicament, the biodiversity crisis, and the importance of biological and environmental conservation in sustaining future societies. We explore the consequences of habitat destruction and species extinctions on the biosphere and human welfare. Three hours of lecture and one hour of discussion. Prerequisite: upper-division standing and BILD 3 or consent of instructor. (S)

BIEB 178. Principles of Conservation Ecology (4) Biodiversity will ultimately be preserved in "islands" of natural habitat. The principles of community ecology, island biogeography, and metropopulation dynamics
will underlay the management decisions regarding the number, size, and locations of such reserves. Case studies are emphasized. Prerequisite: BIEB 120. (S)

BIEB 179. Conservation Biology Laboratory (6)
Students will utilize, modify, and create computer software to solve conservation biology management problems. Topics included are pedigree analysis, stochastic population dynamics, community structure, and island biogeography. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab hours, there will be at least seven hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisite: BIEB 178 or BIEB 180 (may be taken concurrently).

BIEB 180. Principle of Conservation Genetics (4)

Species preservation depends on the maintenance of genetic diversity, which involves many aspects of population bahavior. Inbreeding, heterozygosity loss, genetic divergence, and pedigree analysis are emphasized. Case studies involve zoo and reserve managment. (S)

Molecular Biology, Microbiology

BIMM 100. Molecular Biology (4)
Molecular basis of biological processes, emphasizing gene action in context of entire genome. Chromosomes and DNA metabolism: chromatin, DNA replication, repair, mutation, recombination, transposition Transcription, protein synthesis, regulation of gene activity. Procaryotes and eucaryotes Prerequisites: $B I B C$ 100 or BIBC 102, BICD 100. (Note: Students may not receive credit for both BIMM 100 and Chem. 114C.)

BIMM 101. Recombinant DNA Techniques (4)
Theory and practice of DNA cloning. This course aims at providing practical knowledge in the field of genetic engineering. Techniques covered include construction of plasmid and phage DNA libraries, screening libraries for desired DNA clones by hybridization methods, plasmid and phage DNA preparation, and DNA sequencing Two hours of lecture, one hour of discussion, and eight hours of laboratory. Prerequisite: BIMM 100. Attendance at the first lecture/lab is required. Non-attendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course. Note: Students may not receive credit for both BIMM 101 and Chem. 112B. (F,W,S)

BIMM 103. Modern Techniques in Molecular Biology (4) This course focuses upon a combined biochemical and molecular genetic approach to study current biological problems. Techniques include amplification of rare nucleic acids with the polymerase chain reaction, purification and characterization of a eukaryotic protein expressed in bacteria, in vitro mutagenesis of DNA. One hour of lecture and eleven hours of laboratory Prerequisites: BIBC 103, BIMM 100. Attendance at the first lecture/lab is required. Non-attendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course. (VV)

BIMM 110. Molecular Basis of Disease (4)

An examination of the molecular basis of human diseases. Course emphasizes inherited human disorders, and some important diseases caused by viruses. Focus on the application of genetic, biochemical, and molecular biological principles to an understanding of the diseases. Three hours of lecture. Course restricted to upper-division biology majors. Prerequisites: BIMM 100 and BICD 100. (S)

BIMM 112. Regulation of Gene Activity in Eucaryotic Cells (4)
This course explores problems in the regulation of gene activity in eucaryotic cells approached at the molecular level. The course includes the organization, structure, transcription, and regulation of eucaryotic genes; mechanism of hormonal regulation in controlling gene activity; induction of gene expression in eucaryotic cells; role of signal transduction in controlling gene expression; and regulation of gene activity during differentiation in developing systems. Examples are taken from eucaryotic microorganisms, invertebrates, as well as mammalian and other vertebrate systems. Three hours of lecture and one hour of discussion. Prerequisite: BIMM 100. (S)

BIMM 114.Virology (4)

An introduction to eucaryotic virology, with emphasis on animal virus systems. Topics discussed include the molecular structure of viruses; the multiplication strategies of the major virus families; and viral latency, persistence, and oncology. Three hours of lecture and one hour of discussion. Prerequisite: BIMM 100. (S)

BIMM 120. Bacteriology (4)

A discussion of the structure, growth, molecular genetics, and physiology of procaryotic microorganisms, with emphasis on the diverse activities of bacteria and on the interaction of various bacterial species with their environment. Three hours of lecture and one hour recitation. Prerequisites: organic chemistry; BIBC 100 or BIBC 102 (may be taken concurrently). (F,W)

BIMM 121.Laboratory in Microbiology (4)

This course emphasizes fundamental principles of microbiology. Studies with bacteria include comparative morphology and physiology; pure culture techniques; bacterial growth; spore germination; and bacteriophage infection, replication, and release. Additional studies on antibiotics and the use of bioassays are included. One hour of demonstration and seven hours of laboratory. Prerequisites: BIMM 120, may be taken concurrently, and consent of instructor. Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course at the Registrar's Office. (F,W,S)

BIMM 122. Microbial Genetics (4)

Organization and function of procaryotic genetic systems including sex factors, transduction, transformation, phage genetics, transposons, genetic engineering. Three hours of lecture. Prerequisites: BIMM 100, BICD 100, or consent of instructor. (W)

BIMM 124. Medical Microbiology (4)

This course covers basic principles and detailed aspects of microbial infectious diseases. Biochemical properties underlying microbial spread, host antimicrobial and inflammatory response, immunity, and recovery are emphasized. Emphasis is placed upon viral and bacterial diseases, including molecular principles of pathogenesis, of host immune responses, of drug resistance, and of viral and plasmid replication. Three hours of lecture and one hour of discussion. Prerequisites: BIMM 100 and 120, BICD 140 is recommended. (S)

BIMM 126. Environmental Microbiology (4)
The role of microorganisms in environmental processes; fundamental aspects of Microbiology, interaction of microbes with plants, animals and other microbes, biogeochemica! cycles, pollution, water quality, mineral recovery, biomass energy production,
microbial control of pest and disease, genetic exchange. Prerequisites: BIBC 102 (may be taken concurrently), and BIMM 120 recommended or consent of instructor. (W)

BIMM 127. Environmental Microbiology Laboratory (4) This course emphasizes advanced techniques and theory in environmental microbiology. Students will perform experiments concerning: (a) enrichment of diverse microbes, (b) microbial enumeration and identification, (c) metabolic and physiochemical adaptations, and (d) biotechnology, along with an independent project. Prerequisites: consent of instructor. (S)

BIMM 130. Microbial Physiology (4)

Prokaryotic microbial physiology will be discussed primarily from a biochemical standpoint with emphasis on mechanism. Topics will vary from year to year but will include the following themes: Central metabolism, bioenergetics, biosynthesis, regulation, differentiation, prokaryotic structure-function relationships. Prerequisites: BIBC 100 or BIBC 102 or equivalent. (S)

BIMM 132. Molecular Biology of Human Retroviruses (3) Replication cycle and gene regulation of HIV. Molecular approaches to therapy and vaccines. Three hours of lecture. Prerequisite: BIMM 100. (S)

BIMM 134. Biology of Cancer (4)
This course covers basic processes of transformation and tumor formation in a two-part format. The first section is focused on molecular and cellular mechanisms of carcinogenesis. The second section discusses tumor pathology and metastasis. Open to upper-division students only. Prerequisites: BICD 110 and BIMM 100. (5)

BIMM 140. Introduction to Bioinformatics (4)
introduction to basic methods used in bioinformatics and computational biology. Survey of methods used in computational analysis of DNA such as sequence assembly, sequence comparison, gene modeling, and sequence databases. Survey methods used in the computational analysis of protein sequences such as alignments, motif and pattern recognition, family classification, and protein structure prediction. Survey of organismic database methods. Emphasis is on a broad survey of current approaches with an introduction to statistical and computational techniques for analyzing, comparing, and validating methods. Prerequisites: BIBC 100 or 102, BIMM 100, and BICD 100. (BIMM 100 may be taken concurrently.) (S)

BIMM 141. Bioinformatics Laboratory (4)
Laboratory course giving hands-on exposure to topics covered in BIMM 140. Survey of methods used in computational analysis of DNA such as sequence assembly, sequence comparison, gene modeling, and sequence databases. Survey of methods used in the computational analysis of protein sequences such as alignments, motif and pattern recognition, family classification, and protein structure prediction. Prerequisites: BIBC 100 or 102, BIMM 100, BICD 100, and BIMM 140. (S)

BIMM 142. Advanced Bioinformatics (4)
Continuation of BIMM 140 emphasizing advanced topics in bioinformatics and computational biology. Emphasis is on computational approaches at the level needed to design and implement new approaches. Topics: computational and statistical approaches to computational biology including probablistic models, machine learning approaches, and using federated resources to develop integrated approaches to bioinformatic problems. Prerequisites: BIBC 100 or 102, BIMM 100, BICD 100, and BIMM 140.

BIMM 150. Post-Genomics Biology (2)
This course will focus on large-scale analysis of postgenomics biological systems. Students will be introduced to methods for analyzing changes in gene expression, identifying protein-protein interactions, screening for pathway inhibitors, characterizing multiprotein complexes, and probing protein localization and function. Prerequisites: BIMM 100, BICD 100.

Animal Physiology and Neuroscience

BIPN 100. Mammalian Physiology I (4)
This course introduces the concepts of physiological regulation, controlled and integrated by the nervous and endocrine systems. It then examines the muscular, cardiovascular, and renal systems in detail and considers their control through the interaction of nervous activity and hormones. Three hours of lecture and one hour of discussion. Prerequisites: BILD 1,2, and BIBC 100 or 102. (F,W,S)

BIPN 102. Mammalian Physiology II (4)
This course completes a survey of organ systems begun in BIPN 100, by considering the respiratory and gastrointestinal systems. Consideration is then given to interactions of these systems in weight and temperature regulation, exercise physiology, stress, and pregnancy and reproduction. Three hours of lecture and one hour of section per week. Prerequisite: BILD 2. (F,W,S)

BIPN 105. Animal Physiology Lab (6)
Experiments are performed on membrane physiology; nerve muscle function; cardiovascular physiology; respiratory, gastrointestinal and renal physiology. Subjects include experimental animals and humans. Prerequisite: BIPN 100. (Students who have received credit for Biol. 152 or 154 may not receive credit for BIPN 105.) Three hours of lecture and ten hours of laboratory each week. In addition to the formal lab hours, there will be at least eight hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Attendance at the first lecture/lab is required. Non-attendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course. (F,W,S)

BIPN 106. Comparative Physiology (4)
This course examines the physiological adaptation of animals, invertebrates and vertebrates, to their particular environmental and behavioral niches. Structural, functional, and molecular adaptions of the basic organ systems are discussed. Prerequisites: BILD 2, Chem. 6A-BC or Chem. $7 A-B-C . B I L D 3$ is recommended.

BIPN 140. Cellular Neurobiology (4)
This course covers the biophysics of the resting and active membranes of nerve cells. It also covers the mechanisms of sensory transduction and neuromodulation, as well as the molecular basis of nerve cell function. Prerequisites: BILD 1, 2; BIBC 100 or 102 recommended. (F)

BIPN 142. Systems Neurobiology (4)
This course covers integrated networks of nerve cells, including simple circuits like those involved in spinal reflexes. We will study how information and motor output is integrated and processed in the brain. We will also discuss higher-level neural processing. Prerequisites: BILD 1,2, and BIBC 100 or 102. (W)

BIPN 144. Developmental Neurobiology (4)
Cellular and molecular basis of cell determination, neurite outgrowth, specificity, synaptogenesis, and cell
death in the brain. Prerequisites: BILD 1,2, and BIBC 100 or 102. BICD 100, BIPN 142 recommended. (S)

BIPN 145. Neurobiology Laboratory (4)
Basic principles of nerve and muscle physiology will be taught through weekly exercises and individual projects. One hour of lecture and nine hours of laboratory each week. Prerequisite: BIPN 140 or BIPN 142 or BIPN 146 (may be taken concurrently). (F)

BIPN 146. Computational Neurobiology (4)
An exploration of computational brain models, including biophysical models of single neurons, small neural circuits, and larger scale network models. Prerequisite: BILD 12 or BIPN 140 or Psych. 106 or Cog. Sci. 107 recommended. (S)

Special Courses

BISP 190. Advanced Biology Seminars for Seniors (2) Experts in diverse areas of biology from major universities in the U.S. and abroad will describe current research activities being conducted in their laboratories. Relevant readings will be assigned. P/NP grades only. Prerequisites: seniors only; concurrent enrollment in BISP 199 or consent of instructor. (F,W,S)

BISP 195. Introduction to Teaching in Biology (4)
Introduction to the teaching of the basic course in biology. A student under the direction of the instructor of the course is assigned one class section and will meet one time per week with the section. A student is required to attend the course lecture and meet with the instructor of the course at least one time per week. Limited to upper-division students who have a B aver age or higher. Three hours' lecture. (P/NP grades only.) Prerequisites: consent of instructor and approval of department chair. (Note: Applications for a BISP 195 are to be submitted to the Division of Biology by the end of the sixth week of the quarter preceding the quarter in which the BISP 195 will be completed.) (F,W,S) This course may be counted as one of the upper-division electives for a biology major.

BISP 196. Honors Thesis in Biology (4)
Senior thesis research program. Research is conducted under the supervision of a biology faculty member. This one-year program is taken in addition to the major requirements for graduation. Upon satisfactory completion of the program, students will receive "Distinction in Biology" on their transcripts. Prerequisites: senior standing, 3.7 GPA or above; prior selection for the program by a faculty member and approval by program coordinator. A department stamp will be used to monitor during registration. (F,W,S)

BISP 197. Biology Internship Program (4)
Under the joint supervision of a biology faculty adviser and a selected industry mentor, the student will conduct independent research on a problem in an industrial biotech laboratory. The student will gain insight into industry research and practical biotech experience. Prerequisites: $B I B C 103$ or $B I M M$ 101, $B I B C 102, B I C D 100$, BIMM 100, overall GPA 3.0, and consent of the biology faculty coordinator.

BISP 199. Independent Study for Undergraduates (4) Independent reading or research on a problem by special arrangement with a faculty member. (P/NP grades only.) Prerequisites: overall UCSD GPA of at least 3.0, minimum of ninety units, consent of instructor, and approval by division chair. (Note:Applications for a BISP 199 must be submitted to, and approved by, the Division of Biology prior to the eighth week of the quarter preced-
ing the quarter in which the BISP 199 will be completed.) (F,W,S) This course may be counted as one of the upper-division electives for a biology major, providing that no other special studies courses have already been counted toward the major.

GRADUATE

BGGN 204. Topics in Community and Population

 Ecology (3)This course teaches a different topic each quarter on the theoretical or conceptual side of community and population ecology. Students will read materials in depth, attend weekly discussions, and explore theories and models with statistical, analytical, and algorithmic tools of the trade. Prerequisite: graduate standing or consent of instructor. (S/U grades only) (Quarter offered varies and course is not offered every year.)

BGGN 206. Topics in Biophysics and Physical

Biochemistry (4)
Selection of topics of current interest. Examples: primary processes of photosynthesis; membrane biophysics; applications of physical methods to problems in biology and chemistry, e.g., magnetic resonance, X ray diffraction, fluctuation spectroscopy, optical techniques (fluorescence, optical rotary dispersion, circular dichroism). Topics may vary from year to year. Prerequisite: consent of instructor. (S/U grades permitted.) This course is cross-listed with Physics 206 and Chemistry 206. (W)

BGGN 212. Special Topics in Microbiology (3)
Recent developments in prokaryotic and eukaryotic microbial research. Topics vary from year to year but may include the following subjects: the molecular basis of (a) sex determination, expression, and interconversion; (b) differentiation, morphogenesis, and programmed death; (c) transcriptional and metabolic regulation; and (d) chemical macromolecular and energy-mediated reception, transmission, and response processes. The main thesis of the course is that examples of complex regulatory phenomena in higher organisms can be found in single celled organisms. This course is open to enrollment by undergraduates. Prerequisites: BIBC 102 and BICD 100. (S/U grades permitted.)

BGGN 213. Topics in Conservation Biology (3)
Provides in depth coverage of topics in population genetics and ecology, community ecology, biogeography, human ecology, and ecosystem management relevant to conservation biology. Topics vary from year to year and have included pedigree analysis, inbreeding depression, minimum viable population size, problems of overabundance, fragmented populations, key-stone species, in-situ and ex-situ conservation techniques. One two-hour meeting weekly. Prerequisite: graduate standing or consent of instructor. (S/U/ grades only.) (S)

BGGN 214. Workshop in Behavioral Ecology (3)
Hands-on experience in the analysis, modeling, and testing of hypothesis in behavioral ecology. Weekly group discussions and out-of-class projects will focus on a different theme (e.g., sexual selection, quantitative genetics, game theory, etc.) each year. Prerequisite: open to qualified undergraduates and graduate students with consent of instructor. (S / \cup grades only.) (Quarter offered varies and course is not offered every year.)

BGGN 218. Post-Genomics Biology (2)
This course will focus on large-scale analysis of postgenomics biological systems. Students will be introduced to methods for analyzing changes in gene
expression, identifying protein-protein interactions, screening for pathway inhibitors, characterizing multiprotein complexes, and probing protein localization and function.

BGGN 219. Classic Papers in Genetics (3)
The course explores, through classic papers, how genetic approaches in the distant and near past have opened up novel areas of biology. The goal of the course is to teach students the type of approach that allowed these researchers to break out of old paradigms and form new ones of their own based on genetic pathfinding. (W)

BGGN 220. Advanced Molecular Biology (6)
Provides a broad, advanced-level coverage of modern molecular biology for first-year graduate students Topics include prokaryotic and eukaryotic gene structure and regulation, chromatin structure, DNA replication, translation, mechanisms of transcription, and an introduction to viruses. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (F)

BGGN 221. Advanced Protein Biochemistry (3)
Topics include general aspects of protein structure and biochemical approaches to the isolation and study of proteins. This course also covers the relationship between the structure and function of selected proteins. Detailed discussion of modern biophysical methods to study protein-protein interactions will be included. BGGN 220 is a co-requisite. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) Corequisite: BGGN 220. (F)

BGGN 222. Advanced Cell Biology (6)

A coverage of modern cell biology for first year graduate students. There is an up-to-date discussion of topics such as: structure and function of membranes; ion pumps, ion channels, transmembrane signalling; receptor mediated endocytosis; protein targeting; the role of RER and Golgi apparatus; the biosynthesis of intracellular organelles in animal and plant cells; the cytoskeleton, motility, molecular motors, cell-cell interactions mitosis; and the control of cell division. Also included are extensive coverage of cell signalling mechanisms and discussions on molecular approaches to cell biology. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (W)

BGGN 223. Advanced Genetics (6)

Provides a broad and extensive advanced-level coverage of molecular and formal aspects of genetics for first-year graduate students. Topics covered include bacterial genetics, recombination in prokaryotes and eukaryotes, mammalian somatic-cell genetics, developmental genetics, sex determination, dosage compensation, and immunogenetics. Extensive coverage of the use of model systems like Drosophila and C. elegans is included. General and specific aspects of cellular sig nalling mechanisms will be covered. Prerequisites:BGGN 220, 221 and 222. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter giades only.) (S)

BGGN 224. Advanced Neurobiology (3)
Course covers modern molecular, cellular, developmental, and physiological aspects of neurobiology. Extensive discussion of original research articles will be included. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (F)

BGGN 225. Advanced Immunology (3)
The course is devoted to immunology and is organized as a combined lecture-tutorial course stressing classical as well as current literature. Each week will compose an independent section. Topics will include cellular interactions involved in the immune response and the molecular biology unique to lymphoid factor and receptors. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (S)

BGGN 226. Advanced Animal Virology (3)
This course consists of a review of fundamental concepts together with an in-depth analysis of the structure, genetics, multiplication and oncogenicity of animal viruses. Particular emphasis will be given to the DNA and RNA tumor viruses. The format of this section includes lectures and discussion of selected papers. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (W)

BGGN 227. Advanced Topics in Plant Biology (3)
This course covers advanced topics in plant biology in the areas of molecular genetic developmental, and physiological biology. We will discuss plant-microbe interactions, transposable elements, protein trafficking, ion transport, and organ development. The format of this section includes lectures and discussion of selected papers. Prerequisites: BGGN 220, 221, and 222. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (W)

BGGN 228. Advanced Developmental Biology (3)
This course covers graduate level lectures on developmental biology, emphasizing the use of genetically tractable model systems. Discussion of recent research articles is an integral aspect of this course. Students are introduced to classical experiments and given detailed coverage of recent fundamental findings in developmental biology. Prerequisites:BGGN 220 and 221. (Letter grades only.) (S)

BGGN 229. Advanced Oncogenes (3)
This course provides detailed coverage of the cellular and molecular basis of cellular transformation and oncogenesis. There will be extensive discussion on the role of oncogenes and their cellular counterparts. The course also provides in-depth analysis of intracellular signal transduction mechanisms. Prerequisites: $B G G N$ 220,221 , and 222. (Letter grades only.) (S)

BGGN 230. Signal Transduction (3)
The course will introduce students to a variety of signal transduction pathways and their function in the regulation of cellular processes. Special emphasis will be given to signaling cascades regulating immunological responses and alterations of signaling pathways during oncogenesis. (W)

BGGN 232. Human Retrovirology (3)
This course consists of both lectures and journal reviews on replication, genetic regulation and pathogenesis of HIV and TLV, and on recent developments of vaccine and therapy against AIDS. Open to upperdivision students with consent of instructor. Prerequisite: BIMM 100 or equivalent. (S / U grades only) (S)

BGGN 233. Cellular Immunology (3)
This course covers the molecular and cellular events in the humoral and cellular response to antigen, transplantation biology, the structure and function of the major histocompatibility gene complex, the T-cell receptor, lymphokines, and the induction of immunological tolerance. It serves as the second course in a
two-part sequence. May be taken by undergraduates who have taken Part 1 (BICD 140) and by graduate students (S/U grades only.) (Quarter offered varies and course is not offered every year.)

BGGN 235. Biology and Biochemistry of Cancer Cells (2) This course covers recent advances in cell biology, biochemistry, immunology, and virology as they relate to cancer cells and their interaction with the host. Cancer research specialists from outside will be brought in to discuss the most recent evidence and interpretations in key areas of cancer research. This course meets two hours per week for lecture and discussion. It will be at an advanced graduate level but open to a limited number of seniors (with permission of instructor) on a $P / N P$ basis. (S/U grades only) (Quarter offered varies, and course is not offered every year.)

BGGN 236. Essentials of Glycobiology (2)
Molecular glycobiology encompasses studies of the structure, biosynthesis, and biological roles of oligosaccharide units on glycoconjugates. This course provides an overview of this rapidly evolving field with an emphasis on the glycoconjugates of eukaryotic organisms in the animal kingdom. (S / U grades only.) (S) This course is cross-listed with Medicine 222.

BGGN 240. Cellular Neurobiology (2)

Students read classic and modern papers that form the basis of the undergraduate lectures (BIPN 240), which they are encouraged to attend. These papers are presented by the students at weekly discussion sessions. Prerequisite: consent of instructor. (S/U grades only.) (F)

BGGN 241. Neurobiology Seminar (3)
Presentation of current research by local and visiting neurobiologists. (S/U grades only.) (F,W,S)

BGGN 242. Systems Neurobiology (2)
Students read classic and modern papers that form the basis of the undergraduate lectures (BIPN 142), which they are encouraged to attend. These papers are presented by the students at weekly discussion sessions. Prerequisite: consent of instructor. (S/U grades only.) (W)

BGGN 244. Molecular/Developmental Neurobiology (2) Students read classic and modern papers that form the basis of the undergraduate lectures (BIPN 144), which they are encouraged to attend. These papers are presented by the students at weekly discussion sessions. Prerequisite: consent of instructor. (S/U grades only.) (S)

BGGN 246. Systems Neurophysiology (3)
Ways in which neurons are assembled into circuits to achieve perception and patterned movement. (S/U grades only.) (S)

BGGN 249A-B-C. Basic Neuroscience (4-4-4)
These courses are designed for graduate students in the neurosciences and other departments that are part of the interdisciplinary program (i.e., Biology, Cog. Sci.). These courses have been designed to cover as much basic neuroscience as possible in three quarters of study. They will combine two three-hour meetings each week with a 1.5 hour lecture and a 1.5 hour discussion of papers. These are required courses for all first-year neurosciences graduate students. Prerequisite: graduate student or consent of instructor. (F,W,S)

BGGN 251. Molecular Biology (3)
The first section of this course consists of a review of fundamental concepts in molecular biology together with an in-depth analysis of molecular biological topics of medical importance. The second section covers the structure, genetics, and multiplication of animal viruses,
with particular emphasis on the DNA and RNA tumor viruses. Other subjects discussed include viral persistence, latency, and approaches to viral chemotherapy. Three hours of lecture. Prerequisite: biochemistry. (Not open to undergraduates.) (S/U grades only) (F)

BGGN 252. Genetics (3)
Human genetics, with emphasis on basic principles. Topics covered include chromosome abnormalities, the mechanisms of dominant and recessive diseases, pedigree analysis, ascertainment of linkage, the interaction of genotype with diseases. Mechanisms of maintaining genetic diversity in human populations will be discussed along with recent approaches to genetic counseling and intervention. Prerequisite: consent of instructor. (Not open to undergraduates.) (S / U grades only) (F)

BGGN 253. Immunology (3)
Graduate students will explore topics in specialized areas of immunochemistry and cellular immunology, antigenic and molecular structure of immunoglobulin molecules; antigenantibody interactions; cellular events in the humoral and cellular immune responses; translation immunology. Prerequisite: consent of instructor. The course is similar in content to BICD 140 but is accelerated in pace. (S/U grades permitted.) This course is cross-listed with Chemistry 217.(F)

BGGN 254. Cell and Membrane Physiology (3)
This course is a survey covering current subjects in membrane biology relevant to medicine. Subjects are: 1) membrane isolation, composition, and structure; 2) consequences of membrane fluidity (mode of action of anesthetics, intercellular communication, eso- and endo-cytosis biogenesis); 3) sensory perception and response (chemo- and energy reception, cellular neurophysiology, muscle; physiology); 4) regulation of membrane function (hormone reception, intercellular adhesion, neoplastic transformation). Prerequisites: biochemistry and genetics. (S/U grades only)

BGGN 255. Clinical Correlates (2)
Clinical correlates stresss the close ties between clinical medicine and basic science and the two-way interactions among practicing doctors and research scientists. Most sessions start with the presentation of a clinical case by an attending practitioner and an analysis by the clinician of the basic principles demonstrated by each case. There will follow an extended period of open discussion between basic scientists, clinicians, and students. Prerequisites: graduate students only, BGGN 251, 252, 253, 254 to be taken simultaneously. (S/U grades only.) This course is cross-listed with Chemistry 277. (F)

BGGN 271. Advanced Experimental Methods in

Biology (4-12)
Advanced laboratory and/or field experience in contemporary biological methodology. Open only to students enrolled in the integrated Bachelor's/Master's Degree Program. Prerequisites: consent of instructor and approval of division chair. (F, W, S) (Undergraduate students:P/NP only. Graduate students: letter grades only.)

BGGN 297. Research Conference (1-3)
Group and individual discussion of research activities and of current literature. Prerequisite: graduate standing. (S/U grades only.) (F,W,S)

BGGN 298. Laboratory Projects in Biology (3-12) An introduction to contemporary laboratory techniques and research interests through independent, original projects under the direction of individual faculty members. Prerequisite: consent of instructor. (Letter grades only) (F,W,S)

BGGN 299. Thesis Research in Biology (1-12)

 (F,W,S)BGGN 500. Apprentice Teaching (4)
This course involves participation in upper-division undergraduate teaching at the level of assuming responsibility for recitation sections or laboratories under the supervision of the responsible faculty member. Some experience in lecturing to upper-division classes will occasionally be provided. (S/U grades only.) (F,W,S)

BGJC 201. Journal Club in Cell Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 202. Journal Club in Developmental Biology (1) Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (Quarter offered is varies, and course is not offered every year.)

BGJC 203. Journal Club in HIV Molecular Biology (1) Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 204. Journal Club in Molecular and Cellular

Immunology (1)

Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 205. Journal Club in Cellular Immunology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 206. Journal Club in Microbial Physiology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (S)

BGJC 207. Journal Club in Neurobiology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Under graduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 208. Journal Club in Plant Molecular Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 209. Journal Club in Molecular and Cellular
Regulation in Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published litera-
ture. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 210. Journal Club in Cell Cycle Regulation (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 211. Journal Club in Molecular Immunology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Under graduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 212. Journal Club in Genetics (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGRD 202. Research Discussion in Early Amphibian

 Neurogenesis (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 203. Research Discussion in Development of Dictyostelium (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 204. Molecular Biology of the Cell (1)
Research reports and discussions based on recent experimental results in cell biology, oncogenesis, genetics, molecular biology and development. Students are expected to present and discuss their own new data and the recent data of others. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 205. Research Discussion in Plant Membrane

 Biology (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 206. Research Discussion in Metais in Biology (1) Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 207. Research Discussion in Neuronal Pattern

 Generation (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each
quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 208. Research Discussion in Mammalian Molecular

Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 209. Research Discussion in AIDS (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 210. Research Discussion in Virology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 211. Research Discussion in Developmental Cellular Neurobiology (1)

Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 212. Research Discussion in Behavior and

Development of Simple Nervous Systems (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 213. Research Discussion in Golgi Structure and

 Function (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S / U grades only.)

BGRD 214. Research Discussion in Development and

 Function of the Immune System (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 215. Research Discussion in Lymphocyte

 Biology (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S / U grades only.)

BGRD 216. Research Discussion in Molecular and Cell Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S / U grades only.)

BGRD 217. Research Discussion in Plant Membranes and

 Organelles (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S / \cup grades only.)

BGRD 218. Research Discussion in Plant Molecular

 Genetics (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 219. Research Discussion in Molecular

Biophysics (1)

Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 220. Research Discussion in Advanced

Evolutionary Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 221. Research Discussion in Behavioral

Ecology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 222. Research Discussion in Evolutionary

Molecular Ecology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 223. Research Discussion in Ecology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 224. Research Discussion in Plant Population

Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are
expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199 (S / U grades only.)

BGRD 225. Research Discussion in Genetic Variation (1) Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S / U grades only.)

BGRD 226. Research Discussion in Conservation

Genetics (1)

Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 227. Research Discussion in Intracellular

 Signalling (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 228. Research Discussion in Drosophila Developmental Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 229. Research Discussion in Drosophila Neurobiology (1)

Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S / U grades only.)

BGRD 230. Research Discussion in Cell Signalling

 Pathways (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S / \cup grades only.)

BGRD 231. Research Discussion in Nuclear Transport and

 Function (1)Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 232. Research Discussion in Chromatin and Transcription Regulation (1)

Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S / U grades only.)

BGRD 233. Research Discussion in Cell Cycle Motility (1) Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 234. Research Discussion in Cell Signalling in Drosophila (3)
Presentation of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGSE 200. Seminar in Biology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 201. Seminar in Molecular Biology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 202. Seminar in Immunology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 203. Seminar in Population Biology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGSE 204. Seminar in Developmental Genetics (1) Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisites: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 205. Graduate Research Seminar (1)
Discussions of recent research in various aspects of bio logical research conducted by third- and fourth-year doctoral students in the Division of Biology. (S / U grades only.) (F,W,S)

Biomedical Sciences

OFFICE: 5008 Basic Science Building, School of Medicine
http://biomedsci.ucsd.edu

Professors
Kim E. Barrett, Ph.D., Medicine
Roland C. Blantz, M.D., Medicine

Colin M. Bloor, M.D., Pathology
Richard C. Boland, M.D., Medicine
Gerry R. Boss, M.D., Medicine
Robert A. Brace, Ph.D., Reproductive Medicine
Joan Heller Brown, Ph.D., Pharmacology
Laurence L. Brunton, Ph.D., Pharmacology/ Medicine
Dennis A. Carson, M.D., Medicine
Webster K. Cavenee, Ph.D., Medicine
Cecilia Y. Cheung, Ph.D., Reproductive Medicine
Kenneth R. Chien, M.D., Ph.D., Medicine
Shu Chien, M.D., Ph.D., Bioengineering/Medicine
Mario Chojkier, M.D., Medicine
Don W. Cleveland, Ph.D., Medicine
James W. Covell, M.D., Medicine
Edward Dennis, Ph.D., Chemistry and Biochemistry
Wolfgang H. Dillmann, M.D., Medicine
Daniel Donoghue, Ph.D., Chemistry and Biochemistry
Mark H.Ellisman, Ph.D., Neurosciences
Scott D. Emr, Ph.D., Cellular and Molecular Medicine Gregory F. Erickson, Ph.D., Reproductive Medicine
Jeffrey Esko, Ph.D., Cellular and Molecular Medicine
Ronald M. Evans, Ph.D., Biology (Adjunct)
Marilyn G. Farquhar, Ph.D., Cellular and
Molecular Medicine
James R. Feramisco, Ph.D., Medicine/ Pharmacology
Theodore Friedmann, M.D., Pediatrics
Gordon N. Gill, M.D., Medicine
Christopher K. Glass, M.D., Ph.D., Cellular and Molecular Medicine
Lawrence S. B. Goldstein, Ph.D., Cellular and Molecular Medicine
Philip M. Groves, Ph.D., Psychiatry/ Neurosciences
Vivian Hook, Ph.D., Medicine (Adjunct)
Stephen B. Howell, M.D., Medicine
Paul A. Insel, M.D., Pharmacology/ Medicine
Martin F. Kagnoff, M.D., Medicine
Michael Karin, Ph.D., Pharmacology
Carolyn J. Kelly, M.D., Medicine (In-Residence)
Thomas J. Kipps, M.D., Ph.D., Medicine
Richard Kolodner, Ph.D., Medicine
Elizabeth A. Komives, Ph.D., Chemistry and Biochemistry
Ronald Kuczenski, Ph.D., Psychiatry (In-Residence)
Hyam L. Leffert, M.D., Pharmacology
Richard Lieber, Ph.D., Orthopaedics
Jamey D.Marth, Ph.D., Cellular and Molecular Medicine
Carol L. MacLeod, Ph.D., Medicine (In-Residence)
James Andrew McCammon, Ph.D., Chemistry and Biochemistry/Pharmacology
Odile Mathieu-Costello, Ph.D., Medicine (In-Residence)

Pamela L. Mellon, Ph.D., Reproductive Medicine/ Neurosciences
Marc Montminy, M.D., Ph.D., Biology (Adjunct)
Sanjay Nigam, M.D., Medicine/Pediatrics
Daniel T. O'Connor, M.D., Medicine (In-Residence)
Jerrold M. Olefsky, M.D., Medicine
George Palade, M.D., Cellular and Molecular Medicine
Frank L. Powell Jr., Ph.D., Medicine
Morton P. Printz, Ph.D., Pharmacology
Douglas D. Richman, M.D., Pathology/Medicine (In-Residence)
Michael G. Rosenfeld, M.D., Medicine
Geert Schmid-Schoenbein, Ph.D., Bioengineering
David S. Segal, Ph.D., Psychiatry
Shunichi Shimasaki, Ph.D., Reproductive Medicine
Stephen A. Spector, M.D., Pediatrics
Daniel Steinberg, M.D., Ph.D., Medicine
Charles F. Stevens, Ph.D., Pharmacology (Adjunct)
Palmer W. Taylor, Ph.D., Pharmacology
Lynn F. TenEyck, Ph.D., Pharmacology (Adjunct)
Roger Y. Tsien, Ph.D., Pharmacology/
Chemistry and Biochemistry
Robert H. Tukey, Ph.D., Pharmacology (In-Residence)/Chemistry and Biochemistry
Wylie W.Vale, Ph.D., Medicine (Adjunct)
Ajit P. Varki, M.D., Medicine
Peter D. Wagner, M.D., Medicine
John F. Ward, Ph.D., Radiology (Emeritus)
John B. West, M.D., Ph.D., Medicine
Joseph L. Witzum, M.D., Medicine
Flossie Wong-Staal, Ph.D., Biology/Medicine
Tony L.Yaksh, Ph.D., Anesthesiology/Pharmacology
Maurizio Zanetti, M.D., Medicine (In-Residence)

Associate Professors

Timothy D. Bigby, M.D., Clinical Medicine Philip Bourne, Ph.D., Pharmacology Jerold J.M. Chun, M.D., Ph.D., Pharmacology Nazneen Dewji, Ph.D., Medicine (Adjunct) Xiang-Dong Fu, Ph.D., Cellular and Molecular Medicine
Richard Gallo, M.D., Ph.D., Medicine (In-Residence) Michael Gribskov, Ph.D., Biology (Adjunct) John C. Guatelli, M.D. Medicine
Michael C. Hogan, Ph.D., Medicine (Adjunct)
John Kelsoe, M.D., Psychiatry
Fred Levine, M.D., Ph.D., Pediatrics (In-Residence) Gerrit Los, Ph.D., Surgery (Adjunct)
Diana L. Marquardt, M.D., Medicine (In-Residence)
Alexandra Newton, Ph.D., Pharmacology
Renate B. Pilz, M.D., Medicine (In-Residence)
Oswald Quehenberger, Ph.D., Medicine (Adjunct)
Gregg J. Silverman, M.D., Medicine (In-Residence)

Francisco Villarreal, M.D., Ph.D., Medicine (Adjunct) Nicholas J.G. Webster, Ph.D., Medicine (In-Residence)
David S.Williams, Ph.D., Pharmacology/ Neurosciences (Adjunct)
Virgil L. Woods, Jr, M.D., Medicine
Jason X. Yuan, M.D., Ph.D., Medicine

Assistant Professors

Joseph A. Adams, Ph.D., Pharmacology
Bogi Andersen, M.D., Medicine (In-Residence)
Joseph G. Gleeson, M.D., Neurosciences
Bruce Hamilton, Ph.D., Medicine
Steffan Ho, M.D., Ph.D., Pathology
Paul T. Martin, Ph.D., Neurosciences
Peter Van der Geer, Ph.D., Chemistry and Biochemistry
Judith A. Varner, Ph.D., Medicine
Anthony Wynshaw-Boris, M.D., Ph.D., Pediatrics/ Medicine

The Graduate Program

The graduate program offered by the Group in Biomedical Sciences is designed to lead to the Ph.D. degree through a combination of didactic study, laboratory rotations, and thesis research in basic biomedical sciences. Research experiences are wide and varied, permitting students the options of selecting molecular, cellular, or organ and integrated systems approaches in their research programs. Students are encouraged to design and execute investigation in a self-critical and independent manner. Under-graduate preparation must include courses in mathematics (through calculus), chemistry (including organic, physical, and biochemistry), and if possible, participation in undergraduate research. Students whose undergraduate backgrounds are significantly different will be considered provided there is sufficient evidence of interest in cell and molecular biology, physiology, pharmacology, or eukaryotic regulatory biology, and a desire to enter a field of active research and academic excellence.

Doctoral Degree Program

During the first year, the students take basic courses in cell biology, molecular biology, pharmacology, and physiology. In a required laboratory rotation program, students develop laboratory skills and the ability to formulate scientific hypotheses and become familiar with the research
activities of the faculty. Required advanced courses and electives in subsequent years are chosen to develop the students' interest and specialized knowledge in the thesis research area. The thesis laboratory is usually selected by the end of the first year of graduate study.
The graduate program is interdepartmental and interdisciplinary; it involves faculty of the Departments of Medicine, Pharmacology, Neurosciences, Reproductive Medicine, Chemistry, Pathology, Bioengineering, Cellular and Molecular Medicine, and the Cancer Center. Physiological studies include molecular to whole animal approaches to cardiovascular, microcirculatory, respiratory, renal, gastrointestinal and fetal physiology and their neural and hormonal control. Pharmacologic studies of drug action at the molecular and biochemical levels include studies of receptor structure and function, genetic and recombinant DNA methods to analyze ligandreceptor interactions, regulation of gene expression and signal transduction, and biophysical approaches to defining neurotransmitter and hormone action. Molecular and cell biological approaches are being applied to the study of major issues in cell biology, including the regulation of protein targeting and intracellular membrane traffic, hormone and growth factor receptors, endothelial cell biology, molecular motors, RNA splicing, and mitosis, among others. Eukaryotic regulatory biologists are using the most advanced molecular biological techniques to study developmental and homeostatic regulation of gene expression in primarily mammalian systems. As evidence of the research strength of the group, faculty within the program are the directors of four specialized centers of research at the university focusing on cancer, myocardial ischemia, hypertension, and atherosclerosis. Other faculty are directors of training grants for programs in pulmonary physiology, oncogenes, cardiovascular physiology, cellular and molecular pharmacology, hypertension, metabolic diseases, cell and molecular biology, genetics, digestive diseases, and cancer cell biology.

The graduate program in biomedical sciences is also designed to educate physician-scientists through the School of Medicine's Medical Scientist Training Program. Students already admitted to the School of Medicine are eligible for admission to our program for Ph.D. training. Such students generally apply in the first or second year of their medical studies and enter graduate studies following completion of their second
year of medical school. Normative time for M.D./Ph.D. students is seven years.

Examinations

Students obtain letter grades in the program's basic courses. Candidacy for the Ph.D. degree is determined by a two-part examination. The first part, the minor proposition examination, tests the student's competence and ability to design a pertinent research problem in an area unrelated to his or her major interest. The second part, the major proposition examination, deals with the dissertation problem and should be completed between the spring of the third year and the beginning of the fourth year of residence in the program. After the preparation of the dissertation, an oral defense of the thesis completes the requirement for the Ph.D. degree.

COURSES

202. Carcinogenesis and Drug Metabolism (3)

This elective will explore relationships between drug metabolism and carcinogenesis at cellular, molecular and etiological levels. Guided by faculty, students will research and present key papers and principles underlying the biochemistry, genetics, biophysics, and com-puter-assisted aspects of several assigned topics. Prerequisites: biology and chemistry. Cell biology, biochemistry, and molecular biology may be taken concurrently
204. Evolution of Modern Concepts in Pharmacology (2) This course details the evolution of modern principles of pharmacology from first evidences to the present level of knowledge. The course will be independent of but compliment general principles of pharmacology courses for medical and graduate students. Prerequisites: prior or concurrent Principles of Pharmacology, or equivalent course.

206. Organ Physiology (9)

Building on the student's basic knowledge of cellular biology and biochemistry, this course develops fundamental concepts of organ physiology. Major areas include autonomic, cardiovascular, gastrointestinal, renal, and respiratory physiology. Clinical correlation sessions relate physiological principles to clinical situations. Prerequisites: BMS 210,211,212, 213 or equivalent background in biology and chemistry. For students not in the School of Medicine, consent of instructor. (W)

206L. Organ Physiology and Pharmacology, Laboratory

 Course (3)Selected laboratory exercises demonstrating basic principles of pharmacology and organ physiology. Subjects covered include electrocardiography, hemodynamics, myocardial control mechanisms, pulmonary function, dose-response relationships in pharmacology, autonomic mechanisms, and other aspects of physiology and pharmacology. Prerequisites: cell biology and biochemistry or equivalent, and consent of instructor. (W)
207. Using Internet Resources in Molecular Biology (2)

Increasing the Internet is a source both of data and analysis tools in molecular biology. A hands-on series of instructional lectures is proposed that uses these resources to work through problems found in many molecular biology research situations. Topics include: DNA and protein sequence analysis, genome analysis, constructing and using phylogenetic trees, RNA structure prediction, protein structure, analysis, classification, and prediction. Prerequisite: consent of instructor.

208A-B. Topics in Medical Therapeutics (1-2)
Students attend pharmacology (medical therapeutics) lectures given in conjunction with those presented in core courses. Correlation with pathophysiology of diseases will be stressed including organ malfunction as causes of drug toxicity. Other topics will include chemotherapeutic agents and cardiovascular drugs. (W,S)

210. Cellular Biology (6)

The course focuses on fundamentals of the biology of eukaryotic cells. Topics include: Cell structure and cytoskeleton, biosynthesis of macromolecules, transport across cell membranes, receptors and signal transduction, regulation of the cell growth cycle, early development and differentiation. (F)

211. Molecular Biology (6)

The course covers concepts and techniques of molecular biology. Topics include: DNA and chromosome structuring, the eukaryotic genome, gene transcription units and their regulation, RNA processing, RNA and DNA viruses, development and methodologies of molecular biology. (W)
212. Cellular and Molecular Pharmacology (6)

Topics include: Analysis of ligand-macromolecule interactions, biochemistry and pharmacology of chemical transmission and signal transduction, cellular responses to environmental stress (cyto P-450, P-glycoprotein, etc.), and bases of selective toxicity (viruses, bacteria, insects, mammalian tumor cells). Emphasis is on basic principles, on analysis of recent experimental data, and on integration in mammalian systems. (W)

213. Systemic Physiology (6)

General principles of organ physiology including mass transport, tissue and fluid mechanics, membrane transport, energetics, structure-function relations, and homeostasis applied to cardiovascular, gastrointestinal, muscle, renal, and respiratory systems. Emphasis on integrative properties of cells in organs and organismic responses. (F)

219. Ethics in Scientific Reserach (1)

Overview of ethical issues in scientific research, conflicts of interest, national, statewide and campus issues and requirements, ethical issues in publications, authorship, retention of research records, tracing of research records, attribution, plagiarism, copyright considerations primary, archival and meeting summary publications, ethical procedures and policies, NIH, NSF, California and UCSD, case studies and precedents in ethics. Prerequisites: permission of instructor. (S)

220A-B. Principles of Pharmacology (3)
Building on the student's knowledge in cell biology and biochemistry, this course examines the principles of pharmacology and therapeutics and relates them to clinical practice. The portion of the course given in the winter quarter is closely integrated with the organ physiology course. Prerequisites: same as 206. (W,S)
222. Essentials of Glycobiology (2)

Advanced elective for graduate/medical students who have had core courses in cell biology or biochemistry. Expert faculty will present a coordinated overview of the field of glycobiology, which explores the structure, synthesis and functions of sugar chains in biological systems.

223. Genetics, Metabolism, and Inherited Disease (2)

 Detailed discussions of the molecular aspects of certain inborn errors of intermediary metabolism selected to illustrate principles of biochemical genetics applicable to a wider variety of clinically important genetic diseases. Individual sessions will include faculty presentations followed by student-led discussions of the particular principles illustrated by the disorders reviewed. (S)224. Topics in Cancer Research (2)

Each quarter will focus on an important area of cancer research such as immunology (fall), growth regulation (winter), and cancer genetics (spring). One-hour lecture coordinated with a one-hour seminar with the opportunity to meet with the invited speaker. Prerequisites: senior undergraduates, graduate students, medical students. (W,S)
226. Frontiers in Endocrinology and Metabolism (3)

The course covers recent advances of research in lipid, lipoprotein metabolism, carbohydrate metabolism, reproductive medicine, diabetes mellitus, and atherosclerosis. (F)
228. Basic Science Research Seminar (1)

The objective is to provide an opportunity for cardiology research fellows, postgraduate students and undergraduate students to intereact with faculty in the Division of Cardiology in a faculty-sponsored basic research seminar. This will take place once a month for ten sessions at a faculty member's home. It will be in the format of a journal club where a faculty member or a faculty-sponsored individual will present and discuss one recent article deemed to have considerable scientific importance. The content of the course will be determined by the faculty member who is assigned the session. Prerequisite: bachelor's degree in a science discipline. (F,W,S)

229. Methods in Pharmacology (3)

A combination of lecture and lab exercises presented by the faculty of the Group in Biomedical Sciences, designed to introduce biomedical science graduate students to the essential techniques employed in molecular and cellular pharmacology. Prerequisites: BMS 212, OP, CBB, biochemistry, molecular biology, biomedical sciences or consent of instructor. (S)
230. Receptors and Signal Transduction (3)

An examination of the molecular and biochemical bases of drug and neurotransmitter action. Topics include molecular basis of drug specificity, receptor mechanisms, neuropharmacology, signal transduction from the cell surface to the nucleus, and drug action on excitable tissues. Prerequisite: course in biochemistry. (F)

231. Contemporary Topics in Pharmacology (2)

A selection of short courses in the biomedical and pharmacological sciences offered by resident experts. Topics will vary annually. Each short course will last one to two weeks, meeting five hours a week. Prerequisite: consent of instructor. (F,W,S) (Not offered in fall 1997.)
233. Molecular Biology of Human Retroviruses (3)

Replication cycle and gene regulation of HIV.Molecular approaches to therapy and vaccines. Prerequisites:
undergraduates lower-division courses in Biology, BIMM 100, BICD 100, BIBC 100, BIBC 102.
236. Maternal and Placental Physiology (2)

This course provides a broad based coverage of the physiology of maternal changes during pregnancy as well as physiology of the placenta. included are endocrine, cardiovascular, respiratory, fluid balance, metabolism, nutrition, lactation, immune and postpartum aspects as well as problems of pregnancy. Prerequisites: Med. 206 (OPP) and Med. 209 (ERM), or equivalent. (F)

237. Fetal Physiology (2)

This course provides a broad based coverage of the physiology of the fetus, including growth and development, metabolism, neurologic and endocrine development, regulation of the cardiovascular, endocrine, renal, and gastrointestinal systems, development of the lungs, immune system, abnormal development genetic problems, and diseases. Prerequisites: same as 236. (W)

240. Critical Reading in Cell Biology (3)

This course will focus on critical reading and understanding current areas in Cell and Molecular Biology. The exact topic will vary, but will include such topics as Protein Trafficking, Cell Division, Intracellular Movement, Cell Interaction, and Cell Cycle.
242. Seminar in Genetics (1)

Intended for graduate students interested in principles of classical and molecular genetics. Will attend weekly genetics seminar and participate in didactic/discussion preparatory session. Prerequisite: consent of instructor.

243. Human Genetics (3)

Advanced aspects of human genetics and human genetics disease, including principles of Mendelian and non-Mendelian inheritance, monogenic and polygenic traits, anticipation, penetrance, and genomics. Course will consist of alternating didactic sessions and seminars in which students will present papers.
245. Cancer Genetics (3)

Intended for graduate students interested in genetics. Course will cover genetic basis for cancer related diseases. Prerequisites: graduate-level course in cell biology and molecular biology.

250. Molecular and Modern Methodologies in

Physiological Sciences (2)
This course emphasizes modern approaches and methodologies for investigating physiological processes in normal and pathological conditions. This includes the application of transgenic, knockout, adenovirus gene therapy, antisense, and cellular imaging technologies in animal models.
260. Immune Regulation (3)

This course will cover most of today's key aspects in the organization and dynamics of the immune system and its regulation. It will provide students with a basis for understanding the physiology and functioning of the immune system in normal and pathological states. Prerequisites: core courses in Biomedical Sciences Ph.D. Program, or permission of instructor.

262. Neurophysiology (4)

An overview of neurophysiological systems, emphasizing mammalian neurophysiology and related model vertebrate systems and concepts. (W)
264. Molecular and Cellular Basis of Disease (2)

Lectures on the molecular and cellular mechanisms of pathogenesis. Topics will include Alzheimer's disease,
cell surface and unclear receptors in disease, signal transduction by oncogenes in cancer cells, AIDS, human diseases affecting glycosylation pathways, rheumatoid arthritis, and arteriosclerosis. Prerequisite: graduate students. (W)

271. Cardiovascular Physiology (4)

Physical concepts of behavior of heart, large blood vessels, vascular beds in major organs, and the microcirculation. Physical and physiological principles of blood flow, blood pressure, cardiac work, electrophysiology of the heart. Special vascular beds, including their biological and hemodynamic importance. Integration through nervous and humoral controls. Prerequisites: BIPN 100, 102 and BE 231A, or consent of instructor.
282. Microbial Pathogenesis (3)

Topics covered in this course include molecular and cellular mechanisms of viral, bacterial, and protozoan pathogenesis. Host response and microbial mechanisms of evasion of host defense will also be discussed. Sessions will consist of faculty and student presentations of current literature. Prerequisite: graduate standing or consent of instructor. (S)
285. Statistical Inference in the Medical Sciences (2)

An introduction to basic techniques used in biomedical literature: t tests, ANOVA, chi-square, linear and nonlinear regression. Emphasis will be on understanding the appropriate use and interpretation of the tests, rather than on the calculations.

294. Pharmacology and Molecular Biology Journal

 Club (0-1)Current literature in molecular pharmacology and molecular biology is reviewed. Two papers are chosen per week for oral presentation by students. Faculty critique the student presentations. Prerequisite: enrollment in Ph.D. program at year two and above. (F,W,S)
295. Pharmacology Research Discussions (0-1)

Student, faculty, and fellow discussion groups on research projects. Students are expected to present research findings to fellows, other Ph.D. students, and faculty. Written critiques are provided by the faculty. Prerequisites: completion of minor proposition examination and two years of graduate work. (F,W,S)
296. Directed Reading (1-4)

Reading of special topics under the direction of a faculty member. Exact subject matter to be arranged in individual cases. Prerequisite: consent of instructor.
297. Progress in Signal Transduction (1)

Papers describing recent progress in signal transduction from the cell-surface to the nucleus will be chosen from recent research literature. Two papers will be discussed and criticized in detail each week for one hour. Prerequisites: graduate level Biochemistry, Cell Biology, and Molecular Biology; registered as second year and above graduate student in Biomedical Sciences, Biology, or Chemistry. (F,W,S)

298. Directed Study (1-12)

Reading and laboratory study of special topics under the direction of a faculty member. Exact subject matter to be arranged in individual cases. (F,W,S)
299. Independent Study or Research (1-12)

Independent study or research. Prerequisite: consent of instructor. (F,W,S)

Biophysics

See "Physics" for more information.
OFFICES:
General Administration-1110-113 Urey Hall Addition
Graduate Student Affairs-
1110-121 Urey Hall Addition
Undergraduate Student Affairs-1110-115 Urey Hall Addition
Chair's Office-1110-113 Urey Hall Addition
Web site:http://physics.ucsd.edu/
The Department of Physics offers an undergraduate and graduate program which prepares students for a career in biophysics and which leads to the following degrees:
B.S. in physics with specialization in
biophysics
C.Phil. in physics

Ph.D. in physics (biophysics)
A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. All courses (lower- and upper-division) required for the major must be taken for a letter grade. Students must receive a grade of C - or better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the major of 2.5 or greater may petition to have one grade of D accepted.

The Undergraduate Program

Physics Major with Specialization in Biophysics

This program leads to a bachelor of science degree. As a terminal degree, it is an excellent education for students who wish to work in the biotechnology industry, and provides an ideal background for students who plan to attend graduate or professional school in biological or biomedical fields.

This program is intended for students with a strong interest in bringing the concepts and technical advances from the physical sciences to bear on issues in biology. The curriculum is chosen to
prepare students as rigorously trained but broadminded generalists, so that they may attack problems in the biological, biochemical, and biomedical sciences with the tools and confidence that come from rigorous training in the physical sciences.

The curriculum for Physics Major with Specialization in Biophysics is designed to allow premedical students to complete all necessary courses for admission to medical schools.

The lower-division program for physics majors with specialization in biophysics includes basic courses in biology and chemistry as well as physics. Although the sequence Physics 4A through $4 E$ is strongly recommended, students have the choice of petitioning the department to substitute the sequence Physics 2A through 2D.

The following courses are required for the physics major with specialization in biophysics:

Lower-Division

1. Physics 4A-B-C-D-E and 2CL-DL; or Physics 2A-B-C-D and 2CL-DL (Physics 4 sequence is strongly recommended)
2. Chemistry 6A-B-C and 6BL
3. Biology, BILD 1 and BILD 2
4. Mathematics 20A, 20B, 21C, 21D, 20E, 20F

The upper-division program includes advanced courses in physics, including two core lecture courses and one core laboratory course in biophysics, as well as organic chemistry.

Upper-Division

1. Physics $100 \mathrm{~A}, 105 \mathrm{~A}, 110 \mathrm{~A}, 120 \mathrm{~A}, 130 \mathrm{~A}, 140 \mathrm{~A}$, 171,172,173

2. Chemistry 140 A

Additional electives, to achieve a count of twelve upper-division courses in the major, may be selected from biology, chemistry, and physics. Three additional upper-division courses, in any subject, are required in order to satisfy UCSD requirements.

Premedical students will need to take two additional quarters of organic chemistry (Chemistry 140B and 140C), one quarter of organic chemistry laboratory (Chemistry 143A), and one quarter of an upper-division biology course. In addition, some medical schools also require a quarter of biochemistry (Biology $B I B C$ 100 or Chemistry 114A). The premedical requirements may be used to satisfy elective requirements for upper-division courses.

As a guide to prospective students, we consider a schedule of required classes for a Muir College student.

Suggested Schedule

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Chem. 6A	Chem. 6B
	Math. 20B	Chem.6BL
	Phys. 4A	Math. 21C
		Phys. 4B
SOPHOMORE YEAR		
Chem. 6C	Math. 20E	Math. 20F
Math. 21D	Phys. 4D	Phys. 4E
Phys.4C	Phys. 2CL	Phys.2DL
JUNIOR YEAR		
Phys. 100A	BILD 1	BILD 2
Phys.105A	Chem. 140A	Phys.120A
Phys. 110A	Phys. 171	Phys.130A
SENIOR YEAR		
Phys. 140A	Elec.	Phys. 173
Phys. 172	Elec.	

The Graduate Program

Research in biophysics is being actively pursued in several departments (e.g., physics, chemistry, and biology), which also offer courses in or relevant to biophysics.

Biophysics students will receive their M.S. and C.Phil. degrees in physics. Only their Ph.D. will be in physics (biophysics).

Doctoral Degree Program

The Ph.D. program consists of graduate courses, apprenticeship in research, teaching experience, and thesis research.

Entering students are assigned a faculty adviser to guide them in their program. Many students spend their first year as teaching assistants or fellows and begin apprentice research in their second year. When a student's association with a research area and research supervisor is well established, a faculty research progress committee is formed with the responsibility of conducting an annual review of progress and, at the appropriate time, initiating the formation of a doctoral committee. After three years of graduate study, or earlier, students complete the departmental examinations and begin thesis research. There is no foreign language requirement.

Entrance Testing

An entrance test covering undergraduate physics is given to entering students during the first week of orientation to give better guidance to students in their graduate program. The results are not entered in the student's file. Entering students are encouraged, but not obliged, to bring the results to the first meeting with their academic adviser. Entering students may elect to take the departmental examination instead of taking the entrance test.

Requirements for the Ph.D.

Students are required to pass a departmental examination, advanced graduate courses, a qualifying examination, teaching reqirement, and a final defense of the thesis as described below.

1. Departmental Examination

Biophysics students are required to take a departmental examination after completing two years of graduate work at UCSD. The examination is on the level of material usually covered in upper-division courses and the graduate courses listed below:

Fall

Phys. 200A (Theoretical Mechanics)
Phys. 201 (Mathematical Physics)
Phys. 212A (Quantum Mechanics)

Winter

Phys. 200B (Theoretical Mechanics)
Phys. 203A (Adv. Classical Electrodynamics)
Phys. 212 B (Quantum Mechanics)

Spring

Phys. 203B (Adv. Classical Electrodynamics)
Phys. 210A (Equilibrium Statistical Mechanics)
Phys. 212C (Quantum Mechanics)
The examination is offered twice a year, at the beginning of the fall and spring quarters, and lasts two days, four hours per day. The examination may be repeated once, the next time it is offered.

Biophysics students take the departmental examination after completing two years of graduate work.

2. Advanced Graduate Courses

Biophysics students are required to pass five courses (with a grade of C or better) from biology, biochemistry, chemistry, or physics in consultation with their adviser no later than the end of the third year of graduate work. At least three of these courses must be graduate courses. A 3.0 average
in four of the five courses is required. (In lieu of the course requirement, students may petition to take an oral examination covering three areas of physics.)

3. Qualifying Examination and Advancement to Candidacy

In order to be advanced to candidacy, students must have met the departmental requirements and obtained a faculty research supervisor. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council. Members of the research progress committee are usually included as members of the doctoral committee. The committee conducts the Ph.D. qualifying examination during which students must demonstrate the ability to engage in thesis research. Usually this involves the presentation of a plan for the thesis research project. The committee may ask questions directly or indirectly related to the project and questions on general physics which it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the Candidate of Philosophy Degree.

4. Instruction in Physics Teaching

All graduate students are required to participate in "Instruction in Physics Teaching" under the supervision of a professor as part of their training for future careers. Students will participate in teaching recitation sections, problem sessions, or laboratory sections. Students are required to take a total of two units of Physics 500.

5. Thesis Defense

When students have completed their theses, they are asked to present and defend them before their doctoral committees.

Time Limits for Progress to the Ph.D.

In accordance with university policy, the Department of Physics has established the following time limits for progress to the Ph.D.A student's research progress committee helps ensure that these time limits are met.

	Theorists	Experimentalists
Advancement to Candidacy	4 years	5 years
Total Registered		
Time and Support		

COURSES

Please refer to listings in the Departments of Biology, Chemistry and Biochemistry, and Physics.

Chemistry and Biochemistry

Chair's Office: 2040 Urey Hall Addition (858) 534-3575
http://www-chem.ucsd.edu
Undergraduate Student Affairs
4010 York Hall
(858) 534-4856

Graduate Student Affairs
4010 York Hall
(858) 534-6870

Revelle College

Professors

William S. Allison, Ph.D.
James R. Arnold, Ph.D., Professor Emeritus
Marjorie C. Caserio, Ph.D., Professor Emeritus
Leigh B. Clark, Ph.D., Professor Emeritus
Robert E. Continetti, Ph.D.
Edward A. Dennis, Ph.D., Chair
Daniel J. Donoghue, Ph.D.
Russell F. Doolittle, Ph.D., Research Professor Robert C. Fahey, Ph.D., Research Professor Murray Goodman, Ph.D.
Elvin Harper, Ph.D., Professor Emeritus David N. Hendrickson, Ph.D. Martin D. Kamen, Ph.D., Professor Emeritus David R. Kearns, Ph.D., Professor Emeritus Elizabeth A. Komives, Ph.D.
Joseph Kraut, Ph.D., Research Professor
Clifford P. Kubiak, Ph.D.
Andrew C. Kummel, Ph.D.
Jack E. Kyte, Ph.D., Professor Emeritus
Katja Lindenberg, Ph.D.
Douglas Magde, Ph.D. Kurt Marti, Ph.D.
J. Andrew McCammon, Ph.D.

Trevor C. McMorris, Ph.D.
Stanley L. Miller, Ph.D., Research Professor
Xuong Nguyen-Huu, Ph.D.
K.C. Nicolaou, Ph.D.

Joseph M. O'Connor, Ph.D.
Hans Oesterreicher, Ph.D.
Stanley J.Opella, Ph.D.

Charles L. Perrin, Ph.D., Academic Senate
Distinguished Teaching Award
Michael J. Sailor, Ph.D.
Gerhard N. Schrauzer, Ph.D., Professor Emeritus
Kurt E. Shuler, Ph.D., Professor Emeritus
Jay S. Siegel, Ph.D.
Susan S. Taylor, Ph.D.
Mark H.Thiemens, Ph.D., Dean, Division of Physical Sciences
William C. Trogler, Ph.D.
Roger Y.Tsien, Ph.D.
Robert H. Tukey, Ph.D.
Joseph W. Watson, Ph.D., Vice Chancellor, Student Affairs
John H.Weare, Ph.D.
Ernest Wenkert, Ph.D., Professor Emeritus
John C. Wheeler, Ph.D.
Peter G.Wolynes, Ph.D.
Bruno H. Zimm, Ph.D., Professor Emeritus

Professor-in-Residence

Peter R. Taylor, Ph.D.
Senior Lecturer (LSOE)
Barbara A. Sawrey, Ph.D., Academic Senate Distinguished Teaching Award

Associate Professors

F. Thomas Bond, Ph.D., Provost, Revelle College
John E. Crowell, Ph.D.
Daniel F. Harvey, Ph.D.
Patricia A. Jennings, Ph.D.
Amitabha Sinha, Ph.D
Yitzhak Tor, Ph.D.

Assistant Professors

Nathaniel S. Finney, Ph.D.
Gourisankar Ghosh, Ph.D.
Partho Ghosh, Ph.D.
Simpson Joseph, Ph.D.
Emmanuel A. Theodorakis, Ph.D.
Peter van der Geer, Ph.D.

Adjunct Professors

John E. Johnson, Ph.D.
Leslie E. Orgel, Ph.D.
Thomas Pollard, Ph.D.
Shankar Subramaniam, Ph.D.
John Wooley, Ph.D., Associate Vice Chancellor for Research

Associate Adjunct Professors

Kim K. Baldridge, Ph.D.
Joseph P. Noel, Ph.D.

Assistant Adjunct Professor

Seunghyon Choe, Ph.D.

Introduction

The UCSD Department of Chemistry and Biochemistry was founded in the 1950s by the late Professor Harold Urey and a group of colleagues who strove to create a department that would stress the fundamentals of chemistry and, at the same time, embrace diverse applications of those principles at the frontiers of knowledge.

Degrees offered include:

Biochemistry

B.S. Biochemistry/Chemistry
M.S. Chemistry

Ph.D. Chemistry

Chemistry

B.A. Environmental Chemistry
B.S. Chemistry
B.S. Chemical Physics
B.S. Chemistry/Earth Sciences
B.S. Chemical Education
B.S. Environmental Chemistry
B.S. Pharmacological Chemistry
M.S. Chemistry

Ph.D. Chemistry
Ph.D. Chemistry with specialization in bioinformatics

Chemistry-Premedical Majors

Either a biochemistry/chemistry major or a chemistry major with appropriate choice of electives provides a strong background for students intending to pursue careers in the medical sciences.
Premedical students are encouraged to complete the three-quarter general chemistry (CHEM $6 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ or $6 \mathrm{AH}-6 \mathrm{BH}-6 \mathrm{CH}$) series in their first year, even if they have a score of 4 or 5 on the Advanced Placement examination. Most medical schools require both a full year of general chemistry, and may not accept courses completed through Advanced Placement examinations. Students should then complete the organic chemistry (either the CHEM 140 or CHEM 141) series in their sophomore year.

The lower-division biology (BILD 1-2-3) series or equivalent is also required for most medical schools, along with certain upper-division biology
courses, some which may be counted toward the major requirements in chemistry. Students should meet with the department's undergraduate adviser early in order to plan their courses and discuss their options.

General Chemistry

The General Chemistry Chem. 6 sequence (6 A $6 \mathrm{~B}-6 \mathrm{C}$) is intended for science and engineering majors as well as others who need a quantitative course. It satisfies all preprofessional programs. Chem. 4 is a one-quarter preparation for 6A which should be taken only by those whose college adviser so recommends. The Honors General Chemistry sequence ($6 \mathrm{AH}-6 \mathrm{BH}-6 \mathrm{CH}$) is designed for science and engineering majors with strong preparation in science and mathematics. A student intending to major in chemistry can thus begin with $4,6 \mathrm{~A}$, or 6 AH depending on the level of preparation. A student intending to major in a discipline other than chemistry should consult his or her adviser in the appropriate department to determine which chemistry course is recommended.

Chem. $11,12,13$ is a terminal sequence for non-science/non-engineering majors. Chem. 15 is a one-quarter survey course suitable for nonscience majors. Students should check with their college adviser to determine applicability toward general-education requirements.

General Information on Undergraduate Major Programs

The minimum passing grade is a D , and a minimum of a 2.0 average GPA in the major is required for the degree. All courses for the major, except for independent research (Chem. 199) and chemistry instruction (Chem. 195), must be taken for a letter grade. Chem. 195 and Chem. 199 must be taken on a P/NP basis. All chemistry majors must complete forty-eight units upperdivision chemistry course work at UCSD and fulfill the campus senior residency requirement.

Transfer students must pass at least twentyfour units of upper-division courses required for the major while officially enrolled at UCSD.

In addition to the requirements, Math. 20F (required for chemical physics majors) and a course in computer programming are also recommended.

Any departure from the requirements outlined below must be approved by petition. This applies to lower- and upper-division requirements.

The suggested programs following each of the major descriptions are only examples.

Biochemistry/Chemistry Major

The following program is designed for biochemistry and premedical students desiring a strong background in chemistry. The core biochemistry offering is a sequence of three quarters of lecture plus one laboratory in the junior year. This is followed by three advanced biochemistry courses in the senior year.

Lower-Division Requirements

The following courses must be taken for a letter grade:

1. General chemistry including laboratory (Chem. $6 \mathrm{~A}-6 \mathrm{C}, 6 \mathrm{BL}$, and 6 CL , or equivalent).
2. Calculus through Math. 21D (differential equations), either Math. 20A-21D or Math. 10A-10C, 21C (two units), 21D.
3. Phys. 2A-2B and 2D. Phys. 1A-1C and Phys. 2 D (two units) are acceptable only by petition. Two units of physics laboratory. Phys. 2 CL is recommended and is accessible without Phys. 2 C (Phys. 2BL and 2DL are also acceptable).

Upper-Division Requirements

1. Three quarters of organic chemistry (Chem. 140A-C or 141A-C).
2. Two quarters of physical chemistry (Chem. 126, 127 recommended; 131-133 acceptable).
3. One quarter of inorganic chemistry (Chem. 120A).
4. Three quarters of biochemistry (Chem. 114A-C).
5. Five laboratory courses (Chem. 143AM or 143A, $143 B, 105 A$, either $112 A$ or $112 B$ and one additional chemistry lab).
6. Two elective courses from the following list: Chem. 107, 112B, 113/213, 114D, 115/215, 124/225, 116/216, 117,118, 142/242, 144/244, 145, 147, 148/248, 167/267.
7. One additional elective course chosen from among all of the upper-division and graduate courses offered by the Department of Chemistry and Biochemistry (except non-letter-graded courses) or from the following list of courses offered by the Department of Biology: BICD 100, BICD 110, BICD 140, BIMM 114, BIMM 120, BIPN 100, BIPN 102, BIPN 140. Other electives may be arranged by petition.

Suggested Program for Biochemistry/ Chemistry B.S. Major:

* Recommended, but not required.

Chemistry Major

Lower-Division Requirements

The following courses must be taken for a letter grade:

1. General chemistry including laboratory (Chem. $6 \mathrm{~A}-6 \mathrm{C}, 6 \mathrm{BL}$, and 6 CL , or equivalent).
2. Calculus through Math. 21D (differential equations), either Math. 20A-21D or Math. 10A-10C, 21 C (two units), 210.
3. Phys. 2A-2B and 2D. Phys. 1A-1C and Phys. 2D (two units) are acceptable only by petition. Two units of physics laboratory. Phys. 2 CL is recommended and is accessible without Phys. 2C (Phys. 2BL and 2DL are also acceptable.)

Upper-Division Requirements

1. One year of organic chemistry (140A-C or 141A-C).
2. One year of physical chemistry (131-133).
3. Two quarters of inorganic chemistry (120A, 120B).
4. One quarter of biochemistry (Chem. 114A).
5. Five laboratory courses (Chem. 143AM or 143A 143B, 105A and two of the following: Chem. $105 B, 106,112 A, 112 B, 123$, or $143 C$).
6. Three additional four-unit upper-division or graduate courses in chemistry and biochemistry or related areas. At least two of these courses must be other than Chem. 195 or 199.

Suggested Program for Chemistry

 B.S. Major:| FALL | WINTER | SPRING |
| :---: | :---: | :---: |
| FRESHMAN YEAR | | |
| Chem. 6A | Chem. 6B | Chem. 6C |
| Math. 20A | Math. 20B | Math. 21 C |
| | | Chem. 6BL |
| SOPHOMORE YEAR | | |
| Chem. 140A | Chem. 140B | Chem. 140C |
| Chem.6CL | Chem. 143AM | Chem. 143B |
| Math. 21D | Phys. 2A | Phys. 2B |
| JUNIOR YEAR | | |
| Chem. 131 | Chem. 132 | Chem. 133 |
| Chem. 120A | Chem. 120B | Chem. 105A |
| Phys. 2D | Phys. 2CL | |
| SENIOR YEAR | | |
| Chem. 114A | Elective Lab | Elective |
| Elective Lab | Elective | Elective |

Chemical Physics Major

Chemical physics applies the concepts and quantitative methods of physics to the descriptions of atoms and molecules, analyzes matter as a statistical assembly of molecular building blocks, and develops and exploits physical (largely spectroscopic) experimental tools with which to test and refine such theories.
The chemical physics major is designed as a preparation for graduate work.

Lower-Division Requirements

The following courses must be taken for a letter grade:

1. General chemistry including laboratory (Chem. $6 \mathrm{~A}-6 \mathrm{C}, 6 \mathrm{BL}$, and 6 CL , or equivalent).
2. Math. 20A-20F.
3. Phys. 2A-D and a two-unit physics laboratory course. Phys. 2CL is recommended (Phys. 2BL and 2DL are acceptable).
It is recommended that the above requirements be completed by the end of the sophomore year.

Upper-Division Requirements

1. Two quarters of organic chemistry (140A-B or 141A-B).
2. One year of physical chemistry (131-133).
3. Two quarters of inorganic chemistry (120A120B). Chem. 114A can substitute for Chem. 120B.
4. Five upper-division chemistry labs: Chem. 105A, 106, 143AM or 143A, 143B or 143C and one of the following: 105B, 112A, $112 B, 123$, or $143 B$ or $143 C$.
5. Chem. 135.
6. Math. 110.
7. Phys. 110A-110B, or Phys. 100A-100B.
8. One additional course in physical chemistry or related areas as approved by an adviser. This course may be Chem. 199.

Suggested Program for Chemical

Physics B.S. Major:

FALL	WINTER	SPRING
FRESHMAN YEAR		
Chem.6A	Chem. 6B	Chem. 6 C
Math. 20A	Math. 208	Math. 21 C
		Phys. 2 A
		Chem.6BL
SOPHOMORE YEAR		
Chem. 140A	Chem. 140B	
Math. 21D	Math. 20 E	Math. 20F
Phys. 2B	Phys. 2 C	Phys. 2D
Chem.6CL	Chem. 143AM	
JUNIOR YEAR		
Chem. 131	Chem. 132	Chem. 133
Chem. 143 C	Phys. 2CL	Chem. 105A
Phys. 110A	Phys. 110 B	Math. 110
or Phys. 100A	or Phys. 100B	
or Chem. 120A	or Chem. 120B	
SENIOR YEAR		
Chem. 120A	Chem. 120B*	Chem. 135
or Phys. 110A	or Phys. 100A	
or Phys. 110B	or Phys. 100B	
Elective Lab	Chem. 106	

* Chem. 114 A (fall quarter) may be substituted.

Chemistry/Earth Sciences Major

Earth sciences is a major available in cooperation with UCSD's Scripps Institution of Oceanography. It requires course work for a major in chemistry, plus additional courses in geology. It
will appeal to students who plan to go on to graduate school in related fields, or to those students who plan to go into professional geologic work with their undergraduate degree.

Lower-Division Requirements

The following courses must be taken for a letter grade:

1. General chemistry including laboratory (Chem. $6 \mathrm{~A}-6 \mathrm{C}, 6 \mathrm{BL}$, and 6 CL , or equivalent).
2. Calculus through Math. 21 D (differential equations), either Math. 20A-21D or Math. 10A-10C, 21C (two units), 21D.
3. Phys. 2A-2B and 2D. Phys. 1A-1C and Phys. 2D (two units) are acceptable only by petition. Two units of physics laboratory. Phys. 2 CL is recommended and is accessible without Phys. 2 C (Phys. 2BL and 2DL are also acceptable).

Upper-Division Requirements

1. Two quarters of organic chemistry ($140 \mathrm{~A}-\mathrm{B}$ or 141A-B).
2. One year of physical chemistry (131-133).
3. Two quarters of inorganic chemistry (120A120B). Chem. 114A can substitute for Chem. 120B.
4. Five upper-division labs: Chem. 105A, 106, 143AM or 143A, ES 162L and one of the following: Chem. 105B, 112A, 112B, 123, 143B, or 143C. The specific upper-division earth sciences courses required are:
5. ES 101, Introduction to Geology.
6. ES 102, Introduction to Geochemistry.
7. ES 103, Introduction to Geophysics.
8. ES 120, Introduction to Mineralogy.
9. ES 162A, Introduction to Field Geology.
10. One other course from the following list is required: SIO 252, 253, 259, 260, 261, Chem. 149A, 149B, 170, 171, 173. Petrology is essential for geology students. SIO 253 should be taken by students planning to go on to graduate school or to do professional geologic work with their undergraduate degrees. Students are encouraged to take at least one quarter of Chem. 199.

Suggested Program for Chemistry/ Earth Sciences B.S. Major:

FALL	WINTER	SPRING
FRESHMAN YEAR		
Chem. 6A	Chem. 68	Chem. 6C
Math. 20A	Math. 20B	Math. 21C
		Chem. 6BL
SOPHOMORE YEAR		
Chem. 140A	Chem. 140B	
Math. 21D	Phys. 2A	Phys. 2B
Chem.6CL	Chem. 143AM	Phys. 2 CL
JUNIOR YEAR		
Earth. Sci. 101	Earth. Sci. 102	Earth. Sci. 103
Chem. 131	Chem. 132	Chem. 133
Phys. 2 D	Earth. Sci. 120	Chem. 105A
SENIOR YEAR		
Chem. 114A*	Earth. Sci. 162A	Elective
Chem. 120A	Earth. Sci. 162L	Elective Lab
	Chem. 106	

* Chem. 1208 (winter quarter) may be substituted.

Chemical Education Major

This program offers an excellent preparation for teaching physical science in secondary schoois, including chemistry, physics, earth science, biology, and mathematics. The chemical education program has American Chemical Society accreditation.

The chemical education program is sufficiently intensive that students with this degree should be admissible as graduate students to most universities. This program is also excellent preparation for students interested in a career in science writing.

The program is basically a chemistry major with earth science and biochemistry as electives, combined with three courses in the Teacher Education Program.

If you are interested in earning a California teaching credential through UCSD, contact the Teacher Education Program for information about the prerequisite and professional preparation requirements. It is recommended that you contact TEP as early as possible in your academic career.

Lower-Division Requirements

The following courses must be taken for a letter grade:

1. General chemistry including laboratory
(Chem. $6 \mathrm{~A}-6 \mathrm{C}, 6 \mathrm{BL}$, and 6 CL or equivalent).
2. Math. 20A-21D.
3. Phys. 2A-2B and 2D. Phys. 1A-1C and Phys. 2D (two units) are acceptable only by petition. Two units of physics laboratory. Phys. 2 CL is recommended and is accessible without Phys. 2C (Phys. 2BL and 2DL are acceptable.) .
4. Biol. BILD1.
5. A course in computer programming is recommended.

Upper-Division Requirements

1. Three quarters of organic chemistry (Chem. 140A-C or 141A-C).
2. Two quarters of physical chemistry (Chem. 126-127 recommended; 131-133 acceptable).
3. One quarter of inorganic chemistry (Chem. 120A).
4. One quarter of biochemistry (Chem. 114A).
5. Five laboratory courses (Chem. 143AM or 143A, 143B, 105A, and two of the following: 105B, $106,112 A, 112 B, 123$, or $143 C$).
6. One chemistry elective course.
7. Two earth science courses, ES 101 and ES 102 or 103 . (Other biology or chemistry courses may be arranged by petition.)
8. Chem. 195 or Chem. 196 or Chem. 199.
9. TEP 129A-B-C.

Suggested Program for Chemical Education B.S. Major:

FALL	WINTER	SPRING
FRESHMAN YEAR		
Chem. 6A	Chem. 6B	Chem. 6C
	Biol. BILD 1	Chem. 6BL
Math. 20A	Math. 20B	Math. 21C
SOPHOMORE YEAR		
Chem. 140A	Chem. 140B	Chem. 140C
Math. 21D	Chem 143AM	Chem. 143B
Phys. 2A	Phys. 2B	Phys. 2D
JUNIOR YEAR		
Chem. 126	Chem. 127	Phys. 2CL
Chem. 6CL	Elective Lab	Chem. Elective
Earth Sci. 101	Earth Sci. 102	
SENIOR YEAR		
Chem. 120A	Chem. 105A	Elective Lab
Chem. 114A	Chem. 195/196/199	
TEP 129A	TEP 129B	TEP 129C

Environmental Chemistry Major

The environmental chemistry major requires a strong chemistry background, but also includes breadth courses from other disciplines related to environmental concerns. The elective courses allow specialization in a student's area of interest, such as economics, political science, biology, earth science, or additional chemistry. The program is designed to prepare students to enter the burgeoning industry surrounding waste management or to continue studies in the environmental sciences. Students fulfilling their elective requirements with chemistry and biochemistry courses would be prepared to attend graduate school in a chemical science.

The following courses must be taken for a letter grade:

Lower-Division Requirements

1. General chemistry including laboratory (Chem. $6 \mathrm{~A}-6 \mathrm{C}, 6 \mathrm{BL}$, and 6 CL or equivalent).
2. Phys. $2 \mathrm{~A}-2 \mathrm{~B}$ and 2 D . Phys. $1 \mathrm{~A}-1 \mathrm{C}$ and Phys. 2D (two units) are acceptable only by petition. Phys. 2CL (or Phys. 2BL or 2DL) is required for a B.S. degree.
3. Math. 20A-21D.

Upper-Division Requirements

1. Two quarters of organic chemistry (Chem. 140A-B or 141A-B).
2. Two quarters of physical chemistry (Chem. 126-127 recommended; 131-133 acceptable).
3. One quarter of inorganic chemistry (Chem. 120A) or a third quarter of organic chemistry (Chem. 140C or 141C).
4. One quarter of biochemistry (Chem.114A).
5. Two laboratory courses (Chem. 143AM or 143A, 106).
6. Two quarters of environmental chemistry (Chem. 149A-B).
7. Atmospheric chemistry (Chem. 173).

Elective Requirements

1. Four elective courses chosen from the following list (at least one course must be upperdivision): Econ. 2 A, Econ. 2 B, Econ. 10 (was 2C),

Econ. 131, Econ. 132, History US 154, Phil. 148, Phil. 164, Poli. Sci. 160AA, Poli. Sci. 160AB, Poli. Sci. 162, Soc. 184, Soc. 185, USP 2, USP 124, USP 144, USP 171. Enivironmental chemistry students must complete their elective requirements through coursework and cannot substitute examination scores such as Advanced Placement examinations for these courses.
2. Three elective courses chosen from the following list (at least two courses must be upperdivision): Chem. 105A, Chem. 105B, Chem. 112A, Chem. 112B, Chem. 114B, Chem. 114C, Chem. 120A, Chem. 120B, Chem. 122, Chem. 123,
Chem. 140C or 141C, Chem. 143B, Chem. 143C, Chem. 170, Chem. 171, Chem. 199, ES 40, ES 101, ES 102, ES 103, BILD 1, BILD 2, BILD 3, BIEB 120, BIEB 121, BIEB 176, BIEB 178, BIEB 179, AMES 118A, AMES 118B, AMES 119.
Students desiring a B.S. degree must take three laboratory courses: Chem. 105A, 143B or 143C, and one from the following list: Chem. 105B, 112A, $112 B, 123,143 B$ or $143 C$. These courses may be used to satisfy number 2 above.

Suggested Program for

Environmental Chemistry B.A. or

B.S. Major

FALL	WINTER	SPRING
FRESHMAN YEAR		
Chem. 6A	Chem. 6B	Chem. 6C
Math. 20A	Math. 20B	Math. 21C
	Phys. 2A	Chem. 6BL
SOPHOMORE YEAR		
Chem. 140A	Chem. 140B	Chem.140C or
Chem. 6CL	Chem. 143AM	Phys. 2CL*
Math. 21D	Phys. 2B	Phys. 2D
JUNIOR YEAR		
Chem. 126	Chem. 127	Elect.
Chem. 149A	Chem. 1498	Chem. 173 Elect.
Elect.	Elect.	
SENIOR YEAR		
Chem.114A	Chem. 106	Elect.
Chem. 120A or	Elect.	Elect.

*required for B.S. degree only

Pharmacological Chemistry Major

The pharmacological chemistry major provides a strong background in chemistry and includes most courses required by California pharmacy
schools. The major is intended primarily to prepare students for training as pharmacists in pharmacy school, but students fulfilling their elective requirements with appropriate courses would be prepared for graduate school to obtain a Ph.D. in pharmacology or other areas of science. Degree recipients would also be prepared for most jobs in the biotechnology and chemical industries.

Pharmacological chemistry students are strongly encouraged to complete a full year of general chemistry and a full year of lower-division biology. As with some medical programs, some pharmacy programs may require a full year of these courses and may not accept tests such as the Advanced Placement exam to satisfy these requirements.

The following courses must be taken for a letter grade:

Lower-Division Requirements

1. Biology BILD 1,2 and 3, together with one Biology lab (BICD 101, 111, 131, or BIPN 105), or a year of biology with laboratory at a community college.
2. General chemistry (Chem. 6A-C) including laboratory (Chem.6BL-CL or equivalent).
3. One year of physics plus one physics laboratory. Phys. 2A-2B, 2 D and 2CL. Phys. 1A-1C and Phys. 2D (two units) and 2CL are acceptable only by petition.
4. Calculus through differential equations (Math. 20A-21D, or equivalent).
5. One quarter of economics (1 A or 1 B or equivalent).
6. Pharmacology seminar (Chem. 92, one unit).

The Schools of Pharmacy at the University of the Pacific and at the University of Southern California require a course in public speaking for admission to the school. Students planning to apply to UOP or USC should take Introduction to Speech, Theatre THGE 25, or an appropriate course at a community college.

Upper-Division Requirements

1. Two quarters of physical chemistry (Chem. 126-127 recommended; 131-133 acceptable).
2. Three quarters of organic chemistry (Chem. 140A-C or 141A-C).
3. Three quarters of biochemistry (Chem. 114A-B-C).
4. Three laboratory courses (Chem. 143AM or $143 \mathrm{~A}, 143 \mathrm{~B}$ and either $112 \mathrm{~A}, 112 \mathrm{~B}$ or 143 C).
5. One quarter of pharmacology and toxicology (Chem. 118).
6. One chemistry elective course.
7. If ACS certification is desired, Chem. 120A, plus two additional laboratory courses, are required. Any of these courses would satisfy \#6. above.

Suggested Program for Pharmacological Chemistry B.S. Major:

FALL	WINTER	SPRING
FRESHMAN YEAR		
Chem. 6A	Chem. 6B	Chem. 6C
Math. 20A	Math. 20B	Math. 21C
	Biol. BILD 1	Chem. 6BL
		Chem. 92
SOPHOMORE YEAR		
Chem. 140A	Chem. 140B	Chem.140C
Chem.6CL	Chem.143AM	Chem. 143B
Math. 21D	Phys. 2A	Phys. 2B
JUNIOR YEAR		
Chem. 114A	Chem. 114B	Chem. 114C
Phys. 2D	Econ. 1A/1B	Biol. BILD 3
Chem. 143C	Biol. BILD 2	Phys. 2CL
SENIOR YEAR		
Chem. 120A/elec.	Bio. lab*	Chem. 118
Chem. 126	Chem. 127	

* Bio. BICD 101, 111, 131, or BIPN 105

Honors Program

The Department of Chemistry and Biochemistry offers an Honors Program to those students who have demonstrated excellence in any of the seven majors. Students are eligible for Departmental Honors at graduation when they have:

1. Achieved a GPA of 3.2 overall and 3.4 in chemistry courses.
2. Completed a minimum of eight units of Chem. 199, distributed over at least two quarters. A student who registers for 199 and subsequently fails to complete the Honors Program may apply up to four units to any major that normally allows 199 as elective credit.
3. Submitted a final honors research report to three UCSD faculty members, including their research adviser, for approval.
4. Presented an oral report about their research before a group of at least three faculty. This can be at an undergradute research conference or
at a seminar involving honors students and faculty.

Students who are interested in the Honors Program should contact the Undergraduate Coordinator in 4010 York Hall, and are invited to do so at any time.

Education Abroad

Majors are encouraged to explore the programs that allow students to study abroad or at other U.S. universities for a term or longer. See an adviser for details.

Minor Program in Chemistry

A typical minor in chemistry consists of three lower-division lecture courses and at least one laboratory course, followed by a minimum of five upper-division courses, including at least one laboratory course, focused in physical, inorganic, organic, environmental chemistry, or biochemistry. Upper-division courses required by a student's major may not be applied toward a minor. Upper-division courses for the minor must be taken at UCSD and must be taken for a letter grade. The minimum GPA requirement for the minor is a 2.0 .

Contiguous Bachelor's/ Master's Degree Program

The department offers a contiguous bachelor's/master's degree program. It is limited to students with a bachelor's degree from the Department of Chemistry and Biochemistry at UCSD. A minimum undergraduate GPA of 3.0 is required for admission. Contact the Student Affairs Office in 4010 York Hall for more information.

The Graduate Program

Graduate students are accepted to the Department of Chemistry and Biochemistry for study toward the Ph.D. in chemistry and the Ph.D. in chemistry with specialization in bioinformatics. Students interested in the bioinformatics specialization should contact the Graduate Student Affairs Office for more information.

The goal of the Ph.D. in chemistry is to prepare students for careers in science by expanding their
knowledge of chemistry while developing their ability for critical analysis, creativity, and independent study. The program is designed to encourage initiative and to stimulate enjoyment and development of the student's area of research expertise as well as the broader aspects of scientific inquiry and enlightenment.

Research

Students choose their research concentration from programs in biochemistry, biophysics, bioinformatics, inorganic, organic, physical and theoretical chemistry, surface and materials chemistry, and atmospheric and environmental chemistry. Opportunities for scientific discovery are also abundant through the department's extensive collaborations with investigators in the physical, biological, and engineering sciences. This includes on-campus collaborations with faculty in the Material Science Program, School of Medicine, and Scripps Institution of Oceanography. There are also off-campus interactions with scientists at nearby research facilities such as the Salk Institute and The Scripps Research Institute. Excellent state-of-the-art facilities and equipment support all the research programs. The department's Industrial Relations Program interfaces with national and local chemical, biotechnology, and pharmaceutical industries to encourage technology transfer and to assist postgraduates interested in industrial careers.

Research Adviser

A first-year adviser guides students until a research adviser is chosen. Most of a student's efforts in graduate school are directed toward research for the doctoral dissertation, and selection of a research adviser is of utmost importance. To assist students with this critical decision, all chemistry and biochemistry faculty present research seminars in the fall quarter. Inorganic, organic, and physical chemistry students then consult with faculty to discuss research opportunities. Biochemistry students do research rotations with various faculty members. Although students have until the end of the first year to join a laboratory, most start their research studies by mid-year.

Placement Examinations and Course Work

Entering students take written placement examinations in biochemistry, inorganic, organic,
and physical chemistry. The purposes of these exams are to assist with advising and to assure that students have the breadth and level of competence needed for graduate studies. Deficiencies must be remedied in the first year. Three of four exams must be passed, including the one in the student's research area.

First-year students normally take at least six of the graduate courses listed below based on the results of their placement examinations, their research programs, and their specialized interests. Chem. 250 is required. Undergraduate courses and courses offered through other departments may also be taken, depending on the student's research area. By the second year, the emphasis is on thesis research, and a lighter load of courses is taken, although participation in seminars and informal study groups continues.

Departmental Examination

In the winter quarter of the second year, a student's progress in research and graduate studies is evaluated through the departmental examination, which includes presentation and critical discussion of a recent research article. Students are also evaluated on their general knowledge of their particular field of study. Students may also be asked about progress on their dissertation.

Qualifying Examination

By the end of the third year, students defend the topic, preliminary findings, and future research plans of their dissertation. Passing this defense qualifies the student to advance to candidacy for the dissertation. A dissertation committee composed of five faculty, one of whom is the research adviser, provides consultation and evaluation for the dissertation project.

Dissertation

The dissertation is normally completed in the fourth or fifth year. This body of research is expected to make an innovative contribution to the field of chemistry. Ph.D. candidates present a seminar summarizing their research accomplishments and defend their thesis in an oral examination before their dissertation committee.

Teaching

Experience in teaching is a vital and integral part of every graduate student's training, and all students participate in the instructional activities of the undergraduate curriculum. Course credit
for the teaching apprenticeship is earned by enrolling in Chem. 500. Excellence in teaching is stressed, and the department provides a thorough training program covering the fundamentals of teaching as well as other useful information and techniques for effective instruction. Further training is provided by the campus's Center for Teaching Development. Faculty and the students taught evaluate the performance of teaching assistants every quarter and awards are bestowed annually for outstanding performance as a teaching assistant.

Language Requirement

Students whose native language is not English must demonstrate a mastery of English adequate to complete the teaching requirement. Deficiencies must be remedied by the end of the first year of academic residency. For native English speakers, there is no foreign-language requirement.

Time Limits

In accordance with UCSD policy, students must advance to candidacy by the end of four years. Total university support cannot exceed six and one-third years. Total registered time at UCSD cannot exceed seven and one-third years.

Seminars

Seminars by researchers from other universities, national laboratories, and industry are another basic and important aspect of the graduate curriculum. Seminars are presented weekly in biochemistry, inorganic, organic, and physical chemistry. Department colloquia are given on topics of general interest to the department. Seminars are also sponsored by many other departments and institutes.

Financial Support

The department supports all first-year students in good academic standing from a variety of sources, including teaching and research assistantships, training grants, fellowships, and awards. A stipend is paid in addition to fees and, if applicable, tuition. Continuing students who do not have fellowships or awards are normally supported as research assistants by their thesis adviser.

Admissions

The department seeks bright, motivated students and welcomes all such applications. To make admissions decisions, the department considers an applicant's statement of purpose and research interests, GRE scores on the general test plus either the advanced chemistry or advanced biochemistry test, undergraduate record, quality of the undergraduate university, letters of recommendation, and research experience and publications. Applicants whose native language is not English must also submit TOEFL scores. Admissions to the graduate program is for fall quarter. Applications received by January 15 receive priority consideration.
Students who have a master's degree with strong course records and with research experience are encouraged to apply. They normally pass the Qualifying Examination and graduate at an accelerated pace.

Joint Doctoral Program with San Diego State University

The Department of Chemistry and Biochemistry at UCSD and the Department of Chemistry at San Diego State University offer a joint program of graduate study leading to the Ph.D. degree in chemistry. More information is available in the current edition of the Bulletin of the Graduate Division of San Diego State University.

COURSES

LOWER-DIVISION

4. Basic Chemistry (4)

Chemistry 4 is a one-quarter course for science majors with insufficient preparation to start the Chem. 6 sequence. Emphasis is on learning how to solve quantitative problems. Topics include nomenclature, stoichiometry, and the periodic table. Cannot be taken for credit after any other chemistry course. Includes a combined laboratory and discussion-recitation each week. Prerequisite: Math. 4C. A materials fee is required for this course. Cannot be taken for credit after any other chemistry course. (F)

6A. General Chemistry (4)

First quarter of a three-quarter sequence intended for science and engineering majors. Topics include: stoichiometry, gas laws, bonding, atomic theory, quantum theory, and thermochemistry. Three hours' lecture, one hour recitation. Prerequisites: proficiency in high school chemistry or physics. Math 10A (may be taken concurrently). (F,W,S)

6AH. Honors General Chemistry (4)

First quarter of a three-quarter honors sequence intended for well-prepared science and engineering majors. Topics include: stoichiometry, gas laws, bonding, atomic theory, quantum theory, and thermochemistry. Three hours lecture, one hour recitation. Prerequisites: proficiency in high school chemistry, physics and mathematics. Concurrent enrollment in Math. 20A or higher level calculus required. (F)

6B. General Chemistry
 (4)

Second quarter of a three-quarter sequence intended for science and engineering majors. Topics include: molecular geometry, condensed phases and solutions, chemical equilibrium, acids and bases and thermodynamics. Three hours' lecture, one hour recitation. Prerequisites: Chem. 6A; Math. 20A or 10A. (F,W,S)

6BH. Honors General Chemistry (4)
Second quarter of a three-quarter honors sequence intended for well-prepared science and engineering majors. Topics include: molecular geometry, condensed phases and solutions, chemical equilibrium, acids and bases and thermodynamics. Three hours lecture, one hour recitation. Prerequisites: Chem. 6AH; Math. 20A. (W)

6BL. Introductory Inorganic Chemistry Laboratory (3) Introduction to experimental procedures used in synthetic, analytical, and physical chemistry. Prerequisite: Chem. 6A. If 6 BL is a requirement for your major, it should be taken concurrently with 6B, or 6C. A materials fee is required for this course. (F,W,S)

6C. General Chemistry (4)
Third quarter of a three-quarter sequence intended for science and engineering majors. Topics include:electrochemistry, kinetics, coordination chemistry, nuclear chemistry, and an introduction to organic and biochemistry. Three hours' lecture, one hour recitation. Prerequisite: Chem. 6B; Chem. 6BL may be taken concurrently. (F,W,S)

6CH. Honors General Chemistry (4)

Third quarter of a three-quarter honors sequence intended for well-prepared science and engineering majors. Topics include: electrochemistry, kinetics, coordination chemistry, nuclear chemistry, and an introduc tion to organic and biochemistry. Three hours lecture, one hour recitation. Prerequisites: Chem. 6BH; Math. 20B. Chem. 6BL may be taken concurrently. (S)

6CL. Introductory Analytical Chemistry (4)
A laboratory course with emphasis on safe, accurate, and precise experimental techniques in chemistry, including quantitative analysis and instrumental methods, usually taken concurrently with Chem. 6C, but required for only certain majors. Prerequisite: Chem. $6 B L$. A materials fee is required for this course. (F, W, S)
11.The Periodic Table (4)

Introduction to the material world of atoms and small inorganic molecules. Intended for nonscience majors. Can be skipped by students with good knowledge of high school chemistry. Cannot be taken for credit after any other general chemistry course. (F)

12. Molecules and Reactions (4)

Introduction to molecular bonding and structure and chemical reactions, including organic molecules and synthetic polymers. Intended for nonscience majors. Prerequisite: Chem. 11 or good knowledge of high school chemistry. Cannot be taken for credit after any organic chemistry course. (W)
13. Chemistry of Life (4)

Introduction to biochemistry for nonscience majors. Prerequisite: Chem. 12. Cannot be taken for credit after any biochemistry course. (S)
15. Chemistry of the Universe (4)

This is a one-quarter, nonmathematical chemistry course for nonscience majors covering the origin of the universe, the elements, and the formation of the solar system. The evolution of the Earth's atmosphere, hydrosphere, geosphere, and biosphere will be covered, as well as contemporary problems in environmental chemistry. Cannot be taken for credit after any other chemistry course.
90. Undergraduate Seminar (1)

The seminar will focus on a variety of issues and special areas in the field of chemistry.
91. Undergraduate Honors Seminar (1)

A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by the faculty. Enrollment is limited.
92. Undergraduate Pharmacology Seminar (1)

Selected topics in pharmacology and toxicology.

UPPER-DIVISION

105A. Physical Chemistry Laboratory (5)
Laboratory course in experimental physical chemistry. Prerequisites: Chem. 6 CL and Phys. 2 CL or equivalent, Chem. 131 or 133 or 126 or 127. A materials fee is required for this course. (F,W,S)

105B. Physical Chemistry Laboratory (4)

Laboratory course in experimental physical chemistry. Prerequisites: Chem. 105A and 133. A materials fee is required for this course. (F,W,S)
106. Instrumental Analysis Laboratory (4) Instrumental methods for analytical chemistry emphasizing physical principles underlying both the instruments and the analytical methods. Prerequisite: Chem. 105A. A materials fee is required for this course. (W)
107. Synthetic Macromolecules (4)

The organic and physical chemistry of high polymers with emphasis on synthesis, structure, characterization, and properties. Polymers as materials are important as films, fibers, and elastomers. They play an ever-increasing role in science, technology, and medicine. Prerequisites: Chem. 126 or 131 and 140B or 141B. (May not be offered every year.)
110. Biotechnology and Drug Discovery (2)

This seminar course will explore how the biotechnology and pharmaceutical industry utilizes chemistry, biochemistry, and molecular biology to discover and develop today's pharmaceutical agents (drugs): process of lead discovery, development, animal toxicity, clinical trials, manufacturing, quality assurance, regulatory affairs, etc. Guest lecturers will be from the local biotechnology industry. Prerequisites: biochemistry background preferred.(S)

112A. Molecular Biochemistry Laboratory (6)
The application of techniques, including electrophoresis, peptide mapping and sequencing, affinity chromatography, amino acid analysis, gas-liquid chromatography, and enzyme functions and the chemistry of lipids, carbohydrates, and nucleic acids. Prerequisites: Chem. 140A-B-C or 141A-B-C, 143A-B, 114A-
B. (Some of these courses may be taken concurrently.) (Note: Students may not receive credit for both Chem. 112A and BIBC 103.) A materials fee is required for this course. (W)

112B. Molecular Biochemistry Laboratory (6)
This laboratory will introduce the students to the tools of molecular biology and will involve experiments with recombinant DNA techniques. Prerequisites: Chem. 114A-B, Chem. 114C (may be taken concurrently); Chem. 143A and 143B. (Note: Students may not receive credit for both Chem. 112B and BIMM 101.) A materials fee is required for this course. (S)

113. Chemistry of Biological Macromolecules (4)

A discussion of the structural principles governing biological macromolecules, the techniques used in their study, and how their functional properties depend on three-dimensional structure. Prerequisites: elementary organic and physical chemistry. (May not be offered every year.)

114A. Biochemical Structure and Function (4)
Introduction to biochemistry from a structural and functional viewpoint. Prerequisite: elementary organic chemistry strongly recommended (Chem. 141A or 140A). (Note: Students may not receive credit for both Chem. 114A and BIBC 100.) (F)

114B. Biochemical Energetics and Metabolism (4)
This course is an introduction to the metabolic reactions in the cell which produce and utilize energy. The course material will include energy-producing pathways: glycolysis, Krebs cycle, oxidative phosphorylation, fatty-acid oxidation. Biosynthesis-amino acids, lipids, carbohydrates, purines, pyrimidines, proteins, nucleic acids. Prerequisite: Chem. 114A. (Note: Students may not receive credit for both Chem. 114B and BIBC 102) (W)

114C. Biosynthesis of Macromolecules (4)

This course is a continuation of the introduction to biochemistry courses (114A and 114B). This quarter reviews the mechanisms of biosynthesis of macromol-ecules-particularly proteins and nucleic acids. Emphasis will be placed on how these processes are controlled and integrated with the metabolism of the cell. Prerequisite: Chem. 114B. (Note: Students may not receive credit for both Chem. 114C and BIMM 100.) (S)

114D. Molecular and Cellular Biochemistry (4)
This course represents a continuation of 114 C , or an introductory course for first- and second-year graduate students, and covers topics in molecular and cellular biochemistry. Emphasis will be placed on contemporary approaches to the isolation and characterization of mammalian genes and proteins, and molecular genetic approaches to understanding eukaryotic development and human disease. Prerequisite: Chem. 114A-C or consent of instructor. (May not be offered every year.)
115. Modeling Biological Macromolecules (4)

Use of computer graphics and modeling methods in the study of biological macromolecules. The course will cover basic methods and techniques. The objective is to provide a good working knowledge of the critical features of the methods and to provide a foundation for further study for those who wish to pursue these methods as research topics. Prerequisite: Chem. 114A or equivalent. (May not be offered every year.)

116. Chemistry of Enzyme Catalyzed Reactions (4)

 A discussion of the chemistry of representative enzyme catalyzed reactions is presented. Enzyme reaction mechanisms and their relation to enzyme structure areemphasized. Prerequisites: elementary physical chemistry, organic chemistry, and biochemistry. (May not be offered every year.)

117. Biochemistry of Human Disease (4)

An advanced course in biochemistry which will deal primarily with the molecular basis of human disorders. Prerequisite: elementary biochemistry. (May not be offered every year.)
118. Pharmacology and Toxicology (4)

A survey of the biochemical action of drugs and toxins as well as their absorption and excretion. Prerequisites: Chem. 141A-B-C (or Chem. 140ABC), Chem. 114A-B-C and admission to Pharmacological Chemistry major, or consent of instructor.

120A. Inorganic Chemistry (4)

The chemistry of the main group elements is presented in terms of atomic structure, ionic and covalent bonding. Structural theory involving s, p, and unfilled d orbitals is described. Thermodynamic and spectroscopic criteria for structure and stability of compounds are presented and chemical reactions of main group elements discussed in terms of molecular structure and reactivity. Prerequisites: a general chemistry course. Chem. 140A or 141A or equivalent course is recommended. (F)

120B. Inorganic Chemistry (4)
A continuation of the discussion of structure, bonding, and reactivity with emphasis on transition metals and other elements using filled d orbitals to form bonds. Coordination chemistry is discussed in terms of valence bond, crystal field, and molecular orbital theory. The properties and reactivities of transition metal complexes including organometallic compounds are discussed. Prerequisite: Chem. 120A. (W)

122. Biochemical Evolution (4)

This course emphasizes the chemical aspects of evolution, including the origin of living systems on earth, primitive energy acquisition devices, the coupling of information storage and replication catalysis, protein evolution, and the biochemical unity and diversity of extant organisms. Prerequisites: organic chemistry and introductory biochemistry. (May not be offered every year.)
123. Advanced Inorganic Chemistry Laboratory (4)

Synthesis, analysis, and physical characterization of inorganic chemical compounds. Prerequisite: Chem. 120A, 120B, 143A, and 143B. A materials fee is required for this course.
124. Bioinorganic Chemistry (4)

The role of metal ions in biological systems, with emphasis on transition metal ions in enzymes that transfer electrons, bind oxygen, and fix nitrogen. Also included are metal complexes in medicine, toxicity, and metal ion storage and transport. Prerequisites: Chem. 6A-$B-C, 114 A$; or equivalent. (May not be offered every year.)

126. Physical Chemistry (4)

An introduction to physical chemistry with emphasis on biochemical and environmental applications. Quantum mechanics, atomic and molecular structure, spectroscopy. Prerequisites: Chem. 6C, Math. 20D, and Phys. 2D; or consent of instructor. (F)

127. Physical Chemistry (4)

An introduction to physical chemistry with emphasis on biochemical and environmental applications. Thermodynamics, first and second laws, thermochem-
istry, chemical equilibrium, solutions, kinetic theory, reaction kinetics. Prerequisite: Chem. 126 or consent of instructor. (W)
128. Physical Chemistry-Applied Spectroscopy (4)

The electromagnetic spectrum: rotational, vibrational, and electronic spectra, nuclear and electron magnetic resonance. X-ray diffraction. Prerequisites: Chem. 6C, Math. 20 C and 20D, Chem. 127 or 132, or consent of instructor. (S)

131.Physical Chemistry (4)

Thermodynamics, chemical equilibrium, phase equilibrium, chemistry of solutions. Prerequisites: Chem. 6C, Math. 20AB and Math. 20C or 21 C and Phys. 2AB. Recommended: Math. 20D or 21D and Phys. 20 (may be taken concurrently); or consent of instructor. (F)
132. Physical Chemistry (4)

Chemical statistics, kinetic theory, reaction kinetics. Prerequisites: Chem. 131, Math. 20D or 21D; or consent of instructor. Recommended: Phys. 2D. (W)

133. Physical Chemistry (4)

Quantum mechanics, atomic and molecular spectroscopy, molecular structure. Prerequisites: Chem. 132 and Phys. 2D; or Chem. 6C, Math. 20D or 21D and Math. 20F, and Phys. 2AB; or consent of instructor. (S)
134. Computer Programming in Chemistry (4) Use of computer programming in the analysis and presentation of chemical data (statistical analysis, least squares fitting procedures, titration curve interpretation, analysis of radioactive decay series, chemical kinetics, organic synthesis, etc.) Prerequisites: Math. 20A and 20B or equivalent. (Note: Students may not receive credit for both Chem. 134 and BIBC 115.) (May not be offered every year.)
135. Molecular Spectroscopy (4)

Time-dependent behavior of systems; interaction of matter with light; selection rule. Radiative and nonradiative processes, coherent phenomena, and the density matrices. Instrumentation, measurement, and interpretation. Prerequisites: Chem. 133 or equivalent; Math. 200 or Chem. 190/290. (May not be offered every year.)

140A. Organic Chemistry (4)
An introduction to organic chemistry, with emphasis on material fundamental to biochemistry. Topics include bonding theory, isomerism, stereochemistry, chemical and physical properties, and an introduction to substitution, addition, and elimination reactions. Prerequisite: Chem. 6C or equivalent course in general chemistry. (Note: Students may not receive credit for both 140A and 141A.) (F,W,S)

140B. Organic Chemistry (4)
A continuation of 140A; acid/base reactions, chemistry of the carbonyl group, sugars, peptides, nucleic acids and other natural products. Prerequisite: Chem. 140A (a grade of C or higher in Chem. 140A is strongly recommended). (Note: Students may not receive credit for both 140 B and 141B.) (F,W,S)

140C. Organic Chemistry (4)
A continuation of Chemistry 140A-B. Organic chemistry of biologically important molecules: carbohydrates, proteins, fatty acids, biopolymers, natural products, drugs; models for enzymatic reactions, synthetic methods, and methods of analysis. Prerequisite: Chem. 140B. (Note: Students may not receive credit for both 140C and 141C.) (F, W, S)

141 A. Organic Chemistry (4)
Chem. 141A introduces theoretical and experimental studies of structure and properties of covalent molecules. Both resonance and simple molecular orbital descriptions of organic compounds are introduced and spectroscopic methods for determining electronic and molecular structure are discussed. Organic reactions are introduced with synthetic and mechanistic examples. Prerequisites: Chem. 6C (6C may be taken concurrently by good students). Prior or concurrent physics recommended. (Note: Students may not receive credit for both Chem. 141A and Chem. 140A.) (F)

141B. Organic Chemistry (4)
A continuation of 141A, this course applies the struc-ture-reactivity, spectroscopy, and electronic theories introduced in 141A to organic reactions. Prerequisite: Chem. 141A. (Note: Students may not receive credit for both Chem. 141B and Chem. 140B.) (W)

141C. Organic Chemistry (4)
A continuation of $141 \mathrm{~A}-\mathrm{B}$, this course treats selected topics such as carbon-metal bonds, organometallic chemistry, electrophilic reactions, free radical reactions, alkane chemistry, polymerization, molecular orbital theory and electrocyclic reactions, photochemistry, unstable intermediates such as carbenes, benzyne, etc., and metal oxidation reactions, and an introduction to carbohydrate and protein chemistry. Prerequisite: Chem. 141B. (Note: Students may not receive credit for both Chem. 141C and Chem. 140C.) (S)
142. Natural Products Chemistry (4)

An outline of the chemistry of terpenes, steroids, alkaloids, and plant phenols developed on the basis of modern biogenetic theory. Special emphasis will be given to biologically active substances such as hormones and antibiotics. Prerequisites. Chem. 140A-B-C, or 141A-B-C. (May not be offered every year.)

143A. Organic Chemistry Laboratory (4)
Introduction to laboratory techniques needed in organic chemistry. Stresses physical methods including separation and purification, spectroscopy, product analysis and effects of reaction conditions. Prerequisites: Chem. 6BL, Chem. 141A or Chem. 140A. (Note: Students may not receive credit for both Chem. 143A and Chem. 143AM.) A materials fee is required for this course. (F,W,S)

143AM. Majors Organic Chemistry Laboratory (4)
An organic chemistry laboratory intended for chemistry majors only. It is similar to Chem. 143A, but with emphasis on instrumental methods of product identification, separation, and analysis. Prerequisites: Chem. 6BL; Chem. 141A. (Note: Students may not receive credit for both Chem. 143AM and Chem. 143A.) A materials fee is required for this course. (W)

143B. Organic Chemistry Laboratory (4)
Continuation of 143 AM or 143A, emphasizing synthetic methods of organic chemistry for chemistry majors only. Prerequisites: Chem. 143A; 141B or 140B (may be taken concurrently). A materials fee is required for this course. (W,S)

143C. Organic Laboratory (5)
Identification of unknown organic compounds by a combination of chemical and physical techniques for chemistry majors only. Prerequisites: Chem. 6CL, 143A, 141C (may be taken concurrently); 143B suggested. A materials fee is required for this course. (F)
144. Synthesis of Complex Molecules (4)

This course discusses planning economic routes for the synthesis of complex organic molecules. The uses of
specific reagents and protecting groups will be out lined as well as the control of stereochemistry during a synthesis. Examples will be selected from the recent literature. Prerequisites: Chem. 148 or 248. (May not be offered every year.)
145. Structure and Properties of Organic Molecules (4) introduction to the measurement and theoretical correlation of the physical properties of organic molecules. Topics covered include molecular geometry, molecular orbital theory, orbital hybridization, aromaticity, chemical reactivity, stereochemistry, infrared and electronic spectra, photochemistry, and nuclear magnetic reso nance. Prerequisites: Chem. 140ABC or 141ABC or the equivalent.
147. Mechanisms of Organic Reactions (4)

A qualitative approach to the mechanisms of various organic reactions; substitutions, additions, eliminations, condensations, rearrangements, oxidations, reductions, free-radical reactions, and photochemistry. Includes considerations of molecular structure and reactivity, synthetic methods, spectroscopic tools, and stereochemistry. The topics emphasized will vary from year to year. This is the first quarter of the advanced organic chemistry sequence. Prerequisite: Chem. 140C or 141C. (May not be offered every year.)

148. Synthetic Methods in Organic Chemistry (4)

A survey of reactions of particular utility in the organic laboratory. Emphasis is on methods of preparation of carbon-carbon bonds and nxidation reduction sequences. Prerequisite: Chem. 140C or 141C or consent of instructor. (May not be offered every year.)

149A. Environmental Chemistry (4)
The chemical basis of air and water pollution, chlorofluorocarbons and the ozone hole, the environmental impact of radioactive waste disposal, mineral resource usage, and nuclear energy. Prerequisites: Chem. 6A-B-C. (F)

149B. Environmental Chemistry (4)
Agricultural productivity, biological impact on the environment, deforestation, environmental disasters (fires, nuclear winter, and volcanoes), and organic waste handling. Prerequisite: Chem. 149A. (W)
153. Topics in Biophysics/Photobiology (4)

Basic principles of photobiology and photochemistry Photochemical mechanisms in photosynthesis Photoreceptor pigment systems and photobiological control mechanisms in living organisms. Prerequisite. upper-division standing in biology, chemistry, or physics, or consent of the instructor. (Same as BIBC 153, Phys. 153.)

167. Biochemistry of Lipid Diseases (4)

The central theme of this course will be to develop a broad understanding of the basic biochemical aspects of lipid metabolism, the regulation of lipid metabolism and application to the treatment of specific human dis eases. Prerequisite: biochemistry. (May not be offered every year.)
170. Cosmochemistry (4)

Composition of stars, of planets, of meteorites, and the earth and moon. Nuclear stability rules and isotopic composition of the elements. Chemical properties of solar matter. Origin of the elements and of the solar system Prerequisite: general chemistry sequence.

171. Nuclear and Radiochemistry (4)

Radioactive decay, stability systematics, neutron activation, nuclear reactions. Szilard-Chalmers reactions, hot-
atom chemistry, radiation chemistry, effects of ionizing radiation. Prerequisite: general chemistry sequence.
173. Atmospheric Chemistry (4)

Chemical principles applied to the study of atmospheres. Atmospheric photochemistry, radical reactions, chemical lifetime determinations, acid rain, greenhouse effects, ozone cycle, and evolution are discussed. Prerequisites: Chem. 6A-6C. (S)

185. Introduction to Computational Chemistry (4)

This course in computational methods builds on a background in mathematics and physical chemistry. After a brief introduction and background in computational theory, topics will include molecular mechanics, semi-empirical methods, and ab initio-based methods of increasing elaboration. Emphasis will be on applications and reliability. Prerequisites: Chem. 126 or 133 and Math. 20C. (May not be offered every year.)
190. Mathematical Methods of Chemistry (4)

Applied mathematics useful for kinetics, thermodynamics, statistical mechanics and quantum mechanics. Topics include ordinary and partial differential equations, special functions, probability and statistics, vector functions and operators, linear algebra, and group theory. Prerequisites: general chemistry, one year of calculus. (May not be offered every year.)

195. Methods of Teaching Chemistry (4)

An introduction to teaching chemistry. Students are required to attend a weekly class on methods of teaching chemistry, and will teach a discussion section of one of the lower-division chemistry courses. Attendance at lecture of the lower-division course in which the student is participating is required. (P/NP grades only.) Prerequisite: consent of instructor. (F,W,S)

196. Reading and Research in Chemical Education

(2 or 4)
Independent literature or classroom research by arrangement with, and under the direction of, a member of the Deparment of Chemistry faculty. Students must register on a P/NP basis. Prerequisites: upperdivision standing, 2.5 minimum GPA, consent of instructor and department.

199. Reading and Research (2 or 4)

Independent literature or laboratory research by arrangement with, and under the direction of, a member of the Department of Chemistry faculty. Students must register on a P/NP basis. Prerequisites: upper-division standing, 2.5 minimum GPA, consent of instructor and department. (F,W,S)

GRADUATE

206. Topics in Biophysics and Physical Biochemistry (4) Selection of topics of current interest. Examples: primary processes of photosynthesis; membrane biophysics; applications of physical methods to problems in biology and chemistry, e.g., magnetic resonance, x ray diffraction, fluctuation spectroscopy, optical techniques (fluorescence, optical rotary dispersion, circular dichroism). Topics may vary from year to year. Prerequisite: consent of instructor. (W)

207. Modern NMR Methods (4)

Treats varied pulse sequences, one- and two-dimensional methods, interpretation of relaxation rates, spindecoupling, multiple quantum filtering, and solvent suppression with application to liquid crystals, mem-

Chemistry and Biochemistry

branes, small molecules, proteins, and nucleic acids. (May not be offered every year.)
208. Modern Methods in Protein NMR (4)

This course covers modern methods in protein NMR including multinuclear, multidimensional (2-, 3-, and $4 D)$ and gradient enhanced spectroscopy. Experiments covered include, but are not limited to, $1 \mathrm{H}-15 \mathrm{~N}$ HSQC, 15 N edited Tocsy and Noesy, HDDH-Tocsy and 1H-15N13C correlated experiments. Students will be able to write complete pulse sequences from the primary literature for implementation on a Bruker spectrometer by the end of the quarter. Prerequisite: Chem.207. (May not be offered every year.) (S)

210. Biotechnology and Drug Discovery (2)

This seminar course will explore how the biotechnology and pharmaceutical industry utilizes chemistry, biochemistry, and molecular biology to discover and develop today's pharmaceutical agents (drugs): process of lead discovery, development, animal toxicity, clinical trials, manufacturing, quality assurance, regulatory affairs, etc. Guest lecturers will be from the local biotechnology industry. Prerequisite: biochemistry background preferred. (S)

211. Metabolic Biochemistry (4)

A comprehensive course in biochemistry emphasizing metabolic and human biochemistry. Prerequisites: physical and organic chemistry; graduate-student standing. (F)

212. Biochemistry of Growth Regulation and Oncogenesis (4)

An introduction to the biochemistry of growth regulation and oncogenesis. Topics include: tryosine protein kinases; growth factor receptors; control of cell proliferation; transformation by papovaviruses and retroviruses. Designed for graduate students, but suitable for undergraduates with consent of instructor. Prerequisite: biochemistry, molecular biology, or equivalent. (May not be offered every year.)

213. Chemistry of Macromolecules (4)

A discussion of the structural principles governing biological macromolecules, the techniques used in their study, and how their functional properties depend on three-dimensional structure. Prerequisites: elementary physical and organic chemistry. (May not be offered every year.)

214. Molecular and Cellular Biochemistry (4)

This course represents a continuation of 114C, or an introductory course for first- and second-year graduate students, and covers topics in molecular and cellular biochemistry. Emphasis will be placed on contemporary approaches to the isolation and characterization of mammalian genes and proteins, and molecular genetic approaches to understanding eukaryotic development and human disease. Prerequisite: Chem. 114A-C or consent of instructor. (May not be offered every year.)
215. Modeling Biological Macromolecules (4)

Use of computer graphics and modeling methods in the study of biological macromolecules. The course will cover basic methods and techniques. The objective is to provide a good working knowledge of the critical features of the methods and to provide a foundation for further study for those who wish to pursue these methods as research topics. Prerequisite: Chem. 114A or equivalent. (May not be offered every year.)
216. Chemistry of Enzyme Catalyzed Reactions (4)

A discussion of the chemistry of representative enzyme catalyzed reactions is presented. Enzyme reaction mechanisms and coenzyme chemistry are emphasized.

Prerequisite: organic chemistry. (May not be offered every year.)
217. Immunology (3)

Graduate students will explore topics in specialized areas of immunochemistry and cellular immunology, antigenic and molecular structure of immunoglobulin molecules; antigenantibody interactions; cellular events in the humoral and cellular immune responses; translation immunology. Prerequisite: consent of instructor. (F)
218. Macromolecular Biochemistry (4)

A comprehensive course in biochemistry emphasizing structural biochemistry. Prerequisites: physical and organic chemistry; graduate-student standing. (F)

219A-B-C. Special Topics in Biochemistry (4-4-4)
This special topics course is designed for first-year graduate students in biochemistry. Topics presented in recent years have included protein processing, the chemical modification of proteins, the biosynthesis and function of glycoproteins, lipid biochemistry and membrane structure, and bioenergetics. Prerequisites: undergraduate courses in biochemistry. (May not be offered every year.)

221. Signal Transduction (4)

The aim of this course is to develop an appreciation for a variety of topics in signal transduction. We will discuss several historical developments while the focus will be on current issues. Both experimental approaches and results will be included in our discussions. Topics may vary from year to year. Prerequisites: biochemistry and molecular biology. (May not be offered every year.)
222. Structure and Bonding of Solids (4)

Key concepts in the atomic structure and bonding of solids such as metals, ceramics, and semiconductors. Symmetry operations, point groups, lattice types, space groups, simple and complex inorganic compounds, structure/property comparisons, structure determination with X-ray diffraction. Ionic, covalent, metallic bonding compared with physical properties. Atomic and molecular orbitals, bands versus bonds, free electron theory.
223. Organometallic Chemistry (4)

A survey of this field from a synthetic and mechanistic viewpoint. Reactivity patterns for both main group and transition element organometallic compounds will be discussed and organized to periodic trends. (May not be offered every year.)
224. Spectroscopic Techniques (4)

Application of physical techniques to the elucidation of the structure of inorganic complex ions and organometallic compounds. Topics covered include group theory, and its application to vibrational, magnetic resonance and Raman spectroscopy. (May not be offered every year.)

225. Bioinorganic Chemistry (4)

The role of metal ions in biological systems, with emphasis on transition metal ions in enzymes that transfer electrons, bind oxygen, and fix nitrogen. Also included are metal complexes in medicine, toxicity, and metal ion storage and transport. (May not be offered every year.)

226. Mechanistic Aspects of Catalytic Reactions (4)

Mechanisms of substitution and electron transfer reaction of inorganic complexes will be examined from an experimental point of view. A quantitative treatment of rate laws, the steady state approximation and multistep
mechanisms of reactions that are catalyzed by soluble transition metal complexes. (May not be offered every year.)
227. Seminar in Inorganic Chemistry (2)

Seminars presented by faculty and students on topics of current interest in inorganic chemistry, including areas such as bioinorganic, organometallic and physicalinorganic chemistry. The course is designed to promote a critical evaluation of the available data in specialized areas of inorganic chemistry. Each quarter three or four different topics will be discussed. Prerequisite: graduate standing or consent of instructor.
228. Solid State Chemistry (4)

Survey of the chemistry of semiconductors, superconductors, molecular magnetic materials, zeolites, fast ion conductors, electronically conducting polymers, and ceramics. Synthetic techniques such as molecular precursor design, the sol-gel process, electrosynthesis, and high-temperature thermolysis will be covered. (May not be offered every year.)
229. Special Topics in Inorganic Chemistry (2-4)
(May not be offered every year.)
230. Quantum Mechanics (4)

Concepts and mathematical formalism that are useful for problems of chemical interest: states, representations, operators, eigenvalues and eigenfunctions, time evolution, observables, and measurements. Timeindependent perturbation theory. Prerequisites: Chem. 133 or equivalent; Math. 20 D or equivalent; Chem. 190 may be taken concurrently. (May not be offered every year.)

231. Chemical Kinetics and Molecular Reaction Dynamics (4)

Classical kinetics, transition state theory, unimolecular decomposition, potential energy surfaces; scattering processes and photodissociation processes. Prerequisite: Chem. 230. (May not be offered ever year.)

232. Statistical Mechanics of Chemical Systems (4)

Equilibrium statistical mechanics, distribution functions, and partition functions. Boltzman, Bose, and Fermi statistics. The different ensembles; ensemble averages and QM expectation values; derivation of thermodynamic properties of simple systems. Prerequisites: Chem. 133, 131 and 132, or equivalent. (May not be offered every year.)
233. Nonequilibrium Statistical Mechanics (4)

Linear response theory, time correlation functions, and spectral densities. Schmoluchowski, Langevin, and Fokker-Planck equations; nonlinear behavior. Newtonian and Brownian molecular dynamics calculations. Prerequisite: Chem. 232. (May not be offered every year.)
234. Thermodynamics (4)

Thermodynamics of chemical systems; the three laws, with emphasis on the formal structure of thermodynamics. Chemical equilibrium, stability theory, heterogeneous equilibrium, solutions. Prerequisites: Chem. 131, 132 or equivalent. (May not be offered every year.)
235. Molecular Spectroscopy (4)

Time-dependent behavior of systems; interaction of matter with light; selection rule. Radiative and nonradiative processes, coherent phenomena and the density matrices. Instrumentation, measurement, and interpretation. Prerequisites: Chem. 133 or equivalent; Math. 20D or Chem. 190/290. (May not be offered every year.)
236. Atherosclerosis (2)

This multidisciplinary course integrates the studies of the pathogenesis of atherosclerosis, with emphasis on lipoprotein metabolism, and the cellular and biochemical mechanisms of lesion development. Two-hour lectures. Same as Medicine 236. Prerequisite: biochemistry. (May not be offered every year.)
237. Essentials of Glycobiology (2)

Advanced elective for graduate/medical students who have had core courses in cell biology or biochemistry. Expert faculty will present a coordinated overview of the field of glycobiology, which explores the structure, synthesis, and functions of sugar chains in biological systems. (May not be offered every year.)

238. Current Topics in Physical Chemistry (4)

Critical reading of current literature; training and practice in presenting oral reports, writing scientific papers and proposals. (May not be offered every year.)
239. Special Topics in Chemical Physics (4)

Topics of special interest will be presented. Examples include NMR, solid-state chemistry, phase transitions, stochastic processes, scattering theory, nonequilibrium processes, tensor transformations, and advanced topics in statistical mechanics, thermodynamics, and chemica kinetics. (May not be offered every year.)

240. Electrochemistry (4)

Application of electrochemical techniques to chemistry research. Basic electrochemical theory and instrumentation: the diffusion equations, controlled potential, and current methods. Electro-chemical kinetics, ButlerVolmer, Marcus-Hush theories, preparative electrochemistry, analytical electrochemistry, solid and polymer electrolytes, semiconductor photoelectrochemistry. (May not be offered every year.)
242. Natural Products Chemistry (4)

An outline of the chemistry of terpenes, steroids, alkaloids, and plant phenols developed on the basis of modern biogenetic theory. Special emphasis will be given to biologically active substances such as hormones and antibiotics. Prerequisites: Chem. 140A-B-C or 141A-B-C.

244. Synthesis of Complex Molecules (4)

This course discusses planning economic routes for the synthesis of complex organic molecules. The uses of specific reagents and protecting groups will be outlined as well as the control of stereochemistry during a synthesis. Examples will be selected from the recent literature. Prerequisite: Chem. 148 or 248.
245. Structure and Properties of Organic Molecules (4) Introduction to the measurement and theoretical correlation of the physical properties of organic molecules. Topics covered include molecular geometry, molecularorbital theory, orbital hybridization, aromaticity, chemical reactivity, stereochemistry, infrared and electronic spectra, photochemistry, and nuclear magnetic resonance. Prerequisite: Chem. 140ABC or 141ABC or the equivalent.
246. Kinetics and Mechanism (4)

Methodology of mechanistic organic chemistry: inte gration of rate expressions, determination of rate constants, transition state theory; catalysis, kinetic orders, isotope effects, substitute effects, solvent effects, linear free energy relationship; product studies, stereochemistry; reactive intermediates; rapid reactions. (May not be offered every year.)
247. Mechanisms of Organic Reactions (4)

A qualitative approach to the mechanism of various organic reactions; substitutions, additions, eliminations, condensations, rearrangements, oxidations, reductions, free-radical reactions, and photochemistry. Includes considerations of molecular structure and reactivity, synthetic methods, spectroscopic tools, and stereochemistry. The topics emphasized will vary from year to year. This is the first quarter of the graduate organic chemistry sequence. Prerequisite: Chem. 141C.
248. Synthetic Methods in Organic Chemistry (4)

A survey of reactions of particular utility in the organic laboratory. Emphasis is on methods of preparation of carbon-carbon bonds and oxidation-reduction sequences. Prerequisite: Chem. 141C or consent of instructor.
249. Special Topics in Organic Chemistry (2-4)
(May not be offered every year.)
250. Seminar in Chemistry (2)

Regularly scheduled seminars by first-year graduate students provide opportunities for practice in seminar delivery and for the exploration of topics of general interest. (S/U grades only.) (S)
251. Research Conference (2)

Group discussion of research activities and progress of the group members. Prerequisite: consent of instructor. (S/U grades only.) (F,W,S)
262. Inorganic Chemistry and NMR (4)

A survey of inorganic chemistry to prepare for graduate research in the field, including a detailed introduction to nuclear magnetic resonance (NMR), followed by applications of NMR to structural and mechanistic problems in inorganic chemistry.
267. Biochemistry of Lipid and Lipoprotein Diseases (4)

The central theme of this course will be to develop a broad understanding of the basic biochemical aspects of lipid metabolism, the regulation of lipid metabolism, and application to the treatment of specific human diseases. (May not be offered every year.)

270A-B-C. Current Topics in Environmental

Chemistry (2-2-2)
Formal lecture series on the current topics in the field of environmental chemistry. Emphasis is on current research topics in atmospheric, oceanic, and geological environments. Prerequisite: consent of instructor. (May not be offered every year.)
285. Introduction to Computational Chemistry (4)

This course in computational methods builds on a background in mathematics and physical chemistry. After a brief introduction and background in computational theory, topics will include molecular mechanics, semi-empirical methods, and ab initio-based methods of increasing elaboration. Emphasis will be on applications and reliability. Prerequisites: Chem. 126 or 133 and Math. 20C. (May not be offered every year.)

290. Mathematical Methods in Chemistry I (4)

Applied mathematics useful in kinetics, spectroscopy, thermodynamics, statistical mechanics, and quantum mechanics; ordinary and partial differential equations, vector spaces, operators, linear algebra, numerical analysis. Prerequisites: general chemistry, calculus. (May not be offered every year.)
293. Cosmochemistry Seminar (2)

Formal seminars or informal sessions on topics of current interest in cosmochemistry as presented by visit-
ing lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S/U grades only.)

294. Organic Chemistry Seminar (2)

Formal seminars or informal puzzle sessions on topics of current interest in organic chemistry, as presented by visiting lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S / U grades only.) (F,W,S)

295. Biochemistry Seminar (2)

Formal seminars or informal puzzle sessions on topics of current interest in biochemistry, as presented by visiting lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S/U grades only.)

296. Chemical Physics Seminar (2)

Formal seminars or informal sessions on topics of current interest in chemical physics as presented by visiting lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S / U grades only.) (F, W, S)
297. Experimental Methods in Chemistry (4)

Experimental methods and techniques involved in chemical research are introduced. Hands-on experience provides training for careers in industrial research and for future thesis research. Prerequisite: graduate standing.
298. Special Study in Chemistry (1-4)

Reading and laboratory study of special topics under the direction of a faculty member. Exact subject matter to be arranged in individual cases. (S / U grades only.) Credit is limited to four units per quarter. (F,W,S)
299. Research in Chemistry (1-12)

Prerequisites: graduate standing and consent of instructor. (S/U grades only.) (F,W,S)

500. Teaching in Chemistry (4)

A doctoral student in chemistry is required to assist in teaching undergraduate chemistry courses. One meeting per week with instructor, one or more meetings per week with assigned class sections or laboratories, and attendance at the lecture of the undergraduate course in which he or she is participating. Prerequisites: graduate standing and consent of instructor. (S / U grades only.) (F,W,S)

Chinese Studies

OFFICE: 3084 Humanities and Social Sciences Building, Muir College
http://orpheus-1.ucsd.edu/history/
ChineseStud.html

Professors

Joseph C.Y. Chen, Ph.D., Physics
Matthew Y. Chen, Ph.D., Linguistics, Emeritus
Joseph W. Esherick, Ph.D., History
Germaine A. Hoston, Ph.D., Political Science
David K. Jordan, Ph.D., Anthropology

Richard P. Madsen, Ph.D., Sociology
Barry J. Naughton, Ph.D., International Relations and Pacific Studies
Paul G. Pickowicz, Ph.D., History
Susan L. Shirk, Ph.D., Political Science
William S. Tay, Ph.D., Literature, Emeritus
Wai-Lim Yip, Ph.D., Literature

Associate Adjunct Professor

Suzanne Cahill, Ph.D., History

Assistant Professors

Nancy Guy, Ph.D., Music
Marta E. Hanson, Ph.D., History

Lecturer With Security of Employment

Ping C. Hu, M.A., History

Lecturers

Xiaogang Cha, M.A., History
Qian He, History
Wang We, M.A., History
Chinese Studies is an interdisciplinary program that allows the student interested in China to utilize the university's offerings in various departments to build a major leading to a B.A. degree. In addition to coordinating courses in the various departments, the Program in Chinese Studies offers courses directly under its own auspices to round out the available offerings.

The Chinese Studies Program combines historical understanding with an emphasis on modern and contemporary China. The Chinese History Program has a strong specialization in late Imperial and Modern China. A full spectrum of courses on the politics, economics, society, and culture of today's China are offered. Another focal point of research interest is visual culture and cultural history in modern and pre-modern China. The interdisciplinary nature of the program (see departmental affiliation of the participating faculty) can accommodate students of a wide range of interests. In addition to our local resources, the University of California Education Abroad Program (EAP) and Opportunities Abroad Program (OAP) are affiliated with various universities and language institutes in China, Taiwan, and Hong Kong. This, together with other academic exchange programs with a number of Chinese universities, provides the possibility of a junior year abroad, including both language courses and courses dealing with various aspects of Chinese studies. Subject to final approval by the program
chair, EAP credits may be transferred back to UCSD to coordinate with on-campus offerings.

The Major Program

The student choosing a major in Chinese studies must meet the following requirements:

1. Two years of Mandarin Chinese (Chinese Studies 11-12-13 and 21-22-23 or equivalent).
2. History 10-11-12 (East Asian History)
3. Twelve upper-division courses in Chinese studies, including courses taken in at least three departments. At least one of these courses should be a seminar or colloquium in which students would be expected to write a substantial term paper. No more than six upperdivision language courses count toward the major requirement.
4. As a rule, only courses taken for a letter grade can satisfy program requirements (major, minor). Exceptions are granted for Chinese Studies 198 and 199.
In principle, the courses included in the Program in Chinese Studies are those campus offerings dealing with China or the Chinese language. Most of the courses listed below are planned by participating departments for the 2001-2002 academic year.

Honors Program

Requirements for admission to the program are:

1. Junior standing
2. A GPA of 3.5 or better in the major
3. Overall GPA of 3.2 or better
4. Recommendation of a faculty sponsor familiar with the student's work
5. Completion of at least four upper-division courses approved by the Program in Chinese Studies
6. Completion of at least one year of Chinese language study
Students who qualify for honors take a twoquarter sequence of directed study during which they define a research project, carry out the research, and complete a senior thesis.

The completed thesis will be evaluated by a committee consisting of the student's thesis adviser and one other faculty member appointed by the Chinese studies program coordinator.

The Minor Program

A minor in Chinese studies consists of at least two lower-division courses (a minimum of eight units) and five upper-division courses (a minimum of twenty units) taken for a letter grade. These courses should be chosen from three programs or departments. No more than three language courses may apply toward the minor requirement. Only one non-language course taken abroad may be approved for fulfillment of the minor. A list of approved courses is available quarterly from the Program in Chinese Studies.

COURSES

COMMITTEE-SPONSORED COURSES

11-12-13. First-Year Chinese (5-5-5)

21-22-23. Second-Year Chinese (4-4-4)

111-112-113. Third-Year Chinese (4-4-4)

121-122-123. Fourth-Year Chinese (4-4-4)

All Chinese language courses have A, D and E tracks for students with no Chinese language background; B track for students with some Chinese language background; C track for students with Chinese language background other than Mandarin.

150. Intensive Summer Language and Culture Program

 in China (4)Intensive language and cultural study in China. Program includes regularly scheduled language classes taught by UCSD faculty members; a cultural program of films, stage performances and lectures; and field trips to villages, urban industrial communities, and places of historical interest. All levels of language proficiency accepted. (Summer)
160/260. Late Imperial and Twentieth-Century Chinese Historical Texts (5)
This course introduces the primary sources used by historians of Late Imperial and Twentieth-Century Chinese history. Reading material includes diaries, newspaper articles, Qing documents, gazetteers, essays, speeches, popular fiction, journal articles, scholarly prose, and field surveys. May be repeated for credit. (P/NP grades only.) Prerequisite: advanced knowledge of Chinese language and consent of instructor.
170. History of Science in China (4)

This course is designed to provide a coherent picture of aspects of the development of science in Chinese civilization from ancient times through the eighteenth century. The focus (mathematics, astronomy, medicine, chemistry, etc.) will shift from year to year.
180. Chinese Cinema (4)

This course surveys the development of Chinese cinema from the 1920 s to the present. Emphasis is placed on the ways in which filmmakers have represented
such major social problems as family conflict, gender relations, and the tension between traditional and modern cultural modes. Prerequisite: knowledge of Chinese.

181A. Introduction to Classical Chinese (4) Introduction to the classical language through Confucius, Mencius, and the other Great Books. The emphasis will be on comprehension and reading ability. Prerequisite: Chinese Studies 23 or equivalent.

181B. Introduction to Classical Chinese (4)
Continuation of Chinese Studies 181A. Prerequisite: Chinese Studies 181A or equivalent.

181C. Introduction to Classical Chinese (4)
This course is a continuation of 181 A and B . Short passages from major historical, literary, and philosophical works are introduced. Prerequisite: Chinese Studies 181B or equivalent.

182A. Intermediate Classical Chinese (4)
This course is a continuation of Introduction to Classical Chinese (181A-B-C). Selections from major works written in classical Chinese, such as Laozi, Shijing, etc., will be read. The course emphasizes the structures, function words, the analysis of each sentence, and the comprehension of texts. Prerequisite: Chinese Studies 181A-B-C or equivalent.

182B. Intermediate Classical Chinese (4)
This course is a continuation of 182A. Selections from Zhuangzi, Shiji, etc., will be taught. The course emphasizes the structures, function words, the analysis of each sentence, and the comprehension of texts. Prerequisite: Chinese Studies 182A or equivalent.

182C. Intermediate Classical Chinese (4)
This course is a continuation of 182B. Selections from 1 Ching, Hanshu, etc., will be introduced. The course emphasizes the structures, function words, the analysis of each sentence, and the comprehension of texts. Prerequisite: Chinese Studies $182 B$ or equivalent.
183. Readings in Classical Chinese (4)

Introduction to major works written in classical Chinese, including poetry and historical documents. Prerequisite: Chinese Studies 181B or equivalent.

186A-B-C. Readings in Chinese Economics, Politics, and Trade (4-4-4)
Introduction to the specialized vocabulary relating to Chinese politics, trade, and development. Designed for students in the social sciences or with career interests in international trade, the course will stress reading and translating documents, and the special forms of business correspondence and oral negotiation. Prerequisite: one year of Chinese.
196. Directed Thesis Research (4)
B.A. honors thesis under the direction of a faculty member in Chinese studies. This course requires two quarters to complete. An IP grade will be awarded at the end of the first quarter. Prerequisite: consent of instructor. (F,W,S)
198. Directed Group Study in Chinese Studies (2 or 4) Study of specific aspects in Chinese civilization not covered in regular course work, under the direction of faculty members in Chinese studies. (P/NP grades only.) Prerequisite: consent of instructor. (F,W,S)
199. Independent Study in Chinese Studies (2 or 4) The student will undertake a program of research or advanced reading in selected areas in Chinese studies
under the supervision of a faculty member of the Program in Chinese Studies. (P/NP grades only.) Prerequisite: consent of instructor. (F,W,S)
269. Conversational Mandarin for Medical StudentsBeginning (2)
This introductory course is designed to develop a working knowledge of medical Mandarin that will enable the student to communicate with Mandarin-speaking patients. There will be instruction in basic medical vocabulary and grammar, with a focus on taking a medical history. No previous knowledge of Mandarin is required since this is only a conversation course. For graduate and School of Medicine students. (S/U only.)

296. Directed Thesis Research (2-12)

Graduate thesis research under the guidance of a faculty member affiliated with the Program in Chinese Studies.
299. Independent Study in Chinese Studies (2-12)

Independent graduate research under the guidance of a faculty member affiliated with the Program in Chinese Studies.
500. Apprentice Teaching (1-4)

A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty; handling of discussions, preparation and grading of exams and other written exercises, and student relations. (S/U only.)

DEPARTMENT-SPONSORED COURSES

For description of courses listed below, see appropriate departmental listing. All graduatelevel courses require consent of the instructor for undergraduate students. Some departmental offerings have content that varies from year to year. In those cases, Chinese Studies approval is given only when content relates primarily to China.

LOWER-DIVISION

History HILD 10: East Asia: The Great Tradition (staff) History HILD 11: East Asia and the West (staff) History HILD 12: Twentieth-Century East Asia (staff) Music MUS 13AS: World Music: Asia and Oceania (Guy)

UPPER-DIVISION

I. CHINESE SOCIETY

Anthropology ANRG 170: Traditional Chinese Society (Jordan)
Anthropology ANRG 173: Chinese Popular Religion (Jordan)
History HIEA 119: Religion and Popular Culture in East Asia (Cahill)

History HIEA 137: Women and Family in Chinese History (Hanson)
History HIRE 115: Women in Chinese Religious Traditions (Cahill)

History HITO 102: Religious Traditions: East Asian

 Religious Tradtions (Cahill)Music MUS 111:Topics/World Music Traditions (Guy)
Religion RELI 114: Texts and Contexts: Chinese Religions (Cahill)
Sociology SOC/B 162R: Religion and Popular Culture in East Asia (Staff)

Sociology SOC/D 158J: Religion and Ethics in China and Japan (Staff)
Sociology SOC/D 189: Special Topics in ComparativeHistorical Sociology (Madsen)

II. CONTEMPORARY CHINA

Communication COSF 145: Communication and Development in China (Zhao)

History HIEA 132: History of the People's Republic of China (Pickowicz)

IR/PS IP/Gen 400: International Relations of the Pacific IR/PS IP/Gen 404: Chinese Politics
IR/PS IP/Gen 486: Economic and Social Development of China (Naughton)
Political Science POLI 130B: Politics in the People's Republic of China (Shirk)

Political Science POLI 131C: The Chinese Revolution (Hoston)
Political Science POLI 232: The Chinese Political System (Shirk)
Sociology SOC/D 188B: Chinese Society (Madsen)

III. LANGUAGE AND LITERATURE

Linguistics 141: Language Structures (Staff)
Literature/LTCH 101: Readings in Contemporary Chinese Literature (Yip)

Literature/LTEA 100A: Classical Chinese Poetry (Yip)
Literature/LTEA 100B: Modern Chinese Poetry (Yip)
Literature/LTEA 100C: Contemporary Chinese Poetry (Yip)
Literature/LTEA 110A: Classical Chinese Fiction (Staff)
Literature/LTEA 110B: Modern Chinese Fiction (Staff)
Literature/LTEA 110C: Contemporary Chinese Fiction (Staff)

Literature/LTEA 120A: Chinese Films (Staff)
Literature/LTEA 120B: Taiwan Films (Staff)
Literature/LTEA 120C: Hong Kong Films (Staff)
Literature/LTEA 120D: Filming Chinese Literature (Staff)
Literature/LTEN 159B: Chinese Poetry and American Imagination (Yip)

Literature/LTCO 274: Genre Studies—Intercultural Poetics (Yip)
Literature/LTWL 176: Literature and Ideas: Taoism (Yip)
Literature/LTWR 113: Intercultural Writing: Chinese (Yip)

IV. CHINESE HISTORY

Chinese Studies CHIN 170: History of Science in China (Chen)

History HIEA 120: The History of Chinese Culture and Society: The Ancient Imperial Period (Hanson)
History HIEA 121: The History of Chinese Culture and Society: The Middle Imperial Period (Hanson)
History HIEA 122: The History of Chinese Culture and Society: The Late Imperial Period (Hanson)
History HIEA 124/HISC 110: Science in China and the West from Ancient Times to the Seventeenth Century (Hanson/Westman)

History HIEA 130: History of the Modern Chinese Revolution: 1800-1911 (Esherick)
History HIEA 131 (IP/GEN 408): History of the Modern Chinese Revolution: 1911-1949 (Pickowicz)

History HIEA 132: History of the People's Republic of China (Pickowicz)

History HIEA 133: Cultural History of Twentieth-Century China (Pickowicz)

History HIEA 137: Women and Family in Chinese History (Hanson)

History HIEA 162: History of Women in China (Hanson)
History HIEA 164: Seminar in Late Imperial Chinese History (Hanson)
History HIEA 167: Special Topics on Modern Chinese History (Esherick)
History HIEA 168: Special Topics in Classical and Medieval Chinese History (Cahill)
History HIEA 170: Colloquium on Science, Technology, and Medicine in China (Hanson)
Visual Arts VIS 128DN: Asian Art History (Staff)

Classical Studies

OFFICE: 3024 Humanities and Social Sciences Building, Muir College (CAESAR office)

Web site:http://orpheus.ucsd.edu/history/ ClassicalStud.html

Professors

Georgios H. Anagnostopoulos, Ph.D., Philosophy
Arthur Droge, Ph.D., Early Christianity
Page Ann duBois, Ph.D., Classical and Comparative Literature
Richard E. Friedman, Ph.D., Hebrew and Comparative Literature
Edward N. Lee, Ph.D., Philosophy, Emeritus
Marianne McDonald, Ph.D., Theatre
Alden A. Mosshammer, Ph.D., History
Sheldon A. Nodelman, Ph.D., Visual Arts

Associate Professors

Anthony T.Edwards, Ph.D., Classical Literature and Languages

Assistant Professor

Gary Shiffman, Ph.D., Political Science

Lecturers

Charles Chamberlain, Ph.D., Classical and Comparative Literature
Leslie Collins Edwards, Ph.D., Classical Literature and Languages
Eliot Wirshbo, Ph.D., Classical Literature and Languages
Classical studies is concerned with the cultures of ancient Greece and Rome-roughly from the time of Homer through the time of St. Augustine-in all of their aspects. This program thus offers undergraduates an opportunity to study the cultures of Greece and Rome through the combined resources of the Departments of History, Literature, Visual Arts, Theatre and Dance, and Philosophy. The study of the ancient Greek and Latin languages themselves serves as the starting point for the broader consideration of specific texts in their literary, intellectual, and historical context. In cooperation with the Judaic Studies Program, moreover, students are provided the opportunity to link the study of ancient Greece and Rome to that of the ancient Near East.

The Major Programs

The Classical Studies Program offers four different degree paths, three within classical studies and one in cooperation with Judaic studies. The majors are Greek, Latin, classics, and Greek and Hebrew. Each consists of a choice of twelve upperdivision courses approved for the program and listed below. All courses used to meet requirements for a major in classical studies must be taken for a letter grade and be passed with a grade of C - or better.

GREEK

LTWL 19A-B-C are a prerequisite to the Greek major. Six of the twelve upper-division courses must be LTGK courses numbered 100 and above, but exclusive of LTGK 101. The remaining six courses may be in classical civilization (in English translation), selected from the list of approved courses from history, Lit/European and Eurasian, philosophy, political science, and visual arts, though additional LTGK courses numbered 100 and above (including LTGK 101) are acceptable here. These must be from at least two depart-
ments and selected in consultation with the adviser; courses dealing with Greek civilization are strongly preferred.

LATIN

LTWL 19A-B-C are a prerequisite to the Latin major. Six of the twelve upper-division courses must be LTLA courses numbered 100 and above, but exclusive of LTLA 101 and 102. The remaining six courses may be in classical civilization (in English translation), selected from the list of approved courses from history, Lit/European and Eurasian, philosophy, political science, and visual arts, though additional LTLA courses numbered 100 and above (including LTLA 101 and 102) are acceptable here. These must be from at least two departments and selected in consultation with the adviser; courses dealing with Roman civilization are strongly preferred.

CLASSICS

LTWL 19A-B-C are a prerequisite to the classics major. Nine of the twelve upper-division courses must be distributed between LTLA and LTGK courses numbered 100 and above (but exclusive of LTLA 101 and 102 and LTGK 101), six in one literature and three in the other according to the student's emphasis. The remaining three courses may be in classical civilization (in English translation), selected from the list of approved courses from history, Lit/European and Eurasian, philosophy, political science, and visual arts, though additional LTLA or LTGK courses numbered 100 and above (including LTLA 101 and 102 and LTGK 101) are acceptable here. These must be from at least two departments and selected in consultation with the adviser to reflect the relative emphasis upon the Greek and Latin literatures, but with at least one focusing upon each culture.

GREEK AND HEBREW

Three courses from LTWL 19A-B-C and Cultural Traditions, Judaic 1A-B, to be selected in consultation with the adviser, are a prerequisite to the Greek and Hebrew major. Nine of the twelve upper-division courses must be distributed between LTGK courses numbered 100 and above (but exclusive of LTGK 101) and Judaic Studies 101-102-103 or LTNE courses numbered 100 through 112 , six in one literature and three in the other according to the student's emphasis. The remaining three courses may be in ancient Greek and Judaic civilization (in English translation), selected from the list of courses approved for
classical studies and from the list of courses approved for Judaic studies, though additional LTGK courses numbered 100 and above (including LTGK 101) or Judaic Studies 101-102-103 or LTNE courses numbered 100 through 112 are acceptable here. These must be from at least two departments and selected in consultation with the adviser (who is selected in accordance with the student's emphasis) to reflect the relative emphasis upon the Greek and Hebrew literatures, but with at least one course from each program.

The Minor Programs

CLASSICAL STUDIES:

A minor in classical studies consists of seven courses from those listed below, of which at least four must be upper-division. A knowledge of the ancient languages is not required. The minor will normally include LTWL 19A-B-C: the Greco-Roman World, and four other courses from the participating departments.

Greek:

See Literature:"The Minor in Literature"

Latin:

See Literature:"The Minor in Literature"

Warren College

A Warren College program of concentration in classical studies normally consists of LTWL 19A-B-C and three of the upper-division courses listed below.

Graduate courses may be taken by undergraduates with consent of the instructor. The faculty of the program welcomes qualified undergraduates in graduate courses.

Additional courses counting toward a major in classical studies are offered on a year-to-year basis, both at the undergraduate and graduate levels. As these often cannot be listed in advance, interested students should consult the program faculty for an up-to-date list.

Honors in Greek, Latin, and Classics

Honors is intended for the most talented and motivated students majoring in Greek, Latin, classics, or Greek and Hebrew. Requirements for admission to the honors program are:

1. Junior standing
2. An overall GPA of 3.5
3. A GPA in the major of 3.7

Qualified students majoring in Greek, Latin, or classics may apply at the end of their junior year to the program faculty on the basis of 1) a thesis proposal (three to four pages) worked out in advance with a classical studies faculty member and 2) a recommendation from that faculty member. It is strongly advised that the proposal be based upon a class paper or project from a course taken towards completion of the major.

The core of the honors program is an honors thesis. The research and writing of the thesis will be conducted over the winter or fall and winter terms of the senior year. Up to four hours of 196 credit to this end may be counted towards the major in place of one of the courses in English translation. Thesis completed by the end of the winter quarter of the senior year will be read and evaluated by the thesis adviser and another member of the program faculty. If the thesis is accepted and the student maintains a 3.7 GPA , departmental honors will be awarded. The level of honors-distinction, high distinction, or highest distinction-will be determined by the program faculty.

Students choosing a major in Greek and Hebrew may complete an honors major as follows: those with an emphasis on Greek must meet the requirements for honors in the Classical Studies Program and work with a thesis adviser from classical studies, but select a second adviser for the thesis from Judaic studies. Those with an emphasis on Hebrew must meet the requirements for honors in the Judaic Studies Program and work with a thesis adviser from Judaic studies, but select a second adviser for the thesis from classical studies.

cOURSES

UNDERGRADUATE

Classical Studies 51. Bio-Scientific Vocabulary (Greek-

 Latin Roots) (4)Intensive exposure (100 words per week) to Greek and Latin roots, prefixes, and suffixes which form the basis of bio-scientific terminology. Extensive practice in word building and analysis. No knowledge of Greek or Latin required.

Classical Studies 107. Myth, Religion, and Philosophy in Late Antiquity (4)

Classical Studies 111. Topics in Ancient Greek

Drama (4)
Close reading and discussion of selected works of ancient Greek drama in translation. (Course may be repeated for credit when topic varies.) Prerequisite: sophomore standing.
Cultural Traditions. Judaic 1A-B (4-4)
Humanities 1.The Foundations of Western Civilization: Israel and Greece (6)
Prerequisite: satisfaction of the Subject A requirement. (W)

Humanities 2. Rome, Christianity, and the Medieval

 World(6)Prerequisite: satisfaction of the Subject A requirement. (S)
Humanities 3. Renaissance, Reformation, and Early
Modern Europe (4)
Prerequisite: satisfaction of the Subject A requirement. (F)
HIEU 100. Early Greece (4)
HIEU 101. Greece in the Classical Age (4)
HIEU 102. The Roman Republic (4)
HIEU 103. The Roman Empire (4)
HIEU 105. The Early Christian Church (4)
HIEU 106. Late Antiquity (4)
HIEU 160. Alexander the Great and the Hellenistic World (4)

HIEU 161. The Decline of Rome (4)
HIEU 162. Special Topics in the History of Early Christianity (4)

HIEU 199. Independent Study in Greek and Roman History (4)
LTGK 1-2-3. Beginning and Intermediate Greek (4-4-4)
LTGK 110. Archaic Period (4)
LTGK 112. Homer (4)
LTGK 113. Classical Period (4)
LTGK 118. Hellenistic Period (4)
LTGK 120. New Testament Greek (4)
LTGK 130. Tragedy (4)
LTGK 131. Comedy (4)
LTGK 132. History (4)
LTGK 133. Prose (4)
LTGK 134. Epic Poetry (4)
LTGK 135. Lyric Poetry (4)
LTGK 199. Special Studies (2 or 4)
LTLA 1-2-3. Beginning and Intermediate Latin (4-4-4)
LTLA 100. Introduction to Latin Literature (4)
LTLA 101. Advanced Grammar and Composition (4)
LTLA 102. Prose Composition (4)
LTLA 111.Pre-Augustan (4)
LTLA 113.Augustan (4)
LTLA 114.Vergil (4)
LTLA 116. Silver Latin (4)
LTLA 131. Prose (4)
LTLA 132. Lyric and Elegiac Poetry (4)
LTLA 134. History (4)

LTLA 199. Special Studies (2 or 4)

LTEU 100. The Classical Tradition (4)
Previously LTGN 100. (May be repeated for credit as topics vary.)

LTEU 102. Women in Antiquity (4)
LTWL 19A-B-C (4 each)
LTWL 100. Mythology (4)
Philosophy 101. Plato (4)
Philosophy 102.Aristotle (4)
Philosophy 108. Mythology and Philosophy (4)
Philosophy 199. Independent Study (4)
Pol. Sci. 110A. Citizens and Saints: Political Thought from Plato to Augustine (4)
THHS 103. Ancient Greek Drama in Modern Versions (4)
Visual Arts 11. Western Art I: Prehistoric to Medieval (4)
Visual Arts 120A. Greek Art (4)
Visual Arts 120B. Roman Art (4)
Visual Arts 120C. Late Antique Art (4)

GRADUATE

HIGR 201. The Literature of Ancient History (4)
HIGR 298. Directed Readings in Greek and Roman History (1-12)
LTCO 202A. History of Criticism and Aesthetics (4)
LTCO 210. Classical Studies (4)
Prerequisite: working knowledge of either Greek or Latin.
LTGK 297. Directed Studies (1-12)
LTGK 298. Special Projects (4)
LTLA 297. Directed Studies (1-12)
LTLA 298. Special Projects (4)
Philosophy 201. Greek Philosophy (4)
Philosophy 202. Hellenistic and Roman Philosophy (4)
Philosophy 290. Directed Independent Study (1-4)

The University of California Tri-Campus Graduate Program in Classics

UC IRVINE, UC RIVERSIDE, AND UC SAN DIEGO

What is the UC Tri-Campus Program? This new graduate program joins together into a single faculty more than twenty experts in classics and related disciplines from the three southernmost University of California campuses (Irvine, Riverside, and San Diego). It features an innovative curriculum and program of study that address the practical and theoretical questions confronting the humanities and classics in particular as both enter the twenty-first century.

What are the Program's Goals? The aim of the Tri-Campus Program is to provide an educational environment for pursuing a graduate
career in classics that is closely integrated into the main currents of humanistic and social scientific scholarship. The program's faculty recognizes that today and in the future teachers of the classics must possess and develop expertise beyond the standard specialties of the traditional classics Ph.D. degree. Classics programs, in both large research universities and small liberal arts colleges, increasingly feel the pressure to break down the boundaries between disciplines.

To achieve these goals, the program and curriculum are designed around five principles:

- Study the ancient texts and objects in their wider social, cultural, and historical contexts.
- Bring the culture of the ancient Greeks and Romans into the purview of contemporary literary and sociological theory.
- Examine the reception of ancient literature and culture by later cultures and the appropriation of the ancient world by the modern world.
- Pay particular attention to the intersections of Greek and Roman society and culture with each other and with the other cultures of the ancient world.
- Utilize to the fullest the potential of new computing technologies as tools for research and teaching.

These five interdisciplinary principles are embodied in the four Core Courses (Classics 200A, 200B, 200C, and 201). Graduate seminars (Classics 220) and reading courses in Greek and Latin authors (Classics 205) round out the program of studies. This curriculum has been in effect at Irvine since 1995, taught by faculty members from all three campuses.

Where do I apply? The Tri-Campus Program uniquely does not belong to a particular campus but to the University of California. Students who are accepted into the program may enroll at any of the three campuses. Because instruction and administrative functions take place on the Irvine campus, students will normally enroll at Irvine. Applications to the Tri-Campus Graduate Program will be reviewed by an admissions committee composed of members from all three campuses.

Where is the Tri-Campus Program located?

UC Irvine is located five miles inland from the Pacific Ocean, fifty miles south of metropolitan Los Angeles, forty-five miles southwest of UC Riverside and seventy-four miles north of UC San Diego. In addition to its beaches, mountains, and deserts, Southern California offers excellent cul-
tural amenities such as museums, theater, dance, opera, and music.

What are the requirements for admission? Applicants to the program should have a B.A. or equivalent in classics or classical civilization, which normally means that you have had at least three years of one classical language and two of the other. Majors in other disciplines (e.g., comparative literature, history, philosophy, or interdisciplinary fields such as women's studies) are welcome, provided they have sufficient background in Greek and Latin. All applicants must submit Graduate Record Exam (GRE) scores and must have a minimum GPA of 3.0 or the equivalent. If you have completed an M.A. in classics at another institution, you may be admitted with advanced standing and may have the course requirements reduced from the normal three years to two or one. The level of course reduction will be determined by progress evaluation exams administered in the spring quarter of each year.

What would my program of study be like? All students are admitted directly into a program leading to the Ph.D. degree. With the exception of those granted advanced standing because they hold the M.A. degree from another institution, students will be concurrently enrolled in the M.A./Ph.D. program.

Course requirements for the M.A. degree are two years (six quarters) of course work. Minimum course requirements are four quarters of Classics 200A-B-C and 201; four quarters of Classics 205; and four quarters of Classics 220 . The normal courseload is three 200 level courses each quarter, which may be reduced as determined by progress evaluation exams administered in the spring quarter of each year to students in course work. On approval by the Tri-Campus faculty students may take external graduate seminars in relevant areas outside of classics (at any of the three participating campuses). Other requirements for the M.A. degree are a special set of M.A. examinations, submission of a research paper, and demonstration of a reading knowledge of either German, French, Italian, or equivalent language, by examination or other means.

The M.A. may be a terminal degree. At the end of one's M.A. studies a positive vote of the faculty is necessary for continuation in the Ph.D. program.

For the Ph.D. degree, a third year of course work is required. The minimum course requirements for the Ph.D, degree are four quarters of Classics 200A-B-C and 201; five quarters of

Classics 205; and six quarters of Classics 220 or an equivalent course. The normal course load in the third year is three graduate-level courses each quarter, for which Independent Study (Classics 280) under the supervision of a faculty member may be substituted. Students at this level are encouraged to take courses and seminars in relevant areas outside the program. Students must demonstrate reading proficiency in a second modern language by the end of the third year. In order to become a candidate for the Ph.D. and enter the dissertation stage, a student must pass an individually designed set of qualifying examinations, consisting of written examinations in Greek and Latin translation, history, history of literature, and written examinations or lengthy papers in special authors and field, and a final oral examination. These exams should be completed by the end of the fourth year. The expected time for the completion of the Ph.D. is six years. Experience in supervised teaching and/or research activity is normally required during your course of study.

Today, universities and colleges are demanding well-trained classical philologists who are also familiar with the recent movements in literary and sociological theory and are skilled in the use of computer technology in their teaching and research. Our requirements are carefully designed to prepare students for classical studies in the decades to come without compromising the traditional rigor of the field. The UC Tri-Campus Program is purposely small, so that every student will be assured of close personal attention in the attainment of these goals. Tri-Campus graduate students have a voice in the program through their elected graduate representative.

Financial Aid. A variety of fellowships and teaching assistantships is available on a competitive basis to qualified entrants. Among the most prestigious of these are Chancellor's Fellowships, which cover all fees and offer support for four years. Graduate and Professional Opportunity Program (GPOP) fellowships for incoming students with similar awards are also available. Regents' Fellowships are awards in varying amounts to defray fees and expenses. The Thesaurus Linguae Graecae Fellowship (TLG) offers tuition, fees, and a stipend while providing an opportunity for "hands-on" training in computer applications. In addition, the Program and the TLG have available several teaching assistantships and research assistantships which also pro-
vide a stipend in addition to tuition and fees. Some fourth- and fifth-year TAships will be held at UC Riverside and UC San Diego. It is the purpose of the program to offer all entering students some form of financial aid. See pp. 8-9 of the UCl Application booklet.

Resources of the Tri-Campus Program. The Department of Classics at UC Irvine, which is the administrative center of the Tri-Campus Program, is housed in pleasant quarters in Humanities Office Building 2.Tri-Campus graduate students avail themselves of

- Superior library holdings in classics and related fields in the combined collections of all nine University of California research libraries, accessed to the holdings of the California Digital Library, and expeditious Interlibrary Loan Services with other U.S. and international libraries.
- The facilities of the Thesaurus Linguae Graecae Project (TLG) at UC Irvine, including the complete TLG data bank, the Classics/TLG Computing Lab, and the large collection of primary texts, commentaries, and reference materials housed in the TLG's Marianne Eirene McDonald Library. Formal (Classics 201) and informal instruction in computer-related methodologies for research and teaching are conducted at the Classics/TLG Computing Lab.
- The Consortium for Latin Lexicography (CLL) at UC Irvine, a collaborative research group whose primary goal is to create a computerized Latin dictionary based on the Thesaurus Linguae Latinae (TLL) in Munich.
- The faculty and program in comparative ancient civilizations at UC Riverside, which are dedicated to a cross-cultural and cross-disciplinary approach to the study of ancient cultures.
- Combined UCI-UCSD Ph.D. program in theater, which has a strong classics component, and the nationally-renowned regional theatre at La Jolla.
- Seminars, colloquia, and lectures regularly offered by the Critical Theory Institute at UC Irvine and by the University of California Humanities Research Institute that is housed on the UC Irvine campus. Tri-Campus doctoral students may add an emphasis in critical theory under the supervision of the Committee on Critical Theory.The Tri-Campus Program also has its own colloquia series of lectures by visiting scholars on the three campuses.
- The Southern California Graduate ResourceSharing Consortium, a cooperative association of the Tri-Campus Program and the graduate classics programs of UC Los Angeles and the University of Southern California. Every year a faculty member from each of these units offers a graduate seminar in his/her area of expertise at one of the other units. In the spring of every year faculty and graduate students conjoin at an annual consortium luncheon and lecture by a distinguished visiting scholar.
For further information and an on-line application to the program, please see the Tri-Campus Program's Web site at http://www. hnet.uci.edu/classics/tricampus/.

Dana Sutton

Program Graduate Adviser
Department of Classics
University of California
Irvine, CA 92697-2000
(949) 824-6735
email:tricampus-classics@uci.edu
fax (949) 824-1966

COURSES

UC TRI-CAMPUS GRADUATE PROGRAM IN CLASSICS

Classics 200A. Contemporary Literary Theory and the

 Classics (4)An introduction to contemporary literary theory, focusing on important critical approaches to the literary texts. May be repeated for credit as topics vary. Some recent offerings include "Bahktin and Aristophanes" (A. Edwards, fall 1995) and "Classics and Literary Theory" (P. duBois, spring 1995)

Classics 200B. Historical Perspectives on Classical
Antiquity (4)
Examines ways in which classical texts and ideas have been received and appropriated for the diverse purposes of ancient and subsequent cultures. May be repeated for credit as topics vary. Some recent offerings include "Platonism" (D. Glidden, winter 1996), and "Vergil \& Milton" (D. Sutton, winter 1998).

Classics 200C. Greece and Rome in their Contemporary Cultural Contexts (4)
An introduction to the methods and perspectives of social scientific theory which can be used to study the material and social dimensions of the cultures of ancient Greece and Rome. May be repeated for credit as topics vary. Some recent offerings include "Literature \& Society in the 4th Century" (M. Salzman, winter 1997) and "Homer's Iliad and the Greek Dark Age" (W. Donlan, spring 1999).

Classics 201. Computing in Classical Studies (4) An introduction to the latest methods of computing for research and teaching. May be repeated for credit as topics vary.

Classics 205. Concurrent Readings (2)
Concurrent enrollment with advanced undergraduate courses (either Greek 105 or Latin 105) with enhanced readings and separate examinations. May be repeated for credit as topics vary.

Classics 220. Classics Graduate Seminar (4)
Subject matter variable; mainly but not exclusively major literary topics. May be repeated for credit as topics vary. Same as Art History 295 when topic is appropriate. Some recent offerings include "Senecan Tragedy" (W. Fitzgerald, winter 1997), "Production Criticism" (D. Sutton, spring 1997), and "Cleopatra and Egyptomania in Rome" (M. Miles, winter 1999).

Classics 280. Independent Study (4)
Supervised independent research. Subject varies.
Classics 290. Research in Classics (4-4-4) F.W.S.

Classics 299. Dissertation Research (4-12)
F, W, S. May be repeated for credit. Satisfactory/ Unsatisfactory Only.

Classics 399. University Teaching (4-4-4)
F, W, S. Required of and limited to Teaching Assistants.

UC TRI-CAMPUS CLASSICS PROGRAM FACULTY

Thomas F. Scanlon, Ph.D., Ohio State University, Professor of Classics and Program Director, UCR (Greek and Roman historiography, ancient athletics)
Georgios Anagnostopoulos, Ph.D., Brandeis University, Professor of Philosophy, UCSD (Ancient Greek Philosophy, Ethics, Metaphysics)
Luci Berkowitz, Ph.D., Ohio State University, Professor Emerita of Classics, UCI (Greek literary history, computer application to literature)
Theodore F. Brunner, Ph.D., Stanford University, Professor Emeritus of Classics, UCI (computer application to classicOal literature)
Charles Chamberlain, Ph.D., University of California, Berkeley, Lecturer in Classics and Comparative Literature, UCSD (Greek and Latin literature, Aristotle, poetics)
Cynthia L. Claxton, Ph.D., University of Washington, Lecturer in Classics and Graduate Teaching Supervisor, UCl (Greek prose, historiography)
Walter Donlan, Ph.D., Northwestern University, Professor Emeritus of Classics and Graduate Adviser, UCI (early Greek literature, Greek social history)
Page duBois, Ph.D., University of California, Berkeley, Professor of Classics and Comparative Literature, UCSD (Greek literature, rhetoric, critical theory, cultural studies)

Arthur Droge, Ph.D., University of Chicago, Professor of Literature; Director, Program for the Study of Religion, UCSD (religions of Western Antiquity)
Anthony Edwards, Ph.D., Cornell University, Associate Professor of Classics and Comparative Literature, UCSD (epic, Greek comedy, critical theory)
Leslie Collins Edwards, Ph.D., Cornell University, Lecturer in Classics and Comparative Literature, UCSD (Homer, Greek drama, education in ancient Greece)
Richard I. Frank, Ph.D., University of California, Berkeley, Associate Professor of History and Classics, UCI (Roman history, Latin elegy and satire, classical tradition)
David Glidden, Ph.D., Princeton University, Professor of Philosophy, UCR (Greek and Roman philosophy)
Anna Gonosová, Ph.D., Harvard University, Associate Professor of Art History, UCl (Byzantine and Medieval art)
Edward N. Lee, Ph.D., Princeton University, Professor Emeritus of Philosophy, UCSD (Greek philosophy, Plato)
Marianne McDonald, Ph.D., University of California, Irvine, Professor of Theatre and Classics, UCSD (Greek and Roman theatre, ancient drama in modern plays, film, and opera)
Margaret M. Miles, Ph.D., Princeton University, Associate Professor of Art History, UCI (Greek and Roman art and archaeology, ancient Sicily, Greek religion)
Alden A. Mosshammer, Ph.D., Brown University, Professor of History, UCSD (early Christian thought, Greek chronography, early Greek history)
Sheldon Nodelman, Ph.D., Yale University, Associate Professor of Visual Arts, UCSD (classical art and architecture, Roman portraiture, critical theory)
Maria C. Pantelia, Ph.D., Ohio State University, Associate Professor of Classics and Director Thesaurus Linguae Graecae, UCI (Greek epic poetry, Hellenistic poetry, computer applications to classics)
Wendy Raschke, Ph.D., State University of New York, Buffalo, Lecturer in Classics, UCR (Roman satire, Greek art and archaeology)
B. P. Reardon, D.U.Université de Nantes, Professor Emeritus of Classics, UCI (Late Greek literature, ancient novel)

Michele Salzman, Ph.D., Bryn Mawr College, Associate Professor of History, UCR (Late antiquity; Roman history and literature, religion, women's studies)
Gerasimos Santas, Ph.D., Cornell University, Professor of Philosophy, UCI (ancient philosophy, history of philosophy, ethics)
Gary Shiffman, Ph.D., University or Michigan, Assistant Professor of Political Science, UCSD (Greek political theory)
Patrick Sinclair, Ph.D., Northwestern University, Associate Professor of Classics, UCI (Roman historiography, Latin lexicography, rhetoric)
Dana F. Sutton, Ph.D., University of Wisconsin, Professor of Classics, UCI (Greek and Latin drama, Greek poetry, Anglo-Latin literature)
Eliot Wirshbo, Ph.D., University of Pennsylvania, Lecturer in Classics and Comparative Literature, UCSD (Greek epic, folklore)

Clinical Psychology

OFFICE: 416 and 417, 140 Arbor Drive (619) 497-6659

Professors

Sonia Ancoli-Israel, Ph.D., In-Residence/ Psychiatry
Mark I. Appelbaum, Ph.D., Psychology
J. Hampton Atkinson, Jr., M.D., In-Residence/ Psychiatry
Elizabeth A. Bates, Ph.D., Cognitive Science/ Psychology
Ursula Bellugi, Ed.D., Adjunct/Psychology
Gary R. Birchler, Ph.D., Clinical/Psychiatry
David L. Braff, M.D., Psychiatry
Karen Britton, M.D., Ph.D.,In-Residence/ Psychiatry
Gregory G. Brown, In-Residence/Psychiatry
Sandra Brown, Ph.D., Psychology
Brett Clementz, Ph.D., Psychology
Eric Courchesne, Ph.D., Neurosciences
Dean C.Delis, Ph.D., In-Residence/Psychiatry
Joel E.Dimsdale, M.D., In-Residence/Psychiatry
Mark A. Geyer, Ph.D., In-Residence/Psychiatry
J. Christian Gillin, M.D., Psychiatry

Igor Grant, M.D., Psychiatry
Philip M. Groves, Ph.D., Psychiatry

Robert K. Heaton, Ph.D., Psychiatry, Program Director
Michael R. Irwin, M.D., In-Residence/Psychiatry
Terry L. Jernigan, Ph.D., In-Residence/Psychiatry
Dilip V. Jeste, M.D., In-Residence/Psychiatry
Lewis L. Judd, M.D., Psychiatry, Chair
Robert M. Kaplan, Ph.D., Family and Preventive Medicine, Chair
Daniel F. Kripke, M.D., In-Residence/Psychiatry
James A. Kulik, Ph.D., Psychology
Marta Kutas, Ph.D., Cognitive Science
Saul Levine, M.D., /n-Residence/Psychiatry
James B. Lohr, M.D., In-Residence/Psychiatry
Lawrence A. Palinkas, Family and Preventive Medicine
Barbara L. Parry, Ph.D./ In-Residence/Psychiatry
Thomas L. Patterson, Ph.D., In-Residence/ Psychiatry
David P. Salmon, Ph.D., In-Residence/Psychiatry
Laura Schreibman, Ph.D., Psychology
Marc A. Schuckit, M.D., Psychiatry
David S. Segal, Ph.D., Psychiatry
Stephen R. Shuchter, M.D., Psychiatry
Larry R. Squire, Ph.D., In-Residence/Psychiatry
Stephen M. Stahl, M.D., Ph.D., Adjunct/ Psychiatry
Murray B. Stein, M.D., In-Residence, Psychiatry
Joan Stiles, Ph.D., Cognitive Science
Neal R. Swerdlow, M.D., Ph.D., Psychiatry
Doris A. Trauner, M.D., Neurosciences/ Pediatrics
James Varni, Ph.D.,In-Residence/Psychiatry
Sidney Zisook, M.D., Psychiatry

Associate Professors

Sandra J. Brown, Clinical/Psychiatry Michael P. Caligiuri, Ph.D., Adjunct/Psychiatry Denis Darko, M.D., Adjunct/Psychiatry Renee Dupont, M.D., Clinical/Psychiatry Eric L. Granholm, Ph.D., In-Residence/Psychiatry Patricia H. Judd, Ph.D., Clinical/Psychiatry John R. Kelsoe, Jr., M.D., Psychiatry Jeffrey E.Max, M.D., In-Residence/Psychiatry Paul J. Mills, Ph.D., Adjunct/Psychiatry Mark G. Myers, Ph.D.,In-Residence/Psychiatry William Perry, In-Residence/Psychiatry
Mark H. Rapaport, M.D., In-Residence/ Psychiatry
Tamara L. Wall, Ph.D.,In-Residence/Psychiatry
Shu-hong Zhu, Adjunct/Family and Preventive Medicine

Assistant Professors

Natacha Akshoomoff,Adjunct/Psychiatry
Mark W. Bondi, Ph.D., In-Residence/Psychiatry
David Feifel, M.D., In-Residence/Psychiatry
J.Vincent Filoteo, In-Residence/Psychiatry

Ann Garland, Ph.D., In-Residence/Psychiatry Frank Haist, Adjunct/Psychiatry
Thomas D. Marcotte, Assistant Adjunct/Psychiatry
John R. McQuaid, Ph.D., Adjunct/Psychiatry
Sharon Nichols, Ph.D., Adjunct/Neurosciences

Research Scientist

S. Walden Miller, Ph.D., Associate Project Scientist/ Psychiatry
Arne L. Ostergaard, Ph.D., Associate Research Scientist/Psychiatry
Guerry Peary, Assistant Project
Scientist/Neurosciences
Jeanne Townsend, Ph.D., Assistant Research
Scientist/Neurosciences

Specialist

William J. Sieloer, Ph.D., Medicine

The Joint Doctoral Program

The interdisciplinary partnership of the Department of Psychiatry at UCSD School of Medicine and the Department of Psychology at San Diego State University greatly extends the range of perspectives and furnishes unusual opportunities for graduate study leading to the Ph.D. degree in clinical psychology. The Joint Doctoral Group in Clinical Psychology currently consists of faculty from the UCSD Department of Psychiatry, School of Medicine, and the Departments of Neurosciences, Cognitive Science, Community and Family Medicine, Psychology, and SDSU Department of Psychology and School of Public Health.

Information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University.

The program goal is to train clinical psychologists who are accomplished both as clinicians and as research scientists. The curricula and training provide a strong foundation in clinical psychological concepts, methods, theories and data, together with intensive concentrations in specialized areas of clinical psychology. Currently our program has three areas of specialization: behavioral medicine, neuropsychology, and experimental psychopathology.

The scientist-practitioner model on which this program is based requires that students receive ongoing supervised research experience, including planning, design, implementation, analysis, and communication of findings. Equally important is extensive supervised experience aimed at developing sound general and specialized clinical skills. Students are expected to be actively involved in all these activities throughout their tenure in the program.

The program is designed as a five-year curriculum, including a one-year clinical internship. The curriculum is based on a twelve-month academic year. The program is accredited by the American Psychological Association.

Specific courses currently required as part of the core at UCSD include: Clinical Psychology 294A,B,C, (required for neuropsychology track majors only); Clinical Psychology 296 (independent study, lab practicum); Clinical Psychology 299 (independent study project); School of Medicine 202E (Psychopathology).

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of five years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

COURSES

Clinical Psychology 205. Neuroanatomy (6)
Fundamental anatomy/physiology of human nervous system, emphasizing higher cortical functions. Methods of clinical problem solving in neurology; background in basic neuropsychological skills.

Clinical Psychology 294. Pro-Seminar in

Neuropsychology (3)
Year-long course ($294 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$), each for three credits, offered sequentially fall, winter, spring. Provides a fundamental knowledge of brain-behavior relationships as well as strategies and methods of neuropsychological assessment and rehabilitation.

School of Medicine 202E. Social and Behavioral SciencesPsychopathology (3)
This sequence will acquaint students with techniques of interviewing, concepts of mental illness and normality, basic research in causality of behavioral disorders, and approaches to treatment, all in the context of a bio-psycho-social frame of reference. Format combines a lecture followed by smaller group sessions with a faculty leader. The groups enable students to meet patients with behavioral disorders, to practice interviewing, to develop observational skills, and to discuss material presented in lectures and assigned readings. (S/U grades only.) Prerequisite: SOM 202A,C,D or consent of instructor.

Clinical Psychology 296. Independent Study (1-12)
Independent survey of basic concepts in clinical psychology using various sources of material, including scientific papers in clinical psychology and behavioral science and other sources as seem indicated.

Clinical Psychology 299. Graduate Research (1-12) Individual study course under one or more of the joint doctoral program faculty to develop certain research questions, design a methodology to answer the questions, and then carry out actual research, data reduction, and analysis.

Cognitive Science

OFFICE: 137 Cognitive Science Building http://hci.ucsd.edu/cogsci/

Professors

Richard C. Atkinson, Ph.D., UC President
Elizabeth A. Bates, Ph.D.
Aaron V. Cicourel, Ph.D., Emeritus
Jeffrey L.Elman, Ph.D.
Gilles R. Fauconnier, Ph.D., Chair
James D. Hollan, Ph.D.
Edwin L. Hutchins, Ph.D.
Marta Kutas, Ph.D.
Jean M. Mandler, Ph.D., Emeritus
Donald A. Norman, Ph.D., Emeritus
Martin I. Sereno, Ph.D.
Joan Stiles, Ph.D.
David Zipser, Ph.D.

Associate Professor

John D. Batali, Ph.D.
David J. Kirsh, D.Phil.
Jaime A. Pineda, Ph.D.

Assistant Professors

Andrea A. Chiba, Ph.D.
Seana Coulson, Ph.D.
Gedeon O.Deák, Ph.D.
Javier R. Movellan, Ph.D.

Adjunct Professor

Terrence J. Sejnowski, Ph.D., Biology, Cognitive Science, Computer Science and Engineering, Neurosciences, and Physics

Introduction

Cognitive science is a young and diverse field which is unified and motivated by a single basic inquiry: What is cognition? How do people, ani-
mals, or computers 'think,' act, and learn? In order to understand the mind/brain, cognitive science brings together methods and discoveries from neuroscience, psychology, linguistics, philosophy, and computer science. UCSD has been at the forefront of this exciting new field and our Department of Cognitive Science was the first of its kind in the world. It is part of an exceptional scientific community and remains a dominant influence in the field it helped create.

In addition to preparing undergraduates for careers in a variety of sciences, the major also provides an excellent background for many professional fields, including medicine, clinical psychology, and information technology.

The concerns of cognitive science fall into three broad categories: the brain-the neurological anatomy and processes underlying cognitive phenomena; behavior-the cognitive activity of individuals and their interaction with each other and their sociocultural environment, including the use of language, information, and media; and computation-the capacity of mathematical and computer systems to model cognitive and neural phenomena and represent information, and the role of computers as cognitive tools.

The department collaborates closely with other academic departments and research communities, including the Center for Research in Language, the Center for Human Development, the Salk Institute for Biological Studies, the UCSD Medical Center, and the San Diego Supercomputer Center, providing many outstanding resources and opportunities.

Students are encouraged to participate actively in the department by sharing their ideas about curriculum, research, and other topics with faculty and staff. Undergraduate students may join the Students in Cognitive and Neurosciences (SCANS) organization, which provides opportunities for undergraduates to meet students and faculty from UCSD and other institutes, visit research laboratories, and make job contacts. Graduate students take an especially active role in shaping the department, both academically and administratively, while they gain experience in research, teaching, and managing both labs and department affairs.

The Undergraduate Programs

The department offers both a B.A. and a B.S. degree. The B.S. requires completion of more rigorous lower-division course work and three addi-
tional courses at the upper-division level. The B.S. degree may be taken optionally with a specified area of specialization. There is also an honors program for exceptional students in both degree programs.

Please note: Continuing students may choose to follow the old major requirements or the new major requirements. See department adviser for more information.

Grade Requirements for the Major

A minimum grade-point average of 2.0 is required for admittance to and graduation from the B.A. or B.S. degree program. Students must receive a grade of C - or better in any course to be counted toward fulfillment of the major requirements. All courses must be taken for a letter grade, with the exception of Cognitive Science 195, 198, and 199, which are taken Pass/No Pass.

Four-Year Plan of Study

The four-year plan of study below assures that all prerequisites and requirements for the cognitive science major are completed. The department does enforce course prerequisites and several courses are offered only once a year, so careful planning is important. It is recommended that lower-division courses be taken in the first two years, core courses in the third year, and electives in the final year. Check with a departmental adviser about which quarter cognitive science courses will be offered each academic year. Check with a college adviser about course planning to meet college requirements.
FRESHMAN Mathematics 10A-B-C (B.A.) or
YEAR: Mathematics 20A-B, 21C or Mathematics 20A-B, 21C, and 20F (B.S.)
College requirements
SOPHOMORE Cognitive Science 1 (continuing
YEAR: \quad students may take 17 or 1) 14, and 18 College requirements
JUNIOR YEAR: Nine core couses, chosen from a list of twelve (see Core Sequences, below)
SENIOR YEAR: Electives for the major

Lower-Division Requirements

All majors must complete lower-division courses in introductory cognitive science, calculus, methods, and computer programming:

B.A. Requirements

Mathematics 10A-B-C or 20A-B and 21C
Cognitive Science 1 (continuing students may take 17 instead)
Cognitive Science 14
Cognitive Science 18

B.S. Requirements

Mathematics 20A-B, 21C, and 20F
Cognitive Science 1 (continuing students may take 17 instead)
Cognitive Science 14
Cognitive Science 18

Upper-Division Requirements

The B.A. requires completion of twelve upperdivision courses, and the B.S. requires fifteen. All majors must complete nine core sequence courses. Students are advised to complete these core courses in their junior year, especially if they intend to apply to the honors program. The remainder of the upper-division requirement is fulfilled by completing electives.

Core Sequences

The B.A. and the B.S. programs require nine core courses total; students must complete all three courses in one core sequence of their choice, and two of the three courses in each of the other three core sequences. Core sequences are:
Cognitive Science 101A-B-C
(Cognitive Theory and Phenomena)
Cognitive Science 102A-B-C
(Distributed Cognition, Everyday Cognition, Cognitive Engineering)

Cognitive Science 107A-B-C
(Cognitive Neuroscience)
Cognitive Science 108A-B-C
(Computational Models of Cognition)
Please note: Continuing students may choose to follow the old major requirements or the new major requirements. See department adviser for more information

Electives

At least half of the electives for the major must be taken in the department. Only one Cognitive Science 19X course (190A, 190B, 190C, 195, 198, 199) may be used as an elective toward major requirements. A course taken outside the department must meet the following criteria:

1. The course must deal with topics and issues that are clearly part of cognitive science.
2. The material must not be available in a course offered inside the department.

This policy permits students and their advisers to be responsive to changes in course offerings. Majors must obtain departmental approval for electives taken outside of the department.

Areas of Specialization

A major may elect to receive a B.S. in cognitive science with a specified area of specialization. The areas of specialization are intended to provide majors with guidance in choosing elective courses and to make the specific interests and training of a major clear to prospective employers and graduate schools. Specifying an area of specialization is optional; however, students should take into consideration when planning for their specialization that approved courses are not necessarily offered every year.

To major in cognitive science with an area of specialization, the student must fulfill the requirements for the B.S. degree and must choose four of the required six elective courses from a list of approved electives for that area of specialization. (The lists of approved electives for each area of specialization are available from the department office.)

The following areas of specialization are currently offered by the department:

Specialization in Clinical Aspects of Cognition

This area of specialization is intended for majors interested in cognitive neuropsychology, psychiatry, cognitive disorders, and the effects of drugs and brain-damage on cognitive functions.
Allowed electives include courses in those topics, as well as organic chemistry, biochemistry, and physiology.

Specialization in Computation

This area of specialization is intended for majors interested in software engineering or research in computational modeling of cognition. Allowed electives include advanced courses in neural networks, artificial intelligence, and computer science. Students interested in this specialization will most likely select courses from the computer science and engineering course offerings, as courses offered within the cognitive science department are limited.

Specialization in Human Cognition

This area of specialization is intended for majors whose primary interests include human psychology and applications of cognitive science in design and engineering. Allowed electives include courses in cognitive development, language, laboratory research of cognition, anthropology, and sociology.

Specialization in Human Computer Interaction

This area of specialization is intended for majors interested in human computer interaction; Web; visualization; and applications of cognitive science in design and engineering. Additional electives may be petitioned from communication, computer science, computer engineering, and visual arts.

Specialization in Neuroscience

This area of specialization is intended for majors interested in neuroscience research or medicine. Allowed electives include courses in cognitive neuroscience, organic chemistry, biochemistry, and physiology.

Cognitive Science Honors Program

The Department of Cognitive Science offers an honors program for a limited number of majors who have demonstrated excellence, talent, and high motivation.

Eligibility Requirements

Students are eligible for admission to the program when they:

1. Complete all core courses
2. Have at least junior level standing
3. Have at least a 3.5 GPA in upper-division major courses and at least a 3.0 overall GPA
Eligible students will enroll in four units of 190A (Pre-Honors Project in Cognitive Science) under a faculty member who has agreed to advise them on a potential honors project. Students may apply the COGS 190A course as an elective toward major requirements whether or not they enter the Honors Program. At the end of the 190A course, students will submit to their faculty mentor a written project proposal. The proposal will define the question to be investigated, survey existing literature, describe the approach and methods that will be used, explain how data will be collected if it is an empirical study, detail how human subjects requirements will be met if
necessary, discuss expected results, and provide a timeline for project completion.

Acceptance in Honors Program

To formally enter the Honors Program, students must meet the eligibility requirements above, receive a grade of A- or better in COGS 190A, establish an honors committee of at least two faculty and one graduate student to review the proposal and advise them during the process of completing the honors project, and have their project proposal approved by their honors committee.

The honors committee must be kept informed of any deviations from the original approved proj ect proposal and timeline. Students who fail to make satisfactory progress may be asked to withdraw from the program at any point the adviser or the department chair deems necessary.

Successful completion of the Honors Program requires:

1. Maintenance of a 3.5 GPA in upper-division major courses, and a 3.0 overall GPA
2. Completion of one cognitive science (or related) graduate level course (may be taken P/NP). Students may use the required graduate course as one of their electives for the major whether or not they complete the honors project
3. Completion of COGS 190B and 190C with letter grades of A - or better
4. Completion of COGS 190D (Preparation for Thesis Presentation), a 1-unit seminar given each spring (P/NP)
5. Completion of a written honors thesis describing the project
6. Approval of the thesis by the honors committee and the department chair
7. Satisfactory presentation of the honors thesis to the cognitive science community at the Honors Thesis Presentation Conference, spring quarter.
Students who successfully complete all of the requirements for the Honors Program will graduate with Distinction in Cognitive Science recorded on their transcripts.

Minors and Programs of Concentration

Each college has specific requirements, and students should consult with an academic adviser in their provost's office as well as a cognitive science adviser to be sure they fulfill
requirements of the college and of the department.

To receive a minor from the Department of Cognitive Science, a student must complete a total of seven (four unit) courses; five of which must be upper-division. Lower-division requirements are normally fulfilled by completing (one of) Cognitive Science 3,10 or 11 and (one of) Cognitive Science 14,17 or 18 . Upper-division requirements are normally fulfilled by completing two cognitive science electives and one of the following sequences:
Cognitive Science 101A-B-C
Cognitive Science 102A-B-C
Cognitive Science 107A-B-C
Cognitive Science 108A-B-C
All courses must be taken for a letter grade. No grade below C- is acceptable.

Transfer Credit

Students who wish to transfer from another institution to UCSD as cognitive science majors should work closely with university advisers to ensure that all lower-division requirements have been completed and are equivalent to those offered at UCSD. It is extremely important for students to have completed lower-division requirements by the end of their sophomore year so they are prepared for core courses in their junior year. Advanced UCSD students who wish to transfer to the department should consult with the departmental advisers about credit for courses already completed.

Education Abroad

Students majoring in cognitive science are encouraged to participate in the Education Abroad Programs (EAP), and to investigate other options of foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill UCSD degree and major requirements. Please visit the Web site at http://www/icenter/pao for further details. Financial aid is applicable and special study abroad scholarships are readily available.

The Graduate Programs

There are two Ph.D. programs, each with different admissions and graduation requirements. The Department of Cognitive Science offers a Ph.D. in cognitive science. Students are admitted to UCSD
directly into the department and fulfill degree requirements of the department. The Interdisciplinary Program in Cognitive Science offers a joint Ph.D. in cognitive science and a home department (anthropology, communication, computer science and engineering, linguistics, neurosciences, philosophy, psychology, or sociology). Students are admitted to UCSD through the home department and fulfill the requirements of both the interdisciplinary program and the home department.

Ph.D. in Cognitive Science

This program provides broad training in neurological processes and phenomena; the experimental methods, results, and theories from the study of psychology, language, and social and cultural issues; and the studies of computational mechanisms. The first year is devoted to familiarizing the student with the findings and current problems in cognitive science through courses in foundations and issues.

By the second year, basic courses and laboratory rotations are completed, with the major emphasis on the completion of a year-long research project. Future years are spent completing the advancement to candidacy requirements and doing the thesis research. Throughout the program, there are frequent faculty-student interactions, including special lectures by the faculty or invited speakers and the weekly informal research discussions and cognitive science seminar.

Admissions

The application deadline is January 11.The admissions committee reviews each applicant's statement of purpose, letters of recommendation, GRE scores, previous education and work experience, and grade-point averages, then recommends candidates for admission to the entire faculty, who make the final decision.

Advising

An interim adviser is appointed to serve as general adviser and counselor for each entering student. The adviser helps chart a set of courses that fulfill the content area requirements, taking into account the student's prior training and interests. Students may change the interim adviser at any time (as long as the new interim
adviser is willing). At the time of advancement to candidacy, students choose a permanent adviser who also functions as the chair of the dissertation committee.

All entering students are assumed to have basic prerequisite knowledge, and a list of basic readings will be provided to incoming students. Students who do not have this background can acquire it through self-study in the summer preceding arrival at UCSD or by taking self-paced study courses or relevant undergraduate courses at UCSD.

Summary of Requirements

1. Foundations courses
2. Approved study plan, which includes issues courses, methods courses, and laboratory rotations
3. Second-year project
4. Language requirement
5. Advancement to candidacy
6. Teaching
7. Cognitive Science 200 seminar
8. Participation in departmental events and committees
9. Ph.D. dissertation and defense

Description of Requirements

1. Foundations Courses (Cognitive

 Science 201, 202, 203). Students complete foundations courses in the areas of brain, behavior, and computation by the end of the second year. The department may waive some or all courses for students who already have the required knowledge.2. Study Plan. Students complete a study plan recommended by their adviser. The normal plan includes:
a. Issues Courses. A total of six issues courses are required, at least one in each of the areas of brain, behavior, and computation. At least four of the issues courses should be taken within the department. Issues courses are completed by the end of the second year. Issues courses taken outside the department require the approval of the adviser in conjunction with the Graduate Committee.
b. Methods Courses. Three methods courses are required. Students are required to take:

- Psychology 201A or Cognitive Science 245
- Psychology 201B
- One methodology/analysis course. Course must be approved by the student's adviser and graduate committee.
c. Laboratory Rotations (Cognitive Science 290). Three rotations in different faculty laboratories are required. Each rotation is for a full quarter, and all rotations should be completed by the end of fall quarter of the second year.

3. Second-Year Research Project (Cognitive Science 210A-B-C and 211A-B-C). In the summer between the first and second year, students work with their adviser and a faculty committee to develop a prospectus for a research project. The year-long project culminates with written and oral presentations to the faculty at the end of spring quarter. During the second year, concurrent enrollment in Cognitive Science 210A-B-C and Cognitive Science $211 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ is required as part of the Second Year Project.
4. Language Requirement. The main goal of the language requirement is to give all students firsthand experience with some of the differences in structure and usage of languages and the several issues involved in the learning of second languages. This requirement can be satisfied by demonstrating satisfactory proficiency, by prior study in a language (e.g., two years of high school study), or by satisfactory completion of one quarter of study in a language course approved by the department.

5. Advancement to Candidacy/Qualifying

Paper and Oral Exam. There are three components to advancement to candidacy:
a. Competency. This requirement is met by satisfactorily completing items 1-4 above.
b. Depth. This requirement is met by satisfactorily completing an integrative paper that focuses on important readings covering at least two of the three areas of brain, behavior, and computation. The final paper, oral presentation, and defense are completed
by the end of winter quarter of the third year.
c. Dissertation Topic/Advancement Exam. The student prepares a proposal of the dissertation topic that must be approved by the student's doctoral committee. A written proposal is submitted to the committee at least two weeks prior to an oral defense of the proposal. The doctoral committee consists of at least five faculty members: three from the department and two from outside the department; one of the outside members must be tenured.
6. Teaching (Cognitive Science 500). All graduate students must serve as a teaching assistant at least one quarter of each academic year in residence. The undergraduate program offers a special challenge to instructor and student alike, and experience with the teaching of that program can provide a valuable part of the education of a cognitive scientist. Teaching assistantships performed in other departments must be approved by formal petition to the graduate committee to count toward the requirement. The department works closely with the Center for Teaching Development to design effective training and development programs for its teaching assistants. At the end of each quarter, instructors prepare written evaluations of all teaching assistants.
7. Cognitive Science $\mathbf{2 0 0}$ Seminar. Students must enroll in this seminar for at least three quarters while in residence; frequent participation is encouraged.
8. Participation in Departmental Events and Committees. Students participate in departmental special events and committees and serve as student representatives for faculty meetings, the graduate admissions committee, and the campus-wide Graduate Student Association.

9. Completion of the Ph.D. Dissertation and

 Defense. Candidates prepare a written dissertation demonstrating a substantive contribution to our understanding of cognition. An oral defense follows.
Master's Degree

The Department of Cognitive Science does not offer admissions to a master's program. However, candidates for the Ph.D. may be granted the M.S. degree after fulfilling the first three requirements
listed above. This is usually at the end of the second year.

Evaluation of Performance and Progress

A formal evaluation of performance and progress for all students takes place at the end of spring quarter every year, with special attention given to the first and second years of study and at the time of qualification. The first-year evaluation is based in large part on the performance in foundations and issues courses. The second-year evaluation is based on the student's total performance, with heavy weight given to the student's secondyear research project. The third-year evaluation focuses on the competency and depth requirements, and the following years on the progress made toward completion of the dissertation.

Special Events

The department intends to enhance studentfaculty interaction and current awareness of active research issues by special "events":

- Lectures by invited speakers or faculty members.
- A full day of faculty/student overview and information at the start of each year, with emphasis on ongoing research activity.
- Presentations of second-year research projects to the entire faculty at the end of each year.
- Final defense of the dissertation accompanied by a public lecture and celebration.

Time Limits to Ph.D.

Students must be advanced to candidacy by the end of spring quarter of their fourth year. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

Financial Aid

Financial support is available to qualified students in the form of fellowships, loans, and assistantships. Students are encouraged to seek fellowships and research awards from outside the university. Please refer to the Graduate Studies section for more information.

The Interdisciplinary Ph.D. Program

FACULTY

Professors

Norman H. Anderson, Ph.D., Emeritus, Psychology
Richard C. Atkinson, Ph.D., Cognitive Science and Psychology
Elizabeth Bates, Ph.D., Cognitive Science and Psychology
Ursula Bellugi, Ed.D., Adjunct/Psychology
Patricia S. Churchland, B.Phil., Philosophy
Paul M. Churchland, Ph.D., Philosophy
Aaron V. Cicourel, Ph.D., Emeritus, Cognitive Science and Sociology
Michael Cole, Ph.D., Communication
Garrison W. Cottrell, Ph.D., Program Director, Computer Science and Engineering Jeffrey L.Elman, Ph.D., Cognitive Science Yrjö Engeström, Ph.D., Communication
Gilles R. Fauconnier, Ph.D., Cognitive Science
Philip M. Groves, Ph.D., Psychiatry and Neurosciences
Steven A. Hillyard, Ph.D., Neurosciences James D. Hollan, Ph.D., Cognitive Science Edwin L. Hutchins, Ph.D., Cognitive Science Edward S. Klima, Ph.D., Emeritus, Linguistics
Marta Kutas, Ph.D., Cognitive Science
Ronald W. Langacker, Ph.D., Linguistics
George Mandler, Ph.D., Emeritus, Psychology
Jean M. Mandler, Ph.D., Emeritus, Cognitive Science
Hugh B. Mehan, Ph.D., Sociology
Donald A. Norman, Ph.D., Emeritus, Cognitive Science
Dennis D.M. O'Leary, Ph.D., Adjunct/ Neurosciences
Carol Padden, Ph.D., Communication
Harold E. Pashler, Ph.D., Psychology
David M. Perlmutter, Ph.D., Linguistics
Maria Polinsky, Ph.D., Linguistics
Vilayanur S. Ramachandran, Ph.D., Psychology
David P. Salmon, Ph.D., In-Residence, Neurosciences
Walter J. Savitch, Ph.D., Computer Science and Engineering
Terrence J. Sejnowski, Ph.D., Biology
Martin I. Sereno, Ph.D., Cognitive Science
Larry R. Squire, Ph.D., In-Residence, Psychiatry, Psychology and Neurosciences
Joan Stiles, Ph.D., Cognitive Science

David A. Swinney, Ph.D., Psychology
David Zipser, Ph.D., Cognitive Science
Stuart M. Zola, Ph.D., Psychiatry

Associate Professors

Farrell Ackerman, Ph.D., Linguistics
Gerald J. Balzano, Ph.D., Music
John D. Batali, Ph.D., Cognitive Science
Richard Belew, Ph.D., Computer Science and Engineering
Charles P.Elkan, Ph.D., Computer Science and Engineering
David J. Kirsh, D.Phil., Cognitive Science
Robert E. Kluender, Ph.D., Linguistics
James J. Moore, Ph.D., Anthropology
John C. Moore, Ph.D., Linguistics
Jaime A. Pineda, Ph.D., Cognitive Science

Assistant Professors

Chris Barker, Ph.D., Linguistics
Andrea A. Chiba, Ph.D., Cognitive Science
Seana Coulson, Ph.D., Cognitive Science
Gedeon O. Deák, Ph.D., Cognitive Science
Karen R. Dobkins, Ph.D., Psychology
Javier R. Movellan, Ph.D., Cognitive Science
The interdisciplinary Ph.D. program is distinct from the departmental Ph.D. program (see previous section) both in admissions and graduation requirements. There are four aspects to graduate study in the interdisciplinary program: (a) a primary specialization in one of the established disciplines of cognitive science; (b) a secondary specialization in a second field of study; (c) familiarity with general issues in the field and the various approaches taken to these issues by scholars in different disciplines; and (d) an original dissertation project of an interdisciplinary character. The degree itself reflects the interdisciplinary nature of the program, being awarded jointly to the student for studies in cognitive science and the home department. Thus, students in linguistics or psychology will have degrees that read "Ph.D. in Cognitive Science and Linguistics" or "Ph.D. in Cognitive Science and Psychology."

Admission to the Program

Students enter UCSD through admission to one of the affiliated departments, which then serves as their home department, and which specifies their primary specialization. The affiliated departments are anthropology, communication, computer science and engineering, linguistics, neurosciences, philosophy, psychology, and soci-
ology. Students may apply for admission to the interdisciplinary program at the same time they apply to the home department or after entering UCSD. Students must have an adviser from their home department who is a member of the interdisciplinary program faculty. If a student does not have such an adviser, a member of the Instructional Advisory Committee will be appointed as interim adviser. The Instructional Advisory Committee is made up of one interdisciplinary program faculty person from each of the home departments. The committee member that will serve as interim adviser for a student will come from the same home department as the student.

Note: Admission to the interdisciplinary Ph.D. program is contingent upon applying to and being accepted in a home department.

Primary Specialization

Primary specialization is accomplished through the home department. Students are expected to maintain good standing within their home departments and to complete all requirements of their home departments through qualification for candidacy for the Ph.D. degree.

Secondary Specialization

The power of an interdisciplinary graduate training program lies in large measure in its ability to provide the student the tools of inquiry of more than one discipline. Students in the cognitive science interdisciplinary program are expected to gain significant expertise in areas of study outside of those covered by their home departments. Such expertise can be defined in several ways. The second area might coincide with that of an established discipline, and study within that discipline would be appropriate. Alternatively, the area could be based upon a substantive issue of cognitive science that spans several of the existing disciplines, and study within several departments would be involved. In either case, students work with their adviser and the Instructional Advisory Committee to develop an individual study plan designed to give them this secondary specialization. A list of courses in cognitive studies at UCSD is available. This requirement takes the equivalent of a full year of study, possibly spread out over several years. Often it is valuable to perform an individual research project sponsored by a faculty member in a department other than the student's home department.

The following list demonstrates some ways to fulfill the secondary specialization requirement. It should be emphasized that these programs are only examples. Students will devise individual plans by working with their advisers and the advisory committee. Ideally, students who elect to do research in their areas of secondary interest will be able to accomplish a substantive piece of work, either one of publishable quality or one that will be of significant assistance in their dissertation projects.

Cognitive Psychology. Get a basic introduction to cognitive psychology through the Cognitive Psychology Seminar (Psychology 218A-B) and acquire or demonstrate knowledge of statistical tools and experimental design (this can be done either by taking the graduate sequence in statistics, Psychology 201A-B, or through the standard "testing out" option offered to all psychology graduate students). Finally, and, perhaps of most importance, the student should do a year-long project of empirical research in psychology with the guidance of a member of the Department of Psychology.

Cognitive Social Sciences. A course sequence from sociology and anthropology, including one or two courses in field methods and a research project under the direction of a cognitive social sciences faculty member. The course sequence and project should be worked out with the advisory committee to reflect the interests and background of the student. Examples of courses include Cognitive Anthropology (Anthropology 218), Distributed Cognition (Cognitive Science 234), Seminar in Comparative Cognitive Research (Psychology 216), Text and Discourse Analysis (Sociology 204), Ethno-methodology (Sociology 240), and Cognitive and Linguistic Aspects of Social Structure (Sociology 241 and 242). In addition, courses on field methods are offered by both anthropology and sociology.

Computer Science and Artificial Language. This specialization requires a thorough background in computer science. For those who enter the program without much formal training in this area, the secondary specialization in computer science includes some upper-division undergraduate courses (CSE 100,102,105) and a minimum of two graduate courses (CSE 250AB). (Note that these courses require basic knowledge of programming and discrete mathematics areas that may require some additional undergraduate courses for those who lack these skills.) Students
with stronger backgrounds in computer science may go straight to graduate courses. For all students interested in this specialization, the course sequences and any projects should be worked out on an individual basis with the student's adviser.

Discourse Structure and Processing. This specialization is highly interdisciplinary, spanning linguistics, computer science, psychology, sociology, philosophy, and anthropology. Research within this specialization depends upon which discipline is given emphasis. Therefore, the specialization will have to be developed according to the interests of the student. All students will have to demonstrate awareness and knowledge of relevant studies and the approaches of the various disciplines.

Linguistics. Students who elect a secondary specialization in linguistics should specialize either in the general area of syntax/semantics or in the general area of phonetics/phonology. Those who specialize in syntax/semantics should plan to take three courses in this area and one course in phonetics/phonology. Conversely, those who specialize in phonetics/phonology should plan to take three courses in this area and one course in syntax/semantics. The specific courses recommended will depend on the individual student's interests and should be arranged in conjunction with the Department of Linguistics faculty liaison to the Cognitive Science Interdisciplinary Program.

In addition, students will prepare a research paper (preferably originating in one of the above courses) that demonstrates control of the methodology and knowledge of important issues in their area of specialization.

Neurosciences. A student specializing in neurosciences would take a program of courses emphasizing brain-behavior relationships, including Behavioral Neuroscience (Neurosciences 264) and the Physiological Basis of Human Information (Neurosciences 243). In addition, depending upon the student's individual interests, one or more of the neurosciences core courses would be taken in the areas of Neurophysiology (Neurosciences 262), Mammalian Neuroanatomy (Neurosciences 256), Neuro-psychopharmacology (Neurosciences 277), and/or Neurochemistry (Neurosciences 234). In most cases, the student would also take a research rotation in the laboratory of a member of the neurosciences faculty.

Philosophy. Students who elect a secondary specialization in philosophy will focus on philosophy of science, philosophy of mind, philosophy of psychology, philosophy of neuroscience, or philosophy of language, depending on their area of primary specialization. Courses suitable for this program include Contemporary Topics in the Philosophy of Science (Philosophy 212), Philosophy of Language (Philosophy 235), Contemporary Epistemology and Metaphysics (Philosophy 270), Theory of Knowledge (Philosophy 272), Philosophy of Mind (Philosophy 274), and Seminar on Special Topics (Philosophy 285), which will frequently focus on issues relevant to cognitive science. The course sequence should be worked out with the student's adviser.

Acquisition of Perspective on the Field

The cognitive science faculty offers a special seminar, Cognitive Science 200, that emphasizes the interdisciplinary approach to the field and that covers a variety of different problems, each from the perspective of several disciplines. All students are required to enroll in this seminar a total of six quarters while in residence; most students regularly attend the seminar even after fulfilling the requirement. Students may substitute a Cognitive Science Foundations course for a Cognitive Science 200. A maximum of two quarters may be substituted.

Prequalifying Examinations

Students must complete any prequalifying and field requirements of their home department.

Qualifying Examinations

The Dissertation Advisory Committee. As soon as possible, students form a dissertation committee consisting of:

At least three members from the student's home department, including the student's adviser; and at least three members of the Cognitive Science Program, at least two of whom are not members of the student's home department.

University regulations require that at least one of the faculty members of the committee from outside the home department must be tenured. The committee must be approved by the interdisciplinary program, the home department, and by the dean of Graduate Studies. The dissertation committee is expected to play an active role in
supervising the student and to meet with the student at regular intervals to review progress and plans.

In the qualifying examination, the student must demonstrate familiarity with the approaches and findings from several disciplines relevant to the proposed dissertation research and must satisfy the committee of the quality, soundness, originality, and interdisciplinary character of the proposed research.

Interdisciplinary Dissertation

It is expected that the dissertation will draw on both the primary and secondary areas of expertise, combining methodologies and viewpoints from two or more perspectives, and that the dissertation will make a substantive contribution to the field of cognitive science.

Overview

The program can be summarized in this way: In the first years, basic training within the student's primary specialization, provided by the home departments;

In the middle years, acquisition of secondary specialization and participation in the Cognitive Science Seminar;

In the final years, dissertation research on a topic in cognitive science, supervised by faculty from the program.

Time Limits. Time limits for precandidacy, financial support, and registration are those established for the home department. Normative time is six years.

COURSES

LOWER-DIVISION

1. Introduction to Cognitive Science

A team-taught course highlighting development of the field and the broad range of topics covered in the major. Example topics include addiction, analogy, animal cognition, artificial life, brain damage, cognitive development, distributed cognition, human-computer interaction, language, neuroimaging, neural networks, reasoning, robots, and real-world applications.

3. An Introduction to Computers (4)

A practical introduction to computers and how you can use their power. Designed for undergraduates in the social sciences. Topics include: basic operations of personal computers (MAC, PC), UNIX, word processing, email, spreadsheets, and creating web pages using the World Wide Web. No previous background in computing required.
10. Cognitive Consequences of Technology (4)

The role of cognition and computation in the development of state-of-the art technologies such as human computational interaction in aviation, air traffic control, medical diagnosis, robotics and telerobotics, and the design and engineering of cognitive artifacts.
11. Introduction to Cognitive Science: Minds and Brains (4)
How damaged and normal brains influence the way humans solve problems, remember or forget, pay attention to things; how they affect our emotions; and the way we use language in daily life.
14. Design and Analysis of Experiments (4)

Design, statistical analysis, and interpretation of experiments in the main areas of cognitive science: brain, behavior, and computation. Introduction to mathematical foundations of probability and statistical decision theory. Decision theory is applied to the problem of designing and analyzing experiments. Students will participate in a group project in which they must design scientific experiments, collect data and analyze results. May fulfill general education requirements; ask a college adviser.
17. Neurobiology of Cognition (4)

Introduction to the organization and functions of the nervous system. Topics include molecular, cellular, developmental, systems, and behavioral neurobiology. Specifically, structure and function of neurons, peripheral and central nervous systems, sensory, motor, and control systems, learning and memory mechanisms. (Students may not receive credit for both Biology 12 and Cognitive Science 17. This course fulfills generaleducation requirements for Marshall and Roosevelt Colleges as well as Warren by petition.)
18. Introduction to \subset Programming for Cognitive

Modeling (4)
An introduction to the C programming language and its use in modeling cognitive phenomena. Other topics include: fundamentals of computer architecture, programming languages, operating systems, algorithms and data-structures. Modeling applications include: symbolic artificial intelligence, neural networks, genetic algorithms and computer graphics. Prerequisite: Mathematics 10A or 20A.
90.Undergraduate Seminar (1)

Issues and contemporary research in cognitive science are introduced. (May be repeated when topics vary.)
91. SCANS Presents (1)

The department faculty and the Students for Cognitive and Neurosciences (SCANS) offer this seminar exploring issues in cognitive science. It includes informal faculty research presentations, investigations of topics not covered in the curriculum, and discussions on graduate school and careers. (May be repeated when topics vary.)

UPPER-DIVISION

101A. Sensation and Perception

An introduction to the experimental study of cognition with a focus on sensation and perception. Prerequisite. Cognitive Science 1 .

101B. Learning, Memory, and Attention

A survey of the experimental study of learning, memory, and attention. Topics include conditioning, automaticity, divided attention, memory systems, and the nature of mental representation. Prerequisites: Cognitive Science 1. Recommended: Cognitive Science 101A.

101C. Language

An introduction to structure of natural language, and to the cognitive processes that underline its acquisition, comprehension, and production. This course covers findings from linguistics, computer science, psychology, and cognitive neuroscience to provide an integrated perspective on human language abilities. Prerequisite: Cognitive Science 1. Recommended: Cognitive Science 101A.

102A. Distributed Cognition

Distributed cognition extends beyond the boundaries of the person to include the environment, artifacts, social interactions, and culture. Major themes are the study of socially distributed cognition and the role of artifacts in human cognition. Prerequisite: Cognitive Science 1.

102B. Everyday Cognition

This course examines memory, reasoning, language understanding, learning, and planning directly in everyday, real-world settings. The coursework will include discussions of both the findings and the methodology of naturalistic studies of cognition. Prerequisite: Cognitive Science 102A.

102C. Cognitive Engineering

Applications of cognitive science for the design of human-centered systems are explored. An extensive project analyzing an existing system or product or designing a new prototype application is required. Prerequisites: Cognitive Science 102A and 102B recommended.

107A. Neuroanatomy and Physiology

This first course in the sequence focuses on principles of brain organization, from neurons to circuits to functional networks. It explores developmental plasticity, neuronal connectivity, cellular communication, complex signaling, and how these various dimensions form functional brain systems. Prerequisite: Cognitive Science 1.

107B. Sensory Motor Systems

This course is devoted to the cognitive aspects of systems neuroscience, with a focus on the visual and motor systems. Many other high order neural systems are also covered. Readings are augmented with lectures on current experimental and theoretical results. Prerequisite: Cognitive Science 107A.

107C. Cognitive Neuroscience

This course studies brain systems implicated in attention, language, object recognition, and memory. Neurobiological evidence for functional subsystems within these processes and the way specialized systems develop are considered using findings from animal studies, human development, and behavioral and brain imaging. Prerequisites: Cognitive Science 107B and its prerequisites.

108A. Programming Methods for Cognitive Science

The design, implementation, and analysis of algorithms and data structures. Applications include: symbolic artificial intelligence, neural networks, genetic algorithms, computer graphics, and human computer interaction. Prerequisites: Cognitive Science 1 and Cognitive Science 18 or CSE 9A or CSE 10, or permission of instructor.

108B. Neural Network Models of Cognition I

This course is an elementary introduction to neural networks and their use in cognitive science. Students will learn how to construct and train neural networks to solve problems at both the psychological and neurological levels of cognition. (Course previously offered as

Cognitive Science 108C.) Prerequisite: Cognitive Science 108A.

108C. Advanced Programming Methods for Cognitive

 ScienceThis course focuses on providing students with additional programming experience in the design of cognitive science applications and modeling. Each time it is offered a specific application or modeling area will be covered. With change of topic, the course may be repeated for credit. Prerequisite: Cognitive Science 108A.

113. Cognitive Development (4)

This course examines the foundations and growth of mind, discussing the development of perception, imagery, concept formation, memory, and thinking. Emphasis is placed on the representation of knowledge in infancy and early childhood. (Credit may not be received for both Psychology 136 and Cognitive Science 113.) Prerequisite: Cognitive Science 101 B or Psychology 105 or Psychology 101.

115. Neurological Development and Cognitive

Change (4)
This course provides an overview of neurological development and explores the relations between physiological change and the experience of the child from the prenatal period through adolescence. Prerequisite: Cognitive Science 17 or equivalent.
120. Human Computer Interaction (4)

This course is an introduction to the field of human computer interaction (HCl). It provides an overview of HCl from the perspective of cognitive science. Prerequisites: Cognitive Science 10 and an introductory programming course, or consent of instructor.

121. Human Computer Interaction Programming

This course is an introduction to human computer interaction (HCl) programming. It focuses on architectures, implementation techniques, and cognitive issues involved in designing interactive interfaces. Prerequisite: Cognitive Science 120 or consent of instructor.

142. Philosophy of Cognitive Science (4)

An examination of the philosophical foundations and implications of cognitive science. Emphasis is placed on understanding how philosophical issues and arguments are relevant to the theory and practice of modern cognitive science. May be repeated for credit where topics vary. Prerequisite: upper-division standing.

150.Semantics (4)

This course is an introduction to the study of meaning, reasoning, and understanding. It examines the ways in which natural language reflects complex human thinking processes. Prerequisite: upper-division standing preferred.

151. Analogy and Conceptual Systems (4)

Human thought and meaning are deeply tied to the capacity for mapping conceptual domains onto each other, inducing common schemas and performing mental simulation. This course examines major aspects of this cognitive activity including metaphor, conceptual blending and embodied cognition. Prerequisite: upper-division standing.
153. Language Comprehension (4)

The processes and representations involved in under standing language-processing words, syntax, semantics, and discourse-are examined in light of evidence from both psychological experiments and computer simulations. The course emphasizes connectionist models: how they work and how they simulate psycho-
logical results. Prerequisites: introductory cognitive science and programming are recommended. Cognitive Science 108C is recommended.

154. Communication Disorders in Children and

Adults (4)
The course will begin with neural bases of language use in normal adults, and the neural bases of language and communication development in normal children. It will review recent evidence on the nature of language and communication deficits in several clinical populations of adults (especially aphasia and dementia) and children (including specific language impairment, focal brain injury, retardation, and autism). (Credit may not be received for both Psychology 174 and Cognitive Science 154.) Prerequisites: Cognitive Science 10, 11 or Psychology 101 or Cognitive Science 101AB or Psychology 101 AB or Psychology 145 or Psychology 105 or Psychology 2 and 3.

156. Language Development (4)

A comprehensive survey of theory, method and research findings on language development in children ranging from the earliest stages of speech perception and communication at birth to refinements in narrative discourse and conversational fluency through middle childhood and adolescence. (Credit may not be received for both Psychology 126 and Cognitive Science 156). Prerequisites: upper-division standing and background in developmental psychology and/or linguistics is recommended.
160. Upper-Division Seminar on Special Topics (1-4)

Special topics in cognitive science are discussed. (May be repeated when topics vary.) Prerequisite: department approval.

170. Natural and Artificial Symbolic Representational

 Systems (4)This course develops a detailed analogy between the evolution and architecture of language comprehension in human primates and symbol processing at the level of individual cells, contrasting this with the analogy between cognition and computation. Prerequisites: Cognitive Science 17 or Biology 12; Cognitive Science 18 or Computer Science and Engineering 62AB recommended.
172. Brain Disorders and Cognition (4)

A review of the patterns of impaired and intact cognitive abilities present in brain-damaged patients in terms of damage to one or more components of a model of normal cognitive functioning. (Cognitive science majors may not receive elective credit for both Psychology 139 and Cognitive Science 172.) Prerequisite: Cognitive Science 107A.
174. Drugs: Brain, Mind and Culture (4)

This course explores how drugs interact with the brain/mind and culture. It covers evolutionary and historical perspectives, brain chemistry, pharmacology, expectancies and placebo effects, and models of addiction. It also provides a biopsychosocial survey of commonly used and abused substances. Prerequisite: upper-division standing. Midterm, final, paper.

175. The Neuropsychological Basis of Alternate States of

 Consciousness (4)This course will review the literature that correlates brain rhythms in the human EEG with aspects of cognition, behavioral states, neuropsycho-pharmacology, and psychopathology in order to understand the psychological and neurophysiological underpinnings of these experiences. Prerequisites: Cognitive Science 101A or Cognitive Science 107A.

179. Electrophysiology of Cognition (4)

This course surveys the theory and practice of using recordings of electrical and magnetic activity of the brain to study cognition and behavior. It explores what brain waves reveal about normal and abnormal perception, processing, decision making, memory, preparation, and comprehension. Prerequisites: Cognitive Science 107A or Psychology 106 or Psychology 176; Cognitive Science 101A or Psychology 105.
181. Neural Network Models of Cognition II (4)

This course is a continuation of the study of neural models of cognitive systems with an emphasis on applications and a term-long student project. Prerequisites: Cognitive Science 108C and its prerequisites.

182. Artificial Intelligence Modeling II (4)

The course is an advanced study of artificial intelligence models of control and representation. (Course previously offered as Cognitive Science 108D.) Prerequisites: Cognitive Science $108 B$ and its prerequisites. (Not offered in 2001-2002)

183. Artificial Life (4)

This class will explore models of life as it could be, in artificial as well as biological contexts. An attempt will be made to understand the characteristics which distinguish living from nonliving systems. Coursework includes computer simulations of artificial lifeforms. Prerequisites: Cognitive Science 18, CSE 5A and 5B, or CSE 11, or equivalent. (Not offered in 2001-2002)
184. Modeling the Evolution of Cognition (4)

Mathematical and computational modeling of the evolution and mechanisms of simple cognitive functions. Theoretical background, including topics in population genetics, behavioral ecology, evolutionary game theory, dynamical systems theory, genetic algorithms and neural networks will be applied to questions concerning the evolution of behavioral strategies, the relation between evolution and learning, and the evolution of cooperation, communication and other aspects of social behavior. Prerequisites: Cognitive Science 18, Mathematics 20ABC.

187A-B. Multimedia Design (4)
This sequence will examine the cognitive basis of successful multimedia designs. We will be interested in what makes an interactive system effective: what makes images easy to understand, animations clear and helpful, and why some sequences of images, text and sounds make more sense than others. Students will learn web design, how to evaluate CD ROMs and assess their usability, and gain first hand experience with the problems of visualization. No programming skills are presupposed but we do assume a strong familiarity with computer software.

190A. Pre-Honors Project in Cognitive Science (4)
This independent study course is for advanced students who wish to prepare for and apply to the Cognitive Science Honors Program. After completing this course, students may be admitted to the Honors Program contingent upon significant progress made during the course. (See "Cognitive Science Honors Program" section for more information.) Students should contact faculty whose research interests them to discuss possible projects. Prerequisite: upper-division standing; instructor and department approval.

190B. Honors Studies in Cognitive Science (4)
This course will allow cognitive science honors students to explore advanced issues in the field of cognitive science. It will also provide honors students the
opportunity to develop an honors thesis on the topic of their choice and begin preliminary work under faculty supervision. Students will receive an "IP" grade in 190B and the grade assigned for 190C, when completed, will replace the "IP" in 190B. Prerequisites: Cognitive Science 190A with grade of A- or better and formal admittance to the Cognitive Science Honors Program. (See "Cognitive Science Honors Program" section for more information.)

190C. Honors Thesis in Cognitive Science (4)
This course will provide honors candidates an opportunity to complete the research on and preparation of an honors thesis under close faculty supervision. Oral presentation of student's thesis is required to receive honors; additionally, student must receive grade of A - or better in $190 B$ and 190C to receive honors. Prerequisite: Cognitive Science $190 B$ with grade of A - or better and formal admittance to the Cognitive Science Honors Program. (See "Cognitive Science Honors Program" section for more information.)

190D. Preparation for Thesis Presentation (1)
This course is affiliated with the honors program (190A-$\mathrm{B}-\mathrm{C}$) and is required of honors students during spring quarter. Its aim is to prepare students to present research results to an audience. Emphasis will be on the oral presentation (organization, wording, graphics), but there will also be some discussion about written research reports. Seminar style format with occasional short lectures wherein students will practice oral presentations and provide constructive criticism to each other. Prerequisite: must be concurrently enrolled in 190B or 190C.

191.Laboratory Research (1-4)

Students engage in discussions of reading of recent research in an area designated and directed by the instructor and also participate in design and execution of original research. Assignments include both oral and written presentations and demonstrating the ability to pursue research objectives. Prerequisites: consent of the instructor and department approval. (May be repeated for credit, but not to exceed 8 units).

195. Instructional Apprenticeship in Cognitive

Science (4)
Students, under the direction of the instructor, lead laboratory or discussion sections, attend lectures, and meet regularly with the instructor to help prepare course materials and grade papers and exams. Applications must be submitted to and approved by the department. Prerequisites: upper-division standing; 3.0 GPA; instructor and department approval. P/NP only.

198. Directed Group Study (4)

This independent study course is for small groups of advanced students who wish to complete a onequarter reading or research project under the mentorship of a faculty member. Students should contact faculty whose research interests them to discuss possible projects. Prerequisites: upper-division standing; 2.5 GPA; consent of instructor and department approval.
199. Special Project (1-4)

This independent study course is for individual, advanced students who wish to complete a onequarter reading or research project under the mentorship of a faculty member. Students should contact faculty whose research interests them to discuss possible projects. Prerequisites: upper-division standing; 2.5 GPA; consent of instructor and department approval.

GRADUATE

200. Cognitive Science Seminar (4)

This seminar emphasizes the conceptual basis of cognitive science, including representation, processing mechanisms, language, and the role of interaction among individuals, culture, and the environment Current developments in each field are considered as they relate to issues in cognitive science. (May be repeated for credit.)
201. Cognitive Science Foundations: Neuroanatomy and Neurophysiology (4)
This course is a rigorous introduction to the neurophysiological and neuroanatomical bases of human and animal cognition, covering cellular neurophysiology and local circuits; development; the visual, somatosensory, auditory, motor, and limbic systems; and the evolution of language.

202. Cognitive Science Foundations: Computational

Modeling of Cognition (4)
This course surveys the development of symbolic and connectionist models of cognition. Selected readings from the late 1940s to the present are covered. Topics include:Turing machines, information theory, computational complexity, search, learning, symbolic artificial intelligence, and neural networks.

203. Cognitive Science Foundations: Theories and Methods in the Study of Cognitive Phenomena (4)

Surveys a variety of theoretical and methodological approaches to the study of human cognition. Topics include language structure, language processing, concepts and categories, knowledge representation, analogy and metaphor, reasoning, planning and action, problem solving, learning and expertise, and emotion.
205. Integrative Research Project (4)

This course is taken to satisfy the intergrative paper requirement for the department's Ph.D. program. Students propose a topic and a set of readings that their paper will cover to a committee of three faculty members by the end of the second week. S / U only.

210A-B-C. Introduction to Research (4-4-4)
This sequence is an intensive research project. Students under faculty mentorship perform a thorough analysis of the problem and the literature, carry out original studies, and prepare oral and written presentations. Students should aim for a report of publishable quality. Letter grade required.

211A-B-C. Research Methods in Cognitive Science

(2-2-2)
Issues in design, implementation, and evaluation of research in cognitive science are discussed. Students will present and comment on their own research projects in progress. Discussions also include presentations of research to various audiences, abstracts, reviews, grant process, and scientific ethics. Letter grade required.
212. Mechanisms of Learning and Cognition (4)

This course explores the behavior and mechanisms that underlie a cognitive process from acquisition to expert performance. The emphasis is on the computational mechanisms required to learn skilled performance. Topics vary by quarter, e.g., implicit learning, speech recognition, and mathematic word-problem solving.

213. Issues in Cognitive Development (4)

This course examines current issues in human development of interest to cognitive scientists. An emphasis is placed on the foundations of mind and how informa-
tion is represented at various stages of learning and development. (May be repeated once, when topics vary.)
215. Neurological and Cognitive Development (3)

This course is presented in two sections. The first part of the course focuses on early neurological development. The second part addresses questions concerned with the relations between cognitive brain development, and linguistic and affective development.
220. Information Visualization (4)

This seminar surveys current research in information visualization with the goal of preparing students to do original research. The focus is on the cognitive aspects of information design, dynamic representations, and computational techniques. Topics vary each time course is offered.
234. Distributed Cognition (4)

This course focuses on aspects of individual and socially distributed cognition. Empirical examples are drawn from natural and experimental settings which presuppose, tacitly or explicitly, socially distributed knowledge among participants. The class examines the way locally managed, pragmatic conditions influence how decisions are framed.
238. Topics in Cognitive Linguistics (1-4)

Basic concepts, empirical findings, and recent developments in cognitive and functional linguistics. Language viewed dynamically in relation to conceptualization, discourse, meaning construction, and cognitive processing. (As topics vary, may be repeated for credit.)
241. Ethics and Survival Skills in Academia (2-4)

This course will cover ethical issues which arise in academia, including: dishonesty, plagiarism, attribution, sexual misconduct, correcting errors, political activity, dealing with collaborators, etc. We will also discuss 'survival' issues, including job hunting, grant preparation, journal reviews, writing letters of recommendation, mentoring, etc. This course is open to students from any deparment.
245. Introduction to Probability Theory (4)

This is a one quarter introductory course on probability theory and applications. The target audience is researchers in the cognitive, computational and neural sciences. The course also introduces scientific programming in MatLab. The grade is based on homework, project, or a combination of both.
250. Connectionist Models of Language (4)

This course covers topics in computational psycholinguistics. The primary focus will be on connectionist models, but will also include work in statistical natural language processing as well as experimental psycholinguistics.

251. Aphasia (3)

Research and theory on language breakdown in braindamaged adults is surveyed. Topics include an historical overview from linguistics, psycholinguistics, and neuroscience (especially brain imaging techniques). Credit may not be received for both Psychology 245 and Cognitive Science 251.
253. Semantics and Cognition (4)

This course explores current issues in the study of meaning and its interaction with other areas of cognitive science. The focus is on cognitive semantics, pragmatics, and meaning construction in general.
256. Language Acquisition (4)

Discussion of the acquisition of language by young children, including such topics as its stages, mechanisms, and relation to nonlinguistic development.

260. Seminar on Special Topics (1-4)

Specific topics in cognitive science are discussed. (May be repeated when topics vary.)

270A-B-C. Seminar in Cognitive Neuroscience (2-2-2)
This year-long seminar will provide a broad overview of the emerging field of cognitive neuroscience: the multidisciplinary study of the neural bases of higher cognitive functions, including perception and attention, sensory plasticity, learning and memory, cerebral specialization, and language.
271. Cognitive Neuropharmacology (4)

This course provides a review of the neurochemistry of cognition. Topics include functional anatomy of neurotransmitter circuitry, computational properties of neuromodulation, interaction of psychoactive substances with brain and behavior, neuropharmacological accounts of cognitive disorders (e.g., addiction, depression, schizophrenia).
272. Topics in Theoretical Neurobiology (4)

The main focus of this course is the relationship between nervous system function and cognition. It covers broad theoretical issues and specific topics. Material comes from lectures, papers, and the text. Topic varies each time the course is offered. (May be repeated for credit.)

273. Biological Basis of Attention (4)

A survey of the research and theories of attention with special emphasis on the current anatomical, physiological, and biochemical basis of attention.
274. Advanced Cognitive Neuroscience (4)

This seminar surveys current research investigating the neural systems important in attention, language, memory, and object recognition. Factors important in their development and several different experimental approaches employed in their study are also considered.

275. Visual Modeling (4)

Visual system neurophysiology and neuroanatomy, and neurally realistic and artificial intelligence modeling approaches are covered. Topics are: dendrites, orientation and edges, motion, stereo, shading and color, eye movements, and pattern recognition. Students prepare computer modeling projects or research papers.
279. Electrophysiology of Cognition (4)

This course surveys the theory and practice of using recordings of electrical and magnetic activity of the brain to study cognition and behavior. It explores what brain waves reveal about normal and abnormal perception, processing, decision making, memory, preparation, and comprehension. In addition to a term paper, graduate students have to do individual presentations and short synopses of additional experimental articles. Prerequisites: COGS 107A or PSYC 106 or PSYC 176; COGS 101A or PSYC 105.
290. Cognitive Science Laboratory Rotation (2)

Laboratory rotations provide students with experience in the various experimental methods used in cognitive science. Prerequisite: consent of instructor.
291. Laboratory Research (1-4)

Students engage in discussions of reading of recent research in an area designated and directed by the
instructor and also participate in the design and execution of original research. Students are expected to demonstrate oral and written competence in presenting original research. Prerequisite: consent of the instructor and departmental approval. (May be repeated for credit.)
298. Directed Independent Study (1-12)

Students study and research selected topics under the direction of a member of the faculty. S/U only.
299. Thesis Research (1-12)

Students are provided directed research on their dissertation topic by faculty advisers.
500. Teaching Apprenticeship (1-4)

This practicum for graduate students provides experience in teaching undergraduate cognitive science courses. S/U only.

Communication

OFFICE: 127 Media Center Communication Building, Marshall College (858) 534-4410

Professors

Geoffrey C. Bowker, Ph.D.
Michael Cole, Ph.D.
Zeinabu Davis, M.F.A.
Yrjö H.Engeström, Ph.D.
Daniel C. Hallin, Ph.D.
Robert B. Horwitz, Ph.D., Chair
Chandra Mukerji, Ph.D.
Carol A. Padden, Ph.D.
Vicente L. Rafael, Ph.D.
Michael S. Schudson, Ph.D.
Ellen E. Seiter, Ph.D.
Susan Leigh Star, Ph.D.

Associate Professors

Valerie A. Hartouni, Ph.D.
Olga A. Vasquez, Ph.D.

Assistant Professor

Paula Chakravartty, Ph.D.

Associated Faculty

Jane Rhodes, Ph.D., Associate Professor, Ethnic Studies

Lecturers with Security of Employment

Claudio Fenner-Lopez, M.A., Emeritus
Tom Humphries, Ph.D.

Communication at UCSD is a field of study which emphasizes the role of different technologies of communication, from language to television, in mediating human experience. It draws from such social science disciplines as anthropology, psychology, sociology, and political science, and from the humanities and fine arts, including theatre, literature, and visual arts. Communication students will develop a critical awareness of the communicative forces which affect their everyday lives.

The communication major is not designed as a training program in advertising, journalism, production, or public relations. It provides students with a solid liberal arts background necessary for graduate studies in communication and other disciplines, and for professional work in a number of communication-related fields, including primary and secondary education.

Though the emphasis of the major is not a technical one, the faculty in the Department of Communication believe that students will develop a deeper understanding of how communication works by exploring firsthand the capabilities and limitations of a variety of media; students, therefore, will have the opportunity to conduct part of their studies in video, writing, theatre performance, or computer communication.

Within the communication department curriculum are three broadly defined areas of study: Communication as a Social Force, Communication and Culture, and Communication and Human Information processing. Students take courses in each of these areas.

Communication as a Social Force

How are social systems affected by communication technology? What is the social organization of the communication industries? How is the information presented by the media related to the characteristics of the intended audiences? How do media fit into the power structure of societies? Courses in this area address such questions. Students analyze mass communications, the development of telecommunication and information technologies, and the political economy of communication institutions both at home and abroad.

Communication and Culture

Film, music, advertising, art, theater, ritual, literature, and language are forms of communication which embody cultural beliefs of the societies
from which they come. These media can influence and bring about changes in social behavior, styles, and traditions. At the same time, individuals and groups can reshape the media. Students will study the social production of cultural objects, the cultural traditions that shape their form and content, and various approaches to interpreting or "reading" television, film, newspapers, language, rituals, and other forms.

Communication and Human Information Processing

How do people turn concepts and ideas into messages? What is the process by which people receive and respond to those messages? Each medium - whether it is language, writing, or electronic media-has different properties that change the way people create and comprehend messages. The impact of television on the individual, the effect of literacy on individuals and on cultures, the ways that concepts are transmitted in film, and the means by which computers expand communication potentials are examples of topics investigated in this area.

The Communication Major

Degree offered: Bachelor of Arts
The major consists of two lower-division courses and fourteen upper-division courses. None of the major courses may be taken on a Pass/No Pass basis.

Lower-Division

*COGN 20: Introduction to Communication COGN 21: Methods of Media Production

Upper-Division

*COSF 100: Introduction to Communication as a Social Force
*COCU 100: Introduction to Communication and Culture
*COHI 100:Introduction to Communication and Human Information Processing
*COGN 150: Senior Seminar in Communication
One media methods course
Three courses beyond the introductory courses: (one must be chosen from each of the categories: COSF, COCU, and COHI)
Six upper-division communication electives

* These courses must be taken at UCSD.

Residency Requirement

Students are required to complete at least ten classes of their overall work in the major at UCSD. Following are the communication classes required to be taken at UCSD. See your college adviser for further residency requirements.
COGN 20: Introduction to Communication
COGN 21: Methods of Media Production
COSF 100: Introduction to Communication as a Social Force
COCU 100: introduction to Communication and Culture
COHI 100: Introduction to Communication and Human Information Processing
COGN 150: Senior Seminar
One COCU elective
One COHI elective
One COSF elective
One COMT elective

Requirements for the Communication Minor
 (Effective fall 1998)

The communication minor at UCSD is a social science minor. None of the courses may be taken on a Pass/Not Pass basis. Students are required to take seven courses in communication as follows:
*COGN 20 (Introduction to Communication)
Two courses of your choice from the following 100's:
*COSF 100 (Introduction to Communication as a Social Force)
*COCU 100 (Introduction to Communication and Culture)
*COHI 100 (Introduction to Communication and Human Information Processing)
*Four upper-division communication electives within the areas of the chosen 100 classes.
*These courses must be taken at UCSD within the communication department

Note: COGN 100, COGN 150, 197, 198, and 199 may not be used as electives within the minor.

The Honors Program

The Department of Communication offers an honors program to those students who have demonstrated excellence in the communication major. Successful completion of the honors program enables the student to graduate "With

Communication

Highest Distinction," "With High Distinction," or With Distinction," depending on performance in the program. The honors program requires an application. Students wishing to be considered need to include the following in their application: one faculty adviser who supports their admission to the program, a verified overall GPA of 3.0 and a major GPA of 3.5 , and a brief but detailed description of the proposed research or creative project.

Applications will be reviewed by a faculty committee, accepting students who meet this criteria. Students who do not meet this criteria but who have promising projects may be admitted by special dispensation with strong faculty endorsement and a letter of recommendation. Once accepted into the Honors Program, students are required to complete a two-quarter course sequence, COGN 191A/191B in the fall and winter quarters of their senior year. At the end of the fall quarter, students will receive an IP grade report. This grade will change to the final letter grade at the completion of the course sequence in the winter quarter. This grade is based on attendance in the seminars and successful completion of the research paper or creative production.

The Graduate Program

The Department of Communication offers a program of study leading to the Doctor of Philosophy degree. Communication at UCSD seeks to combine modes of analysis from the humanities and social sciences to explore the history, structure, and process of communication. The graduate program is conceived as a blending of the tradition of critical communication research with the empirical tradition of American scholarship. The program does not closely resemble any other communication department in this country. It is related by sympathy and interest to mass communication programs, but not by kinship. Historically, this department grew out of an interdisciplinary program jointly sponsored by the Departments of Drama (currently, Theatre and Dance), Political Science, Psychology, and Sociology. The department retains strong ties to the departments and disciplines from which it developed.

The study of communication at UCSD places major emphasis on historical and comparative approaches to symbolically mediated human activity. The graduate curriculum is organized
around three perspectives: 1. Communication as a Social Force, 2. Communication and Culture, and 3. Communication and the Individual. Communication as a Social Force deals with the history and political economy of mediated communication and the study of the media as social institutions. The department is particularly strong in the areas of telecommunications, regulation, and information studies. Special interests include the increasing importance of information and information technologies in American society and the global consequences of media practices. Communication and Culture involves the analysis of culture, using traditions from literature, folklore, history, sociology, and anthropology to focus on the social construction of interpretation and meaning. Special interests include the study of broadcast news, print journalism, commercial entertainment, and live performances as communicative systems. The department is particularly strong in the areas of popular culture, political culture, and the relationship of nature to culture. Communication and the individual involves examination of the individual as socially constituted through language and other media. Special interests include computer-mediated interaction, the effects of specified media practices on individual consciousness, and the language and culture of the deaf community. The program also emphasizes a production component in which students test theory in practical implementations. Some faculty and student interests bridge the components of the curriculum. Faculty research interests that do so include concepts of person and mind, communication and collective memory; relations of language, power and culture; gender and cultural forms; telecommunications and information studies and communication and technology in the work place.

Ph.D. Requirements

1. $200 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ (Introduction to the Theory of Communication as a Social Force, Communication and Culture, and Communication and the Individual).
2. 294, The History of Communication Research.
3. At least three methods courses from the 201 sequence (see course listings).
4. Four courses in communication history and theory (see course listings).
5. 280, Advanced Workshop in Communication Media.
6. 296, Communication Research as an Interdisciplinary Activity.
7. First-Year Exam and Evaluation: At the end of the spring quarter of the student's first year, the student must pass a comprehensive written examination based on course work completed during the first year.
8. Language Requirement: All students are required to demonstrate proficiency in one language other than their native language.
9. Qualifying Examinations: Before the end of the fourth year the student must take and pass an oral qualifying examination. The exam will be based on two papers concerning two of the subfields covered in the program. The student will also present a separate dissertation proposal at the examination. At this time, the faculty will examine the proposal for appropriateness and feasibility.
10. Teaching Requirement:In order to acquire teaching experience, all students are required to participate in the teaching activities of the university for three academic quarters.
11. Dissertation: Acceptance of the dissertation by the university librarian represents the final step in completing all requirements for a Ph.D.The dissertation committee must be approved by the department chair and the dean of Graduate Studies.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

Student Advising

Faculty Graduate Advisers:
Valerie Hartouni, Ph.D.
Faculty Undergraduate Adviser:
Olga Vasquez, Ph.D.
Undergraduate Student Affairs Advisers:
Bea Velasco
Jamie Lloyd
Graduate Coordinator:
Gayle Aruta

COURSES

LOWER-DIVISION

General Communication

COGN 20. Introduction to Communication (4)
An historical introduction to the development of the means of human communication, from language and early symbols through the introduction of writing, printing, and electronic media, to today's digital and multimedia revolution. Examines the effect of communications media on human activity, and the historical forces that shape their development and use.

COGN 21. Methods of Media Production (4)
This course explores fundamental technical and social constraints shaping media production: light, optics, electricity, news media technology, camera techniques, basic editing languages, and aesthetic standards affecting production decisions. Satisfactory completion of COGN 21 is required to obtain a "media card."

UPPER-DIVISION

Communication as a Social Force

COSF 100. Introduction to Communication as a Social Force (4)
A critical overview of areas of macro communication and analysis, with special emphasis on the development of communication institutions, including broad casting, common carriers, and information industries Questions regarding power, ideology, and the public interest are addressed. Prerequisite: COGN 20.

COSF 120. The Transformation of Global

Communications (4)

The information revolution has dramatically altered the telecommunications and information technologies and services which constitute the infrastructural nervous system of all international economic activity. This course is an introduction to the technical and market changes driving the emergence of a global information economy. Topics include the rise and decline of regulatory consensus; the development of new systems, services and markets; the growth of intangible, net work-based transactions; the restructuring of corporate production and products; and the emergence of new international issues and conflicts. Prerequisite: COSF 100 or consent of instructor.

COSF 125A-B. Civic Participation (4)

What are the sources of political apathy and political engagement? What are the variety of ways Americans express civic involvement and political concern? Primary focus will be on the contemporary United States, but with substantial attention to comparative and historical perspectives. COSF 125B is a continuation of COSF 125A. This will be run as a research seminar Students will write library-based or fieldwork-based empirical research papers of 25-40 pages. Prerequisites: COSF 100 or consent of instructor for COSF 125A. COSF 125A and instructor consent for COSF 1258.

COSF 126. The Information Age: In Fact and Fiction (4) Analysis of the forces propelling the "Information Age. An examination of the differential benefits and costs, and a discussion of the presentation in the general media of the "Information Age." Prerequisite: COSF 100 or consent of instructor.

COSF 127. The Internet Industry (4)
The political economy of the emergent Internet indus try, charted through analysis of its hardware, software, and services components. The course specifies leading trends and changing institutional outcomes by relating the Internet industry to the adjoining media, telecommunications, and computer industries. Prerequisite: COSF 100 or consent of instructor.

COSF 128. Information Technology: Culture, Society,

Politics (4)
A survey of recent developments in telecommunications, computer, and information technologies, and the social impact of their melding into a new industrial complex. The examination will be situated within the debates over the so-called post-industrial society. The impact of information technology on industry, work, stratification, politics, and culture will be considered. Prerequisite: COSF 100 or consent of instructor.

COSF 132. History of U.S. Political Communication (4)
Survey of the history of political communication in the United States from the colonial period to the present. Students will work on term papers in which they will undertake original historical research. Prerequisites: communication major, COSF 100, or consent of instructor.

COSF 139A-B. Law, Communication, and Freedom of

 Expression (4-4)An examination of the legal framework of the freedom of expression in the United States. 139A covers the fun damentals of First Amendment law through the consideration of key cases in historical context. Prior restraint, incitement, obscenity, libel, fighting words, public forum, commercial speech, and hate speech are some of the topics covered. 139B focuses on the law of mass communication, examining the different legal treatments accorded print, broadcasting, cable, and common carriers. The decline of broadcast regulation, the breakup of AT\&T, the rise of new forms of mass communication, and the question of the public interest are of central concern. Prerequisites: 139A-COSF 100 or PS 40 or consent of instructor. 139B-COSF 100 or PS 40 , COSF 139A preferred.

COSF 140A. Comparative Media Systems: Asia (4)

The development of media systems and policies in Asia with emphasis on the news media and television Special attention to the impact of market reforms in China. Prerequisite: COSF 100 or consent of instructor.

COSF 140B. Comparative Media Systems: Europe (4)
The development of media systems and policies in Europe. Differences between European and American journalism. Debates over the commercialization of television. The role of media in post-communist societies in Eastern Europe. Prerequisite: COSF 100 or consent of instructor.

COSF 140C. Comparative Media Systems: Latin America

 and the Caribbean (4)The development of media systems and policies in Latin America and the Caribbean. Debates over dependency and cultural imperialism. The news media and the process of democratization. Development of the regional television industry. Prerequisite: COSF 100 or consent of instructor.

COSF 14CXL. Foreign Language Discussion (1)

Students will exercise advanced foreign language skills to discuss materials and the correspondingly numbered communication language foreign area course. This section is taught by the course instructor, has no final exam, and does not affect the grade in the core
course, COSF 140C. Prerequisite: concurrent enrollment in COSF 140C.

COSF 141. History of U.S. Telecommunications (4)

This course provides a sustained historical focus on the developing social form and industry structure of U.S. telecommunications, beginning with the Post Office Policy issues are regularly incorporated into readings and discussions. Emphasis is placed on the emergence, around the turn of the century, of the regulated, national telephone network system dominated by AT\&T and its extension. Prerequisite: COSF 100 or consent of instructor.

COSF 145. Communication and Development in China (4)
Communication is playing an increasingly important role in the political, economic, and social transformations in China. This course explores the interconnections between communication and China's pursuit of a specific mode of development in the context of globalization. Theoretical discussions will be combined with concrete analysis of media products and the changing structure of Chinese communication industries. Prerequisite: COSF 100 or consent of instructor.

COSF 148. Computers, Work, and Society (4)

This course explores new ways in which information technology is used to reorganize the work place and its social impact. Examines different approaches to organ izing work both historically and today, the social forces affecting technological development, and the eco nomic forces reshaping industry and labor. Prerequisite: COSF 100 or consent of instructor.

COSF 159. Work and Industry in the New Information

 Economy (4)This course, a research seminar, examines the evolution of the so-called new information economy and analyzes the transformation of patterns of work and indus trial organization. Students will be expected to write a research paper, typically on some aspect of the new economy in the San Diego-Tijuana region. Prerequisite: upper-division standing or consent of instructor.

COSF 160. Political Economy/Global Consumer

Culture (4)
This course critically examines social and economic forces that shape the making of this new global consumer culture by following the flows of consumption and production between the 'developed' and 'develop ing' worlds in the 1990s. We will consider how consumers, workers, and citizens participate in a new globalized consumer culture that challenges older dis tinctions between the 'First' and the 'Third World.' In this course, we will focus on the flows between the U.S. Asia, Latin America. Prerequisite: COSF 100 or consent of instructor.

COSF 167. Emerging Global High-Tech Regions: Labor and National Development (4)

This course will pose critical questions about the nature of work, the role of labor unions, and national develop ment goals in high-tech regions in the 1980s, 1990s Case studies will consist of a number of common issues in the following regions from Silicon Valley to Asia Europe, and Latin America: How do these regions fit in the overall development goals of different national economies? What terms of work predominate in the global 'information economy'? What is, and can be the role of the organized labor within and across national borders? What are the implications for labor rights? Prerequisite: upper-division standing or consent of instructor.

COSF 171A-B. American News Media (4-4)

History, politics, social organization, and ideology of the American news media. SF 171A surveys the development of the news media as an institution, from earliest new newspapers to modern mass news media. SF 171B deals with special topics, including the nature of television news, and with methods of news media research, and requires a research paper. Prerequisite: COSF 100 for COSF 171A: COSF 171A is required for COSF 171B.

COSF 175. Advanced Topics in Communication: Social Force (4)
Specialized study in communication as a social force with topics to be determined by the instructor for any given quarter. Past topics include information as a commodity and book publishing. May be repeated for credit three times. Prerequisite: COSF 100 or consent of instructor.

COSF 180. Political Economy of Mass

Communications (4)
The social, legal, and economic forces affecting the evo lution of mass communications institutions and struc ture in the industrialized world. The character and the dynamics of mass communications in the United States today. Prerequisite: COSF 100 or consent of instructor.

COSF 181. Political Economy of International

Communications (4)
The character and forms of international communica tions. Emerging structures of international communications. The United States as the foremost international communicator. Differential impacts of the free flow of information and the unequal roles and needs of developed and developing economies in international communications. Prerequisite: COSF 100 or consent of instructor.

COSF 183. History of Communication Technologies (4)
A historical survey of the relationship of communication technology, mind, and society. If communication technologies are artifactual extensions of the human mind, their history may be traced back at least to the origins of writing. The course, organized chronologically, will in different years take up different technologies among writing, printing, telephone and telegraph film, broadcasting, and computers. Prerequisite: COSF 100 or consent of instructor.

COSF 186. Film Industry (4)

A study of the social organization of the film industry throughout its history, addressing such questions as who makes films, by what criteria, and for what audience. The changing relationships between studios, pro ducers, directors, writers, actors, editors, censors, distributors, audience, and subject matter of the films will be explored. Prerequisite: COSF 100 or consent of instructor.

Communication and Culture

COCU 100. Introduction to Communication and

Culture (4)
Processes of communication shape and are shaped by the cultures within which they occur. This course emphasizes the ways in which cultural understandings are constructed and transmitted via the variety of communication media available to members. A wide range of cultural contexts are sampled, and the different ways that available communication technologies (language, writing, electronic media) influence the cultural organization of people's lives are analyzed. Prerequisite: COGN 20, or HDP 1, or consent of instructor.

COCU 110. Cinema in Latin America (4)
Analysis of the changing content and sociopolitical role in Latin America of contemporary media, including the "new cinema" movement, recent developments in film, and popular television programming, including the telenovela. Examples drawn from Mexico, Brazil, Cuba, and other countries. Prerequisite: COCU 100 or consent of instructor.

COCU 110XL. Foreign Language Discussion (1)

Students will exercise advanced foreign language skills to discuss materials and the correspondingly numbered communication language foreign area course. This section is taught by the course instructor, has no final exam and does not affect the grade in the core course, COCU 110. Concurrent enrollment in COCU 110 required.

COCU 120. The Problem of Voice (4)

This course will explore the problem of self-expression for members of various ethnic and cultural groups. Of special interest is how writers find ways of describing themselves in the face of others' sometimes overwhelming predilection to describe them. Prerequisite: COCU 100 or consent of the instructor.

COCU 125. How to Read a Film (4)

The purpose of this course is to increase our awareness of the ways we commonly interpret or make understandings from movies and to enrich and increase the means by which one can enjoy and comprehend movies. We will talk about movies and we will explore a range of methods and approaches to film interpretation. Readings will emphasize major and diverse theorists, including: Bazin, Eisenstein, Cavell, and Mulvey. Prerequisite: COCU 100 or consent of instructor.

COCU 127. Folklore and Communication (4)

Folklore is an important variety of noncommercial communication in societies dominated by commercial media. A source of alternative understandings, folklore is characterized by particular styles, forms, and settings. This course introduces a wide range of folklore genres from different cultures and historical periods, including oral narrative, material folk arts, dramas, and rituals. We will pay special attention to the relation between expressive form and social context. Sources include folklore texts, ethnographies, performances on film and videotape, novels, autobiographies, and student observations and experiences. Prerequisite: COCU 100 or consent of the instructor.

COCU 128. Folklore and Mass Media (4)

Local personal, vernacular, and oral traditions coexist with and influence the mass-produced, mass-mediated culture of the late twentieth century. This course examines the history of this influence, using materials such as oral histories, life stories, urban legends, and soap operas to explore the conjunctions of folklore and commercially produced entertainments in everyday social life. Prerequisite: COCU 100 or consent of the instructor.

COCU 130. Tourism: Global Industry and Cultural

 Form (4)The largest industry in the world has far-reaching cultural ramifications. We will explore tourism's history and its contemporary cultural effects, taking the perspective of the "toured" as well as that of the tourist. Prerequisite: COCU 100 or consent of the instructor.

COCU 132. Gender and Media (4)
This course examines the work of women artists and the history of the representation of women in the
media, from the beginnings of cinema to the present, and offers a basic introduction to feminist media theory. It focuses on the representation of gender, and narrative and experimental strategies used by women media makers, and the role of the female spectator Prerequisite: COCU 100 or consent of the instructor.

COCU 134. Communication, Politics, and Citizenship in

 America (4)The citizen, free enough and informed enough to make political choices, supported by democratic social institutions and representative political institutions, lies at the heart of democratic theory. But who is entitled to be a citizen? Are citizens adequately informed? Do social and political institutions make possible or stand in the way of their ability to express their needs and interests? This course will examine these questions, and changing theoretical and practical answers to them, from colonial times to the present. Prerequisite: upperdivision standing.

COCU 135. Public Relations in Society (4)

Using modules, this course introduces students to public relations and allows them to analyze its place in our increasingly complex society. The three modules are designed and structured to go from an understanding of what public relations is to allowing you the opportunity to identify and analyze its role in society. Prerequisite: COCU 100 or consent of the instructor.

COCU 137. The Politics of Bodies (4)

This course will explore the construction of gendered bodies and gendered sexuality in the late twentieth century, postindustrial culture(s). Through the use of fiction, film and theory as well as political, historical and media analysis, we will examine the contested terrain, including the race and class coding, of such issues as abortion, infertility, eating disorders, gender identity, and AIDS. Prerequisite: COCU 100 or Women's Studies 2A B or C.

COCU 138. Feminist Theory (4)

This class is designed to initiate students into the pleasures, pains, and perplexities of critical thinking about gender. We will survey a wide variety of thinkers and issues, consider some of the historical as well as contemporary debates within western feminist thought, and develop tools of analysis for future work. Prerequisite: upper-division standing. Recommended: Women's Studies/Cultural Traditions 2A, B, or C

COCU 139. Reproductive Discourse and Gender (4) In this course we will examine as a problem of discourse and culture the controversies surrounding the development and use of the new technologies of human genetics and reproduction. Of particular interest will be the way in which these new technological practices and processes test, erode, or undermine traditional understanding of "human nature" and relationship while enforcing traditional understanding of gender Prerequisite: COCU 137 or Women's Studies 2A, B, or C.

COCU 140. Television, Culture, and the Public (4)
How and what does television communicate? Emphasis will be on contemporary U.S. television programming, placed in comparative and historical context. Special topics may include: TV genres; TV and politics; TV and other media. Frequent in-class screenings. Prerequisite: COGN 20 or consent of the instructor.

COCU 144. Language and Society (4)
An introduction to the major ideas and methods in the social study of language. Topics include the history of

English, bilingualism, the mechanics of ordinary conversation, and national language policies. No background in formal linguistics is required. Prerequisite: COCU 100 or consent of instructor.

COCU 148. Communication and the Environment (4)

Survey of the communication practices found in environment controversies. The sociological aspects of environmental issues will provide background for the investigation of environmental disputes in particular contested areas, such as scientific institutions, communities, work-places, governments, popular culture, and the media. Prerequisite: COCU 100 or consent of instructor.

COCU 149. Youth, Culture and Media (4)

The interrelationship of youth and modern media in the "American century," youth culture and how it is closely tied to various media, the 60 s growth of rock culture and mass media's ambivalence toward the young as social threats, and as a lucrative market for pop products. Other topics include: violence, sex and gender relations, ethnic subcultures, activism, advertising, video games, and the Internet. Prerequisite: COCU 100 or consent of instructor.

COCU 161. Material Culture: Design and Social

Process (4)
An investigation of the connections between material culture and the technical and social forces affecting its production and use. Analytic topics include dress, gardening, and urban planning. Prerequisite: COGN 20 or consent of instructor.

COCU 162. Popular Culture (4)
An overview of the historical development of popular culture from the early modern period to the present. Also a review of major theories explaining how popular culture reflects and/or affects patterns of social behavior. Prerequisite: COGN 20 or 50 C . 1 A or consent of instructor.

COCU 163. Popular Culture in Contemporary Life (4)

Treats the products of the modern culture industries and theories of their social and political importance. We will look at a wide range of cultural forms, including music, television, fashion, food, and landscapes. Special attention will be paid to questions of how popular culture is consumed, what it means to its audiences, and to gender, racial and ethnic differences among producers and consumers. Prerequisite: upper-division standing.

COCU 164. Multinational Media, Conglomerate

Culture (4)
To understand the workings of mass media conglomerates, this course will study one media corporation in depth. We will examine its history and present structure, paying attention to its diverse, interlocking sectors (news, cable, music, publishing, animation, theme parks). Prerequisite: COCU 100 or consent of the instructor.

COCU 165. History, Memory and Popular Culture (4)
What role does popular culture play in shaping and creating our shared memory of the past? The course examines diverse sources such as school text books, monuments, holidays and commemorations, museums, films, music, and tourist attractions. Prerequisite: COCU 100 or consent of the instructor.

COCU 166. Cartoons (4)
This class relates cartoon programming for children to the history of western childhood and the contemporary American culture of the child. While other classes may deal with the effects of television on children, this one is designed to encourage students to review the long-standing western traditions of hope and fear asso-
ciated with children that shape these concerns. Prerequisite: COCU 100 or consent of the instructor.

COCU 170. Advertising and Society (4)
Advertising in historical and cross-cultural perspectives. Topics will include the ideology and organization of the advertising industry; the meaning of material goods and gifts in capitalist, socialist, and nonindustrial societies; the natures of needs and desires and whether advertising creates needs and desires; and approaches to decoding the messages of advertising. Prerequisite: COCU 100 or consent of instructor.

COCU 174. Persuasion and Society (4)

(Same as Soc/B 164J.) What is the role of messages intentionally designed to be persuasive in society? How are messages crafted, and what impact do they have? Specific domains of persuasive communication to be examined will vary from year to year, but will typically include commercial advertising, public information campaigns, propaganda, public relations, and schooling. This course integrates research from sociology, social psychology, rhetoric, and communication. Prerequisite: upper-division standing or consent of instructor.

COCU 175. Advanced Topics in Communication:

Culture (4)
Specialized study in communication and culture with topics to be determined by the instructor for any given quarter. Past topics include critical theory, rituals and spectacles. May be repeated for credit three times. Prerequisite: COCU 100 or consent of instructor.

COCU 179. Colonialism and Culture (4)

This course examines colonial narratives, slave accounts, essays, and stories by both colonizers and colonized. It also explores the issue of nationalism in determining the limits of colonialism among minority groups in the United States and in the Third World. Prerequisite: upper-division standing.

COCU 180. Cultures and Markets (4)
What is the relationship between "culture"--those conventions that anchor ideas and practices about self and society-and the "market"--the site of exchange and the restless circulation of social energy? This course will introduce students to the symbolic and practical import of commodities in shaping everyday life. Students will be expected to do the assigned readings and keep ethnographic accounts of the cultures that have grown around the sites of market transactions, e.g., shopping malls, corporate offices, network t.v., etc. They are also expected to write a paper integrating the readings with their ethnographic materials. Prerequisite: COCU 100 or consent of instructor.

Communication and Human Information Processing

COH 100 . Introduction to Communication and the Individual (4)
An introduction to theories of human mental processes which emphasizes the central role of mediation. The course covers methods of research that permit the study of mind in relation to different media and contexts of use. The traditional notion of media effects is critically examined in a number of important domains, including television, film, writing, and oral language. Prerequisite: COGN 20 or HDP 1, or consent of instructor.

COHI 108. The Development of Communication in Children (4)

(Same as HDP 130.) The course serves as an introduction to research methods in the study of child development. The special focus of the course will be on how children acquire competence in symbolic communication, including language, drawing, writing, and number systems. Observation of children in their interactions with each others and adults will be required. Prerequisite: COHI 100 or HDP 1.

COHI 114. Bilingual Communication (4)
This course is designed to introduce students to the multiple settings in which bilingualism is the mode of communication. Students will examine how such settings are socially constructed and culturally-based. Readings on language policy, bilingual education, and linguistic minorities, as well as field activities will constitute the bulk of the course. Prerequisite: COHI 100 or consent of instructor.

COHI 115. Education and Global Citizenship (4)

The course introduces students to concepts, possibilities, and dilemmas inherent in the notion of global citizenship. Students will formulate goals and instructional strategies for global education and the expected competence of an individual within a global society-able to focus simultaneously upon many diverse elements, issues, and contexts. It will examine the role that communication and curriculum can play in the formation of identity, language use, and civic responsibility of a global citizen. Prerequisite: COH 100 or consent of instructor.

COHI 117. Language, Thought, and the Media (4)
This course examines the ways in which various communicative channels mediate human action and thought. A basic premise of the course is that human thought is shaped in important ways by the communicative devices used to communicate. There is a particular emphasis on how thought develops, both historically and in the individual. Prerequisite: COH 100 or consent of instructor.

COHI 119. Learning to Read (4)

This course explores learning to read as a process involving individual, cultural, and social resources. Reading difficulty is understood as induced by lack of resources, such as access to books or access to strategies for decoding, comprehension, and analysis of written text. Activities of reading are taken as a basic context for understanding patterns of chronic and pervasive reading difficulty in their populations. Prerequisite: COH 100 or consent of instructor.

COHI 120. Reading the Web (4)

This course explores how networked computing has helped change many aspects of modern life, from how we manage illness to how we see ourselves culturally. The focus of the class is the online venue--how has the Web become part of daily life? What is different about goods, services, and events that transpire online? What theories of communication and social interaction are useful in understanding online behavior? Prerequisite: COHI 100 or consent of instructor.

COHI 121. Literacy, Social Organization, and the Individual (4)
This course will examine the historical growth of literacy from its earliest precursors in the Near East. The interrelation between literate technology and social organization and the impact of literacy on the individual will be twin foci of the course. Arriving at the modern era, the course will examine such questions as the
impediments to teaching reading and writing skills to all normal children in technological societies and the relation between literacy and national development in the Third World. Prerequisite: COH 100 or COCU 100 or HDP 1 or consent of instructor.

COHI 122. Communication and the Community (4-4)

This course examines various forms of communication that affect people's everyday lives. Focusing on ways that ethnic communities transmit and acquire information, and interact with mainstream institutions, we examine a variety of alternative local media, including murals, graffiti, newsletters, and community radio. Prerequisite: COH 100 or consent of instructor.

COHI 123. Children and Media (4)

A course which analyzes the influence of media on children's lives. The course adopts an historical as well as social perspective on childhood within which media plays a role. Among media studied are books, films for children, video games, computer games, and television. Prerequisite: COGN 20 or HDP 1 or consent of instructor.

COHI 124. Voice: Deaf People in America (4)
The relationship between small groups and dominant culture is studied by exploring the world of deaf people who have for the past twenty years begun to speak as a cultural group. Issues of language, communication, slefrepresentation, and social structure are examined. Prerequisite: COHI 100 or consent of instructor.

COHI 125. Communication in Organizations (4)

Organizations are analyzed as historically-evolving discursive systems of activity mediated by talk, text, and artifacts. The class covers sense making, coordinating, symbolizing, talking, negotiating, reading and writing, story-telling, joking, and visualizing in organizations. Exemplary case studies, employing several complementary theoretical frameworks, are used to analyze these communicative processes. Prerequisite: COH 100 or consent of instructor.

COHI 126. Toys and the Material Life of Children (4)

This course reviews a history of toys and those used by children. Toys will be studied from the view of their imagery and market popularity, including dolls, action figures, blocks, trains, cars, computer games, and "educational toys." Students will analyze the toy industry and its impact on childhood, leisure, and family life. Prerequisite: COH 100 or consent of instructor.

COHI 134. Language and Human Communication (4) This course looks at the interaction of technology, culture, and language, with a focus on narrative styles. Theories on the role of technology in shaping and transforming talk are examined. Cultural properties such as physical space and work traditions are studied as they bear on styles of talking and talking about the world. Storytelling, humor, and talk of children are used as examples of styles of talking. Prerequisite: COH 100 or consent of instructor.

COHI 143. The Psychology of the Filmic Text (4)

The course will examine a variety of films using different perspectives and methods of psychology to analyze the types of problems raised by the nature of cinematic communication. Topics will include an introduction to basic elements of cinematography, theoretical and technical bases of film's "grammar," perception of moving pictures, the function and status of sound, the influence of film on behavior and culture (and vice versa), the representation of psychological and social interaction, the communication of narrative and spatial information formation, the generation and translation
of film's conventions, and the parameters which the medium and the culture impose upon the attempt to express various forms of abstraction in the concrete visual language of film. Prerequisite: COHI 100 or consent of instructor.

COHI 175. Advanced Topics in Communication:
 Human Information Processing (4)

Specialized study in communication: human information processing with topics to be determined by the instructor for any given quarter. May be repeated for credit three times. Prerequisite: COHI 100 or consent of the instructor.

Communication Media Methods

COMT 100. Non-Linear/Digital Editing (4)

This course will prepare students to edit on non-linear editing facilities and introduce aesthetic theories of editing: time code editing, time line editing on the Media 100, digital storage and digitization of audio and video, compression, resolution and draft mode editing. By the end of the course students will be able to demonstrate mastery of the digital editing facilities. Prerequisites: communication majors, senior standing, COGN 21 or consent of instructor.

COMT 101. Television Analysis and Production (6)

An introduction to the techniques and conventions common to the production of news, discussion, and variety-format television programs. Particular emphasis will be placed on the choice of camera "point of view" and its influence on program content. Laboratory sessions provide students the opportunity to experiment with production elements influencing the interpretation of program content. Concentration on lighting, camera movement, composition, and audio support. Prerequisite: COGN 21 or consent of instructor.

COMT 102. Introduction to Media Use in

Communication (4)

Students will engage in projects, using media, to address theories of communication. Students can use film, video, computers, pen and paper, photography, posters, or performances for their projects. Prerequisites: COGN 20 and COGN 21.

COMT 103. Television Documentary (6)

An advanced television course which examines the history, form, and function of the television documentary in American society. Experimentation with documentary techniques and styles requires prior knowledge of television or film production. Laboratory sessions apply theory and methods in the documentary genre via technological process. Integrates research, studio and field experience of various media components. Prerequisite: COMT 101 or COGN 21 or consent of instructor.

COMT 104. Television as a Social Force (6)

Students will conduct simple field research and then make a series of documentary video tapes to present research in a television format. Prerequisite: COMT 101 or consent of instructor.

COMT 105. Media Stereotypes (4)

An examination of how the media present society's members and activities in stereotypical formats. Reasons for and consequences of this presentation are examined. Student responsibilities will be: (a) participation in measurement and analysis of stereotype presentations; (b) investigating techniques for assessing both cognitive and behavioral effects of such scripted presentations on the users of media. Course can be taken to meet COCU major requirement. Prerequisite: COCU 100 or consent of instructor.

COMT 106. Feminist Video Workshop (6)
This course explores the relationship between dramatic production and theory in a feminist context. Examination of such questions as the nature of collaboration, gender as an aspect of role identity, and sexual codes of behavior. This class will create, as an ensemble, a live dramatic production of a feminist video and collaborate on a dramatic production. Course can be taken to meet COCU major requirement. Prerequisites: COGN 21 and COCU 100 or consent of instructor.

COMT 107. Internet Journalism (4)

This course focuses on writing for Internet publications and using the Internet for research and hypertext bibliography. Students will be required to learn and use a web-programming language. News writing for the Internet will be compared to news writing in other media, including print journalism. Prerequisites: communication major, COGN 20 or consent of instructor.

COMT 108. Visual Knowledge (4)

This course reviews ways that visual imagery contributes to our understanding of the world around us and ourselves. Students will consider uses of visual images in science, the mass media, and everyday life. Course can be taken to meet COCU major requirement. Prerequisite: COGN 20 or consent of instructor.

COMT 109. Digital Media Pedagogy (4)

This course teaches techniques for teaching digital media: such as Word, Photoshop, PageMaker, digital cameras, digital video, non-linear editing. What are the special challenges digital media present to teachers and students? How do digital media compare to older technologies such as typewriters, film cameras, and analog video? How do gender, class, and age affect the way students and teachers respond to digital media? At least six hours of fieldwork at a computer lab of their choice or at Seiter's project at Adams Elementary will be required. Experience with computers and/or digital imaging recommended. Prerequisite: communication majors only.

COMT 110. News Media Workshop (4)

Designed for students working in student news organizations or off-campus internships or jobs in news, public relations, or public information. A workshop in news writing and news analysis. Prerequisites: COCU 100 and COSF 171 (may be taken concurrently) or consent of instructor.

COMT 111A-B. Communicating and Computers (4-4)

This course introduces students to computers as media of communication. Each quarter students participate in a variety of networking activities designed to show the interactive potential of the medium. Field work designed to teach basic methods is combined with readings designed to build a deeper theoretical understanding of computer-based communication. Courses can be taken to meet COHI major requirement. Prerequisites: COHI 100 and communication major or consent of instructor.

COMT 112. Ethnographic Studies of the Media (4)

This is a practical course on ethnographic fieldworkobtaining informed consent interviewing, negotiating, formulating a research topic, finding relevant literature, writing a research paper, and assisting others with their research. Course can be taken to meet COHI major requirement. Prerequisite: COH 100 or consent of instructor.

COMT 113. Theatre Text to Media Performance (6)

This course will explore the relationships between theatre performance and video and film production of dra-
matic texts as communication. Beginning with a case study of one dramatic score and moving to a variety of short dramatic pieces, students will be expected to apply both creative and critical skills to scene study for theatre and film. This course will include consideration of such elements as space, pacing, continuity, choice and preparation of materials, improvisations and relationship to the audience. Students may emphasize one area, such as acting, dramaturgy or camera work, but all members of the class will take on at least two different performance production tasks during the course. Seminar and workshop format. Prerequisite: COCU 100 (COGN 21 strongly recommended) or consent of instructor.

COMT 116. Practicum in Child Development (6)

(Same as Psych 128, HDP 135.) A combined lecture and laboratory course for juniors and seniors in psychology and communication. Students should have a solid foundation in general psychology and communication as human information processing. Students will be expected to spend four hours a week in a supervised practical after-school setting at one of the community field sites involving children. Additional time will be devoted to readings and class prep, as well as, six hours a week transcribing field notes and writing a paper on some aspect of the field work experience as it relates to class lectures and readings. Please note that the enrollment size for each site/section is limited. See department course listing for site/section descriptions. Prerequisite: COHI 100 or consent of instructor.

COMT 118. Oral History (4)

Theories, questions, cases and methods in oral history will be introduced through readings, lectures, and concrete practice in oral historical research. Topics will include the relationship between oral history and official history; oral history and social history, voices and stances of the speaker, stances of the ethnographer and politics of editing; recording and presenting of texts; what is social speech in the individual. Course can be taken to meet COCU major requirement. Prerequisite: COCU 100 or consent of instructor

COMT 120. Documentary Sketchbook (4)

Digital video is the medium used in this class both as a production technology and as a device to explore the theory and practice of documentary production. Technical demonstrations, lectures, production exercises, and readings will emphasize the interrelation between production values and ethics, problems of representation, and documentary history. Prerequisite: communication majors only.

COMT 175. Advanced Topics in Communication, Media

Methods (4)

Specialized "practice" in communication: media methods with topics to be determined by the instructor in any given quarter. May be repeated for credit three times. Prerequisite: communication majors only.

General Communication

COGN 150. Senior Seminar in Communication (4)
This course examines in detail some topic in the field of communication, bringing to bear several of the approaches and perspectives introduced in the basic communication curriculum. Seminars will be limited to 25 students and class participation is stressed. A research paper is required. Prerequisite: senior standing or consent of instructor.

COGN 175. Advanced Topics in Communication: General (4)
Specialized study in communication: General with topics to be determined by the instructor in any given quarter. May be repeated for credit three times. Prerequisite: upper-division standing or consent of instructor.

COGN 191A-B. Honors Seminar in Communication (4)
Preparation of an honors thesis, which can be either a research paper or a media production project. Open to students who have been admitted to the honors program. Grades will be awarded upon completion of the two-quarter sequence. Prerequisite: admission to the honors program.

COGN 194. Research Seminar in Washington, D.C. (4) (Same as PS 194, USP 194, Hist 193, SocE 194, Erth 194.) Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistants and a substantial research paper. Prerequisite: participation in UCDC program.

COGN 198. Directed Group Study in Communication (4) Directed group study on a topic or in a field not included in the regular curriculum by special arrangement with a faculty member. (P/NP grades only.) May be taken three times for credit. Prerequisite: consent of instructor.

COGN 199. Independent Study (4)
Independent study and research under the direction of a member of the staff. (P/NP grades only.) Prerequisite: consent of instructor.

GRADUATE

COGR 200A. Introduction to the Study of Communication as Social Force (4)
This course focuses on the political economy of communication and the social organization of key media institutions. There will be both descriptive and analytical concerns. The descriptive concern will emphasize the complex structure of communication industries and organizations, both historically and cross-nationally. The analytic focus will examine causal relationships between the economic and political structure of societies, the character of their media institutions, public opinion, and public attitudes and behaviors expressed in patterns of voting, consuming, and public participation. The nature of evidence and theoretical basis for such relationships will be critically explored.

COGR 200B. Introduction to Study of Communication: Communication and Culture (4)

This course focuses on questions of interpretation and meaning. This course will examine how people use texts to interpret the world and coordinate their activities in social groups. Students will study both theories of interpretation in the conventional sense and theories about the act of interpreting.

COGR 200C. Introduction to the Study of Communication: Communication and the Individual (4) This course will draw on theorists who examine human nature as constituted by social, material, and historical circumstances. This course considers the media in relation to the ontogenetic and historical development of the human being and an examination of the individual as socially constituted in a language-using medium. The role of new communication technologies as part of research methodologies is explored in lecture-seminar.

COGR 201A. Experimental Designs and Methods (4)
This course will familiarize students with a variety of experimental strategies used to study the process and products of communication. The conduct of two small experimental projects will be combined with reading and critique of classic experiments in the field

COGR 201B. Ethnographic Methods for Communication

 Research (4)A supervised and coordinated group project will allow students to develop competence in a variety of ethnographic approaches to communication. Subjects covered include choosing a field-work site, setting or process for participation; entry and development of relationships; techniques of observation, interviewing, notetaking, and transcription. Course may also include photography and video as research tools. All participant observation and interviewing strategies fall under the review of the Committee on Human Subjects.

COGR 201C. Discourse Analysis (4)
Review and critique of studies employing discourse analysis, focusing on the ways that "discourse" is identified, recorded, and reported. A working notion of "discourse" will develop from works representing diverse disciplinary approaches. Students will record, transcribe, and report on segments of talk in an everyday setting. All participant observation and interviewing strategies fall under the review of the Committee on Human Subjects

COGR 201D. Historical Methods for Communication

Research (4)
Different approaches to conducting historical research in communication. Such approaches may include the social history of communication technology; structuralist and poststructuralist accounts of language, media, and collective memory; and new historicist treatments of cultural history. Sources, documentation, and the nature of argument from historical evidence are emphasized.

COGR 201E. Political Economic Methods for

Communication Research (4)
Combines methodological critique of classic politicaleconomic studies of communication agencies and institutions with an in-depth research project. The project serves to familiarize students with approaches to documentation and to methodological issues associated with an overarching process or trend, such as social effects of communications technologies, economic concentration in the communications industry, the information economy, transnationalization of networks, deregulation of telecommunications, or causes and impacts of increasing television programming costs.

COGR 201F. Textual Analysis (4)

Students will explore the theoretical stakes and methodological implications of a range of contemporary critical reading practices including but not limited to psychoanalysis, literary criticism, deconstruction, and film theory. Readings will be drawing from the works of Lacan, Foucault, Irigaray, Derrida, Bahktin, Eco, de Lauretis, White, and Barthes.

COGR 201H. Qualitative Methods in Audience Research (4)

This course explores the social and economic definitions of media audiences and the various qualitative methodologies for studying media use. Includes audiences for television, video, and motion pictures, as well as users of telephones, computers, and electronic mail.

COGR 2011. Ethnography of Information Systems (4)
This course will survey the rapidly growing body of ethnographic analyses of information systems, to extend the basic principles of ethnographic research and to lead students in the development of projects modifying these principles for the emerging electronic environment. Students may approach the course in one (or both) of two ways-either preparing for and carrying out a pilot ethnographic study or studying the theoretical literature in depth.

COGR 201J. Comparative Analysis (4)
The logic of comparative analysis and its role in communication research. Scientific inference in qualitative research. Selection of cases. Problems of translation across cultures.

COGR 201K. Sociological Analysis (4)

This course will introduce students to selected sociological perspectives, concepts, and methods for the study of mass communication. It will explore the implications of taking social relations and social institutions, rather than individuals or cultural texts of discourses, as the chief units of analysis.

COGR 205. Advanced Cultural Analysis (4)

In this class students will work on their own research projects which use cultural analysis. They will review and critique work in progress to prepare for conference presentations, publication, or in the case of a dissertation, for the thesis defense.

COGR 209. International Communications (4)
This course will examine the material infrastructure of communication flows internationally, focusing on the major transmitters and categories of the messages and imagery. Emphasis will be placed on the impact of international communication on national sovereignty and the character of economic development.

COGR 210. Information and Society (4)

The social, legal, and economic forces affecting the evolution of mass communication institutions and structure in the industrialized world. Differential impacts of the free flow of information and unequal roles and needs of developed and developing economies.

COGR 212. Enlightenment and Counter-Enlightenment

 Traditions in Communication Research (4)The course investigates the enlightenment concepts of rationality, subjectivity, power, and truth and examines the anti-enlightenment attack on these concepts. The aim of the course is to provide students the opportunity to read key works in Western social and political theory, and to understand how these underlie and shape different theoretical-methodological agendas in contemporary communications research.

COGR 215. Regulation of Telecommunications (4)

The course will look at the history of, and rationales for, the regulation of mass communications in the United States. The course will cover both broadcasting and common carrier regulation. We will analyze telecommunications regulatory structures as they were constituted historically with the 1934 Communications Act and examine their breakdown in the late 1970s. In a larger vein, the course will examine the rise and functions of regulatory agencies in modern American history.

COGR 220. The News Media (4)

History, politics, social organization, and ideology of the American news media. Special attention will be paid to historical origins of journalism as a profession and "objective reporting" as ideology; empirical studies of
print and TV journalism as social institutions; news coverage of Vietnam and its implications for theories of the news media.

COGR 222. Childhood and Culture (4)
This course explores the social construction of childhood as organized by the institutions of school and family. Of particular interest are media consumption and leisure as they interact with the emergence of taste, preference, and identity in children. Modern adolescence is also explored as it bears on the social nature of childhood.

COGR 225A. Introduction to Science Studies (4)
Study and discussion of classics work in history of science, sociology of science, philosophy of science, and communication of science, and of work that attempts to develop a unified science studies approach Required for all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program or approval of instructor.

COGR 225B. Seminar in Science Studies (4)
Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program or approval of instructor.

COGR 225C. Colloquium in Science Studies (4)
A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required for all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program or approval of instructor.

COGR 232. Topics in Political Culture (4)

Drawing on work in political science, anthropology, sociology, history, and communication, and examining studies both historical and contemporary, this interdisciplinary seminar seeks to assess the value of the "political culture" concept for explaining political outcomes. Specific issues taken up in the seminar will vary year to year.

COGR 236. Popular Culture (4)

This class will be an opportunity for students to review major contributions to the field from the disciplines of anthropology, history, literature, sociology and American studies, and to experiment with some of the recently developed methods for studying popular forms. They will then be able to consider more precisely the potential and actual contribution of studies of popular culture to the discipline of communication.

COGR 240. The Culture of Consumption (4)
(Cross-listed with HIGR 273.) This course will explore the development and cultural manifestations of consumerism in the nineteenth and twentieth centuries. Topics will include the rise of museums, the development of mass market journalism and literature, advertising, and the growth of commercial amusements. Readings will focus primarily, but not exclusively, on the United States. Students will be encouraged to think comparatively.

COGR 245. Performance and Audience (4)

This course will explore the history and nature of audience as a concept and phenomenon. The first half of the term will be spent surveying the historical nature of the relations of audience to performance and to social groups. The second half of the course will address modern and contemporary aspects of audience, taking into consideration the effects of radio, film, and television on audience and nature of audience in contrasting cul-
tures such as that of contemporary China and the United States.

COGR 261. Advanced Seminar in Mediational

Approaches to Culture/Mind (4)

This course will examine theories of mind in which cultural mediation is given a leading role. The work of anthropologists, psychologists, and communication scholars will be studied in depth. Emphasis will be placed on the methodological implication of cultural theories of mind for empirical research.

COGR 265. Literacy (4)

This course will examine the historical growth of literacy from its earliest precursors in the Near East. The interrelation between literate technology and social organization and the impact of literacy on the individual will be twin foci of the course. Arriving at the modern era, the course will examine such questions as the impediments to teaching reading and writing skills to all normal children in technological societies and the relation between literacy and national development in the Third World.

COGR 266. Ethnography of Information Systems (4)
In this course students will survey the rapidly growing body of ethnographic analyses of information systems, extend basic principles of ethnographic research, and lead students in the development of projects modifying these principles for the emerging electronic environment. Students will carry out a series of fieldwork exercises and discuss notes and results in class.

COGR 271A. The News Media (4)

Theories and methods in the study of news, both print and broadcast. Topics include the political economy of news, the social organization of news institutions, and news as a cultural form. The course will normally concentrate on U.S. news media but comparative studies will also be examined

COGR 275. Topics in Communication (4)
Specialized study in communication, with topics to be determined by the instructor for any given quarter.

COGR 280. Advanced Workshop in Communication

 Media (4)This course is a project course in which students prepare a production or experiment using one of the forms of media. The course is designed to allow students to experiment in a communication form other than the usual oral presentation in class or a term paper. Students can do a video production, a coordi nated photographic essay or exhibit, a computer insructional game, a published newspaper or magazine article directed at a special audience, a theatrical pres entation, or some form other than those listed. Prerequisite: graduate standing or consent of instructor.

COGR 294. The History of Communication Research (4) Intellectual history of the field of communication studies from Robert Park to the present. Explication and assessment of major research approaches and classic studies representing both empirical and critica traditions.

COGR 296. Communication Research as an

Interdisciplinary Activity (4)
A course oriented toward a re-analysis of communication as a discipline. The content of this course is to provide the student with as well-integrated a framework as possible for initiating strong communication research in the dissertation.

COGR 298. Directed Group Study (1-12)
The study and analysis of specific topics to be developed by a small group of graduate students under the guidance of an interested faculty member. COGR 500. Practice Teaching in Communication (4)

COGR 299. Graduate Research (1-12)
Advanced independent study in communication under the guidance of Department of Communication faculty.

COGR 500. Practice Teaching in Communication (4) A doctoral student in communication is required to assist in teaching undergraduate Department of Communication courses for a total of six quarters. One meeting per week with the instructor, one meeting per week with the assigned sections, and attendance at the lecture of the undergraduate course in which he or she is participating are part of this requirement.

Comparative Studies in Language, Society, and Culture

OFFICE: 3354 Literature Building
(858) 534-3826/(858) 534-3217
http://www.literature.ucsd.edu

Program Faculty

Michael Meeker, Ph.D. Department of Anthropology
Jann Pasler, Ph.D. Department of Music
Don E. Wayne, Ph.D. Department of Literature
Graduate students in the humanities, social sciences, and arts in this program are provided the opportunity to design curricula, conduct research, and write dissertations under the guidance of interdepartmental and/or intercampus Ph.D. committees. The student who participates in the program must be admitted, satisfy all requirements for advancement to candidacy, and pass the qualifying examination in one department. The student must also undertake advanced study in an integrally-related area of research specialization. The student advances to candidacy in the program upon successfully defending a written dissertation proposal before the interdepartment and/or intercampus Ph.D. committee. In the instance of some departments and programs, the defense will be identical with completion of the departmental qualifying examination.

Application to the program in Comparative Studies may be made at the earliest during the student's third quarter of residency in his or her
primary department. From the point of acceptance into the program, the student's preparation for dissertation research will be under the supervision of the interdepartment or intercampus Ph.D. committee. The degree granted may indicate in its title the precise nature of the student's studies and research when appropriate and desir-able-e.g., Ph.D. in comparative literature and ethnopoetics, in linguistics and literary studies, in economics and Chinese studies, in philosophy and the history of ideas. When an additional degree title is contemplated, the student's Ph.D. committee must forward a program of study and research, as well as the dissertation proposal, to the supervising committee for initial approval and to the Graduate Council for final approval.

Students applying for admission to UCSD and interested in applying for admission to the program should direct their inquiries to a primary department. Students already admitted to a primary department should, after the required quarters of residence and with the advice of a department adviser, direct inquiries to the chairperson of the program.

Faculty Research Groups

Beginning with the academic year 1997-1998, the program sponsors a series of faculty research groups. These groups consist of faculty who have announced their intention to supervise graduate students wishing to work on topics involving the comparative study of language, society, and culture. Each faculty research group is expected to be composed of faculty in the humanities, social sciences, and arts from different departments and/or campuses. For a list of current faculty research groups and the topics which they support, contact the chairperson of the program.

The Anthropology of Modern Society

The Anthropology of Modern Society is a project of graduate training and research dedicated to the study of modernity and its counterpoints in the late twentieth century. The group sees the social life of cities as making manifest this problem in issues of citizenship and democracy, social formations in tension with the nation-state, modern subjectivities, social and religious movements, transnational markets and migrations, and relations of local to global processes. Participants are committed to reorienting anthropological theory and ethnographic practice towards such contemporary social and political problems.

Director: James Holston,
Department of Anthropology, (858) 534-0111
Co-Director: Martha Lampland,
Department of Sociology, (858) 534-5640

Ph.D. Time Limit Policies

A student admitted to this interdisciplinary program is subject to the same time limit policies as those of the student's primary department.

Computer Science and Engineering

See Engineering, School of.

Contemporary Black Arts Program

OFFICE:Thurgood Marshall College Administration Building, Room 120

Director

Cecil Lytle, Provost, Thurgood Marshall College

Faculty

Ken Anderson, Visiting Lecturer, Music Robert Cancel, Associate Professor, Literature Floyd Gaffney, Ph.D., Professor Emeritus, Theatre Sandra Foster-King, M.F.A., Visiting Lecturer, Theatre George Lewis, Professor, Music
Cecil Lytle, B.A., Professor, Music
Faith Ringgold, M.A., Professor, Visual Arts Quincy Troupe, Professor, Literature

The Minor

The Contemporary Black Arts Program is an interdisciplinary minor which provides a broad introduction to an appreciation of Afro-American performing arts through lecture, studio courses, and public performance. Students complete twenty-eight units, with a minimum of twenty upper-division units. Students who complete the minor must meet the following requirements:

1. A required core of four lecture courses chosen from:

Theatre	THHS 109 (African Heritage in Contemporary Drama) or THHS 101 (Topics: African American Theatre)
Music	Music 127A (Music of Black Americans)
Visual Arts VA 126DN (African and African	VA 126DN (African and African American Arts)
Literature History	LTEN 17 (Intro to African American Lit) HIUS 135a (Origins of the Atlantic World, c. 1450-1650) or HIUS 135b (Slavery and the Atlantic World)
2. A fifth lecture course selected from the following approved list:	
Literature/English 185. Themes in Afro-American Literature (4)	
Literature/English 188. Contemporary Caribbean Literature (4)	
Literature/English 148. Genres in American Lit (4)	
Literature/English 183. African American Prose (4)	
Literature/English 184. African American Poetry (4)	
Literature/Writing 100. Beginning Fiction (4)	
Music 126. Introduction to Oral Music (4)	
Music 127B. Music of Black Americans (4)	
Literature/Writing 102. Poetry (4)	
Literature/Writing 120. Personal Narrative (4)	
VA 1. Introduction to Art Making (4)	
3. A total of eight units of performance courses selected from the following approved list:	
Music 95G. Gospel Choir (2)	
Music 95J. Jazz Ensemble (2)	
Music 131. Jazz Improvisation (4)	
Theatre/Dance 132. Dances of the World (4)	
Theatre/Acting 120.Ensemble (4)	
Students interested in either taking Contemporary Black Arts Program courses or completing the minor are encouraged to discuss their interests and develop a course of study with a faculty member of the program at their earliest convenience. See the Marshall College Provost's Office for further information.	

Contemporary Issues

OFFICE: 2073 Humanities and Social Sciences Building, Muir College, (858) 534-3589

Director

Patrick J.Ledden, Ph.D.

COURSES

LOWER-DIVISION

22. Human Sexuality (4)

A survey of the nature and problems of human sexuality in the development of the individual, in cultural traditions and values, and in social roles and organizations, particularly with regard to contemporary America. L. Ross
40. Contemporary Issues: The AIDS Epidemic (4)

Using current information, this course will deal with the worldwide spread of AIDS, particularly into communities, colleges, and unversities. Discussion topics: origin, infection, biology, clinical expression, risks, vaccines, epidemiology, and the social, ethical, economic, and legal aspects of this epidemic.

50. Information and Academic Libraries (2)

An introduction to research strategies directed at satisfying the information needs of the student using the academic library, with emphasis on the UCSD library system. Library techniques will be acquired through lectures and discussion, problem sets, and a term project. Students will learn to extend these techniques to independent research.

UPPER-DIVISION

136. The Anthropology of Medicine (4)
(Same as ANGN 128.) Theoretical approaches to and cross-cultural analyses of the role of the medical profession, the sick and the healers, and culture as communication in the medical event. The theoretical anthropological aspects of medical practice and medical research will include a consideration of the "Great Traditions" of medicine as well as primitive and peasant systems. Western medicine will be considered in the foregoing framework, with issues of contemporary concern by way of introduction. Prerequisite: upper-division standing. L. Ross
137. Discussion Leading in Contemporary Issues (4)

Students will lead groups of ten to twenty students in discussions of contemporary concern. Students will meet with the professor to plan and prepare for their discussions to be held weekly. Students will also consult with another faculty member specializing in their topics for further check on reading materials and course of discussion. (P/NP grades only.) Prerequisite: Contemporary Issues 196 and consent of the director of Interdisciplinary Sequences.
196. Contemporary Issues Workshop (2)

A workshop for potential discussion leaders in the Contemporary Issues Program. Students will investi-
gate topics for discussion and methods of presentation and inquiry. Participating in the workshop does not guarantee selection as discussion leader. (P/NP grades only.)
198. Group Studies in Contemporary Issues (4)

Group studies, readings, projects, and discussions in areas of contemporary concern. Course is set up so that students may work together as a group with a professor in an area of contemporary concern whereby the group emphasis would be more beneficial and constructive than individual special studies. Prerequisite: consent of instructor. (P/NP grades only.)
199. Special Studies in Contemporary Issues (2-4)

To be offered during fall, winter, and spring quarters. Permission of the director of Interdisciplinary Sequences is required. The 199 course is to be made up of individual reading and projects in the areas of contemporary concern. Term paper and/or completed project is required. This class is given under special circumstances, e.g., student abroad. (P/NP grades only.)
500. Apprentice Teaching in Contemporary Issues (4) A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation and grading of examinations and other written exercises, and student relations. Prerequisite: graduate standing.

Critical Gender Studies

(Formerly Women's Studies)

OFFICE: 2073 Humanities \& Social Sciences
Building, Muir College, (858) 534-3589

Affiliated Faculty

Professors

R. Michael Davidson, Ph.D., Literature Zeinabu Davis, M.F.A., Communication Page duBois, Ph.D., Literature Yen Espiritu, Ph.D., Ethnic Studies Judith Halberstam, Ph.D., Literature DeeDee Halleck, Communication Jorge Huerta, Ph.D., Theatre and Dance Judith Hughes, Ph.D. History Helene Keyssar, Ph.D., Communication Susan Kirkpatrick, Ph.D., Literature Rebecca Klatch, Ph.D., Sociology Todd Kontje, Ph.D., Literature Lisa Lowe, Ph.D., Literature Babette Mangolte, Ph.D., Visual Arts Louis Montrose, Ph.D., Literature Chandra Mukerji, Ph.D., Communication Carol Padden, Ph.D., Communication Jann Pasler, Ph.D., Music

Carol Plantamura, M.F.A., Music
Vicente Rafael, Ph.D., Communication
Rosaura Sanchez, Ph.D., Literature
Ellen Seiter, Ph.D., Communication
Susan Leigh Star, Ph.D., Communication
Shirley Strum, Ph.D., Anthropology
Omelbanine Zhiri, Ph.D., Literature

Associate Professors

Suzanne Brenner, Ph.D., Anthropology
Maria Charles, Ph.D., Sociology
Ann Craig, Ph.D., Political Science
Steven Epstein, Ph.D., Sociology
Rosemary George, Ph.D., Literature
Valerie Hartouni, Ph.D., Communication
Christine Hunefeldt, Ph.D., History
Stephanie Jed, Ph.D., Literature
Rachel Klein, Ph.D., History
Martha Lampland, Ph.D., Sociology
Michael Meranze, Ph.D., History
Naomi Oreskes, Ph.D., History
Pamela Radcliff, Ph.D., History
Roddey Reid, Ph.D., Literature
Jane Rhodes, Ph.D., Ethnic Studies
Marta Sanchez, Ph.D., Literature
Nayan Shah, Ph.D., History
Kathryn Shevelow, Ph.D., Literature
Susan Smith, Ph.D., Visual Arts
Nicole Tonkovich, Ph.D., Literature
Cynthia Truant, Ph.D., History
Cynthia Walk, Ph.D., Literature
Winifred Woodhull, Ph.D., Literature Lisa Yoneyama, Ph.D., Literature

Assistant Professors

Nancy Caciola, Ph.D., History
Lisa Catanzarite, Ph.D., Sociology
Marta Hanson, Ph.D., History
Susan Larsen, Ph.D., Literature
Stephanie Smallwood, Ph.D., History
Shelley Streeby, Ph.D., Literature

Adjunct Professor

Mary Walshok, Ph.D., Sociology

Associate Adjunct Professor

Susanne Cahill, Ph.D., History

Critical Gender Studies

The UCSD Critical Gender Studies Program, formerly Women's Studies, is an interdisciplinary academic program, offering students the opportunity to study gender, race, class, sexuality, and nation-
alism as intersecting categories of analysis and experience. Some basic questions that anchor the program's core curriculum include asking how these categories become institutionalized and yet change over time? How do they work together to shape individual identity?; contribute to the organization of social life?; become essential to the production of many different kinds of knowledge about that life?

The program's core curriculum builds upon feminist scholarship of the last decade, incorporating the new interdisciplinary agendas, intellectual debates, changing methodological practices, and major scholarly shifts that have reshaped the field of women's studies. Informed by the insights of critical race feminism, feminist critiques of conventional domains of knowledge, and gay and lesbian inquiries challenging traditional understandings and assumptions about sexuality, this new core curriculum is designed to move students beyond simple binary descriptions and contemporary, popularized accounts of gender. Instead, gender is analyzed in the full complexity of its construction over time and in a variety of cultural, scholarly, and global arenas.

Students can expect to encounter a rich spectrum of approaches in studying these complex constructions-the majority of a student's advanced work in the program consists of upper division courses from history, communication, literature, ethnic studies, sociology, anthropology, philosophy, and political science. However, despite their important differences, what these approaches share is a critical stance with respect to the subject of gender. This stance, reflected in the program's name "Critical Gender Studies," refuses easy answers when exploring the social relations of gender and reaches, instead, for detailed accounts of the intricacies and paradoxes of power through which these relations are and have been made and maintained.

Critical gender studies prepares undergraduates for a variety of careers through the study of social, political, economic, historical, and cultural contexts. For example, the interdisciplinary and multi-disciplinary course work that students complete as part of a major in critical gender studies provides an excellent foundation for those students with career aspirations in law, medicine and health sciences, public administration, and social services. Students wishing to pursue doctoral work will also find that interdisciplinary training in critical gender studies equips them with theoretical and methodological strengths in most disci-
plines and applied research fields. Specialists in gender studies are increasingly being used as consultants in industry, higher education, insurance companies, and personnel firms. State and federal government agencies require people who have special training in analyzing gender relations. Finally, educational institutions need specialists to develop and administer women's centers and gay and lesbian centers as well as other institutional structures and programs.

The Critical Gender Studies Program offers two options of study: an undergraduate major and an undergraduate minor (or program of concentration). To declare a major, a department stamp is required. Because critical gender studies is an interdisciplinary major, it is important to work closely with a faculty adviser in the planning of your program.

Preparation for the Major and Minor

All critical gender studies majors and minors are required to take the Introduction to Critical Gender Studies sequence: Critical Gender Studies 2A-B, 100, and 101.

Major Program

Students are required to concentrate in one of five cluster areas: culture and representation; sexualities; work, migration, and globalization; science, technology, and medicine; history, society, and inequalities. Concentrating in a cluster area entails taking five upper-division courses (twenty units) in that area. To complete the major, students are required to complete five additional upper-division courses (twenty units) in cluster areas outside their chosen area of concentration. At least one of the five upper-division courses a student takes outside their chosen area of concentration must be selected from the program's upper-division course list.

CONCENTRATION IN CULTURE AND REPRESENTATION

Group A. Five upper-division courses (twenty units) in the culture and representation cluster area from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than culture and representation to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen
from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical Gender Studies 102-103-104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

CONCENTRATION IN SEXUALITIES

Group A. Five upper-division courses (twenty units) in the sexualities cluster area, from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than sexualities to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical Gender Studies 102-103104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

CONCENTRATION IN WORK, MIGRATION, AND GLOBALIZATION

Group A. Five upper-division courses (twenty units) in the work, migration, and globalization cluster area, from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than work, migration, and globalization to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical Gender Studies 102-103-104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

CONCENTRATION IN SCIENCE, TECHNOLOGY, AND MEDICINE

Group A. Five upper-division courses (twenty units) in the science, technology, and medicine cluster area, from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than science, technology, and medicine to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical

Gender Studies 102-103-104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

CONCENTRATION IN HISTORY, SOCIETY, AND INEQUALITIES

Group A. Five upper-division courses (twenty units) in the history, society, and inequalities cluster area, from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than history, society, and inequalities to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical Gender Studies 102-103-104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

Honors Program

The Critical Gender Studies Honors Program allows advanced critical gender studies majors to pursue individual projects in the context of collective intellectual exchange with their peers and advising faculty. Students are eligible if they a) have senior standing at the time they begin the program, b) are approved by the critical gender studies faculty director and steering committee. Normally, students eligible for honors will have a 3.5 grade-point average in upper-division courses taken for the major, but highly motivated students who do not meet this criterion may be admitted to the program at the discretion of the director and the critical gender studies steering committee.

In the fall quarter of their senior year, students take the Honors Seminar (CGS 190), taught by a member of the critical gender studies faculty. The first half of the quarter is devoted to intensive analysis and discussion of recent publications in the fields of gender and sexuality. During the second half of the quarter, each student develops a short thesis proposal and presents it for group discussion. While taking the Honors Seminar, each student also registers for CGS 196A:The Honors Thesis, 4 units of independent study with a faculty member associated with critical gender studies. With the guidance of this adviser, the student carries out background research for the thesis prospectus and selects a thesis director. In the
winter quarter, students complete the thesis under the supervision of their thesis director in the Honors Thesis course, CGS 196B.

In the spring quarter, each student who has successfully completed a thesis will present it in the CGS 90 undergraduate seminar.

Students who complete the Honors Seminar and the thesis with a combined grade of $B+$ or above and make the required oral presentation of the thesis in CGS 90 have the words "with distinction" added to the notation of the major on their diplomas and transcripts.

Double Major in Critical Gender Studies and Another Department or Program

Students who wish to major both in critical gender studies and in another department or program must fulfill all requirements for the critical gender studies major as described above. Students must submit a double major petition for approval by the participating departments and the student's provost. Critical gender studies will accept up to two upper-division courses which overlap requirements for the two majors.

Minor Program (and Program of Concentration)

Critical gender studies minors are required to complete the Introduction to Critical Gender Studies sequence: Critical Gender Studies 2A-B, 100, and 101 and three additional upper-division courses (twelve units) applicable to the critical gender studies major and minor. Students may take all three required upper-division courses in the same cluster area or three upper-division courses in three different cluster areas. Students who petition the critical gender studies minor (or program of concentration) with junior or senior standing may petition to substitute two comparable upper-division critical gender studies courses for Critical Gender Studies 2A or 2B. Critical gender studies permits one lower-division course and one upper-division course to be taken P/NP. College grading options vary. Please see college academic advisers and critical gender studies advisers.

Special Studies, Internships, and Grade Options

Many critical gender studies majors and minors elect to do gender research under the

Critical Gender Studies

rubrics of Directed Group Study (198), Independent Study (199), internships, and mentor programs. Because these courses can be taken only with a P/NP grade option, the number of such courses to be applied to the major should be carefully discussed with a critical gender studies adviser. Some graduate and professional schools will consider it easier to evaluate a stu-dent's transcript if there are more letter grades. College guidelines and requirements for grade options also vary. Please see college academic advisers and critical gender studies advisers.

COURSES

LOWER-DIVISION

CGS 2A. Introduction to Critical Gender Studies: Social Movements (4)
This course will examine the role of social movements in contesting rights and representation in comparative and historical contexts. Historical examples may include: civil rights, men's movements, anti-racist feminism, women's movements, AIDS activism, transgenderism, immigrant rights, and the labor movement

CGS 2B. Introduction to Critical Gender Studies: Gender and Institutions (4)
This course examines how gender organizes and is organized by institutions. Domains of inquiry may include family, education, medicine, technology, law, media, the workplace, immigration, and citizenship.

CGS 90. Undergraduate Seminar (1)
This seminar will introduce students to current interdisciplinary research topics and methods in the study of gender and sexuality. UCSD Faculty members, as well as distinguished outside visitors, will be invited to present their work.

UPPER-DIVISION

CGS 100: Conceptualizing Gender: Theories and Methods (4)
This course will compare the uses of gender as a category of analysis across academic disciplines in the Humanities, Social Sciences, and Natural Sciences with particular attention to research methodologies.

CGS 101: Gender, Modernity, and Globalization (4)
Considers how men and women around the globe are affected differently by modernity, modernization, and globalization. Possible topics: international consumer culture; international divisions of labor; construction of sexuality and gender in context of global movements and migrations of people, capital, culture. Prerequisites: upper-division standing or consent of instructor.

CGS 102: Selected Topics in Critical Gender Studies (4) An interdisciplinary course focusing on one of a variety of topics in gender studies, such as gender and science, the body, reproductive technologies, public policy. May be taken for credit three times when topics vary. Prerequisites: upper-division standing or consent of instructor.

CGS 103: Feminist Theory (4)

An interdisciplinary course in feminist theory. Topics may range from a general survey of feminist theory in a variety of disciplines to a more focused interdisciplinary theoretical topic such as postmodernism and feminism. May be taken for credit three times when topics vary. Prerequisites: upper-division standing or consent of instructor.

CGS 104: Comparative Perspectives (4)

An interdisciplinary course focusing on the relationship between gender and culture from a multiplicity of cultural perspectives. Possible topics include women in Latin America, gender and ethnicity, Asian-American women. May be repeated for credit two times when topics vary. Prerequisites: upper-division standing or consent of instructor.

CGS 105: Queer Theory (4)
Examines the different methodologies and disciplinary histories that together constitute the interdisciplinary project called queer studies. Of particular interest will be how these different methodologies and history construe and construct the relations between gender, race, class, and nation. Prerequisites: upper-division standing or consent of instructor.

CGS 106: Gender Equality and the Law (4)
Explores the legal treatment of discrimination on the basis of gender, including equal protection doctrine and some statutory law such as Title VII. Topics include the meaning of gender equality in such areas as singlesex education, military service, sexual harassment, discrimination on the basis of pregnancy, and other current issues. Prerequisites: upper-division standing or consent of instructor.

CGS 107: Gender and Reproductive Rights (4)
Explores the legal treatment of gender, reproductive rights, and the family, particularly as evolving law has created conflicting rights, roles, and responsibilities. Topics may include abortion, fetal rights, surrogacy, marriage, and child custody issues. Prerequisites: upperdivision standing or consent of instructor.

CGS 109A: Gender, Science, Technology (4)
Examines impact of gender and racialized gender on the production and uses of science and technology. Issues include (but are not limited to): racism and biotechnology, biological determinism, eugenics, plagiarism and invisible work, information technologies and access, and the politics of museums. Prerequisites: upper-division standing or consent of instructor.

CGS 109B: Gender and Information Technology (4) Explores how gender and racialized gender affect and are affected by information technology. Through the use of feminist and race-critical approaches, the course examines the impact of information technology on workplaces, the family, gender identity, and the environment. Prerequisites: upper-division standing or consent of instructor.

CGS 110A: Women and Sport (4)
Explores the history of women and sport and changes that have taken place since the passage of Title IX (federal equity legislation) in 1972. Will explore evolution of women in sport from historical, social, racial, psychological, political, and legal perspectives. Prerequisites: upper-division standing or consent of instructor.

CGS 110B: Title IX and Gender Equity in Sports and

 Education (4)Provides a comprehensive review of Title IX (1972 federal equity legislation) and its impact on gender equity
in sports and education. Will explore policy interpretations, changes in educational opportunities and sports programs resulting from legislation and related court cases. Prerequisites: upper-division standing or consent of instructor.

CGS 111: Gender and the Body (4)
Various approaches to the study of gendered bodies. Possible topics to include masculinities/feminities; lifecycles; biology, culture, and identity; medical discourses and health issues. May be taken for credit three times when topics vary. Prerequisites: upper-division standing or consent of instructor.

CGS 190. Honors Seminar (4)

Interdisciplinary readings in feminist theory and research methodology to prepare students for writing an honors thesis. Open to Critical Gender Studies majors who have been admitted to Critical Gender Studies Honors Program. May be applied toward primary concentration in Critical Gender Studies major. Prerequisites: admission to Critical Gender Studies Honors Program and department stamp required.

CGS 196A. Critical Gender Studies Honors Research (4) A program of independent study providing candidates for Critical Gender Studies honors to develop, in consultation with an adviser, a preliminary proposal for the honors thesis. An IP grade will be awarded at the end of this quarter. A final grade for both quarters will be given upon completion of Critical Gender Studies 196B. Prerequisites: consent of instructor and department stamp required.

CGS 196B. Honors Thesis (4)
Honors thesis research and writing for students who have completed Critical Gender Studies 190 and 196A. A letter grade for both Critical Gender Studies 196A and 196B will be given at the completion of this quarter. Prerequisites: consent of instructor and department stamp required.

CGS 198. Directed Group Study (4)
Directed group study on a topic not generally included in the Critical Gender Studies curriculum. Prerequisites: consent of instructor and director of Critical Gender Studies Program and department stamp required.

CGS 199. Independent Study (4)
Tutorial; independent study on a topic not generally included in the curriculum. Prerequisites: consent of instructor and director of Critical Gender Studies Program and department stamp required.

CGS 500. Apprentice Teaching in Critical Gender

Studies (4)
Consideration of pedagogical methods appropriate to undergraduate teaching in Critical Gender Studies courses under supervision of instructor of course. Instructor will define apprentice's responsibilities in preparing class presentations, directing student discussions, evaluating and grading students' work, and maintaining productive association with students.

CRITICAL GENDER STUDIES CLUSTER AREAS

In relation to the Critical Gender Studies Program, departmental courses fall into two categories, Applicable or Petitionable. The courses noted below are applicable: those which always apply to the CGS major and minor, whenever they are taught and under any instructor.

The second category denotes petitionable courses: either new courses not yet approved as applicable to the major/minor or courses which focus on gender only in a specific quarter and at the discretion of the instructor.

Petitionable courses can be approved by petition to the major/minor for the quarter in which they appear on the CGS quarterly list. The quarterly list-available each quarter in the CGS office and at the CGS Web site-identifies (by cluster areas) both applicable and petitionable courses offered that quarter. For reference, the office and the Web site maintain a compilation of quarterly lists.

1. Culture and Representation:

ANRG 117. Gender Across Cultures
COCU 132. Gender and Media
COCU 137. Politics of Bodies
COCU 138. Feminist Theory
COMT 106. Feminist Video Workshop ETHN 183. Gender, Race, Ethnicity and Class

HIEU 147. The History of Women in Europe: Middle Ages to the Early Modern Era
HIEU 148. European Women:The Enlightenment to the Victorian Era

HIEU 149. History of Women in Europe: 1870 to Present

HIEU 180. Topics in European Women's History
HILA 117. Indians, Blacks, and Whites: Family Relations in Latin America

HIUS 130. Cultural History from 1607 to the Civil War
HIUS 131. Cultural History from the Civil War to the Present
HIUS 156. American Women, American Womanhood
HIUS 157. American Women, American Womanhood 1870 to Present

HIUS 172. Feminist Tradition in America
LTCS 130. Gender, Race/Ethnicity, Class and Culture
LTCS 135. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgendered Studies

LTEN 120E. Women in the Eighteenth Century LTEN 146. Women and English/American Literature LTEN 150. Gender, Text, and Culture

LTEN 185. Themes in African American Literature
LTEU 102. Women in Antiquity (was LTGN 101)
LTEU 147. Women in Italy
LTTH 101. Issues in Feminist Theory
LTWL 155. Gender Studies (was LTGN 189)
LTWL 160. Women and Literature (was LTGN 187)
MUSIC 115. Women in Music
PHIL 169. Feminism and Philosophy
POLI 116A. Feminist Theory
SOC/B 118. Sociology of Gender and Roles

SOC/B 119. Sociology of Sexuality and Sexual Identities
SOC/B 130. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgendered Studies

SOC/C 129. The Family
VIS 121C. Art and Gender

2. Sexualities

COCU 137. Politics of Bodies
COCU 138. Feminist Theory
LTCS 135. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgendered Studies
LTEN 120E. Women in Eighteenth Century
LTEN 150. Gender, Text, and Culture
LTEU 102. Women in Antiquity (was LTGN 101)
LTWL 155. Gender Studies (was LTGN 189)
LTTH 101. Issues in Feminist Theory
POLI 107A. Gay and Lesbian Politics
POLI 116A. Feminist Theory
SOC/B 119. Sociology of Sexuality and Sexual Identities
SOC/B 130. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgendered Studies
3. Work, Migration, and Globalization

ANRG 117. Gender Across Cultures COCU 138. Feminist Theory
HIEA 137. Women and Family in Chinese History
HILA 161. History of Women in Latin America LTCS 130. Gender, Race/Ethnicity, Class and Culture LTTH 101. Issues in Feminist Theory

POLI 134P. Organizing Women in Latin America
SOC/A 103F. Feminist Criticism and Social Theory
SOC/C 132. Gender and Work
SOC/D 120W. Gender and Development
4. Science, Technology, Medicine

COCU 137. Politics of Bodies
COCU 138. Feminist Theory
HISC 103. Gender and Science in Historical Perspective
5. History, Society, and Inequalities

COCU 137. Politics of Bodies
COCU 138. Feminist Theory
ETHN 183. Gender, Race, Ethnicity and Class
HIEA 137. Women and Family in Chinese History
HIEU 147. History of Women in Europe: Middle Ages to Early Modern Era
HIEU 148. History of Women in Europe: Early Enlightenment to Victorian Era

HIEU 149. History of Women in Europe: 1870 to the Present

HIEU 180. Topics in European Women's History

HILA 117. Indians, Blacks, and Whites: Family Relations in Latin America

HILA 161. History of Women in Latin America HITO 164. Gender Differences in Historical Perspective HIUS 130. Cultural History from 1607 to the Civil War HIUS 131. Cultural History from the Civil War to the Present
HIUS 156. American Women, American Womanhood
HIUS 157. American Women, American Womanhood: 1870 to Present

HIUS 172. Feminist Traditions in America
HIUS 173. Topics in American Women's History
LTCS 130. Gender, Race/Ethnicity, Class, and Culture
LTCS 135. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgendered Studies

LTEN 185. Themes in African American Literature
LTEU 102. Women in Antiquity
LTTH 101. Issues in Feminist Theory
LTWL 155. Gender Studies (was LTGN 189)
POLI 107A. Gay and Lesbian Politics
POLI 115A. Gender and Politics
POLI 116A. Feminist Theory
POLI 116B. Advanced Feminist Theory
POLI 166F. The American Welfare State
SOC/A 103F. Feminist Criticism and Social Theory
SOC/B 118. Sociology of Gender
SOC/B 130. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgendered Studies
SOC/D 133. Compartive Sex Stratification

Dimensions of Culture

OFFICE: 132 Sequoyah Hall, Marshall College http://provost.ucsd.edu/marshall/doc.htm|

Program Director

Fraser Cocks, Ph.D.

Assistant Program Director

Pamela S.Wright, Ph.D.
The Dimensions of Culture Program is a threecourse sequence taught by senior faculty from the Departments of History, Political Science, Communication, Ethnic Studies, Philosophy, and Literature. This program provides an interdisciplinary issues-oriented exploration of nineteenthand twentieth-century American, Western, and non-Western culture, and illustrates Marshall College's commitment to exploring the meaning
of social justice and investigating the means by which it might be achieved in contemporary American society.
The first quarter, Diversity, introduces students to the study of basic distinctions in social differences and commonalities among human individuals and groups. This course surveys a range of social differences and stratifications that shape the nature of human attachment to self, work, community, and a sense of nation. The second quarter, Justice, introduces basic concepts of political and social theory and moral philosophy. Readings are drawn from nineteenth- and twentieth-century American history and legal case studies. The third quarter, Imagination, introduces students to the study of the arts as the cultural expression of the issues presented in the first two quarters. Materials focus on the interdisciplinary study of twentiethcentury American culture, including music, literature, art, film, and photography.
Written assignments are required in each quarter of the Dimensions of Culture sequence. In the second and third quarters, students receive intensive instruction in university-level writing in small sections. Frequent writing assignments and revisions are required in connection with the material presented in class.
The Marshall College core course and writing requirements are met by completion of this sequence. Students must have satisfied the university's Subject A requirement before enrolling in Justice or Imagination. All Marshall College first-year students must complete this threecourse sequence. Transfer students should see their college academic adviser regarding the appropriate course requirements.

For further details on Marshall College requirements, see "Marshall College, General-Education Requirements."

COURSES

LOWER-DIVISION

1. Dimensions of Culture: Diversity (4)

This course focuses on sociocultural diversity in examining, class, ethnicity, race, gender, and sexuality as significant markers of differences among persons. Emphasizing American society, it explores the cultural understandings of diversity and the economic, moral, political, and other social consequences. Three hours of lecture, one hour of discussion. Open to Marshall College students only. (Letter grade only.) (F)
2. Dimensions of Culture: Justice (6)

This course considers the nature of justice in philosophical, historical, and legal terms. Topics include racial
justice, political representation, economic justice, gender and justice, rights within the family, the rights of cultural minorities, and crime and punishment. The course offers intensive instruction in writing university-level expository prose. Three hours of lecture, two hours of discussion and writing instruction. Open to Marshall College students only. (Letter grade only.) Prerequisite: completion of Subject A requirement. (W)

3. Dimensions of Culture: Imagination (6)

Using the arts, this course examines the evolution of pluralistic culture to the modern period. There is a special emphasis on the interdisciplinary study of twenti-eth-century American culture, including music, literature, art, film, and phtography. The course offers intensive instruction in writing university-level expository prose. Three hours of lecture, two hours of discussion and writing instruction. Open to Marshall College students only. (Letter grade only.) Prerequisite: completion of Subject A requirement. (S)

Earth Sciences

OFFICE: Galbraith Hall, room 188, Revelle College

Professors

Jeffrey L. Bada, Marine Chemistry Wolfgang H. Berger, Oceanography
Catherine G. Constable, Geophysics
James W. Hawkins, Geology
Myrl C. Hendershott, Oceanography
Nicholas D. Holland, Marine Biology
Jeremy B. Jackson, Paleontology
Miriam Kastner, Earth Sciences
Devendra Lal, Nuclear Geophysics
J. Douglas Macdougall, Earth Sciences
T. Guy Masters, Geophysics (Program Director)

Jean-Bernard H. Minster, Geophysics
David T. Sandwell, Marine Geophysics
John G. Sclater, Marine Geophysics
Richard C.J. Somerville, Meteorology
Lisa Tauxe, Geophysics
Mark Thiemens, Chemistry
Martin Wahlen, Geochemistry
Edward L. Winterer, Geology (Emeritus)
Professor-in-Residence
Steven C. Constable, Geophysics

Associate Professors

Kevin M. Brown, Geology
Paterno R. Castillo, Geology
Christopher D. Charles, Oceanography
Jeffrey P. Severinghaus, Geoscience

Assistant Professor

David R. Hilton, Geochemistry

Research Scientist/Senior Lecturer

Alistair J. Harding, Research Geophysics

Associate Research Scientist/Lecturer

Jeffrey S. Gee, Geophysics
The UCSD Interdisciplinary Earth Sciences Undergraduate Program offers an earth sciences major leading to a B.S. degree, with emphasis on the quantitative aspects of the field. As a guiding concept, the focus of the earth sciences curriculum is the physical and chemical evolution of the earth system and the energetics and dynamics of this evolution. The program takes advantage of the unique opportunities offered by UCSD, in particular through the Scripps Institution of Oceanography and the California Space Institute. The major can be complemented by various minors ranging from mathematics, physics or chemistry, to biology, environmental science, or public policy, and political science. Chemistry and physics majors may also specialize in earth sciences by taking a series of courses offered through this program (see the "Chemistry" and "Physics" sections of the catalog for details). In addition, the program offers a broad choice of courses, including general-education courses in the earth sciences and related topics from which to select a minor in the earth sciences.

The Undergraduate Earth Science Program was initiated in the fall of 1992 and is intended to be a transition program to a proposed Department of Earth Sciences, to be implemented at UCSD at a future time. Most earth science faculty are members of the Scripps Institution of Oceanography, and students, especially earth science majors, are encouraged to consult with these instructors about incorporating appropriate Scripps Institution of Oceanography courses into their programs.

Majors in Earth Sciences

Three tracks with slightly different course requirements are presently offered through the UCSD Interdisciplinary Earth Sciences Undergraduate Program. These are the General ERTH major, and the ERTH/Chemistry and ERTH/Physics majors.

Lower-division requirements are the same for all majors and are designed to provide the foundations in mathematics, physics, chemistry, and biology that are essential in modern quantitative earth sciences disciplines. In addition, two upperdivision courses introducing the basic concepts of geology and geochemistry, ERTH 101 and ERTH 102 , should be taken during the sophomore year to provide the appropriate background for other upper-division courses.

A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. Students must receive a grade of Cor better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the major of 2.5 or greater may petition to have one grade of D accepted. All courses (lower- and upper-division) required for the major must be taken for a letter grade.

Special Studies Courses

Special studies in the earth sciences are offered as the courses ERTH 198 and ERTH 199. These courses are subject to consent of the instructor and approval by the Earth Sciences faculty adviser. They are open to students who have accrued at least ninety quarter-units and have a GPA of at least 3.0. No more than two quarters of earth sciences special studies may be counted toward any earth sciences major.

Lower-Division Requirements (common for all earth science majors)

The following courses must be taken for a letter grade:

1. Mathematics 20A, 20B, 21C, 21D or equivalent
2. Physics $2 A, 2 B, 2 C$
3. Chemistry $6 \mathrm{~A}, 6 \mathrm{~B}, 6 \mathrm{C}, 6 \mathrm{BL}$
4. Biology 3 (BILD 3)

Note: Physics 2CL is a required prerequisite for various upper-division chemistry electives.
5. Earth Sciences courses which should be taken in the sophomore year:
ERTH 101. Introduction to Earth and
Environmental Science
ERTH 102. Introduction to Geochemistry
A possible schedule yields:

FALL	WINTER	SPRING
FRESHMAN YEAR		
Chem. 6A	Chem. 6B	Chem.6C
Math. 20A	Chem. 6BL	Math. 2iC
	Math. 20B	
SOPHOMORE YEAR		
Phys. 2A	Phys. 2B	Phys. 2C
Math. 21D	ERTH 102	BILD 3
ERTH 101		

ERTH/Chemistry Major

This specialization focuses on the Earth as a chemical system, and on its evolution. Emphasis is placed on the fundamental observations that allow geoscientists to understand better the past history of the planet, the energetics of its evolution, and the major "cycles" (e.g., water, carbon) that characterize and control planetary-scale changes on a broad range of time scales. The major is appropriate for students interested in modern geochemistry, in "global change" studies, and in global and local environmental problems, including biochemical and anthropogenic effects.

Upper-Division Requirements

In addition to ERTH 101 and ERTH 102 (see lower-division requirements), the following courses must be taken for a letter grade:

1. Earth Sciences requirements:

ERTH 103. Introduction to Geophysics ERTH 120. Mineralogy
ERTH 162A. Introduction to Field Geology ERTH 162L. Structural Analysis for Field Geology
2. Chemistry requirements:

Chemistry 120A. Inorganic Chemistry
Chemistry 131. Physical Chemistry or Chemistry 127
Chemistry 140A. Organic Chemistry
3. Chemistry restricted electives. (Total of sixteen units required), at least eight units from:
Chemistry 140B-C. Organic Chemistry Chemistry 143A-B. Organic Chemistry Lab Chemistry 132-133. Physical Chemistry *Chemistry 105A-B. Physical Chemistry Lab Chemistry 106. Instrumental Analysis Lab up to eight units from:
Chemistry 120B-C. Inorganic Chemistry Chemistry 122 . Biochemical Evolution Chemistry 149A-B. Environmental Geochemistry

Chemistry 170. Cosmochemistry
Chemistry 171. Nuclear Chemistry Chemistry 173. Atmospheric Chemistry
4. Earth Sciences restricted electives: at least sixteen units selected from among the following courses must be passed with a 2.0 grade-point average and grades of C - or better:
ERTH 104. Geobiology
ERTH 130. Geodynamics of Terrestrial Planets
ERTH 142. Atmospheric Chemistry
ERTH 143. Marine Paleoecology
ERTH 144. Isotope Geochemistry
ERTH 152. Petrology and Petrography
ERTH 155. Igneous and Metamorphic Processes
ERTH 160. Introduction to Tectonics
SIO 226. Introduction to Marine Geophysics
SIO 240. Marine Geology
SIO 247. Rock Magnetism and
Paleomagnetism
SIO 260. Marine Chemistry
Students may wish to incorporate a small portion of the major program into their lower-division course load, for example, Chemistry 120A, Chemistry 140A.

* Requires prerequisite other than earth science requirements.

A possible schedule yields:

FALL	WINTER	SPRING
JUNIOR YEAR		
Chem. 140A	Chem. Elect.	ERTH 103
Chem. 120A	Chem. Elect.	ERTH Elect.
ERTH Elect.	ERTH 120	-
SENIOR YEAR		
Chem. Elect.	Chem. Elect.	ERTH Elect.
ERTH Elect.	ERTH 162A	Chem. Elect.
Chem. 131	ERTH 162L.	-

ERTH/Physics Major

This specialization focuses on the mechanical, dynamical, and thermodynamical aspects of the Earth. Emphasis is placed on a solid background of fundamental physics, from mechanics and electromagnetism to continuum- and quantum mechanics, and on the necessary mathematical skills. The major introduces basic techniques used to investigate the internal structure of the Earth, from seismology to the study of potential fields, and space geodesy. Elementary geodynamics, including the physics of simple convective systems, introductory rock mechanics, and plate kinematics are among topics introduced. At the
same time, a "hands on" exposure to field problems and techniques will be accessible through a Natural Resources and Field Geophysics sequence.

Upper-Division Requirements

In addition to ERTH 101 and ERTH 102 (see lower-division requirement), the following courses must be taken for a letter grade:

1. Earth Sciences requirements:

ERTH 103. Introduction to Geophysics
2. Physics requirements:

Physics 100A-B-C. Electromagnetism Physics 110A-B.Mechanics
3. Physics restricted electives: minimum of four units selected from:

Physics 121. Experimental Techniques
Physics 140A-B. Statistical and Thermal Physics
Physics 105. Computational Physics
MAE 131A. Solid Mechanics I
MAE 180A. Space Science and Engineering
4. Mathematics restricted electives: minimum of eight units selected from:
Mathematics 110. Partial Differential
Equations or equivalent
Mathematics 102. Linear Algebra or equivalent
Mathematics 120A-B. Complex Analysis or equivalent
Mathematics 183. Statistical Methods or equivalent
5. Earth Sciences restricted electives: at least sixteen units selected from among the following courses must be passed with a 2.0 gradepoint average and grades of C - or better:
ERTH 104. Geobiology
ERTH 120. Mineralogy
ERTH 130. Geodynamics of Terrestrial Planets ERTH 143. Marine Paleoecology
ERTH 155. Igneous and Metamorphic Processes
ERTH 160. Introduction to Tectonics
ERTH 162A. Introduction to Field Geology
ERTH 162L. Structural Analysis for Field Geology
ERTH 180. Geophysics of Natural Resources
ERTH 182. Field Geophysics
SIO 223. Geophysical Data Analysis
SIO 224. Physics of the Earth Interior
SIO 226. Introduction to Marine Geophysics
SIO 227. Advanced Seismology
SIO 247. Rock Magnetism \& Paleomagnetism

Students may wish to incorporate a small portion of the major program into their lowerdivision course load, for example, Physics 105, Mathematics 110 , or equivalent. Students intending to do graduate work in geophysics are encouraged to take the Physics 4 sequence rather than the Physics 2 sequence. Students are also strongly encouraged to participate in a field geology course.

An example schedule is outlined below.

FALL	WINTER	SPRING
JUNIOR YEAR		
Phys. 100A	Phys. 100B	Phys. 100C
Phys. 110A	Phys. 110B	Math. Elect.
-	-	ERTH 103
SENIOR YEAR		
	Phys. Elect.	ERTH Elect.
Math. Elect.	-	-
ERTH Elect.	ERTH Elect.	ERTH Elect.

ERTH/General

The general ERTH major is designed to allow students maximum flexibility in tailoring the curriculum to their interests, within the constraints of obtaining the necessary background in physical, biological, and earth sciences. Compared to the ERTH/Chemistry and ERTH/Physics tracks, it requires more earth science and fewer non-earth science courses.

Upper-Division Requirements

In addition to ERTH 101 and ERTH 102 (see lower-division requirements), the following courses must be taken for a letter grade:

1. Earth Sciences requirements:

ERTH 103. Introduction to Geophysics
ERTH 104. Geobiology
ERTH 120. Mineralogy
ERTH 152. Petrology and Petrography ERTH 160. Introduction to Tectonics ERTH 162A. Introduction to Field Geology ERTH 162L. Structural Analysis for Field Geology
ERTH 180. Geophysics of Natural Resources ERTH 182. Field Geophysics
2. Chemistry requirements:

Chemistry 131. Physical Chemistry or Chemistry 127
3. Upper-division restricted electives: at least eight units from earth sciences and at least twelve units from non-earth science courses.
ERTH 130. Geodynamics of Terrestrial Planets
ERTH 142. Atmospheric Chemistry
ERTH 144. Isotope Geochemistry
ERTH 150. Environmental Perils
ERTH 155. Igneous and Metamorphic Processes
SIO 223. Geophysical Data Analysis
SIO 224. Physics of the Earth Interior
SIO 226. Introduction to Marine Geophysics
SIO 227A. Advanced Seismology
SIO 234. Introduction to Geodynamics
SIO 240. Marine Geology
SIO 242. Controversies in Geomorphology
SIO 245A. Interpretation of the Sedimentary Record
SIO 247. Rock Magnetism \& Paleomagnetism
SIO 249. Hydrogeological Modeling
SIO 253. Igneous and Metamorphic Petrology
SIO 260. Marine Chemistry
MAE 131A. Solid Mechanics
MAE 180A. Space Science and Engineering
BIBC 100. Structural Biochemistry
BIEB 120. General Ecology
BIBC 130. Marine Biochemistry
BIEB 130. Introductory Marine Ecology
BIEB 150. Introductory Marine Ecology Evolution

Chemistry 105A-B. Physical Chemistry Lab Chemistry 120A-B-C. Inorganic Chemistry
Chemistry 122. Biochemical Evolution
Chemistry 132-133. Physical Chemistry
Chemistry 140A-B-C. Organic Chemistry
Chemistry 143A-B. Organic Chemistry Lab
Chemistry 149A-B. Environmental Geochemistry
Chemistry 170. Cosmochemistry
Chemistry 171. Nuclear and Radiochemistry
Chemistry 173. Atmospheric Chemistry
Mathematics 102. Linear Algebra
Mathematics 110. Partial Differential
Equations or equivalent
Mathematics 120A-B. Complex Analysis
Mathematics 183. Statistical Methods
Physics $100 \mathrm{~A}-\mathrm{B}-\mathrm{C}$. Electromagnetism
Physics 105. Computational Physics
Physics 110A-B. Mechanics
Physics 121. Experimental Techniques
Physics 140A-B. Statistical and Thermal Physics
A possible schedule yields:

FALL	WINTER	SPRING
FRESHMAN YEAR		
Chem. 6A	Chem. 6 B	Chem. 6C
Math. 20A	Chem. 6BL	Math. 21 C
	Math. 20B	
SOPHOMORE YEAR		
Phys. 2A	Phys. 2B	Phys. 2 C
Math. 21D	ERTH 102	BILD 3
ERTH 101		
JUNIOR YEAR		
Chem. 131	ERTH 120	ERTH 103
ERTH 104	Elect.	ERTH 152
ERTH 160	Elect.	
SENIOR YEAR		
Elect.	ERTH 162A	ERTH 180
Elect.	ERTH 162 L	ERTH 182
Elect.		

Earth Sciences Minor

A minor in earth sciences consists of twentyeight units of earth science courses, at least twenty of which must be upper-division, focused on geology, geochemistry, or geophysics. Courses required by a student's major may not be applied toward a minor and neither can ERTH 198 nor ERTH 199. Courses for the minor may be taken on a Pass/Not Pass basis if the student's college permits.

Honors Program

The Earth Sciences Program offers an Honors Program for a limited number of students who have demonstrated excellence in the major. Students are eligible for admission to the program when they have:

1. Completed ninety units of courses including twelve units of earth science courses.
2. Achieved a GPA of 3.3 overall and 3.5 in earth science courses.
3. Submitted to the Earth Science Steering Committee, and had approved, an honors thesis research proposal.
Successful completion of the Honors Program requires:
4. Maintenance of a GPA of 3.3 overall and 3.5 in earth science courses.
5. Completion, with a B grade or higher, of a minimum of eight units of ERTH 196 related to the honors thesis research, distributed over at least two quarters. These units must be in addition to the ordinary major requirements. However, students who subsequently fail to complete
the Honors Program may apply up to four of these 196 units to their major.
6. Acceptance of a written honors thesis report by a committee of not fewer than three faculty members.
7. Satisfactory presentation of an oral report on the thesis research, preferably at a public undergraduate research conference on campus, or at an earth science conference. Alternatively, the oral report may be given at a seminar involving honors students and at least three faculty members.
Students who successfully complete the Honors Program will graduate with "high distinction."

Students who are interested in the Honors Program should contact the undergraduate coordinator in Galbraith Hall, room 188, Revelle College.

Study Abroad

Study abroad through the Education Abroad Program or Opportunities Abroad Program can enhance a student's major, particularly as an opportunity for diverse field experiences. However, careful planning is important to meet all major requirements. Please contact the Earth Sciences Office as early as possible if you are planning to study abroad.

Careers in Education

Students interested in a teaching career should be aware that the earth sciences major, because of its broad course requirements in the sciences, fulfills many of the subject requirements for obtaining a California Teaching Credential through UCSD's Teacher Education Program (TEP). The projected high demand over the next decade for well-trained teachers, particularly in the sciences, makes this an attractive option for many students. Students who wish to take advantage of this opportunity may wish to complete a minor in education. Please contact the TEP office directly for further details.

Contiguous Bachelor's/ Master's Degree Program

The integrated program leading to a bachelor of science and a master of science degree in Earth Sciences is offered to undergraduate students who are enrolled in the Earth Sciences major, and to qualified students who are completing a spe-
cialization or minor in Earth Sciences. It is open only to UCSD undergraduates, and entails participation in research in an area of the earth sciences to be determined jointly by the student and a committee of faculty members from the Earth Sciences Program. Applications will only be accepted during the final quarter of the applicant's junior year, or the first or second quarter of the senior year. A minimum undergraduate GPA of 3.0 overall and 3.3 in upper-division Earth Sciences courses is required for admission. Applications must include a written statement of purpose, a summary of the research proposal, and a letter of support from the potential M.S. thesis adviser. Students must complete requirements for the B.S. degree before they are enrolled in the M.S. program, and are expected to meet the requirements for the M.S. degree within three consecutive academic quarters after obtaining the B.S. Students may be dropped from the program if breaks in enrollment occur. The Earth Sciences Program does not have financial aid available for students enrolled in the program. Please contact the Earth Sciences Office in Galbraith Hall, room 188, Revelle College for information.

Earth Sciences Graduate Program

Other graduate degrees in the earth sciences are offered through the graduate department of the Scripps Institution of Oceanography. See listings under "Scripps Institution of Oceanography" for detailed information.

COURSES

NOTE: The program will endeavor to offer the courses outlined below. However, unforeseen circumstances (particularly changes in ship schedules) sometimes mandate a change of scheduled offerings, especially the quarter offered (F,W,S). Students are strongly advised to check the Schedule of Classes or to contact the Earth Sciences Program Office (Galbraith Hall, room 188, Revelle College, (858) 534-8157) to obtain up-to-date information.

LOWER-DIVISION

ERTH 10. The Earth (4)

A basic introduction to geology for students with little previous science background. The course stresses
understanding of the concepts of the structure of the Earth and the processes which have formed it and continue to modify it. The course emphasizes material which every educated citizen should know for appreciation and enjoyment of the worid around us, for understanding geological events as reported in the news, and for participating in making intelligent decisions regarding the future of our environment. Three-hour lecture plus optional local field trips. (W)

ERTH 12. History of the Earth and Evolution (4)

Evolution of the Earth from its origin in the early solar system to formation of continents and ocean basins, and how the planet became habitable. It examines the geologic record of evolution, extinction, plate tectonics, and climate changes through time. Three-hour lecture. Prerequisite: none. (S)

ERTH 20. The Atmosphere (4)

Descriptive introduction to meteorology and climate studies. Topics include global and continental wind and precipitation patterns, weather forecasting, present climate and past climate changes (including droughts, El $\mathrm{Ni}-\mathrm{o}$ events), man-made modification of climate, including CO_{8} and other "greenhouse" gases effects, ozone destruction, "little ice ages," acid rain. Three-hour lecture. Prerequisites: some high school physics and chemistry background recommended. (W)

ERTH 30. The Oceans (4)

Presents modern ideas and descriptions of the physical, chemical, biological, and geological aspects of oceanography, and considers the interactions between these aspects. Intended for students interested in the oceans, but who do not necessarily intend to become professional scientists. Three-hour lecture, one-hour discussion. Prerequisite: some background in high school chemistry recommended. (F)

ERTH 40. Earth Sciences and the Environment (4)
A survey of Earth and environmental sciences as they deal with human impact on the global environment and the availability of resources. Topics chosen may vary somewhat from year to year, but focus on the evidence for, and the dynamics of, global change from human activity. Resource limitations, climate modification, water cycle, ecological principles, and basic political and economic factors are discussed in the framework of global habitat modification, including large-scale extinction.

ERTH 96. Frontiers in the Earth Sciences (2)

An introduction to current research in the earth sciences. Background in science not required, but may be useful for some topics. Areas covered vary from year to year. (S)

UPPER-DIVISION

ERTH 101. Introduction to Earth and Environmental Science (5)
This course is an introduction to how our planet works, focusing on the formation and evolution of the solid earth, and the processes affecting both its surface and interior. Laboratories and field trips complement and extend the lecture material. Prerequisites: one year each of college-level math, physics, and chemistry, or consent of instructor. (F)

ERTH 102. Introduction to Geochemistry (4)
A broad introduction to the chemical composition and evolution of the Earth and the solar system. This course explores applications of chemical methods to elucidate the origin and geologic history of the Earth and the
planets, the evolution of the oceans and atmosphere, and the impact of humankind on the environment. Prerequisites: ERTH 101, Chemistry $6 A-B-C$ or equivalent, first-year, mathematics, and physics, or consent of instructor. (W)

ERTH 103. Introduction to Geophysics (4)
An introduction to the structure and composition of the solid earth. Topics include seismology, the gravity and magnetic fields, high-pressure geophysics, and concepts in geodynamics. Emphasis is on global geophysics, i.e., on the structure and evolution of the planet. Prerequisites: Math. 20A-B, 21C-D and Physics 2 sequence or equivalent, ERTH 101, or consent of instructor. ERTH 160 recommended. (S)

ERTH 104. Geobiology (5)
Introduction to the major biological transitions in earth history from the origins of metabolism and cells to the evolution of complex societies. The nature and limitations of the fossil record, patterns of adaptation and diversity, and the tempo and mode of biological and environmental change. Laboratories and field trips complement and extend the lecture material. Prerequisites:ERTH 101, BILD 3 or equivalent, or consent of instructor. (F)

ERTH 120 . Introduction to Mineralogy (4)

This course focuses on the symmetry, crystal structure, chemical, and physical properties of minerals with special emphasis on the common rock-forming minerals, and highlights the applications of mineralogical and X ray crystallographic techniques to a spectrum of important problems in the earth sciences. The laboratory will introduce the students to the polarizing microscope and X -ray powder diffraction methods for the study of rock-forming minerals. Prerequisites: ERTH 101, ERTH 102 (may be taken concurrently with ERTH 102). (W)

ERTH 130. Geodynamics of Terrestrial Planets (4)
Planetary differentiation through geodynamical processes is the fundamental agent controlling the evolution of the planet on geological time scales. Similarities and differences between the Earth, Venus, Mars, and other terrestrial planets and satellites teach us about the processes which shape a planet's formation and evolution. The course includes a computeroriented lab. Prerequisites: Math. 20A-B, 21C-D and Physics 2 sequence, or consent of instructors. Offered in alternate years (offered fall 2001). (F)

ERTH 142. Atmospheric Chemistry and the Biochemical Cycles of Atmospheric Trace Gases (4)
Evolution of the Earth's atmosphere, from the earliest days of the planet to the present, and into the future. The atmospheres of other terrestrial planets are discussed to provide a planetary perspective. Discussions will include effects of "greenhouse" gases such as $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{CO}_{2^{\prime}}$ and CH_{4} in climate modification, and other influences of civilization's byproducts on atmospheric chemistry, e.g., the destruction of the ozone layer. The biogeochemical cycles of the radioactively important trace gases will be examined. Prerequisites: Chemistry 6 sequence or equivalent. Offered in alternate years (offered spring 2002). SIO staff. (S)

ERTH 143. Marine Paleoecology (4)

Paleoecology of marine plankton, nekton, and benthos. Patterns and changes in marine communities and ecosystems over geological time in relation to changes in the physical, chemical, and geological environment and biotic interactions. The preservation filter and inference of ecological processes from fossils and biogeochemical proxies. Biotic interchanges, incumbency, escalation and trends, mass extinctions, and recovery.

Lectures, seminar discussion, laboratory, and field trips. Prerequisites: Bachelor's degree in science or consent of instructor; open to undergraduates with completion of ERTH 104 and either BIEB 130 or BIEB 140 or equivalent. (W)

ERTH 144. Isotope Geochemistry (4)

Isotopic ratios of various elements serve as natural tracers, as chronometers, and as geothermometers. Thus isotope measurements have become an indispensable tool for earth scientists. This course introduces students to the theory of radioactivity, geochronology, and stable isotope fractionation and shows how these principles are used to investigate important geochemical problems. Prerequisites: ERTH 101, ERTH 102, ERTH 120. Offered in alternate years (offered spring 2003). (S)

ERTH 150. Environmental Perils (4)
An advanced field-oriented course for engineering and science students stressing the geologic basis for environmental perils such as earthquakes, erosion flooding, and waste disposal. Two one-hour lectures and a twohour lab/field trip each week. One Saturday field trip. Prerequisites: Math 20A-B, 21C-D, sequence and Physics $2 A-B-C$ sequence or equivalent. (S)

ERTH 152. Petrology and Petrography (4)

Mineralogic, chemical, textural, and structural properties of igneous, metamorphic, and sedimentary rocks; their origin and relations to evolution of the Earth's crust and mantle. Includes rocks of both the continents and ocean basins. The laboratory emphasizes both hand specimens and microscopic studies of rocks in thin sections. Prerequisites:ERTH 101,ERTH 102, and ERTH 120 or their equivalents. (S)

ERTH 155. Igneous and Metamorphic Processes (4) This course provides an overview of the Earth from a geochemical and petrogenetic point of view. Topics include the formation and chemical differentiation of material in the solar system, the formation and differentiation of the Earth into core, mantle, crust and atmosphere/hydrosphere, the generation of magma in a variety of plate tectonic settings, and isotope and trace element geochemistry of igneous and metamorphic rocks. Literature readings will be assigned for most topics and discussion is expected of everyone. Prerequisite: ERTH 152, or consent of instructors. (F)

ERTH 160. Introduction to Tectonics (4)
The theory of plate tectonics attempts to explain how forces within the earth give rise to continents, ocean basins, mountain ranges, earthquake belts and most volcanoes. In this course we will learn how plate tectonics works. Prerequisites: ERTH 101 or consent of instructor. (F)

ERTH 162A. Introduction to Field Geology (4)
Mapping and interpretation of geologic units and structures in the field. Field observations at the surface are related to theory and extrapolated to three dimensions. Field work is done on weekends in local areas; field data are discussed and evaluated through applicable geologic principles in the laboratory. Prerequisites: ERTH 101, ERTH 120 or consent of instructor. To be taken concurrently with ERTH 162 L . (W)

ERTH 162L. Structural Analysis for Field Geology (4) Principles of stratigraphy and structural geology applicable to field geologic studies. Discussion and laboratory exercises. Prerequisites: ERTH 101, ERTH 120, or consent of instructor. To be taken concurrently with ERTH 162A. (W)

ERTH 180. Geophysics of Natural Resources (4)
Introduction to seismic, gravity, magnetic, and electrical methods used in exploration geophysics on scales of hundreds of kilometers to tens of meters. These are the principal means of discovering energy and mineral resources such as oil, gas, and ore deposits. Emphasis is on the underlying physical principles of the methods, instrumentation, and data interpretation, including an introduction to geophysical inverse theory. Prerequisites: Math. 20A-B, 21C-D and Physics 2 sequence or equivalent, or consent of instructor. ERTH 182 must be taken concurrently. (S)

ERTH 182. Field Geophysics (4)
Introduction to design and execution of simple geophysical field experiments, including seismic, gravimetric, geoelectrical, and geodetic techniques. The focus is on a simple geological problem that can be solved by geophysical experiments. Computer-aided data analysis and interpretation. Prerequisites: ERTH 180 (must be taken concurrently) or consent of instructor. (S)

ERTH 190. Special Topics in Earth Sciences (2-4)
A seminar course designed to treat emerging or topical subjects in the earth sciences. Involved reading from the literature and student participation in discussion. Topics vary from year to year.

ERTH 194. Research Seminar in Washington, D.C. (4)
Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistant and substantial research paper. Prerequisites: departmental approval. Participating in UCDC Program.

ERTH 196. Honors Thesis Research (4)
Independent reading or research on a problem. By special arrangement with a faculty member. (Letter grade only.)

ERTH 198. Directed Group Study (2-4)
This course covers a variety of directed group studies in areas not covered by formal ERTH courses (P/NP grades only.) Prerequisite: consent of instructor.

ERTH 199. Independent Study for Undergraduates (4) Independent reading or research on a problem. By special arrangement with a faculty member. (P/NP grades only.)

ERTH 211. Research Seminar (2)
A three quarter required sequence for $\mathrm{BS} / \mathrm{MS}$ Earth Sciences students to prepare students for thesis writing. (F,W,S)

Economics
 DEPARTMENT OFFICE: 210 Economics Building ECONOMICS STUDENT SERVICES:
 245 Sequoyah Hall
 http://www.econ.ucsd.edu

Professors

Richard E. Attiyeh, Ph.D.
Donald V.T. Bear, Ph.D., Emeritus

Richard T. Carson, Ph.D.
John Conlisk, Ph.D., Emeritus
Vincent P. Crawford, Ph.D.
Robert F. Engle, Ph.D.
Roger H. Gordon, Ph.D.
Clive W.J. Granger, Ph.D.
Theodore Groves, Ph.D.
James D. Hamilton, Ph.D., Chair
Mark J. Machina, Ph.D.
Ramachandra Ramanathan, Ph.D., Emeritus
Garey Ramey, Ph.D.
Valerie A. Ramey, Ph.D.
James E. Rauch, Ph.D.
Joel Sobel, Ph.D.
Ross M. Starr, Ph.D.
Halbert L. White, Ph.D.
Michelle J. White, Ph.D.

Research Professor

Harry M. Markowitz, Ph.D.

Associate Professors

Julian Betts, Ph.D.
Wouter J. Den Haan, Ph.D.
Graham Elliott, Ph.D.
Marjorie Flavin, Ph.D.
Dennis E. Smallwood, Ph.D., Emeritus
Allan Timmermann, Ph.D.
Joel Watson, Ph.D.

Assistant Professors

Kate Antonovics, Ph.D.
Jason M. Shachat, Ph.D.
Alan Sorensen, Ph.D.

Associate Adjunct Professor

Dale Squires, Ph.D. (IR/PS)

Associated Faculty

Nathaniel Beck, Ph.D. (Professor, Pol Sci) Michael Bernstein, Ph.D. (Professor, History) Takeo Hoshi, Ph.D. (Associate Professor, IR/PS) Alex Kane, Ph.D. (Professor, IR/PS)
Bruce Lehmann, Ph.D. (Professor,IR/PS)

Introduction

Economics is the study of how individuals, organizations, and societies deal with scarcity the fact that resources are not sufficient to satisfy everyone's wants. Because scarcity requires choice among alternative uses of resources, economists study both the technology by which resources are turned into the products people want and the
preferences through which people choose among alternatives. Further, since society is composed of many individuals and groups, economists study markets, governments, and other institutions through which a society might gain the advantages of cooperation and resolve the conflicts due to competing goals. The economics curriculum develops tools and uses them to analyze a wide range of societal problems, and also to study the role of the government in solving these problems.

Economics is a different discipline from business administration. However, there are substantial overlaps. Both disciplines study the behavior of people and firms within the context of market, legal, and other institutions. In evaluating economic institutions, economists tend to emphasize the viewpoint of the larger society, and business scholars tend to emphasize the viewpoint of firms. A more complete discussion is available in the department Undergraduate Handbook, which contains a comparison between the economics major at UCSD and a business administration major at UC Berkeley.

The department Undergraduate Handbook is available in the Economics Undergraduate Student Services office, Sequoyah Hall 245, or on the Internet at the department Web site at http://www.econ.ucsd.edu. The Handbook contains answers to frequently asked questions, gives practical tips for avoiding problems, and provides a more detailed discussion of the department's majors than is possible in the general catalog. It is important for students contemplating a major in the department to be familiar with the Handbook and the prerequisite requirements listed therein. Time-sensitive information, job and internship announcements, and other important information are sent to all declared majors and minors through campus email.

Students interested in the Education Abroad Program (EAP) are encouraged to check out the brochure "Opportunities in Business and Economics" that is available at the EAP office.

The Undergraduate Program

Lower-Division Economic Courses

A FIRST SURVEY COURSE-ECONOMICS 10

Economics 10 is a nontechnical survey of economic reasoning, with emphasis on current events. The course uses only the simplest formal tools (simple equations and graphs). Several pur-
poses are served by Economics 10-economic literacy for students who take no further economics, the first course of a two- or three-quarter economics sequence for students satisfying generaleducation requirements, and a starting point for students minoring or majoring in economics.

Economics 10 is recommended for most students who intend a minor or major in economics. However, students who have already taken two courses or more of economics at the college level, other than accounting, are viewed as having passed the level of Economics 10 ; hence they may not go back and take Economics 10 for credit.

MICROECONOMICS AND MACROECONOMICSECONOMICS 1A-B AND 2A-B

The department offers two micro-macro sequences, Economics 1A-1B and Economics 2A$2 B$. For each sequence, the A course introduces the analytical tools of microeconomics (the study of households, firms, and other "micro" agents). The B course introduces the analytical tools of macroeconomics (the study of the aggregate performance of an economy). The 1A-1B courses differ from the $2 A-2 B$ courses only in that the latter use calculus in the presentation. Mathematics $10 \mathrm{~A}-10 \mathrm{~B}-10 \mathrm{C}$, or $20 \mathrm{~A}-\mathrm{B}$ and $20 \mathrm{C} / 21 \mathrm{C}$, is the prerequisite for Economics $2 \mathrm{~A}-2 \mathrm{~B}$. Micro and macro courses may be taken in either order, or simultaneously. For example, 1B may be taken before, after, or simultaneously with 1 A .

A micro-macro combination (such as Economics $1 \mathrm{~A}-1 \mathrm{~B})$, or the equivalent from another institution, is required for upper-division work in economics.
Modern economics is somewhat mathematical, and calculus is a standard working tool. Therefore, there are educational advantages in taking the calculus track (Economics 2A-2B rather than Economics $1 \mathrm{~A}-1 \mathrm{~B})$. Students who plan an economics or management science major, especially the latter, are well advised to take the calculus track. However, students who are unable to do so for scheduling or other reasons may be reassured by the fact that Economics $1 \mathrm{~A}-1 \mathrm{~B}$ satisfies the same requirements as Economics $2 \mathrm{~A}-2 \mathrm{~B}$, and by the fact that the economic substance of $1 A-1 B$ is the same as for $2 \mathrm{~A}-2 \mathrm{~B}$.

Because the substance is the same, it is acceptable to mix courses from the calculus and noncalculus tracks. That is, Economics 1A-2B or Economics 2A-1B are acceptable combinations. For the same reason, students should not take
and will not receive credit for both 1 A and 2 A or for both 1 B and 2 B .

Accounting Course

The department offers an accounting course, Economics 4. Economics 4 is a lower-division requirement for the B.S. in management science and the management science minor. The course is a prerequisite for Economics 173, Corporate Finance. Economics 4 can be used as an optional part of an economics major or minor; and the course is open to students who take no other courses from the department.

Upper-Division Economics Courses

The upper-division economics core courses are offered according to the following academic schedule:
Fall-100A, 110A, 120A-B-C, 170A, 171, 172A, and 172C;

Winter-100A-B, 110A-B, 120A-B-C, 170A-B, and 172A-B;
Spring-100B, 110B, 120A-B-C, 170B, 171, and 172B-C.

The $100,110,120$ and 170 core courses are sequential. That is, "A" must be taken before " 8 " before "C". Economics 172A must be taken first. Economics 172B and 172C may be taken in either order or concurrently.

Entry to the Majors

Any student in good standing may declare a major in the department by filling out a form at the Office of the Registrar.

The Economics Major (B.A.)

The economics B.A. program is designed to provide a broad understanding of resourceallocation and income-determination mechanisms. Both the development of the tools of economic analysis and their application to contemporary problems and public policy are stressed.

A student majoring in economics must meet the following requirements:

1. Calculus. Mathematics $10 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ or Mathematics $20 \mathrm{~A}-\mathrm{B}$ and $20 \mathrm{C} / 21 \mathrm{C}$.
2. Lower-division economics. Economics $1 A-B$, or $2 A-B$ or $1 A-2 B$ or $2 A-1 B$.
3. Upper-division core. Economics 100A-B (microeconomics), Economics 110A-B (macroeconomics), and Economics 120A-B-C (econometrics).
4. Upper-division electives. Five more economics courses at the upper-division level.

Majors are strongly encouraged to complete the lower-division requirements (1 and 2) before beginning the upper-division requirements (3 and 4). Further, majors are strongly encouraged to take Economics 100A-B and either 110A-B or $120 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ prior to the senior year, since numerous upper-division electives have core-course prerequisites.

The following schedule, though not the only possibility, is a well-constructed one for majoring in economics.

FRESHMAN YEAR

Mathematics 10A-B-C or
Mathematics 20A-B and 20C/21C

SOPHOMORE YEAR

Economics 1A-B or Economics 2A-B or Economics $10-1 \mathrm{~A}-1 \mathrm{~B}$ or Economics $10-2 \mathrm{~A}-2 \mathrm{~B}$

JUNIOR YEAR

Economics 100A-B
Economics 110A-B
Economics 120A-B-C

SENIOR YEAR

Five Economics Electives
A detailed description of the economics major is contained in the Undergraduate Handbook, available in the Undergraduate Program section of the department Web site and in Sequoyah Hall 245.

The Management Science Major (B.Sc.)

Management science builds on a set of related quantitative methods commonly used to solve problems arising in the private (business and finance) and public (government) sectors. While students will gain some familiarity with the traditional functional fields of business management, this program is more tightly focused and more quantitative than a traditional business administration major. It is not, however, a program in applied mathematics or operational research, since the economic interpretation and application of the tools are continually stressed. Rather, it is a quantitative major in applied economics with a management focus. Before beginning upper-
division work, a major must complete Economics 2A-B, Economics 4, Mathematics 20A-B and $20 \mathrm{C} / 21 \mathrm{C}$, and Mathematics 20 F . Economics 1A may be substituted for 2 A , or 1 B for 2 B . However, $2 \mathrm{~A}-\mathrm{B}$ are recommended. These courses provide both the understanding of basic principles and the mathematical maturity needed to understand the quantitative techniques of management science.

The management science major requires a total of 15 upper-division courses. Nine of these are specified: Economics 170A-B (Management Science Microeconomics), Economics 120A-B-C (Econometrics), Economics 171 (Decisions Under Uncertainty), and Economics 172A-B-C (Introduction to Operations Research). The 170 sequence concerns the nature and interdependence of managerial resource allocation decisions. Economics 120A-B-C teaches the theory and use of statistics and econometrics. The 172 sequence provides a general survey of optimization and problem-solving techniques employed by management scientists.

Of the six management science electives, at least one must be chosen from Economics 173 (Corporate Finance) or Economics 175 (Financial Investments). Two must be chosen from Economics 174 (Insurance, Economics, and Finance), Economics 175 (Financial Investments), Economics 176 (Marketing), Economics 178 (Economic and Business Forecasting), or Economics 179 (Decisions in the Public Sector). Each of these courses focuses on an important set of managerial problems. The remaining three electives may be chosen from among other upper-division economics courses.

The following schedule, though not the only possibility, is a well-constructed one for a student majoring in Management Science.

FRESHMAN YEAR

Mathematics 20A-B and 20C/21C

SOPHOMORE YEAR

Economics $2 A-B$ or $1 A-B$ or
$10-2 A-2 B$ or $10-1 A-1 B$
Economics 4
Mathematics 20F

JUNIOR YEAR

Economics 170A-B
Economics 120A-B-C
Economics 171
Economics 172A-B-C

SENIOR YEAR

Six Economics Electives

A detailed description of the management science major is contained in the Undergraduate Handbook, available on the department Web site and in Sequoyah Hall 245.

Joint Major in Mathematics and Economics (B.A.)

Majors in mathematics and the natural sciences often feel the need for a more formal introduction to issues involving business applications of science and mathematics. Extending their studies into economics provides this application and can provide a bridge to successful careers or advanced study. Majors in economics generally recognize the importance of mathematics to their discipline.Undergraduate students who plan to pursue doctoral study in economics or business need the more advanced mathematics training prescribed in this major.

This major is considered to be excellent preparation for Ph.D. study in economics and business administration, as well as for graduate studies for professional management degrees, including the MBA. The major provides a formal framework making it easier to combine study in the two fields.

Course requirements of the Joint Major in Mathematics and Economics consist principally of the required courses of the mathematics major and the economics/management science majors:

Lower-Division Requirements:

1. Calculus and Linear Algebra. Mathematics 20A-B, 20C/21C, 20D, and 20F
2. Introductory Economics. Economics 1 A or 2 A and $1 B$ or $2 B$

Upper-Division Requirements:

Fifteen upper-division courses in mathematics and economics, with a minimum of seven courses in each department, chosen from the courses listed below (prerequisites are strictly enforced):

1. Mathematical Reasoning. Mathematics 109 (formerly Math. 89)
2. One of the following:

Applied Linear Algebra. Mathematics 102
Numerical Linear Algebra. Mathematics 170A
Linear Algebra. Mathematics 100AB
3. One of the following:

Foundations of Analysis. Mathematics 140A Advanced Calculus. Mathematics 142A
4. One of the following:

Ordinary Differential Equations. Mathematics 130A

Foundations of Analysis. Mathematics 140B Advanced Calculus. Mathematics 142B
5. One of the following:

Microeconomics. Economics 100AB
Management Science Microeconomics. Economics 170AB
6. Econometrics. Economics 120A-B-C or Mathematics 180A and Economics 120B-C, or Mathematics 180A and 181A and Economics 120C
7. One of the following: Macroeconomics. Economics 110AB Mathematical Programming: Numerical Optimization. Mathematics 171AB or
Two of the following:
Decisions Under Uncertainty. Economics 171 Introduction to Operations Research. Economics 172A-B-C (Note: 172A is a prerequisite for 172 BC)
Other courses which are strongly recommended are: Mathematics 130B,131,181B, 190, and 193A-B and Economics 109, 113, 155, 175, and 178.

Further information may be obtained in the mathematics and economics undergraduate offices.

Honors

Currently, honors programs exist for the economics major and for the management science major. There are two levels of honors. For the lower level, indicated by the phrase "with distinction" on the diploma, you must satisfy the first two of the following three requirements. For the higher level, indicated by the phrase "with highest distinction" on the diploma, you must satisfy all three requirements. There is no application to the honors program. Register for either major under the regular major code (EN25 for economics, EN26 for management science). Your final degree check will indicate which level of honors you receive.

1. Complete either a management science major or the honors track of the economics major, both of which require fifteen upper-division courses. The honors track of the economics major consists of the course work of a regular economics major (twelve upper-division courses) plus one advanced microeconomics course (Economics 113, 117, 145, 150, 151, 152, 155, or 179), one advanced macroeconomics
course (Economics 103 or 146), and one advanced econometrics course (Economics $121,125,175,176$, or 178). Typically, a course will qualify as "advanced" if it has the corresponding core courses as prerequisites. As an example, a course with an Economics 100A-B prerequisite will typically qualify as an advanced microeconomics course.
2. Have an upper division GPA in your major greater than or equal to 3.5. Typically, the upper-division major GPA will exclude grades for courses taken at universities other than those in the UC system.
3. Take the honors versions of at least two upperdivision courses (Economics 100AH-BH, 110AH$\mathrm{AH}, 120 \mathrm{AH}-\mathrm{BH}-\mathrm{CH}$, and $170 \mathrm{AH}-\mathrm{BH}$), and take the senior essay seminar (Economics 191A-B). The GPA across these four or more courses must be 3.5 or above. Admission to these courses is by special permission; check with the undergraduate adviser in the Economics Student Services Office.

Grade Rules for Majors

All courses used in meeting requirements for a departmental major must be taken on a lettergrade basis. (Exceptions are courses such as Economics 195 and Economics 199, for which P/NP grading is mandatory. However, no more than twelve units taken P/NP may be counted toward a major.) These courses must be passed with a grade of C - (C minus) or better. These rules apply to lower-division as well as upper-division courses, and they apply to courses taken from other departments (such as required mathematics courses).

Advanced Placement Credits

Because no high school economics course provides the kind of background needed for upperdivision economics and management science, we are strict on allowance of credits. The policy is as follows: If the AP score is 5 , accept AP Micro (AP Macro) as equivalent to Economics 1A (Economics $1 B$) in meeting major or minor requirements. If the score is 3 or 4 , the student is required to take Economics 1 A or 2 A (1 B or 2 B).

Minors and Programs of Concentration

The economics minor or program of concentration consists of seven courses: an introductory microeconomics course (Economics 1A or 2A); an
introductory macroeconomics course (Economics 1 B or 2 B); and five upper-division economics courses, which are otherwise not restricted.

The management science minor, paralleling the existing economics minor, consists of an introductory micro course (Economics 1A or 2 A , an introductory macro course (Economics 1 B or 2 B ,) Economics 4, and any five from the following list (Caution: some courses have prerequisites):

Economics 170A Managerial Microeconomics
Economics 170B Managerial Microeconomics
Economics 120A Econometrics
Economics 120B Econometrics
Economics 120C Econometrics
Economics 171 Decisions Under
Uncertainty
Economics 172A Operations Research
Economics 172B Operations Research
Economics 172C Operations Research
Economics 173 Corporate Finance
Economics 174 Insurance, Economics and Finance
Economics 175 Financial Investments
Economics 176 Marketing
Economics 178 Economic and Business
Forecasting
Economics 179 Decisions in the Public Sector

To declare a minor or program of concentration, obtain a minor declaration form from your college advising office, fill it out, and turn it in to Sequoyah Hall 245 . Students should check with their colleges regarding area of focus, programs of concentration, and project minors.

The Graduate Program

The department offers the M.A., C.Phil., and Ph.D. degrees in economics. However, a student must be admitted to the Ph.D. program in order to be eligible for an M.A. or C.Phil. The department also offers the Ph.D. degree in economics and international affairs jointly with the Graduate School of International Relations and Pacific Studies.

The main Ph.D. requirements are that a student pass qualifying exams in microeconomics, macroeconomics, econometrics, select courses of specialization, and prepare an acceptable dissertation. The Ph.D. degree in economics and international affairs also requires successful completion of a language requirement and additional electives offered by IR/PS.

Detailed descriptions of the Ph.D. programs are available by writing to the Graduate Studies Coordinator in care of the Department of Economics. Information is also available on the Internet at the department Web site at http:// www.econ.ucsd.edu. Residence and other campus wide regulations are described in the graduate studies section of this catalog.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of five years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

COURSES

LOWER-DIVISION

1A-B. Elements of Economics (4-4)
Basic methods of economic analysis and their application to public policy and current events. Economics 1 A concerns microeconomics: supply and demand, markets, income distribution, perfect and imperfect competition, the role of government. Economics 1B concerns macroeconomics: unemployment, inflation, business cycles, monetary and fiscal policy. Economics 1 A is not required for 1 B . Credit not allowed for both Economics $1 A$ and $2 A$ or $1 B$ and $2 B$.

2A-B. Introduction to Economics (4-4)

Same content as Economics 1A-B, but calculus is used in the presentation. $2 A$ is not required for $2 B$. Credit not allowed for both Economics 1 A and 2 A or 1 B and 2 B . Prerequisites: Mathematics 10A-B-C, or 20A-B and 20C/21C.
4. Financial Accounting (4)

Recording, organizing, and communicating economic information relating to business entities. No prerequisites.
10. Markets (4)

Emphasis on intuition and current events, markets and resource allocation, government intervention when markets fail (monopoly inequality, environmental issues), stock, bond, and other financial markets, inflation and unemployment, international markets. No credit for students who have completed one introductory microeconomics course and one introductory macroeconomics college course. Prerequisite: department stamp required.
90. Undergraduate Seminar (1)

Selected topics in economics. May be repeated twice (total of three units) when course topic varies. (P/NP grades only.)

UPPER-DIVISION

100A-B. Microeconomics (4-4)
(Conjoined with Economics 100AH-BH.) Household and firm behavior as the foundations of demand and supply. Market structure and performance, income distribution, and welfare economics. Credit not allowed for
both Economics 100A-B and Economics 170A-B. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Mathematics $10 A-B-$ C, or 20A-B and 20C/21C. Economics 100A must be taken before Economics 100B.

100AH-BH. Honors Microeconomics (4-4)
(Conjoined with Economics 100A-B.) Honors sequence covering the material of Economics 100A-B. Prerequisites: introductory micro, introductory macro, and either Mathematics 10A-B-C, or 20A-B and 20C/21C. GPA of 3.5 or better. Economics 100AH must be taken before Economics 100 BH . Department stamp required.

101. International Trade (4)

Determinants of trade in goods and services, international flows of labor and capital, and the effects of trade policy on welfare and income distribution. Issues such as competitiveness, immigration policy, trading blocs, and industrial policy. Prerequisites: Economics $1 A-B$ or $2 A-B$. Recommended: Economics 100A-B or 170A-B.
103. International Monetary Relations (4)

Balance of payments, international capital movements, and foreign exchange examined in light of current theories, policies, and problems. Prerequisites: Economics 110A-B.
105. Industrial Organization and Antitrust Policy (4) Structure and performance of U.S. industry. Pricing, advertising, product strategies, cartel behavior, and strategic entry barriers. Detailed treatment of antitrust policy. Prerequisites: Economics 100A-B or 170A-B.
107. Economic Regulation (4)

Theory and application of economic regulation. Natural monopoly, nonlinear pricing, Ramsey pricing, franchise bidding. Discussion of U.S. electric utilities, gas utilities, broadcasting, surface transportation, and air trans portation. Prerequisites: Economics 100A or 170A.

109. Game Theory (4)

Introduction to game theory. Analysis of people's decisions when the consequences of the decisions depend on what other people do. Applications to economic political, and social interactions. Prerequisites: Economics 100A-B or 170A-B and Mathematics 20A-B and 20C/21C.

110A-B. Macroeconomics (4-4)

(Conjoined with Economics 110AH-BH.) The theory of national income determination as the basis for explaining fluctuations in income, employment, and the price level. Use of monetary and fiscal policy to stabilize the economy. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Mathematics 10A-B-C, or 20A-B and 20C/21C. Economics 110A must be taken before Economics 110B.

110AH-BH. Honors Macroeconomics (4-4)
(Conjoined with Economics 110A-B.) Honors sequence covering the material of Economics 110A-B. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Mathematics $10 A-B-C$, or 20A-B and 20C/21C. GPA of 3.5 or better. Economics 110 AH must be taken before Economics 110BH. Department stamp required.

111. Monetary Economics (4)

Financial structure of the U.S. economy. Bank behavior. Monetary control. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Mathematics 10A or 20A.

113. Mathematical Economics (4)

Mathematical concepts and techniques used in advanced economic analysis; applications to selected aspects of economic theory. Prerequisites: Mathematics $20 A-B$ and $20 C / 21 C$, and one of the following: Economics

100A-B, or, Economics 170A-B, or, Mathematics 140A or Mathematics 142A.

116. Economic Development (4)

Analysis of current economic problems of less-developed areas and conditions for increasing their income, employment, and welfare; case studies of specific lessdeveloped countries. Prerequisite: Economics $1 A-B$ or $2 A-B$.

117. Economic Growth (4)

Models of the economic growth of developed economies. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Mathematics $10 A-B-C$, or $20 A-B$ and $20 \mathrm{C} / 21 C$, and Economics 100A or 170A.

118A-B. Law and Economics (4-4)

Analysis of the economic effects of the structure of the law with particular emphasis on the law of liability, including liability for nuisances, zoning law, products liability, and accident liability. Prerequisites: Economics 100A. 1A-B or 2A-B. 1188 may be taken before 118 A .

120A-B-C. Econometrics (4-4-4)
(Economics 120A-B-C conjoined with Economics $120 \mathrm{AH}-\mathrm{BH}-\mathrm{CH}$.) Probability and statistics used in economics. Economics 120A covers basic data analysis using spreadsheets, probability and sampling theory. 120 B covers statistical inference and basic regression methods; 120C covers advanced regression including special topics. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Mathematics 10A-B-C, or 20A-B and 20C/21C. The Economics 120A-B-C sequence must be taken in that order (A before B before C). Credit not allowed for both Economics 120A and Mathematics 183 or ECE 109. Also, see the "Note on overlaps" at the end of the undergraduate course descriptions.

120AH-BH-CH. Honors Econometrics (4-4-4)

(Conjoined with Economics 120A-B-C.) Honors sequence covering the material of Economics 120A-B-C. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Mathematics $10 \mathrm{~A}-\mathrm{B}-\mathrm{C}$, or $20 \mathrm{~A}-\mathrm{B}$ and $20 \mathrm{C} / 21 \mathrm{C}$. GPA of 3.5 or better. The Economics 120AH-BH-CH sequence must be taken in that order (AH before BH before CH). Credit will not be given for Economics 120AH and Mathematics 183 or ECE 109. Department stamp required.

121. Applied Econometrics (4)

Application of econometric methods to such areas as labor supply, human capital, and financial time series. Prerequisites: Economics 120A-B-C or 120AH-BH-CH.
125. Economics of Population Growth (4)

Economics of population growth, family size, age profiles, birth and death rates, growth of cities. Prerequisites: Economics 120A-B-C. Economics 178 is recommended.
130. Public Policy (4)

Role of economics in public policy. Topics such as funding health care, drug policy, incentives for high technology industries, mass transit versus highway construction, and agriculture subsidies. Term paper usually required. Prerequisites: Economics $1 A-B$ or $2 A-B$.

131. Economics of the Environment (4)

Environmental issues from an economic perspective. Relation of the environment to economic growth. Management of natural resources, such as forest and fresh water. Policies on air, water, and toxic waste pollution. International issues such as ozone depletion and sustainable development. Prerequisites: Economics 1A-B or $2 A-B$.

132. Energy Economics (4)

Energy from an economic perspective. Fuel cycles for coal, hydro, nuclear, oil, and solar energy. Emphasis on efficiency and control of pollution. Comparison of energy use across sectors and across countries. Global warming. Role of energy in the international economy. Prerequisites: Economics $1 \mathrm{~A}-\mathrm{B}$ or $2 \mathrm{~A}-\mathrm{B}$.
133. Housing Policy (4)
(Same as USP 123.) Examines housing markets and the U.S. housing finance system. Evaluates federal and local policies and tax incentives to promote housing production, encourage homeownership, provide decent shelter for low-income families, and improve conditions in deteriorated neighborhoods. Prerequisites: Economics $1 A-B$ or $2 A-B$.
135. Urban Economics (4)
(Same as USP 102.) Urban economic problems and public policies to deal with them. Prerequisites: Economics $1 A-B$ or $2 A-B$.

136. Human Resources (4)

Theoretical and empirical analysis of public and private investment in people, emphasizing the contribution to productivity of education. Prerequisites: Economics 1A-B or $2 A-B$ and Mathematics $10 A-B-C$, or $20 A-B$ and $20 C / 21 C$.
137. Inequality and Poverty (4)

Analysis of inequality in the distribution of income, education, and wealth; causes of poverty and public policies to combat it. Prerequisites: Economics 1A-B or $2 \mathrm{~A}-\mathrm{B}$, and Economics 120A.

138A-B. Economics of Health (4)
The application of economic analysis to the health field; the role of health in income, production, and poverty; supply, demand, and price determination in the public and private sectors. Prerequisites: Economics $1 A-B$ or $2 A-$ B. Economics 138A must be taken before 1388 .

139. Labor Economics (4)

Operation of labor markets. Such topics as labor force participation, unemployment, labor mobility, wage inflation, the impact of unions, human capital investments, internal labor markets, and labor market discrimination. Prerequisites: Economics 1A-B or 2A-B.
145. Economics of Ocean Resources (4)

Economic issues associated with oceans. Living marine resources, nonliving marine resources, and other economic attributes of the sea. Prerequisites: Economics $100 \mathrm{~A}-\mathrm{B}$ or $170 \mathrm{~A}-\mathrm{B}$.
146. Economic Stabilization (4)

Theory of business cycles and techniques used by governments to stabilize an economy. Discussion of recent economic experience. Prerequisites: Economics 110A-B.
150. Economics of the Public Sector: Taxation (4) Overview of the public sector in the U.S. and the scope of government intervention in economic life. Basic principles of taxation, tax incidence, and tax efficiency. Analysis of the U.S.tax system before and after the Tax Reform Act of 1986. Prerequisites: Economics 100A or 170A.
151. Economics of the Public Sector: Expenditures (4) Overview of the public sector in the U.S. and the scope of government intervention in economic life. Theory of public goods and externalities. Introduction to the basic forms of government intervention. Evaluation of specific expenditure programs such as education and national defense. Prerequisites: Economics 100A or 170A.

152. Topics in Public Economics (4)

Special topics on the economics of the public sector. Prerequisite: Economics 150 or 151.

155. Economics of Voting and Public Choice (4)

An economic analysis of social decision making, including such topics as the desirable scope and size of the public sector, the efficiency of collective decision-making procedures, voting theory and collective vs. market resource allocation. Prerequisite: Economics 100A-B or 170A-B.

158A-B. Economic History of the United States (4-4) (Same as History HUS 140-141.) 158A: The United States as a raw materials producer, as an agrarian society, and as an industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and nineteenth- and early twentieth-century transformations of American capitalism. 158B: The United States as a modern industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and twentieth-century transformations of American capitalism.
161. Latin American Economic Development (4)

Development issues facing Latin American countries. Economic policy. Emphasis on Argentina, Brazil, Chile, and Mexico. Prerequisite: Economics 1A-B or 2A-B.
163. Japanese Economy (4)

Survey of Japanese economy. Topics such as economic growth, business cycles, saving-investment balance, financial markets, fiscal and monetary policy, labor markets, industrial structure, international trade, and agricultural policy. Prerequisite: Economics IA-B or $2 A-B$.

170A-B. Management Science Microeconomics (4-4)
(Conjoined with Economics 170AH-BH.) Subject matter of Economics 100A-B, but with greater emphasis on the theory of the firm. Credit not allowed for both Economics 100A-B and Economics 170A-B. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Mathematics 20A-B and 20C/21C. 170A must be taken before 170 .

170AH-BH. Honors Management Science

Microeconomics (4-4)

(Conjoined with Economics 170A-B.) Honors sequence covering the material of Economics 170A-B. Prerequisite: Economics $1 A-B$ or $2 A-B$ and Mathematics $20 A-B$ and 20C/21C. GPA of 3.5 or better. 170A or AH must be taken before 170 BH . Department stamp required.
171. Decisions Under Uncertainty (4)

Decision-making when the consequences are uncertain. Decision trees, payoff tables, decision criteria, expected utility theory, risk aversion, sample information. Prerequisites: Economics $7 A-B$ or $2 A-B$, Economics 120A, Mathematics 20A-B and 20C/21C, and Mathematics 20F.

172A-B-C. Introduction to Operations Research (4-4-4) Linear, nonlinear, and integer programming. Elements of game theory. Deterministic and stochastic dynamic programming. Prerequisites: Economics $1 A-B$ or $2 A-B$, Mathematics 20A-B-C(21C)-F and Economics 120A Economics 172A may be taken concurrently with 120A. Economics 172A must be taken first, but Economics 172B and C may be taken in either order or concurrently. A student may not receive credit for both Economics 172A172 B and Mathematics 171A-171B. Also, see the "Note on overlaps" at the end of the undergraduate course descriptions.
173. Corporate Finance (4)

Corporate financial management, cash flow analysis, capital budgeting and capital structure. Institutional issues in project analysis, performance evaluation, and financial planning. Prerequisite: Economics 4.
174. Financial Insurance (4)

Insurance markets, law, and terminology. Demand for insurance and for lotteries. Contingent claims theory. Reserves management and efficient risk sharing. Financial theories for regulating insurance rates. Options and insurance. Moral hazard. Adverse selection. Current controversies in insurance. Prerequisites: Economics 120A-B-C and either 100A or Economics 170A. Concurrent enrollment in Economics 120 C is permitted. Economics 171 and Economics 175 are recommended.

175. Financial Investments (4)

Valuation of assets including stocks, bonds, options, and futures contracts. Optimal portfolio selection and risk management. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Economics 120A.
176. Marketing (4)

Role of marketing in the economy. Topics such as buyer behavior, marketing mix, promotion, product selection, pricing, and distribution. Prerequisites: Economics 1A-B or 2A-B, Economics 120A-B-C. Concurrent enrollment in Economics 120 C is permitted.
178. Economic and Business Forecasting (4)

Survey of theoretical and practical aspects of statistical and economic forecasting. Such topics as long-run and short-run horizons, leading indicator analysis, econometric models, technological and population forecasts, forecasting evaluation, and the use of forecasts for public policy. Prerequisites: Economics $1 A-B$ or $2 A-B$ and Economics 120A-B-C. Concurrent enrollment in Economics 120C is permitted.
179. Decisions in the Public Sector (4)

Decision making in the public sector. Topics such as program evaluation, budgeting, financial management, and expenditure decisions. Prerequisites: Economics 100A-B or 170A-B.
181. Topics in Finance (4)

Selected topics in finance. Prerequisite: consent of department.
182. Topics in Microeconomics (4)

Selected topics in microeconomics. Prerequisite:consent of department.
183. Topics in Macroeconomics (4)

Selected topics in macroeconomics. Prerequisite: consent of department.

191A-B. Senior Essay Seminar (4-4)
Senior essay seminar for students with superior records in department majors. Prerequisite: department stamp required.

195A-B-C. Introduction to Teaching Economics (4-4-4) Introduction to teaching economics. Each student will be responsible for a class section in one of the lowerdivision economics courses. Limited to advanced economics majors with at least a 3.5 GPA in upper-division economics work. (P/NP grades only.) Prerequisite: consent of the department.
199. Independent Study (2 or 4)

Independent reading or research under the direction of and by special arrangement with a Department of Economics faculty member. (P/NP grades only.)

Prerequisites: consent of instructor and departmental approval.
Note on overlaps: In general, a student may be denied credit for taking the same subject matter in more than one course, even if there is no explicit mention of the overlap issue in the course descriptions. In particular, the subject matter of Economics 120A-B overlaps the subject matter of probability and statistics courses offered in other departments (Mathematics 180A181A, for example); and the subject matter of Economics 172A-B overlaps the subject matter of Mathematics 171A-B and AMES 146A-B. It is a student's responsibility to find out, by conferring with relevant advisers, what course combinations are advisable and when credit will be denied.

GRADUATE

200A-B-C. Microeconomics (4-4-4)
Background mathematical techniques, static and intertemporal consumer and producer theory, partial and general equilibrium, modern producer and consumer theory, risk, time, and interdependence, modern welfare economics.

200D.Decisions (4)

Further topics in consumer and producer theory, intertemporal optimization, and decision-making under uncertainty. Prerequisites: Economics 200A-B-C or consent of instructor.

200E. Markets and Welfare (4)
Further topics in general equilibrium, welfare analysis, and social choice theory. Prerequisites: Economics 200A-$B-C$ or consent of instructor.

200F. Games and Information (4)
Further topics in game theory and the economics of information. Prerequisites: Economics 200A-B-C or consent of instructor.

201A-B-C. Advanced Economic Theory (4-4-4)

An intensive examination of selected topics in economic theory. Course topic nonrepetitive in a threeyear cycle. Prerequisites: Economics 200E and 210D.

202A-B-C. Workshop in Economic Theory (0-4/0-4/0-4)
An examination of recent research in economic theory, including topics in general equilibrium, welfare economics, duality, and social choice; development of related research topics by both graduate students and faculty. Course may be repeated an unlimited number of times. (S/U grades only.) Prerequisite: Economics 200E or consent of instructor.

205. Mathematics for Economists (4)

Advanced calculus review for new graduate students.

207. Experimental Economics (4)

Design and interpretation of controlled experiments using human subjects. Prerequisite: consent of instructor.

210A-B-C. Macroeconomics (4-4-4)

Neoclassical and Keynesian theories of employment, income, interest rate, price level, and other aggregate variables; macroeconomic policy; balance of payments and exchange rates; conflicts between external and internal balance; disequilibrium theory; growth theory.

210D. Advanced Macroeconomic Theory (4)
Dynamic analysis, multiple equilibria, modern growth theory, computational methods. Prerequisites: Economics 210A-B-C or consent of instructor.

210E. Applied Macroeconomics (4)
Monetary policy, business cycles, factor utilization, investment, heterogeneity. Prerequisites: Economics 210A-B-C or consent of instructor.

211A-B-C. Advanced Macroeconomics (4-4-4)
Selected theoretical and empirical issues in macroeconomics. Prerequisite: Economics 2100 or consent of instructor.

212A-B-C. Workshop in Macroeconomics (4-4-4)
Examination of recent research in macroeconomics; development of own research by graduate students and faculty. Prerequisite: Economics 210C.

214A-B-C.Finance (4-4-4)

Theoretical and empirical issues in finance. Course may be repeated once for credit.

220A-B-C-D-E-F. Econometrics (4-4-4-4-4-4)
The construction and application of stochastic models in economics. This includes both single and simultaneous equations models. Matrix algebra and basic statistics are covered. Also covered (in 220F) are empirica applications to micro and macroeconomics. These require the completion of an empirical project. Both 220E and F will be offered simultaneously in the winter quarter.

221A-B-C. Advanced Econometrics (4-4-4)
Extensions of the theory of the linear model; Bayesian analysis; principal components, discriminant analysis, spectral analysis of time series; insufficient data prob lems and the use of generalized inverse matrices experimental design; formulation and evaluation of economic models, including the interpretation and testing of causality. Prerequisite: Economics 220F or consent of instructor.

222A-B-C. Workshop in Econometrics (4-4-4)
Examination of recent econometric research; develop ment of own research by students and faculty. Course may be repeated an unlimited number of times. (S / U grades only.)

224A-B-C. Readings in Econometrics (1-1-1)
Examination of recent research in econometrics to facilitate the development of thesis research by graduate students.

230A-B. Public Economics (4-4)
Theoretical and empirical issues in public economics Prerequisite: consent of instructor.

232A-B-C. International Economics (4-4-4)
Theory of international trade, finance, and monetary relations. Growth, disturbances, capital movements, and balance of payments adjustment. International economic policy and welfare. Prerequisite: consent of instructor.

234A. Industrial Organization (4)
Theoretical and empirical issues in industrial organiza tion. Prerequisite: Economics 220F or consent of instructor

235A-B-C. Workshop in Applied Microeconomics and Industrial Organization (0-4/0-4/0-4)
Examination of recent research in applied economics; development of own research by graduate students and faculty. Course may be repeated an unlimited number of times. (S / U grades only.)

236A-B. Labor Economics (4-4)
Theoretical and empirical issues in human resource economics. Prerequisite: consent of instructor.
240. Economic Development (4)

Theoretical and empirical issues in economic development. Prerequisite: consent of instructor.
242. Economics of Natural Resources (4)

Theoretical and empirical issues in natural resource economics. Prerequisite: consent of instructor.
267. Special Topics in Economics (4)

A lecture course at an advanced level on a special topic (or set of related topics) in economics. May be repeated for credit if topic differs. Prerequisites: Economics 200E, 2100, and 220F, or consent of instructor.
271. Second-Year Seminar (2)

A survey of how economics research begins and an introduction to the current frontiers. Members of faculty will give 45 -minute presentations in the seminar, with two presentations at each meeting. The talks will be at an introductory level and convey a research interest of the faculty member. Prerequisite: Economics 200C, or consent of instructor.
272.Third-Year Paper (4)

Written project, such as a critical review of a body of literature, including a proposal for an original research paper. For third-year students in winter quarter.

273. Third-Year Paper Presentations (4)

Workshop for students writing third-year papers. All papers will be formally presented in the workshop.
274. Third-Year Original Paper (4)

Original research paper. For third-year students.
275. Third-Year Original Paper Presentations (4)

Workshop for students writing third-year original papers. All papers will be formally presented in the workshop.

280.Computation (2)

Introduction to econometric computing. (S / U grades only.)

290A-B-C. Colloquium in Economics (0-0-0)
Lectures presented by visiting speakers on research in a variety of topics in both Theoretical and Applied Economics.

291. Advanced Field Advising (4)

Controlled reading and discussion with adviser; literature survey. May be repeated for credit. (S / U grades only.)

297. Independent Study (1-5)

(S/U grades only.)
299. Research in Economics for Dissertation (1-9) (S/U grades only.)

500A-B-C. Teaching Methods in Economics (4-4-4) The study and development of effective pedagogical materials and techniques in economics. Students who hold appointments as teaching assistants must enroll in this course, but it is open to other students as well. (S/U grades only.)

Education Abroad Program (EAP)

OFFICE: Programs Abroad Office in the International Center (corner of Gilman Drive and Library Walk)
(858) 534-1123
http://www.ucsd.edu/icenter/pao
Mary Corrigan, Theatre, Faculty Director Todd Kontje, Literature, Faculty Director David Mares, Political Science, Faculty Director Ramon Piñon, Biology, Faculty Director Mary Dhooge, Dean of International Education Kimberly Burton, Assistant Director for Programs

Abroad

Molly Ann McCarren, EAP Adviser
Bill Clabby, EAP Adviser
Joan Adamo, EAP Adviser
Administered by the University of California, the Education Abroad Program (EAP) has established study centers in Australia, Austria, Barbados, Brazil, Canada, Chile, China, Costa Rica, Denmark, Egypt, France, Germany, Ghana, Hong Kong (S.A.R.), Hungary, India, Indonesia, Ireland, Israel, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, the Philippines, Russia, Singapore, South Africa, Spain, Sweden, Taiwan, Thailand, Turkey, the United Kingdom, and Vietnam. EAP offers full-year and short-term programs in a wide range of academic disciplines. EAP participants are eligible for financial aid and many scholarships. Please see the EAP Web site (http://www.uoeap.ucsb.edu) for detailed information about all aspects of the program. Other non-EAP study-abroad opportunities at UCSD are described at the end of this section.

Purpose

The Education Abroad Program offers undergraduate and graduate students opportunities to integrate into the academic and social life of select foreign universities while continuing to work in major fields of study or otherwise fulfilling UC requirements. EAP provides students access to distinguished academic programs that complement those of the UC campuses and where students can make normal progress toward their degrees at a cost as close as possible to that of education on a UC campus. EAP helps students acquire the knowledge and skills neces-
sary to function confidently and compete successfully in our global environment.
The program stimulates the intellectual development of the participants, broadening the general education of all, and giving a new depth to the particular academic interests of some. Most gain fluency in a language other than their own, and all grow in their ability to engage in independent study. Perhaps most valuable of all are increased self-understanding, clarified life purposes, and a broadening and deepening of personal values.

One of the most distinctive features of the program is the emphasis placed on the full integration of the UC students into the life of the host university. For the most part, UC students abroad live as do the students of the host university: they attend the same classes, take courses from the same professors, and take part in local social and cultural activities. As an aid in facilitating UC student adjustment to unfamiliar educational practices, tutorials are included within the curriculum of most of the Study Centers, supplementing the regular academic offerings of the host university.

The Academic Program

The Education Abroad Program places students at the finest universities abroad. In most cases students take courses side by side with local students in a wide range of academic fields. In some programs EAP students pursue language study and take special courses designed for foreign students. In others, they pursue specialized studies in their major, take courses to add breadth to their general education, concentrate on language or area studies, and conduct research.

Each student is concurrently enrolled on the home campus of the University of California and at the host university. Full academic credit is received for courses satisfactorily completed. The selection of courses is such that, by advance planning and wise choice, most students can make normal progress toward completion of major and/or minor requirements. Some students fulfill some general-education requirements.

Academic Planning and Advising

A participant who wishes to make normal progress toward graduation should counsel in advance with a departmental adviser and an academic adviser in his or her college provost's office in order to ascertain how participation will affect his or
her academic program. Descriptions of individual courses currently approved for UC credit may be found in the Programs Abroad Resource Library and on the EAP Web site (http://www.uoeap.ucsb.edu). Many of the same or similar courses will be available in future years, but students should plan programs that are sufficiently flexible to allow them to take alternate courses. Each year new courses are added to a center's approved offerings as needed by UC students attending and as available at the host university. Although courses approved by the University of California carry full credit, each department retains the right to determine the extent to which it will accept units so earned in the fulfillment of the requirements for its own majors.

In order to facilitate the academic work of the students, University of California professors serve as directors and associate directors of the study centers. They work with their counterparts in the host university in developing the academic program and advise students on any problem pertaining to their work. In addition, the directors are responsible for all aspects of student welfare and conduct.

Cost, Financial Aid, and Scholarships

The regents endeavor to bring the program within the reach of all students, regardless of their financial resources. The cost of studying abroad is usually comparable to the cost of studying on a UC campus. The only additional costs directly related to the program are for round-trip transportation, on-site orientation and vacation travel, and personal expenses beyond what normally would be spent at home. Programs in some countries actually cost less than a comparable period of study at a UC campus.
Many forms of financial assistance are available to EAP students. Those already receiving UC financial aid maintain their eligibility for grants, loans, and scholarships while studying on EAP.Financial aid is based on the cost of studying at each EAP location and on individual need. Students who might not normally be eligible for financial aid may qualify for the period they are on EAP. In addition to UC financial aid, there are EAP Opportunity Grants for economically disadvantaged students, EAP Alumni and General Scholarships, regional scholarships for European and most Pacific countries, country-specific scholarships, and scholarships provided by the Friends of the International Center and various campus offices and departments. Annually,

UCSD students access more than $\$ 450,000$ of special scholarships available only for study abroad. Information about some of these scholarships is available on the student financial services web site (http://www.ucsd.edu/finaid).

Prospective participants who require financial assistance should counsel early with the Student Financial Services Office. Study abroad scholarship information is available in the Programs Abroad Office.

Applications

Application forms for admission to the Education Abroad Program are available in the Programs Abroad Office at the International Center and are given to students following a discussion of various aspects of the program with an EAP adviser. Information on deadlines and related matters such as course offerings, information sessions, selection, schedules of departures, and payment of fees may be obtained from the Programs Abroad Office.

It is not too early to begin planning for an experience abroad prior to or during one's freshman year. General group information sessions about the programs are held during Welcome Week and in October and January.

Australia

The Australian National University, Canberra
The Flinders University of South Australia, Adelaide
La Trobe University, Melbourne
Monash University, Melbourne
The University of Adelaide
The University of Melbourne
The University of New South Wales, Sydney
The University of Queensland, Brisbane
The University of Sydney
The University of Tasmania (Hobart and Launceston campuses)
The University of Western Australia, Perth
The University of Wollongong

Year Programs*

Focus: Regular university courses in a student's major or allied field. Most academic disciplines are available.

Language of Instruction: English

The University of Queensland's Center for Marine Studies

Fall Semester Program

Focus: Courses in marine biology, terrestrial ecology, and Australian cultural heritage taught
through lectures, laboratory studies, and extensive field study.
Language of Instruction: English
Prerequisite: Completion of a minimum of one year of lower-division biology

Barbados

University of the West Indies, Cave Hill

Fall Semester and Academic Year Programs

Focus: Regular university courses in a wide range of disciplines including African Diaspora studies, biology, Caribbean studies, international economics, and environmental law
Language of Instruction: English
Prerequisite: Completion of one or more relevant courses in Caribbean or Latin American studies

Brazil

Pontifical Catholic University of Rio de Janeiro

Spring Semester and Year Programs*

Focus: Regular university courses in a wide range of fields and Portuguese language study
Language of Instruction: Portuguese. The program begins with a six-week intensive language program. Portuguese language study is required each term.
Prerequisite: Two years of university-level Portuguese or Spanish, or one year of Portuguese and one of Spanish

Canada

The University of British Columbia, Vancouver
Fall Semester and Academic Year Programs
Focus: Regular university courses. Most academic disciplines are available.
Language of Instruction: English

Chile

Pontifical Catholic University of Chile, Santiago University of Chile, Santiago
Spring Semester and Year Programs*
Focus: Regular university courses. Most academic disciplines are available.
Language of Instruction: Spanish. Programs begin with a four-week intensive language program.
Prerequisite: Two years of university-level Spanish

China

Beijing Normal University (BNU), Beijing
Peking University, Beijing
Intensive Chinese Summer Program at BNU
Focus: Chinese language and culture
Language of Instruction: Chinese
Prerequisites: Sophomore standing; 3.0 GPA. One year of university-level Chinese with 3.0 GPA

Fall Semester or Academic Year at BNU

 Academic Year at Peking University Fall at BNU with Spring at Peking UniversityFocus: Chinese language and culture. Linguistically qualified students may take regular university courses in selected fields.
Language of Instruction: Standard Chinese. All options begin with a seven-week Chinese intensive language program. Language study is required each term for students who do not have native or near native ability.
Prerequisite: Two years of university-level standard Chinese are preferred for year-long options. One year is required for the fall program.

Costa Rica

Monteverde Institute

Fall or Spring Tropical Biology Program

Focus: Community ecology and tropical diversity in the Monteverde cloud forest
Language of Instruction: English. Spanish language study is required.
Prerequisites: Completion of one year of biology, including one quarter of upper-division organismal biology. A course in statistics is strongly recommended.

University of Costa Rica, San José

Spring Semester and Year Programs*

Focus: Regular university course work in the humanities, social sciences, and natural sciences
Language of Instruction: Spanish. Programs begin with six weeks of intensive Spanish language study.
Prerequisite: Two years of university-level Spanish

Denmark

University of Copenhagen
Summer Intensive Language Program
Focus: Danish language and culture
Language of Instruction: Danish

Prerequisite: UC sophomore standing by departure

Fall Semester in English

Focus: Regular university courses taught in English in selected fields and Danish language, culture, and society courses
Language of Instruction: English. Three weeks of survival Danish precede the semester

Academic Year Program

Focus: Regular university courses taught in Danish or English in a wide range of fields, and Danish language study
Language of Instruction: Danish and English. The nine-week summer intensive language program precedes the academic year.
Prerequisite: Prior study of Danish is recommended

Denmark's International Study Program, Copenhagen

Fall Semester or Academic Year Architecture Program

Focus: Architecture, architectural design, and landscape architecture
Language of Instruction: English
Prerequisites: Prior study in architecture

Egypt

The American University in Cairo

Academic Year Program

Focus: Regular university courses in a wide range of fields
Language of Instruction: English. A five-day survival Arabic language course precedes the year. Arabic language study is required each term.
Prerequisite: Prior study of Arabic is recommended
Intensive Arabic Language Study (Academic Year)
Focus: Arabic language
Language of Instruction: Arabic
Prerequisite: One year of university-level Arabic

France

University of Bordeaux (School of French as a
Foreign Language)
University of Lyon (Center for Instruction in French Studies)

Fall Intensive Language, Culture, and Society
Programs

Focus: French language, society, art history, literature, and history
Language of Instruction: French
Prerequisites: Three to four or five quarters (two to three semesters) of university-level French. At least sophomore standing.

University of Bordeaux
University of Grenoble
University of Lyon
University of Toulouse

Academic Year Programs

Focus: Regular university courses. Most academic disciplines are available.
Language of Instruction: French. Four to five weeks of intensive French language study precede the year. Language study may be required each term.
Prerequisite: Two years of university-level French
Paris Center for Critical Studies

Paris Critical Studies Program

Focus: Core program in French film theory, contemporary thought, and culture
Language of Instruction: French. A four-week intensive language program precedes the year.
Prerequisites: Two years of university-level French. Background in contemporary French thought, film theory, film history, literary theory, philosophy, and/or semiotics.

Institut d'Etudes Politiques (Sciences Po), Paris

Academic Year Program

Focus: Social science research
Language of Instruction: French. A four-week intensive language program precedes the year.
Prerequisites: A high degree of proficiency in spoken and written French and background in political science and related fields
University of Grenoble: Joseph Fourier University and the National Polytechnic Institute of Grenoble

Fall and Year Science and Engineering Programs

Focus: Science and engineering
Language of Instruction: French and English. A four- to five-week intensive language program precedes the year.
Prerequisites: Background in the natural sciences or engineering. One to two years of universitylevel French.

Ecole Normale Supérieure at Fontenay/Saint Cloud, Paris Region

Ecole Normale Supérieure, Paris (rue d'Ulm)

Academic Year Programs (graduate)
Focus: Fontenay/Saint Cloud: French, comparative literature, geography, linguistics, philosophy, film studies, history
Rue d'Ulm: Humanities, social sciences, sciences
Language of Instruction: French
Prerequisites: Graduate standing. Fluency in French.

Germany

Georg-August University, Grttingen
Spring Intensive Language, Culture, and Society Program
Focus: German language. The program provides the equivalent of the first year of universitylevel German.
Language of Instruction: German
Prerequisites: Zero to one quarter or semester of university-level German, a grade of B or better in German language courses, at least thirdquarter freshman standing by the time of departure

Spring Semester Program

Focus: Regular university courses. Most academic disciplines are available.
Language of Instruction: German
Prerequisites: Two years of university-level German, at least one upper-division course taught entirely in German

Academic Year Program

Focus: Regular university courses. Most academic disciplines are available. Special opportunities are available in contemporary German politics and biology.
Language of Instruction: German. A six-week intensive language program precedes the academic year.
Special Option: Following the fall at GeorgAugust students may spend the spring at one of the following Berlin-area universities: Free University, Humboldt, University, Technical University, or the University of Potsdam. Final selection is made during the fall semester.
Prerequisite: Two years of university-level German or three to five quarters of universitylevel German (two to three semesters) and completion of the Bayreuth Spring Intensive Language and Society Program

University of Bayreuth

Spring Intensive Language and Society Program

Focus: German language. The program provides the equivalent of the second year of universitylevel German.
Language of Instruction: German
Prerequisites: Two to five quarters (two to three semesters) of university-level German and at least sophomore standing at time of departure

Free University, Berlin

University of Potsdam, Berlin Region
Special Honors Program (Academic Year)
Focus: Advanced undergraduate studies in the following disciplines:
Free: comparative literature, political science, political economy, history, and international relations
Potsdam: history, religious studies, Jewish studies, political science, international relations, economics
Language of instruction: German
Prerequisites: three years of university-leve| German, 3.2 cumulative GPA, cogent plan of study, and at least two upper-division courses in one of the fields noted

Free University, Berlin
Humboldt University, Berlin
Technical University, Berlin
University of Potsdam, Berlin Region

Academic Year Programs (graduate)

Focus: Regular university courses. Most academic disciplines are available.
Language of Instruction: German
Prerequisites: Graduate Standing. Two years of university-level German (three or more are preferred).

Ghana

University of Ghana, Legon (Accra)
Kwame Nkrumah University for Science and Technology, Kumasi
Fall Semester or Academic Year at Legon Academic Year at Kumasi
Fall at Legon followed by Spring at Kumasi
Focus: Regular university courses in the following areas:
University of Ghana: development studies, natural sciences, African studies in the arts, humanities, and social sciences
Kwame Nkrumah: African art, environmental studies, and natural resources management
Language of Instruction: English
Prerequisite: At least one course on Africa is recommended

Hong Kong (S.A.R.)
 The Chinese University of Hong Kong

Fall Semester and Academic Year Programs
Focus: Special studies focusing on Hong Kong's unique regional and international position, and regular host university course offerings in a wide range of fields
Language of Instruction: English. Additional courses are taught in Standard Chinese or Cantonese. Chinese language instruction is strongly recommended each term.
Prerequisite: Prior study of Chinese is recommended

Hong Kong University of Science and Technology

Fall, Spring, and Academic Year Programs

Focus: Business, engineering, or science
Language of Instruction: English
Prerequisite: A cumulative GPA of 3.2 or higher
The University of Hong Kong
Fall, Spring, and Academic Year Programs
Focus: Regular university courses in a range of fields
Language of Instruction: English

Hungary/Central Europe

Eötvös Loránd University, Budapest
Fall Semester and Academic Year Programs
Focus: Central Europe and European integration studies
Language of Instruction: English. Hungarian language study is required during the fall.
Prerequisite: At least one Central European history course or the equivalent knowledge prior to departure

Eötvös Loránd University, Budapest
Central European University (CEU), Budapest

Academic Year Program

Focus: Central and Eastern Europe, and European integration studies. Students spend the year or the fall at Eötvös Loránd. Students who remain in Budapest may take one to two courses at CEU during the spring.
Language of Instruction: English. Hungarian Ianguage study is required during the fall.
Prerequisites: Completion of one course in Central European history.

India

University of Delhi
University of Hyderabad

Fall Semester Program

Focus: Regular university courses in selected fields
Language of Instruction: English. A three-week Hindi intensive language program precedes the semester. Hindi language instruction is required during the fall.
Prerequisite: One course in Indian or development studies

Indonesia

Program suspended for academic year 2001-2002

Ireland

Northern Ireland

University of Ulster (Belfast, Coleraine, Jordanstown, Magee campuses)
Queen's University of Belfast

Republic of Ireland

National University of /reland, Cork
National University of Ireland, Galway
University of Dublin

Academic Year Programs

Focus: Regular university courses in a student's major or an allied field
Language of Instruction: English
Prerequisite: Dublin requires a 3.5 GPA

Israel

The Hebrew University of Jerusalem
Summer Language Program
Focus: Hebrew Language and Culture.
Language of Instruction: Hebrew
Prerequisites: Sophomore standing; 2.5 GPA

Academic Year Program

Focus: Regular university courses in a student's major or allied field taught in English through the Rothberg International School. Students with adequate Hebrew may enroll in regular Hebrew University courses.
Language of Instruction: English and Hebrew. A nine- to eleven-week intensive Hebrew language program precedes the academic year. Hebrew language study is required each term.
Prerequisite: Prior study of Hebrew is recommended

Tel Aviv University

Fall and Academic Year Programs

Focus: Courses in a student's major or allied field taught in English through the Lowy School for Overseas Students. An Honors Track in Middle

Eastern and Israeli studies is offered. Students with adequate Hebrew may enroll in regular Hebrew University courses.
Language of Instruction: English and Hebrew. A six-week intensive Hebrew language program precedes the semester and year. Hebrew language study is required each term.
Prerequisites: Prior study of Hebrew is recommended. A 3.25 GPA is reqired for the Honors Track.

Ben-Gurion University of the Negev, Beersheva

Fall, Spring, and Academic Year Programs

Focus: Research-based programs in ethnic studies, environmental studies, science, and health
Language of Instruction: English and Hebrew. An intensive Hebrew language program precedes all programs. Hebrew language study is required each term.
Prerequisite: Prior study of Hebrew is recommended

Arava Institute for Environmental Studies

Fall, Spring, and Academic Year Programs
Focus: Environmental studies
Language of Instruction: English

Italy

University of Bologna
University of Padua
University Ca' Foscari of Venice

Academic Year Programs

Focus: Regular university courses. Most academic disciplines are available.
Language of Instruction:Italian. A six-week intensive language program in Italy precedes the academic year.
Prerequisite: Two years of university-level Italian, or one year plus enrollment in the EAP-sponsored summer pre-intensive language program in Siena

University Institute of Architecture, Venice

Architecture Programs (Fall, Spring, and Year)

 Focus: ArchitectureLanguage of Instruction: Italian
Prerequisite: Two years of university-level Italian, or one year plus enrollment in the EAP-sponsored summer pre-intensive language program in Siena

SUMMARY OF EAP OPPORTUNITIES ABROAD:	All/some Courses Taught in English	Language Prerequisite	Language Study Required*	Sophomore Participation Allowed	Graduate Participation Encouraged**	Apply in October/ November***	Apply in January/ February**	Apply in April/May***
AUSTRALIA:Year Programs	-							-
Fall Semester Marine Science Program	-						-	
BARBADOS: Fall and Year Programs	-				-		-	
BRAZIL: Spring and Year Programs		-	-					-
CANADA: Fall and Year Programs	-				-		-	
CHILE: Spring and Year Programs		-			-			-
CHINA: Fall and Year Programs		-	-		-		-	
Intensive Chinese Summer Program		-	-	-			-	
COSTA RICA: Spring and Year Programs		-			-			-
Fall and Spring Tropical Biology Programs	-		-			-		
DENMARK: Fall and Year Programs	-		-		-		-	
Summer Intensive Language Program			-	-			-	
Fall and Year Architecture Programs	-						-	
EGYPT: Year Program	-		-		-		-	
Year Intensive Arabic Language Study Program		-	-		-		-	
FRANCE: Year Programs		-			-		-	
Fall Language and Society Programs		-	-	-			-	
Fall and Year Science and Engineering Programs	-	-	-		-		-	
GERMANY:Year Programs		-			-		-	
Spring First-Year Language and Society Program			-	-		-		
Spring Second-Year Language and Society Program		-	-	-		-		
Spring Semester for Students with Advanced German		-			-	-		
GHANA: Fall and Year Programs	-						-	
HONG KONG (S.A.R.): Fall and Year Programs	-		-				-	
Fall and Year Business, Engineering, and Science Programs	-						-	
Spring Business, Engineering, and Science Program	-							-
HUNGARY/CENTRAL EUROPE: Fall and Year Programs	-		-		-		-	
INDIA: Fall Program	-		-		-		-	
IRELAND: Year Programs	-					-		
ISRAEL: Fall, Spring, and Year Programs	-		-		-		-	
Fall, Spring, and Year Environmental Studies Programs	-				-		-	
Summer Language Program: Modern Hebrew in Jerusalem			-	-			-	
ITALY: General Year Programs		-			-		-	
Fall and Year Architecture Programs		-					-	
Fall and Year Business, Economics, and International Studies Programs	-	-	-		-		-	
Spring Business, Economics, and International Studies Program	-	-	-		-			-
Summer Language and Culture Program			-	-			-	
Fall Language and Culture Program			-	-			-	
Spring Language and Culture Program			-	-		-		
JAPAN: Year Programs	-	-	-			-		
Spring Global Security and Economic Development Program	-			-		-		
Year Engineering Programs in Japanese		-	-		-	-		
Spring and Year Engineering Programs in English	-		-	-		-		
Year Economics Programs		-	-		-	-		
Fall and Spring Language and Society Programs	-	-	-	-		-		
KOREA: Fall and Year Programs	-		-				-	
Fall and Year Graduate Program		-			-		-	
Korean Studies Summer Program	-		-	-			-	

*Intensive language programs precede the first term of programs where the course work during the fall, spring, or year is not taught in English. Programs identified in this column require language study during the term or year.
${ }^{* *}$ Graduate study is possible at most EAP sites. This column highlights programs that offer special opportunities for graduate students.
***Application deadlines vary by UC campus, but are in the months noted in this column.

SUMMARY OF EAP OPPORTUNITIES ABROAD:	All/some Courses Taught in English	Language Prerequisite	Language Study Required*	Sophomore Participation Allowed	Graduate Participation Encouraged**	Apply in October/ November ${ }^{* * *}$	Apply in January/ February***	Apply in April/May***
MEXICO: Fall and Year Programs		-			-		-	
Summer Language and Society Program		-	-	-			-	
Fall Field Research Program		-	-	-	-		-	
Spring Field Research Program		-	-	-	-			-
Fall and Year Business and Economics Programs	-		-				-	
Spring Business and Economics Program	-		-					-
NETHERLANDS: Fall and Year Programs	-						-	
Spring Program	-							-
Fall and Year Economics, Business Administration, and International Studies Program	-						-	
NEW ZEALAND: Year Programs	-							-
PHILIPPINES: Spring and Year Programs	-		-			.		
RUSSIA: Fall Intermediate and Advanced Programs		-	-		-		-	
SINGAPORE: Fall and Year Programs	-						-	
SOUTH AFRICA: Spring and Year Programs	-							-
SPAIN: Year Programs		-					-	
Fall Hispanic Studies Program		-	-				.	
Spring Hispanic Studies Program		-	-					-
Fall Language and Society Program		-	-	-			-	
Spring Language and Society Program		-	-	-				-
SWEDEN: Fall and Year Programs	-		-				-	
Summer Intensive Language Program			-				-	
TAIWAN: Fall and Year Programs	-	-	-				-	
TURKEY: Fall and Year Programs	-		.		-		-	
UNITED KINGDOM: Year Programs	-					-		
VIETNAM: Fall Language and Area Studies Program	-		-				-	
Intensive language programs precede the first term of programs where the course work during the fall, spring, or year is not taught in English. Programs identified in this column require language study during the term or year. ${ }^{ *}$ Graduate study is possible at most EAP sites. This column highlights programs that offer special opportunities for graduate students. ***Application deadlines vary by UC campus, but are in the months noted in this column.								

University of Commerce Luigi Bocconi, Milan

Business, Economics, and International Studies Program (Fall, Spring, and Year)

Focus: Business, economics and international studies
Language of Instruction: Italian. Some courses are available in English. A four-week intensive language program in Milan precedes the programs.
Prerequisite: One to two years of university-level Italian, or one year plus enrollment in the EAPsponsored summer pre-intensive language program in Siena. Background in economics/ business administration.

University of Italian Studies for Foreigners, Siena

Intensive Italian Language and Culture Programs (Fall, Winter, Spring, or Summer Quarter in Siena)

Focus: Italian language and culture
Language of Instruction: Italian

Prerequisites: No previous Italian is required for the Siena quarter programs. One year of uni-versity-level Italian is required for the Venice/Siena semester. Participation requires at least sophomore standing at the time of departure and a 2.5 GPA.

Japan

Doshisha University, Kyoto
Hitotsubashi University, Tokyo
International Christian University (ICU), Tokyo
Keio University, Tokyo
Kyoto University
Osaka University
Sophia University, Tokyo
Tohoku University, Sendai
The University of Tokyo (Komaba campus)
University of Tsukuba

Academic Year Programs

Focus: Japanese and Asian area studies, specialized work in economics, and regular university
courses in Japanese or English in a wide range of fields
Language of Instruction: Japanese and English. A six-week intensive language program precedes the year. Japanese language study is required each term. Courses taught in English are available at ICU, Kyoto, Sophia, University of Tokyo, and Tsukuba.
Prerequisite: One to three years of universitylevel Japanese, depending on the program

Tohoku University, Sendai

Academic Year or Spring Engineering

 Program in EnglishFocus: Engineering
Language of Instruction: English and/or Japanese. Japanese language study is required each term. Greater course offerings are available for students who have greater Japanese proficiency.

Prerequisites: Engineering major or related field. Sophomore standing at time of departure for the spring program, junior standing for the year program.

Osaka University
Tokyo Institute of Technology
The University of Tokyo (Hongo campus)
Academic Year Engineering Programs in Japanese
Focus: Engineering
Language of Instruction: Japanese. A six-week intensive language program precedes the year. Japanese language study is required each term.
Prerequisites: Engineering major or related field. One to three years of university-level Japanese, depending on the program.

Tsuru University

Fall or Spring Intensive Japanese Language and Culture Program
Focus: Japanese language and culture
Language of Instruction: Japanese and English
Prerequisites: Sophomore standing at time of departure. The fall program requires one year of university-level Japanese; the spring program requires one-and-a-half years.
Meiji Gakuin University, Yokohama
Spring Global Security and Economic Development Program
Focus: Asian development, international relations, international security and conflict resolution, with a special emphasis on Japanese perspectives in these fields
Language of Instruction: English
Prerequisites: Advanced sophomore standing, interest in the program's primary themes

Korea

Yonsei University, Seoul
Korean Studies Summer Program
Focus: Korean language and culture
Language of Instruction: Korean and English
Prerequisites: Sophomore standing; 2.5 GPA
Ewha Womans University, Seoul
Yonsei University, Seoul
Fall Semester and Academic Year Programs
Focus: Ewha-Priority is given to students in Asian women's studies, arts, and Korean language. Other fields are available in English.

Yonsei-Humanities and social science courses taught in English or Korean and Korean language study.
Wider opportunities are available at both universities for students who are proficient in Korean and can take regular university courses.
Prerequisite: Prior study of Korean is recommended
Language of Instruction: English and Korean. A six-week intensive language program in Seoul precedes the first semester. Korean language study is required each term for students who are not fluent.

Korea University, Seoul

Fall Semester and Academic Year Programs

 (graduate)Focus: Korean studies in the humanities and social sciences
Language of Instruction: Korean
Prerequisites: Advanced Korean language, graduate standing, approved Graduate Study Agreement

Mexico

National Autonomous University of Mexico, Mexico City
Fall Semester and Academic Year Programs
Focus: Regular university courses. Most academic disciplines are available.
Language of Instruction: Spanish. A six-week intensive language and culture program in Mexico City precedes the first term.
Prerequisite: Two years of university-level Spanish

School for Foreign Students, National Autonomous University of Mexico
Fall and Spring Field Research Programs
Focus: Field research at various sites throughout Mexico
Language of Instruction: Spanish. The programs begin with a six-week intensive language and culture program in Mexico City.
Prerequisites: Two years of university-level Spanish, at least sophomore standing at the time of departure, and a 2.5 GPA

School for Foreign Students, National Autonomous
University of Mexico, Taxco

Winter Intensive Language and Culture Program

Focus: Spanish language and Mexican culture Language of Instruction: Spanish

Prerequisites: Sophomore standing at UC, at least one and not more than two years of uni-versity-level Spanish, and a 2.5 GPA
San Nicolás de Hidalgo University of Michoacán, Morelia

Summer Intensive Language and Society Program

Focus: Spanish language and Mexican culture Language of Instruction: Spanish
Prerequisites: One year only of university-level Spanish, at least sophomore standing at UC

Monterrey Institute of Technology
Business and Economics Program (Fall, Spring, or Academic Year)
Focus: Mexican business and economics and Spanish language courses
Language of Instruction: Spanish or English. Spanish language instruction is required each term.

Netherlands

Leiden University

Fall, Spring, and Academic Year Programs
Focus: Arts, humanities, pre-law, gender studies.
Language of Instruction: English
Prerequisite: A 3.2 GPA in field(s) to be studied at Leiden.

Maastricht University

Program in Economics, Business, International Management and (Fall and Academic Year)
Focus: International management, business, and economics
Language of Instruction: English
Prerequisite: Strong background in economics/ business administration

Utrecht University (University College)
Fall, Spring, and Academic Year Programs
Focus: Arts, humanities, sciences, and social sciences
Language of Instruction: English
Prerequisite: At least sophomore standing at UC.

New Zealand

Lincoln University, Christchurch
Massey University, Palmerston North
The University of Auckland
University of Canterbury, Christchurch
University of Otago, Dunedin
The University of Waikato, Hamilton
Victoria University of Wellington

Year Programs*

Focus: Regular university courses in a student's major or allied field. Most academic disciplines are available.
Language of Instruction: English

Philippines

Ateneo de Manila University
University of the Philippines, Diliman Campus

Spring and Year Programs

Focus: Eight-week intensive Tagalog language program. Regular university courses in a student's major or an allied field. Guided field work and internships for credit.

Language of Instruction: English

Russia

European University, Moscow

Fall Intermediate Program

Focus: Russian language, history, society, politics, literature, and film
Language of Instruction: Russian and English
Prerequisites: One year of university-level Russian, sophomore standing by time of departure

Fall Advanced Program

Focus: Russian language, history, society, politics, literature, and film
Language of Instruction: Russian. A four-week intensive language program in Moscow precedes the semester
Prerequisites: Two years of university-level Russian, completion of at least one course in Russian history

Singapore

National University of Singapore

Fall and Academic Year Programs

Focus: Regular university courses in wide range of fields, most notably in biology, business, economics, sociology, and Southeast Asian studies
Language of Instruction: English
Prerequisites: 3.0 GPA maintained through departure, a course in Southeast Asian or Asian history is strongly recommended

South Africa
University of Cape Town
University of Natal, Durban
University of Natal, Pietermaritzburg

Year Programs*

Focus: Regular university courses in the following areas:
University of Natal: colonial and South African literature, political science, rural sociology, wildlife science, zoology, and Zulu language and culture

University of Cape Town: humanities, social sciences, natural and mathematical sciences, engineering, and commerce
Language of Instruction: English
Prerequisite: At least one course in Africa-related studies

Spain

University of Córdoba
Fall or Spring Intensive Language and Society Program
Focus: Spanish language and society
Language of Instruction: Spanish
Prerequisite: Completion of one year of university-level Spanish with a 2.5 GPA

Carios III University, Madrid

Fall or Spring Semester Program in Hispanic Studies
Focus: Advanced Spanish language study and course work in Spanish history, art, literature, film, politics, law, and institutions
Language of Instruction: Spanish. Language study is required.
Prerequisite: Two years of university-level Spanish
Autonomous University of Barcelona
Carlos III University, Madrid
Complutense University of Madrid
University of Alcalá
University of Barcelona
University of Granada

Academic Year Programs

Focus: Regular university courses. Most academic disciplines are available.
Language of Instruction: Spanish. Catalan is also used in Barcelona. A four-week intensive language program in Spain precedes the academic year.
Prerequisites: Two years of university-level Spanish. Near fluency is required for Autonomous University of Barcelona.

Sweden

Lund University

Summer Intensive Language Program

Focus: Swedish language and culture.
Language of Instruction: Swedish
Prerequisites: Sophomore standing; 3.0 GPA

Fall Semester in English

Focus: Regular university course work taught in English in selected disciplines and courses in Swedish language and culture
Language of Instruction: English and Swedish. Two weeks of Swedish language instruction precede the semester. Swedish language study is recommended during the term.

Academic Year Program

Focus: Regular university course work in the humanities, sciences, or social sciences and Swedish language study.
Language of Instruction: Swedish and English. A six-week intensive language program in Lund precedes the academic year. Continued Swedish language study is required during the fall.
Prerequisite: Previous study of Swedish is recommended

Taiwan

National Taiwan University, Taipei

Fall Semester and Academic Year Programs

Focus: Language and Asian studies courses taught in English. Regular host university course work is available to students who are proficient in standard Chinese.
Language of Instruction: English and standard Chinese. Chinese language study is required each term for students who are not proficient.
Prerequisites: Two years of university-level standard Chinese. An Asian history course is strongly recommended.

Thailand

Program suspended for academic year 2001-2002

Turkey

Bilkent University, Ankara
Middle East Technical University, Ankara

Fall Semester and Academic Year Programs

Focus: Regular university courses in the following areas:
Bilkent: archaeology, art history, and other disciplines in the social sciences and humanities
Middle East Technical University: architecture, graphic design, landscape and urban planning,
and other disciplines in the social sciences and humanities
Language of Instruction: English."Survival" Turkish language instruction precedes the fall term. Language instruction is required during the fall and is optional during the spring.

United Kingdom

The University of Birmingham
University of Bristol
University of Durham
University of East Anglia, Norwich
The University of Edinburgh
University of Essex, Colchester
University of Exeter
University of Glasgow
University of Kent at Canterbury
University of Lancaster
University of Leeds
University of London (Queen Mary and Westfield College; King's College)
University of Manchester
University of Nottingham
University of Sheffield
University of St. Andrews
University of Stirling
University of Sussex, Brighton
University of Warwick, Coventry
University of York

Academic Year Programs

Focus: Regular university courses in a student's major or an allied field. Most disciplines are available.
Language of Instruction: English
University of Sussex

Summer Program

Focus: A range of introductory-level courses in the humanities, social sciences, and sciences.
Language of Instruction: English
Prerequisites: Sophomore standing at UC and 2.5 GPA

Vietnam

Vietnam National University (College of Social Sciences and Humanities), Hanoi
Fall Language and Area Studies Program
Focus: Vietnamese history, society, and language
Language of Instruction: English and Vietnamese.Vietnamese language study is required.

Prerequisite: Demonstrated academic interest in Vietnam
*Programs begin in January or February

Opportunities for Graduate Students

Graduate students can be accommodated at most EAP-affiliated host universities. Graduate students may take courses, conduct research, and participate in short-term language programs for a semester or year. Students must meet EAP minimum requirements, including language prerequisites, have completed at least one year of graduate work, and have the support of their academic department and graduate dean.

Selection

Undergraduate selection is generally open to students with the following qualifications: 3.0 cumulative grade-point average at the time of departure (some programs are available to students with at least a 2.5 GPA); sophomore or junior standing by time of departure, depending on the specific program; support of the UCSD EAP Selection Committee; and completion of univer-sity-level language courses when required (one, two, or three years, depending on the host institution) with a 3.0 grade-point average in language. Exceptions to these requirements can be made on a case by case basis, in consultation with the EAP adviser.

In addition to academic criteria for selection, the faculty committee looks for indications of the student's seriousness of purpose, maturity, and capacity to adapt to the experience of study abroad. As part of the planning process, students are required to consult with their college academic and department advisers.

Graduate students may apply for most study centers if they have completed at least one year of graduate work prior to departure and have the support of their academic department and the dean of Graduate Studies.

Transfer students from other colleges and universities are eligible and may apply prior to the quarter in which they commence their studies at UCSD. Please contact the Programs Abroad Office for further information.

Student Conduct and Parental Approval

It is anticipated that the students selected for the Education Abroad Program will be of high caliber, committed to profiting from both the intel-
lectual and social aspects of the experience. Since they will be guests in another country and another university, their conduct will reflect on both the University of California and the United States.

Participation in the program by students who are minors must be approved by their parents or guardians. In approving such participation, parents and guardians should be aware that a greater degree of personal freedom is afforded to students in the foreign university and that the University of California cannot take responsibility for closely supervising the activities of individual students. The directors of the centers will be available to students with problems and will maintain close contact with the student group as a whole. The university provides for comprehensive medical and hospitalization coverage for all participants.

UCSD Opportunities Abroad Program

OFFICE: Programs Abroad Office in the International Center (corner of Gilman Drive and Library Walk)
(858) 534-1123
http://www.ucsd.edu/icenter/pao
Mary Corrigan, Theatre, Faculty Director Todd Kontje, Literature, Faculty Director David Mares, Political Science, Faculty Director Ramon Piñon, Biology, Faculty Director Mary Dhooge, Dean of International Education Kimberly Burton, William Clabby, and Joan Adamo, Advisers

Students interested in going abroad should also investigate possibilities through the Opportunities Abroad Program which can assist with placement in a wide range of other academic programs. These programs include study for an academic year, semester, quarter, or summer. They may be sponsored by other U.S. universities, or include direct enrollment in foreign institutions. Academic credit may also be earned on a number of overseas internship programs which combine work experience and courses.
Students going abroad through the Opportunities Abroad Program earn transfer credit from the sponsoring institution. Courses taken abroad may satisfy general-education, major or minor requirements, depending on department or college approval. Financial aid for approved plans of study abroad is available to students who enroll concurrently at UCSD through the Opportunities

Abroad Program. Special study abroad scholarships are also available.

In addition to these academic programs, the Programs Abroad Office and its extensive resource library can assist students in selecting a wide range of volunteer, paid work, and educational travel programs.

Eleanor Roosevelt College

OFFICE: Provost, Eleanor Roosevelt College, Building 412, University Center http://roosevelt.ucsd.edu

The Making of the Modern World/Writing Program

OFFICE: Eleanor Roosevelt College Writing Program, Building 412, University Center

See "The Making of the Modern World" program for Eleanor Roosevelt Writing.

Eleanor Roosevelt College Honors Program

OFFICE: Provost, Eleanor Roosevelt College, Building 412, University Center

Honors programs at Eleanor Roosevelt College have been established to provide exceptionally motivated and capable students with enhanced educational experiences through close interaction with faculty and other honors students. There are two main components to the program: the Freshman Honors Program and the Sophomore Honors Research Project. Participation in either is by invitation.

In the fall quarter of their freshman year, selected students are invited to enroll in the Freshman Honors Seminar, a two- to three-quarter course. During the fall quarter, students meet with a variety of faculty members to learn more about their research, and about academic enrichment opportunities at UCSD. The seminar continues during the winter quarter, focusing on an international theme with faculty speakers. Honors students may receive opportunities for particular cultural and social events. Second-year students with GPAs of 3.5 or higher have the opportunity to pursue independent study with individual faculty.

Additional honors opportunities are offered in the Making of the Modern World (MMW) sequence. Students with excellent grades in MMW 1,2 , and 3 and high cumulative grade-point averages are eligible to take MMW $4 \mathrm{H}, 5 \mathrm{H}$, and 6 H . Students attend regular course lectures, but meet in separate honors sections. They may also be invited to special guest lectures and enrichment activities connected with MMW.

There are also opportunities for universitywide honors, including provost's honors. Students who maintain a GPA of 3.5 for a full academic year are awarded certificates of merit by the college. UCSD's reputation for excellence is also reflected in the numbers of students who enroil in departmental senior honors programs and who earn college or university honors or election to Phi Beta Kappa.
10. ERC Freshman Honors Seminar (0)

Weekly seminar with faculty members from a variety of disciplines. This seminar provides students with the opportunity to learn more about research and scholarly activities available to them, and acquaints them with UCSD faculty members. Prerequisite: by invitation only. Pass/Not Pass grades only.
20. Freshman Honors Seminar: International Themes (1) This weekly seminar focuses on a chosen international theme with faculty speakers. The structure of the seminar is informal, giving students the opportunity to participate in interactive discussions. Prerequisite: by invitation only. Pass/Not Pass only. May be taken for credit two times.

92. Honors Project (2)

Individual project on a topic chosen by the student, done under direction of a faculty member. Prerequisite: by invitation only. Pass/Not Pass only. Repeatable for credit twice, up to a total of six units over three quarters.

196. Honors Project (4)

Senior thesis research project for students who have been accepted into the Eleanor Roosevelt College Individual Studies major. Project will be carried out under supervision of one or more faculty members. Depending on scope of the project, may be taken for four or eight units of credit in a single quarter, or eight units distributed over two quarters. Prerequisite: admission to Eleanor Roosevelt Individual Studies major.
199. ERC Independent Studies (4)

The content of this independent study course, which may not duplicate any existing course on campus, will be determined by a supervising faculty member and tailored to fit specific content needs of students pursuing the Eleanor Roosevelt College Individual Studies major. Prerequisite: admission to ERC Individual Studies major.

Eleanor Roosevelt Seminar

OFFICE: Provost, Eleanor Roosevelt College, Building 412, University Center
90. Undergraduate Seminar (1)

A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by the faculty. Prerequisite: none. Pass/Not Pass only.

Engineering, Jacobs School of

OFFICE: 7310 Engineering Building Unit 1, Warren College http://www.soe.ucsd.edu

The Irwin and Joan Jacobs School of Engineering at UCSD comprises the Departments of Mechanical and Aerospace Engineering (MAE), Bioengineering (BE), Computer Science and Engineering (CSE), Electrical and Computer Engineering (ECE), and Structural Engineering (SE). The MAE Department oversees traditional programs in chemical and mechanical engineering. The program in aerospace engineering is jointly managed by MAE and SE. The Jacobs School is directed by the dean of engineering. The departments offer many undergraduate and graduate degree programs. Students interested in engineering should consult the individual department listings which follow this section of the catalog.

The general-education requirements of UCSD's five undergraduate colleges differ noticeably. In some cases, these requirements can extend the time required to obtain a B.S. degree in engineering. Prospective students should review the gen-eral-education requirements and take them into account when selecting a college.

Admission to the Jacobs School of Engineering

Student demand exceeds program capacity in several of the undergraduate majors. Therefore, admission into an engineering major is based on academic excellence demonstrated at UCSD, in high school, or at a community college. Admission will be granted to the maximum number of students in each major program consistent with maintaining acceptable program quality.

FRESHMAN

Freshman are admitted to engineering majors in one of two ways, either directly into the major of their choice or into a preliminary pre-major of
their choice. The only way to become a Computer Science (CS) or Computer Engineering (CE) major is to be directly admitted as an entering freshman (transfer students see TRANSFERS section below). This selection is based on the student's high school GPA and SAT performance as well as the ability of the particular major to accept new students. The pre-major is a provisional status and acceptance to major status is dependent on performance in selected screening courses. Students are notified of their status when they are admitted to UCSD. Major and pre-major students both receive the same college and departmental advising and are expected to take the same courses. In addition to the required science, math, and engineering courses required by the departments, it is expected that all students will also take twelve to eighteen units of general-education college requirements during their first year.

It is strongly suggested that both majors and pre-majors consult their department's academic adviser at an early stage to plan their lowerdivision engineering courses, and that they consult with a college academic counselor to arrange general-education courses around the required screening courses. Students admitted fall quarter should attend the engineering department's orientation meetings during Welcome Week.

Pre-major engineering students are expected to apply for admission to a major during the spring quarter of their freshman year. Selected introductory math, science, and engineering courses will be used as screening courses in order to determine which of the pre-major students will be accepted into a major and which will not be accommodated by the Jacobs School of Engineering. Admission to a major is based on the grade-point average in the screening courses only for those students who are able to apply by the end of their third quarter. The grade-point average required for admission to the major by pre-majors is set individually by each engineering program and varies substantially according to the ability of the program to accommodate extra students. Pre-majors should consult their departments concerning the appropriate screening courses and the current grade-point average standards for admission. However, a B average in the screening courses will guarantee admission to any of the majors when application is made before the end of the third quarter of study at UCSD.

Pre-major engineering students who are not able to apply before the end of their third quarter, or who wish to reapply following an unsuccessful application, must apply before the end of their sixth quarter of study at UCSD. No admission to an engineering major will be considered after six quarters of study. The admission review after the third quarter will not be based only on the grade-point average in the screening courses alone. Admission review, after the third quarter, will also include consideration of the student's entire academic record, progress in science, math and engineering courses, and other factors such as course load and trends in performance.

TRANSFERS

Following California's Master Plan for Higher Education, JSOE gives high priority to students transferring from California community colleges. Transfer students are typically admitted as pre majors and given three quarters to satisfy the departmental requirements for full admission to the major. The only way to become a Computer Science (CS) or Computer Engineering (CE) major is to be directly admitted as an entering transfer student. Since admission of transfer students to an engineering major is quite competitive, applicants, especially in impacted majors such as Computer Science (CS) and Computer Engineering (CE), must demonstrate both completion of most of their lower-division courses at the community college and a high level of scholastic performance in these courses. (Impacted majors are majors to which, owing to limited departmental resources, more students apply than can be accepted.)

Pre major and major status in impacted majors such as Computer Science and Computer Engineering may be limited to the best transfer applicants, e.g., those who have been admitted to UCSD with the most complete lower-division preparation and the highest college GPAs. Since admissions are restricted in these majors, transfer students are encouraged to apply to more than one major degree program. REMEMBER THAT ADMISSION TO THE UNIVERSITY AND TO A COLLEGE DOES NOT GUARANTEE A STUDENT ADMISSION TO AN IMPACTED MAJOR.

Effective fall 2001, applicants seeking admission as transfer students will be considered only for direct admission into the Computer Science (CS) or Computer Engineering (CE) majors in the Department of Computer Science and Engineering (CSE) or the Department of Electrical and Computer Engineering (ECE).

Prior to fall 2001 transfer students entering the university with 36.0 or more quarter units may apply for admission to the major no later than their third quarter of study at UCSD. Students seeking admission to CSE must apply for admission to the major upon entry to UCSD. Students seeking admission to ECE should complete the screening courses listed under the ECE section,"Undergraduate Regulations and Requirements," prior to submitting an application. Students seeking admission to the Department of Mechanical and Aerospace Engineering (MAE) or the Department of Structural Engineering (SE) should complete at least six courses (science, mathematics, and/or engineering) at UCSD prior to submitting an application. Two of the six courses may be in progress when applying in the third quarter. Students seeking admission into the Department of Bioengineering (BE) must complete at least two required pre-bioengineering or bioengineering courses, one of which must be an upper-division course. MAE, SE, and BE transfer students are evaluated on an individual basis on performance at UCSD and their previous schools. Transfer students entering the university with fewer than 36.0 quarter units will have six quarters to apply. Transfer students must seek a preliminary appraisal by the department as soon as possible after they arrive on campus.

Since admissions are restricted, pre-engineering students may apply to more than one major degree program. Applications must be submitted to the appropriate Undergraduate Affairs Office,
in MAE (182 Engineering Building II), Bioengineering (4103 Engineering Building I), CSE (3402 Applied Physics and Mathematics Building), ECE (2718 Engineering Building I), or Structural Engineering (349 SERF). These offices may be consulted for additional details.

Admission of Non-Engineering Majors to the Jacobs School of Engineering Courses

The number of students admitted to some courses offered by the Jacobs School of Engineering must be restricted to meet the resources available. Students who have successfully completed all prerequisite courses will be admitted to these restricted courses in the following order:

1. Students admitted by the department to a major curriculum
2. Students admitted by the department to a minor curriculum
3. Students fulfilling a requirement for another major
4. All others, with permission of the department and instructor

Students should check with the departments concerning the limitations on specific courses and the requirements needed prior to attempting to enroll.

Double Majors and Minors

It is the Jacobs School of Engineering policy not to approve double majors within engineering. Students who qualify for admission to graduate school and who have the extra time are encouraged to consider co-terminal B.S./M.S. degrees in one or two engineering disciplines. Engineering minors may be taken only by non-engineering majors.

Engineering Student Services (ESS)

The Jacobs School of Engineering supports several programs that promote academic and professional development for undergraduate students across all engineering departments. ESS programs are coordinated with the faculty and departments and include the Undergraduate Engineering Student Council and Engineering Student Professional Organizations, Engineering Student Employment Opportunities, the Internship Program, Pre-College Outreach, and the MESA Engineering Program (MEP). MESA, the Mathematics, Engineering and Science Achievement Program, is a statewide effort to prepare more students from historically underrepresented backgrounds for careers in mathematics and science-based professions. MEP has been established to attract and retain qualified underrepresented students in engineering. MEP programs include academic advising and workshops, scholarships, opportunities for summer employment, and a variety of social events throughout the year. Strong support from local industry provides students the opportunity to explore career possibilities as early as their freshman year.

All engineering students are encouraged to become involved with ESS programs. Further
information can be obtained at the ESS office in Room 1400, Engineering Building I.

COURSES

101. Team Engineering (4)

Fundamental principles of team engineering practice. Team formation and leadership, project creation and management, statistical tools for quality improvement, engineering business economics, law, and ethics. Interdisciplinary student teams will research, refine, and propose the design, manufacture, and marketing of a novel engineering product. Four hours of lecture. Prerequisite: a course in probability of statistics.

Applied Mechanics and Engineering Sciences (AMES)

Program name changed to Mechanical and Aerospace Engineering (MAE).

Bioengineering

STUDENT AFFAIRS:
4103 Engineering Building I, Warren College
http://www-bioeng.ucsd.edu/homepage.html

Professors

S. Chien, M.D., Ph.D., Director, Whitaker Institute for Biomedical Engineering
J. A. Frangos, Ph.D.
Y. C. Fung, Ph.D., Professor Emeritus
D. A. Gough, Ph.D., Chair
M. Intaglietta, Ph.D.
A. D. McCulloch, Ph.D.
B. O. Palsson, Ph.D.
G.W. Schmid-Schoenbein, Ph.D.
S. Subramaniam, Ph.D.

Associate Professors

R.L. Sah, M.D., Sc.D.
L. A. Sung, Ph.D.

Assistant Professors

G. A. Huber, Ph.D.
S. Bhatia, M.D., Ph.D.

Adjunct Professors

M. Berns, Ph.D., Adjunct Professor
L. Bjursten, Ph.D., Adjunct Professor
P. C. Johnson, Ph.D., Adjunct Professor
T. D. Pollard, Ph.D., Adjunct Professor
D. A. MacKenna, Assistant Adjunct Professor
J. Penhune, Ph.D., Adjunct Professor
S. S. Sobin, M.D., Ph.D., Adjunct Professor
L. K.Waldman, Ph.D., Associate Adjunct Professor
J.T.Watson, Ph.D., Adjunct Professor
R. Winslow, Ph.D., Adjunct Professor

Affiliated Faculty

P.C. Chau, Ph.D., Professor, Mechanical and Aerospace Engineering
K. R. Chien, Ph.D., Professor, Medicine
J.W. Covell, M.D., Professor, Medicine
M. H. Ellisman, Ph.D., Professor, Neurosciences
A. Fronek, M.D., Ph.D., Professor Emeritus, Surgery
A. Hoger, Ph.D., Professor, Mechanical and Aerospace Engineering
R. L. Lieber, Ph.D., Professor, Orthopaedics
J.H. Omens, Ph.D., Associate Adjunct Professor, Medicine
K. L. P. Sung, Ph.D., Professor In-Residence, Orthopaedics
P. D. Wagner, M.D., Professor, Medicine
J. B. West, M.D., Ph.D., Professor, Medicine

Professional Research Staff
D. Baker, Ph.D., Assistant Research Scientist A. Chen, Ph.D., Assistant Project Scientist P. C. Chen, Ph.D., Assistant Project Scientist K. Francis, Ph.D., Assistant Project Scientist Y. L. Hu, Ph.D., Assistant Project Scientist W. Huang, Ph.D., Assistant Project Scientist Y. S. Li, Ph.D., Assistant Project Scientist D. Lim, Ph.D., Sc.D., Research Scientist
G. Kassab, Ph.D., Associate Research Scientist J. Price, M.D., Ph.D., Associate Research Scientist A.Tsai, Ph.D., Associate Research Scientist
S.Usami, M.D., Ph.D., Research Scientist
Y. H. Zhao, Ph.D., Assistant Project Scientist

Departmental Focus

Bioengineering is an interdisciplinary major in which the principles and tools of traditional engineering fields, such as mechanical, materials, electrical, and chemical engineering, are applied to biomedical problems. Engineering plays an increasingly important role in medicine in projects that range from basic research in physiology to advances in biotechnology and the improvement of health care delivery. By its very nature, bioengineering is broad and requires a founda-
tion in the engineering sciences as well as in physiology and other biological sciences.

At the undergraduate level, the department offers a four-year engineering curriculum leading to a B.S. in bioengineering, which prepares students for careers in the biomedical industry or for further education in graduate school. Students completing the B.S. in bioengineering have sufficient preparation in mechanics to permit employment in traditional engineering areas other than the biomedical industry, if they wish. This degree is accredited by the Accreditation Board for Engineering and Technology (ABET).

The department also offers a two-year, upperdivision curriculum which, together with required lower-division courses, leads to a B.S. in premedical bioengineering. This curriculum is designed to meet the requirements for admission to medical schools and is also suitable for those planning to enter graduate school in bioengineering, physiology, neurosciences, or related fields. It has less engineering content but more biological sciences and is one of many majors that can serve as preparation for further training in medical, veterinary, or allied health professions. Some graduates of this program also go on to jobs in industry.

In addition, the department offers a B.S. in
biotechnology. This is a four-year engineering curriculum that prepares students for careers in the emerging biotechnology industry or for further education in graduate school. This curriculum has a strong engineering foundation with emphasis on biochemical process applications. ABET accreditation will be sought for this major.

The programs and curricula of bioengineering emphasize education in the fundamentals of engineering sciences that form the common basis of all engineering subspecialties. Education with this emphasis is intended to provide students with a solid engineering foundation for a career in which engineering practice may change rapidly. In addition, elements of bioengineering design are incorporated at every level in the curricula. This is accomplished by integration of laboratory experimentation, computer applications, and exposure to real bioengineering problems throughout the program. Students also work as teams in senior design project courses to solve multidisciplinary bioengineering problems suggested by industrial and clinical experience.

At the graduate level, specialized curricula lead to the M.S. and Ph.D. degrees, as well as an integrated B.S./M.S. degree. In addition to the Ph.D.
degree, the department offers a Ph.D. degree with a specialization in bioinformatics. It is intended for students who have an interdisciplinary persuasion to work across computers, biology, medicine, and engineering. Bioinformatics characterizes the flow of information in living systems. For further information on the specialization please consult with the Student Affairs Office.There are also M.D./M.S. and M.D./Ph.D. degrees offered in conjunction with UCSD Medical School, pending independent admission to the Medical School. In addition to the existing M.S. degree, the department offers a master of engineering (M.Eng.) degree. The M.Eng. is a terminal professional degree whereas the M.S. and Ph.D. are research programs. See section on master's degree programs. The graduate programs are characterized by strong interdisciplinary relationships with the other engineering departments and Departments of Physics, Mathematics, Biology, Chemistry and Biochemistry, Medicine, and others, as well as with campus organizations such as the Whitaker Institute for Biomedical Engineering, Institute for Mechanics and Materials, and the School of Medicine.

The Undergraduate Program

Major Requirements

Specific course requirements for each curricular track are outlined in tables below. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) are included in the curricula for students to use to meet college gen-eral-education requirements. To graduate, students must maintain an overall GPA of at least 2.0, and the department requires at least a C - grade in each course required for the major. All courses required for the major must be taken for a letter grade. The B.S. in bioengineering, the B.S. in premedical bioengineering, and the B.S. in biotechnology require a completion of a minimum of 192 units.

Deviations from the required programs of study must be approved by the Undergraduate Affairs Committee prior to taking alternative courses. In addition, students must obtain departmental approval of technical elective (TE) course selections prior to taking the course. In the ABET accredited program, TE courses are restricted to those that meet ABET standards. Courses such as Bioengineering 196, 197, and 198 are not allowed as technical electives in meeting the upper-division
major requirements. Bioengineering 195 and 199 can be used as technical electives under certain conditions. Policy information may be obtained from the Student Affairs Office.

Students with accelerated academic preparation upon admission to the university may vary the scheduling of lower-division courses such as mathematics, physics, and chemistry, but must first consult the department. Most lower-division courses are offered more than once each year to permit students some flexibility in their program scheduling, but most bioengineering upperdivision courses are taught only once each year.
Deviations in the scheduling of upper-division bioengineering courses are discouraged, as such changes usually lead to a delay in graduation. The curricula shown in the tables below are consistent with present scheduling.

Minors are not offered in bioengineering and double major options are restricted. Students interested in double majors should consult the Student Affairs Office as early as possible.

General-Education/College Requirements

For graduation, each student must satisfy gen-eral-education course requirements determined by the college to which the student belongs, as well as the major requirements determined by the department. The five colleges at UCSD require different general-education courses, and the number of such courses differs from one college to another. Each student should choose his or her college carefully, considering the special nature of the curriculum and the breadth of general education.

The bioengineering programs allow for humanities and social science (HSS) courses so that students can fulfill their college requirements. In the bioengineering ABET accredited program, students must develop a program that includes a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. It should be noted, however, that some colleges require more than the ten HSS courses indicated in the bioengineering and biotechnology curriculum tables. Accordingly, students in these colleges may take longer to graduate than as indicated in the four-year schedule. Students must consult with their college to determine which HSS courses to take.

BIOENGINEERING

(ABET Accredited Program)

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A*	Math. 20B*	Math. 21C*
MAE 9 or 10*	Phys.2A*	Phys. 2B*/2BL
Chem. 6A*	Chem. 6B/6BL	BILD 1
HS5	BE 12	HSS
	HSS	
SOPHOMORE YEAR		
Math. 21D	Math. 20F	Math. 20E
Phys. 2C/2CL	MAE 140	BE 100
MAE 130A/SE 101A	BE 106B	MAE 3
HSS	HSS	HSS
JUNIOR YEAR		
BE 110	BE 112A	BE 112B
MAE 107	BE 186B	BE 172
CENG 103A	HSS	BE 140B
MAE 170	BE 140A	BE 103B
SENIOR YEAR		
BE 186A	BE 122A	BE 186C
TE	MAE 150	BE 122B
MAE 105	HSS	HSS
HSS	BE 1914	TE
TE	BE 130	

* Seven of the eight courses used to compute the performance index upon which bionegineering students are admitted to the major at the end of the freshman year. The other course must be in engineering, science, or mathematics.
${ }^{1}$ Ten HSS courses are listed here; individual college requirements may be higher.
${ }^{2}$ BE 1 may be taken in sophomore year.
${ }^{3}$ Technical electives must be selected from a departmental approved list. Consult the Student Affairs Office.
${ }^{4}$ Recommended course, not required. Graduating seniors only.

BIOTECHNOLOGY

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A*	Math. 20B*	Math. 21®*
MAE 9 or 10*	Phys. 2A*	Phys. 2B*
Chem. 6A*	Chem. 6B/6BL	Chem. 6C
HSS	HSS	HSS
	BE 12	
SOPHOMORE YEAR		
Math. 21D	Math. 20F	Math. 20E
BILD 1	Phys. 2C/2CL	HSS
Chem. 140A	Chem. 140B	Chem. 143A
HSS	BE 130	BE 100
JUNIOR YEAR		
BIBC 100	BIBC 102	BIBC 103
CENG 103A	HSS	BE 103B
MAE 140	CENG 100	BIMM 100
BICD 100	BE 122A	HSS
SENIOR YEAR		
BE 186A	HSS	BE 160C
BE 160A	BE 160B	TE
MAE 170	BE 166A	BE 162
HSS	BE 1913	HSS

* Students are admitted by departmental approval during the sophomore year based upon these screening courses and others listed on the department's application form.
${ }^{1}$ Ten HSS courses are listed here; individual college requirements may be higher.
${ }^{2}$ BE 1 may be taken in sophomore year.
${ }^{3}$ Recommended course, not required. Graduating seniors only.
${ }^{4}$ Technical electives must be selected from a departmental approved list. Consult the Student Affairs Office.

PREMEDICAL BIOENGINEERING

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A*	Math. 20B*	Math. 21C*
MAE 9 or 10*	Phys. 2A*	Phys. 2B*/2BL
Chem. 6A	Chem. 6B/6BL	Chem. 6C
HSS	BE 12	HSS
	HSS	
SOPHOMORE YEAR		
Math. 21D	Math. 20F	Math. 20E
Phys. 2C/2CL	Chem. 140A	BE 100
BILD 1	BILD 2	Chem. 140B
HSS	HSS	HSS
JUNIOR YEAR		
BE 110	BE 112A	BE 112B
Chem. 143A	MAE 140	MAE 170
Chem. 140C ${ }^{3}$	BICD 100	BIBC 100
HSS	HSS	HSS
SENIOR YEAR		
BE 186A	BE 186B	BE 172
BIPN 140	BIPN 100	BIPN 102
TE 4	TE	TE
HSS	HSS	HSS

* Seven of the eight courses used to compute the performance index upon which pre-bioengineering students are admitted to the major at the end of the freshman year. The other course must be in engineering, science, or mathematics.
1 Twelve HSS courses are listed here; individual college requirements may be higher.
${ }^{2}$ BE 1 may be taken in sophomore year.
${ }^{3}$ Chem. 140C is not required for the major and can be used as a technical elective. Chem. 140 C is a requirement for application to most medical schools.
${ }^{4}$ Technical elective (TE) courses must be upper-division or graduate courses in the engineering sciences, natural sciences or mathematics, selected with prior approval of the department.

Policies and Procedures

Application for Admission to the Bioengineering Majors

Because of the strong student interest in the bioengineering programs and the limited resources available to accommodate this demand, it is necessary to limit enrollments to only the most qualified students. Admission to the depart-
ment as a bioengineering major is in accordance with the general requirements established by the School of Engineering described in detail in the section on "Admission to the School of Engineering" in this catalog.

Applicants who have demonstrated excellent academic performance prior to being admitted to UCSD may be admitted directly to the bioengineering or bioengineering: premedical major. At this time, students are admitted to the biotechnology major by departmental approval only. Other students intending to complete a bioengineering major are initially identified as pre-bioengineering majors and may be admitted by petition to the department based on academic performance. It is expected that students will have completed or have in progress all eight prerequisite courses when applying. Each petition is evaluated by the departmental Undergraduate Affairs Committee, taking into consideration the student's entire academic record. Pre-bioengineering majors who have achieved a GPA of 3.0 or better in the eight required pre-bioengineering courses (Mathematics 20A-B, 21C; Physics 2A-B; Chemistry 6A; MAE 9/10 and one other pre-bioengineering course by the end of the freshman year) are assured of admission. Students not admitted to a major by the end of the freshman year must reapply before the end of the sixth quarter of study at UCSD. Pre-bioengineering students not obtaining admission to a bioengineering major will automatically have their major converted from "Pre-bioengineering" to "Undeclared" by the department at the end of the sixth quarter. All students, regardless of admission route, are expected to complete lower- and upperdivision courses given in the curriculum tables in a timely fashion in the sequences outlined.

Transfer Students

Transfer students may apply for admission to any of the bioengineering undergraduate tracks. Transfer students may apply for admission before the end of the first quarter of study at UCSD and must complete at least ten required pre-bioengineering or bioengineering courses, two of which must be taken at UCSD, one of which must be an upper-division course. Accordingly, when planning their program, transfer students should be mindful of lower-division prerequisite course requirements upon which admission to the major is based, as well as meeting college requirements. Students who have taken equivalent courses elsewhere may request to have transfer credit applied toward the depart-
ment's major requirements. This is done by submitting a petition for transfer credit together with a transcript and catalog course description from the institution where the course(s) were taken. These documents are reviewed for approval by the Bioengineering Undergraduate Affairs Committee. Transfer petitions are available from the Student Affairs Office.

Academic Advising

Upon admission to the major, students must make an appointment with an undergraduate adviser in the Bioengineering Student Affairs Office, Room 4103, Engineering Building Unit 1, to plan a program of study. The program plan may be revised in subsequent years, but revisions involving curricular requirements require approval of the undergraduate adviser and the Undergraduate Affairs Committee. As the department may make a small number of course and/or curricular changes every year, it is imperative that students consult the undergraduate adviser on an annual basis.

In order to enroll in any courses required for a bioengineering major, a student must have satisfied prerequisite courses with a C - or better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Furthermore, the majority of bioengineering courses have enroliment restrictions and are open only to declared pre-engineering students and/or to students who have been admitted to a bioengineering major. Where these restrictions apply, the registrar will not enroll other students except by department approval. The department expects students to adhere to these policies and enroll in courses accordingly. Students are advised that they may be dropped from course rosters if prerequisites and/or performance standards have not been met.

Bioengineering courses are typically offered only once a year and therefore should be taken in the recommended sequence. If courses are taken out of sequence, it may not always be possible to enroll in courses as desired or needed for timely graduation. If this occurs, students should seek immediate departmental advice.

Pre-bioengineering majors can obtain programmatic advice from the Student Affairs Office. In addition, technical advice may be obtained from a specific bioengineering faculty member. A bioengineering faculty adviser is assigned to each student upon admission to the major.

Program Alterations and Exceptions to Requirements

Variations from or exceptions to any program or course requirements are possible only if approved by the Undergraduate Affairs Committee before the courses in question are taken. Petition forms may be obtained from the Bioengineering Student Affairs Office.

Bioengineering students may take Bioengineering 199, Independent Study for Undergraduates, under the guidance of a bioengineering faculty member. This course is taken as an elective on a P/NP basis. Under certain conditions, however, it may be used to satisfy upper-division technical elective course requirements for the major. Students interested in this alternative must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic for bioengineering (the other technical elective must be an engineering course) and biotechnology majors, and a one-quarter research topic for bioengineering premedical majors. After obtaining the faculty adviser's concurrence on the topic and scope of the study, the student must submit a Special Studies Course form (each quarter) and a Bioengineering 199 as Technical Elective Contract form to the Undergraduate Affairs Committee. These forms must be completed, approved, and processed prior to the beginning of the quarter in which the course is to be taken. This should not be done during the add/drop period. Detailed policy in this regard may be obtained from the Student Affairs Office.

Teaching

Students interested in participating in the instructional activities of the department may take Bioengineering 195, Undergraduate Teaching as an elective on a P/NP basis. Under certain conditions, it may be used to satisfy upper-division technical elective course requirements for the bioengineering premedical major. Policy in this regard may be obtained from the Student Affairs Office.

Integrated Bachelor's/Master's Degree Program

An integrated program leading to a bachelor of science and a master of science degree in bioengineering is offered to undergraduate students who are enrolled in any of the major programs offered by the Department of Bioengineering. Students interested in obtaining the M.S. degree
within one year following completion of the B.S. degree may apply to the department for admission to the program during the fourth quarter prior to the receipt of the B.S. degree. The program is open only to UCSD undergraduates.

To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and have an upper-division GPA of 3.5 or better and a 3.0 overall UC GPA. Twelve units of bioengineering graduate level courses must be completed during the student's senior undergraduate year, in addition to the requirements for the bachelor's degree; these twelve units will count toward the requirements for the master's degree only and must be taken for a letter grade. It is the responsibility of the prospective B.S./M.S. student to select a bioengineering faculty member who is willing to serve as the student's adviser. The student will also arrange (with their faculty adviser's approval) a schedule of courses for the senior year that will fulfill the requirements for the B.S. degree while also serving the program planned for the M.S. degree. Students are expected to meet the requirements for the M.S. degree in one year (three consecutive academic quarters) from the date of the receipt of the B.S. degree.

Industrial Internship Program and Graduate Industrial Training Program

The Department of Bioengineering offers two industrial programs: the Industrial Internship Program for undergraduates and the Graduate Industrial Training Program for graduate students. Both industrial programs are designed to complement the department's academic curriculum with practical industry experience. Students interested in these programs should contact the Bioengineering Industrial Internship Office (4110 Engineering Building 1, Warren College) well in advance of the quarter in which they would like to start their internship.

The Industrial Internship Program is available to undergraduate students who have completed all lower-division course requirements. Academic credit under Bioengineering 196, Bioengineering Industrial Internship can be earned by spending ten weeks or more as interns in an industrial setting. The intern may be involved in a range of activities including design, analysis, manufacturing, testing, regulatory affairs, etc., under the direction of a mentor in the workplace. At the completion of the internship experi-
ence, students are required to submit a brief report to the mentor and faculty adviser describing their activities.
The Graduate Industrial Training Program is designed for students in the Master of Engineering Degree Program. This program serves to significantly enhance the professional development of M.Eng. students in preparation for leadership in the bioengineering industry. Students will complete an independent industrial bioengineering project in the setting of a company under the direction of an industrial and faculty adviser.

The Graduate Program

Admission to the M.Eng.M.S., Ph.D., and Ph.D. with a specialization in bioinformatics programs is in accordance with the general requirements of the graduate division. Applicants are required to have completed a B.S. and/or M.S. degree by time of admission in a branch of engineering, natural sciences, mathematics, or quantitative life sciences. M.S. and Ph.D. applicants must have a GPA of 3.4 or better in technical courses. M.Eng. applicants should have competitive grades (greater than a 3.0 GPA). All applicants must submit GRE General Test scores, as well as three letters of recommendation from individuals who can attest to the academic or professional competence and to the depth of their interest in pursuing graduate study. In addition, for M.Eng. applicants attention will be paid to the background and statement of purpose to ensure that they match the goal of the program. For example, whereas undergraduate research experience and the intention to pursue a research career or advanced studies are qualifications and interests typically well-suited to the M.S. program, industrial experience and the intention to pursue a professional career are correspondingly well-suited to the M.Eng. program. A minimum score of 550 (paperbase) or 213 (computer base) on the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. Students who score below 600 on the TOEFL examination are strongly encouraged to enroll in an English as a Second Language program before beginning graduate work. (UCSD Extension offers an English language program during the summer as well as the academic year.) Applicants are judged competitively. Admission to the M.S. or Ph.D. is designated when the applicants are judged
to be appropriately qualified to pursue the degree requested at the time of application. Applicants are considered for admission for the fall quarter only.

A new graduate student who does not meet the prerequisites of required courses in the M.Eng., M.S., or Ph.D. curricula may have to take some basic courses to make up the deficiency. Thus, a student deficient in mathematics and mechanics may have to take Math. 110, CENG 103 B or Bioengineering 103B, Bioengineering 110, $122 \mathrm{~A}-\mathrm{B}$ in the first year and Bioengineering 250A-B, 253 in the second year. A student deficient in biology and chemistry may have to take Chemistry 131 or Bioengineering 130 and BIPN 100, 102 in the first year and Bioengineering $230 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ in the second year.

Non-matriculated students are weicome to seek enrollment in bioengineering courses via UC Extension's concurrent registration program, but such enrollment in a bioengineering graduate course must be approved by the instructor.

Master's Degree Programs

The Master of Science (M.S.) program is intended to extend and broaden an undergraduate background and equip the graduates with fundamental knowledge in bioengineering. It is intended for those students wishing to gain experience in academic research, especially those considering continuing graduate studies at the doctoral level. The M.S. degree may be terminal or may be obtained on the way to the Ph.D. Ph.D. students may obtain the M.S. degree by completing the course requirements of the M.S. degree and by passing the Ph.D. departmental examination provided that the student does not already hold a M.S. degree in engineering. The M.S. degree program involves a combination of course work and original research.

An individualized program is agreed upon by the student and a faculty adviser. The plan of study must involve both course work and research, culminating in the preparation of a thesis. A total of forty-eight units of credit is required: thirty-six units (nine courses) in course work and twelve units of Bioengineering 299 to fulfill the research requirement. A thesis based on the research is written and subsequently reviewed by the thesis adviser and two other faculty members appointed by the dean of Graduate Studies. The oral defense of the thesis constitutes the departmental master's exam.

REQUIRED CORE COURSES FOR M.S. DEGREE PROGRAM

Biomechanics and Transport Phenomena

BE 250A. Biomechanics
BE 250B. Advanced Biomechanics
BE 253. Biomedical Transport Phenomena

Quantitative Physiology

BE 230A. Biochemistry
BE 230B. Cell and Molecular Biology
BE 230C. Cardiovascular Physiology
Restrictions to core course work requirements are as follows:

1. Units obtained in Bioengineering 281, or 299 or 501 may not be applied toward the course work requirement.
2. No more than a total of eight units of Bioengineering 296 and 298 may be applied toward the course work requirement.
3. No more than twelve units of upper-division 100-level Bioengineering courses may be applied toward the course work requirement.
Students must maintain at least a B average in
the courses taken to fulfill the degree requirements.

MASTERS TIME LIMIT POLICY

Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for parttime students, the department has the right to intervene and set individual deadlines if necessary.

A strong effort is made to schedule M.S.-level course offerings so that students may obtain their M.S. degree in one year of full-time study or two years of part-time study (see regulations on parttime study under "Graduate Studies"). Entering students who do not meet the prerequisites of these core courses may have to take some basic courses to make up the deficiency.

A candidate admitted for the M.S. degree who wishes to transfer to the Ph.D. program must consult the Student Affairs Office for the transfer before completion of the M.S. program. See following section on Change of Degree Aim.

CHANGE OF DEGREE AIM

Upon completion of the requirements for the M.S. degree, students are not automatically eligible for admission to the Ph.D. program.
M.S. candidates who wish to pursue a doctorate must submit an application for a change in status to the Graduate Studies Committee. The application must be approved and signed by a bioengineering faculty member who expects to serve as the student's Ph.D. adviser. Applications will be reviewed by an ad hoc faculty committee. If the committee recommends that the student has good potential for success in the doctoral program, the student will be given the opportunity to take an oral examination equivalent to the Ph.D. Departmental Qualifying Examination. At the time of that exam, an assessment will be made on admission to the Ph.D. program.

A change of status from a master's program to the doctoral program requires that the student meet the minimal grade-point average required by the department of doctoral candidates.

In addition to the existing M.S. degree, the department offers a Master of Engineering (M.Eng.) degree. The purpose of this degree is to prepare design and project engineers for careers in the biomedical and biotechnology industries within the framework of the graduate program of the Department of Bioengineering. It is a terminal professional degree in engineering which includes a recognition of the importance of breadth in technical knowledge, sufficient electives to address jobspecific interests and professional skills such as economics, management, and business. It is intended for students who are primarily interested in engineering design, development, manufacturing, and management within an industrial setting.

The M.Eng. program is a flexible, courseintensive terminal professional degree, designed to be completed in one academic year of full-time study. It does not require a research project, a thesis, or a comprehensive exam. However, students do have the option in enrolling for technical credit in BE 295 Bioengineering Design Project under the direction of a faculty adviser. This is done by participating in the Graduate Industrial Training Program which allows students to work in an industrial setting on bioenginering projects in order to gain practical experience. See section on Industrial Internship Program and Graduate Industrial Training Program. Students who may be interested in continuing to the Ph.D. program should apply to the M.S. program and not the terminal M.Eng. degree.

Students must select two three-course sequences (six courses) from the three core areas, three additional approved technical elective
courses from any graduate engineering program, and three general elective courses which may be drawn from the Bioengineering core areas, engineering technical electives or other non-technical courses. In selecting breadth courses, students must be mindful of the prerequisite requirements for some of the courses in the lists. The lists below are based on the current graduate course offerings of the bioengineering and other engineering departments. The Graduate Studies Committee will review the M.Eng. course lists annually and update them as course offerings change. Students must maintain at least a B average in the courses taken to fulfill the degree requirements.

Required Core Courses for M.Eng. Program (Two three-course sequences required)

Biomechanics and Transport PhenomenaBE 250A-B, 253
Tissue Engineering-BE 241A-B-C
Quantitative Physiology-BE 230A-B-C

Example Technical Electives for M.Eng. (Three Required)

BENG 295. Bioengineering Design Project (two-quarters, four units each)
MAE 231A-B-C. Solid Mechanics
MAE 210A-B-C. Fluid Mechanics
MAE 221A-B-C. Heat and Mass Transfer
MAE 229A. Mechanical Properties
CSE 202. Algorithm Design and Analysis
CSE 210. Principles of Software Engineering
CSE 250A. Artificial Intelligence
ECE 239. Nanometer-Scale Probes and Devices
ECE 251AN, BN. Digital Image Processing and Analysis

Examples of General Electives for M.Eng.

(Three Required)
BE 160A-B-C. Biochemical Engineering
IR/PS Management:IPGN 438,439, 442, 444, 445, 420, 434, IPCO 420, 421
IR/PS International Issues: IPCO 401,IPGN 407, 411,413,418
MAE 133. Finite Element Method
Phys. 206. Biophysics

Sample M.Eng. Program of Study

FALL	WINTER	SPRING
BE 230A	BE 230B	BE 230C
Tech Elec	BE 250A	BE 250C
Gen Elec	BE 253	Tech Elec
Gen Elec	Tech Elec	Gen Elec

Doctoral Degree Program

The Bioengineering Ph.D. Program is intended to prepare students for a variety of careers in research and teaching. Therefore, depending on the student's background and ability, research is initiated as soon as possible. Bioengineering students have specific course requirements and must maintain a minimum grade-point average of 3.4 in these courses. Students, in consultation with their advisers, develop course programs that will prepare them for the Departmental Qualifying Examination and for their dissertation research. These programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree. Doctoral students who have passed the Departmental Qualifying Examination may take any course for an S / U grade with the exception of courses required by the Departmental or Senate Qualifying Examination Committee. It is recommended that all bioengineering graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Qualifying Examination. Details can be obtained from the Student Affairs Office.

Doctoral Examinations

A bioengineering Ph.D. student is required to pass three examinations. The first is a Departmental Qualifying Examination which must be taken immediately following the candidate's first academic year of enrollment and is usually scheduled in the month of July. The exam is designed to ensure that all successful candidates possess a strong command of the engineering and life science subjects that form the foundations of bioengineering research at a level appropriate for the doctorate. It is administered by a committee designated by the department, consisting of departmental faculty members and, in some cases, one other faculty member from a related academic department (e.g., MAE, ECE, Medicine). The oral examination is based on the following three subject areas at the graduate engineering level which ensures adequate breadth:

1. Engineering Foundations

Defined by the content of three graduate engineering courses drawn from the following:

CSE 202. Algorithm Design and Analysis
ECE 222A. Applied Electromagnetic Theory

ECE 251AN. Digital Signal Processing
ECE 270A-B-C. Neurocomputing
MAE 210A. Fluid Mechanics
MAE 221A. Heat and Mass Tranfer
MAE 223. Computational Fluid Dynamics
MAE 227. Structure and Bonding of Solids
MAE 231A. Foundations of Solid
Mechanics
MAE 252. Chemical Reaction Engineering
MAE 280A. Linear Systems Theory
MAE 281A. Nonlinear Systems
MAE 290A. Numerical Methods in
Science and Engineering
Other topics may be approved by the Graduate Studies Committee

2. Biomechanics and Transport Phenomena

Defined by the content of the following three bionegineering courses:

BENG 250A. Biomechanics
BENG 250B. Advanced Biomechanics
BENG 253. Biomedical Transport
Phenomena

3. Life Science

The life science subject area consists of the following topics: biochemistry, cell and molecular biology, organ physiology, and tissue engineering. These subject areas are defined by the contents of the following four courses:

BENG 230B. Cell and Molecular Biology BENG 230C. Cardiovascular Physiology or BENG 230D. Respiratory and Renal Physiology
BENG 241A. Foundations of Tissue
Engineering
CHEM 211. Metabolic Biochemistry or BENG 230A. Biochemistry
In addition to the above mentioned breadth requirements, students must complete the following courses in their second and subsequent years of study:

- At least two courses from an approved list that includes the continuation of Bioengineering Foundations course sequences, $B E N G 230 D$ and other bioengineering graduate course sequences.
- One quarter of BENG 501 Teaching Experience
- BENG 281 Seminar in Bioengineering (F,W,S)
Courses comprising the departmental qualifying examination subject areas as well as subse-
quent requirements, and composition of the examination committee must be approved by the Graduate Studies Committee. Students are advised to seek such approval well in advance of their expected examination date, preferably while planning graduate studies.

Teaching Experience is required of all bioengineering Ph.D. students prior to taking the Senate Qualifying Exam described below. Teaching experience is defined as service as a graduate student instructor in a course designated by the department. The total teaching requirement for new Ph.D. students is four quarters at 25 percent effort (ten hours per week). At least one quarter of teaching experience is required during the first year (prior to the departmental qualifying examination) and at least one quarter in the second year. Teaching experience can be fulfilled as a requirement for student support or taken as a course for academic credit (Bioengineering 501). Students must contact the Student Affairs Office to plan for completion of this requirement.

The Senate Qualifying Examination is the second examination required of bioengineering Ph.D. students. In preparation for this examination, students must have completed the Departmental Qualifying Examination and the departmental teaching experience requirement, obtained a faculty research adviser, and identified a topic for their dissertation research and made initial progress. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council. The committee conducts the Senate Qualifying Examination, during which students must demonstrate the ability to engage in thesis research. This involves the presentation of a plan for the thesis research project. The committee may ask questions directly or indirectly related to the project and general questions that it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the candidate in philosophy degree (see "Graduate Studies" section in this catalog).

The Dissertation Defense is the final Ph.D. examination. Upon completion of the dissertation research project, the student writes a dissertation that must be successfully defended in a public presentation and oral examination conducted by the doctoral committee. A complete copy of the student's dissertation must be submitted to each member of the doctoral committee approxi-
mately four weeks before the defense. It is understood that this copy of the dissertation given to committee members will not be the final copy, and that the committee members may suggest changes in the text at the time of the defense. This examination must be conducted after at least three quarters of the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and Research and the university librarian represents the final step in completion of all requirements for the Ph.D.

There is no formal foreign language requirement for doctoral candidates. Students are expected to master whatever language is needed for the pursuit of their own research.

Ph.D. Time Limit Policy

Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

Evaluations

In the spring of each year, the faculty evaluate each doctoral student's overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student's work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate program.

COURSES

Note: The department will endeavor to offer the courses as outlined below; however, unforeseen circumstances sometimes mandate a change of scheduled offerings. Students are strongly advised to check with the department's Student Affairs Office. This is of particular importance in planning schedules for graduation requirements. The following schedule is tentative for the academic year 2001-2002 only.

It should not be assumed that the same schedule will continue after this academic year. It is the student's responsibility to contact the Student Affairs Office to determine the specific quarter that courses will be offered.

Prerequisites are enforced when adding courses. Students who have satisfied prerequisites at another institution or by AP credit need to be preauthorized to register in these courses. Please con-
tact the Student Affairs Office before your scheduled registration time to be pre-authorized. If the class is full, please place your name on the waitlist and attend the first class meeting.

LOWER-DIVISION

1. Introduction to Bioengineering (1)

An introduction to the central topics of bioengineering in a seminar format. The principles of problem definition, team design, engineering inventiveness, information access, communication, ethics, and social responsibility will be emphasized. P/NP grading only. Prerequisite: none. (W).
90. Undergraduate Seminar (1)

Selected topics of interest to the faculty will be used to introduce students to bioengineering science, and design concepts. (Not open to upper-division bioengineering students.) (F,W,S)

UPPER-DIVISION

100. Introduction to Bioengineering (4)

A general introduction to bioengineering design, including examples of engineering analysis and design applied to representative topics in biomechanics, bioinstrumentation, biomaterials, biotechnology, and related areas. A review of technological needs, design method ology, testing procedures, statistical analysis, governmental regulation, evaluation of costs and benefits, quality of life, and ethical issues. Prerequisites: grade of C- or better in Math. 21C or Math. 20C and Math. 21D or Math. 20D, and Phys. 2C; majors only. (S)

103B. Bioengineering Mass Transfer (4)
Mass transfer in solids, liquids, and gases with application to biological systems. Free and facilitated diffusion. Convective mass transfer. Diffusion-reaction phenomena. Active transport. Biological mass transfer coefficients. Steady and unsteady state. Flux-force relationships. Prerequisites: CENG 103A with grade of C - or better; majors only. (S)

106B. Bioengineering Dynamics (4)
Kinematics and kinetics of particles and rigid bodies Muscle and joint loads. Musculoskeletal dynamics, locomotion, and clinical applications. Bodies in contact: friction, momentum, and impulse; impact and injury. Work, power, and energy relationships; conservation laws of dynamics. Bionegineering design problems, problem formulation, and problem solutions. Prerequisites: Math. 21D and MAE 130A/SE 101A with grade of C-or better; majors only. (W)

110. Continuum Mechanics (4)

An introduction to continuum mechanics of both living and non living bodies. The laws of motion and freebody diagrams. Stresses. Deformation. Compatibility conditions. Constitutive equations. Properties of common fluids and solids. Derivation of field equations and boundary conditions. Applications to bioengineering design. Prerequisites: admission to the major and grades of C - or better in Phys. 2A-C. (F)

112A. Biomechanics (4)
Introduction to physiological systems, with emphasis on structure and function of major tissues and organs. Application of mechanics to understand the behavior of these tissues and organs at gross and microscopic
levels. Bioelastic solids. Rigid body biomechanics. Biofluids. Bioengineering and medical design. Prerequisites: grade of C- or better in BE 110; majors only. (W)

112B. Biomechanics (4)

Basic mechanical properties of collagen and elastin, bone, cartilage, muscles, blood vessels, and other living tissues. Application of continuum mechanics to hard and soft tissues. Biomechanical engineering design for clinical applications. Prerequisites: grade of C - or better in BE 112A; majors only. (S)

122A. Biosystems and Control (4)

Systems and control theory applied to bioengineering. Modeling, linearization, transfer functions, Laplace transforms, closed-loop systems, design and simulation of controllers. Dynamic behavior and control of first and second order processes. PID controllers. Stability. Bode design. Features of biological control systems. A simulation term project using MATLAB and an oral presentation are required. Prerequisites: grade of C - or better in MAE 105; majors only or junior standing in the biotech nology major or consent of department. (W)

122B. Biomedical Electronics (4)

Analog and digital circuits in bioinstrumentation. Biomedical signats in continuous and discrete systems. Sampling and digital signal processing. MRI. CT. Ultrasound. Bioelectromagnetics. Electrokinetics. Prerequisites: grade of C - or better in BENG 122A and BENG 186B; majors only or permission of instructor. (S)

130. Molecular Physical Chemistry (4)

An introduction to physical principles that govern biological matter and processes. Thermodynamic principles and their molecular origin, structural basis of life and physical and conceptual models to illustrate life phenomena. Prerequisites: grade of C - or better in Chem. 6B, Math. 20A-B, Physics 2A-2C. Physics 2C may be taken concurrently; majors only. (W)

140A. Bioengineering Physiology (4)
Introductory mammalian physiology for bioengineering students, with an emphasis on control mechanisms and engineering principles. Basic cell functions; biological control systems; muscle; neural; endocrine, and circulatory systems. Not intended for premedical bioengineering students. Prerequisites: grade of C - or better in Chem. $6 A$ and $6 B$, Physics 2A-B-C, BILD 1. (W).

140B. Bioengineering Physiology (4)
Introductory mammalian physiology for bioengineering students, with an emphasis on control mechanisms and engineering principles. Digestive, respiratory, renal, and reproductive systems; regulation of metabolism, and defense mechanisms. Prerequisite: grade of C - or better in BE 140A; majors only. (S).

160A. Metabolic Engineering (4)
Engineering systems analysis of metabolic processes common to all living organisms. Kinetics of individual enzymatic reactions. Computer simulations of metabolic networks. The stoichiometric matrix, systemic sensitivity coefficients, bifurcations and redirection of metabolic fluxes. Temporal decompositions of metabolic processes into multiple time scales and the physiologic roles of metabolic events in each scale. Prerequisites: grade of C - or better in BIBC 102 (may be concurrent), BE 122A and admission to the major. (F)

1608. Biochemical Engineering (4)

Industrial microbial production strains, bioreactor and fermenter designs, bioprocess monitoring and control. Prerequisite: BE 160A; majors only. (W)

160C. Biochemical Engineering (4)

Bioseparations. Commercial production of biochemical commodity products. Prerequisite: BE 160B; majors only. (S)
162. Biotechnology Laboratory (4)

Laboratory practices and design principles for biotechnology. Culture of microorganisms and mammalian cells, recombinant DNA bioreactor design and operation. Design and implementation of biosensors. A team design-based term project and oral presentation required. Prerequisites: admission to the major, MAE 170, BE 160B. (S)

166A. Cell and Tissue Engineering (4)
Engineering analysis of physico-chemical rate processes that affect, limit, and govern the function of cells and tissues. Cell migration, mitosis, apoptosis, and differentiation. Dynamic and structural interactions between mesenchyme and parenchyme. The role of the tissue microenvironment, extracellular matrix, and growth factor communication. The design of functional tissue units. Clinical Applications. Prerequisite: admission to the major or consent of department. (W)
172. Bioengineering Laboratory (4)

A laboratory course which demonstrates basic concepts of bioengineering design through experimental procedures involving humans and experimental animals. Statistical principles of experimental design. Study of possible errors. Experiments include nerve action, electrocardiography, mechanics of muscle, membranes, and noninvasive diagnostics in humans. Prerequisites: grade of C - or better in MAE 170 and junior or senior standing in the major. (S)

186A. Principles of Biomaterials Design (4)
Fundamentals of materials science as applied to bioengineering design. Natural and synthetic polymeric materials. Materials characterization and design. Wound repair, blood clotting, foreign body response, transplantation biology, biocompatibility of materials, tissue engineering. Artificial organs and medical devices. Government regulations. Patenting. Ethical issues. A term project and oral presentation are required. Prerequisite: grade of C - or better in $B E 112 B$ or senior standing in the biotechnology major or consent of department. (F)

186B. Principles of Bioinstrumentation Design (4)
Biophysical phenomena, transducers, and electronics as related to the design of biomedical instrumentation. Potentiometric and amperometric signals and amplifiers. Biopotentials, membrane potentials, chemical sensors. Mechanical transducers for displacement, force and pressure. Temperature sensors. Flow sensors. Lightbased instrumentation. Electrical safety. A term project and oral presentation are required. Prerequisites: grade of C - or better in MAE 140 and 170 . (W)

186C. Bioengineering Design (4)
Preparation of formal engineering reports on a series of engineering analysis and design problems illustrating methodology from various branches of applied mechanics as applied to bioengineering problems. Statistical analysis. Governmental regulations. Bioethical issues. A term project and oral presentation are required. Prerequisites: grades of C - or better in CENG 103A-B, MAE 107, MAE 130A-B, BE 112B, and 186B; majors only. (S)
191. Senior Seminar I: Professional Issues in

Bioengineering (2)
Role of bioengineers in industry. Professional identity. Structure of bioengineering industries and product
development process. Job market analysis. Current employment opportunities. Recruiting process and interview. Analysis of the employer. Marketing vs engineering. Management by objective. Role of higher degrees. Prerequisite: consent of instructor. (W)

195. Teaching (2-4)

Teaching and tutorial assistance in a bioengineering course under supervision of instructor. Not more than four units may be used to satisfy graduation requirements. (P/NP grades only.) Prerequisites: B average in the major and departmental approval. (F,W,S)
196. Bioengineering Industrial Internship (1-4)

Under the joint supervision of a faculty adviser and industry mentor, the student will work at a bioengineering industrial site to gain practical bioengineering experience. No more than twelve units may be used to satisfy graduation unit requirements. (P/NP grades only) Prerequisites: consent of department and completion of all lower-division course requirements, including general-science requirements. Some laboratory experience is needed. Completion of ninety units with a 2.5 GPA and consent of a bioengineering faculty coordinator. (F,W,S,Su)
197. Engineering Internship (1-4)

An enrichment program, available to a limited number of undergraduate students, which provides work experience with industry, government offices, hospitals and their practices. Subject to the availability of positions, students will work in a local industry or hospital (on a salaried or unsalaried basis) under the supervision of a faculty member and industrial supervisor. Coordination of the Engineering Internship is conducted through UCSD's Academic Internship Program. Time and effort to be arranged. Units may not be applied towards major graduation requirements unless prior approval of a faculty advisor is obtained and internship is an unsalaried position. Prerequisites: completion of ninety units with a 2.5 GPA and consent of a bioengineering faculty coordinator. (F,W,S,Su)

198. Directed Group Study (1-4)

Directed group study, on a topic or in a field not included in the regular department curriculum, by arrangement with a bioengineering faculty member. (P/NP grades only.) Prerequisite: consent of instructor. (F, W, S)
199. Independent Study for Undergraduates (4)

Independent reading or research by arrangement with a bioengineering faculty member. (P/NP grades only.) Prerequisite: consent of instructor. (F,W,S,Su)

GRADUATE

202/CSE 257A. Bioinformatics II: Sequence and Structure Analysis-Methods and Applications (4)
Introduction to methods for sequence analysis. Applications to genome and proteome sequences. Protein Structure, sequence-structure analysis. Prerequisite: Pharm. 201 or consent of instructor.
203. Bioinformatics III: Genomes Analysis (4)

Annotating genomes, characterizing functional genes, profiling, reconstructing pathways. Prerequisites: Pharm. 201, BENG 202/CSE 257A or consent of instructor.
207. Topics in Bioengineering (4)

Course given at the discretion of the faculty on current topics of interest in bioengineering.
220. Project Desing and Development (4)

The design of a research/development project for an industrial setting. Project objectives and organization, funding sources, review of previous developments in the area, proposal writing and review, project management, intellectual property, regulatory issues. The term project will involve preparing a small business proposal for development of a medical device. Prerequisite: open to students with graduate standing in bioengineering.

230A. Biochemistry (4)
A graduate course in biochemistry especially tailored to the requirements and background of bioengineering graduate students. It will cover the important macroand small molecules in cells that are the major constituents, or that function as signaling molecules or molecular machineries. The structures, pathways, interactions, methodologies, and molecular designs using recombinant DNA technology will be covered. Prerequisites: BIPN 100 and 102, or consent of instructor. (F)

230B. Cell and Molecular Biology (4)

A general survey of structure-function relationships at the molecular and cellular levels. Emphasis on basic genetic mechanisms; control of gene expression; membrane structure, transport and traffic; cell signaling; cell adhesion; mechanics of cell division; and cytoskeleton. Prerequisites: BIPN 100 and 102, and BE 230A, or consent of instructor. (W)

230C. Cardiovascular Physiology (4)
Physical concepts of behavior of heart, large blood vessels, vascular beds in major organs and the microcirculation. Physical and physiological principles of blood flow, blood pressure, cardiac work, electrophysiology of the heart. Special vascular beds, including their biological and hemodynamic importance. Integration through nervous and humoral controls. Prerequisites: BIPN 100,102, and BE 230B, or consent of instructor. (S)

230D. Respiratory and Renal Physiology (4)
Mechanics of breathing. Gas diffusion. Pulmonary blood flow. Stress distribution. Gas transport by blood. Kinetics of oxygen and carbon dioxide exchange. VA/Q relations. Control of ventilation. Glomerular and proximal tubule functions. Water metabolism. Control of sodium and potassium in the kidney. Prerequisites: BIPN 100,102, and BE 230C, or consent of instructor. (F,W,S)
238. Molecular Biology of the Cardiovascular System (4) This course will give an overview of heart and vascular development and disease from a molecular biological perspective. Current approaches for generating mouse models of cardiovascular disease and recently developed technologies for physiological assessment in small animal models will be presented. (S)

241A. Foundations of Tissue Engineering Science (4) Molecular and cell biological basis of tissue engineering science. Paracrine control of tissue growth and differentiation. Biomechanics and the molecular basis of cell-cell and cell-matrix interactions. Cell motility, mechanics of tissue growth and assembly, tissue repair. Mass transfer in tissues. Microcirculation of blood and lymph. Prerequisite: BE 230A or consent of instructor. (S)

241B. Methods in Tissue Engineering Science (4) Isolation of cells, cell and tissue culture systems. Fluorescence and confocal microscopy. intracellular imaging. Mechanical testing of tissues. Micromechanical measurement and analysis of cell deformability and cell interaction. Methods in microcirculation and angiogenesis. Prerequisite: BE 241A or consent of instructor. (F)

241C. Applications of Tissue Engineering Science (4)
A lecture/seminar series featuring speakers from academia and industry emphasizing principles of tissue engineering science as applied to clinical medicine and industrial production. Topics include skin replacement, guide tubes for nerve regeneration, blood substitutes, pancreatic islet replacement, and drug delivery devices, among others. Ethics of tissue replacement. Prerequisite: BE 241B or consent of instructor. (W)

250A. Biomechanics (4)
An introduction to biomechanics and transport phenomena in biological systems at the graduate level. Biorheology, biosolid mechanics, muscle mechanics, mass transfer, momentum transfer, energy transfer. Prerequisites: CENG 103B and BE 112B, or consent of instructor. (W)

250B. Advanced Biomechanics (4)
Modern development of biomechanics at an advanced mathematical level. Selected topics in the dynamics of heart, pulsatile, blood flow, microcirculation, and muscle mechanics. Prerequisite: BE 253 or consent of instructor. (S)

253. Biomedical Transport Phenomena (4)

Nonequilibrium thermodynamic analysis of transport phenomena. The osmotic effect. Diffusion and exchange in biological systems. Prerequisite: consent of instructor. (W)
264. Advanced Biomedical Transport Phenomena (4) Applications of heat, mass, and momentum transfer in biomedical systems. Extension of the principles encountered in BE 252B-C to practical biomedical systems. Prerequisite: BE 252B-C.

266. Methodology for Single Cell Studies (4)

Technology for the characterization and measurement of biophysical properties of single live cells. Imaging techniques. Membrane mechanics. Mechanical and fluid mechanical manipulation. Electrodes and electrical methods. Flow and image cytometry. Automated cell recognition and sorting. Prerequisite: consent of instructor.
267. Microcirculation in Health and Disease (4)

Structural and functional aspects of transport and blood-tissue exchange in key organs during circulatory shock, bacterial toxemia, hypertension. Physical and ultrastructural techniques used to analyze small-vessel dynamics. Prerequisite: consent of instructor.
268. Blood Substitutes (4)

Principles of oxygen transport to tissue and transfusion physiology. Development and clinical use of artificial oxygen carriers, i.e., blood substitutes. Physiology of tissue oxygenation. Current developments. Experimental models for the study of oxygen transfer and measurement techniques. Medical applications. Prerequisite: consent of instructor.

275. Computational Biomechanics (4)

Finite element methods for anatomical modeling and boundary value problems in the biomechanics of tissues and biomedical devices. Nonlinear biodynamics, heat flow, cardiac impulse propagation, anatomic modeling, and biomechanics. Prerequisite: consent of instructor.

281. Seminar in Bioengineering (1)

Weekly seminars by faculty, visitors, postdoctoral research fellows, and graduate students concerning research topics in bioengineering and related subjects. May be repeated for credit. This course does not apply
toward the M.S. graduation requirements. (S/U grades only.) (F,W,S)
290. Bioengineering Special Graduate Seminar (1-2) Seminars by faculty, visitors, post-doctoral research fellows, and/or graduate students in selected topic(s) in bioengineering and/or related subjects. This course does not apply toward M.S. graduation requirements.

295. Bioengineering Design Project and Indusrial

Training (4)
Independent work by graduate students focused on design, applied research, and professional experience. Prerequisite: consent of department and bioengineering faculty adviser. (F,W,S)
296. Independent Study (4)

Prerequisite: consent of instructor.
298. Directed Group Study (1-4)

Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor. ($5 / \cup$ grade only.)
299. Graduate Research (1-12)
(S/U grades only.)
501. Teaching Experience (2)

Teaching experience in an appropriate bioengineering undergraduate course under direction of the faculty member in charge of the course. Lecturing one hour per week in either a problem-solving section or regular lecture. (S/U grade only.) Prerequisites: consent of instructor and departmental approval.

Chemical Engineering Program (CENG)

Student Affairs: 182 Engineering Building II, Warren College

AFFILIATED FACULTY

Professors

P. C. Chau, Ph.D., MAE, Co-Director
J. A. Frangos, Ph.D., Bioengineering
C. H. Gibson, Ph.D., MAE
D. A. Gough, Ph.D., Bioengineering
M. Krstic, Ph.D., MAE
A. C. Kummel, Ph.D., Chemistry
J. Lasheras, Ph.D., MAE
P. F. Linden, Ph.D., MAE
J. McKittrick, Ph.D., MAE
D. R. Miller, Ph.D., MAE
B. O. Palsson, Ph.D., Bioengineering
C. Pozrikidis, Ph.D., MAE
K. Seshadri, Ph.D., MAE
J. B. Talbot, Ph.D., MAE, Program Director
F. A. Williams, Ph.D., MAE

Professor Emeritus

S. Middleman, Ph.D., MAE

Associate Professor
R. K. Herz, Ph.D., MAE

Assistant Professors

C. P. Caulfield, Ph.D., MAE
R. deCallafon, Ph.D., MAE
G. A. Huber, Ph.D., Bioengineering

Professional Research Staff

J.L.White, Ph.D., MAE

Program Focus

The Chemical Engineering Program has affiliated faculty from both the Department of Mechanical and Aerospace Engineering and the Department of Bioengineering. The program is administered by the Department of Mechanical and Aerospace Engineering. The curricula at both the undergraduate and graduate levels are designed to support and foster chemical engineering as a profession that interfaces engineering and all aspects of basic sciences (physics, chemistry, and biology).

The mission of the Chemical Engineering Program is to provide the next generation of chemical engineers with an excellent and innovative chemical engineering education. The primary goals are:

- To provide chemical engineering students with a strong technical education and communication skills that will enable them to have successful careers in a wide range of industrial and professional environments.
- To prepare chemical engineering students for rapidly changing technological environments with the core knowledge central to multidisciplinary development and personal improvement throughout their professional careers.
- To instill in chemical engineering students a strong sense of humanistic values and professionalism such that they can conduct ethically and knowledgeably regarding technological impact in societal issues.
The curriculum is designed to prepare chemical engineering graduates for further education and personal development through their entire professional career. We strive to accomplish these
goals by providing a rigorous and demanding curriculum that incorporates lectures, discussions, laboratory and project development experiences in basic sciences, mathematics, engineering sciences, and design as well as the humanities and social sciences. The main objectives are:

1. To enable students to understand and apply scientific principles and engineering and computational tools to analyze and solve problems of importance to society.
2. To enable students to apply appropriate experimental and statistical techniques in engineering analysis and applications.
3. To enable students to incorporate engineering economics and information from multiple disciplines in the analysis, synthesis, and design of engineering systems under realistic settings.
4. To enable students to acquire effective technical writing and oral communication skills necessary for successful participation on teams and in leadership positions.
5. To enable students to acquire the basic knowledge of chemical and process safety.
6. To instill in our students an understanding of their professional and ethical responsibilities.
Unless otherwise stated, the requirements and policies follow those of the Department of Mechanical and Aerospace Engineering. Only features unique to Chemical Engineering are provided in this section.

The Undergraduate Program

The B.S. program in Chemical Engineering is accredited by the Engineering Accreditation Commission of the Accreditation Board of Engineering and Technology (ABET/EAC). The curriculum is taiiored to provide breadth and flexibility by taking advantage of the strength of basic sciences and other engineering disciplines at UCSD. The intention is to graduate chemical engineers who are multidisciplinary and can work in a broad spectrum of industries rather than solely traditional chemical and petrochemical industries.

Areas of specialization are available whereby a graduate can be in a position for a career in environmental technology, microelectronic device fabrication, materials and polymer processing, pharmaceutical and biotechnology, biomedical engineering, energy and thermal systems, control and system engineering, and so forth.

For students who aspire to pursue a graduate degree and a career in research and development, the units in an area of specialization can be allocated to more fundamental science and engineering courses. These students are also encouraged to perform independent projects in one of the faculty research laboratories or groups.

Whether the career goal is industry, or graduate or professional school, the curriculum has a strong emphasis on developing problem-solving skills and the ability to think and learn independently. The capstone courses in this respect are the two senior design courses and the two very unique senior process laboratory courses where the environment is not unlike product development in either an industrial or academic setting. In each process development lab, students work in groups of three, on one project where they carry through the entire stages of project planning, experimental design and setup, execution, analysis, modification and improvement, and final project evaluation.

Major Requirements

For policies in general education requirements, professional licensing, academic advising, and application for admission to the major, please refer to the section under Mechanical and Aerospace Engineering.

To receive a B.S. in Chemical Engineering, students must complete 194 units for graduation, which includes 44 units of general education (HSS) requirements of their Colleges and the ABET requirements in the arts, humanities, and social sciences. The balance consists of basic sciences (53 units), chemistry core (24 units), chemical engineering core (32 units), process laboratory and design (16 units), general engineering (12 units), and an area of specialization (12 units). Beyond the 53 units of basic sciences, the science and engineering courses total to 96 units. A oneunit introductory seminar (CENG1) is required of all incoming freshmen. The specific breakdown is as follows:

Basic sciences (53 units): This lower-division requirement includes 24 units of mathematics (Math. 20A-F), 14 units of physics (Phys. 2A-C, 2CL), and 15 units of chemistry (Chem. 6A-C, 6BL).
Chemistry core (24 units): This requirement must include two physical and one organic chemistry courses (Chem. 131, 132, 140A).

Three additional advanced chemistry courses must be chosen among biochemistry, physical, organic, and inorganic chemistries. Two courses must be selected among Chem. 133, 135, 140B or $141 \mathrm{~B}, 114 \mathrm{~A}-\mathrm{B}, 120 \mathrm{~A}-\mathrm{B}$, and the third must be a laboratory course selected among Chem. 105, 106, and 143A.
Chemical engineering core (32 units): This requirement covers chemical process modeling, solution thermodynamics, transport phenomena, chemical reaction engineering, process control, and unit operations (CENG $100,101 \mathrm{~A}-\mathrm{C}, 102,113,120,122$).
Process laboratory and design (16 units): This requirement is crucial to fulfill the ABET design content (CENG 124A-B, 176A-B).
General engineering (12 units): This requirement covers basics in computer programming, probability and statistics, and instrumentation. The computer programming requirement can be satisfied with a course in either Fortran (MAE 10), C (MAE 9), or Java (CSE 8B or 11). If you have no programming experience, you need CSE 8 A before $8 B$, but no credit is given for 8 A alone. Probability and statistics can be satisfied with ECE 109 or a course with equivalent content. Instrumentation is satisfied with MAE 170.
Electives in an area of specialization (12 units): Electives are intended to broaden and enhance professional goals. They may be chosen to achieve either breadth or depth in one's education. These electives must be upper-division courses in either science or engineering. If one chooses to use the electives as depth in an area of specialization, the pre-approved courses listed below may be used.

Biotechnology/Biochemical Engineering: Both Chem. 114A-B (or BIBC 100,102) must be taken as part of the advanced chemistry requirement. These two classes are prerequisites to the following courses: BIMM 100, BIMM 120, BIBC 110, Chem. 115, BE 160A-B-C.
Electronic Materials: Chem. 133 must be taken as part of the advanced chemistry requirement. This course is a prerequisite to the following courses: ECE 103,134, 135A, 136, 136L.
Engineering Mechanics:MAE 130A-B, 131A, 160.

Engineering Science: MAE 105, 107,140; Chem. 135, 136; Phys. 152 (requires Chem. 133).

Environmental Engineering: Chem. 149A-B, 173; MAE 120,121, 122, 124.
Materials Science: Chem. 133 must be taken as part of the advanced chemistry requirement. This course is a prerequisite to the following courses: Chem. 107; Phys. 152; ECE 137; MS 201A-B-C, 205A, 227.
Process Control: ECE 101, 171A-B or MAE 141A-B.
Thermal Engineering and Systems: MAE 118A-B-C, 110B, 113.

Independent Research: CENG 199 as equivalent to a senior thesis can be approved as equivalent to two elective courses (8 units). Consult department Student Affairs Office for details.

CHEMICAL ENGINEERING

 (ABET ACCREDITED PROGRAM)| FALL | WINTER | SPRING |
| :---: | :---: | :---: |
| FRESHMAN YEAR | | |
| Math. 20A | Math. 20B | Math. 21C |
| | Phys. 2A | Phys. 2 B |
| Chem. 6A | Chem.6B/6BL | Chem. 6C |
| MAE 9^{1} | | CENG 1 |
| HSS ${ }^{2}$ | HSS | HSS |
| SOPHOMORE YEAR | | |
| Math. 21D | Math. 20F | Math. 20E |
| | | Phys. 2C/2CL |
| Chem. 131 | Chem. 132 | Chem. 140A ${ }^{3}$ |
| | CENG 100 | CENG 102 |
| HSS | HSS | HSS |
| JUNIOR YEAR | | |
| CENG 103A | CENG 103B | CENG 103C |
| | CENG 113 | |
| Adv.Chem. ${ }^{5}$ | Adv. Chem. | Adv. Chem. |
| MAE 170 | | ECE 109 |
| HSS | HSS | HSS |
| SENIOR YEAR | | |
| CENG 120^{4} | CENG 124A | CENG 124B |
| CENG 122 | CENG 176A | CENG 176B |
| AS ${ }^{6}$ | AS | AS |
| HSS | HSS ${ }^{7}$ | HSS |

${ }^{1}$ MAE 9 can be replaced by MAE 10, CSE 8B or 11 .
2 Humanities and social sciences (HSS).
${ }^{3}$ Chem. 141A is offered only in the fall quarter. Chem133, 105 , or 106 may fit in the spring quarter schedule.
${ }^{4}$ Two advanced chemistry electives must be selected among Chem. 133, 135, 140B or 141B, 114A-B, and $120 \mathrm{~A}-\mathrm{B}$, and the third laboratory elective must be selected among Chem. 105, 106, and 143A.
${ }^{5}$ If a student chooses process control as the area of specialization, CENG 120 can be replaced by a relevant course
within the approved set of courses for specialization in process control.
${ }^{6}$ The electives in an area of specialization (AS) must be upper-division or graduate courses in engineering, natural sciences or mathematics based on the pre-approved sequences. Otherwise, the selections must receive prior approval of the department to meet ABET standards.
${ }^{7}$ If students do not require these additional HSS courses to meet their College requirements, they may substitute an unrestricted elective in order to meet the minimum 194 unit graduation requirement. The twelfth HSS course is intended only for students who have additional College requirements to fulfill. To meet $A B E T$ requirements, students must have a total of twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance or personnel administration.

Transfer Students

The Chemical Engineering curriculum is designed to integrate four years of college educational experience. It is not easy for transfer students to complete the major requirements in only two additional years beyond their junior college work. However, if transfer students seek a College for which they already satisfy the general education requirements, have taken the lower-division science and mathematics, and have completed the organic chemistry requirement, then the rigorous first-year schedule below will permit them to graduate in two years. Other students should consult their adviser for a transition program compatible with their junior college preparation.

FALL	WINTER	SPRING
JUNIOR YEAR		
Chem. 131	Chem. 132	Adv. Chem.
	CENG 100	CENG 102
CENG 103A	CENG 103B	CENG 103C
MAE 170	CENG 113	ECE 109

1 Transfer students can petition with an equivalent course in
probability and statistics if it is available at a junior college.

Integrated BS/MS Requirements

An integrated co-terminal program leading to a bachelor of science and a master of science degree in chemical engineering is offered to a student with junior standing who has an upperdivision GPA of 3.5 or better and a 3.0 overall UCSD GPA. Details of the program are available from the MAE Graduate Student Affairs Office.

Program Accreditation

The B.S. program in chemical engineering is accredited by the Accreditation Board of Engineering and Technology (ABET/EAC).

Graduate Program

The Chemical Engineering Program offers graduate instruction leading to the M.S. and Ph.D. degrees in engineering sciences with a designated specialization in chemical engineering.

Admission is in accordance with the general requirements of the graduate division, which requires at least a B.S. in some branch of engineering, sciences, or mathematics; an overall GPA of 3.0; and three letters of recommendation from individuals who can attest to the academic or professional competence and to the depth of their interest in pursuing graduate study.

In addition, all applicants are required to submit GRE General Test Scores. A minimum score of 550 on the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English. Students who score below 600 on the TOEFL are strongly encouraged to enroll in an English as a second language program before beginning graduate work. UCSD Extension offers an excellent English language program during the summers as well as the academic year.

Applicants are judged competitively. Based on the candidate's background, qualifications, and goals, admission to the program is in one of three categories: M.S. only, M.S., or Ph.D. Admission to the M.S. only category is reserved for students for whom the M.S. degree is likely to be the terminal graduate degree. The M.S. designation is reserved for students currently interested in obtaining an M.S. degree but who at a later time may wish to continue in the doctoral degree program. Admission to the Ph.D. program is reserved for qualified students whose final aim is a doctoral degree.

Non-matriculated students are welcome to seek enrollment in graduate level courses via UC Extension's concurrent registration program, but an extension student's enrollment in a graduate course must be approved by the instructor.

Master's Degree Program

The M.S. program is intended to extend and broaden an undergraduate education with fundamental knowledge in different fields. The degree may be terminal, or obtained on the way to the Ph.D. The degree is offered under both the Thesis Plan I and the Comprehensive Examination Plan II.
M.S. Time Limit Policy: Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there is no written time limit for part-time students, the department
has the right to intervene and set individual deadlines if it becomes necessary.

Course requirements: All M.S. students must complete a total of 48 units which include a core of five courses (20 units) chosen among fluid dynamics (CENG 210A, MAE 210B), heat and mass transfer (CENG 221AB), kinetics (CENG 252), and mathematics. To maintain a certain balance in the core, no more than two mathematics courses should be chosen among the choices of applied mathematics (MAE 294AB or Math. 210AB), and numerical mathematics (MAE 290AB or Math. 270AB).

No more than three courses (12 units) of upper-division courses may be applied toward the total course work requirement. No more than a total of 8 units of CENG 296 and 298 may be applied toward the course work requirement. Units in seminars (CENG 259) may not be applied toward the degree requirement.

Thesis Plan I: Completion of the research thesis (CENG 299) fulfills 12 units toward the total graduation requirement. The balance is made up of the five core courses (20 units) and additional four elective courses (16 units) subject to the restrictions described above.

Comprehensive Examination Plan II: This plan involves course work only and culminates in an oral comprehensive examination based on topics selected from the core courses. In addition to the five core courses (20 units), one must choose an additional seven electives (28 units) subject to the restrictions of CENG 259,296 , and 298 described above. Sample electives are listed in the table below. A student should consult their academic adviser to choose an appropriate course schedule, including alternatives in bioengineering, electrical and computer engineering, materials science, basic sciences, and mathematics.

FALL	WINTER	SPRING
CORE SELECTIONS		
CENG 210A	CENG 221A	CENG 221B
	MAE 210B	CENG 252
MAE 290A or 294A	MAE 290B or 294B	
SUGGESTED ELECTIVES		
MS 201A	MS 201B	MS 201C
MAE 211	MAE 212	MAE 213
Math. 270A	Math. 270B	Math. 270C
Chem. 211	Chem. 212	Chem. 213

Change of Degree: Upon completion of the requirements for the M.S. degree, students admitted as M.S. only or M.S. candidates are not automatically eligible for admission to the Ph.D. program.
M.S. only and M.S. candidates who subsequently wish to pursue a doctorate must submit an application for a change in status to their examining committee. The application, if approved by the committee, must be signed by a faculty member who expects to serve as the student's Ph.D. adviser. The student must also submit a general petition for graduate students to effect the change of status. If the student elects the comprehensive examination plan for the M.S. degree, the examining committee may recommend that the comprehensive examination may replace the preliminary qualifying examination expected of Ph.D. students.

Doctoral Degree Program

The Ph.D. program is intended to prepare students for a variety of careers in research and teaching. The emphasis is on research. In general, there are no formal course requirements. All students, in consultation with their advisers, develop appropriate course programs that will prepare them for the Preliminary Qualifying Examination and for their dissertation research. These programs must be planned to meet the time limits established to advance to candidacy and to complete the requirements of the degree.

All Ph.D. students are required to pass three examinations. The first is a Preliminary Qualifying Examination which should be taken within three to four quarters of full-time graduate study. The second is the Ph.D. Qualifying Examination. The last is the Dissertation Defense.

Preliminary Qualifying Examination: The examination is intended to determine a candidate's basic understanding of engineering fundamentals and the candidate's ability to pursue successfully a research project at a level appropriate for the doctorate. The scope of the examination is based on topics selected from the core curriculum as listed under the M.S. degree program. A candidate is expected to demonstrate knowledge equivalent to these courses and formal enrollment record is not a prerequisite. The format is an oral examination administered by a committee of three faculty members in the Chemical Engineering Program. The candidate should present to the committee, prior to the examination, the five core courses that will constitute the basis of the examination.

Depth Requirement: A candidate must have the ability to perform in-depth analysis in the dissertation topic. A candidate should consult with the thesis adviser to develop a proper course pro-
gram if it is deemed necessary. Depending on an individual's background and the nature of the research problem, a candidate should either complete a set of a minimum of four courses or demonstrate to the thesis adviser the equivalent knowledge and ability.

Ph.D. Qualifying Examination: Prior to taking this examination, the candidate must have completed the departmental qualifying examination, obtained a faculty research adviser, and must have made initial progress on a chosen dissertation project. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council under the policy listed in the Graduate Studies section of the General Catalog. The committee conducts the Ph.D. Qualifying Examination, during which the student must demonstrate the ability to engage in thesis research. The process involves the presentation of a plan for the thesis research project. The committee may ask questions directly or indirectly related to the project and general questions that it determines to be relevant. Upon successful completion of the examination, subject to the UCSD time limit policy, the student is advanced to candidacy and is awarded the candidate in Philosophy degree (see "Graduate Studies" section in this Catalog).

Teaching Experience: Prior to the dissertation defense, the candidate must serve at least once as a teaching assistant with the responsibility to hold a problem-solving section one hour a week.

Dissertation Defense: This is the final Ph.D. examination. Upon completion of the dissertation research project, the candidate writes a dissertation that must be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student's dissertation must be submitted to each member of the doctoral committee four weeks before the defense. It is understood that this copy of the dissertation given to committee members will not be the final copy, and that the committee members may request changes in the text at the time of the defense. This examination may not be conducted earlier than three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and Research and the University Librarian represents the final step in completion of all requirements for the Ph.D. degree.

Ph.D. Time Limit Policy: Pre-candidacy status is limited to four years. Doctoral students are
eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

Annual Evaluation: In the spring of each year, the faculty adviser evaluates each doctoral student's overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student's work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate program.

COURSES

All students enrolled in CENG courses or admitted to the CENG program (including premajors) are expected to meet prerequisite and performance standards, i.e., students may not enroll in any CENG courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C - or better. (The program does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the program outline, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog.

LOWER-DIVISION

1.The Scope of Chemical Engineering (1)

Demonstrations and discussions of basic knowledge and the opportunities in chemical engineering for professional development. Introduction to campus library and computer resources. Use of personal software tools such as spreadsheeting and student edition of MATLAB. Prerequisites: none. (P/NP grading only.)

UPPER-DIVISION

CENG 100. Process Modeling and Computation in Chemical Engineering (4)
(Formerly AMES 153) Introduction to elementary numerical methods with applications to chemical engineering problems using a variety of problem solving strategies. Error analysis. Concepts of mathematical modeling, material and energy balances and probability and statistics with applications to design problems. Prerequisites: admission to the major and grades of C - or better in MAE 9 or 10, and Chem. 6C.

CENG 102. Chemical Engineering Thermodynamics (4) (Formerly AMES 111) Thermodynamic behavior of pure substances and mixtures. Properties of solutions, phase equilibria. Thermodynamic cycles. Chemical equilibria for homogeneous and heterogeneous systems. Prerequisites: grade of C-or better in CENG 100 and Chem. 131. Enrollment restricted to chemical engineering premajors and majors only.

CENG 103A. Introductory Fluid Mechanics (4)
(Formerly AMES 103A) Kinematics and equation of motion; hydrostatics; Bernoulli's equation; viscous flows; turbulence, pipe flow; boundary layers and drag in external flows; applications to chemical engineering, bioengineering, and structural engineering. Students may not receive credit for both MAE 101A and CENG 103A. Prerequisites: admission to the major and grades of C-or better in Phys. 2A and Math. 21D or 20D-E.

CENG 103B. Mass Transfer (4)
(Formerly AMES 103B) Diffusive and convective mass transfer in solids, liquids, and gases; steady and unsteady state; mass transfer coefficients; applications to chemical engineering and bioengineering Prerequisites: admission to the major and grade of C - or better in CENG 103A.

CENG 103C. Heat Transfer (4)
(Formerly AMES 103C) Conduction, convection, radiation heat transfer; design of heat exchangers. Students may not receive credit for both MAE 101C and CENG 103C. Prerequisites: admission to the major and a grade of C- or better in CENG 103A-B.

CENG 113. Chemical Reaction Engineering (4)
(Formerly AMES 113A-B) Principles of chemical reactor analysis and design. Experimental determination of rate equations, design of batch and continuous reactors, optimization of selectivity in multiple reactions, consideration of thermal effects and residence time distribution. Introduction to multi-phase reactors. Prerequisites. grade of C- or better in CENG 100 and Chem. 6B. (Chem. 132 may be taken concurrently)

CENG 120. Chemical Process Dynamics and Control (4) (Formerly AMES 140) Examination of dynamic linear and linearized models of chemical processes. Stability analysis. Design of PID controllers. Selection of control and manipulated variables. Root locus, Bode and Nyquist plots. Cascade, feed- forward and ratio controls. Prerequisites: admission to the major and grades of C - or better in Math. 21D or Math. 20D. (Students may not receive credit for both MAE 141A and CENG 120).

CENG 122. Separation Processes (4)
(Formerly AMES 112) Principles of analysis and design of systems for separation of components from a mixture. Topics will include staged operations (distillation, liquid-liquid extraction), and continuous operations (gas absorption, membrane separation) under equilibrium and nonequilibrium conditions. Prerequisites: admission to the major and grades of C- or better in CENG 102 and CENG 103B.

CENG 124A. Chemical Plant and Process Design I (4) (Formerly AMES 114A: Principles of chemical process design and economics. Process flow diagrams and cost estimation. Computer-aided design and analysis. Representation of the structure of complex, interconnected chemical processes with recycle streams. Ethics and professionalism. Health, safety, and the environmental issues. Prerequisites: admission to chemical engineering major and grades of C- or better in CENG 122.

CENG 124B Chemical Plant and Process Design II (4) (Formerly AMES 114B: Engineering and economic analysis of integrated chemical processes, equipment, and systems. Cost estimation, heat and mass transfer equipment design and costs. Comprehensive integrated plant design. Optimal design. Profitability. Prerequisites: admission to chemical engineering major and grade of C - or better in CENG 124A.

CENG 176A. Chemical Engineering Process Laboratory I (Formerly AMES 176A) Laboratory projects in the areas of applied chemical research and unit operations. Emphasis on applications of engineering concepts and fundamentals to solution of practical and research problems. Prerequisites: admission to the major and grades of C - or better in CENG 122 and MAE 170.

CENG 176B. Chemical Engineering Process Laboratory II (Formerly AMES 176B) Training in planning research projects, execution of experimental work and articulation (both oral and written) of the research plan and results in the areas of applied chemical technology and engineering operations related to mass, momentum, and heat transfer. Prerequisites: admission to the major and grade of C - or better in CENG 176A.

CENG 199. Independent Study for Undergraduates (4-4) Independent reading or research on a problem by special arrangement with a faculty member. Prerequisite: consent of instructor. (P/NP Only).

CHEMICAL ENGINEERING GRADUATE COURSES

CENG 210A. Fluid Mechanics I (4)

Basic conservation laws, flow kinematics. The NavierStokes equations and some of its exact solutions, nondimensional parameters and different flow regimes, vorticity dynamics. Cross-listed with MAE 210A. Prerequisites: MAE 101AB and MAE 110A or consent of instructor.

CENG 221A Heat Transfer (4)

Conduction, convection, and radiation heat transfer development of nergy conservation equations. Analytical and numerical solutions to heat transport problems. Specific topics and applications vary. Crosslisted with MAE 221A. Prerequisites: MAE 101ABC or CENG 103ABC or consent of instructor.

CENG 221B Mass Transfer (4)
Fundamentals of diffusive and convective mass transfer and mass transfer with chemical reaction. Development of mass conservation equations. Analytical and numerical solutions to mass transport problems. Specific topics and applications will vary. Cross-listed with MAE 221 B. Prerequisites: MAE 101ABC or CENG 103ABC or consent of instructor.

CENG 251. Thermodynamics (4)
Principles of thermodynamics of single and multicomponent systems. Phase equilibria. Estimation, calculation, and correlation of properties of liquids and gases. Prerequisite: consent of instructor.

CENG 252. Chemical Reaction Engineering (4)
Analysis of chemical rate processes; complex kinetic systms. Chemical reactor properties in steady state and transient operations; optimal design policies. The interaction of chemical and physical transport processes in affecting reactor design and operating characteristics. Uniqueness/mltiplicity and stability in reactor systems. Applications of the heterogeneous reactor systems. Prerequisite: consent of instructor.

CENG 253. Heterogeneous Catalysis (4)
Physics and chemistry of heterogeneous catalysis. Adsorption/desorption kinetics, chemical bonding, isotherms, kinetic models, selection of catalysts, poisoning, experimental techniques. Prerequisite: consent of instructor.

CENG 254. Biochemical Engineering Fundamentals (4) Introduction to microbiology as relevant to the main topic, biological reactor analysis. Fermentation and enzyme technology. Prerequisite: consent of instructor.

CENG 255. Electrochemical Engineering (4) Fundamentals of electyrochemistry and electrochemical engineering. Structure of the double layer, cell potential and electrochemical thermodynamics, charge transfer kinetics, electrochemical transport phenomena, and introduction to colloidal chemistry. Applications such as corrosion prevention, electroplating, reacgtor design, batteries and fuel cells. Prerequisite: consent of instructor.

CENG 259. Seminar in Chemical Engineering (4)
Presentations on research progress by graduate students and by visitors from industrial and academic research laboratories. (May be repeated for credt. S/U grades only). Prerequisite: consent of instructor.

CENG 296. Independent Study in Chemical

 Engineering (4)Independent reading or research on a problem as arranged by a faculty member. Must be taken for a letter grade only. Prerequisite: consent of instructor.

CENG 299. Graduate Research in Chemical Engineering (1-12)
S/U grades only. Prerequisite: consent of instructor.

Computer Science and Engineering (CSE)

OFFICES

Undergraduate Affairs 3402
Graduate Affairs 3402
Applied Physics and Mathematics Building, Muir College
http://www.cs.ucsd.edu

Professors

Donald W. Anderson, Ph.D., Emeritus
Richard K. Belew, Ph.D.
Francine D. Berman, Ph.D.
Kenneth L. Bowles, Ph.D., Emeritus
Walter A. Burkhard, Ph.D.
J. Lawrence Carter, Ph.D.

Chung-Kuan Cheng, Ph.D.
Andrew Chien, Ph.D.
Garrison W. Cottrell, Ph.D.
Jeanne Ferrante, Ph.D.
Joseph A. Goguen, Ph.D.
Fan Chung Graham, Ph.D. Ronald Graham, Ph.D.
William E. Howden, Ph.D.
Russell Impagliazzo, Ph.D.
T. C. Hu, Ph.D.

Ramesh C. Jain, Ph.D., Emeritus
Andrew B. Kahng, Ph.D.
Sidney Karin, Ph.D. (In-Residence)
Alex Orailoglu, Ph.D.
Alon Orlitsky, Ph.D.
Joseph C. Pasquale, Ph.D.
Ramamohan Paturi, Ph.D.
Pavel Pevzner, Ph.D.
Venkat P. Rangan, Ph.D.
Larry Smarr, Ph.D.
Walter J. Savitch, Ph.D.
George Varghese, Ph.D.
Victor D.Vianu, Ph.D.
S. Gill Williamson, Ph.D.

Associate Professors

Scott B. Baden, Ph.D.
Mihir Bellare, Ph.D.
Bradley Calder, Ph.D.
Charles P. Elkan, Ph.D.
William G. Griswold, Ph.D.
Keith Marzullo, Ph.D.
Alexander Vardy, Ph.D.

Assistant Professors

Daniele Micciancio, Ph.D.
Yannis Papakonstantinou, Ph.D.
Stefan Savage, Ph.D.
Dean M. Tullsen, Ph.D.
Geoffrey Voelker, Ph.D.
Bennet S. Yee, Ph.D.

Adjunct Faculty

Michael J. Bailey, Ph.D.
Samuel R. Buss, Ph.D.
Walter H. Ku, Ph.D.
Reagan Moore, Ph.D.
George Polyzos, Ph.D.
Jeffrey B. Remmel, Ph.D.
J. B. Rosen, Ph.D.

Terrence J. Sejnowski, Ph.D.

Research Faculty

Henri Casanova, Ph.D., Assistant Project Scientist Philip Papadopoulos, Ph.D., Associate Research Scientist

Academic Coordinators

Paul Kube, Ph.D.
Gary Gillespie, M. Eng.

The Undergraduate Programs

The Department of Computer Science and Engineering offers computer science and com-
puter engineering curricula leading to the degrees in B.S. in Computer Science, B.S. in Computer Engineering, and B.A. in Computer Science. The courses of study prepare students for graduate study in these fields as well as immediate employment. The B.A. degree is intended to provide a more flexible program of study allowing significant studies beyond computer science and engineering.

These degrees are four-year endeavors. Students in the B.S. programs need to enroll in no more than sixteen units per quarter during their junior and senior years to meet their major requirements. The B.A. program has fewer major requirements. In addition, each student must satisfy general-education course requirements determined by the student's college.

B.S. Computer Science Program

The lower-division B.S. computer science program is designed to provide a strong foundation in mathematics, physics, electrical engineering, programming methodology and skills, and computer organization. Upper-division core courses deal with the theory and design of algorithms, hardware, and software. Students can gain additional breadth and/or depth in computer science and engineering by an appropriate selection of technical electives.

Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for admission to the program.

The department requires a total of 134 units for the B.S.computer science program. There are three varieties of requirements:lower-division, upper-division, and technical electives.

1.LOWER-DIVISION REQUIREMENTS

Students are expected to complete the following seventy units by the end of their sophomore year.
Computer Science and Engineering: CSE 8B or $11,12,20$ or Math. 15A, 21 or Math. 15B, and 30; twenty units.

Note: Students without any programming experience are advised to take CSE 8A and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A and CSE 8B, and requires experience in programming with a compiled language.

Mathematics: Math. 20A-B, 21C, 21D, and 20F; twenty units.

Physics: Phys. 2A-B-C; 12 units. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20 B or a higher course may take Phys. 2 A in the fall quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and Physics in high school may substitute the major's sequence, Phys. 4A-B-C for Phys. 2A-B-C.

Physics Lab: Phys. 2BL or 2CL or 2DL; two units. The lab course should be taken concurrently with the Phys. 2 or Phys. 4 sequence.
Introduction to Electrical Engineering: ECE $53 \mathrm{~A}-\mathrm{B}$; eight units. ECE 53A-B are courses that give a comprehensive introduction to electrical engineering.
Probability and Statistics: Math.183; four units.
Science/Mathematics Elective: Students are required to take one of the following four-unit science/mathematics courses: Phys. 2D, Math. 20E(2F), Chem. 6A, BILD 1, 10, 12, 14, 30.

2.UPPER-DIVISION REQUIREMENTS

All B.S. computer science students are required to take CSE 100 or Math. 176, 101 or Math. 188, 105 or Math. 166, 120, 130, 131A-B, 140, 140L, 141 and 141 L ; forty units.

Students are expected to complete almost all of these courses by the end of their junior year. If students want to accelerate their program, they should consider taking CSE 100 or Math. 176, CSE 105, and/or CSE 140 and 140 L in the sophomore year.

3. TECHNICAL ELECTIVES

B.S. computer science students are required to take six technical electives for a total of twentyfour units. Four electives must be computer science and engineering upper-division or graduate courses.

The remaining two technical electives can be chosen from the wider set of courses that includes computer science and engineering upper-division courses, graduate courses, and other electives as listed under the section titled Electives. Other restrictions in the selection of technical electives are also given in the section Electives.

4. B.S. COMPUTER SCIENCE, SAMPLE PROGRAM

FALL	WINTER	SPRING
FRESHMAN YEAR		
CSE 8A or CSE 11	CSE 12	CSE 20 or
Math. 20A	Math. 20B	Math. 15A
GE	Phys. 2A	Math. 21C
	GE	Phys. 2B
		GE
SOPHOMORE YEAR		
CSE 21 or Math. 15B	SCi/Math. Elec.	CSE 30
Math. 21D	Math. 20F	Math. 183
GE	ECE 53A	Phys. 2BL or
GE	Phys. 2C	2CL or 2DL
		ECE 53B
JUNIOR YEAR		
CSE 100 or Math. 176	CSE 101 or Math. 188 CSE 120	
CSE 140	CSE 141	CSE 130
CSE 140L	CSE 141L	CSE Tech. Elec.
CSE 105 or Math. 166	CSE Tech. Elec.	GE
GE	GE	
SENIOR YEAR		
CSE 131A	CSE 131B	CSE Tech. Elec.
CSE Tech. Elec.	Tech. Elec.	Tech. Elec.
GE	GE	GE

B.S. Computer Engineering Program

(Curriculum is the same in both the CSE and ECE departments.)

The B.S. computer engineering program is jointly administered by the Departments of Computer Science and Engineering and Electrical and Computer Engineering. Students wishing to take the computer engineering program must be admitted to one of the departments.

The lower-division computer engineering program is designed to provide a strong foundation in mathematics, physics, electrical engineering, programming methodology and skills, and computer organization. Upper-division core courses deal with the theory and design of algorithms, hardware and software, as well as electronic systems. Students can gain additional breadth and/or depth in computer science and engineering by an appropriate selection of technical electives.

Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for admission to the program.
B.S. computer engineering program requires a total of 146 units. There are three varieties of requirements: lower-division, upper-division, and technical electives.

1. LOWER-DIVISION REQUIREMENTS

Students are expected to complete the following seventy units by the end of their sophomore year.
Computer Science and Engineering: CSE 8 B or $11,12,20$ or Math. 15A, 21 or Math. 15B, and CSE 30; twenty units.

Note: Students without any programming experience are advised to take CSE 8A and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A and CSE 8B, and requires experience in programming with a compiled language.
Mathematics: Math. 20A-B, 21C, 21D, and 20F; twenty units.
Physics: Phys.2A-B-C-D; sixteen units. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20 B or a higher course may take Phys. 2 A in the fall quarter of the freshman year; all others will take Phys. 2 A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major's sequence, Phys. 4A-B-C-D for Phys. 2A-B-C-D.
Physics Lab: Phys. 2BL or 2CL or 2DL; two units. The lab courses should be taken concurrently with the Phys. 2 or Phys. 4 sequence.

Introduction to Electrical Engineering: ECE

 $53 \mathrm{~A}-\mathrm{B}$; eight units. ECE 53A-B are courses that give a comprehensive introduction to electrical engineering.Probability and Statistics: ECE 109; four units.

2. UPPER-DIVISION REQUIREMENTS

All B.S. computer engineering students are required to take CSE 100 or Math. 176, 101 or Math. 188, 105 or Math. 166, 120, 131A-B, 140, 140L, 141, and 141L; thirty-six units.

In addition, all B.S. computer engineering students have to fulfill the following upper-division ECE requirements.
Linear Systems: ECE 101, ECE 171A or 161A; eight units.

Electronic Circuits and Systems: ECE 102, ECE

 108; eight units.If students want to accelerate their program, they should consider taking CSE 100 or Math. 176, CSE 105 or Math. 166, and/or CSE 140 and 140L in the sophomore year.

3. TECHNICAL ELECTIVES

All B.S. computer engineering students are required to take six technical electives for a total of twenty-four units. One of these courses must be either ECE 111 or ECE 118. Of the remaining five courses, four must be computer science and engineering or electrical and computer engineering upper-division or graduate courses.

The remaining course can be any computer science and engineering or electrical and computer engineering upper-division or graduate course, or any other course listed under the section titled Electives. Other restrictions in the selection of technical electives are also given in the section Electives.

4. B.S. COMPUTER ENGINEERING, SAMPLE PROGRAM

FALL	WINTER	SPRING
FRESHMAN YEAR		
CSE 8A or CSE 11	CSE 12	CSE 20
Math. 20A	Math. 20B	or Math. 15A
GE	Phys. 2A	Math. 21C
	GE	Phys. 2 B
		GE
SOPHOMORE YEAR		
CSE 21 or Math. 15B	Math. 20F	CSE 30
Math. 21D	ECE 53A	ECE 53B
Phys. 2 C	ECE 109	Phys. 2D
GE	GE	Phys. 2BL or 2 CL or 2 DL
JUNIOR YEAR		
CSE 100 or Math. 176	CSE 101 or Math. 188	CSE 105 or
CSE 140	CSE 141	Math. 166
CSE 140L	CSE 141L	CSE 120
ECE 102	ECE 108	(Req. Tech. Elec.-
GE	GE	ECE 111 or ECE 118)
		GE
SENIOR YEAR		
CSE 131A	CSE 131B	ECE 171A or
ECE 101	CSE/ECE Tech. Elec.	161A
CSE/ECE Tech. Elec. GE.	CSE/ECE Tech. Elec GE	CSE/ECE Tech. Elec.
		Tech. Elec. GE

B.A. Computer Science Program

The B.A. computer science program gives students more latitude in designing their course of study. The lower-division program is designed to provide a strong foundation in mathematics, physics, programming methodology and skills, and computer organization. Upper-division core courses deal with the theory and design of algorithms, hardware, and software. Students can gain
additional breadth and/or depth in computer science and engineering by an appropriate selection of technical electives. By requiring fewer technical electives, the B.A. computer science program serves those students desiring more time for undergraduate studies outside their major subject.

The department requires a total of 104 units for the B.A. computer science program. There are three varieties of requirements: lower-division, upper-division, and technical electives.

1. LOWER-DIVISION REQUIREMENTS

Students are expected to complete the following fifty-two units by the end of their sophomore year.
Computer Science and Engineering: CSE 8B or $11,12,20$ or Math. 15A, 21 or Math. 15B, and 30; twenty units.

Note: Students without any programming experience are advised to take CSE 8A and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A and CSE 8B, and requires experience in programming with a compiled language.

Mathematics: Math. 20A-B, 21C, 21D, and 20F; twenty units.
Physics: Phys. 2A-B-C; twelve units. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. $20 B$ or a higher course may take Phys. 2A in the fall quarter of the freshman year; all others will take Phys. 2 A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major's sequence, Phys. $4 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ for Phys. 2A-B-C.

2. UPPER-DIVISION REQUIREMENTS

All B.A. computer science students are required to take CSE 100 or Math. 176, 101 or Math. 188, 105 or Math. 166, 120, 131A, 131B, 140, 140L, 141, and 141 L ; thirty-six units.

Students are expected to complete almost all of these courses by the end of their junior year. If students want to accelerate their program, they should consider taking CSE 100 or Math. 176, CSE 105 or Math. 166, and/or CSE 140 and 140 L in the sophomore year.

3. TECHNICAL ELECTIVES

B.A. computer science students are required to take four technical electives for a total of sixteen
units. Of these four electives, at least two must be computer science and engineering upper-division or graduate courses.
The remaining two technical electives can be chosen from a wider set of courses that includes computer science and engineering upper-division courses, graduate courses, and other electives as listed under the section titled Electives. Other restrictions in the selection of technical electives are also given in the section Electives.

4. B.A. COMPUTER SCIENCE, SAMPLE PROGRAM

FALL	WINTER	SPRING
FRESHMAN YEAR		
CSE 8A or CSE 11	CSE 12	CSE 20
Math. 20A	Math. 20B	or Math. 15A
GE	Phys. 2A	Math. 21C
	GE	Phys. 2B
		GE
SOPHOMORE YEAR		
CSE 21 or Math. 15B	Math. 20F	CSE 30
Math. 21D	GE	GE
Phys. 2C	GE	GE
JUNIOR YEAR		
CSE 100 or Math. 176	CSE 101 or Math. 188 CSE 120	
CSE 140	CSE 141	CSE Tech. Elec.
CSE 140L	CSE 141L	GE
CSE 105 or Math. 166	GE.	GE
SENIOR YEAR		
CSE 131A	CSE 131B	Tech. Elec.
CSE Tech. Elec.	Tech. Elec.	
GE		

Electives

The discipline of computer science and engineering interacts with a number of other disciplines in a mutually beneficial way. These disciplines include mathematics, electrical engineering, and cognitive science. The following is a list of upper-division courses from these and other disciplines that can be counted as technical electives.

At most four units of CSE 197, 198, or 199 may be used towards technical elective requirements. CSE 195 cannot be used towards course requirements. Undergraduate students must get instructor's permission and departmental stamp to enroll in a graduate course.

Students may not get duplicate credit for equivalent courses. The UCSD General Catalog should be consulted for equivalency information and any restrictions placed on the courses. Additional restrictions are noted below. Any deviation from this list must be petitioned.

Mathematics: All upper-division courses except Math. 168A-B, 179A-B (Math. 183-Computer Engineering majors only), 184A-B, 189A-B, and 195-199.

If a student has completed CSE 167, then he or she cannot get elective credit for Math. 155A. Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. No credit for any of these courses will be given if Math. 170A-B-C is taken. Students may receive credit for either one of the following:Math. 166 or CSE 105 (but not both), Math. 188 or CSE 101 (but not both), Math. 176 or CSE 100 (but not both).

Credit will be given for only one of the following: ECE 109 or Math. 183 or Econ. 120A.
Electrical and Computer Engineering: All ECE upper-division courses except 195-199.

CSE 143 is equivalent to ECE 165 . Students may not get credit for both CSE 123A and ECE 158A. Credit will be given for only one of the following: ECE 109 or Math. 183 or Econ. 120A.
Cognitive Science: Theory and Cognitive Phenomena 101A-B-C, Cognitive Neuroscience 107A-B-C, Theory of Computation and Formal Systems 108A, Symbolic Modeling of Cognition 108B, Neural Network Models of Cognition I 108C, Everyday Cognition 130, Distributed Cognition 131, Cognitive Engineering 132, Semantics 150, Language Comprehension 153, Natural and Artificial Symbolic Representational Systems 170, Neural Network Models of Cognition II 181, Artificial Intelligence Modeling II 182, Multimedia Design 187A-B.

Students may not get credit for both CSE 150 and Neural Network Models of Cognition 1 108C or for both CSE 151 and Artificial Intelligence Modeling || 182.

Mechanical and Aerospace Engineering:

All upper-division MAE courses except MAE 140
(ONLY Computer Science majors may take MAE
140) and 195-199.

Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. Students may only get credit for one of the two courses, CSE 167 or MAE 152.
Economics: Microeconomics 100A-B, Game Theory 109, Macroeconomics 110A-B, Mathematical Economics 113, Econometrics 120A-B-C, Applied Econometrics 121, Management Science Microeconomics 170A-B, Decisions Under Uncertainty 171, Introduction to

Operations Research 172A-B-C, Economic and Business Forecasting 178.

Credit will be given for only one of the following: ECE 109 or Math. 183 or Econ. 120A.
Linguistics: Phonetics 110, Phonology 1 111, Phonology II 115, Morphology 120, Syntax | 121, Syntax II 125, Semantics 130, Mathematical Analysis of Language 160, Computers and Language 163, Computational Linguistics 165, Psycholinguistics 170, Language and the Brain 172, and Sociolinguistics 175.

Engineering: Team Engineering 101.
Music: Computer Music II 172, Audio Production: Mixing and Editing 173.
Psychology: Engineering Psychology 161

Minor and Program of

 ConcentrationThe CSE minor requires successful completion of a total of nine CSE courses. To be admitted into the minor, students must have a 2.5 GPA and a Cor better in CSE 8 B or $11,12,20,21,30$. The remaining four CSE courses are CSE 100, CSE 101, and two additional CSE upper-division courses subject to enforcement of prerequisites. In order for the minor to be awarded students must receive an average 2.0 GPA in the upper-division courses.

Note: Students without any programming experience are advised to take CSE 8A and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A and CSE 8B, and requires experience in programming with a compiled language.

Students should consult their college provost's office concerning the rules for the minor or program of concentration. Because our undergraduate program is highly impacted, winter or spring enrollment is recommended for CSE 8A or CSE 8B or CSE 11.

Effective Fall 2000, Mathematics/Computer Science Majors will not be allowed the Minor in Computer Science.

Computing Courses for Non-Majors

The department offers slower-paced courses providing a practical introduction to computers, computation, and programming: CSE 1 Ñan introduction to computers and CSE 5AÑan introduction to structured programming using the C/Java programming language.

Policies and Procedures for CSE Undergraduates

ADMISSION TO MAJORS

Freshman students who have excelled in high school and have declared CSE on their application will be directly admitted by the dean of the School of Engineering into their major. The only way to become a computer science (CS) or computer engineering (CE) major is to be directly admitted as an entering freshman (transfer students see TRANSFER STUDENT section below) These students will be notified directly of their status.

Because of heavy student interest in departmental programs, and the limited resources available to accommodate this demand, maintenance of a high quality program makes it necessary to limit enrollments to the most qualified students.

Admission to the department as a major, transfer, or minor is in accordance with the general requirements established by the School of Engineering.

Effective fall 1998, pre-major status is limited to selected transfer students. These requirements and procedures are described in detail in the section on Admission to the School of Engineering in this catalog. For enrollment in CSE courses, see the following section.

Space permitting and in its sole discretion, the computer science and engineering department may periodically grant admission to the Computer Science (CS) or Computer Engineering (CE) majors to a small number of academically exceptional UCSD undergraduate students who were not admitted to these majors as entering students. Exceptional admission will be considered for students having an overall UCSD GPA of 3.5 or better who have taken at least two CSE, math, or science courses demonstrating special aptitude for the CS or CE curriculum. Applications for exceptional admission must include submission of a course plan demonstrating ability to satisfy graduation requirements and a personal statement addressing the applicant's motivation to join the CS or CE major, in addition to other criteria established by the department.

TRANSFER STUDENTS

The B.S. or B.A. in Computer Science and the B.S.in Computer Engineering are heavily impacted majors and admission is limited to applicants who have demonstrated a high level of
achievement commensurate with the prospect of success in these majors. Successful applicants must have completed substantial training at the community college and must have achieved a high level of academic performance there. For example, the required minimum of 90 quarter transfer units must include 18 quarter units of calculus, 12 quarter units of calculus-based physics, and the highest level computer science course offered at their community college.

Effective fall 2001 applicants seeking admission as transfer students will be considered for direct admission into the Computer Science (CS) or Computer Engineering (CE) majors in the Department of Computer Science \& Engineering (CSE). The only way to become a computer science (CS) or computer engineering (CE) major is to be directly admitted as an entering transfer student. Although the actual required GPA cutoff depends on the number of openings, at least a 3.2 GPA in the community college transfer courses, and a 3.4 GPA in math, physics and computer science courses, are likely to be needed to gain admission. Transfer students who have declared pre-CSE will be considered for direct admission to the major.

Space permitting and in its sole discretion, the computer science and engineering department may periodically grant admission to the Computer Science (CS) or Computer Engineering (CE) majors to a small number of academically exceptional UCSD undergraduate students who were not admitted to these majors as entering students. Exceptional admission will be considered for students having an overall UCSD GPA of 3.5 or better who have taken at least two CSE, math, or science courses demonstrating special aptitude for the CS or CE curriculum. Applications for exceptional admission must include submission of a course plan demonstrating ability to satisfy graduation requirements and a personal statement addressing the applicant's motivation to join the CS or CE major, in addition to other criteria established by the department.

ENROLLMENT IN CSE COURSES

Student demands exceed capacity in many CSE courses. Accordingly, many CSE courses may have enrollment restrictions which give priority to students in the following order:

1. CSE majors, CSE M.S., and CSE Ph.D. students.
2. CSE pre-majors, and ECE CE majors and pre-majors, and Math-CS majors. Pre-major status is conferred to transfer students and to those students admitted prior to fall 1998.
3. Students fulfilling a non-elective requirement in another program.
4. CSE minors.
5. All other majors or pre-majors in other SOE departments.
6. All others, with permission of the department of Computer Science and Engineering.

Where these restrictions apply, the registrar will not enroll low-priority students in the course.

ENROLLING IN UPPER-DIVISION COURSES

The Department of Computer Science and Engineering will attempt to provide sufficient sections of all lower-division courses. Students will, however, be screened to ensure that they meet all course enrollment restrictions.

Admission to upper-division courses will be restricted to students having completed all prerequisites with a C - or better (or consent of the instructor.) Courses have enrollment restrictions which give priority in the following order: students admitted by the department to a major or minor curriculum; students fulfilling a requirement for another major; all others. Within these categories, priority is determined on the basis of graduation date and/or credits completed. Where these restrictions apply, the registrar will not enroll nonmajors except by department approval. Students who are undeclared will not be admitted to upper-division computer science and engineering courses.

Those students not in compliance with the above restrictions should be forewarned that they will automatically be dropped from course rosters (at any time during the quarter) when it comes to the attention of the department that a student is enrolled in a course without being eligible because of restrictions and/or the performance standards have not been met. Admission to all computer science and engineering courses will require obtaining either authorization through telephone registration or department stamps on an add/drop card, and it will be given only by the student affairs personnel.

GRADUATION REQUIREMENTS

All upper-division major requirements and technical electives except CSE 197, 198, or 199
must be taken for a letter grade. To graduate, a grade-point average of 2.0 will be required in upper-division courses in the major, including technical electives. In addition, each student must satisfy general-education course requirements determined by the student's college, as well as major requirements determined by the department. The five colleges at UCSD require widely different numbers of general-education courses. Each student should choose his or her college carefully, considering the special nature of the college and breadth of education, realizing that some colleges require considerably more courses than others.

Five-year Bachelor's-Master's Program

Undergraduate students in the Department of Computer Science and Engineering who are enrolled in the B.S. or B.A. computer science or B.S. computer engineering degree programs, and who have a cumulative GPA of a 3.4 and also a GPA of 3.4 in at least seven of the nine core courses, are eligible to apply for the Five Year Bachelor's-Master's Degree Program. The deadline to apply is the fourth week of the fourth quarter before graduation. Acceptance into this program is an honor which carries with it practical bene-fits-the graduate application process is simplified (no GREs required), students accepted into this program can be admitted fall, winter, and spring quarter, based upon availability of openings in the program. Advanced students are given access to graduate level courses and have the opportunity to do graduate level research earlier under the direct supervision of UCSD's faculty, and students are able to complete the B.A., B.S., and M.S. degree within a five-year time period. Courses taken can be used toward either the B.A., B.S., or M.S. degree, but not counted toward both degrees. Additional information and applications can be obtained by contacting the CSE Student Affairs Office, APM 3402.

The Graduate Program

The graduate program offers master of science and doctor of philosophy degrees in computer science and computer engineering. To be accepted into either course of study, a student
must have a B.A./B.S. degree in computer science, computer engineering, or a related area.

The graduate program is concerned with fundamental aspects of computation; emphasis is divided among the areas of theory, hardware, software systems, and artificial intelligence. The computer engineering specialization places a greater emphasis on hardware and the design of computer systems.

Admission to the graduate program is done through the Office of Graduate Admissions, Department of CSE. Deadline for application is January 8. Admissions are always effective the following fall quarter. For admission requirements, please refer to the departmental Web page: http://www-cse.ucsd.edu/graduate/

Admission decisions for the M.S. and Ph.D. programs are made separately. An M.S. student who wishes to enter the Ph.D. program must submit a new application to the CSE admissions committee.

Computer Science Program

Master of Science Program

The department offers the master of science degree in computer science. The degree can be pursued under either the Thesis Plan I or the Comprehensive Examination Plan II. Each plan requires forty-nine units of work. For full-time students, all the requirements must be completed within two years. Students with an adequate background in computer science can complete the M.S. program within four to five quarters of full-time study.

THESIS OR COMPREHENSIVE EXAM

There are two plans of study for the master's degree: Plan I, in which the student writes a thesis, and Plan II, in which the student takes a set of comprehensive exams.

Plan I:Thesis Option, No Comprehensive Exam

This plan involves both course work and research, culminating in the preparation of a thesis. The student must take twelve units of CSE 298 (Independent Study) to fulfill the research requirement, and a thesis based on research must be written and subsequently reviewed by the thesis committee. This committee, which is appointed by the dean of Graduate Studies and Research, consists of three faculty members, with at least two members from within the CSE department.

Plan II: Comprehensive Examination, No Thesis

Under this plan, the student must pass a written comprehensive examination designed to test the student's knowledge in basic computer science material. The examination can normally be passed with a thorough knowledge of topics covered in the undergraduate and first-year graduate computer science programs. It is offered every year in the first few weeks of the fall quarter and in the first few weeks of the spring quarter. Each student is allowed three attempts to pass the examination. The student must secure at least a master's-level pass in the written comprehensive examination. More information regarding the comprehensive examination can be found in a separate document provided by the CSE graduate office.

In particular, the written examination is structured around the three CSE core areas: algorithms and data structures; operating systems; and computer architecture and digital logic design.

Required Courses

Students entering the M.S. Program in Computer Science will choose an area of concentration from among twelve areas. Each concentration is an area in which the faculty has significant research expertise.

The typical concentration is a collection of three courses which are designed to give the student in-depth training in the chosen field.
Additionally, to ensure breadth, all students are required to take four core courses.

Core courses must be completed with an average grade of B and no grade below $B-$. The four core courses required of all students are as follows:

CSE 202. Algorithms Design and Analysis
CSE 221. Operating Systems
CSE 240. Principles of Computer Architecture
CSE 292. Faculty Research Seminar
The department expects to offer concentrations in the following areas:

Artificial Intelligence
Communication Networks
Computer Architecture and Compilers
Cryptography and Security
Database and Information Retrieval
Design Automation for Microelectronic Designs
Distributed and Fault-Tolerant Computing

Multimedia Systems
Parallel and Scientific Computing
Software Engineering
Storage Systems
Ph.D. Preparation
The specific courses involved in each of the concentrations are detailed in a separate bulletin which is available in the Graduate Student Affairs Office, 3402 AP\&M.

Project

Students electing Plan II are required to execute a project while enrolled in four units of CSE 293.

Electives

In addition to completing the required core courses and fulfilling either the thesis or comprehensive examination requirements described above, the student must also complete additional approved courses to bring the total number of units to forty-nine. The number of units of electives depends upon whether the student chooses Plan I or Plan II. The electives consist of other CSE graduate courses or courses from a list of approved electives. Units obtained in the courses CSE 293, 298, 299, 501, 502, and any of the seminar courses CSE 209, 229, 259, 269, 290, and 294 do not count toward the elective requirement.

Doctoral Program

The general requirements for the Ph.D. program are stated in the Graduate Studies section of the catalog. A brief summary of the general requirements is also provided in the section titled All Doctoral Programs. Consistent with these requirements, the department has established a set of requirements to be fulfilled in the first two to three years of the Ph.D. program as described below.

COURSE REQUIREMENTS

Ph.D. students are expected to complete the course requirements in the first two years of the program. They are expected to maintain, on an annual basis, a 3.4 grade-point average for the core courses.

Ph.D. students entering with a master's degree may petition for a waiver of the core courses or for substitution by alternative courses.

CORE COURSES

Each Ph.D. student must take all of the following courses. A student typically completes all the
core courses within the first year of the graduate study.

CSE 200
CSE 202
CSE 221
CSE 230
CSE 240
CSE 292

ELECTIVES

Each Ph.D. student must take sixteen units of technical electives consisting of other CSE graduate courses or approved alternatives.

TEACHING ASSISTANTSHIP REQUIREMENT

Effective fall 1998, all students enrolled in the Ph.D. program must have one quarter of training as a teaching assistant. This is a formal degree requirement and must be completed before the student is permitted to graduate. The requirement is met in one of two ways:

1. serving as a 50 percent teaching assistant with pay (taking CSE 501)
2. taking CSE 502 (teaching experience)

COMPREHENSIVE EXAMINATION REQUIREMENT

The comprehensive examination for Ph.D. students consists of two parts. The first part is a written examination, identical to that required for master's degree students. This examination tests the student's knowledge of basic computer science and can be passed with a thorough knowledge of undergraduate and first-year graduate computer science material. The written examination is structured around the following five CSE core areas: algorithms and data structures; computability, complexity and logic; programming languages; operating systems; and computer architecture and digital logic design. It is offered every year in the first few weeks of the fall quarter and in the first few weeks of the spring quarter. Each student is allowed three attempts to pass the examination. All Ph.D. students should complete their written comprehensive examination successfully within two years following the quarter in which they are admitted to the Ph.D. program. However, a student typically completes the written part of the comprehensive examination successfully by the fall quarter of the second year. More information regarding the comprehensive examination can be found in a separate document provided by the CSE graduate office.

RESEARCH EXAMINATION REQUIREMENT

The second part of the examination for Ph.D. students is an oral research examination designed to get an early assessment of the Ph.D. student's research ability in some field in computer science. The content of this exam is developed by the student in collaboration with a faculty adviser in CSE. Students are expected to take this examination within one year following the quarter in which they pass the written comprehensive examination.

Computer Engineering Program

Computer engineering, jointly administered between the CSE and ECE departments, offers the master of science and doctoral degrees with the degree title computer science and engineering (computer engineering). Computer engineering explores the engineering analysis and design aspects of algorithms and technology. Specific research areas include computer systems, signal processing systems, architecture, networks, com-puter-aided design, fault tolerance, and data storage systems.

Master of Science Program

The degree can be pursued under either the Thesis Plan I or the Comprehensive Examination Plan II. Each plan requires forty-nine units of work. For full-time students, all the requirements must be completed within two years. Students with an adequate background in computer engineering can complete the M.S. program within four to five quarters of full-time study.

PLAN I: THESIS OPTION, NO COMPREHENSIVE EXAM

This plan of study involves both course work and research, culminating in the preparation of a thesis. A total of forty-nine units of credit is required, as follows:

Core Courses

The following core courses must be completed with an average grade of B and no grade below B-:

Three Software Courses:
CSE 202
CSE 221
CSE 231

Three Hardware Courses.
CSE 240
ECE 260A
CSE 243 or ECE 251A or ECE 263A
Two Analysis Courses:
CSE 200 or CSE 201
CSE 222 or ECE 257A
and:
CSE 292

Electives

Students must elect at least four technical units among graduate courses within the Departments of AMES, CSE, ECE, Mathematics, and Physics.

Thesis

Twelve units of CSE 298 must be taken with a faculty member in CSE or ECE who agrees to act as adviser for the thesis to fulfill the research requirement.

A thesis based on research must be written and subsequently reviewed by a committee, consisting of three faculty members, with at least two members from within the CSE department. The committee is appointed by the dean of Graduate Studies.

PLAN II: COMPREHENSIVE EXAMINATION, NO THESIS

In order to receive the M.S. degree in computer engineering under this plan, a student must complete the course requirements listed below and pass a written comprehensive examination.

The written examination is structured around the following three CSE core areas: algorithms and data structures; operating systems; and computer architecture and digital logic design.

Core Courses

Three Software Courses:
CSE 202
CSE 221
CSE 231
Three Hardware Courses:
CSE 240
ECE 260A
CSE 243 or ECE 251A or ECE 263A
Two Analysis Courses:
CSE 200 or CSE 201
CSE 222 or CSE 257A
and
CSE 292

Electives

Students must elect at least twelve technical units among graduate courses within the Departments of MAE, CSE, ECE, Mathematics, and Physics.

Project

Four units of CSE 293.

Comprehensive Examination

The comprehensive examination is designed to test the student's knowledge in basic computer science and engineering material. The examination can normally be passed with a thorough knowledge of topics covered in the undergraduate and the first-year graduate computer science or computer engineering programs.

It is offered every year in the first few weeks of the fall quarter and in the first few weeks of the spring quarter. If fewer than seven people sign up, then the department may cancel the examination in the spring quarter. Each student is allowed three attempts to pass the examination. The student must secure at least a master's-level pass in the written comprehensive examination.

This examination is the same for both the computer science and the computer engineering graduate programs. More information about the comprehensive examination can be obtained in a separate document from the CSE graduate office.

Doctoral Program

The general requirements for the Ph.D. program are stated in the Graduate Studies section of the catalog. A brief summary of the general requirements is also provided in the section titled All Doctoral Programs. Consistent with these requirements, the department has established a set of requirements to be fulfilled in the first two to three years of the Ph.D. program as described below.

COURSE REQUIREMENTS

Ph.D. students are expected to complete the following computer engineering curriculum of forty-nine unit course requirement within the first two years. Ph.D. students entering with a master of science degree may petition to waive individual core course requirements or to substitute approved alternative courses. All Ph.D. students must attain a cumulative grade-point average of 3.4 in the core courses.

CORE COURSES

Each Ph.D. student must complete the following core requirements:

Three Software Courses:
CSE 202
CSE 221
CSE 231
Three Hardware Courses:
CSE 240
ECE 260A
CSE 243 or ECE 251A or ECE 263A
Two Analysis Courses:
CSE 200 or CSE 201
CSE 222 or ECE 257A
and
CSE 292

ELECTIVES

Students must take sixteen units of technical electives from among graduate courses within the Departments of MAE, CSE, ECE, Mathematics, and Physics.

TEACHING ASSISTANTSHIP REQUIREMENT

Effective fall 1998, all students enrolled in the Ph.D. program must have one quarter of training as a teaching assistant. This is a formal degree requirement and must be completed before the student is permitted to graduate. The requirement is met in one of two ways:

1. serving as a 50 percent teaching assistant with pay (Students must also be enrolled in four units of CSE 501)
2. taking CSE 502 (teaching experience)

COMPREHENSIVE EXAMINATION REQUIREMENT

The comprehensive examination for Ph.D. students consists of two parts. The first part is a written examination, identical to that required for master's degree students. This examination tests the student's knowledge of basic computer science and engineering and can be passed with a thorough knowledge of undergraduate and firstyear graduate computer science and engineering material. The written examination is structured around the following five CSE core areas: algorithms and data structures; computability, complexity, and logic; programming languages; operating systems; and computer architecture and digital logic design. This examination is the
same for both the computer science and the computer engineering graduate programs.
It is offered every year in the first few weeks of the fall quarter and in the first few weeks of the spring quarter. Each student is allowed three attempts to pass the examination. All Ph.D. students should complete their written comprehensive examination successfully within two years following the quarter in which they are admitted to the Ph.D. program. However, a student typically completes the written part of the comprehensive examination successfully by the fall quarter of the second year. More information regarding the comprehensive examination can be found in a separate document provided by the CSE Graduate Office.

RESEARCH EXAMINATION REQUIREMENT

The second part of the examination for Ph.D. students is an oral research examination designed to get an early assessment of the Ph.D. student's research ability in some field in computer science. The content of this exam is developed by the student in collaboration with a faculty adviser in CSE or ECE . Students are expected to take this examination within one year following the quarter in which they pass the written comprehensive examination.

All Doctoral Programs

Qualifying Examination and Advancement to Candidacy

The qualifying examination is the second examination (the first being the written and the oral comprehensive examination) taken by the Ph.D. students and is a requirement to advancement to candidacy. Prior to taking the qualifying examination a student must have satisfied the departmental graduate requirements and have been accepted by a CSE faculty member as a Ph.D. thesis candidate. All doctoral students must be advanced to candidacy by the end of four years from the first quarter of registration. It is administered by a doctoral committee appointed by the dean of Graduate Studies and Research and consists of faculty from CSE and other departments. More information on the composition of the committee can be obtained from the CSE graduate office. The examination is taken after the student and his or her adviser have identified a topic for the dissertation and initial
progress has been made. The candidate is expected to describe his or her accomplishments to date and plans for future work.

Dissertation

The dissertation defense is the final Ph.D. examination. A candidate for the Ph.D. is expected to write a dissertation and defend it in an oral examination conducted by the doctoral committee.

Financial Aid

Financial support is available to qualified graduate students in the form of fellowships, loans, and assistantships. Anticipated stipends for halftime research assistantships are $\$ 1542$ per month, with the possibility of full-time employment during the summer months. For a half-time teaching assistantship, the anticipated stipend will be $\$ 1540$ per month. Requests for application forms for admission and financial support should be directed to the Department of Computer Science and Engineering. The department offers support to graduate students in the Ph.D. program only.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

COURSES

Student demand exceeds capacity in many CSE courses. Accordingly, many CSE undergraduate courses may have enrollment restrictions which give priority to students in the following order:

- CSE majors, CSE M.S., and CSE Ph.D. students
- CSE pre-majors, ECE CE majors and pre-majors, and Math-CS majors
- students fulfilling a non-elective requirement in another program
- CSE minors
- all other majors or pre-majors in other SOE departments
- all others, with permission of the Department of Computer Science and Engineering
Where these restrictions apply, the registrar will not enroll low-priority students in the course.

A tentative schedule of course offerings is available from the department, APM 3402, each spring for the following academic year. The tentative schedule for 1999-2000 is also found at http://www-cse.ucsd.edu/ugrad/ offerings $99-2000 . \mathrm{html}$.

LOWER-DIVISION

CSE 1. introduction to Computers (4)

(Formerly CSE 60) The main technical topic is the use of Macintosh and UNIX computers. Lectures cover the history of computing, how computers are used in society today, an introduction to software development using Hypercard, worldwide information access through the Internet, and a few topics in computer science. Prerequisite: none. This course is not suitable for engineering majors.

CSE 5A. Introduction to Programming I (4)
(Formerly CSE 62A) Introduction to algorithms and topdown problem solving. Introduction to the C language including functions, arrays, and standard libraries. Basic skills for using a PC graphical user interface operating system environment. File maintenance utilities are covered. (A student may not receive credit for CSE 5A after receiving credit for CSE 10 or CSE 11 or CSE 8B or CSE 9B or CSE 62 B or CSE 65.) Prerequisite: A familiarity with high-school level algebra is expected, but this course assumes no prior programming knowledge.

CSE 5B. Introduction to Programming II (4)
(Formerly CSE 62B) Introduction to algorithms and topdown problem solving. Completion of the C programming language including structures, pointers, multi-dimensional array, C-preprocessor, and standard libraries. Simple data structure techniques. Continuation within the pc operating system environment; graphical user interface. (A student may not receive credit for CSE 5B after receiving credit for CSE 10 or an equivalent course.) Prerequisites: Math. 1A/2A/20A and CSE 5A or CSE 62A.

CSE 8A. Introduction to Computer Science: Java (4) Basic UNIX. Basics of Java language. Classes, methods, and parameters. Modularity and abstraction Documentation techniques. Testing and verification techniques. Basic Inheritance. Event driven programming. Programming with AWT library or other similar library. CSE 8 A-B is a slower paced version of CSE 11 with more programming practice. (Students who have taken CSE 9A or CSE 9B or CSE 10 or CSE 11 may not take CSE 8A.) Prerequisite: high school algebra. Majors only.

CSE 8B. Introduction to Computer Science: Java (4) Continuation of the Java language. Continuation of programming techniques. More on Inheritance. Exception handling. CSE 8A-B is a slower paced version of CSE 11 with more programming practice. (Students who have taken CSE 9A or CSE 9B or CSE 10 or CSE 11 may not take CSE 8B.) Prerequisite: high school algebra. Majors only.

CSE 11. Introduction to Computer Science and Object-

 Oriented Programming: Java (4)Introduction to computer science and programming using the Java language. Basic UNIX. Modularity and abstraction. Documentation, testing and verification techniques. Basic object-oriented programming including inheritance and dynamic bind. Exception handling.

Event-driven programming. Experience with AWT library or other similar library. Prerequisites: high-school algebra and a course in programming in a compiled language. Majors only.

CSE 12. Basic Data Structures and Object-Oriented

 Design (4)Basic data structures including stacks, queues, lists binary trees, hash tables. Basic object-oriented design including encapsulation, polymorphism, classes as the implementation of abstract data types. Memory management, pointers, recursion, and big-o notation. Uses the $C / C++$ and Java programming language. Prerequisite: CSE 8 B or CSE 11.

CSE 20. Introduction to Discrete Mathematics (4)
Basic discrete mathematical structure: sets relations, functions, sequences, equivalence relations, partial orders, and number systems. Methods of reasoning and proofs: propositional logic, predicate logic, induction recursion, and pigeonhole principle. Infinite sets and diagonalization. Basic counting techniques; permutation and combinations. Applications will be given to digital logic design, elementary number theory, design of programs, and proofs of program correctness. Credit not offered for both Math. 15A and CSE 20. Equivalent to Math 15A. Prerequisites: CSE $8 B$ or CSE $9 B$ or CSE 10 or CSE 11.

CSE 21. Mathematics for Algorithms and Systems (4) This course will provide an introduction to the discrete mathematical tools needed to analyze algorithms and systems. Enumerative combinatorics: basic counting principles, inclusion-exclusion, and generating functions. Matrix notation. Applied discrete probability Finite automata. Credit not offered for both Math.15B and CSE 21. Equivalent to Math 15B. Prerequisites: CSE 20 or Math. 15A.

CSE 30. Computer Organization and Systems

Programming (4)

(Formerly CSE 70.) Introduction to organization of modern digital computers-understanding the various components of a computer and their interrelationships Study of a specific architecture/machine with emphasis on systems programming in C and Assembly languages in a UNIX environment. Prerequisites: CSE 12 and CSE 20 or Math. 15A; or consent of the instructor.

CSE 80.UNIX Lab (2)

The objective of the course is to help the programmers create a productive UNIX environment. Topics include customizing the shell, file system, shell programming, process management, and UNIX tools. (P/NP grades only.) Prerequisite: CSE 8 B or CSE 9 B or CSE 10 or CSE 11.

CSE 81. The Internet and the World Wide Web (4)
Introduction to communication networks and the World Wide Web, a set of interconnected multimedia information servers, from a user's perspective. Students obtain hands-on experience with Web browsers and search engines, and learn to design HTML documents and CGI scripts. Prerequisite: CSE 1 or CSE 5A or CSE 8A or CSE 8 B or CSE 9A or CSE 9B or CSE 10 or CSE 11.

UPPER-DIVISION

CSE 100. Advanced Data Structures (4)
Descriptive and analytical presentation of data structures and algorithms. Lists, tables, priority queues, disoint subsets, and dictionaries data types. Data structuring techniques include linked lists, arrays, hashing, and trees. Performance evaluation involving worst
case, average and expected case, and amortized analysis. Credit not offered for both Math. 176 and CSE 100. Equivalent to Math. 176. Prerequisites: CSE 12, CSE 21 or Math. 15B, and CSE 30, or consent of the instructor. Majors only.

CSE 101. Design and Analysis of Algorithms (4) Design and analysis of efficient algorithms with emphasis of non-numerical algorithms such as sorting, searching, pattern matching, and graph and network algorithms. Measuring complexity of algorithms, time and storage. NP-complete problems. Credit not offered for both Math. 188 and CSE 101. Equivalent to Math 188. Prerequisites: CSE 12, CSE 21 or Math. 15B or Math. 100A or Math. 103A. Majors only.

CSE 102. File and Storage Structures (4)

(Formerly CSE 161B.) Descriptive and analytic introduction to file structures and storage media. Sequential files, external sorting; index structures, B-trees, linear hashing, Patricia, grid; random and sequential access storage devices, WORM, data compression. Prerequisite: CSE 100 or Math. 176 or consent of the instructor. Majors only.

CSE 105. Theory of Computability (4)
An introduction to the mathematical theory of computability. Formal languages. Finite automata and regular expression. Push-down automata and context-free languages. Computable or recursive functions: Turing machines, the halting problem. Undecidability. Credit not offered for both Math. 166 and CSE 105. Equivalent to Math 166. Prerequisites: CSE 12, CSE 21 or Math. 15 B or Math. 100A or Math. 103A. Majors only.

CSE 107. Introduction to Modern Cryptography (4)
Topics include private and public-key cryptography, block ciphers, data encryption, authentication, key distribution and certification, pseudorandom number generators, design and analysis of protocols, zero knowledge proofs, and advanced protocols. Emphasizes rigorous mathematical approach including formal definitions of security goals and proofs of protocol security. Prerequisites: CSE 21 or Math. 15B, CSE 101 or Math. 188, CSE 105 or Math. 166. Majors only.

CSE 111. Object Oriented Software Design (4)

Introduction to object-oriented analysis and design Object-oriented modeling methods for analysis and design, object-oriented general design paradigms, object-oriented design techniques. Cyclic development of object-oriented systems. Prerequisites: CSE 8B or CSE $9 B$ or CSE 10 or CSE 11, CSE 12, and CSE 100 or Math. 176. Majors only

CSE 112. Software Engineering (4)

(Formerly CSE 110.) This course will cover software engineering topics associated with large systems development such as requirements and specifications, testing and maintenance, and design. Specific attention will be given to development tools and automated support environments. Prerequisites: CSE 111. Majors only.

CSE 120. Principles of Computer Operating Systems (4) (Formerly CSE 171A.) This course introduces the basic concepts used to structure computer operating sys tems. Examples of notions introduced and discussed are batch processing, multiprogramming, input/output pooling, interrupt handling, processes, descriptors, process synchronization, interprocess communication memory management, virtual memory, caching, buffers, naming, files, interactive command interpreters, and processor scheduling. Prerequisites: CSE 100 or Math. 176 and CSE 141. Majors only.

CSE 121. Operating Systems: Architecture and Implementation (4)
(Formerly CSE 171B.) Case study of architecture and implementation of a selected modern operating system. In-depth analysis through a detailed study of source code. Topics include process creation, contextswitching, memory allocation, synchronization mechanisms, interprocess communication, l/O buffering, device drivers, and file systems. Prerequisite: CSE 120.

CSE 123A. Computer Networks (4)
(Formerly CSE 166.) Introduction to concepts, principles, and practice of computer communication networks with examples from existing architectures, protocols, and standards. Layering and the OSI model; switching; local, metropolitan, and wide area networks; datagrams and virtual circuits; routing and congestion control; internetworking. Prerequisite: CSE 120 or consent of the instructor. Majors only.

CSE 123B. Communications Software (4)
Protocol software structuring, The internet protocol suite, Inter-process communication, Protocols for realtime and multimedia (digital audio and video) communication, multicast, bridging, and group communication protocols, protocols for mobile and personal communication networks, application-level protocols, secure communication. Prerequisite: CSE 120 or consent of the instructor. CSE 123A is strongly recommended. Majors only.

CSE 126. Multimedia Systems (4)
Multimedia technologies; multimedia storage models and structures; data models and interfaces; multimedia information systems; video/audio networking; media synchronization; image computing and information assimilation; conferencing paradigms and structured interaction support. Prerequisite: CSE 120 or consent of the instructor.

CSE 127. Introduction to Computer Security (4)
Topics include basic cryptography, security/threat analysis, access control, auditing, security models, distributed systems security, and theory behind common attack and defense techniques. The class will go over formal models as well as the bits and bytes of security exploits. Prerequisite: CSE 21 or Math. 15B, and CSE 120. Majors only.

CSE 128. Concurrency (4)
Specification of concurrent programs safety, liveness, and fairness: producer-consumer; mutual exclusion; atomic read/writes; semaphores; monitors; distributed algorithms and memory coherency; programming with threads; concurrency in popular programming languages and operating systems. Prerequisite: CSE 120. Majors only.

CSE 130. Programming Languages: Principles and

Paradigms (4)
(Formerly CSE 173.) Introduction to programming languages and paradigms, the components that comprise them, and the principles of language design, all through the analysis and comparison of a variety of languages (e.g., Pascal, Ada, C++, PROLOG, ML.) Will involve programming in most languages studied. Prerequisites: CSE 12 and CSE 100 or Math. 176. Majors only.

CSE 131A. Compiler Construction I (4)
(Formerly CSE 163A.) Introduction to the compilation of programming languages, principles and practice of lexical and syntactic analysis, error analysis, syntaxdirected translation, and type checking. Prerequisites: CSE 30, CSE 100 or Math. 176, and CSE 105 or Math. 166. Majors only.

CSE 131B. Compiler Construction II (4)

(Formerly CSE 163B.) Principles and practice for the design and implementation for the back-end of translators for programming languages, symbol tables, syntaxdirected translation, code generation, optimization, and compiler structure. Prerequisites: CSE 30, CSE 100 or Math. 176, CSE 105 or Math. 166, and CSE 131A. Majors only.

CSE 132A. Database System Principles (4)

Basic concepts of databases, including data modeling, relational databases, query languages, optimization, dependencies, schema design, and concurrency control. Exposure to one or several commercial database systems. Advanced topics such as deductive and object-oriented databases, time allowing. Prerequisite: CSE 100 or Math. 176. Majors only.

CSE 132B. Database Systems Applications (4)
Design of databases, transactions, use of trigger facilities and datablades. Performance measuring, organization of index structures. Prerequisite: CSE 132 or CSE 132A or equivalent.

CSE 133. Information Retrieval (4)

(Formerly CSE 181.) How to find "relevant" documents (e.g., an electronic mail message or a book) from very large corpora (e.g., all the world's electronic mail or the library.) Students will construct and experimentally evaluate a complete IR system for a modest textual corpus. Prerequisite: CSE 100 or Math. 176. Majors only.

CSE 134A. Web Server Languages (4)
Design and implementation of interactive World Wide Web documentation using server-side programs. Languages covered include HTML, Perl, and JavaScript. Other languages as time allows. Prerequisite: CSE 100 or Math. 176. Majors only.

CSE 134B. Web Client Languages (4)
Design and implementation of interactive World Wide Web clients using helper applications and plug-ins. The main language covered will be Java. Prerequisite: CSE 100 or Math. 176. Majors only.
CSE 140. Components and Design Techniques for Digital Systems (4)
(Formerly CSE 170A) Design of Boolean logic and finite state machines; two-level, multi-level combinational logic design, combinational modules and modular networks, Mealy and Moore machines, analysis and synthesis of canonical forms, sequential modules. Prerequisites: CSE 20 or Math. 15A, CSE 30. CSE 140 L must be taken concurrently. Majors only.
CSE 140L. Digital Systems Laboratory (2)
(Formerly CSE 175B) Implementation with computeraided design tools for combinational logic minimization and state machine synthesis. Hardware construction of a small digital system. Prerequisites: CSE 20, CSE 30. CSE 140 must be taken concurrently.

CSE 141. Introduction to Computer Architecture (4) (Formerly CSE 170B) Introduction to computer architecture. Computer system design. Processor design. Control design. Memory \& I/O systems. Prerequisites: CSE 140, CSE 140L, or consent of the instructor. CSE 141L must be taken concurrently.

CSE 141L. Project in Computer Architecture (2)
Hands-on computer architecture project aiming to familiarize students with processor, control and memory, and I/O systems. Prerequisites: CSE 140, CSE 140L, or consent of the instructor. CSE 141 must be taken concurrently.

CSE 142. Advanced Digital Logic Design (4)
(Formerly CSE 170C) Digital logic optimization; functional decomposition and symmetric functions; reliable design and fault diagnosis; structure of sequential machines; asynchronous circuit design. Assignments using logic synthesis tools. Prerequisites: CSE 140, CSE 140 L

CSE 143. Microelectronic System Design (4)
(Formerly CSE 172A) VLSI process technologies; circuit characterization; logic design styles; clocking strategies; computer-aided design tools; subsystem design; design case studies. System design project from hardware description, logic synthesis, physical layout to design verification. Prerequisites: CSE 140, CSE 141.

CSE 144. Computer-Aided Design of VLSI Circuits (4) (Formerly CSE 172B) Introduction to Computer-Aided Design. Placement, assignment and floor planning techniques. Routing. Symbolic layout and compaction. Module generation and silicon compilation. Prerequisites: CSE 140 and CSE 140L, or consent of the instructor.

CSE 150. Programming Languages for Artificial

 Intelligence (4)Note: CSE 150 is pending CEP approval. (Formerly CSE 162) Experience using two very different approaches to artificial intelligence programming. Symbolic manipulation using LISP, with examples drawn from heuristic search, inference, and/or resolution theorem proving Pattern recognition and transformation using neural networks with perception and back propagation learning algorithms, applied to problems such as face recognition, English past tense formation, etc. Prerequisites. CSE 8 B or CSE 9 B or CSE 10 or CSE 11, CSE 12, and CSE 100 or Math. 176. Majors only.

CSE 151. Introduction to Artificial Intelligence (4) An introduction to theoretical issues and computational techniques arising from a comparison of human and machine intelligences. Knowledge representation languages; problem-solving heuristics; machine learning and application areas including vision, robotics, and natural language understanding will be reviewed. Prerequisite: CSE 150 or consent of the instructor. Majors only.

CSE 160. Introduction to Parallel Computation (4)
(Formerly CSE 174) General introduction to parallel computation focusing on important current topics and issues in parallel architecture, algorithms, and software. Topics include parallel machine organization, parallel algorithm paradigms, parallel programming environments and tools, and heterogeneous computing. Parallel programming and project assignments given to provide hands-on experience. Prerequisite: CSE 100 or Math. 176. Majors only.

CSE 164. Solving Problems with High Performance Computers (4)

Note: CSE 164 is pending CEP approval. Exploration of techniques for solving problems on high performance and parallel computers. Topics include: algorithm design, efficient implementation techniques (load balancing and communication optimization), programming model design. Building high performance applications. Prerequisites: CSE 101 or Math. 188 and CSE 120, or consent of the instructor.

CSE 167. Computer Graphics (4)
(Formerly CSE 177) Representation and manipulation of pictorial data. Two-dimensional and three-dimensional transformations, curves, surfaces. Projection, illumination, and shading models. Raster and vector

Computer Science and Engineering (CSE)

graphic I/O devices; retained-mode and immediatemode graphics software systems and applications Prerequisites: Math. 2EA/20F and CSE 100 or Math. 176. Majors only.

CSE 171. User Interface Design (4)
Explores usability, representation and coordination issues in user interface design with some focus on distributed cooperative work, semiotics, and the interplay between socio-cognitive and technical issues. Most examples and homework involve the Web. Prerequisites. CSE 8 B or 11, CSE 20 or Math. 15A, and CSE 100 or Math. 176. Majors only.

CSE 190. Topics in CSE (4)
Topics of special interest in computer science and engineering. Topics may vary from quarter to quarter. May be repeated for credit with the consent of instructor Prerequisite: department stamp required.

CSE 191. Seminar in CSE (1-4)

A seminar course on topics of current interest. Students, as well as, the instructor will be actively involved in running the course/class. This course cannot be counted toward a technical elective. Prerequisite: consent of instructor.

CSE 195. Teaching (4)
Teaching and tutorial assistance in a CSE course under the supervision of the instructor. (P/NP grades only.) Prerequisite:consent of the department chair.Department stamp required.

CSE 197. Field Study in Computer Science and

 Engineering (4, 8, 12, or 16)Directed study and research at laboratories away from the campus. (P/NP grades only.) Prerequisite: consent of the instructor and approval of the department. Department stamp required

CSE 198. Directed Group Study (2 or 4)
Computer science and engineering topics whose study involves reading and discussion by a small group of students under the supervision of a faculty member. (P/NP grades only.) Prerequisite: consent of the instructor. Department stamp required.

CSE 199. Independent Study for Undergraduates (2 or 4) Independent reading or research by special arrange ment with a faculty member. (P/NP grades only.) Prerequisite: consent of the instructor. Department stamp required.

GRADUATE

CSE 200. Computability and Complexity (4)
Decidability and undecidability, r.e. and recursive sets, Church's thesis; time and space complexity, non-determinism, complexity classes P, NP, L, NL, PSPACE, EXP, closure properties of classes, relations between classes, time and space hierarchy theorems; NP-completeness, Cook's theorem, reducibility; propositional logic; randomized computation, classes RP and BPP. Prerequisites: CSE 165 or CSE 105 or Math. 166 or CSE 206 or equivalent.

CSE 201. Applied Computability and Complexity (4)
(Formerly CSE 261.) Models of computation: finite automata, context-free grammars, Turing machines, random access machines and circuits. Undecidability. First order logic. Complexity: time and space, theory of NP and P, intractability. Intended for students in the computer engineering program. Prerequisite: CSE 105 or

CSE 206 or equivalent. A student may not receive credit for both CSE 201 and CSE 200.

CSE 202. Algorithm Design and Analysis (4)
(Formerly CSE 279.) The basic techniques for the design and analysis of algorithms. Divide-and-conquer, dynamic programming, data structures, graph search, algebraic problems, randomized algorithms, lower bounds, probabilistic analysis, parallel algorithms. Prerequisite: CSE 101 or consent of instructor.

CSE 203. Combinatorial Algorithms (4)

(Formerly CSE 268A.) This course presents combinator ial algorithms commonly used in computer science These algorithms include shortest paths, maximum flow, multi-terminal maximum flows, PERT network, dynamic programming, backtrack, binary trees, greedy algorithms, and matrix computation. Prerequisite: consent of instructor

CSE 204. Mathematical Programming (4)

(Formerly CSE 268B.) Convex function, separating hyperplanes. Linear programming, simplex method, quality complementary slackness. Revised simplex method, column-generating techniques in LP. Integer programming. Prerequisite: consent of instructor.

CSE 205. Complexity of Intractability (4)
(Formerly CSE 265C.) Intractability. Relativized complexity. Circuit complexity: size and depth, alternation. Efficient and optimal algorithms: matrix and arithmetic. Axiomatic complexity. Other advanced topics. Prerequisites: CSE 200 and consent of instructur.

CSE 206. Automata, Formal Languages, and Computability (4)
(Formerly CSE 265A.) Finite automata: non-determinism, regular expressions, regular grammars, 2-way FSAs, minimal state FSAs, context-free languages: normal forms, pumping lemmas, recognition algorithms, pushdown automata, DCFLs. Turing Machines; variations on TMs, recursive and r.e. sets, universal TMs, Church's thesis, diagonalization, reducibility, Chomsky Hierarchy. Prerequisites: CSE 105 or equivalent, consent of instructor.

CSE 207. Cryptography and Network Security (4)

Introduction to modern cryptography emphasizing provable security and its applications. Topics include private and public key cryptography; encryption; authentication; digital signatures; key distribution; protocols. Prerequisite: CSE 200 or CSE 201 or CSE 202 or equivalent.

CSE 208A. Topics in Complexity of Algorithms and Data

 Structures (4)(Formerly CSE 268C.) Advanced topics in concrete complexity, including decision trees and branching programs, advanced data structures, boolean circuits, communication complexity, and randomized algorithms. Content may vary from year to year; may be repeated for credit with consent of instructor,

CSE 208C. Topics in Theoretical Computer Science (1-4) Topics of special interest in theoretical computer science. Topics may vary from quarter to quarter. May be repeated for credit with the consent of instructor. Prerequisite: consent of instructor. (S / U grades permitted.)

CSE 208D. Logic in Computer Science (4)

Basic material on mathematical logic (as a tool in computer science) for foundations of descriptive complexity, logic programming, non-monotonic reasoning, temporal logic, and reasoning about knowledge and belief. Applications to databases, automatic theorem
proving, program verification, and distributed systems. Prerequisite: CSE 200 for graduates; CSE 105 for undergraduates.

CSE 209. Seminar in Theoretical Computer Science (1-4) Topics of special interest in theoretical computer science to be presented by staff members and students under faculty direction. May be repeated for credit. Prerequisite: consent of instructor. (S/U grades only.)

CSE 210. Principles of Software Engineering (4)

(Formerly CSE 264A.) General principles in modern software engineering. Both theoretical and practical topics are covered. Theoretical topics include proofs of correctness, programming language semantics, and theory of testing. Practical topics include structured programming, modularization techniques, design of languages for reliable programming, and software tools. Prerequisites: CSE 100, 131A, 120, or consent of instructor.

CSE 211. Software Testing and Analysis (4)
Survey of testing and analysis methods. Introduction to advanced topics in area as well as traditional production methods. Topics include inspections and reviews, formal analysis, verification and validation standards, non-statistical testing, statistical-testing and reliability models, coverage methods, testing and analysis tools, and organization management and planning. Methods special to special development approaches such as object-oriented testing will also be described. Prerequisite: undergraduate major in computer science or extensive industrial experience.

CSE 218. Advanced Topics in Software Engineering (4) This course will cover a current topic in software engineering in depth. Topics in the past have included software tools, impacts of programming language design, and software system structure. (S/U grades permitted.) Prerequisite: none.

CSE 220. Computer Systems (4)
Review of basic principles of computer systems. Key topics from the areas of operating systems, networks, distributed systems and performance evaluation: parallel processes, synchronization, communication protocols, distributed systems, hierarchical and distributed storage architectures, distributed concurrency control and transactions, computer security, and queueing models.

CSE 221. Operating Systems (4)
(Formerly CSE 264B.) Operating system structures, concurrent computation models, scheduling, synchronization mechanisms, address spaces, memory management protection and security, buffering, streams, data-copying reduction techniques, file systems, naming, caching, disk organization, mapped files, remote file systems, case studies of major operating systems. Prerequisites: CSE 120 and 121, or consent of instructor.

CSE 222. Communication Networks (4)

(Formerly CSE 281L.) Computer communication network concepts, techniques, protocols, and architectures, with emphasis on analysis of algorithms and protocols, performance trade-offs, and design methodologies. Topics will include layering, data link control, routing, flow control, topological design, performance evaluation techniques (measurements, analysis, and simulation). Prerequisite: CSE 123A or consent of instructor. (S/U grades permitted.)

CSE 223. Distributed Systems (4)
(Formerly CSE 281 N .) Basic structuring concepts: service, server, client-server relations, basic network architecture and point-to-point communication services, variable communication delays and failures, logical and physical time, time services, request/reply transport services, remote procedure calls, naming and directory services, distributed concurrency control, distributed file and database services, transactions and the atomic commit problem, security in distributed systems. (S / U grades permitted.) Prerequisite: CSE 220 or CSE 221, or consent of instructor.

CSE 224. Computer System Performance Analysis (4) (Formerly CSE 281R.) Experimental and analytical approaches. Design, measurement, simulation, and modeling for system performance evaluation. Measurement tools such as workloads, benchmarks, experimental design: confidence intervals, analysis of data; simulation: trace driven, Monte Carlo, transient removal; modeling: Little's Law, queueing, mean-value analysis. (S/U grades permitted.) Prerequisite: CSE 220 or consent of instructor.

CSE 225. High Performance Distributed Computing (and

 Computational Grids) (4)Architecture of high performance distributed systems (e.g., frameworks and middleware). High performance distributed objects (DCOM, Corba, Java Beans) and networking with crosscut issues for performance, availability, and performance predictability. Scalable servers, metacomputing, and scientific computing. Prere quisites: CSE 121 and CSE 123A.

CSE 227. Computer Security (4)
This course covers systems security concepts: protection domains, rusted computing base, access control, information flow, security models, correctness proofs, software testing techniques, and selected computer security topics. Examine techniques used by attackers to penetrate systems and countermeasures. Prerequisites: CSE 202 and CSE 221.

CSE 228B. Storage Systems (4)

(Formerly 281F.) Secondary and tertiary storage systems, optical and magnetic media, performance analysis, modeling, reliability, redundant arrays of inexpensive disks, striping, log and maximum distance separable data organizations, sparing. Prerequisite: CSE 220 or consent of instructor.

CSE 228C. Communications Software (4)

Internetworking: concept and architectural model, and comparison with other network architectures. Addressing and address resolution, conventions. The Internet datagram Protocol, gateway protocols and routing. The ICMP and network control and testing. Transport layer protocols, adaptive flow control, highspeed extensions. Experimental and other protocols Prerequisites: CSE 221 and CSE 123A, or consent of instructor. (S / U grades permitted.)

CSE 228D. Real-Time Systems (4)
Basic concepts (periodic, sporadic processes, static vs. dynamic scheduling) specification, time and clocks, scheduling and timing analysis, real-time programming languages, real-time operating systems, software engineering. Prerequisite: CSE 221 or CSE 220, or consent of instructor. (S / U grades permitted.)

CSE 228E. Fault-Tolerant Systems (4)
(Formerly CSE 281E.) Services, servers, and the depends-upon relation, failure classification, failure semantics, failure masking, exception handling: detec-
tion, recovery, masking and propagation, termination vs. resumption in exception handling, fail-stop processors and I/O controllers, reliable storage, reliable communication, process groups, synchronous and asynchronous group membership and broadcast services, automatic redundancy management, case studies of fault-tolerant systems. Prerequisite: CSE 220 or CSE 221, or consent of instructor.

CSE 228F. Multimedia Systems (4)

Emerging multimedia technologies; multimedia storage models and structures; video/audio networking; intramedia continuity; inter-media synchronization; admission control and support for real time; distributed multimedia systems; structured interaction support (collaboration and teamwork); multimedia encoding. Prerequisite: consent of instructor. (S/U grades permitted.)

CSE 228G. Wireless Networks (4)
Topics in wireless networks with emphasis on packetswitching integrated services networks. Multiaccess protocols, link layer protocols, TCP/IP over wireless, mobile IP, wireless ATM, PCS, satellite networks. Handoff strategies, capacity/resource allocation, interface with wireline networks, multimedia. Prerequisite: CSE 123 A or CSE 222, or consent of instructor.

CSE 229. Seminar in Computer Systems (1-4)
Topics of special interest in computer systems to be presented by staff members and students under faculty direction. May be repeated for credit. Prerequisite: consent of instructor. (S / U grades only.)

CSE 230. Principles of Programming Languages (4)
(Formerly CSE 273.) Functional versus imperative programming. Type systems and polymorphism; the ML language. Higher order functions, lazy evaluation. Abstract versus concrete syntax, structural and wellfounded induction. The lambda calculus, reduction strategies, combinators. Denotational semantics, elementary domain theory. Prerequisite: CSE 130 or equivalent, or consent of instructor.

CSE 231. Advanced Compiler Design (4)
(Formerly CSE 264C.) Advanced material in programming languages and translator systems. Topics include compilers, code optimization, and debugging interpreters. Prerequisites: CSE 100, 131A-B, or consent of instructor.

CSE 232. Principles of Database Systems (4)
(Formerly CSE 264D.) Database models including relational, hierarchic, and network approaches. Implementation of databases including query languages and system architectures. Prerequisite: CSE 100 or consent of instructor.

CSE 232B. Database System Implementation (4)
A hands-on approach to the principles of databases implementation. Algebraic rewriters/optimizers, query processors, triggers. Beyond centralized relational databases. Prerequisites: CSE 232.

CSE 233. Database Theory (4)
(Formerly CSE 280Z.) The course is a rigorous introduction to the theory of databases. Topics include the theory of query languages, dependency theory, deductive databases, complex objects, object-oriented databases, and other advanced topics and research issues as time allows. Evaluation will be done by homework and research projects. (S / U grades permitted.) Prerequisites: one of CSE 132 or CSE 232, and CSE 200 or consent of instructor.

CSE 238. Topics in Programming Language Design and Implementation (4)
Current topics in programming language design and implementation such as intermediate representations for software tools, cost models, optimizing for high-performance or parallelism, optimization of object-oriented languages, and use of AI techniques in compilers. (S/U grades permitted.) May be repeated three times for credit. Prerequisite: CSE 231 or consent of instructor.

CSE 240. Principles in Computer Architecture I (4)
(Formerly CSE 270A.) Architectural description tools, performance evaluation, uniprocessor issues, including I-unit and E-unit concepts, RISC/CISC issues, bottlenecks, I/O channels and processors, micro- and nanoprogramming, memory hierarchy, virtual machines, high-level language machines. Performance enhancements: pipelining, instruction lookahead, branch prediction, reduced semantic dependencies. Prerequisite: CSE 141 or consent of instructor.

CSE 241. Advanced Computer Architecture (4)
Parallel computer architecture (shared memory, proces-sor-memory interconnect), multithreading, advanced topics in memory hierarchy design and instructionlevel parallelism. This course is a departure point for research in high-performance computing and computer architecture. Prerequisite: consent of instructor.

CSE 242. Design Systems for VLSI Circuits (4) (Formerly CSE 281U.) Introduction to VLSI circuits; layout design entry; logic design entry; symbolic layout; layout compaction; logic simulation; circuit simulation; design for testability; two-level logic synthesis; multilevel logic synthesis. (S / U grades permitted.) Prerequisite: consent of instructor.

CSE 243. Computer-Aided Design for VLSI (4)

(Formerly CSE 281V.) Microarchitecture synthesis; logic synthesis; synthesis systems for testability insertion; intelligent silicon compilation; synthesis systems for digital signal processing; expert systems in design automation; control unit synthesis; hardware description language issues; design automation databases. (S/U grades permitted.) Prerequisite: consent of instructor.

CSE 248A. Application of Combinatorial Algorithms to CAD (4)
(Formerly CSE 281D.) Description of models in VLSI design. Current literature in CAD. Application of combinatorial algorithms and mathematical programming techniques to circuit layout, array computation, etc.

CSE 250A. Artificial Intelligence I (4)
(Formerly CSE 278A.) Issues in knowledge representation (using logic, semantic networks, production systems, and connectionist representations) will be the focus of this course. A discussion of logic programming languages (like PROLOG) and automatic theorem proving will then lead to a discussion of heuristic search. Prerequisite: CSE 151 or equivalent.

CSE 250B. Artificial Intelligence II (4)
(Formerly CSE 278B.) This course will discuss knowledge representations used to search for solutions, make deductions, plan, and problem solve. The application of these techniques to expert systems will be mentioned. Machine learning will also be a major topic of this course. Prerequisite: CSE 250A.

CSE 251. Natural Language Processing (4)
(Formerly CSE 281W.) A survey of the traditional approaches to natural language processing, including basic parsing, knowledge representation, and discourse
analysis. Material covered in the survey will be chosen from such topics as augmented transition networks, case grammars, semantic networks, and unification grammar. (S/U grades permitted.) Prerequisites: graduate standing and either 151 or consent of instructor.

CSE 252. Computer Vision (4)
(Formerly CSE 281M.) Illuminant, surface, and camera models. The role of irradiance, chrominance, stereo disparity, optical flow, and texture in computing interpretations of images. Edge detection, image segmentation, local and global constraints from segment boundaries. Object representations and algorithms for recognition. Extremum problems in vision, including regularization and maximum-likelihood techniques. Relation to human vision. Prerequisite: Math. $2 A-B-C-D-E$ or equivalent. (S/U grades permitted.)

CSE 253. Neural Networks (4)
This course covers Hopfield networks, application to optimization problems, layered perceptrons, recurrent networks, and unsupervised learning. Programming exercises explore model behavior, with a final project on a cognitive science, artificial intelligence, or optimization problem of the student's choice. Prerequisites: knowledge of C and consent of instructor. (S / U grades permitted.)

CSE 254. Machine Learning (4)

(Formerly CSE 281T.) This course will discuss a wide range of techniques used to allow computers to learn directly from experience with their environment rather than requiring programming by humans. The survey will span both high- and low-level learning techniques as well as theoretical models that allow these various techniques to be compared. (S / U grades permitted.) Prerequisite: 250B.

CSE 255. Intelligent Systems (4)
Basic knowledge representation and problem-solving method. Expert system architectures, languages, and tools. Scheduling, planning, diagnosis, and training applications. Fuzzy logic and heuristic control. Neural network, decision tree, and statistical methods for data mining. Guidelines for successful intelligent system deployment. (S/U grades permited.) Prerequisite: CSE 151 or graduate standing in the Advanced Manufacturing Program, or consent of instructor.

CSE 256. Statistical Natural Language Processing (4)
An introduction to modern statistical approaches to natural language processing: part of speech tagging, work sense disambiguation and parsing, using Markov models, hidden Markov models and probabilistic context free grammars. Prerequisite: CSE $250 B$ or equivalent experience.

CSE 257. Computational Biology (4)

Computational methods are indispensable to an understanding of the vast datasets emerging from human and other organisms' genomes. This course surveys algorithms underlying genome analysis, sequence alignment, phylogenetic trees, protein folding, gene expression, metabolic pathways, and biological knowledge base design. Prerequisite: Pharm 201 or consent of instructor.

CSE 257A. Bioinformatics II: Sequence and Structure

 Analysis-Methods and Applications (4) introduction to methods for sequence analysis. Applications to genome and proteome sequences. Protein Structure, sequence-structure analysis.CSE 257B. Algorithms in Computational Biology (4)
This course will concentrate on computer science (algorithmic and combinatorial) aspects of computational, molecular biology and will cover computational gene hunting, DNA mapping and sequencing, DNA arrays, sequence comparison, gene finding, pattern discovery in DNA, genome rearrangements, and computational proteomics. Prerequisite: CSE 257A or BENG 202.

CSE 258A. Connectionists Natural Language

 Processing (4)(Formerly CSE 281P.) This course will explore connectionist (or parallel distributed processing) models and their relation to cognitive processes. The course will cover various learning algorithms and the application of the paradigm to models of language processing, memory, sequential processes, and vision. (S/U grades permitted.) Prerequisite: CSE 250 B or equivalent experience.

CSE 259. Seminar in Artificial Intelligence (1)
A weekly meeting featuring local (and occasional external) speakers discussing their current research in Artificial Intelligence Neural Networks, and Genetic Algorithms. (S / \cup grades only.) Prerequisite: none.

CSE 260. Parallel Computation (4)
(Formerly CSE 274A.) This course provides an overview of parallel hardware, algorithms, models, and software. Topics include Flynn's taxonomy, interconnection networks, memory organization, a survey of commercially available multiprocessors, parallel algorithm paradigms and complexity criteria, parallel programming environments and tools for parallel debugging, language specification, mapping, performance, etc. Prerequisite: graduate standing or consent of instructor.

CSE 261. Parallel and Distributed Computation (4)
(Formerly CSE 274B.) The course concentrates on developing easy-to-parallelize numerical algorithms for optimization without being specific on the implementation. Topics are selected from iterative methods for linear and nonlinear equations; network problems; asynchronous algorithms and partially asynchronous iterative methods. Prerequisite: consent of instructor.

CSE 262. System Support for Applications of Parallel

 Computation (4)This course will explore design of software support for applications of parallel computation. Topics include: programming languages, run time support, portability, and load balancing. The course will terminate in a project. Prerequisite: consent of instructor.

CSE 263. Parallel Algorithms (4)
(Formerly CSE 274D.) An introductory course in parallel algorithms on mesh, tree, hypercube, PRAM, and related architectures. The algorithms include sorting and routing, matrix algorithms, graph algorithms, and fast Fourier transform. Prerequisites: CSE 202, CSE 260, or consent of instructor.

CSE 268A. Topics in Parallel Computation (4)
(Formerly CSE 281Y.) Current topics of interest in parallel computation will be discussed such as heterogeneous computing, advanced topics in parallel programming environments, parallel programming models, performance criteria, etc. (S / U grades permitted.) Prerequisite: graduate standing or consent of instructor.

CSE 268C. Topics in High-Performance Programming (4) A systematic approach to the design, writing, and tuning of programs to sustain near-peak performance with
particular emphasis on RISC processors and massively parallel computers. A project will involve measuring and improving the performance of a computational kernel. Prerequisite: CSE 141 or consent of instructor.

CSE 269. Seminar in Parallel Computation (1-4)
A seminar course in which topics of special interest in parallel computation will be presented by staff members and graduate students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor. (S/U grades only.)

CSE 270. Statistics and Probability for Manufacturing (4) This course covers probability and conditional probability for discrete and continuous random variables, combinations and permutations, joint random variables, estimation, hypothesis testing, and statistical quality control, with a view to applications in manufacturing. Prerequisite: none.

CSE 271. User Interface Design: Social and Technical Issues (4)

Web technologies (HTML, Java, JavaScript, etc.) can quickly build superb new systems, as well as phenomenally ugly systems that still fully meet their performance and functional requirements. This course explores interface usability and representation issues, with some focus on hypermedia and cooperative work. Prerequisites: CSE 20, CSE 100, or equivalent.

CSE 275. Social Aspects of Technology and Science (4) Note: CSE 275 is pending CEP approval. Explores approaches to the sociology of technology and science, especially information technology. Topics include requirements engineering, actor-network theory, postmodernism, the Web, user interface design, and public policy. Prerequisites: CSE 8 B or CSE 11, and background in the humanities.

CSE 290. Seminar in Computer Science and

Engineering (1-4)
(Formerly CSE 280A.) A seminar course in which topics of special interest in computer science and engineering will be presented by staff members and graduate students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. (S/U grades only.) Prerequisite: consent of instructor. (Offered as faculty resources permit.)

CSE 291. Topics in Computer Science and

Engineering (1-8)

(Formerly CSE 281A). Topics of interest in computer science and engineering. Topics may vary from quarter to quarter. May be repeated for credit with the consent of instructor. (S / U grades permitted.) Prerequisite: consent of instructor. (Offered as faculty resources permit.)

CSE 292. Faculty Research Seminar (1)
(Formerly CSE 282.) Computer science and engineering faculty will present one hour seminars of the current research work in their areas of interest. Prerequisite: CSE graduate status.

CSE 293. Special Project in Computer Science and

 Engineering (1-8)(Formerly CSE 269.) The student will conceive, design, and execute a project in computer science under the direction of a faculty member. The project will typically include a large programming or hardware design task, but other types of projects are possible. One-six units may be repeated to a total of nine units. Prerequisite: CSE graduate student status. (S/U grades only.)

CSE 294. Research Meeting in CSE (2)
Advanced study and analysis of active research in computer science and computer engineering. Discussion of current research and literature in the research specialty of the staff member teaching the course. Prerequisite: consent of instructor.

CSE 298. Independent Study (1-16)
Open to properly qualified graduate students who wish to pursue a problem through advanced study under the direction of a member of the staff.(S/U grades only.) Prerequisite: consent of instructor.

CSE 299. Research (1-16)
Prerequisite: consent of instructor. (S/U grades only.)
CSE 501. Teaching Assistantship (2-4)
Teaching and tutorial activities associated with courses. May be used to meet teaching experience requirement for candidates for the Ph.D. degree. Number of units for credit depends on number of hours devoted to class or section assistance, and student contact. (S/U grades only.) Prerequisite: consent of department chair.

CSE 502. Teaching Experience (2)
Teaching experience in an appropriate CSE Undergraduate Course under direction of the faculty member in charge of the course. Lecturing at least twice during the quarter in either a problem-solving session or regular lecture. Meets teaching experience requirement for candidates for the Ph.D. degree. (S / U grades only.) Prerequisites: consent of instructor and department chair.

Electrical and Computer Engineering (ECE)

OFFICES:

Undergraduate Affairs, Room 2705
Graduate Affairs, Room 2718
Engineering Building Unit 1, Warren College
http://www.ece.ucsd.edu

Professors

Anthony S. Acampora, Ph.D.
Victor C. Anderson, Ph.D., Emeritus (not inresidence)
Peter M. Asbeck, Ph.D.
H. Neal Bertram, Ph.D., CMRR Endowed Chair II William S. C. Chang, Ph.D., Research Professor William A. Coles, Ph.D.
Rene L. Cruz, Ph.D.
Sadik C. Esener, Ph.D.
Shaya Fainman, Ph.D.
Jules A. Fejer, D.Sc., Emeritus (not in-residence)
Carl W. Helstrom, Ph.D.Emeritus
Ramesh Jain, Ph.D., Research Professor
Andrew B. Kahng, Ph.D.
Kenneth Kreutz-Delgado, Ph.D.
Walter Ku, Ph.D.

Lawrence E. Larson, Ph.D., CWC Industry Endowed Chair in Wireless Communications
S. S. Lau, Ph.D.

Sing H. Lee, Ph.D.
Yu Hwa Lo, Ph.D.
Robert Lugannani, Ph.D.
Huey-Lin Luo, Ph.D.
Elias Masry, Ph.D.
D. Asoka Mendis, Ph.D., Research Professor

Laurence B. Milstein, Ph.D., Academic Senate Distinguished Teaching Award
Farrokh Najmabadi, Ph.D.
Truong Q. Nguyen, Ph.D.
Alon Orlitsky, Ph.D.
Kevin B. Quest, Ph.D.
Bhaskar Rao, Ph.D.
Ramesh Rao, Ph.D.
Barnaby J. Rickett, Ph.D.
Manuel Rotenberg, Ph.D., Research Professor
M. Lea Rudee, Ph.D., Research Professor

Victor H. Rumsey, PhD., Emeritus (not in-residence) Vitali Shapiro, Ph.D.
Paul H. Siegel, Ph.D., Director, Center for Magnetic Recording Research
Bang-Sup Song, Ph.D., Charles Lee Powell Endowed Chair in Wireless Communications
David Sworder, Ph.D., Associate Dean, OGSR
Mohan Trivedi, Ph.D.
Charles W. Tu, Ph.D., Chair
Alexander Vardy, Ph.D.
Andrew J. Viterbi, Ph.D., Emeritus (not in-residence)
Harry H. Wieder, Ph.D., Research Professor-
in-Residence
Jack K. Wolf, Ph.D., Stephen O. Rice Professor of Electrical and Computer Engineering
(Endowed Chair)
Edward T. Yu, Ph.D.
Paul Yu, Ph.D.
Kenneth A. Zeger, Ph.D.

Associate Professors

Paul Chau, Ph.D.
Pamela C. Cosman, Ph.D.
Sujit Dey, Ph.D.
Ian Galton, Ph.D.
Clark C. Guest, Ph.D.
George J.Lewak, Ph.D., Emeritus (not in-residence) Bill Lin, Ph.D.
Anthony V. Sebald, Ph.D., Associate Dean, Jacobs School of Engineering
Kenneth Y. Yun, Ph.D.

Adjunct Professors

C. K. Cheng, Ph.D., Computer Science and Engineering

Pankaj K. Das, Ph.D., Rensselaer Polytechnic Institute Karen L. Kavanagh, Ph.D., Simon Fraser University Robert Hecht-Nielsen, Ph.D., Hecht-Nielsen Neurocomputing Corporation
Michael J. Heller, Ph.D., Nanogen
John A. Hildebrand, Ph.D., Marine Physical Laboratory, Scripps Institution of Oceanography
William S. Hodgkiss, Ph.D., Marine Physical Laboratory, Scripps Institution of Oceanography James U. Lemke, Ph.D., Center for Magnetic Recording Research
John Proakis, Ph.D., Northeastern University
James Zeidler, Ph.D., SPAWAR (formerly Naval Ocean Systems Center)

Associate Adjunct Professor

Anthony Weathers, Ph.D., Overland Data, Inc.

Associated Faculty

Gustaf O. S. Arrhenius, Ph.D., Professor, Scripps Institution of Oceanography George Tynan, Ph.D., Assistant Professor, Mechanical and Aerospace Engineering

The Undergraduate Programs

The Department of Electrical and Computer Engineering offers undergraduate programs leading to the B.S. degree in electrical engineering, engineering physics, and computer engineering. Each of these programs can be tailored to provide preparation for graduate study or employment in a wide range of fields.

The Electrical Engineering Program has a common lower-division and a very flexible structure in the upper-division. After the lower-division core, all students take six breadth courses during the junior year. They must then satisfy a depth requirement which can be met with five courses focused on some speciality, and a design requirement of at least one project course. The remainder of the program consists of six electives which may range as widely or as narrowly as needed. The Electrical Engineering Program has been accredited by the Accreditation Board of Engineering and Technology (ABET).

The Engineering Physics Program is conducted in cooperation with the Department of Physics. Its structure is very similar to that of electrical engineering except the depth requirement includes seven courses and there are only four electives.

The Computer Engineering Program is conducted jointly with the Department of Computer Science and Engineering. It has a more prescribed
structure. The program treats hardware design, data storage, computer architecture, assembly languages, and the design of computers for engineering, information retrieval, and scientific research.

For information about admission to the program and about academic advising, students are referred to the section on ECE departmental regulations. In order to complete the programs in a timely fashion, students must plan their courses carefully, starting in their freshman year. Students should have sufficient background in high school mathematics so that they can take freshman calculus in the first quarter.

For graduation, each student must also satisfy general-education requirements determined by the student's college. The five colleges at UCSD require widely different numbers of gen-eral-education courses. Students should choose their college carefully, considering the special nature of the college and the breadth of education required. They should realize that some colleges require considerably more courses than others. Students wishing to transfer to another college should see their college adviser.
Graduates of community colleges may enter ECE programs in the junior year. However, transfer students should be particularly mindful of the freshman and sophomore course requirements when planning their programs.

These programs have strong components in laboratory experiments and in the use of computers throughout the curricula. In addition, the department is committed to exposing students to the nature of engineering design. This is accomplished throughout the curricula by use of openended homework problems, by exposure to engineering problems in lectures, by courses which emphasize student-initiated projects in both laboratory and computer courses, and finally by senior design-project courses in which teams of students work to solve an engineering design problem, often brought in from industry.
IT IS IMPERATIVE THAT STUDENTS DISCUSS THEIR CURRICULUM WITH THE APPROPRIATE DEPARTMENTAL ADVISER IMMEDIATELY UPON ENTRANCE TO UCSD, AND THEN AT LEAST ONCE A YEAR UNTIL GRADUATION.

B.S. Electrical Engineering Program

Students must complete 180 units for graduation, including the general Education Requirements (GER). Note that 144 units (excluding GER) are required.

Lower-Division Requirements (total of $\mathbf{7 2}$ units)

Please note that electrical engineering students cannot take CSE 11 or 8 A in the fall quarter of the freshman year. The fall quarter enrollment in CSE courses is reserved for computer science and computer engineering majors. Electrical engineering students can follow the recommended schedule listed below or make up alternate schedules according to the course offering (See the additional notes and the ECE undergraduate handbook.)

Recommended Schedule

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21C
Chem. 6A	Phys. 2A	Phys. 2B
GER	ECE 20A	ECE 20B
GER	CSE 11 or 8B*	GER
SOPHOMORE YEAR		
Math. 20F	Math. 21D	Math. 20E
Phys. 2C	Phys. 2D	ECE 60L
ECE 30	ECE 60A	ECE 60B
GER	GER	GER

* 8 A must be taken before 8 B .

Additional Notes:

1. Students can take CSE 11 either in the winter or spring quarter of their freshman year. Students taking CSE 8A-B should enroll in CSE $8 A$ in the winter quarter of their freshman year.
2. ECE 20 A and 20 B are offered every quarter; therefore, some students will be able to take ECE 20A in the fall quarter (enrollment limited and priority for transfer students). Other students will postpone taking ECE 20A until the winter or spring quarter of their freshman year.
3. Students taking CSE 8A-B may take ECE 20A in the spring quarter and ECE 20B in the fall quarter of their sophmore year. ECE 30 will be postponed to the winter quarter of the sophmore year.
4. Students with AP Math credit are strongly advised to take Math. 20 B in the fall quarter, leaving room for a GER in the winter quarter.
5. The ECE undergraduate student handbook shows several scheduling options. Please refer to the handbook and consult with the staff adviser in the undergraduate office, EBUI, room 2705.

Summary by Discipline

Mathematics ($\mathbf{2 4}$ units): Math. 20A-B, 21C-D, and
$20 \mathrm{E}-\mathrm{F}$. Students will be allowed to use another
mathematics sequence only if they transfer from another department on campus, junior college, or other university.
Physics (16 units): Phys. 2A-B-C-D or Phys. 4A-B-C-D.E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. $20 B$ or higher may take Phys. 2A in the fall quarter of the freshman year.
Chemistry (4 units): Chem. 6A.
Computer Science (4 units): CSE 11 or $8 B^{*}$.
Electrical Engineering ($\mathbf{2 4}$ units): ECE 20A-B
(should be completed by the end of the freshman year), ECE 30, ECE 60A-B, and ECE 60L.
Upper-Division Requirements (total of 72 units) Recommended Schedule

FALL	WINTER	SPRING
JUNIOR YEAR		
ECE 101	ECE 107	Elective (c)
ECE 102	ECE 108	Depth \#1
ECE 103	ECE 109	Depth \#2
GER	GER	GER
SENIOR YEAR		
Depth \#3	Depth \#4	Depth \#5
Elective (c)	Eng. Design (b)	Elective (c)
Elective (c)	Elective (c)	Elective (c)
GER	GER	GER

Summary by Discipline

a. Electrical Engineering BREADTH Courses (24 units)
Courses required of all electrical engineering majors:

The six courses, ECE 101, 102, 103, 107, 108, and 109 are required of all electrical engineering majors and they are an assumed prerequisite for senior-level courses, even if they are not explicitly required. They are taught in two phases as shown below. Although the courses are largely independent, there are some prerequisites. ECE 102 is a prerequisite for ECE 108, and ECE 101 and 103 should be taken either concurrently or before ECE 102. Students who delay some of the breadth courses into the spring should be careful that it does not delay their depth sequence.

Fall and Winter

ECE 101 Linear Systems Fundamentals
ECE 102 Introduction to Active Circuit Design

ECE 103 Fundamentals of Devices and Materials

Winter and Spring

ECE 107 Electromagnetism
ECE 108 Digital Circuits
ECE 109 Engineering Probability and Statistics

b. Electrical Engineering DESIGN Course

 (4 units)Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C-or better.

The electrical engineering design requirement can be fulfilled in any of the following three ways:

1. Take ECE 191:Engineering Group Design Project
2. Take ECE 192: Engineering Design This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.
3. Take one of the following courses:

- ECE 111: Advanced Digital Design Project
- ECE 118: Computer Interfacing
- ECE 155 B or 155 C: Digital Recording Projects
- Phys.121: Experimental Techniques

Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit. The project must meet the same specifications as ECE 192.

c. Electrical Engineering ELECTIVES

 (24 units)- Three upper-division engineering, mathematics, or physics courses.
- Three additional electives which students may use to broaden their professional goals. Normally these will be upper-division courses in engineering, mathematics, or physics. Students may also choose upperdivision courses from other departments, such as humanities, social sciences, or arts, provided that they fit into a coherent professional program. In such cases a lowerdivision prerequisite may be included in the electives. Courses other than upperdivision engineering, mathematics, or
physics must be justified in terms of such a program, and must be approved by a faculty adviser.
(For additional information, please refer to the section on "Elective Policy for Electrical Engineering and Engineering Physics Majors.")

d. Electrical Engineering Depth Requirement (20 units)

Students must complete a"depth requirement" of at least five quarter courses to provide a focus for their studies. This set must include a clear chain of study of at least three courses which depend on the "breadth" courses. Students may choose one of the approved depth sequences listed below, or propose another with the approval of their faculty adviser. Some of the approved sequences have lower-division prerequisites and thus list six courses. Students choosing one of these sequences will have only two "professional" electives. Guidelines for meeting the depth requirement can be obtained from the undergraduate office.
Electronics Circuits and Systems:
ECE $163,164,165$, and any two of ECE
$111,118,161 \mathrm{~A}, 161 \mathrm{~B}, 161 \mathrm{C}$, and 166.
Electronic Devices and Materials:
ECE 135A, 136L, 135B, 139, and 183.
Controls and Systems Theory:
ECE 171A, 174, 171B, 118, and 173.
Machine Intelligence:
ECE 173, 174, 172A and any two of ECE 175,
161A, 187, 253A, 285, and COGS 108C.
Photonics:
ECE $181,182,183,184$, and 185.
Communications Systems:
ECE 161A, 153, 154A-B-C.
Networks:
ECE 161A, 153, 159A, 158A-B.
Queuing Systems:
ECE 171A, 174, and 159A-B-C.
Computer Design:
CSE 12, 21 , and 141, ECE 158A, 111 or 118, and 165.

Software Systems:
CSE $12,21,100,101,141$, and 120.

B.S. Engineering Physics

The engineering physics degree combines a strong program in physics with most of the
requirements for a B.S. degree in electrical engineering. Students must complete a total of 180 units for graduation, including the general-education requirements. Note that 146 units are required for the major.

Lower-Division Requirements (total of $\mathbf{7 4}$ units)

Please note that engineering physics students cannot take CSE 11 or 8 A in the fall quarter of the freshman year. (The fall quarter enrollment in CSE courses is reserved for computer science and computer engineering majors). Electrical engineering students can follow the recommended schedule listed below or make up alternate schedules according to the course offering (See the additional notes and the ECE undergraduate handbook.)

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21C
Chem. 6A	Phys. 2A	Phys. 2B
GER	ECE 20A	ECE 20B
GER	CSE 11 or 8B*	GER
SOPHOMORE YEAR		
Math. 20F	Math. 21D	Math. 20E
Phys. 2C	Phys. 2D	ECE 60L
ECE 30	ECE 60A	ECE 60B
GER	Phys. 2DL	GER

* 8 A must be taken before 8 B .

Additional Notes:

1. Students can take CSE 11 either in the winter or spring quarter of their freshman year. Students taking CSE 8A-B should enroll in CSE $8 A$ in the winter quarter of their freshman year.
2. ECE 20A-B are offered every quarter; therefore, some students will be able to take ECE 20A in the fall quarter (enrollment limited and priority for transfer students). Other students will postpone taking ECE 20A until the winter or spring quarter of their freshman year.
3. Students taking CSE 8A-B may take ECE 20A in the spring quarter and ECE $20 B$ in the fall quarter of their sophmore year. ECE 30 will be postponed to the winter quarter of the sophmore year.
4. Students with AP Math credit are strongly advised to take Math. 20B in the fall quarter, leaving room for a GER in the winter quarter.
5. The ECE undergraduate student handbook shows several scheduling options. Please refer to the handbook and consult with the staff adviser in the undergraduate office, EBUI, room 2705.

Summary by Discipline

Mathematics (24 units): Math. 20A-B, Math. 21CD, and 20E-F. Students will be allowed to use another mathematics sequence only if they transfer from another department on campus, or community college, or other university.
Physics (16 units): Phys. 2A-B-C-D or Phys. 4A-B-C-D-E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.
Physics Lab (2 units): Phys. 2DL is required. Chemistry (4 units): Chem. 6A.
Computer Science (4 units): CSE 11 or 8B.
Electrical Engineering (24 units): ECE 20A and $20 B$ (should be completed by the end of the freshman year), ECE 30, ECE 60A, ECE 60B and ECE 60L.

Upper-Division Requirements (72 units)

FALL	WINTER	SPRING
JUNIOR YEAR		
Math. 110	ECE 101	ECE 108
Phys. 110A	ECE 102	ECE 109
ECE 103	ECE 107	Phys. 130A
GER	GER	GER
SENIOR YEAR		
ECE 123	Elective (d)	ECE 166
Phys. 130B	Eng. Design (c)	Elective (d)
Phys. 140A	Elective (d)	Elective (d)
GER	GER	GER

Summary by Discipline

a. Engineering Physics BREADTH Courses (24 units)

The electrical engineering breadth courses ECE $101,102,103,107,108$, and 109 , are also required of engineering physics majors. However, because of the scheduling of Math. 110, Phys. 110A and 130 , they can only be taken in the order scheduled above.

b. Engineering Physics DESIGN Course (4 units)

Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C-or better.

The engineering physics design requirement can be fulfilled in any of the following three ways:

1. Take ECE 191: Engineering Group Design Project
2. Take ECE 192: Engineering Design

This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.
3. Take one of the following courses:

- ECE 111:Advanced Digital Design Project
- ECE 118: Computer Interfacing
- ECE 155B or 155C: Digital Recording Projects
- Physics 121: Experimental Techniques

Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit. The project must meet the same specifications as ECE 192.

c. Engineering Physics ELECTIVES (16 units)

- One upper-division engineering, mathematics, or physics course.
- Three additional electives which students may use to broaden their professional goals. Normally these will be upper-division courses in engineering, mathematics, or physics. Students may also choose upperdivision courses from other departments, such as humanities, social sciences, or arts, provided that they fit into a coherent professional program. In such cases a lowerdivision prerequisite may be included in the electives. Courses other than upperdivision engineering, mathematics, or physics must be justified in terms of such a program, and must be approved by a faculty adviser.
(For additional information, please refer to the section on Elective Policy for Electrical Engineering and Engineering Physics Majors.)

d. Engineering Physics DEPTH Courses

 (28 Units)All B.S. engineering physics students are required to take Phys. 110A, 130A-B, 140A, Math. 110, ECE 123, and ECE 166.

Elective Policy for Electrical Engineering and Engineering Physics Majors

1. Technical Electives:

Certain courses listed below are not allowed as electives because of overlap with ECE courses.

Physics: Students may not receive upper-division elective credit for any lower-division physics courses. Students may not receive credit for both Phys. 100A and ECE 107, Phys. 100 B and ECE 107, Phys. 100C and ECE 123.

Mathematics: Math. 180A-B overlap ECE 109 and 153 , and therefore will not qualify for elective credit of either type. Math. 183 will not be allowed as an elective. Math. 163 will only be allowed as a professional elective. All lower-division mathematics is excluded from elective credit of either type.
Bioengineering: The following series of courses will provide "core" preparation in bioengineering and will satisfy the ECE technical elective requirements:

- BILD 1,BILD 2, BE 100, BE 140A-B.

The bioengineering department will guarantee admission to these courses for ECE students who meet the eligibility requirements listed in the Undergraduate Handbook.

- Students may use BE 186 B to satisfy the ECE design requirements.
CSE: The following courses are excluded as electives: CSE 1, 2, 5A-B, 8A-B, 11, 140 (duplicates ECE 20B or 81), 140L (duplicates ECE 20B or 82), 143 (duplicates ECE 165). CSE 12, 20, and 21 will count toward the three professional electives ONLY.

Mechanical and Aerospace Engineering (MAE): Credit will not be allowed for MAE $105,139,140$, 141 A, or 170.

Special Studies Courses 195-199: At most four units of 195-199 may be used for elective credit.

2. Professional Electives:

Normally these will be upper-division courses in engineering, mathematics, or physics. Students may also choose upper-division courses from other departments, such as humanities, social sciences, or arts, provided that they fit into a coherent professional program. In such cases, a lower-division prerequisite may be included in the electives. Courses other than upper-division engineering, mathematics, or physics must be justified in terms of such a program, and must be approved by a faculty adviser.
Biology and Chemistry: Of the three electives intended to allow for the professional diversity, one lower-division biology or chemistry course from BILD 1,2, Chem.6B-C may be counted for credit. Furthermore, this will count only if the student can demonstrate to a faculty adviser that
they constitute part of a coherent plan for professional/career development.

Upper-division biology and chemistry courses will count toward the three professional electives but not the three math/physics/engineering electives.

Economics: Suitable electives would include:
Economics 1 A or 2 A followed by courses in one of the following tracks:

- Law, Economics and Policy: Select 2Economics 118A-B, 130, 131, 132.
- Labor and Human Resources: Select 2Economics 136, 138A-B, 139.
- Urban Economics: Economics 133,135.
- Microeconomics: Select 2-Economics 100A-B, 170A
- Finance Track (MBA) I: Must complete all 3Economics 4, 173, and 1 upper-division Economics elective.
- Finance Track (MBA) II: Economics 100A, 175.
- Operations Research: Must complete 172 AEconomics 172A and (172B or 172C).
Economics 1 B or 2 B followed by courses in one of the following tracks:
- Monetary Economics: Economics 111 and 1 upper-division Economics Elective.
- Macroeconomics:Economics 110A-B.

Note: Economics 120A, and 158A-B will not be allowed as professional electives.

B.S. Computer Engineering

Students wishing to pursue the computer engineering curriculum must be admitted to either the ECE or CSE department. The set of required courses and allowed electives is the same in both departments; please note that the curriculum requires twenty upper-division courses. The Computer Engineering Program requires a total of 146 units (not including the general-education requirements).

The Computer Engineering Program offers a strong emphasis on engineering mathematics and other basic engineering science as well as a firm grounding in computer science. Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for admission to the program.

* 8 A must be taken before 8 B .

Summary by Discipline

Mathematics (20 units): Math. 20A-B, 21C-D, and 20F.
Physics (16 units): Phys. 2A-B-C-D, or Phys. 4A-B-C-D. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.
Physics lab (2 units): Phys. 2BL or 2CL or 2DL. The lab course should be taken concurrently with the Phys. 2 or Phys. 4 sequence.
Computer Science (20 units): CSE 11 or $8 B^{*}, 12$, CSE 20 or Math. 15A, CSE 21 or Math. 15B, and CSE 30 .
*8A must be taken before 8B.
Electrical Engineering (12 units): ECE 53A-B, ECE 109.

Upper-Division Requirements (total of 76 units)

FALL	WINTER	SPRING
JUNIOR YEAR		
ECE 102	ECE 108	GER
CSE 100 or	CSE 101 or	CSE 105 or
Math. 176	Math. 188	Math. 166
CSE 140\#	CSE 141*	CSE 120
CSE 140L\#	CSE 141L*	T.E.
SENIOR YEAR		
ECE 101	T.E.	GER
CSE 131A	CSE 131B	T.E.
T.E.	T.E.	ECE 171A or 161A
GER	GER	T.E.

\# CSE 140 and 140 L must be taken concurrently.

* CSE 141 and 141L must be taken concurrently.

Summary by Discipline

a. All B.S. computer engineering students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 120, 131A-B, 140, 140L, 141, 141L.
b. In addition, all B.S. computer engineering students must fulfill the following upper-division ECE requirements:

- Engineering Probability and Statistics ECE 109. This course can be taken in the sophomore year.
- Electronic Circuits and Systems ECE 102 and 108. The department recommends that these courses be taken in the junior year.
- Linear systems ECE 101 and 171A or 161A.
c. Technical electives: All B.S. computer engineering majors are required to take six technical electives.
- One technical elective must be either ECE 111 or ECE 118.
- Of the remaining five technical electives, four must be ECE or CSE upper-division or graduate courses.
- The remaining course can be any upperdivision course listed under the nonCSE/ECE electives. (See the section on electives below.)

Electives

The discipline of computer engineering interacts with a number of other disciplines in a mutually beneficial way. These disciplines include mathematics, computer science, and cognitive science. The following is a list of upper-division courses from these and other disciplines that can be counted as technical electives.

At most four units of 197,198 , or 199 may be used towards technical elective requirements. ECE/CSE 195 cannot be used towards course requirements. Undergraduate students should get instructor's permission and departmental stamp to enroll in a graduate course.

Students may not get duplicate credit for equivalent courses. The UCSD General Catalog should be consulted for equivalency information and any restrictions placed on the courses. Additional restrictions are noted below. Any deviation from this list must be petitioned.

Mathematics: All upper-division courses except Math. 168A-B, 179A-B, 183, 184A-B, 189A-B, and

195-199. If a student has completed CSE 167, then he or she cannot get elective credit for Math. 155A. Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, MAE 107, CENG 100. No credit for any of these courses will be given if Math. 170A-B-C is taken. Students will receive credit for either Math. 166 or CSE 105 (but not both), either Math. 188 or CSE 101 (but not both), and either Math. 176 or CSE 100 (but not both).
Computer Science and Engineering: All CSE upper-division courses. Students will receive credit for either CSE 123A or ECE 158A (but not both) and CSE 143 or ECE 165 (but not both).
Cognitive Science: Cognitive Theory and Phenomena 101A-B-C, Cognitive Neuroscience 107A-B-C, Theory of Computation and Formal Systems 108A, Symbolic Modeling of Cognition 108B, Neural Network Models of Cognition 1 108C, Everyday Cognition 130, Distributed Cognition 131, Cognitive Engineering 132, Semantics 150, Language Comprehension 153, Natural and Artificial Symbolic Representational Systems 170, Neural Network Models of Cognition II 181, Artificial Intelligence Modeling II 182, Multimedia Design 187A-B.

Students may not get credit for both CSE 150 and Neural Network Models of Cognition 1 108C or for both CSE 151 and Artificial Intelligence Modeling || 182.
Mechanical and Aerospace Engineering (MAE): All upper-division MAE courses except MAE 140, and MAE 195-199.

Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. Students may only get credit for one of the two courses, CSE 167 or MAE 152.
Economics: Microeconomics 100A-B, Game Theory 109, Macroeconomics 110A-B, Mathematical Economics 113, Econometrics 120B-C, Applied Econometrics 121, Management Science Microeconomics 170A-B, Decisions Under Uncertainty 171, Introduction to Operations Research 172A-B-C, Economic and Business Forecasting 178.

Students cannot take Economics. 120A since it duplicates ECE 109.
Linguistics: Phonetics 110, Phonology 1 111, Phonology || 115, Morphology 120, Syntax | 121, Syntax II 125, Semantics 130, Mathematical Analysis of Languages 160, Computers and Language 163, Computational Linguistics 165,

Psycholinguistics 170, Language and the Brain 172, and Sociolinguistics 175.
Engineering: Team Engineering 101
Music: Computer Music II 172, Audio Production: Mixing and Editing 173.
Psyschology: Engineering Psychology 161.

Minor Curricula

ECE offers three minors in accord with the general university policy that a minor requires five upper-division courses. Students must realize that these upper-division courses have extensive lower-division prerequisites (please consult the ECE undergraduate office). Students should also consult their college provost's office concerning the rules governing minors and programs of concentration.
Electrical Engineering: 20 units chosen from the breadth courses ECE 101, 102, 103, 107, 108, 109.
Engineering Physics: 20 units chosen from the junior year courses Phys. 110A, 130A, Math. 110, ECE 101, 102, 103, 107, 108, 109.
Computer Engineering: 20 units chosen from the junior year courses ECE 102, 108, CSE 100, 101, $105,120,140,140 \mathrm{~L}, 141,141 \mathrm{~L}$.

The department will consider other mixtures of upper-division ECE, CSE, physics, and mathematics courses by petition.

Undergraduate Regulations and Requirements

Because of heavy student interest in departmental programs, and the limited resources available to accommodate this demand, maintenance of a high quality program makes it necessary to limit enrollments to the most qualified students. Admission to the department as a major, premajor, transfer, minor, or to fulfill a major in another department which requires (Dept) courses is in accordance with the general requirements established by the School of Engineering. These requirements and procedures are described in detail in the section on "Admission to the School of Engineering" in this catalog.

Admission to ECE Majors

Admission to upper-division ECE courses is based on the GPA in required lower-division courses.

Students must complete the following courses in order to apply to the Department of Electrical and Computer Engineering:

Electrical Engineering and Engineering Physics majors:

1. Math. $20 \mathrm{~A}-\mathrm{B}, 21 \mathrm{C}$
2. Phys. $2 A-B$
3. ECE 20A-B
4. CSE 11 or 8 B

Computer Engineering majors:

Admission to the computer engineering major is currently restricted as described in the section "Admission to the School of Engineering."The only way to become a computer engineering (CE) major is to be directly admitted as an entering freshman or as an entering transfer (Transfer students, see TRANSFER STUDENTS section below).

Space permitting and at its sole discretion, the electrical and computer engineering department may periodically grant admission to the computer engineering (CE) major to a small number of academically exceptional UCSD undergraduate students who were not admitted to this major as entering students. Exceptional admission will be considered for students having an overall UCSD GPA of 3.5 or better who have taken at least two CSE, math, or science courses demonstrating special aptitude for the CE curriculum. Applications for exceptional admission must include submission of a course plan demonstrating ability to satisfy graduation requirements and a personal statement addressing the applicant's motivation to join the CE major, in addition to other criteria established by the department.

Transfer Students

The B.S. in Computer Engineering is a heavily impacted major and admission is limited to applicants who have demonstrated a high level of achievement commensurate with the prospect of success in this major. Successful applicants must have completed substantial training at the community college and must have achieved a high level of academic performance there. For example, the required minimum of ninety quarter transfer units must include eighteen quarter units of calculus, twelve quarter units of calculus-based physics, and the highest level computer science course offered at their community college. Although the actual required GPA cutoff depends
on the number of openings, at least a 3.2 GPA in the community college transfer courses, and a 3.4 GPA in math, physics and computer science courses, are likely to be needed to gain admission.

When planning their programs, students should be mindful of lower-division prerequisites necessary for admission to upper-division courses.

Effective fall 2001 applicants seeking admission as transfer students will be considered for direct admission into the Computer Engineering (CE) major in the Department of Electrical and Computer Engineering (ECE).The only way to become a Computer Engineering (CE) major is to be directly admitted as an entering transfer student.

Students who wish to enter in the Electrical Engineering or Engineering Physics major must apply to the department before the beginning of the fall quarter, submitting course descriptions and transcripts for courses used to satisfy their lowerdivision requirements. Normally, admission will be for the fall quarter; students entering in the winter or spring quarter should be aware that scheduling difficulties may occur because upper-division sequences normally begin in the fall quarter.

Grade Requirement in the Major

A GPA of 2.0 is required in all upper-division courses in the major, including technical electives. No more than two courses with a D grade may be counted towards the major. The grade of D will not be considered an adequate prerequisite for any ECE course. The engineering design requirement must be completed with a grade of C - or better.

Advising

Students are required to complete an academic planning form and to discuss their curriculum with the appropriate departmental adviser immediately upon entrance to UCSD, and then every year until graduation. This is intended to help students in: a) their choice of depth sequence, b) their choice of electives, c) keeping up with changes in departmental requirements. An adviser will be assigned by the ECE department undergraduate office.

New Transfer Students in Electrical Engineering and Engineering Physics

The entire curriculum is predicated on the idea of actively involving students in engineering from
the time they enter as freshmen. The freshman course "Introduction to Engineering" has been carefully crafted to provide an overview of the engineering mindset with its interrelationships among physics, mathematics, problem solving, and computation. All later courses are specifically designed to build on this foundation. All transfer students should understand that the lowerdivision curriculum is demanding. Transfer students will be required to take all lowerdivision requirements or their equivalent.

- Transfer students should start with ECE 20A in the fall quarter. Transfer students will be allowed to take ECE 20 B and 60 A concurrently. The recommended schedule for the lowerdivision ECE course is as follows:

Recommended Schedule

FALL	WINTER	SPRING
ECE 20A	ECE 20B	ECE 60B
	ECE 60A	ECE 60L
	CSE 11 or 88*	

* 8 A must be taken before 8 B

Junior Year: ECE 30 requires ECE 20B as a pre requisite and thus should be taken in the fall quarter of the junior year, concurrently with the upper-division breadth courses ECE 101, 102, and 103.

New Transfer Students in Computer Engineering

Recommended Schedules

FALL	WINTER	SPRING
FIRST YEAR*		
CSE 11	CSE 12	CSE 30
CSE 20 (or	CSE 121 (or	ECE 109
Math. 15A)	Math. 15B)	ECE 53B
	ECE 53A	
FIRST YEAR**		
CSE 8A	CSE 8B	CSE 20 (or
ECE 53A	ECE 53B	Math. 15A)
	CSE 12	CSE 30
		ECE 109

[^4]Students who do not have any programming experience are encouraged to take the CSE 8A-B sequence instead of CSE 11. Experience has shown that most students who are not familiar with programming and take CSE 11 have to retake the class because the accelerated pace makes it difficult to learn the new material.

Note: Transfer students are encouraged to consult with the ECE undergraduate office for academic planning upon entrance to UCSD.

ECE Honors Program

The ECE Undergraduate Honors Program is intended to give eligible students the opportunity to work closely with faculty in a project, and to honor the top graduating undergraduate students.

Eligibility for Admission to the Honors Program:

1. Students with a minimum GPA of 3.5 in the major and 3.25 overall will be eligible to apply. Students may apply at the end of the winter quarter of their junior year and no later than the end of the second week of fall quarter of their senior year. No late applications will be accepted.
2. Students must submit a project proposal (sponsored by an ECE faculty member) to the honors program committee at the time of application.
3. The major GPA will include ALL lower-division required for the major and all upper-division required for the major that are completed at the time of application (a minimum of twentyfour units of upper-division course work).

Requirements for Award of Honors:

1. Completion of all ECE requirements with a minimum GPA of 3.5 in the major based on grades through winter quarter of the senior year.
2. Formal participation (i.e., registration and attendance) in the ECE 290 graduate seminar program in the fall quarter of their senior year.
3. Completion of an eight-unit approved honors project (ECE 193H: Honors Project) and submission of a written report by the first day of spring quarter of the senior year. This project must contain enough design to satisfy the ECE BS four-unit design requirement.
4. The ECE honors committee will review each project final report and certify the projects which have been successfully completed at the honors level.

Procedure for Application to the Honors Program:

Between the end of the winter quarter of their junior year and the second week of the fall quarter of their senior year, interested students must advise the department of their intention to participate by submitting a proposal for the honors project sponsored by an ECE faculty member. Admission to the honors program will be formally approved by the ECE honors committee based on GPA and the proposal.

Unit Considerations

Except for the two-unit graduate seminar, this honors program does not increase a participant's total unit requirements. The honors project will satisfy the departmental design requirement and students may use four units of their honors project course as a technical elective.

Five-Year B.S./Masters Program

Undergraduates in the ECE department who have maintained a good academic record in both departmental and overall course work are encouraged to participate in the five-year B.S./Masters program offered by the department. Participation in the program will permit students to complete the requirements for either the M.Eng. or the M.S. degree within one year following receipt of the B.S. degree. Complete details regarding admission to and participation in the program are available from the ECE undergraduate affairs office.

Admission to the Program

Students should submit an application for the B.S./Masters program, including three letters of recommendation, by the program deadline during the spring quarter of their junior year. Applications are available from the EC.E Undergraduate Affairs office. No GRE's are required for application to the B.S./Masters program. A GPA of at least 3.0 both overall and in the major, and strong letters of recommendation are required for admission to the program. Students should indicate at that time whether they wish to be considered for the M.S. or the M.Eng. degree program.

In the fall of the senior year, applications of students admitted to the program will be forwarded by the department to the UCSD Office of Graduate Studies and Research. Each student must submit the regular graduate application fee at this time for their application to be processed. Students who have been accepted into the B.S./ Masters program will automatically be admitted for graduate study in the appropriate program (M.S. or M.Eng.) beginning the following fall provided they maintain an overall GPA through the fall quarter of the senior year of at least 3.0. Upper-division (up to twelve units) or graduate courses taken during the senior year that are not used to satisfy undergraduate course requirements may be counted towards the forty-eight units required for the M.S. or M.Eng. degree.

Continuation in the Program

Once admitted to the B.S./Masters program, students must maintain a 3.0 cumulative GPA in all courses through the fall of the senior year and in addition must at all times maintain a 3.0 cumulative GPA in their graduate course work. Students not satisfying this requirement may be reevaluated for continuation in the program. To complete the program requirements within five years, students are expected to have satisfied all B.S. degree requirements by the end of their fourth year, and to have been awarded their B.S. degrees prior to the fall quarter of their fifth year. Students who have not received their B.S. degree are not eligible to enroll as graduate students in the department.

Admission for graduate study through the B.S./Masters program will be for the M.Eng or M.S. degree only. Students wishing to continue towards the Ph.D. degree must apply and be evaluated according to the usual procedures and criteria for admission to the Ph.D. program.

Curriculum

Students in the five-year B.S./Masters program must complete, as appropriate, the same requirements as those in the regular M.S. or M.Eng. programs. Completion of the masters degree requirements within one year following receipt of the B.S. degree will generally require that students begin graduate course work in their senior year, perhaps continuing in the summer with work on a research project in preparation for the M.S. project. All requirements for the B.S. degree should be completed by the end of the senior
(fourth) year, and the B.S. degree awarded prior to the start of the fifth year. Courses taken in the senior year may be counted toward the B.S. requirements or the masters degree requirements, but not both.
The five-year schedule assumes that the student is participating in the M.Eng. program or the M.S. Plan 2 (comprehensive exam) program. This option requires that the student complete four units of ECE 297 (project) and pass the departmental comprehensive exam at the M.S. level. Students may also elect to participate in the M.S. Plan 1 (thesis) program, which requires twelve units of research and completion of a masters' thesis. However, the Plan 1 program is generally more time-consuming than the Plan 2 program. Note that of forty-eight units required for the M.S, degree, thirty-six must be graduate level, the remainder may be undergraduate level.

The Graduate Programs

The department offers graduate programs leading to the M.Eng., M.S., and Ph.D. degrees in Electrical Engineering. The M.S. and Ph.D. are research programs whereas the M.Eng. is a terminal professional degree program aimed at working engineers.

In addition, the department offers M.S. and Ph.D. programs in Computer Engineering jointly with CSE; and a Ph.D. program in Applied Ocean Science jointly with MAE and Scripps Institution of Oceanography.

Admission to an ECE graduate program is in accordance with the general requirements of the UCSD graduate division, and requires at least a B.S. degree in engineering, physical sciences, or mathematics with a minimum upper division GPA of 3.0. Applicants must provide three letters of recommendation and recent GRE General Test scores. TOEFL scores are required from international applicants whose native language is not English. Applicants should be aware that the University does not permit duplication of degrees.

Support: The department makes every effort to provide financial support for Ph.D. students who are making satisfactory progress. Support may take the form of a fellowship, teaching assistantship, research assistantship, or some combination thereof. International students will not be admitted unless there is reasonable assurance that a research assistantship can be provided for
the duration of their Ph.D. program. Students in the M.Eng. and M.S. programs may also obtain support through teaching or research assistantships, but this is less certain.

Advising: Students should seek advice on requirements and procedures from the departmental graduate office and/or the departmental Web site http://www.ece.ucsd.edu. All students will be assigned a faculty academic adviser upon admission and are strongly encouraged to discuss their academic program with their adviser immediately upon arrival and subsequently at least once per academic year.

Master of Engineering

The Master of Engineering (M. Eng.) program is intended primarily for engineers who desire Master's level work but do not intend to continue with Ph.D. level research. It differs from the M.S. program as it is a terminal professional degree, whereas the M.S. may serve as an entry to a Ph.D. program. Salient features of the M.Eng. program include the following: it can be completed in one year at full-time or two years at half-time; it does not require a thesis, a research project, or a comprehensive exam; it has flexible course requirements; and it has an option of three courses in business, management, and finance.

Course Requirements:

The total course requirements are forty-eight units (twelve quarter courses). The choice of courses is subject to general focus and breadth requirements. Students will be assigned a faculty adviser who will help select courses and approve exceptions as necessary.

1. The Focus Requirement: (five courses) The M.Eng. program should reflect, among other things, a continuity and focus in one subject area. The course selection must therefore include at least twenty units (five quarter courses) in closely related courses leading to the state of the art in that area. The requirement may be met by selecting five courses from within one of the focus areas listed below. In some cases it may be appropriate to select five closely related courses from two of the areas listed below. Such cases must be approved by a faculty adviser.
2. The Breadth Requirement: (two courses) A graduate student often cannot be certain of his or her future professional career activities
and may benefit from exposure to interesting opportunities in other subject areas. The breadth requirement is intended to provide protection against technical obsolescence, open up new areas of interest, and provide for future self-education. The minimum breadth requirement is eight units (two quarter courses) of ECE/CSE graduate courses selected from among the courses listed below, in an area distinctly different from that of the focus requirement.
3. Technical Electives: (two courses) Two technical electives may be any graduate courses in ECE, CSE, Physics, or Mathematics. Other technical courses may be selected with the approval of the faculty adviser. Technical electives may include a maximum of four units of ECE 298 (Independent Study), or ECE 299 (Research).
4. Professional Electives: (three courses) The three professional electives may be used in several ways: for a series in business, management, and finance; for undergraduate technical courses to improve preparation for graduate work; or for additional graduate technical courses.
Scholarship Requirement: The forty-eight units of required course work must be taken for a letter grade (A-F), except for ECE 298 or 299, for which only $5 / \cup$ grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall.

Master of Engineering Program Focus Courses

Please consult the ECE graduate office or the ECE Web site http://www.ece.ucsd.edu for the current list of focus areas and courses.

1. Applied Physics

Allied Ph.D. research areas: Photonics, Electronic Devices and Materials, Radio Space Science, Magnetic Recording.
ECE 222A-B-C. Electromagnetic Theory
ECE 230A-B-C. Solid State Electronics
ECE 236A-B-C-D. Semiconductors
ECE 238A-B. Materials Science
MS 201A-B-C. Materials Science
ECE 240A-B-C. Optics
ECE 241A-B-C. Optics

2. Communications and Signal Analysis:

Allied Ph.D. research areas: Communication Theory and Systems, Intelligent Systems, Robotics, and Control, Magnetic Recording, Signal and Image Processing.
ECE 153. Random Processes
ECE 250. Random Processes
ECE 251AN-BN-CN-DN. Digital Signal Processing

ECE 252A-B. Speech Compression and Recognition

ECE 253A-B. Digital Image Analysis
ECE 254. Detection Theory
ECE 255A. Information Theory
ECE 255B-C. Source Coding
ECE 256A-B.Time Series Analysis
ECE 257A-B. Wireless Communications
ECE 258A-B. Digital Communications
ECE 259AN-BN-CN. Channel Coding
ECE 273A-B-C. Optimization in Linear Vector Spaces

ECE 275A-B. Statistical Parameter Estimation
ECE 285. Special Topic: Computer Vision; Pattern Recognition (offerings vary annually)

3. Electronic Circuits and Systems

Allied Ph.D. Research areas: Computer Engineering, Electronic Circuits, and Systems.

ECE 222A-B-C. Applied Electromagnetic Theory

ECE 230A-B-C. Solid State Electronics
ECE 236A-B-C. Semiconductor Heterostructure Materials

ECE 250. Random Processes
ECE 260A-B-C. VLSI Circuits
ECE 263A-B-C. Fault Tolerant Computing
ECE 264A-B. Analog IC Design
ECE 265A-B. Wireless Circuit Design
CSE 240, 241. Computer Architecture
CSE 242, 243. Computer Aided Design

4. Professional Electives

IP/Core 401. Managerial Economics
IP/Core 420. Accounting
IP/Core 421. Finance

Master of Science

The ECE department offers an M.S. program in electrical engineering and an M.S. program in computer engineering, the latter jointly with the Computer Science and Engineering department. The M.S. programs are research oriented, are intended to provide intensive technical preparation and can serve as a foundation for subsequent pursuit of a Ph.D. Students whose terminal degree goal is at the master's level may also consider the M.Eng. program which is more flexible in nature. The M.S. degree may be earned either with a thesis (Plan 1) or with a research project followed by a comprehensive examination (Plan 2). However entry to the Ph.D. program requires a comprehensive examination so most students opt for Plan 2.

Course Requirements:

The total course requirements for the Master of Science degrees in electrical engineering and in computer engineering are forty-eight units (twelve quarter courses) and forty-nine units, respectively, of which at least thirty-six units must be in graduate courses. Note that this is greater than the minimum requirements of the university. The department maintains a list of core courses for each disciplinary area from which the thirtysix graduate course units must be selected. The current list may be obtained from the department graduate office or the official Web site of the department. Students in interdisciplinary programs may select other core courses with the approval of their academic adviser. The course requirements must be completed within two years of full-time study. Students will be assigned a faculty adviser who will help select courses and approve exceptions as necessary.
Scholarship Requirement: The forty-eight units of required course work must be taken for a letter grade (A-F), except for ECE 299 (Research) for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall.

Thesis and Comprehensive Requirements: The department offers both M.S. Plan 1 (thesis) and M.S. Plan 2 (comprehensive exam). Students admitted to the M.S. program may elect either Plan 1 or Plan 2 any time. Students in the M.S. Plan 1 (thesis) must take twelve units of ECE 299 (Research) and must submit a thesis as described in the general requirements of the university. Students in the M.S. Plan 2 (comprehensive exam) must undertake an engineering project, which
may consist of four or eight units of ECE 299 (Research). The engineering project is intended to demonstrate advanced technical proficiency, preferably by applying some aspect of one's graduate course work to a realistic engineering problem. The project proposal must be approved in advance by a committee consisting of the project instructor and another instructional faculty member, at least one of whom must be an Academic Senate member in the ECE department. The project requires a written report which will be presented to the committee members and defended orally. The report and its defense will serve as the M.S. Plan 2 comprehensive examination. For both Plan 1 and Plan 2, no more than eight units of ECE 299 may count towards the thirty-six unit graduate course requirements.

Transfer to the Ph.D. Programs: M.S. students wishing to continue in the Ph.D. program should note that the entrance requirement to the Ph.D. program is eight units of ECE 299 (Research) with a report and an oral examination. M.S. students who are considering applying for transfer to the Ph.D. program should advise the ECE graduate office of their intention as early as possible.M.S. students planning to transfer to the Ph.D. program must make sure that (a) they take the courses required of the appropriate discipline within the Ph.D. program, (b) they take eight units of ECE 299 (Research), and (c) they identify a regular ECE faculty member who agrees (in writing) to be their research adviser.

The Doctoral Programs

The ECE department offers graduate programs leading to the Ph.D. degree in ten disciplines within electrical and computer engineering, as described in detail below. The Ph.D. is a research degree requiring completion of the Ph.D. program course requirements, satisfactory performance on the ECE departmental preliminary examination and University Qualifying Examination, and submission and defense of a doctoral thesis (as described under the "Graduate Studies" section of this catalog). Students in the Ph.D. program must pass the departmental preliminary exam before the beginning of the third year of graduate study. To ensure timely progress in their research, students are strongly encouraged to identify a faculty member willing to supervise their doctoral research by the end of their first year of study.

Students should begin defining and preparing for their thesis research as soon as they have
passed the preliminary exam. They should plan on taking the University Qualifying Examination about one year later. The University does not permit students to continue in graduate study for more than four years without passing this examination. At the Qualifying Examination the student will give an oral presentation of the thesis proposal to a campus-wide committee. The committee will decide if the proposal has adequate content and reasonable chance for success. They may require that the student modify the proposal and may require a further review.

The final Ph.D. requirements are the submission of a thesis, and the thesis defense (as described under the "Graduate Studies" section of this catalog).

Course Requirements:

The total course requirements for the Ph.D. degree in electrical engineering are forty-eight units (twelve quarter courses), of which at least thirty-six units must be in graduate courses. Note that this is greater than the minimum requirements of the university. The department maintains a list of core courses for each disciplinary area from which the thirty-six graduate course units must be selected. The current list may be obtained from the ECE department graduate office or the official Web site of the department. Students in the interdisciplinary programs may select other core courses with the approval of their academic adviser. The course requirements must be completed within two years of full-time study.

Students in the Ph.D programs may count no more than eight units of ECE 299 towards their core course requirements.

Students who already hold an M.S. degree in electrical engineering must nevertheless satisfy the requirements for the core courses. However, graduate courses taken else where can be substituted for specific courses with the approval of the academic adviser.

Scholarship Requirement: The forty-eight units of required courses must be taken for a letter grade (A-F), except for eight units of ECE 299 (Research) for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall. In addition, a GPA of 3.4 in the core graduate courses is generally expected.

Ph.D. Preliminary Exam: Ph.D. students must find a faculty member who will agree to supervise their thesis research. This should be done before
the start of the second year of study. They should then devote at least half their time to research and must pass the departmental preliminary examination by the end of their second year of study. ${ }^{*}$ This is an oral exam in which the student presents his or her research to a committee of three ECE faculty members, and is examined orally for proficiency in his or her area of specialization. The outcome of the exam is based on the student's research presentation, proficiency demonstrated in the student's area of specialization, and overall academic record and performance in the graduate program. Successful completion of the Ph.D. preliminary examination will also satisfy the M.S. Plan 2 comprehensive exam requirement.

* Students in the computer engineering discipline may elect to take two written examinations in the Department of Computer Science and Engineering, in accordance with the CSE guidelines, in place of the oral examination on a twoquarter sequence in $E C E$. They are then required to give a thirty to forty-five minute research presentation in the ECE department.

Students who have passed the departmental preliminary exam should plan to take the University Qualifying Examination approximately a year after passing the preliminary exam. The University does not permit students to continue in graduate study for more than four years without passing this examination. The University Qualifying Examination is an oral exam in which the student presents his or her thesis proposal to a university-wide committee. After passing this exam the student is "advanced to candidacy." The final Ph.D. requirements are the submission of a thesis, and the thesis defense (as described under the Graduate Studies section of this catalog). Students who are advanced to candidacy may register for any ECE course on an S/U basis.

Departmental Time Limits:

Students who enter the Ph.D. program with an M.S. degree from another institution are expected to complete their Ph.D. requirements a year earlier than B.S. entrants. They must discuss their program with an academic adviser in their first quarter of residence. If their Ph.D. program overlaps significantly with their earlier M.S. work, the time limits for the preliminary and qualifying exams will also be reduced by one year. Specific time limits for the Ph.D. program, assuming entry with a B.S. degree, are as follows:

1. The Preliminary Exam must be completed before the start of the third year of full-time study.
2. The University Qualifying Exam must be completed before the start of the fifth year of full-time study.
3. Support Limit: Students may not receive financial support through the University for more than seven years of full-time study (six years with an M.S. degree).
4. Registered Time Limit: Students may not register as graduate students for more than eight years of full-time study (seven years with an M.S. degree).

Half-Time Study: Time limits are extended by one quarter for every two quarters on approved half-time status. Students on halftime status may not take more than 6 units each quarter.

Ph.D. Research Programs:

1. Applied Ocean Sciences: This program in applied science related to the oceans is interdepartmental with the Graduate Department of the Scripps Institution of Oceanography (SIO) and the Department of Mechanical and Aerospace Engineering (MAE). It is administered by SIO. All aspects of man's purposeful and unusual intervention into the sea are included. The M.S. degree is not offered in this program.

2. Applied Physics-Applied Optics and

 Photonics: These programs encompass a broad range of interdisciplinary activities involving optical science and engineering, optical and optoelectronic materials and device technology, communications, computer engineering, and photonic systems engineering. Specific topics of interest include ultrafast optical processes, nonlinear optics, quantum cryptography and communications, optical image science, multidimensional optoelectronic I/O devices, spatial light modulators and photodetectors, artificial dielectrics, multifunctional diffractive and micro-optics, volume and computer-generated holography, optoelectronic and micromechanical devices and packaging, wave modulators and detectors, semiconductor-based optoelectronics, injection lasers, and photodetectors. Current research projects are focused on applications such asoptical interconnects in high-speed digital systems, optical multidimensional signal and image processing, ultrahigh-speed optical networks, 3D optical memories and memory interfaces, 3D imaging and displays, and biophotonic systems. Facilities available for research in these areas include electron-beam and optical lithography, material growth, microfabrication, assembly, and packaging facilities, cw and ferntosecond pulse laser systems, detection systems, optical and electro-optic components and devices, and electronic and optical characterization and testing equipment.

3. Communication Theory and Systems

Communications theory and systems concerns the transmission, processing, and storage of information. Topics covered by the group include wireless and wireline communications, spread-spectrum communication, multi-user communication, network protocols, error-correcting codes for transmission and magnetic recording, data compression, time-series analysis, and image and voice processing.
4. Computer Engineering consists of balanced programs of studies in both hardware and software, the premise being that knowledge and skill in both areas are essential both for the modern-day computer engineer to make the proper unbiased trade-offs in design, and for researchers to consider all paths towards the solution of research questions and problems. Toward these ends, the programs emphasize studies (course work) and competency (comprehensive examinations, and dissertations or projects) in the areas of VLSI and logic design, and reliable computer and communication systems. Specific research areas include: computer systems, signal processing systems, multiprocessing and parallel and distributed computing, computer communications and networks, computer architecture, computer-aided design, fault-tolerance and reliability, and neurocomputing. The faculty is composed of interested members of the Departments of Electrical and Computer Engineering (ECE), Computer Science and Engineering (CSE), and related areas. The specialization is administered by both departments; the requirements are similar in both departments, with students taking the comprehensive exam, if necessary, given by the student's respective department.
5. Electronic Circuits and Systems: This program involves the study and design of analog, mixedsignal (combined analog and digital), and digital electronic circuits and systems. Emphasis is on the development, analysis, and implementation of integrated circuits that perform analog and digital signal processing for applications such as wireless and wireline communication systems, test and measurement systems, and interfaces between computers and sensors. Particular areas of study currently include radio frequency (RF) power amplifiers, RF low noise amplifiers, RF mixers, fractional-N phase-locked loops (PLLs) for modulated and continuouswave frequency synthesis, pipelined analog-todigital converters (ADCs), delta-sigma ADCs and digital-to-analog converters (DACs), PLLs for clock recovery, adaptive and fixed continuoustime, switched-capacitor, and digital filters, echo cancellation circuits, adaptive equalization circuits, wireless receiver and transmitter linearization circuits, mixed-signal baseband processing circuits for wireless transmitters and receivers, high-speed digital circuits, and high-speed clock distribution circuits.
6. Applied Physics-Electronic Devices and Materials: This program addresses the synthesis and characterization of advanced electronic materials, including semiconductors, metals, and dielectrics, and their application in novel electronic, optoelectronic, and photonic devices. Emphasis is placed on exploration of techniques for high-quality epitaxial growth of semiconductors, including both molecularbeam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD); fabrication and characterization of materials and devices at the nanoscale; development of novel materials processing and integration techniques; and high-performance electronic devices based on both Group IV and III-V compound semiconductor materials. Areas of current interest include novel materials and high-speed devices for wireless communications; electronic and optoelectronic devices for highspeed optical networks; high-power microwave-frequency devices; heterogeneous materials integration; novel device structures for biological and chemical sensing; advanced tools for nanoscale characterization and metrology; and novel nanoscale electronic, optoelectronic, and photonic devices. Extensive facilities are available for research in this area, including several MBE and MOCVD
systems; a complete microfabrication facility; electron-beam lithography and associated process tools for nanoscale fabrication; a Rutherford backscattering system; x-ray diffractometers; electron microscopy facilities; extensive scanning-probe instrumentation; cryogenic systems; and comprehensive facilities for DC to RF electrical device characterization and optical characterization of materials and devices.
7. Intelligent Systems, Robotics, and Control: This information sciences-based field is concerned with the design of human-interactive intelligent systems that can sense the world (defined as some specified domain of interest); represent or model the world; detect and identify states and events in the world; reason about and make decisions about the world; and/or act on the world, perhaps all in realtime. A sense of the type of systems and applications encountered in this discipline can be obtained by viewing the projects shown at the Web site http://swiftlet.ucsd.edu.
The development of such sophisticated systems is necessarily an interdiscipinary activity. To sense and succinctly represent events in the world requires knowledge of signal processing, computer vision, information theory, coding theory, and data-basing; to detect and reason about states of the world utilizes concepts from statistical detection theory, hypothesis testing, pattern recognition, time series analysis, and artificial intelligence; to make good decisions about highly complex systems requires knowledge of traditional mathematical optimization theory and contemporary near-optimal approaches such as evolutionary computation; and to act upon the world requires familiarity with concepts of control theory and robotics. Very often learning and adaptation are required as either critical aspects of the world are poorly known at the outset, and must be refined online, or the world is non-stationary and our system must constantly adapt to it as it evolves. In addition to the theoretical information and computer science aspects, many important hardware and software issues must be addressed in order to obtain an effective fusion of a complicated suite of sensors, computers, and problem dynamics into one integrated system.
Faculty affiliated with the ISRC subarea are involved in virtually all aspects of the field,
including applications to intelligent communications systems; advanced human-computer interfacing; statistical signal- and image-processing; intelligent tracking and guidance systems; biomedical system identification and control; and control of teleoperated and autonomous multiagent robotic systems.
8. Magnetic Recording is an interdisciplinary field involving physics, material science, communications, and mechanical engineering. The physics of magnetic recording involves studying magnetic heads, recording media, and the process of transferring information between the heads and the medium. General areas of investigation include: nonlinear behavior of magnetic heads, very high frequency loss mechanisms in head materials, characterization of recording media by micromagnetic and many body interaction analysis, response of the medium to the application of spatially varying vectorial head fields, fundamental analysis of medium nonuniformities leading to media noise, and experimental studies of the channel transfer function emphasizing nonlinearities, interferences, and noise. Current projects include numerical simulations of high density digitai recording in metallic thin films, micromagnetic analysis of magnetic reversal in individual magnetic particles, theory of recorded transition phase noise and magnetization induced nonlinear bit shift in thin metallic films, and analysis of the thermal-temporal stability of interacting fine particles.
Research laboratories are housed in the Center for Magnetic Recording Research, a national center devoted to multi-disciplinary teaching and research in the field.
9. Radio and Space Science: The Radio Science Program focuses on the study of radio waves propagating through turbulent media. The primary objectives are probing of otherwise inaccessible media such as the solar wind and interstellar plasma. Techniques for removing the effects of the turbulent medium to restore the intrinsic signals are also studied.
The Space Science Program is concerned with the nature of the sun, its ionized and supersonic outer atmosphere (the solar wind), and the interaction of the solar wind with various bodies in the solar system. Theoretical studies include: the interaction of the solar wind with the earth, planets, and comets; cosmic dustyplasmas; waves in the ionosphere; and the
physics of shocks. A major theoretical effort involves the use of supercomputers for modeling and simulation studies of both fluid and kinetic processes in space plasmas.
Students in radio science will take measurements at various radio observatories in the U.S. and elsewhere. This work involves a great deal of digital signal processing and statistical analysis. All students will need to become familiar with electromagnetic theory, plasma physics, and numerical analysis.

10. The Signal and Image Processing Program

 explores engineering issues related to the modeling of signals starting from the physics of the problem, developing and evaluating algorithms for extracting the necessary information from the signal, and the implementation of these algorithms on electronic and opto-electronic systems. Specific research areas include filter design, fast transforms, adaptive filters, spectrum estimation and modeling, sensor array processing, image processing, motion estimation from images, and the implementation of signal processing algorithms using appropriate technologies with applications in sonar, radar, speech, geophysics, computeraided tomography, image restoration, robotic vision, and pattern recognition.
Research Facilities

Most of the research laboratories of the department are associated with individual faculty members or small informal groups of faculty. Larger instruments and facilities, such as those for electron microscopy and e-beam lithography are operated jointly. In addition the department operates several research centers and participates in various university wide organized research units.

The department-operated research centers are the NSF Industrial/University Cooperative Research Center (I/UCRC) for Ultra-High Speed Integrated Circuits and Systems (ICAS); Optoelectronics Technology Center (OTC) sponsored by the Advanced Project Research Agency; the Center for Wireless Communications which is a university-industry partnership; the Center for Information Engineering; and the Institute for Neural Computation.

Department research is associated with the Center for Astronomy and Space Science, the Center for Magnetic Recording Research, the California Space Institute, and the Institute for Nonlinear Science. Departmental researchers also
use various national and international laboratories, such as the National Nanofabrication Facility and the National Radio Astronomy Laboratory.

The department emphasizes computational capability and maintains numerous computer laboratories for instruction and research. One of the NSF national supercomputer centers is located on the campus. This is particularly useful for those whose work requires high data bandwidths.

COURSES

The department will endeavor to offer the courses as out lined below; however, unforeseen circumstances sometimes require a change of scheduled offerings. Students are strongly advised to check the Schedule of Classes or the department before relying on the schedule below. The names appearing below the course descriptions are those of faculty members in charge of the course. For the names of the instructors who will teach the course, please refer to the quarterly Schedule of Classes. The departmental Web site http://www.ece.ucsd.edut includes the present best estimate of the schedule of classes for the entire academic year.

LOWER-DIVISION

1A-B-C. Mesa Orientation Course (1-1-1)
Students will be given an introduction to the engineering profession and our undergraduate program. Exercises and practicums will develop the problemsolving skills needed to succeed in engineering. One and a half hours of lecture. Prerequisite: none. (F,W,S) M.L. Rudee

20A. Introduction to Electrical Engineering I (4)
Areas of electrical engineering from Ohm's Law to semiconductor physics to engineering ethics are discussed, demonstrated, and experienced. Principles introduced in lectures are put to use as student lab teams build a working system. The first quarter emphasizes analog electronics. Two hours of lecture, one hour of discussion, three hours of laboratory. (Lab fee: \$35) Prerequisite: Math. 20A must be taken concurrently. (F,W,S) A. Sebald

20B. Introduction to Electrical Engineering II (4)
This continuation of ECE 20A emphasizes semiconductor devices and digital electronics. Lab teams complete their system as they learn engineering design methods. Students are prepared for proceeding toward their choice of an electricat engineering profession. Two hours of lecture, one hour of discussion, three hours of laboratory. (Lab fee: \$35) Prerequisites: ECE 20A and Math. 20A with grades of C-or better, Math. $20 B$ must be taken concurrently. (F,W,S) K. Quest
30. Introduction to Computer Engineering (4)

This course is designed to introduce the fundamentals of both the hardware and software in a computer system. Topics include: representation of information, computer organization and design, assembly and
microprogramming, current technology in logic design. (Students who have taken CSE 30 may not take ECE 30 for credit.) Three hours of lecture, four hours of laboratory. Prerequisite: ECE 20B and CSE 11 or 8A-B with grades of C-or better. (F,W) K. Yun

53A. Fundamentals of Electrical Engineering I (4)
This is a coordinated lecture and laboratory course for students majoring in other branches of science and engineering. It covers analysis and design of passive and active circuits. The course emphasizes problemsolving and laboratory work on passive circuits. Three hours of lecture, one hour of discussion, one hour of laboratory. Prerequisites: Math. 21C, Math. 21D must be concurrent, Phys. $2 B$ or $B S$ or $4 C$ with grades of C - or better. (F,W) P. Cosman

53B. Fundamentals of Electrical Engineering II (4)
This is a coordinated lecture and laboratory course for students majoring in other branches of science and engineering. It covers analog and digital systems and active circuit design. Laboratory work will include operational amplifiers, diodes and transistors. Two hours of lecture, one hour of discussion, three hours of laboratory. Prerequisites: Phys. $2 B$ or $B S$ or $4 C, E C E 53 A$, Math. 20C-D or 21C, 21D with grades of C - or better. (W,S) B. Rickett

60A. Circuits and Systems I (4)

Voltage-current relationships for circuit elements, Kirchhoff's voltage and current laws, source transformations, loop and node analysis, initial conditions, the Laplace transform, inverse transforms, partial fraction expansions. Three hours of lecture, one hour of discussion, one hour of laboratory. Prerequisites: Math. 20A-B-C or 21C and Math. 20F, ECE 20A and 20B with grades of Cor better. (F,W) R. Lugannani

60B. Circuits and Systems II (4)

Solution of network equations using Laplace transforms; convolution integral; the concept of impedance; Thevenin's and Norton's theorems; transfer functions; poles and zeros; two-port networks, steady state sinusoidal response; Bode plots. Three hours of lecture, one hour of discussion. Prerequisite: ECE 60A and Math. 21D with grades of C-or better. (W,S) W. Ku

60L. Circuits and Systems Laboratory (4)
Essential aspects of electrical engineering. Topics covered include transient and steady-state response of RLC circuits, transistor circuits, operational amplifiers, nonlinear circuit components, power supplies, digital circuits and error analysis. The material complements the topics in ECE 60A and 60B. One and a half hours of lecture, three and a half hours of laboratory. (Lab fee: \$15) Prerequisites: ECE 20A-B, ECE 60A with grades of C-or better. ECE 60B must be taken concurrently. (S) F. Najmabadi
90.Undergraduate Seminar (1)

This seminar class will provide a broad review of current research topics in both electrical engineering and computer engineering. Typical subject areas are signal processing, VLSI design, electronic materials and devices, radio astronomy, communications, and optical computing. One hour lecture. Prerequisite: none. (F,W,S)

UPPER-DIVISION

101. Linear Systems Fundamentals (4)

Complex variables. Singularities and residues. Signal and system analysis in continuous and discrete time. Fourier series and transforms. Laplace and z-transforms.

Linear Time Invariant Systems. Impulse response, frequency response, and transfer functions. Poles and zeros. Stability. Convolution. Sampling. Aliasing. Three hours of lecture, one hour of discussion. Prerequisites: Math. 20A-B-C or 21C, 20 D or 210, 20F, ECE 60 B and 60 L or ECE 53A and $53 B$ with grades of C - or better. (F, W) K. Zeger, P. Siege:

102. Introduction to Active Circuit Design (4)

Nonlinear active circuits design. Nonlinear device models for diodes, bipolar and field-effect transistors. Linearization of device models and small signal equivalent circuits. Circuit designs will be simulated by computer and tested in the laboratory. Three hours of lecture, one hour discussion, three hours of laboratory. (Lab fee: \$15) Prerequisites: Math. 20A-B-C or 21C, 20D or 21D, 20F, Phys. 2A-B or 4A-C, ECE 60 B and 60 or ECE 53A and $53 B$ with grades of C - or better. (F,W) W. Coles, L. Larson
103. Fundamentals of Devices and Materials (4) Introduction to semiconductor materials and devices. Semiconductor crystal structure, energy bands, doping, carrier statistics, drift and diffusion. p-n junctions, metal-semiconductor junctions. Bipolar junction transistors: current flow, amplification, switching, non-ideal behavior. Metal-oxide-semiconductor structures, MOSFETs, device scaling. Three hours of lecture, one hour of discussion. Prerequisites: Math. 20A-B-C or 21C, 20 D or $21 \mathrm{D}, 20 \mathrm{E}, 20 \mathrm{~F}$, Phys. $2 \mathrm{~A}-\mathrm{D}$ or $4 \mathrm{~A}-E$, ECE 60 B and 60 L or ECE 53 A and 53 B with grades of C - or better. (F,W) E. Yu, H-L Luo

107. Electromagnetism (4)

Electrostatics and magnetostatics; electrodynamics; Maxwell's equations; plane waves; skin effect. Electromagnetics of transmission lines: reflection and transmission at discontinuities, Smith chart, pulse propagation, dispersion. Rectangular waveguides. Dielectric and magnetic properties of materials. Electromagnetics of circuits. Three hours of lecture, one hour of discussion. Prerequisites: Math. 20A-B-C or 21C, 20D or 21D, 20E, $20 F$, Phys. $2 A-C$ or $4 A-D, E C E 60 B$ and 60 L or ECE 53A and $53 B$ with grades of C - or better. (W,S) K. Quest, N. Bertram

108. Digital Circuits (4)

Digital integrated electronic circuits for processing technologies. Analytical methods for static and dynamic characteristics. MOS field-effect transistors and bipolar junction transistors, circuits for logic gates, flip-flop, data paths, programmable logic arrays, memory elements. Three hours of lecture, one hour of discussion, three hours of laboratory. (Lab fee: \$20) Prerequisites: ECE 102, ECE 30 or CSE 30 with grades of Cor better. (W,S) S. Esener, P. Chau

109. Engineering Probability and Statistics (4)

Axioms of probability, conditional probability, theorem of total probability, random variables, densities, expected values, characteristic functions, transformation of random variables, central limit theorem. Random number generation, engineering reliability, elements of estimation, random sampling, sampling distributions, tests for hypothesis. Three hours of lecture, one hour of discussion. Prerequisites: Math. 20A-B-C or 21C, 20D or 21D, 20F, with grades of C- or better. (ECE 101 recommended). (W,S) A. Acampora, R. Rao
111. Advanced Digital Design Project (4)

Advanced topics in digital circuits and systems. Use of computers and design automation tools. Hazard elimination, synchronous/asnychronous FSM synthesis, synchronization and arbitration, pipelining and timing issues. Problem sets and design exercises. A large-scale
design project. Simulation and/or rapid prototyping. Prerequisite: ECE 108 or CSE 140 with grades of C- or better. (F) K. Yun, B. Lin

118. Computer Interfacing (4)

Interfacing computers and embedded controllers to the real world: busses, interrupts, DMA, memory mapping, concurrency, digital 1/O, standards for serial and parallel communications, $A / D, D / A$, sensors, signal conditioning, video, and closed loop control. Students design and construct an interfacing project. Three hours of lecture, four hours of laboratory. (Lab fee: $\$ 20$) Prerequisites: ECE 30 or CSE 30 and ECE 60A-B-L or ECE 53A-B. (S) C. Guest

120. Solar System Physics (4)

General introduction to planetary bodies, the overall structure of the solar system, and space plasma physics. Course emphasis will be on the solar atmosphere, how the solar wind is produced, and its interaction with both magnetized and unmagnitized planets (and comets). Three hours of lecture, four hours of laboratory. Prerequisites: Phys. 2A-C or 4A-D, Math. 20A-B, 20C or 21C with grades of C - or better. (S) N. Omidi

123. Antenna Systems Engineering (4)

The electromagnetic and systems engineering of radio antennas for terrestrial wireless and satellite communications. Antenna impedance, beam pattern, gain, and polarization. Dipoles, monopoles, paraboloids, phased arrays. Power and noise budgets for communication links. Atmospheric propagation and multipath. Three hours of lecture, one hour of discussion. Prerequisite: ECE 107 with a grade of C - or better. (F) B. Rickett

134. Electronic Materials Science of Integrated Circuits (4)

Electronic materials science with emphasis on topics pertinent to microelectronics and VLSI technology. Concept of the course is to use components in integrated circuits to discuss structure, thermodynamics, reaction kinetics, and electrical properties of materials. Three hours of lecture. Prerequisites: Phys. 2C-D with grades of C - or better. (S) E.Yu

135A. Semiconductor Physics (4)
Crystal structure and quantum theory of solids; electronic band structure; review of carrier statistics, drift and diffusion, $p-n$ junctions; nonequilibrium carriers, imrefs, traps, recombination, etc; metal-semiconductor junctions and heterojunctions. Three hours of lecture. Prerequisite: ECE 103 with a grade of C- or better. (F) H.L. Luo

135B. Electronic Devices (4)

Structure and operation of bipolar junction transistors, junction field-effect transistors, metal-oxide-semiconductor diodes and transistors. Analysis of dc and ac characteristics. Charge control model of dynamic behavior. Three hours of lecture. Prerequisite: ECE 135A with a grade of C - or better. (W) H. L. Luo

136. Fundamentals of Semiconductor Device

Fabrication (4)
Crystal growth, controlled diffusion, determination of junction-depth and impurity profile, epitaxy, ionimplantation, oxidation, lithography, chemical vapor deposition, etching, process simulation and robust design for fabrication. Three hours of lecture. Prerequisite: ECE 103 with a grade of C- or better. (S) P.Yu, E. Yu

136L. Microelectronics Laboratory (4)

Laboratory fabrication of diodes and field effect transistors covering photolithography, oxidation, diffusion,
thin film deposition, etching and evaluation of devices. Two hours of lecture, three hours of laboratory. (Lab fee: \$35) Prerequisite: ECE 103 with a grade of C- or better. (F,S) S. S.Lau

138L. Microstructuring Processing Technology Laboratory (4)

A laboratory course covering the concept and practice of microstructuring science and technology in fabricating devices relevant to sensors, lab-chips and related devices. Three hours of lecture, three hours of laboratory. (Lab fee: \$40) Prerequisite: upper-division standing for science and engineering students. (W) S. S. Lau and Yu-Hwa Lo
139. Semiconductor Device Design and Modeling (4) Device physics of modern field effect transistors and bipolar transistors, including behavior of submicron structures. Relationship between structure and circuit models of transistors. CMOS and BiCMOS technologies. Emphasis on computer simulation of transistor operation and application in integrated circuits. Three hours of lecture. Prerequisites: ECE 135A-B with grades of C-or better. (W) P. Asbeck

145AL-BL-CL. Acoustics Laboratory (4-4-4)

Automated laboratory based on H-P GPIB controlied instruments. Software controlled data collection and analysis. Vibrations and waves in strings and bars of electromechanical systems and transducers. Transmissions, reflection, and scattering of sound waves in air and water. Aural and visual detection. Two hours of lecture, four hours lab. Prerequisite: ECE 107 with a grade of C-or better or consent of instructor. (F-W-S) J. Hildebrand
146. Introduction to Magnetic Recording (4)

A laboratory introduction to the writing and reading of digital information in a disk drive. Basic magnetic recording measurements on state-of-art disk drives to evaluate signals, noise, erasure, and non-linearities that characterize this channel. Lectures on the recording process will allow comparison of measurements with basic voltage expressions. E/M FEM software utilized to study geometric effects on the record and play transducers. One hour of lecture, three hours of laboratory. Prerequisite: ECE 107 with a grade of C-or better. (W) N. Bertram

153. Probability and Random Processes for

Engineers (4)

Random processes. Stationary processes: correlation, power spectral density. Gaussian processes and linear transformation of Gaussian processes. Point processes. Random noise in linear systems. Three hours of lecture, one hour of discussion. Prerequisite: ECE 109 with a grade of C- or better. (F,S) R. Rao

154A. Communications Systems I (4)
Study of analog modulation systems including AM, SSB, DSB, VSB, FM, and PM. Performance analysis of both coherent and noncoherent receivers, including threshold effects in FM. Three hours of lecture, one hour of discussion. Prerequisite: ECE 153 with a grade of C - or better. (F) L. Milstein

154B. Communications Systems II (4)

Design and performance analysis of digital modulation techniques, including probability of error results for PSK, DPSK, and FSK. Introduction to effects of intersymbol interference and fading. Detection and estimation theory, including optimal receiver design and maxi-mum-likelihood parameter estimation. Three hours of lecture, one hour of discussion. Prerequisite: ECE 154A with a grade of C-or better. (W) L. Milstein

154C. Communications Systems III (4)

Introduction to information theory and coding, including entropy, average mutual information, channel capacity, block codes and convolutional codes. Three hours of lecture, one hour of discussion. Prerequisite: ECE $154 B$ with a grade of C-or better. (S) L. Milstein

155A. Digital Recording Systems (4)
This course will be concerned with modulation and coding techniques for digital recording channels. Three hours of lecture. Prerequisites: ECE 109 and 153 with grades of C - or better and concurrent registration in ECE 154A required. Department stamp required. (F) J. Wolf

155B-C. Digital Recording Projects (4-4)
These courses will be concerned with modulation and coding techniques for digital recording channels. In winter and spring quarters, students will perform experiments and/or computer simulations. One hour lecture, four hours of laboratory. Prerequisites: ECE 109 and 153 with grades of C - or better and concurrent registration in ECE $154 B-C$ required. Department stamp required. (W,S) J. Wolf

158A. Data Networks I (4)
Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadlock and throughput degradation. Routing, centralized and decentralized schemes, static dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Three hours of lecture, three hours of laboratory. Prerequisite: ECE 109 with a grade of C - or better. ECE 159A recommended. (W) R. Rao

158B. Data Networks II (4)
Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadiock and throughput degradation. Routing, centralized and decentralized schemes, static dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Three hours of lecture, three hours of laboratory. Prerequisite: ECE 158 A with a grade of C - or better. (S) R. Cruz

159A. Queuing Systems: Fundamentals (4)
Analysis of single and multiserver queuing systems; queue size and waiting times. Modeling of telephone systems, interactive computer systems and the machine repair problems. Three hours of lecture. Prerequisite: ECE 109 with a grade of C - or better. (F) E. Masry

159B. Queuing Systems: Computer Systems

Performance (4)

Computer systems applications; priority scheduling, time-sharing scheduling, modeling and performance of interactive multiprogrammed computer systems, a case study. Three hours of lecture. Prerequisite: ECE 159A with a grade of C - or better. (W) E. Masry

159C. Queuing Systems: Networks \& Operation Research Applications (4)
(Not offered 2001/2002.) Elements of computer-communication networks; delay analysis, capacity, and flow assignments. Operation research applications, cost models and optimization, a case study, introduction to inventory systems. Three hours of lecture. Prerequisite: ECE 159B with a grade of C-or better. (S) E. Masry

161A. Introduction to Digital Signal Processing (4)
Review of discrete-time systems and signals, DiscreteTime Fourier Transform and its properties, the Fast

Fourier Transform, design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, implementation of digital filters. Three hours of lecture, one hour of discussion. Prerequisite: ECE 101 and 109 with grades of C - or better. (F,S) W. Hodgkiss, B. Rao

161B. Digital Signal Processing I (4)

Sampling and quantization of baseband signals; A / D and D/A conversion, quantization noise, oversampling and noise shaping. Sampling of bandpass signals, undersampling downconversion, and Hilbert transforms. Coefficient quantization, roundoff noise, limit cycles and overflow oscillations. Insensitive filter structures, lattice and wave digital filters. Systems will be designed and tested with Matlab, implemented with DSP procesors and tested in the laboratory. Three hours of lecture, one hour of discussion, three hours of laboratory. (Lab fee: \$15) Prerequisite: ECE 161A with a grade of C - or better. (W) W. Coles, P. Chau

161C. Digital Signal Processing II (4)
Basic principles of adaptive algorithms. Algorithms for adaptive FIR (gradient, LMS, recursive techniques) and adaptive IIR filtering. Implementation issues. Introduc tion of fast transform algorithms (FFT, Winograd FFT, number theoric transforms, DCT). Fast convolution and correlation Algorithms simulated by MATLAB. Three hours of lecture, one hour of discussion, three hours of laboratory. (Lab fee: \$15) Prerequisite: ECE 161B with a grade of C - or better. (S) P. Chau

163. Electronic Circuits and Systems (4)

Analysis and design of analog circuits and systems. Feedback systems with applications to operational amplifier circuits. Stability, sensitivity, bandwidth, compensation. Design of active filters. Switched capacitor circuits. Phase-locked loops. Analog-to-digital and digi-tal-to-analog conversion. Three hours of lecture, one hour of discussion, three hours of laboratory. (Lab fee: $\$ 10)$ Prerequisites: ECE 101 and 102 with grades of C - or better. (S) W. Coles

164. Analog Integrated Circuit Design (4)

Design of linear and non-linear analog integrated circuits including operational amplifiers, voltage regulators, drivers, power stages, oscillators, and multipliers. Use of feedback and evaluation of noise performance. Parasitic effects of integrated circuit technology. Laboratory simulation and testing of circuits. Three hours of lecture, one hour of discussion, three hours of laboratory. Prerequisite: ECE 102 with a grade of C-or better. ECE 163 recommended. (F)I. Galton

165. Digital Integrated Circuit Design (4)

VLSI digital systems. Circuit characterization, performance estimation, and optimization. Circuits for alternative logic styles and clocking schemes. Subsystems include ALUs, memory, processor arrays, and PLAs. Techniques for gate arrays, standard cell, and custom design. Design and simulation using CAD tools. (Students who have taken CSE 143 may not take ECE 165 for credit.) Three hours of lecture, one hour of discussion, three hours of laboratory. (Lab fee: \$10) Prerequisite: ECE 108 with a grade of C-or better. (W) P. Chau
166. Microwave Systems and Circuits (4)

Waves, distributed circuits, and scattering matrixmethods. Passive microwave elements. Impedance matching. Detection and frequency conversion using microwave diodes. Design of transistor amplifiers including noise performance. Circuits designs will be simulated by computer and tested in the laboratory. Three hours of lecture, one hour of discussion, three
hours of laboratory. Prerequisites: ECE 102 and 107 with grades of C-or better. (S) P. Asbeck

171A. Linear Control System Theory (4)
Stability of continous- and discrete-time single-input/single-output linear time-invariant control systems emphasizing frequency domain methods Transient and steady-state behavior. Stability analysis by root locus, Bode, Nyquist, and Nichols plots. Compensator design. Three hours of lecture, one hour of discussion. Prerequisite: ECE 60B or ECE 53-54 or MAE 140 with a grade of C - or better. (S) D. Sworder

171B. Linear Control System Theory (4)
Time-domain, state-variable formulation of the control problem for both discrete-time and continous-time linear systems. State-space realizations from transfer function system description. Internal and input-output stability, controllability/observability, minimal realizations, and pole-placement by full-state feedback. Three hours of lecture, one hour of discussion. Prerequisite: ECE 171A with a grade of C-or better. (F) D. Sworder

172A. Introduction to Intelligent Systems: Robotics and Machine Intelligence (4)
This course will introduce basic concepts in machine perception. Topics covered will include:edge detection, segmentation, texture analysis, image registration, and compression. Prerequisite: ECE 101 with a grade of C - or better, ECE 109 recommended. (F) M. Trivedi

173. Theory and Applications of Neural Networks and

 Fuzzy Logic (4)Theory of fuzzy logic, reasoning and control; mathe matical aspects of neural architectures for pattern classification, functional approximation, and adaptive estimation and control; theory of computer-assisted learning (supervised, unsupervised and hybrid); theory and practice of recurrent networks (stability, placement of equilibria); computer-aided design of fuzzy and neural systems, Bayes and minimax design. Four hours of lecture. Prerequisite: Math. 20 F with a grade of C - or better. (S) A. Sebald

174. Introduction to Linear and Nonlinear Optimization

 with Applications (4)The linear least squares problem, including constrained and unconstrained quadratic optimization and the rela tionship to the geometry of linear transformations. Introduction to nonlinear optimization. Applications to signal processing, system identification, robotics, and circuit design. Four hours of lecture. Prerequisite: Math. 20F with a grade of C - or better. (S) B. Rao

175. Elements of Machine Intelligence: Pattern

Recognition and Machine Learning (4)

Decision functions. Pattern classification by distance and likelihood functions; deterministic and statistical trainable pattern classifiers; feature selection; issues in machine learning. Four hours of lecture. Prerequisites. ECE 109 and ECE 174 with grades of C - or better. (W) K. Kreutz-Delgado
181. Geometrical Optics and Guided-wave Optics (4) Electromagnetic optics, reflection, refraction, and stratified media. Geometrical optics, ray tracing, aberrations, optical elements, and optical system design. Optical instruments, photometry, radiometry, and interferometers. Resonators, guided-wave and fiber optics. Labs: ray tracing, interferometry, guided-wave and fiberoptics. Three hours of lecture, two hours of demonstration laboratory. (Lab fee: $\$ 35$) Prerequisites: ECE 103 and 107 with grades of C - or better. (S) C. Guest
182. Physical Optics and Fourier Optics (4) Diffraction: Kirchoff, Fraunhofer, and Fresnel. Fourier and Fresnel Transform optics and optical information processing. Holography, Gaussian beams, coherence statistical optics and photon optics. Polarization and crystal optics. Labs: diffraction, Fourier and Fresnel Transforms, coherence. Three hours of lecture, two hours of demonstration laboratory. (Lab fee: \$35) Prerequisites: ECE 103 and 107 with grades of C-or better. (F) S. Lee and S. Fainman

183. Optical Electronics (4)

Quantum electronics, interaction of light and matter in atomic systems, semiconductors. Laser amplifiers and laser systems. Photodetection. Electrooptics and acoustooptics, photonic switching. Fiber optic communication systems. Labs: semiconductor lasers, semiconductor photodetectors. Three hours of lecture, two hours of demonstration laboratory. (Lab fee: \$35) Prerequisites: ECE 103 and 107 with grades of C- or better. (S) C.Tu

184. Optical Information Processing and

Holography (4)
Labs: optical holography, photorefractive effect, spatial filtering, computer generated holography. Two and a half hours of lecture, four hours of laboratory. (Lab fee \$35) Prerequisite: ECE 182 with a grade of C-or better. (W) S. Fainman and S. Lee
185. Lasers and Modulators (4)

Labs: CO2 laser, HeNe laser, electrooptic modulation, acoustooptic modulation, spatial light modulators. Two and a half hours of lecture, four hours of laboratory. (Lab fee: $\$ 35$) Prerequisite: ECE 183 with a grade of C-or better. (S) S. Lee and S. Fainman

187. Introduction to Biomedical Imaging and Sensing (4)

Image processing fundamentals: imaging theory, image processing, pattern recognition; digital radiography computerized tomography, nuclear medicine imaging nuclear magnetic resonance imaging, ultrasound imag ing, microscopy imaging. Three hours of lecture, four hours of laboratory. Prerequisite: Math. 20A-B-F, 20C or 21C, 200 or 21D, Phys. 2A-D, ECE 101 (may be taken concurrently) with grades of C-or better. (F) S. Fainman
191. Engineering Group Design Project (4)

Groups of students work to design, build, demonstrate and document an engineering project. All students give weekly progress reports of their tasks and contribute a section to the final project report. Two hours of discussion, eight hours of laboratory. Prerequisites Completion of all of the breadth courses and one depth course. (W) C. Guest

192. Engineering Design (4)

Students complete a project comprising at least 50 percent or more engineering design to satisfy the following features: student creativity, open-ended formulation of a problem statement/specifications, consideration of alternative solutions/realistic constraints. Written final report required. Prerequisites: Students enrolling in this course must have completed all of the breadth courses and one depth course. The department stamp is required to enroll in ECE 192. (Specifications and enrollment forms are available in the undergraduate office.)

193H. Honors Project (4-8)

An advanced reading or research project performed under the direction of an ECE faculty member. Must contain enough design to satisfy the ECE program's
four-unit design requirement. Must be taken for a letter grade. May extend over two quarters with a grade assigned at completion for both quarters. Prerequisite admission to the ECE departmental honors program.

195. Teaching (2 or 4)

Teaching and tutorial activities associated with courses and seminars. Not more than four units of ECE 195 may be used for satisfying graduation requirements. (P/NP grades only.) Three hours of lecture. Prerequisite: con sent of the department chair.

197. Field Study in Electrical and Computer Engineering

 (4, 8,12 , or 16)Directed study and research at laboratories and observatories away from the campus. (P/NP grades only.) Prerequisites: consent of instructor and approval of the department.

198. Directed Group Study (2 or 4)

Topics in electrical and computer engineering whose study involves reading and discussion by a small group of students under direction of a faculty member. (P/NP grades only.) Prerequisite: consent of instructor.
199. Independent Study for Undergraduates (2 or 4) Independent reading or research by special arrangement with a faculty member. (P/NP grades only.) Prerequisite: consent of instructor.

GRADUATE

200. Research Conference (2)

Group discussion of research activities and progress of group members. (S / U grades only.) Prerequisite: consent of instructor. (F,W,S) Staff

210. Information Systems in Manufacturing (4)

Basic problem solving and search techniques. Knowledge based and expert systems. Planning and decision support systems. Fuzzy logic and neural nets Topics covered will include data models, query process ing, distributed systems, enterprise computing and intelligent agents, fuzzy logic, neural nets. Four hours of lecture. Prerequisite: basic engineering and introduction to computers. (W) R. Jain

211. Manufacturing Engineering Seminar and

Laboratory (2)

Combination of seminars, laboratory activities, and field trips. Seminars by top manufacturing engineers, managers, and student interns. Visits to manufacturing facil ities. Techniques in accessing international technical and patent databases. Prerequisite: none. M. Trivedi

220. Space Plasma Physics (4)

The nature of the solar wind interaction with different planets and comets leads to a variety of magnetospheres. This course will deal with both nature of the solar wind as well as these interactions. Three hours of lecture. Prerequisite: ECE 107 or equivalent or consent of instructor. (W) A. Mendis

222A-B-C. Applied Electromagnetic Theory (4)

Electrostatics and dielectric materials. Uniqueness, reciprocity, and Poynting theorems. Solutions to Maxwell's equations in rectangular, cylindrical, and spherical coordinates. Waves in isotropic and anisotropic media transmission lines, wave-guides, optical fibers, and reso nant structures. Radiation, propagation, and scattering problems. Scattering matrices, microwave circuits, and antennas. Three hours of lecture. Prerequisites: ECE 107, 123,124 or equivalent. (F,W,S) B. Rickett

230A. Solid State Electronics (4)

This course is designed to provide a general background in solid state electronic materials and devices. Course content emphasizes the fundamental and current issues of semiconductor physics related to the ECE solid state electronics sequences. Three hours of lecture. Prerequisites: fundamentals of quantum mechanics, ECE 135A-B, or equivalent. (F) S.S. Lau

230B. Solid State Electronics (4)
Physics of solid-state electronic devices, including p-n diodes, Schottky diodes, field-effect transistors, bipolar transistors, pnpn structures. Computer simulation of devices, scaling characteristics, high frequency performance, and circuit models. Three hours of lecture. Prerequisite: ECE 230A. (W) P. Asbeck

230C. Solid State Electronics (4)
This course is designed to provide a treatise of semiconductor devices based on solid state phenomena. Band structures carrier scattering and recombination processes and their influence on transport properties will be emphasized. Three hours of lecture. Prerequisite: ECE 230A or equivalent. (S) P. Yu

230E. Introduction to Superconductivity (4)

Superconductivity phenomenon, two-fluid models and phenomenological theories, magnetic properties of ideal superconductors, type II superconductors, tunneling, microscopic theory, superconducting materials, current developments. Three hours of lecture. Prerequisite: consent of instructor. (F) H-L. Luo
231. Thin Film Phenomena (4)

This course is designed to provide a general survey of thin film processes pertinent to microelectronics. Topics to be discussed include preparation methods, various modern analytical techniques, physical properties, growth morphology, interface reaction, and alloy formation and applications. Three hours of lecture. Prerequisite: consent of instructor. (W) S.S. Lau and HL.Luo
232. The Field Effect and Field Effect Transistors (4)

Physics of the field effect of elemental and III-V compound semiconductors related to the technology and characteristics of Schottky barrier gate, insulated gate, and junction gate field effect transistors. Three hours of lecture. Prerequisite: consent of instructor. (S) H. Wieder
233. X-Ray Diffraction Analysis of Materials (4)

This class will cover the physics of x-ray diffraction and its application to the analysis of crystal structure, grain size, grain orientation, surface roughness, epitaxy, film thickness, etc. Experimental techniques to be discussed and will include theta-2theta diffractometry, high resolution x-ray rocking curves, Laue patterns, pole figures, reflectivity, small angle scattering, laboratory experiments, and computer simulations. Three hours of lecture, one hour of laboratory. Prerequisite: consent of instructor. (S) K. Kavanagh

234A. Imperfections in Solids (4)
Point, line, and planar defects in crystalline solids, including vacancies, self-interstitials, solute atoms, dislocation interactions, stacking faults, grain boundaries, and their effects on the properties of solids. Hardening by localized obstacles, precipitates, and dispersoids. Three hours of lecture. Prerequisite: consent of instructor. (F) R.A. Asaro

234B. Advanced Study of Defects in Solids (4)
Advanced topics in dislocation theory and dislocation dynamics. Defects and defects interactions. Atomistic and subatomistic effects. Physical models based on
microscopic considerations. Three hours of lecture. Prerequisite: ECE 234A or consent of instructor. (W) R.A. Asaro

236A. Semiconductor Heterostructure Materials (4)
This course covers the growth, characterization, and heterojunction properties of III-IV compound semiconductors and group-IV semiconductor heterostructures for the subsequent courses on electronic and photonic device applications. Topics include epitaxial growth techniques, electrical properties of heterojunctions, transport and optical properties of quantum wells and superlattices. Three hours of lecture. Prerequisites: ECE 230A-B-C or consent of instructor. (F) C.Tu

236B. Optical Processes in Semiconductors (4)

Absorption and emission of radiation in semiconductors. Radiative transition and nonradiative recombination. Ultra-fast optical phenomena. Laser and photodetector devices will be emphasized. Three hours of lecture. Prerequisites: ECE 230A and 230C or equivalent. (W) P.Yu

236C. Heterojunction Field Effect Transistors (4)
Device physics and applications of isotype and anisotype heterojunctions and quantum wells, including band-edge discontinuities, band bending and space charge layers at heterojunction interfaces, charge transport normal and parallel to such interfaces, two-dimensional electron gas structures, modulation doping, heterojunction and insulated gate field effect transistors. Three hours of lecture. Prerequisite: consent of instructor. (S) H. Wieder

236D. Heterojunction Bipolar Transistors (4)

Current flow and charge storage in bipolar transistors Use of heterojunctions to improve bipolar structures Transient electron velocity overshoot. Simulation of device characteristics. Circuit models of HBTs Requirements for high-speed circuit applications Elements of bipolar process technology, with emphasis on III-V materials. Three hours of lecture. Prerequisite: consent of instructor. (F) P. Asbeck
237. Modern Materials Analysis (4)

Analysis of the near surface of materials via ion, electron, and x-ray spectroscopes. Topics to be covered include particle solid interactions. Rutherford backscattering, secondary ion mass spectroscopy, electron energy loss spectroscopy, particle induced x-ray emission, Auger electron spectroscopy, extended z-ray absorption, fine structure and channeling. Three hours of lecture. Prerequisite: consent of instructor. (F) Staff

238A. Thermodynamics of Solids (4)

The thermodynamics and statistical mechanics of solids. Basic concepts, equilibrium properties of alloy systems, thermodynamic information from phase diagrams, surfaces and interfaces, crystalline defects Multiple listed with Materials Science 201A. Three hours of lecture. Prerequisite: consent of instructor. (F) Staff

238B. Solid State Diffusion and Reaction Kinetics (4) Thermally activated processes. Boltzman factor, homogeneous and heterogeneous reactions, solid state dif fusion, Fick's law, diffusion mechanisms, Kirkendall effects, Boltzmann-Manato analysis, high diffusivity paths. Multiple listed with Materials Science 201B. Three hours of lecture. Prerequisite: ECE 238A. (W) Staff
239. Nanometer-Scale Probes and Devices (4)

Discussion of scanning tunneling microscopy, atomic force microscopy, and other high-resolution scanning probe techniques, including basic concepts, experi-
mental considerations, and applications. Fabrication and properties of submicron structures, with emphasis on the study of semiconductor materials and devices. Three hours of lecture. Prerequisite: consent of instructor. (F) Edward T.Yu

240A. Lasers and Optics (4)
Fresnel and Fraunhofer diffraction theory. Optical resonators, interferometry. Gaussian beam propagation and transformation. Laser oscillation and amplification, Q-switching and mode locking of lasers, some specific laser systems. Three hours of lecture. Prerequisites: ECE 123, 124 or equivalent; introductory quantum mechanics or ECE183. (F), P. Yu

240B. Optical Information Processing (4)
Space-bandwidth product, superresolution, space-variant optical system, partial coherence, image processing with coherent and incoherent light, processing with feedback, real-time light modulators for hybrid processing, nonlinear processing. Optical computing and other applications. Three hours of lecture. Prerequisite: ECE 182 or equivalent. (W) S. Lee and S. Fainman

240C. Optical Modulation and Detection (4)
Propagation of waves and rays in anisotropic media. Electro-optical switching and modulation. Acoustooptical deflection and modulation. Detection theory. Heterodyne detection, incoherent and coherent detection. Three hours of lecture. Prerequisites: ECE 181,183 or equivalent. (S) S. Esener and P.Yu

241A. Nonlinear Optics (4)
Second harmonic generation (color conversion), parametric amplification and oscillation, photorefractive effects and four-wave mixing, optical bistability; applications. Three hours of lecture. Prerequisites: ECE 240A, C, or consent of instructor. (F) S. Fainman and S. Lee

241B. Optical Devices for Computing. (4)
Application of electro-optic, magneto-optic, acoustooptic, and electro-absorption effects to the design of photonic devices with emphasis on spatial light modulation and optical storage techniques. Three hours of lecture. Prerequisites: ECE 240A, C, or consent of instructor. (F) S. Esener

241C. Holographic Optical Elements (4)

Fresnel, Fraunhofer, and Fourier holography. Analysis of thin and volume holograms, reflection and transmission holograms, color and polarization holograms. Optically recorded and computer-generated holography. Applications to information storage, optical interconnects, 2-D and 3-D display, pattern recognition, and image processing. Three hours of lecture. Prerequisite: ECE 182 or equivalent, or consent of instructor. (W) S. Fainman

241AL. Lasers and Holography Laboratory (2)
Laser resonator design, construction, alignment, characterizations. Operation and evaluation of molecular, gas, liquid dye, semiconductor lasers. Spatial and temporal coherance measurements. Design and fabrication of transmission, reflection, bleached, color, multiple exposure holograms. Prerequisites: ECE 181,182,183 or consent of instructor. (This course is cojoint with ECE 184. Graduate students will choose 50 percent of the experiments and receive two units of credit.) (F) S. Lee and S. Fainman

241BL. Optical Signal Processing Laboratory (2)

Construction and characterization of Fourier/Fresnel transform, coherent/incoherent, imaging-processing systems. Design, coding, fabrication of spatial filters, computer-generated holograms. Experiments in non-
linear photorefractive phenomena and image-process ing applications. Construction of vector-matrix multipliers. Optical systems design using Code-V. Prerequisites: ECE 181, 182, 183, or consent of instructor. (This course is cojoint with ECE 185. Graduate stduents will choose 50 percent of the experiments and receive two units of credit.) (W) S.Lee and S. Fainman

241CL. Optoelectronics and Communications laboratory (2)

Operation and characterization of electro-optic, acousto-optic modulators. Polarization manipulation techniques. Heterodyne detection schemes. Parametrization of $\mathrm{P}-\mathrm{I}-\mathrm{N}$ and avalanche detectors, LED sources. Evaluation of optical fiber, thin film wave-guide properties. Characterization of Hughes LCLV spatial light modulator. Prerequisites: ECE 181, 182, 183, or consent of instructor. Staff

242A. Optical Systems (4)

Principles of optical system design. Modeling of optical and opto-electronic components, modules, and systems. Signal integrity analysis. Design optimization using CAD. Assembly and testing. System scalability and manufacturability. Opto-electronic packaging. Three hours of lecture. Prerequisites: ECE 240A-B-C, or consent of instructor. (W) S. Lee

244A. Statistical Optics (4)
Introduction to statistical phenomena in optics including first order properties of light waves generated from various sources. Coherence of optical waves, high-order coherence. Partial coherence and its effects on imaging systems. Imaging in presence of randomly inhomogeneous medium. Limits in photelectric detection of light Three hours of lecture. Prerequisite: ECE 240A-B or con sent of instructor. (F) Y. Fainman

244B. Quantum Electronics of Femtosecond Optica

 Pulses (4)Femtosecond optical pulses in linear dispersive media. Self-action of optical pulses. Parametric interaction of optical pulses. Self- and cross-phase modulation. Fast phase control, compression and shaping of optical pulses. Optical solitons. Applications of femtosecond optical pulses. Three hours of lecture. Prerequisite: ECE 240A-B-C or consent of instructor. (W) Y. Fainman

245A. Advanced Acoustics I (4)
Boundary value problems in vibrating systems, wave propagation in strings, bars, and plates. Fundamentals of acoustical transducers. Three hours of lecture Prerequisite: concurrent registration in ECE 145AL recommended. (F) J. Hildebrand

245B. Advanced Acoustics II (4)
Theory of radiation transmission and scattering of sound with special application to ocean acoustics. Three hours of lecture. Prerequisite: ECE 245A or consent of instructor. Concurrent registration in ECE 145BL recommended. (W) J. Hildebrand

245C. Advanced Acoustics III (4)

Signal processing in underwater acoustics. Theory and hardwave embodiments. Three hours of lecture. Prerequisite: ECE 245B or consent of instructor. Concurrent registration in ECE 145 CL recommended. (S) J. Hildebrand

246A. Materials for Magnetic Recording (4)
Properties of magnetic materials utilized as magnetic recording media and heads; magnetic structure of oxides and metals; fine particle magnetism: micromagnetic analysis; hysteresis and reversal mechanisms of hard materials; dynamic processes and domain pat-
terns of soft materials; thermal fluctuations; multilayer phenomena: giant magnetoresistance. Prerequisites: undergraduate electromagnetism and solid state physics or consent of instructor. (alternate years) H.L. Luo, N. Bertram

246B. Analysis of the Magnetic Recording Process (4)

 In-depth analysis of the magnetic recording process. Magnetic fields and Fourier transforms of fields and magnetized media and heads; playback process for single and multiple transitions. Reciprocity theorem for inductive and magnetoresistive heads; record process modeling; interferences and nonlinearities; medium noise mechanisms and correlations; signal to noise ratios. Prerequisites: undergraduate electromagnetic theory and mathematical methods or consent of instructor. (alternate years) N. Bertram246C. Magnetic Recording Laboratory (4)
Basic measurements in magnetic recording. Fields and Fourier transforms of head structures using resistance paper measurements and computer analysis; inductance and B-H loop measurements of recording heads and core materials; recording system calibration and magnetization pattern investigation utilizing spectral measurements (FFT). Prerequisites: ECE $246 B$ and laboratory experience. (alternate years) N. Bertram

250. Random Processes (4)

Random variables, probability distributions and densities, characteristic functions. Convergence in probability and in quadratic mean, Stochastic processes, stationarity. Processes with orthogonal and independent increments. Power spectrum and power spectral density. Stochastic integrals and derivatives. Spectral representation of wide sense stationary processes, harmonizable processes, moving average representations. Prerequisite: ECE 153 or equivalent or consent of instructor. (F) R. Lugannani

251AN. Digital Signal Processing I (4)
Discrete random signals; conventional (FFT based) spectral estimation. Coherence and transfer function estimation; model-based spectral estimation; linear prediction and AR modeling. Levinson-Durbin algorithm and lattice filters, minimum variance spectrum estimation. Three hours of lecture. Prerequisites: ECE 153 in addition to either ECE 161 or 161A, or consent of instructor. (W) W. Hodgkiss and B. Rao

251 BN. Digital Signal Processing II (4)
Adaptive filter theory, estimation errors for recursive least squares and gradient algorithms, convergence and tracking analysis of LMS, RLS, and Kalman filtering algorithms, comparative performance of Weiner and adaptive filters, transversal and lattice filter implementations, performance analysis for equalization, noise cancelling, and linear prediction applications. Three hours of lecture. Prerequisite: ECE 25 IAN. (S) W. Hodgkiss and J. Zeidler

251CN. Filter Banks and Wavelets (4)
Fundamentals of multirate systems (noble identities, polyphase representations), maximally decimated filter banks (QMF filters for 2-channels, M-channel perfect reconstruction systems), paraunitary perfect reconstruction filter banks, the wavelet transform (multiresolution, discrete wavelet transform, filter banks and wavelet). Three hours of lecture. Prerequisite: ECE 161B or equivalent. (F) B. Rao

251DN. Array Processing (4)
The coherent processing of data collected from sensors distributed in space for signal enhancement and noise rejection purposes or wavefield directionality estima-
tion. Conventional and adaptive beamforming. Matched field processing. Sparse array design and processing techniques. Applications to acoustics, geophysics, and electromagnetics. Prerequisite: 251AN, ECE 161 or 151A (ECE 161, 162A-B series recently renumbered to ECE 161A-B-C), or consent of instructor. (F) W. Hodgkiss

252A. Speech Compression (4)

Speech signals, production and perception, compression theory, high rate compression using waveform coding (PCM, DPCM, ADPCM, .), DSP tools for low rate coding, LPC vocoders, sinusoidal tranform coding, multi-band coding, medium rate coding using code excited linear prediction (CELP). Prerequisite: ECE 161A or 161. (W) B. Rao
2528. Speech Recognition (4)

Signal analysis methods for recognition, dynamic time warping, isolated word recognition, hidden markov models, connectedword, and continuous speech recognition. Prerequisites: ECE 109, ECE 262A. (S) B. Rao

253A. Fundamentals of Digital Image Processing (4) Image quantization and sampling, image transforms, image enhancement, image compression. Prerequisites: ECE 109, 153, ECE 161 or ECE 161A. (W) P. Cosman
2538. Digital Image Analysis (4)

Image morphology, edge detection, scene segmentation, texture analysis, registration and fusion, feature analysis, time-varying images. Prerequisite: ECE 253A or consent of instructor. (S) P. Cosman

254. Detection Theory (4)

Hypothesis testing, detection of signals in white and colored Gaussian noise; Karhunen-Loève expansion, estimation of signal parameters, maximum-likelihood detection; resolution of signals; detection and estimation of stochastic signals; applications to radar, communications, and optics. Prerequisite: ECE 153. (F) R. Lugannani

255AN. Information Theory (4)
Introduction to basic concepts, source coding theorems, capacity, noisy-channel coding theorem. Three hours of lecture. Prerequisite: ECE 154A-B-C or consent of instructor. (F) Staff

$255 B N / C N$. Source Coding I, II (4/4)

Theory and practice of lossy source coding, vector quantization, predictive and differential encoding, universal coding, source-channel coding, asymptotic theory, speech and image applications. Three hours of lecture. Prerequisite: ECE 250 and 259A or 259AN, or consent of instructor. (W,S) K. Zeger

256A-B. Time Series Analysis and Applications (4-4) Stationary processes; spectral representation; linear transformation. Recursive and nonrecursive prediction and filtering; Wiener-Hopf and Kalman-Bucy filters. Series expansions and applications. Time series analysis; probability density, covariance and spectral estimation. Inference from sampled data, sampling theorems; equally and non-equally spaced data, applications to detection and estimation problem. Prerequisite: ECE 153. (F,W) E. Masry

257A. Multiuser Communication Systems (4) $M / G / 1, G 1 / M / 1$ queues, imbedded chains. Ergodic theory of Markov chains, classification, ergodic theorems. Multiple access systems, random access protocols, capacity, stability, delay and control, reservation and hybrid schemes. Prerequisites: ECE 153 and 159A, or equivalent. Note: ECE 159A is an integral part of this course and should be taken in the fall quarter. (W) R. Rao

257B. Principles of Wireless Networks (4)
This course will focus on the principles, architectures, and analytical methodologies for design of multi-user wireless networks. Topics to be covered include cellular approaches, call processing, digital modulation, adaptive arrays, broadband networks, and wireless packet access for multimedia service. Three hours of lecture. Prerequisites: ECE 159B and 154B. (S) A. Acampora

258A-B. Digital Communication (4-4)

Digital communication theory including performance of various modulation techniques, effects of inter-symbol interference, adaptive equalization, spread spectrum communication. Prerequisites: ECE 154A-B-C and ECE 254 or consent of instructor. (W,S) L. Milstein

259AN. Algebraic Coding (4)
Fundamentals of block codes, introduction to groups, rings and finite fields, nonbinary codes, cyclic codes such as BCH and RS codes, decoding algorithms, applications. Three hours of lecture. Prerequisite: consent of instructor. (F) J. Wolf or P. Siegel

259BN. Trellis-Coded Modulation (4)
Coding theory developed from the viewpoint of digital communications engineering, information theoretic limits for basic channel models, convolutional codes, maximum-likelihood decoding, Ungerboeck codes, codes based on lattices and cosets, rotational invariance, performance evaluation, applications of modem design. Three hours of lecture. Prerequisites: ECE 154A-B-C, ECE 259A or 259AN, or consent of instructor. (W) P. Siegel

259CN. Advanced Coding and Modulation for Digital Communications (4)
Advanced coding and modulation techniques for bandwidth-efficient data transmission and recording; constellation shaping by regions, Voronoi constellations, shell mapping, coding for intersymbol-interference channels, precoding methods, multilevel coding; coding for fading channels, applications to wireline and wireless communications, digital recording. Three hours of lecture. Prerequisites: ECE 259A-B or 259AN-BN. (S) P. Siegel

260A.VLSI Digital System Algorithms and

Architectures (4)
Custom and semicustom VLSI design from the system designer's perspective. VLSI system algorithms, parallel processing architectures and interconnection networks, and design mapping methodologies will be emphasized. VLSI computer-aided design (CAD) tools will be introduced. Knowledge of basic semiconductor electronics and digital design is assumed. Three hours of lecture. Prerequisites: undergraduate-level semiconductor electronics and digital system design; ECE 165 or equivalent or consent of instructor. (F) P. Chau

260B. VLSI Integrated Circuits and Systems Design (4) Computer arithmetic, control and memory structures for VLSI implementations at logic, circuit, and layout level. Computer-aided design and performance simulations, actual design projects for teams of two to three students per team. Layout done on CAD workstations for project IC chip fabrication. Design projects will be reviewed in class presentation. Three hours of lecture. Prerequisite: ECE 260A. (W) P. Chau

260C. VLSI Advanced Topics (4)

Advanced topics seminar with issues from system theory, to new technologies, to alternative design methodologies will be subject for review. Class discussion, participation and presentations of projects and special
topics assignments will be emphasized. The testing results of fabricated IC chips from other VLSI design classes will be presented in class and in a final report. Three hours of lecture. Prerequisite: ECE 260B. (S) P. Chau

261A. Design of Analog and Digital GaAs Integrated

Circuits I (4)

Introduction to analytical and computer-aided design (CAD) techniques for microwave integrated circuits. Design of active two-ports using scattering parameters. Monolithic realization of low-noise amplifiers using GaAs FETs and HEMTs. Design of monolithic distributed amplifiers. Design of monolithic power amplifiers and mixers. Three hours of lecture. Prerequisite: consent of instructor. (W) W. Ku

261B. Design of Analog and Digital GaAs Integrated

Circuits (4)
Introduction to GaAs digital integrated circuits (IC). Design of simple digital GaAs ICs using DCFL. Design of digital building blocks for complex multipliers, FET butterfly chips, DDS, and oversampled A/D converters. Three hours of lecture. Prerequisite: consent of instructor (S) W. Ku

262B. RPG of ASSPS (Rapid Prototyping and Generation

 of Applications-Specific Signal ProcessingSystems) (4)
Introduction to concurrent engineering which can only be effectively treated through the employment of a multiprocessing environment. Strategies for partitioning of signal processing system designs and optimization of scheduling of task assignments in a distributed computing environment. Introduction to mixed-signal systems and reduced complexity system design Testing of rapid prototyped ASICS. Three hours of lecture, nine hours of laboratory. Prerequisite: ECE 262A. (S) P.Chau

263A. Reliable Design of Digital Systems (4)
Fault tolerance and testability have the common objective of improving the reliability of computer hardware Knowing the fault models, how faults manifest themselves, how to test fault existence, and how to keep sys tem functioning when fault exists help the engineers choose different techniques in computing and VLSI systems designs. Prerequisite: completion of upper-division ECE/CE courses or consent of instructor. (F) T.T. Lin

263B. Fault-Tolerant Computing and VLSI Testing I (4)
This course will cover all aspects of fault-tolerant computing and VLSI testing. Topics include fundamental concepts of fault-tolerant hardware design, test pattern generation, signature analysis, system diagnosis and evaluation, and fault tolerance in VLSI-based systems Prerequisite: ECE 263A or consent of instructor. (W) T.T. Lin

263C. Fault-Tolerant Computing and VLSI Testing II (4) Fault tolerance and testability have the common objective of improving system reliability. The second part of the course emphasizes systemwide design issues. Topics include fault-tolerant architecture and systems, design for testability, and computer-aided reliability evaluation. Current research issues in fault-tolerant computing and VLSI testing will be addressed. Prerequisites: ECE 263A-B or consent of instructor. (S) T. T. Lin

264A. CMOS Analog Integrated Circuits and

Systems I (4)
Frequency response of the basic CMOS gain stage and current mirror configurations. Advanced feedback and stability analysis; compensation techniques. HighPerformance CMOS amplifier topologies. Switched
capacitor circuits. Analysis of noise and distortion. Three hours of lecture, three hours of laboratory. Prerequisites. ECE 164 and 153 or equivalent courses. (W) I. Galton

264B. CMOS Analog Integrated Circuits and

 Systems II (4)Continuous-time filters: synthesis techniques and CMOS circuit topologies. Switched-capacitor filters: synthesis techniques and CMOS circuit topologies Overview of CMOS samplers, data converters, mixers, modulators, oscillators, and PLLs. Three hours of lecture. Prerequisites: ECE 264A and 251A or 251AN. (S) I. Galton

265A. Communication Circuit Design I (4)

Introduction to noise and linearity concepts. System budgeting for optimum dynamic range. Frequency plan tradeoffs. Linearity analysis techniques. Downconversion and up-conversion techniques. Modulation and de-modulation. Microwave and RF system design communications. Current research topics in the field. Three hours of lecture. Prerequisites: consent of instructor. (F) L. Larson

265B. Communication Circuit Design II (4)
Radio frequency integrated circuits: impedance matching concepts, low-noise amplifiers, AGCs. Mixers, filters. Comparison between BJT, CMOS and GaAs technologies for radio frequency and microwave applications. Device modeling for radio frequency applications. Design tradeoffs of linearity, noise, power dissipation, and dynamic range. Current research topics in the field. Three hours of lecture. Prerequisites: ECE 164 and 265A or consent of instructor. (W) L. Larson

270A-B-C. Neurocomputing (4-4-4)

Neurocomputing is the study of nonalgorithmic information processing. This three-quarter sequence covers neurocomputing theory, design, and application, including sensor processing, knowledge processing, data analysis, and hands-on training with a neurocomputer. Prerequisite: graduate standing in ECE or CSE, or consent of instructor. (F,W,S) R. Hecht-Nielsen

272A. Stochastic Processes in Dynamic Systems (4)
(Not offered 2001/2002.) Diffusion equations, linear and nonlinear estimation and detection, random fields, optimization of stochastic dynamic systems, applica tions of stochastic optimization to problems. Prerequisites: ECE 250. (W,S) D. Sworder

273A-B-C. Optimization in Linear Vector Spaces (4-4-4) (Not offered 2001/2002.) Hilbert spaces, Banach spaces, projection theorem, dual spaces, Hahn Banach theorem, hyperplanes, geometric form of H Banach theorem, modern statistical optimization routines (simulated annealing, evolutionary programming), approaches to large neural net problems derived from the physics literature (chaos, spin glass, basic statistical mechanics). Prerequisites: ECE 174. ECE 273 requires 273 A and 273 C requires $273 B$. (F,W,S) A. Sebald

275A. Parameter Estimation I (4)
Linear last squares (batch, recursive, total, sparse, psuedoinverse, QR, SVD); statistical figures of merit (bias, consistency, Cramer-Rao lower-bound, efficiency); maximum likelihood estimation (MLE); sufficient statistics; algorithms for computing the MLE including the expectation maximation (EM) algorithm. The problem of missing information; the problem of outliers. Prerequisites: ECE 109 and ECE 153 with grades of \mathcal{C} - or better. (F) K. Kreutz-Delgado

275B. Parameter Estimation II (4)
The Bayesian framework and the use of statistical priors; sufficient statistics and reproducing probability dis-
tributions; minimum mean square estimation (MSE); lin ear minimum mean square estimation; maximum a posteriori (MAP) estimation; minimax estimation; Kalman filter and extended Kalman filter (EKF) Baum Welsh algorithm; Viterbi algorithm. Applications to identifying the parameters and states of hidden Markov models (HMMs) including ARMA, state-space and finite-state dynamical systems. Applications to parametric and non-parametric density estimation. Prerequisites: ECE 153 and ECE 275A with grades of C- or better. (W) K. Kreutz-Delgado

276A-B. Robot Kinematics, Dynamics, and Control (4-4) Kinematics of rigid bodies and serial-chain manipulators. The forward and inverse kinematics problem Sufficient conditions for exact solvability of the inverse kinematics problem. Joint-space versus tank-space control. Path/trajectory generation. Newton-Euler and Lagrangian formulation of manipulatory dynamics. Manipulability measures. Redundancy resolution by subtask functional optimization and side-constraint satisfaction. Pseudo-inverse kinematic control of redundant manipulators. PID and feedback-linearizing trajectory and force control. Issues in path planning and compliant assembly. Three hours of lecture Prerequisites: ECE 171A-B, ECE 174 must be completed with grades of C-or better. (ECE 174 may be concurrent.) (W-S) K. Kreutz-Delgado

280. Special Topics in Electronic Devices and

 Materials (4)A course to be given at the discretion of the faculty at which topics of interest in electronic devices and materials will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Three hours of lecture. Prerequisite: consent of instructor. Staff
281. Special Topics in Radio and Space Science (4)

A course to be given at the discretion of the faculty at which topics of interest in radio and space science will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Three hours of lecture. Prerequisite: consent of instructor. Staff

282. Special Topics in Optoelectronics (4)

A course to be given at the discretion of the faculty at which topics of interest in optoelectronic materials, devices, systems, and applications will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit several times Three hours of lecture. Prerequisite: consent of instructor. Staff

283. Special Topics in Electronic Circuits and Systems (4)

A course to be given at the discretion of the faculty at which topics of interest in electronic circuits and systems will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Three hours of lecture Prerequisite: consent of instructor. Staff
284. Special Topics in Computer Engineering (4)

A course to be given at the discretion of the faculty at which topics of interest in computer engineering will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Three hours of lecture. Prerequisite: consent of instructor. Staff
285. Special Topics in Robotics and Control Systems (4) A course to be given at the discretion of the faculty at which topics of interest in robotics and control systems will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Three hours of lecture. Prerequisite: consent of instructor. Staff

287A,B. Special Topics in Communication Theory and Systems (4)
A course to be given at the discretion of the faculty at which topics of interest in information science will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Three hours of lecture. Prerequisite: consent of instructor. Staff
288. Special Topics in Applied Physics (1-8)

Topics of interest in applied physics. Topics will vary from quarter to quarter. May be repeated for credit not more than three times.
290. Graduate Seminar on Current ECE Research (2)

Weekly discussion of current research conducted in the Department of Electrical and Computer Engineering by the faculty members involved in the research projects. Staff
292. Graduate Seminar in Radio and Space Science (2)

Research topics in radio astronomy, space plasmas, and solar system physics. (S/U grades only.) B. Rickett
293. Graduate Seminar in Communication Theory and Systems (2)
Weekly discussion of current research literature. Staff

294. Graduate Seminar in Applied Solid State

Physics (2)
Research topics in applied solid state physics and quantum electronics. H-L. Luo
295. Graduate Seminar in Computer Engineering (2) Biweekly discussion of research topics in computer engineering. Computer engineering is currently the most impacted field both in industry and academia. Computer engineering is the science of searching for an optimum within constraints of available methods and resources. Three hours of seminar. Prerequisite: consent of instructor. (F,W,S) T. T. Lin
296. Graduate Seminar in Optical Signal Processing (2)

Research topics of current interest in holography. S. Lee
298. Independent Study (1-16)

Open to properly qualified graduate students who wish to pursue a problem through advanced study under the direction of a member of the staff.(S/U grades only.) Prerequisite: consent of instructor.
299. Research (1-16)
(S/U grade only.)

501. Teaching (1-4)

Teaching and tutorial activities associated with courses and seminars. Not required for candidates for the Ph.D. degree. Number of units for credit depends on number of hours devoted to class or section assistance. (S/U grade only.) Prerequisite: consent of department chair.

Mechanical and Aerospace Engineering (MAE)

STUDENT AFFAIRS: 182 Engineering Building II, Warren College
http://www-mae.ucsd.edu

Professors

D. J. Benson, Ph.D.
R. Bitmead, Ph.D.
R. Cattolica, Ph.D.
P.C.Chau, Ph.D.
R. W. Conn, Ph.D., Dean, School of Engineering
C. H. Gibson, Ph.D.
J. D. Goddard, Ph.D.
A. Hoger, Ph.D.
S. Krasheninnikov, Ph.D.
M. Krstic, Ph.D.
J. Lasheras, Ph.D., Chair
P. Linden, Ph.D., Blasker Chair in Environmental

Engineering
X. Markenscoff, Ph.D.
J.McKittrick, Ph.D.
M. A. Meyers, Ph.D.
D. R. Miller, Ph.D., Associate Vice Chancellor
for Academic Affairs; Academic Senate
Distinguished Teaching Award
H. Murakami, Ph.D.
S. Nemat-Nasser, Ph.D., Director, Center of

Excellence for Advanced Materials
V. Nesterenko, Ph.D.
C. Pozrikidis, Ph.D.
S. Sarkar, Ph.D.
K. Seshadri, Ph.D.
R.E. Skelton, Ph.D.
J. B. Talbot, Ph.D.
F. E. Talke, Ph.D., CMRR Endowed Chair
K. Vecchio, Ph.D.
F. A. Williams, Ph.D., Director, Center for Energy and

Combustion Research

Professors Emeritus

H. Bradner, Ph.D.
P. A. Libby, Ph.D.
S.-C. Lin, Ph.D.
S. Middleman, Ph.D.
J.W. Miles, Ph.D.
W. Nachbar, Ph.D.
D. B. Olfe, Ph.D.
S.S. Penner, Ph.D.
A. M. Schneider, Sc.D.
H.W. Sorenson

Associate Professors

R.K. Herz, Ph.D. K. Nomura, PhD.

Assistant Professors

T. Bewley, Ph.D.
C. P. Caulfield, Ph.D.
R. DeCallafon, Ph.D.
S. Gille, Ph.D.
S. Llewellyn-Smith, Ph.D.
G. Tynan, Ph.D.

Affiliated Faculty

L. Armi, Ph.D., Professor, SIO
M. J. Bailey, Ph.D., Associate Adjunct Professor
C. Baker, Adjunct Professor
M. Buckingham, Ph.D., Professor, SIO
M. Kassner, Ph.D., Adjunct Professor
V. Lubarda, Ph.D., Adjunct Professor
W. K. Melville, Ph.D., Professor, SIO
F. Najmabadi, Professor, Electrical and Computer Engineering
N. Peters, Ph.D., Adjunct Professor
R. Pinkel, Ph.D., Professor, SIO
J. Rottman, Ph.D., Associate Adjunct Professor
M. T. Simnad, Ph.D., Adjunct Professor
F. Speiss, Ph.D., Professor Emeritus, SIO

Professional Research Staff

A. Balogh, Ph.D., Assistant Project Scientist J. Boedo, Ph.D., Associate Research Scientist
G. Carnevale, Ph.D., Research Oceanographer, SIO
G. Deane, Ph.D., Associate Research Oceanographer, SIO
A. Didwania, Ph.D., Associate Research Scientist
B. Fathollahi, Ph.D., Assistant Research Scientist
S. Galkin, Ph.D., Assistant Research Scientist
G. Hirata, Ph.D., Assistant Project Scientist
S. C. Li, Ph.D., Associate Research Engineer
S. Luckhardt, Ph.D., Research Scientist
K. Lund, Ph.D., Associate Research Engineer R. Miller, Ph.D., Project Scientist
R. Moyer, Ph.D., Research Scientist
A. Pigarov, Ph.D., Assistant Research Scientist
R. Raffray, Ph.D., Associate Research Scientist
M.Tillack, Ph.D., Research Scientist
D. Trees, Ph.D., Assistant Research Scientist
J. L. White, Ph.D., Research Engineer
D. Whyte, Ph.D., Associate Project Scientist

The Department of Mechanical and Aerospace Engineering is a re-organization of the former Applied Mechanics and Engineering Sciences (AMES) Department. The MAE Department admin-
isters the interdepartmental Chemical Engineering Program (CENG).The Structural Engineering Department (SE) is a separate department. The aerospace program is shared between MAE and SE depending upon the student's major emphasis. Former AMES course numbers have been changed to an MAE, SE, or CENG prefix (i.e., MAE 5, SE 120, CENG 100). While most of the course content/number remain the same, some changes do exist (i.e., MAE 9 is the same as AMES 9 but MAE 107 is the same as AMES 154). Please refer to the course description section for further explanation.

Entering MAE freshmen will follow the new set of course work guidelines detailed in this section. Continuing students and transfer students will continue with their current set of course work guidelines outlined in previous general catalogs. The Student Affairs Office can provide the proper curriculum tables.

All MAE, CENG and AMES students are encouraged to visit the Student Affairs Office in EBU II for any clarification. SE students will refer to the SE section of the general catalog and should visit the Student Affairs Office located on the third floor of the Science and Engineering Research Facility (SERF).

Department Focus

The instructional and research programs are grouped into two major areas: mechanical engineering and aerospace engineering. Both the undergraduate and graduate programs are characterized by strong interdisciplinary relationships with the Departments of Physics, Mathematics, Bioengineering, Chemistry, Electrical and Computer Engineering, Computer Science and Engineering, Structural Engineering, the Materials Science Program, and associated campus institutes such as the UCSD Center for Energy and Combustion Research, the Institute for Nonlinear Science, Institute of Geophysics and Planetary Physics, Institute for Pure and Applied Physical Sciences, Institute for Biomedical Engineering, Center for Magnetic Recording Research, Center of Excellence for Advanced Materials, California Space Institute, and Scripps Institution of Oceanography.

The educational mission of the department is to provide an excellent education to the next generation of mechanical and aerospace engineers as one of the nation's leading and most innovative mechanical and aerospace engineering departments.

This broad mission is supported by the following specific educational goals:

- To provide our students with a strong technical education that will enable them to have successful careers as professional mechanical aerospace and chemical engineers, as educators in academia, and as members of other professions.
- To prepare our students for rapid technological change with the core knowledge central to assuring that they are able to continuously improve their skills across a range of disciplines throughout their professional careers.
- To prepare our students to communicate effectively and to deal knowledgeably and ethically with the impact of technology in our society and on global issues.

The Undergraduate Program

Degree and Program Options

The Department of Mechanical and Aerospace Engineering (MAE) offers traditional ABET accredited engineering programs leading to the B.S. degree in mechanical engineering and chemical engineering. MAE also offers traditional nonaccredited engineering programs leading to the B.S. degree in aerospace engineering and engineering science. The B.S. programs require a minimum of 196 units. The Chemical Engineering Program (CENG) is an interdepartmental program and is described more completely under the Chemical Engineering Program section in this catalog.

All MAE programs of study have strong components in laboratory experimentation, numerical computation, and engineering design. Design is emphasized throughout the curricula by openended homework problems, by laboratory and computer courses which include student-initiated projects, and finally by senior design project courses which often involve teams of students working to solve engineering design problems brought in from industry. The MAE programs are designed to prepare students receiving bachelor's degrees for professional careers or for graduate education in their area of specialization. In addition, the programs can also be taken by students who intend to use their undergraduate engineering education as preparation for postgraduate professional training in nontechnical fields such as business administration, law, or medicine.

Mechanical engineering is a traditional fouryear curriculum in mechanics, vibrations, thermodynamics, fluid flow, heat transfer, materials, control theory, and mechanical design. Graduates find employment in the mechanical and aerospace industries as well as electro-mechanical or biomedical industries. Mechanical engineers are involved in material processing, manufacturing, assembling, and maintenance of life-line facilities such as power plants.

Mechanical design includes conceptual design, drafting with 3D CAD programs, stress, dynamics, heat transfer or fluid dynamics analyses, and the optimization of the total system for superior performance and customer satisfaction. In manufacturing, the objective is to enhance efficiency and economy by utilizing numerical control (NC) of machine tools, mechatronics, micro-machining, and rapid prototyping. Currently, engineers have available computers, process models, and sensors to improve the quality and productivity of the manufacturing lines. In preparation for this modern era, the mechanical engineering curriculum emphasizes CAD courses, computer courses, laboratory courses, and design courses in addition to providing a strong background in basic science.

The following educational objectives have been established for the mechanical engineering program:

1. To provide a sound introduction to the basic sciences that underlie the disciplines of mechanical and aerospace engineering
2. To provide a thorough training in methods of analysis, including problem formulation and the mathematical and computational skills required by mechanical engineers
3. To teach students the experimental and data analysis techniques required for engineering applications
4. To teach the fundamentals of the design process, including project management, the synthesis of information from different disciplinary areas, and innovation and creative problem solving in an engineering setting
5. To prepare students in the skills required for successful participation on teams and in leadership positions, including effective written and oral communication
6. To instill in our students an understanding of their professional and ethical responsibilities
7. To provide students with the opportunity to gain a range of experiences through classroom
and extramural activities on campus and through partnerships and internships with industry, with primary and secondary schools, and with other organizations

Aerospace engineering is a four-year curriculum that begins with fundamental engineering courses in mechanics, thermodynamics, materials, solid mechanics, fluid mechanics, and heat transfer. Additional courses are required in aerospace structures, aerodynamics, flight mechanics, propulsion, controls, and aerospace design. Graduates of this program will normally enter the aerospace industry to develop aircraft and spacecraft, but also may find employment in other areas that use similar technologies, such as mechanical and energy-related fields. Examples include automobile, naval, and sporting equipment manufacturers.

The following educational objectives have been established for aerospace engineering:

1. To provide students with a strong foundation in engineering fundamentals; in-depth knowledge of key topics in aerospace engineering including aerodynamics, propulsion, flight mechanics, orbital mechanics, aerospace structures and materials, and design and control of aerospace systems; and an awareness of the value of lifelong learning
2. To provide thorough training in methods of analysis and problem-solving including mathematical and computational skills and use of contemporary software and information technology tools
3. To teach students the experimental and data analysis techniques required for aerospace engineering applications
4. To teach the fundamentals of the open-ended design process, including project management, synthesis and integration of information from fundamental and interdisciplinary areas, manufacturing and incorporation of non-technical issues, and innovation and creative prob-lem-solving in an engineering environment
5. To prepare students with the skills required for successful participation on teams and for leadership positions, including effective written and oral communication skills and professionalism
6. To instill in our students an understanding of the role and importance of professional responsibility and engineering ethics
7. To provide students with the opportunity to gain a range of experiences through classroom and extramural activities on campus and through participation and internships with industry and other organizations

The engineering science program resembles the Mechanical Engineering Program, except the amount of mechanical design is reduced and control theory is not required. In addition to core courses in dynamics, vibrations, structures, fluid mechanics, thermodynamics, heat transfer, and laboratory experimentation, a large number of technical electives are scheduled. This aspect of the curriculum allows flexibility by permitting specialization and in-depth study in one area of the engineering sciences or through a sequence of courses on various emerging technologies. Students must consult their advisers to develop a sound course of study to fulfill the technical elective of this program. Although a sequence in nonsciences may be permitted, the faculty advisers may insist on a substantial number of MAE or other science courses as technical electives.

Other Undergraduate Programs of Study in MAE

The engineering mechanics minor involves successful completion of seven MAE courses, including at least five upper-division courses open to students who meet the course prerequisites: one must be MAE 130A (AMES 121A); one must be 101A (or 103A) or 131A (AMES 130A) (or both may be taken); and the balance must be selected from MAE 3 (AMES 15), 9 or 10, 20 (AMES 11), 107 (AMES 154), 110A, CENG 102, 130 B (AMES 121 B) and 160 (AMES 102). This set of courses provides a good introduction to engineering analysis and would be useful to nonengineering majors desiring a background that could be used in professional communication with engineers.

Other minor options are restricted. Students wishing to arrange a sequence of MAE courses to satisfy minor requirements, or to meet particular academic interests, must consult the MAE Student Affairs Office for referral to the appropriate MAE facuity member.

Program Accreditation

The B.S. programs in mechanical engineering are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET/EAC).

Major Requirements

Specific course requirements for each major program are outlined in tables in this section of the catalog. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) are distributed in the curricula for students to use to meet college general-education requirements. To graduate, students must maintain an overall GPA of at least 2.0, and the department requires at least a C - grade in each course required for the major.

Deviations from these programs of study must be approved by the Undergraduate Affairs Committee prior to taking alternative courses. In addition, area of specialization (AS) course selections must have departmental approval prior to taking the courses. In the accredited programs, AS courses are restricted to meet ABET standards. Courses such as MAE 195, 197, and 198 are not allowed as an area of specialization in meeting the upper-division major requirements. MAE 199 can be used as an area of specialization only under restrictive conditions. Policy regarding these conditions may be obtained from the department's Student Affairs Office.

Students with different academic preparation may vary the scheduling of lower-division courses such as math, physics and chemistry, but should consult the department. Deviations in scheduling MAE upper-division courses is discouraged and requires prior approval. Most lower-division courses are offered more than once each year to permit students some flexibility in their program scheduling. However, most MAE upper-division courses are taught only once per year, and courses are scheduled to be consistent with the curricula as shown in the tables. When possible, MAE does offer large enrollment courses more than once each year. A tentative schedule of course offerings is available from the department each spring for the following academic year.

General-Education/

College Requirements

For graduation each student must satisfy gen-eral-education course requirements determined by the student's college as well as the major requirements determined by the department. The five colleges at UCSD require widely different general-education courses, and the number of such courses differs from one college to another.

Each student should choose his or her college carefully, considering the special nature of the college and the breadth of general education.

Each MAE program allows for humanities and social science (HSS) courses so that students can fulfill their college requirements. In the ABET accredited programs, students must develop a program that includes a total of at least twentyfour units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. It should be noted, however, that some colleges require more than the nine or ten HSS courses indicated in the curriculum tables. Accordingly, students in these colleges could take longer to graduate than the indicated four-year schedule. Students must consult with their college to determine which HSS courses to take.

Professional Licensing

After graduation, all students are encouraged to take the Fundamentals of Engineering (FE) examination as the first step in becoming licensed as a professional engineer (PE). Students graduating from an accredited program can take the PE examination after FE certification and two years of work experience; students graduating from a nonaccredited program can take the $P E$ examination after FE certification and four years of work experience.

For further information please contact your local Board of Registration for Professional Engineers and Land Surveyors.

Four-Year Programs in Engineering

Two computer languages, $C / C++$ (MAE 9) and FORTRAN (MAE 10) are offered to MAE students but only one course is required. FORTRAN (MAE 10) is recommended for students interested in software development of large-scale computer codes for calculation of the response of structures and machines, and for the simulation of new products and manufacturing processes. C / C_{++} (MAE 9) is recommended for students who plan to be involved in data acquisition, parallel processing over the network, and use of CAD software for design and graphics.

Mechanical Engineering

The Mechanical Engineering Program has a traditional ABET accredited four-year curriculum involving mechanics, vibrations, thermodynamics, fluid flow, heat transfer, materials, control theory,
and mechanical design. Graduates of this program are expected to have the following skills, knowledge, and abilities:

1. An ability to apply knowledge of mathematics, science, and engineering to mechanical engineering problems
2. An ability to design and conduct experiments, as well as to analyze and interpret data
3. An ability to design mechanical and thermal systems, components, or processes to meet desired needs
4. An ability to function on multi-disciplinary teams
5. An ability to identify, formulate, and solve engineering problems
6. An understanding of professional and ethical responsibility
7. An ability to communicate effectively with written, oral, and visual means
8. The broad education necessary to understand the impact of engineering solutions in a global and societal context
9. A recognition of the need for, and an ability to engage in life-tong learning
10. A knowledge of contemporary issues
11. An ability to use modern engineering techniques, skills, and computing tools necessary for engineering practice.
12. A familiarity with chemistry, calculus-based physics, and advanced mathematics
13. Familiarity with probability theory, statistics, and linear algebra

Recommended Course Sequence-Mechanical Engineering for Students entering fall 1999 and later

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21C
MAE 1 (AMES 1)	Phys. 2A	Phys. 2B/2BL.
Chem. 6A	Chem. 6B	MAE 3
HSS	HSS	(AMES 15)
		HSS
SOPHOMORE YEAR		
Math. 21D	Math. 20F	Math. 20E
Phys. 2C/2CL	MAE 9 or 10	MAE 130B
MAE 20 (AMES 11)	(AMES 9 or 10)	(AMES 121B)
HSS	MAE 130A	or SE 101B
	(AMES 121A)	MAE 131A
	or SE 101A	(AMES 130A)
	HSS	HSS

JUNIOR YEAR MAE 110A	MAE 101A	MAE 101B
(AMES 110)	(AMES 101A)	(AMES 101B)
MAE 105	ECE 101	MAE 141A
(AMES 105)	MAE 130C	(AMES 141A)
MAE 140	(AMES 121C)	MAE 170
(AMES 163)	MAE 160	(AMES 170)
HSS	(AMES 102)	HSS
SENIOR YEAR		
MAE 101C	MAE 171A	MAE 171B
(AMES 101C)	(AMES 171A)	(AMES 171B)
MAE 156A	MAE 156B	TE
(AMES 156A)	(AMES 156B)	AS
MAE 150	AS	HSS
(AMES 158)	HSS	
AS		

- Chem. $6 \mathrm{AH}-6 \mathrm{BH}$ sequence may be taken in place of Chem. 6A-B.
- In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.
- AS:Three courses selected from a single area.
- Technical electives (TE) must be an upper-division or graduate course in the engineering sciences, natural sciences or mathematics.

See the MAE Student Affairs Office for a complete list of Technical Electives.

Recommended Course Sequence for Students entering PRIOR to fall 1999

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21C
MAE 9 or 10	Phys. 2A	Phys. 28/2BL
(AMES 9 or 10)	Chem. 6B/6BL	MAE 20
Chem. 6A	HSS	(AMES 11)
HSS		HSS
SOPHOMORE YEAR		
Math. 21D	Math. 20F	Math. 20E
Phys. 2C/2CL	MAE 03 (AMES 15)	MAE 131A
MAE 130A	MAE 130B	(AMES 130A)
(AMES 121A)	(AMES 121B)	HSS
or SE 101A	or SE 101B	HSS
HSS	HSS	
JUNIOR YEAR		
MAE 105	MAE 160	MAE 170
(AMES 105)	(AMES 102)	(AMES 170)
MAE 140	MAE 110A	MAE 130C
(AMES 163)	(AMES 110)	(AMES 121C)
MAE 131B	MAE 107	MATH 183
(AMES 130B)	(AMES 154)	HSS
HSS	HSS	

SENIOR YEAR

MAE 101A
(AMES 101A)
$T E^{3}$
MAE 141A
(AMES 141)
MAE 150
(AMES 158)
${ }^{1}$ In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.
${ }^{2}$ Chem. 6 AH -BH sequence may be taken in place of Chem. 6A-B.
${ }^{3}$ One technical elective (TE) must be an upper-division or graduate course in the engineering sciences, natural sciences or mathematics; the other TE must be selected from a list of approved energy, thermo-science courses available in the MAE student affairs office. Both must be selected with prior apporval of the department to meet ABET standards.
4 TE restricted to MAE 152 (AMES 157), a second energy or thermal science TE to meet ABET standards.

Engineering Science

The engineering science program resembles the mechanical engineering program, except that the course load of mechanical design is reduced, and control theory is not required. In addition to core courses in dynamics, vibrations structures, fluid mechanics, thermodynamics, heat transfer, and laboratory experimentation, a large number of technical electives are scheduled. This aspect of the curriculum allows flexibility, permitting specialization and in-depth study in one area of the engineering sciences or development of a sequence of courses emerging from the current research interests of the faculty of MAE and/or other departments, e.g., sequences in the earth sciences, transportation, or energy-related studies. Students intending to pursue postgraduate professional careers in non-technical fields such as business administration, law, or medicine may develop an appropriate sequence of courses. Although a sequence in the non-sciences may be permitted, the faculty adviser may insist on a substantial number of MAE or other science courses as technical electives. Students must consult their advisers to develop a balanced course of study to fulfill the technical elective requirements of this program. This curriculum also allows the highest number of humanities and social science courses
(HSS) to meet college general-education requirements.

Recommended Course SequenceEngineering Science for Students entering fall 1999 and later

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21C
MAE 1 (AMES 1)	Phys. 2A	Phys. 2B/2BL
Chem. 6A	Chem. 6B	MAE 3
HSS	HSS	HSS
SOPHOMORE YEAR		
Math. 21D	Math. 20F	Math. 20E
Phys. 2C/2CL	MAE 9 or 10	MAE 130B
MAE 20	(AMES 9 or 10)	(AMES 121B)
(AMES 11)	MAE 130A	or SE 101B
HSS	(AMES 121A)	MAE 131A
	or SE 101A	(AMES 130A)
	HSS	HSS
JUNIOR YEAR		
MAE 110A	MAE 101A	MAE 101B
(AMES 110)	(AMES 101A)	(AMES 101B)
MAE 105	MAE 160	MAE 170
(AMES 105)	(AMES 102)	(AMES 170)
MAE 140	MAE 130C	TE
(AMES 163)	(AMES 121C)	HSS
HSS	HSS	
SENIOR YEAR		
MAE 150	MAE 171A	MAE 171B
(AMES 158)	(AMES 171A)	(AMES 171B)
MAE 101C	TE	TE
(AMES 101C)	TE	HSS
TE	HSS	HSS
HSS		

- Chem. $6 \mathrm{AH}-6 \mathrm{BH}$ sequence may be taken in place of Chem. 6A-B.
- Humanities and social science (HSS) courses should be selected to meet general-education requirements of the colleges. Individual college requirements may be higher or lower than what is listed here.
- Five technical elective (TE) courses must be upper-division or graduate courses in the engineering sciences, natural sciences or mathematics selected with prior approval of the department. A sequence of non-science courses may also be selected with prior approval (see program description).

See the Student Affairs Office for a complete list of Technical Electives.

Recommended Course Sequence for Students entering PRIOR to fall1999

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21C
MAE 9 or 10	Phys.2A	Phys. 2B/2BL
(AMES 9 or 10)	Chem. 6B/6BL	MAE 20
Chem. 6A	HSS	(AMES 11)
HSS		HSS

SOPHOMORE YEAR		
Math. 21D	Math. 20F	Math. 20E
Phys. 2C/2CL	MAE 3 (AMES 15)	HSS
MAE 130A	MAE 130B	MAE 131A
(AMES 121A)	(AMES 121B)	(AMES 130A)
or SE 101A	or SE 101B	HSS
HSS	HSS	
JUNIOR YEAR		
MAE 101A	MAE 140	MAE 130C
(AMES 101A)	(AMES 163)	(AMES 121C)
MAE 131B	MAE 101B	MAE 101C
(AMES 130B)	(AMES 101B)	(AMES 101C)
MAE 107	MAE 110A	MAE 170
(AMES 154)	(AMES 110)	(AMES 170)
HSS	HSS	HSS
SENIOR YEAR		
MAE 150	MAE 171A	Math. 183
(AMES 158)	(AMES 171A)	TE
TE	TE	HSS
TE	TE	HSS
HSS	HSS	

${ }^{1}$ Humanities and social science (HSS) courses should be selected to meet general-education requirements of the colleges. Individual college requirements may be higher or lower than what is listed here.
${ }^{2}$ Chem. $6 \mathrm{AH}-\mathrm{BH}$ sequence may be taken in place of Chem. 6A-B.
${ }^{3}$ Technical elective (TE) courses must be upper-division or graduate courses in the engineering sciences, natural sciences or mathematics, selected with prior approval of the department. A sequence of nonscience courses may also be selected with prior approval.

Aerospace Engineering

Aerospace engineering is a four-year curriculum that begins with fundamental engineering courses in mechanics, thermodynamics, materials, solid mechanics, fluid mechanics, and heat transfer. Additional courses are required in aerospace structures, aerodynamics, flight mechanics, propulsion, controls, and aerospace design. Graduates of this program normally enter the aerospace industry to develop aircraft and spacecraft, but also find employment in other areas that use similar technologies, such as mechanical and energy-related fields. Examples include automobile, naval, and sporting equipment manufacturing.

Recommended Course Sequence-Aerospace Engineering for Students entering fall 1999 and later

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21C
MAE 1 (AMES 1)	Phys. 2A	Phys. 2B/2BL
Chem 6A1	Chem. 68	MAE 3
HSS	HSS	(AMES 15)
		HSS

SOPHOMORE YEAR		
Math.21D	Math. 20F	Math. 20E
Phys. $2 \mathrm{C} / 2 \mathrm{CL}$	MAE 9 or 10	MAE 130B
HSS	MAE 130A	MAE 131A
HSS	HSS	SE 2
JUNIOR YEAR		
MAE 110A (AMES 110)	MAE 101A (AMES 101A)	MAE 101B (AMES 101B)
MAE 105 (AMES 105)	ECE 101	MAE 141A (AMES 141)
MAE 140 (AMES 163)	HSS	MAE 130C (AMES 121C)
HSS		SE 160A
		MAE 170 (AMES 170)
SENIOR YEAR		
MAE 101C (AMES 101C)	MAE 155A (AMES 155A)	MAE 155B (AMES 155B)
MAE 150 (AMES 158)	MAE 175A (AMES 175A)	MAE 113 (AMES 159)
MAE 104 (AMES 104)	MAE 142 (AMES 142)	$\begin{aligned} & \text { TE } \\ & \text { HSS } \end{aligned}$
SE 160B	HSS	

${ }^{1}$ Chem. $6 \mathrm{AH}-6 \mathrm{BH}$ sequence may be taken in place of Chem. 6A-B.
${ }^{2}$ In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.

- Technical elective (TE) courses must be upper-division or graduate courses in the engineering sciences, natural sciences or mathematics selected with prior approval of the department.

Recommended Course Sequence for Students entering PRIOR to fall 1999

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21C
MAE 9 or 10	Phys. 2A	Phys. 2B/2BL
(AMES 9 or 10)	Chem. 6B	MAE 20
Chem. 6A ${ }^{2}$	HSS	(AMES 11)
HSS ${ }^{1}$		HSS
SOPHOMORE YEAR		
Math. 21D	Math. 20F	Math. 20E
Phys. 2C/2CL	MAE 03 (AMES 15)	MAE 131A
MAE 130A	MAE 130B	(AMES 130A)
(AMES 121A)	(AMES 121B)	MAE 110 A
or SE 101A	or SE 101B	(AMES 110)
HSS?	HSS	HSS
JUNIOR YEAR		
MAE 140 (AMES 163)	MAE 160 (AMES 102)	MAE 130 C (AMES 121C)
MAE 131B (AMES 130B)	MAE 107 (AMES 154)	MAE 170 (AMES 170)
MAE 101A (AMES 101A)	MAE 101B (AMES 101B)	MAE 101C (AMES 101C)
MAE 105 (AMES 105)	HSS	HSS

SENIOR YEAR		
HSS	TE	MAE 113
MAE 104	MAE 175A	(AMES 159)
(AMES 104)	(AMES 175A)	MAE 175
MAE 141A	MAE 142	(AMES
(AMES 141)	(AMES 142)	HSS
SE 144	MAE 155A	MAE 155
	(AMES 155	(AMES 155B)
${ }^{1}$ Chem. $6 \mathrm{AH}-6 \mathrm{BH}$ sequence may be taken in place of Chem. 6A-B.		
${ }^{2}$ In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.		
- Technical elective (TE) courses must be upper-division or graduate courses in the engineering sciences, natural sciences or mathematics selected with prior approval of the department.		

Policies and Procedures for MAE Undergraduate Students

Application for Admission to the Major

Admission to the department as an MAE major or minor, or to fulfill a major in another department which requires MAE courses, is in accordance with the general requirements established by the Jacobs School of Engineering. The admission requirements and procedures are described in detail in the section on "Admission to the Jacobs School of Engineering" in this catalog. Applicants who have demonstrated excellent academic performance prior to being admitted to UCSD will be admitted directly to the engineering major of their choice. These directly admitted students and all students are expected to complete lower- and upper-division courses, as suggested in the curriculum tables, in a timely fashion in the sequences outlined.

Transfer Students

Requirements for admission as an MAE major or minor, or into MAE courses, are the same for transfer students as they are for continuing students (see section on "Admission to the Jacobs School of Engineering" in this catalog). Accordingly, when planning their program, transfer students should be mindful of lower-division prerequisite course requirements, as well as for meeting collegiate requirements.

Students who have taken equivalent courses elsewhere may request to have transfer credit apply toward the department's major requirements. To receive transfer credit, complete a MAE Student Petition form and submit it to MAE Student Affairs. For mathematics, chemistry and physics, transfer equivalencies are determined by the respective departments. An Undergraduate Student Petition must be submitted to each department from which you are requesting tranfer credit.

Academic Advising

Upon admission to the major, students should consult the catalog or MAE Web site (http://wwwmae.ucsd.edu) for their program of study or their undergraduate adviser if they have questions. The program plan may be revised in subsequent years, but revisions involving curricular requirements require approval by the undergraduate adviser or the Undergraduate Affairs Committee. Because some course and/or curricular changes may be made every year, it is imperative that students consult with the department's undergraduate adviser on an annual basis.

Many MAE courses are offered only once a year and therefore should be taken in the recommended sequence. If courses are taken out of sequence, it may not always be possible to enroll in courses as desired or needed. If this occurs, students should seek immediate departmental advice. When a student deviates from the sequence of courses specified for each curriculum in this catalog, it may be impossible to complete an MAE major within the normal four-year period.

In addition to the advising available through the Student Affairs Office, programmatic or technical advice may be obtained from MAE faculty members. A specific MAE faculty mentor is assigned to each MAE student. All MAE students are required to meet with their faculty mentor at least once a quarter.

Program Alterations/ Exceptions to Requirements

Variations from or exceptions to any program or course requirements are possible only if a petition is approved by the MAE Undergraduate Affairs Committee before the courses in question are taken. Petition forms may be obtained from the MAE Student Affairs Office and must be processed through this office.

Independent Study

MAE students may take MAE 199, Independent Study for Undergraduates, under the guidance of an MAE faculty member. This course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division technical elective course requirements for the major. Students interested in this alternative must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic. After obtaining the faculty member's concurrence on the topic and scope of the study, the student must submit a Special Studies Course form (each quarter) and an MAE 199 as Technical Elective Contract form to the Undergraduate Affairs Committee. These forms must be completed, approved, and processed prior to the add/drop deadline. Detailed policy in this regard and the requisite forms may be obtained from the Student Affairs Office.

Teaching

Students interested in participating in the instructional activities of the department may take MAE 195, Undergraduate Teaching. Normally, this course is taken as an elective on a P/NP basis. Under very restrictive conditions, it may be used to satisfy upper-division technical elective course requirements for the major. Policy in this regard and the appropriate forms may be obtained from the Student Affairs Office.

Integrated Bachelor's/Master's Degree Program

An integrated program leading to a bachelor of science and a master of science degree in engineering is offered to undergraduate students who are enrolled in any of the major programs offered by the Department of MAE. Contact the MAE Graduate Student Affairs Office for details.

The program is open only to UCSD undergraduates. The Department of MAE does not have financial assistance available for students enrolled in this program.

The Graduate Program

The Department of Mechanical and Aerospace Engineering offers graduate instruction leading to the M.S. and Ph.D. degrees in engineering sciences with a designated specialization in each of the following areas: aerospace engineering,
applied mechanics, applied ocean sciences, chemical engineering, engineering physics, and mechanical engineering.

Admission is in accordance with the general requirements of the graduate division, which requires a B.S. and/or M.S. degree in some branch of engineering, the physical sciences, or mathematics; an overall GPA of 3.0 ; and three letters of recommendation from individuals who can attest to the academic or professional competence and to the depth of their interest in pursuing graduate study. In addition, all applicants are required to submit GRE General Test scores. A minimum score of 550 on the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. Students who score below 600 on the TOEFL examination are strongly encouraged to enroll in an English as a second language program before beginning graduate work. (UCSD Extension offers an excellent English language program during the summer as well as the academic year.) Applicants are judged competitively. Based on the candidate's background, qualifications, and goals, admission to the program is in one of three categories: M.S. only, M.S., or Ph.D. Admission to the M.S. only category is reserved for students for whom the MS degree is likely to be the terminal graduate degree. The M.S. designation is reserved for students currently interested in obtaining an M.S. degree but who at a later time may wish to continue in the doctoral degree program. Admission to the Ph.D. program is reserved for qualified students whose final aim is a doctoral degree. Policies for possible changes in status are given under the "Master's Degree Program" below.

Non-matriculated students are welcome to seek enrollment in MAE courses via UC Extension's concurrent registration program, but an extension student's enroliment in an MAE graduate course must be approved by the instructor.

Master's Degree Program

The M.S. program is intended to extend and broaden an undergraduate background and/or equip practicing engineers with fundamental knowledge in their particular fields. The degree may be terminal, or obtained on the way to the Ph.D.The degree is offered under both the Thesis Plan I and the Comprehensive Examination Plan II
(see "Graduate Studies: Master's Degree"). A strong effort is made to schedule M.S.-level course offerings so that students may obtain their M.S. degree in one year of full-time study or two years of part-time study.
M.S. Time Limit Policy: Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Course requirements are flexible in the applied mechanics, chemical engineering, and engineering physics programs. Specific departmental requirements for the M.S. degree are as follows:

Thesis Plan I: This plan of study involves both course work and research, culminating in the preparation of a thesis. A total of forty-eight units of credit is required: thirty-six units (nine courses) must be in course work, and twelve units must be in research. The student's program is arranged, with prior approval of the faculty adviser, according to the following policies:

1. Course work must include sixteen units (four courses) of MAE 200-level courses.
2. Units obtained in MAE 205, 207, 259, or 299 may not be applied toward the course work requirement.
3. No more than a total of eight units of MAE 296 and 298 may be applied toward the course work requirement.
4. No more than twelve units of upper-division 100-level courses may be applied toward the course work requirement.
5. Twelve units of MAE 299 must be taken to fulfill the research requirement.
Students must maintain at least a B average in the courses taken to fulfill the degree requirements. A thesis based on the research is written and subsequently reviewed by the thesis adviser and two other faculty members appointed by the dean of Graduate Studies. The review is normally an oral defense of the thesis.

Comprehensive Examination Plan II: This plan of study involves course work only and culminates in a comprehensive examination. A total of forty-eight units of credit (twelve courses) is required. The student's program is arranged, with prior approval of the faculty adviser, according to the following policies:

1. At least sixteen units (four courses) must be MAE 200-level courses.
2. Units obtained in MAE 205, 207, 259, or 299 may not be applied toward the degree requirements.
3. No more than a total of eight units of MAE 296 and 298 may be applied toward the degree requirements.
4. No more than twelve units of upper-division 100 -level courses may be applied toward the degree requirements.
Students must maintain at least a B average in the courses taken to fulfill the degree requirements. The comprehensive examination is conducted by the adviser and at least two other faculty members. The examination committee normally conducts an oral examination in two areas of specialization covered by course work taken by the student. A student working toward the Ph.D. degree who has successfully passed two areas of the department's Ph.D. examination need not take the comprehensive examination for the M.S. degree.

Change of Degree. Upon completion of the requirements for the M.S. degree, students admitted as M.S. only or M.S. candidates are not automatically eligible for admission to the Ph.D. program.
M.S. only candidates who subsequently wish to pursue a doctorate must submit an application for a change in status to their examining committee. If the recommendation is positive and the request approved, the student must submit a general petition for graduate students to effect the change of status. In addition, the examining committee may recommend that the examination satisfy one of the four topics required in the departmental qualifying examination for the doctorate.
M.S. candidates who subsequently wish to pursue a doctorate must also submit an application for a change in status to their examining committee. In this case, a special examination is not required. The application, however, must be approved and signed by an MAE faculty member who expects to serve as the student's Ph.D. adviser. When the request is approved, the student must submit a general petition for graduate students to effect the change of status. If the student elects the comprehensive examination plan for the M.S. degree, this examination may be used not only to fulfill the requirement for the M.S. degree but also to satisfy one of the four topics required in the departmental qualifying examina-
tion for the doctorate. In fact, the M.S. examination may be part of the doctoral examination.

M.S. Program

To complete an M.S. degree with specialization in aerospace engineering, chemical engineering, engineering physics, mechanical engineering, applied mechanics, or applied ocean sciences, students must complete a sequence of courses unique to their area. Students should consult with their faculty adviser, as well as the MAE Graduate Student Affairs Office, when choosing their courses.

Doctoral Degree Program

The MAE Ph.D. program is intended to prepare students for a variety of careers in research and teaching. Therefore, depending on the student's background and ability, research is initiated as soon as possible. In general, there are no formal course requirements for the Ph.D. All students, in consultation with their advisers, develop course programs that will prepare them for the MAE Departmental Qualifying Examination and for their dissertation research. However, these programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree. Doctoral students who have passed the Departmental Examination may take any course for an S / U grade with the exception of any course that the student's Departmental or Ph.D. Qualifying Examination Committee stipulates must be taken in order to remove a deficiency. It is strongly recommended that all MAE graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Qualifying Examination. Specific details in this regard can be obtained from the MAE Student Affairs Office.

Doctoral Examinations: An MAE Ph.D. student is required to pass three examinations. The first is a Departmental Qualifying Examination (DQE) which is intended to determine the candidate's ability to successfully pursue a research project level appropriate for the doctorate. This first exam must be taken within the first six quarters of registration as a graduate student. The DQE is an oral examination by a committee of four persons (two of which must be in the MAE department) and is based on material taught over 36 units in three areas of study: a major area (four courses), a minor area (two introductory courses), and a study in
mathematics or basic science (three courses). Students must submit a plan of study, approved by their adviser, to the Graduate Affairs Committee for final approval by the end of their second quarter of graduate study.

The Teaching Experience is required of all MAE Ph.D. students prior to taking the Ph.D. Qualifying Exam. The teaching experience is defined as lecturing one hour per week in either a problemsolving section or regular lecture for one quarter in a course designated by the department. The requirement can be fulfilled by teaching assistant service or taken as a course for academic credit (MAE 501). Students must contact the Student Affairs Office to plan for completion of this requirement.

The Ph.D. Qualifying Examination is the second examination required of MAE Ph.D. students. In preparation for the Ph.D. Qualifying Examination, students must have completed the Departmental Qualifying Examination and the Departmental Teaching Experience requirement, obtained a faculty research adviser, and have identified a topic for their dissertation research and have made initial progress. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council. The committee conducts the Ph.D. Qualifying Examination, during which students must demonstrate the ability to engage in dissertation research. This involves the presentation of a plan for the dissertation research project. The committee may ask questions directly or indirectly related to the project and general questions that it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the Candidate in Philosophy degree (see "Graduate Studies" section in this catalog).

The Dissertation Defense is the final Ph.D. examination. Upon completion of the dissertation research project, the student writes a dissertation that must be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student's dissertation must be submitted to each member of the doctoral committee approximately four weeks before the defense. It is understood that this copy of the dissertation given to committee members will not be the final copy, and that the committee members may suggest changes in the text at the time of the defense. This examination may not be conducted earlier
than three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and Research and the university librarian represents the final step in completion of all requirements for the Ph.D.

There is no formal foreign language requirement for doctoral candidates. Students are expected to master whatever language is needed for the pursuit of their own research.

Ph.D.Time Limit Policy. Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years (engineering physics, seven years). The defense and submission of the doctoral dissertation must be within seven years (engineering physics, eight years).

Evaluations. In the spring of each year, the faculty evaluate each doctoral student's overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student's work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate program.

Joint Doctoral Program with San Diego State University

The Department of Mechanical and Aerospace Engineering at UCSD participates in a joint doctoral program with the Graduate Group in Applied Mechanics at SDSU. The program leads to the degree of doctor of philosophy in engineering sciences (applied mechanics). Participants in the program are required to spend one year enrolled at UCSD; their dissertation research is carried out under the supervision of an SDSU faculty member.

Information regarding admission may be obtained from the departmental Student Affairs Office.

The Graduate Curriculum in Chemical Engineering

The Chemical Engineering (CENG) graduate program is an interdepartmental program and is described more completely under the Chemical Engineering Program in this catalog.

COURSES

All students enrolled in MAE courses or admitted to an MAE program (including premajors) are expected to meet prerequisite and performance
standards, i.e., students may not enroll in any MAE courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C- or better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the various program outlines, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog. Furthermore, the majority of MAE courses have enrollment restrictions which give priority to or are open only to declared pre-engineering students and/or to students who have been admitted to an MAE major. Where these restrictions apply, the registrar will not enroll other students except by department stamp on class enrollment cards. The department expects that students will adhere to these policies of their own volition and enroll in courses accordingly. Students are advised that they may be dropped at any time from course rosters if prerequisites and/or performance standards have not been met.

While most lower-division courses are offered more than once each year, most MAE upper-division courses are taught only once per year, and courses are scheduled to be consistent with the curricula as shown in the tables. When possible, MAE does offer selected large enrollment courses more than once each year. A tentative schedule of course offerings is available from the department each spring for the following academic year.

LOWER-DIVISION

MAE 01. Introduction to Mechanical and Aerospace

 Engineering (4)(Formerly AMES 01) A general introduction to the various specialties in mechanical engineering using analysis of a specified system. Performance prediction using engineering analysis. Performance testing and posttest evaluation. A discussion of the role of engineers in research, design and development, testing, management, teaching. Professional ethics. Prerequisite: MAE premajors and majors only.

MAE 03. Introduction to Engineering Graphics and

 Design (4)(Formerly AMES 15) Introduction to design through a hands-on project, where student teams build a working motor-controlled machine. Engineering graphics and communication skills are introduced in the areas of: Computer-Aided Design (CAD), hand sketching, and technical communication. Prerequisite: grade of C - or better in Physics $2 A$ or $4 A$ (or concurrent enrollment).

MAE 05. Quantitative Computer Skills (4)

(Formerly AMES 05) Introductory course for non-engineering majors. Use of computers in solving problems; applications from life sciences, physical sciences, and engineering. Students run existing computer programs and complete some programming in BASIC. Prerequisite: none.

MAE 09. $\mathrm{C} / \mathrm{C}_{++}$Programming (4)
(Formerly AMES 09) C/C++ computer programming under the UNIX environment with applications to numerical problems fundamental to computational mechanics. Arithmetic operations, branches, arrays, data structures, and use of pointers are introduced. Programming ethics are discussed.

MAE 10. FORTRAN for Engineers (4)
(Formerly AMES 10) FORTRAN 90 computer programming under UNIX environment with applications to numerical problems relevant to engineering applications. Arithmetic operations, control constructs, subprograms, arrays and array processing. Input/Output handling and some advanced features of FORTRAN 90 are introduced. Priority enrollment given to preengineering and engineering majors.

MAE 20. Elements of Materials Science (4)
(Formerly AMES 11) The structure of materials: metals, ceramics, glasses, semiconductors, superconductors and polymers. Control of internal structure to produce desired properties. Mechanical, rheological, electrical, optical, superconducting and magnetic properties and classification. Prerequisites: Phys. 2A or 4A, Chem. 6A, Math. 21 C or 20 D (or concurrent registration).

MAE 90. Undergraduate Seminar (1)
(Formerly AMES 90) Selected topics of interest to the faculty will be used to introduce students to engineering science. Prerequisite: none. Not open to upperdivision students.

UPPER-DIVISION

MAE 101A. Introductory Fluid Mechanics (4)
(Formerly AMES 101A) Fluid statics; fluid kinematics; integral and differential forms of the conservation laws for mass, momentum and energy; Bernoulli equation; potential flows; dimensial analysis and similitude. Prerequisites: admission to the engineering major and grades of C- or better in Phys. 2A, Math. 21D or 20D, 20 E.

MAE 101B. Advanced Fluid Mechanics (4)
(Formerly AMES 101B) Boundary layers, compressible flow including shock waves, generalized one-dimensional flow. Prerequisites: grade of C - or better in MAE 101A and MAE 110A (or concurrent enrollment).

MAE 101C. Heat Transfer (4)
(Formerly AMES 101C) Steady and unsteady conduction; convection in internal and external flows; heat exchangers; introduction to radiation; free convection. Prerequisites: admission to the engineering major and MAE 101A-B with grades of C - or better.

MAE 104. Aerodynamics (4)
(Formerly AMES 104) Basic relations describing flow field around wings and bodies at subsonic and supersonic speed. Thin-wing theory. Slender-body theory. Formulation of theories for evaluating forces and moments on airplane geometries. Application to the design of high-speed airplanes. Prerequisites: admission to the engineering major and grade of C - or better in MAE 101A-B.

MAE 105. Introduction to Mathematical Physics (4)
(Formerly AMES 105) Fourier series, Sturm Liouville theory, elementary partial differential equations, integral transforms with applications to problems in vibration, wave motion, and heat conduction. Prerequisites: admission to engineering major or and grades of C - or better in Phys. 2A-B and Math. 20D or Math. 21 D.

MAE 107. Computational Methods in Engineering (4)

(Formerly AMES 154) This course discusses numerical methods for applications for mechanical engineering problems. Topics include solution of systems of tinear and nonlinear equations, function interpolation and curve fitting, function approximation, computation of integrals, numerical differentiation, and solution of systems of ordinary differential equations. Prerequisites: admission to the engineering major and grades of C - or better in MAE 9 or 10 and Math. 20 F.

MAE 110A. Thermodynamics (4)
(Formerly AMES 110) Application of the first and second laws to power and refrigeration cycles; control volume analysis, non-ideal compressible substances; gas mixtures; psychometrics; combustion. Prerequisites: grades of C - or better in Phys. $2 C$ and Chem. $6 A$ (or equivalent). Enrollment restricted to pre-engineering and engineering majors.

MAE 110B. Thermodynamic Systems (4)
(Formerly AMES 119-Topics in Energy and Thermodynamics Systems) Thermodynamic analysis of power cycles with application to combustion driven engines: internal combustion, diesel, and gas turbines. Thermodynamics of mixtures and chemical and phase equilibrium. Computational methods for calculating chemical equilibrium. Prerequisite: grade of $C-$ or better in MAE IIOA.

MAE 113. Fundamentals of Propulsion (4)
(Formerly AMES 159-Fundamentals of Gas Turbines) Compressible flow, thermodynamics, and combustion relevant to aircraft propulsion as well as to stationary power plants, analysis and design of components for gas turbines, including turbines, inlets, combustion chambers and nozzles. Prerequisites: admission to engineering major and grades of C - or better in MAE 110A, B or CENG 102; and MAE 101A-B-C or CENG 103 A-B-C.

MAE 117A. Elementary Plasma Physics (4)
Particle motions, plasmas as fluids, waves, diffusion, equilibrium and stability, nonfinear effects, controlled fusion. Cross-listed with Physics 151. Prerequisites: Physics 100 (B, C) or ECE 107 or equivalent; Math 21 D .

MAE 117L. Elements of Experimental Plasma Physics (4) Measurements of electron density and temperature with the lengmuire probes, emission spectroscopy measurements of neutrals and ions in plasmas; electric breakdown of the gases; plasmas etching of materials. Prerequisites: none.

MAE 118A. Energy: Non-Nuclear Energy

Technologies (4)

(Formerly AMES 118A) Oil recovery from tar sands and oil shale. Coal production, gasification, liquefaction. The hydrogen economy. Energy storage systems. Techniques for direct energy conversion. Solar energy utilization. Hydroelectric power generation. Hydrothermal energy. Geothermal energy from hot rocks. Electrical power production, transmission, and distribution. Prerequisite: consent of instructor.

MAE 118B. Energy: Nuclear Energy Technologies (4) (Formerly AMES 118B) A brief survey of energy demands and resources. Available nuclear energy, background in atomic and nuclear physics; fission and fusion processes, physics of fission reactions-engineering aspects-safety and environmental effects, fusion-including laser fusion and magnetic confinement, and nuclear power economics. Prerequisite: consent of instructor.

MAE 118C. Introduction to Fusion Science and Technologies (4)
(Formerly AMES 118C) Overview of basic fusion processes, high-temperature plasma characteristics, and fusion power plant features. Survey on the enabling technologies for practical fusion and related applications outside of fusion, such as plasma-material interactions, plasma heating, high heat flux engineering, superconductivity, advanced materials, and nuclear technology. Prerequisites: MAE 101A or CENG 103A and either Physics 100B, 100C, ECE 107, or their equivalent.

MAE 120. Dynamics of Natural Flows (4)
Description of atmosphere and oceans; hydrological cycle. Dynamics of stratified and rotating flows. Surface and interfacial waves; the solitary wave, hydraulic flows. Flow over topography. Gravity currents. Stratified withdrawal. Applications to river flow, estuaries, atmos-phere-ocean system, water treatment, reservoir management. Prerequisites: MAE (AMES) $101 B$ and MAE 105 with a grade of C - or better.

MAE 121. Convective Flows in the Environment (4)
Convection and the Rayleigh number. Plumes and thermals relation to atmospheric boundary layer and ocean mixed layer. Effects of rotation. Katabatic flows. Fires and clouds. Double-diffusive convection with oceanographic and industrial applications; solar ponds. Prerequisites: MAE (AMES) 101 B and MAE 105 with a grade of C-or better.

MAE 122. Air Pollution Modeling (4)

Fickian diffusion; advection-diffusion equation. Turbulent dispersion and eddy diffusivities. Gaussian plume models for passive scalars; entrainment. Concepts of buoyancy and momentum fluxes. Similarity theory of the atmospheric boundary layer. Current practices and regulations. Experience with air dispersion software. Prerequisites: MAE $101 B$ and MAE 105 with a grade of C - or better.

MAE 123. Fluid-Solid Interactions in Environmental Engineering (4)
Fundamentals of adsorption and surface reactions, and processes in porous media and packed beds (diffusion/dispersion/flow coupled with adsorption/reaction). Examples include reactions on atmospheric particulates, reactions on ice crystals in the polar atmosphere and effect on ozone, transport of contaminant plumes in groundwater, and remediation processes such as catalytic destruction of air pollutants. Prerequisite: consent of instructor.

MAE 124. Introduction to Environmental Engineering

 (4)Study of industrial activity and the environment. Internal (plant) and external (fate and transport) issues. Constraints on industry; regulations, social and policy issues. Local and global issues; pollution and CO2 resources. Environment impact, risk analysis and emergency response, planning-noise. Natural and anthroprogenic disasters. Industrial ecology. Green manufacturing. Prerequisites: engineering majors only and student receiving a grade of C - or better in Math. 20B, Physics 2B, and Chemistry $6 B$.

MAE 125A. Flow and Transport in the Environment (4) Study of river flow and hydraulic control; surface waves; applications to reservoirs and estuaries. Introduction to stratification and buoyancy; applications to atmospheric surface layer and the ocean mixed layer. Ideas behind turbulent dispersion. Turbulent and scaling laws. Gravity currents and katabatic flows. Prerequisites: engineering majors and students receiving a grade of C or better in MAE 101A or CENG 103A.

MAE 125B. Fluid-Solid Interactions in Environment

Engineering (4)
Introduction to groundwater flow. Pollution transport through the water table. Chemical processes in ozone hole. Fundamentals of flow. Darcy flow. Diffusion and dispersion. Gravity currents and plumes in porous media. Mushy layers. Chemistry of fluid-solid interactions. Fundamentals of adsorption and surface reactions. Prerequisites: engineering majors and students receiving a grade of C - or better in MAE 125A.

MAE 125C. Case Studies In Environmental Engineering (4)

This course is project-oriented. Students will conduct research in small groups, give oral presentations and write reports. Topics reflect material in MAE 125A and MAE 125B. Possible topics: air pollution modeling, building ventilation, wetland preservation. Prerequisites: engineering majors and student receiving a grade of C - or better in MAE 125A-B.

MAE 130A. Mechanics I: Statics (4)

(Formerly AMES 121A) (Cross-listed with SE 101A) Principles of statics using vectors; two and three-d equilibrium of statically determinate structures under discrete and distributed loading including hydrostatics; internal forces and concepts of stress; free body diagrams; moment, product of inertia; analysis of trusses and beams. Prerequisites: Math. 21C and Phys. 2A with grades of C - or better. Students cannot also receive credit for SE 101A.

MAE 130B. Mechanics II: Dynamics (4)

(Formerly AMES 121B) (Cross-listed with SE101B) Kinematics and kinetics of particles in 2-D and 3-D motion by using vector representation. Orbital mechanics. Work, energy, and power. Conservative forces, conservation principles. Momentum, impulsive motion and impact. Rigid body kinetics and kinematics; Coriolis acceleration, eulerian angles. Undamped vibrating systems. Prerequisites: Math. $21 D$ and MAE 130A or SE 101A with grades of C- or better. Student cannot also receive credit for SE 101B.

MAE 130C. Mechanics III: Vibrations (4)
(Formerly AMES 121C) Free and forced vibrations of damped one-degree of freedom systems. Matrix representation of discrete multiple degree of freedom systems. Use of Matlab for both modal analyses and response analyses of systems subjected to impulse and step loading. Lagrange's equations. Modal superposition for analysis of continuous vibrating systems with applications to structures. Prerequisites: admission to the engineering major and grades of C - or better in Math. 20F and MAE $130 B$ or SE 101B. Engineers only. Students cannot also receive credit for SE 101C.

MAE 131A. Fundamentals of Solid Mechanics I (4)
(Formerly AMES 130A) Mechanics of deformable bodies under torsional, shearing and bending loads. Deflection of beams. Stability of columns. Formulation of two and three dimensional elasticity problems. Stress concentration. St. Venant's semi-inverse torsion analysis. Strain energy and energy principles. Design of statically indeterminate rods, shafts, beams and columns. Prerequisites: admission to the engineering major and Grades of C- or better in Math. 20D or 21D, 20F; and MAE 130A or SE 101A.

MAE 131B. Fundamentals of Solid Mechanics II (4) (Formerly AMES 130B) Continuum mechanics of solids and its application to the mechanical response of machine and structural elements. Stress and strain in indicial notation; field equations and constitutive rela-
tions. Linear elastic stress analysis in torsion, plane stress and plane strain; stress concentrations; fracture mechanics. Extremum principles and structural stability. Viscoelasticity, plasticity, and failure criteria. Theorems of plastic limit analysis. Prerequisites: admission to the engineering major and grades of C-or better in MAE 131A, and MAE 105 (or concurrent enrollment).

MAE 131C. Solid Mechanics III (4)

(Formerly AMES 130C) Small deflection theory of plates. Solutions for rectangular and circular plates. Buckling of rectangular plates. Large deflections and shear deformations. Energy methods and finite element method of analysis. Prerequisites: admission to the engineering major and grade of C-or better in MAE 131B.

MAE 133. Finite Element Methods in Mechanical and

 Aerospace Engineering (4)(Formerly AMES 133) Development of stiffness and mass matrices based upon variational principles and application to static, dynamic, and stability design problems in structural and solid mechanics. Architecture of computer codes for linear and nonlinear finite element analysis and basic computer implementation. The use of general purpose finite element structural analysis computer codes. Prerequisites: admission to the engineering major and grades of C - or better in MAE 131AB and MAE 107.

MAE 135. Computational Mechanics (4)
Mathematical modeling in terms of systems of algebraic and differential equations. Overview of numerical methods. Problem statement, boundary, and initial conditions. Overview of commerical packages for solving the equations of Mathematical and Engineering Physics. Numerical solutions of selected examples drawn from real-life applications of fluid flow, solid mechanics, and heat transfer with emphasis on design. Prerequisite: consent of instructor.

MAE 139. Reliability of Engineering Systems (4)
(Formerly AMES 139) Introduction to probability and basic statistics. Analytical models for random phenomena and associated mathematical properties. Analysis and assessment of reliability. Probability-based design. Structural component and systems reliability. Prerequisites: admission to the engineering major and grades of C - or better in Math. 21C or Math. 20D; Math. 20E, and SE 130A-B.

MAE 140. Linear Circuits (4)
(Formerly AMES 163) Steady-state and dynamic behavior of linear, lumped-parameter systems, including electrical, mechanical, and thermal. Kirchoff's laws. RLC circuits. Amplifiers. Dependent sources. Response of first- and second-order systems to impulse and step inputs. Laplace transforms. Design applications in engineering. Prerequisites: admission to the engineering major and grades of C - or better in Math. 21D or Math. 20D, and Phys. $2 B$.

MAE 141A. Linear Control: Theory and Applications (4) (Formerly AMES 141) Analysis and design of controllers for linear dynamic systems. Transient and steady-state behavior are analyzed using transfer functions and Laplace transforms. Stability is assessed via the root locus, Bode, and Nyquist plots. P.I.D. and other compensators. State variables are briefly introduced. Examples are selected from Mechanical and Aerospace Engineering. Prerequisites: admission to the engineering major and \mathcal{C} - or better in MAE 105, 107 and ECE 101A.

MAE 141B. Digital Control Systems (4)
Discrete time systems: sampling, aliasing, stability, ztransform, discrete time signals. State space models:
state equations, canonical forms, observability, controllability. Pole placement design, observer design, output feedback, linear quadratic regulator design. Implementation: digital approximation, computational and numerical issues. Prerequisite: MAE 141A with a grade of C - or better.

MAE 142. Dynamics and Control of Aerospace

 Vehicles (4)(Formerly AMES 142-Flight Mechanics) The dynamics of vehicles in space or air are derived for analysis of the stability properties of spacecraft and aircraft. The theory of flight, lift, drag, dutch roll and phugoid modes of aircraft are discussed. Optimal state space control theory for the design of analog and digital controllers (autopilots). Prerequisites: admission to the engineering major and grades of C - or better in MAE 104 and MAE 141A or ECE 171A.

MAE 150. Computer-Aided Design (4)

(Formerly AMES 158--Computer-Aided Analysis and Design) Design methodology, tolerance analysis, Monte Carlo analysis, kinematics and computer-aided design of linkages, numerical calculations of moments of inertia, design of cams and cam dynamics; finite element analysis, design using Pro-E, Mechanica Motion and Mechanica Structures. Prerequisites: grade of C - or better in MAE 130A or BENG 110 and MAE 107.

MAE 152. Computer Graphics for Engineers and

Scientists (4)
(Formerly AMES 157) Computer graphics algorithms using C programming and Ironcad. Applications in engineering and science. Line-drawing algorithms. Area fill algorithms, color, CAD user interface, spline curves and surfaces, 2-D and 3-D transformations, wireframe and solid models. Hidden-surface elimination. Prerequisities: grade of C - or better in MAE 3 and MAE 9 or 10.

MAE 155A. Aerospace Engineering Design I (4)

(Formerly AMES 155A-Fundamental principles of aerospace design) Application of engineering mechanics to the design of aerospace components. Design and analysis of aerospace components and assemblies. Prerequisite: grade of C- or better in MAE 130C, 150, and 160.

MAE 155B. Aerospace Engineering Design II (4) (Formerly AMES 1558) Fundamental principles of aerospace design. Application of engineering mechanics to the design of aerospace components. Design, manufacture and assemble projects involving preliminary design for a realistic engineering application. Prerequisites: grade of C-or better in MAE 130C, 150, 155A, and 160.

MAE 156A. Mechanical Engineering Design I (4)

(Formerly AMES 156A) Fundamental principles of mechanical design and the design process. Application of engineering science to the design and analysis of mechanical components. Initiation of team design projects that culminate in MAE 156B with a working prototype designed for a real engineering application. Prerequisite: grade of C - or better in MAE 130C, 150, and 160.

MAE 156B. Mechanical Engineering Design II (4)
(Formerly AMES 156B) Fundamental principles of mechanical design and the design process. Culmination of a team design project initiated in MAE 156A which results in a working prototype designed for a real engineering application. Prerequisite: grade of C - or better in 156A in the immediately preceding quarter, MAE 101C, MAE 150.

MAE 160. Mechanical Behavior of Materials (4)
(Formerly AMES 102) Mechanical tests, elasticity and anelasticity, dislocations and microplasticity of crystals, plastic deformation and creep, fracture and strengthening mechanisms, ceramics and other inorganic nonmetallics, polymers. Prerequisites: grade of C - or better in MAE 20 and MAE 130A (or SE 101A).

MAE 162. Advanced Materials: Processing, Selection and Design (4)
(Formerly AMES 160) Introduction to various techniques used in fabricating useful bodies with optimal structural, magnetic, optical, or electronic properties. influence of the type of raw material, densification techniques and methods to tailor composition and microstructure. Ceramics, metals, semiconductors, and composites will be discussed. Prerequisite: MAE 160 or consent of instructor.

MAE 163. Mechanics of Porous Materials (4)
Powder packing structures. Fundamentals of the continuum mechanics of powder deformation, plasticity of porous materials. Micromechanical models. Review of main methods of powder shaping, synthesis an manufacturing of high density structures: cold consolidation, forging, rolling, sintering, uniaxial hot pressing, hot isostatic compaction (HIP), extrusion, injection molding. Prerequisite: consent of instructor.

MAE 165. Fatigue and Failure Analysis of Engineering

 Components (4)The engineering and scientific aspects of crack nucleation, slow crack growth, and unstable fracture in crystalline and amorphous solids. Microstructural effects on crack initiation, fatigue crack growth and fracture toughness. Methods of fatigue testing and fracture toughness testing. Fractography and microfractography. Design safe methodologies and failure prevention. Failure analysis of real engineering structures. Prerequisite: consent of instructor.

MAE 167. Wave Dynamics in Materials (4)
Pressure and shear waves in infinite solids. Reflection and diffraction. Rayleigh and Love waves in semiinfinite space. Impulse load on a half space. Waveguides and group velocity. Prerequisite: consent of instructor.

MAE 170. Experimental Techniques (4)

(Formerly AMES 170) Principles and practice of measurement and control and the design and conduct of experiments. Technical report writing. Lectures relate to dimensional analysis, error analysis, signal-to-noise problems, filtering, data acquisition and data reduction, as well as background of experiments and statistical analysis. Experiments relate to the use of electronic devices and sensors. Prerequisite: admission to the MAE or Bioengineering major and grade of C - or better in Phys. 2 CL .

MAE 171A. Mechanical Engineering Laboratory I (4)
(Formerly AMES 171A) Analysis of mechanical engineering systems using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, and testing machine. Students operate facilities, obtain data, complete engineering analysis and write major reports. Prerequisites: senior standing in engineering major and grades of C- or better in MAE 101C or CENG 103C: MAE 160, MAE 141A, and MAE 170.

MAE 171B. Mechanical Engineering Laboratory II (4) (Formerly AMES 171B) Design and analysis of original experiments in mechanical engineering. Students research projects using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, and testing machine and control sys-
tems. Students propose and design experiments, obtain data, complete engineering analysis and write a major report. Prerequisite: requires a grade of C - or better in MAE 171A.

MAE 175A. Aerospace Engineering Laboratory I (4) (Formerly AMES 175A) Analysis of aerospace engineering systems using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, and testing machine. Students operate facilities, obtain data, complete engineering analysis and write major reports. Prerequisites: senior standing in engineering major and grade of C - or better in MAE 101 C or CENG 103C; MAE 160, MAE 141A, MAE 170.

MAE 175B. Aerospace Engineering Laboratory II (4)

 (Formerly AMES 175B) Design and analysis of original experiments in aerospace engineering. Students research projects using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, testing machine and control systems. Students propose and design experiments, obtain data, complete engineering analysis and write a major report. Prerequisite: requires a grade of C - or better in MAE 175A.MAE 180A. Space Science and Engineering I (4)
(Formerly AMES 144A) Introduction to space science. Earth, planetary atmospheres, especially upper atmospheres. Magnetospheres, energetic particles. Electromagnetic spectrum. Atmospheric attenuation, windows. Detection methods, instruments. Imaging systems, image processing. Observations from space. Newtonian mechanics of bound orbits. Science on manned, unmanned missions. Prerequisite: upper-division standing in physics, chemistry, or engineering department.

MAE 180B. Space Science and Engineering II (4)
(Formerly AMES 144B) introduction to space engineering. Kinematics of rockets. Types of rocket engines. Relation of engine performance and rocket characteristics to mission phases-takeoff, on-orbit maneuvers, reentry, and landing. Space structures and materials, with emphasis on new developments. Fabrication of structures from materials obtained in space. Communication systems: design characteristics, requirements, performance. Robotics and control. Tethers. Astrodynamics. Prerequisite: upper-division standing in physics, chemistry or engineering department.

MAE 191. Topics in Engineering Science (4)
(Formerly AMES 151A) course to be given at the discretion of the faculty in which topics of current interest in engineering will be presented by visiting or resident faculty members. Prerequisite: consent of instructor.

MAE 195. Teaching (2-4)
(Formerly AMES 195) Teaching and tutorial assistance in an MAE course under supervision of instructor. Not more than four units may be used to satisfy graduation requirements. P/NP grades only. Prerequisites: junior status and $a B$ average in major and consent of department chair.

MAE 197. Engineering Internship (1-4)

(Formerly AMES 197) Coordinated through UCSD Academic Internship Program, this course provides work experience through industry, government offices, hospitals and their practices. Students will work in local industry or hospital under faculty supervision. Units may not be applied toward major graduation requirements. Internship is unsalaried. Prerequisites: completion of ninety units with 2.5 GPA and consent of faculty adviser.

MAE 198. Directed Group Study (1-4)

(Formerly AMES 198) Directed group study on a topic or in a field not included in the regular department curriculum, by special arrangement with a faculty member. May be taken P/NP only. Prerequisite: consent of instructor.

MAE 199. Independent Study for Undergraduates (4) (Formerly AMES 199) Independent reading or research on a problem by special arrangement with a faculty member. P/NP grades only. Prerequisite: consent of instructor.

GRADUATE COURSES

The graduate course numbers will not change except for new courses added. For example, AMES 205 will become MAE 205.

205. Graduate Seminar (1)

Each graduate student in MAE is expected to attend one seminar per quarter, of his or her choice, dealing with current topics in fluid mechanics, solid mechanics, applied plasma physics and fusion, chemical engineering, applied ocean sciences, energy and combustion, environmental engineering, or materials science, and dynamics and controls. Topics will vary. (S/U grades only)
207. Topics in Engineering Science (4)

A course to be given at the discretion of the faculty in which topics of current interest in engineering will be presented. Prerequisite: consent of instructor.

210A. Fluid Mechanics I (4)
Basic conservation laws. Flow kinematics. The NavierStokes equations and some of its exact solutions Nondimensional parameters and different flow regimes, vorticity dynamics. Prerequisites: MAE 101A-B and MAE 110A, or consent of instructor.

210B. Fluid Mechanics II (4)
Potential flows, boundary layers, low-Reynolds number flows. Prerequisites: MAE 210A, MAE 101A-B, and MAE 110 A , or consent of instructor.

210C. Fluid Mechanics III (4)
Flow instabilities, linear stability theory; introduction to turbulent flows. Prerequisites: MAE 210A-B, MAE 101A-B, and MAE 110A, or consent of instructor.
211. Introduction to Combustion (4)

Fundamental aspects of flows of reactive gases, with emphasis on processes of combustion, including the relevant thermodynamics, chemical kinetics, fluid mechanics, and transport processes. Topics may include deflagrations, detonations, diffusion flames, ignition, extinction, and propellant combustion. Prerequisites: MAE 101A-B-C or CENG 103A-B-C, MAE 110A, or consent of instructor.
212. Introductory Compressible Flow (4)

Equations of motion for compressible fluids; onedimensional gas dynamics and wave motion, waves in supersonic flow, including oblique shock waves; flow in ducts, nozzles, and wind tunnels; methods of characteristics. Prerequisites: MAE 101A-B-C or CHE 103A-B-C, MAE 110A, or consent of instructor.
213. Mechanics of Propulsion (4)

Fluid mechanics, thermodynamics and combustion processes involved in propulsion of aircraft and rockets by air breathing engines, and solid and liquid propellant rocket engines characteristics and matching of engine components; diffusers, compressors, combustors, tur-
bines, pumps, nozzles. Prerequisites: MAE 101A-B-C or consent of instructor.

214A. Introduction to Turbulence and Turbulent Mixing (4)

Introductory concepts and definitions. Basic observations and experiments. Hydrodynamic stability. Kolmogroff universal similarity hypotheses, length and time scales. Turbulent transport. Reynolds equations. Reynolds analogy. Dynamics of turbulence, kinetic energy, vorticity, temperature variance conservation. Prerequisite: MAE 101A-B-C or equivalent, or consent of instructor.

214B. Ocean Turbulence and Mixing (4)
(Cross-listed with SIO 213) Mixing mechanisms, their identification, description and modeling. Introduction to turbulence, semi-empirical theories, importance of coherent structures, effects of stratification and rotation on turbulent structure, entrainment and mixing. S/U grades permitted.

215. Hydrodynamic Stability (4)

Kelvin-Helmholtz instability of shear layers, the OrrSommerfeld equation and its solution for inviscid and viscous flows. Taylor instability of circular Couette flows; finite amplitude stability; chaos; transition to turbulence. Prerequisite: MAE 210A-C or equivalent.
217. Introduction to Plasma Equilibria, Waves, and Instabilities (4)
Plasma kinetic theory. Two fluid and MHD descriptions of plasmas. Plasma equilibrium configurations and macroscopic stability. Waves in plasmas, collisional and landau damping. Microscopic plasma instabilities. Amomalous cross field plasma transport. Nontinear wave processes; parametric instabilities, self focusing, solitons. Prerequisite: none

218A. Physics of Gas Discharge Plasmas and Appplications (4)

Charged particle motion in electro-magnetic field. Atomic processes in plasmas. Electric breakdown of the gases, plasma quasineutrality, weakly ionized plasma particle and energy fluxes, sheath. Electron kinetics, DC and RF driven discharges, plasma instabilities. Etching, deposition, implantation, and surface modification. Prerequisite: Physics 100 (B-C) or ECE 107 or equivalent.

220A. Physics of Gases (4)

Thermodynamics of gases for use in gasdynamics. Derivation of thermodynamic functions from statistical mechanics. Applications of classical and quantum statistical mechanics to chemical, thermal, and radiative properties of gases. Equilibrium and nonequilibrium radiation, chemical equilibrium, and elements of chemical kinetics. Laser and reacting-flow applications. Prerequisite: MAE 110A or consent of instructor.

220B. Physical Gasdynamics (4)
Velocity distribution functions, the Boltzmann equation, moment equations and the Navier-Stokes equations. The dynamics of molecular collisions. The Chapman-Enskog expansion and transport coefficients:shear and bulk viscosity, heat conduction, molecular and thermal diffusion. Linearizations about equilibrium: applications to acoustics and supersonic flows with relaxation. Prerequisite: MAE 101A-B-C or CENG 103A-B-C, MAE 220A, or consent of instructor.

220C. Nonequilibrium Gasdynamics (4)

Applications of thermodynamics, statistical mechanics, kinetic theory of gases and fluid mechanics to nonequilibrium flow problems. Shock structure. Chemical
relaxation. Chemically reacting boundary layers. lonized gases. Radiative heat transfer. Prerequisite: MAE 220 B or consent of instructor.

221A. Heat Transfer (4)

Conduction, convection, and radiation heat transfer. Development of energy conservation equations. Analytical and numerical solutions to transport problems. Specific topics and applications vary. Prerequisite: MAE 101A-B-C or CENG 103A-B-C, or consent of instructor. Cross listed with CENG 221A

221B. Mass Transfer (4)

Fundamentals of diffusive and convective mass transfer and mass transfer with chemical reaction. Development of mass conservation equations. Analytical and numerical solutions to mass transport problems. Specific topics and applications will vary. Prerequisitie: MAE 101A-B-C or CENG 103A-B-C, or consent of instructor.

222A-B-C. Advanced Fluid Mechanics (4-4-4)
Contemporary problems in broad areas of fluid mechanics, e.g., turbulent flows, hydrodynamic stability, geophysical fluid dynamics, transport phenomena, acoustics, boundary layers, etc. (Not necessarily taught as a sequence nor offered every quarter.) Prerequisite: MAE 210A-B-C or consent of instructor
223. Computational Fluid Dynamics (4)

Numerical methods in fluid dynamics and convective transport processes. Numerical solution of the Euler and Navier-Stokes equation. Additional topics will vary according to instructor. Examples include eigenvalue problems in hydrodynamic stability, vortex methods, spectral and panel methods. Prerequisite: MAE 101A or equivalent course, or consent of instructor.

224. Environmental Fluid Dynamics (4)

Single-layer flows with a free surface, two layer flows including exchange flows in harbors, estuaries, seas, and buildings. Continuously stratified flows with meteorological and oceanographic applications. Topographic effects, plumes, jets, and thermals. Planetary boundary layers. Cross-listed with SIO 214B. Prerequisites: introductory level graduate course in fluid mechanics.

227A. Fundamentals of Fusion Plasma Physics (4)
Magnetic and inertial confinement fusion concepts. Magnetic equilibrium configurations and limitations. Classical and anomalous transport of magnetically confined plasmas. Plasma-wall interactions. RayleighTaylor and Richter-Meshkov instabilities. Direct and indirect drive, laser and particle beams. Emerging and alternative concepts. Prerequisite: none

227B. Fundamentals of Modern Plasma Physics (4)

Fusion plasma turbulence, magnetic reconnection, strong electromagnetic wave/plasma I interactions, numerical simulations of nonlinear plasma phenomena, issues of plasma astrophysics and space plasmas, plasma based propulsion, plasma boundary layers in fusion devices, plasma chemistry. Prerequisite: MAE 227A or consent of instructor

229A. Mechanical Properties (4)
Review of basic concepts in mechanics of deformation: elasticity, plasticity, viscoelasticity and creep; effects of temperature and strain-rate on inelastic flow; microstructure and mehanical perperties; application of basic concepts to selected advanced materials.Crosslisted with MATS 211A. Prerequisite: consent of instructor.

229B. Advanced Mechanical Behavior (4)
Rate mechanisms in crystaline solids, kinetics and dynamics of plastic flow by slip at low and high strain
rates. Mechanisms of inelasticity in non-metals, metals, and polymeric materials. Mechanisms of failure and effects of strain rates. Cross-listed with MATS 211B. Prerequisite: MAE 229A or consent of instructor.

231A. Foundations of Solid Mechanics (4)
Specification of stress and strain; infinitesimal and finite deformation; conservation equations; typical constitutive equations; minimum potential energy principle. Prerequisite: MAE 131B or consent of instructor.

231B. Elasticity (4)
Basic field equations. Typical boundary value problems of classical linear elasticity. Problems of plane stress and plane strain. Variational principles. Prerequisite: MAE 231A or consent of instructor.

231C. Anelasticity (4)

Mechanical models of viscoelastic, plastic, and viscoplastic behavior in simple shear or uniaxial stress. Constitutive relations for three-dimensional states of stress and strain. Application to selected technological problems. Prerequisite: MAE 231B or consent of instructor. (S)

232A. Finite Element Methods in Solid Mechanics I (4)
Finite element methods for linear problems in solid mechanics. Emphasis on the principle of virtual work, finite element stiffness matrices, various finite element formulations and their accuracy and the numerical implementation required to solve problems in small strain, isotropic elasticity in solid mechanics. Prerequisite: graduate standing.

232B. Finite Element Methods in Solid Mechanics II (4) Finite element methods for linear problems in structural dynamics. Beam, plate, and doubly curved shell elements are derived. Strategies for eliminating shear locking problems are introducted. Formulation and numerical solution of the equations of motion for structural dynamics are introduced and the effect of different mass matrix formulations on the solution accuracy is explored. Prerequisites: graduate standing and MAE 230 or MAE 232A.

232C. Finite Element Methods in Solid Mechanics III (4)
Finite element methods for problems with both material and geometrical (large deformations) nonlinearities. The total Lagrangian and the updated Lagrangian formulations are introduced. Basic solution methods for the nonlinear equations are developed and applied to problems in plasticity and hyperplasticity. Prerequisites: graduate standing and MAE 230 or MAE 232A and MAE 231A.

233A. Fracture Mechanics (4)
Theoretical strength; stress concentration. Linear and nonlinear fracture mechanics: stress singularity, fracture modes, crack tip plastic zone, Dugdale model, the Rcurve; power-law materials, the J-integral; fatigue. Special topics. Prerequisite: MAE 231A-B or consent of instructor.

233B. Micromechanics (4)

General theory of transformation strains and corresponding elastic fields; Green's functions and other solution methods; dislocations; inclusions and inhomogeneities; micromechanics of plastic flow, microcracking, cavitation, and damage in crystalline and other solids. Prerequisite:MAE 231A-B-C cor consent of instructor.

233C. Advanced Mechanics of Composite Materials (4) Three-dimensional anisotropic constitutive theories, anisotropic fracture mechanics, composite micromechanics, edge effects and interlaminar shear stresses,
impact damage and energy absorbing mechanisms, and surface wave. Prerequiste: MAE 131A-B-C, 231A-B or consent of instructor.

235A. Theory of Shells (4)
General mathematical formulation of the theory of thin elastic shells; linear membrane and bending theories; finite strain and rotation theories; shells of revolution; shallow shells; selected static and dynamic problems; survey of recent advances. Prerequisite:MAE 131A-B-C or consent of instructor.

236. Structural Stability (4)

Static, dynamic, and energy-based techniques and predicting elastic stability. Linear and nonlinear analysis of classical and shear deformable beams and plates. Ritz, Galerkin, and finite element approaches for frames and reinforced shells. Nonconservative aerodynamic (divergence flutter) and follower forces. Prerequisite: MAE 131B or consent of instructor.
237. Structural Dynamics (4)

Matrix analysis of the free and forced vibrations of discrete linear systems; response to periodic and transient excitations. Frequency response and generalized normal mode methods. Dynamics of continuous systems. Prerequisite: MAE 231A-B or consent of instructor.

238. Stress Waves in Solids (4)

Linear wave propagation; plane waves; reflection and refraction; dispersion induced by geometry and by material properties. Application of integral transform methods. Selected topics in nonlinear elastic, anelastic, and anisotropic wave propagation. Prerequisite: MAE $231 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ or consent of instructor.
241. Advances in Control Applications (4)

Study of problems of control design, identification, and optimization for flexible and smart structures, fluid flows, propulsion, power generation, vehicle dynamics (aerospace, ocean, and automotive), magnetic recording, semiconductor manufacturing, biological systems, robot manipulations, and other applications. Prerequisites: MAE 141A or equivalent.
243. Advances in Two-Phase Flow (4)

Modern developments in understanding of two-phase flows will be reviewed. New experimental methods and new theoretical concepts will be covered, as will potential future practical applications. Prerequisites: MAE 210A-B-C.

244. Advanced Simulation and Modeling of Turbulent

 Flows (4)Progress in the area of simulation and modeling of turbulent flows will be reviewed. Methods to be covered include: direct simulations, large-eddy simulation, and Reynolds averaged turbulence models. Prerequisites: MAE 210ABC; MAE 214; MAE 290AB.

245. Advances in Combustion Theory (4)

Asymptotic analyses of flame structure. Combustion in two phase flows. Turbulent combustion. Prerequisites: MAE 210AB; MAE 211; MAE 213.

246. Advances in Engine Combustion (4)

Mathematical models of combustion in diesel engines and spark-ignition engines. Mechanisms of soot formation. Prerequisites: MAE 210AB; MAE 211; MAE 213.

247. Advances in Experimental and Theoretical
 Mechanics of Materials (4)

The focus will be on coordinated experimental evaluation and theoretical modeling of thermal mechanical properties of a broad class of materials. Using state-of-
quake engineering. Both the undergraduate and graduate programs are characterized by strong interdisciplinary relationships with the Departments of Mechanical and Aerospace Engineering, Physics, Mathematics, Bioengineering, Chemistry, Electrical and Computer Engineering, Computer Science and Engineering, the Advanced Manufac turing Program, the Materials Science Program, and associated campus institutes such as the Institute of Geophysics and Planetary Physics, Institute for Pure and Applied Physical Sciences, Institute for Biomedical Engineering, Institute for Mechanics and Materials, Center of Excellence for Advanced Materials, California Space Institute, and Scripps Institution of Oceanography.

The programs and curricula of the Department of Structural Engineering will educate and train engineers in a holistic approach to structural systems engineering by emphasizing and building on the commonality of engineering structures in materials, mechanics, analysis and design across the engineering disciplines of civil, aerospace, marine and mechanical engineering.

Structural engineering is traditionally viewed as an activity within civil engineering even though many other engineering disciplines such as aerospace, marine (naval, offshore), and mechanical engineering contain well established disciplinespecific structural systems and components. In all of the various engineering disciplines there exists a large commonality in the structural materials used, in the general principles of structural mechanics, in the overall design philosophy and criteria, and in the modeling and analysis tools employed for the numerical quantification and visualization of structural response. Particularly, small disciplinary differences in materials and computational tools are rapidly disappearing with the civil engineering community opening up to new structural materials developed and used to date primarily in the aerospace industry, and with computational developments which are less product specific but more geared towards a holistic structural systems design approach with interactive graphics, object-oriented database management and concurrent visualization and data processing. Developments in overall structural systems design are increasingly cross-disciplinary over many traditional engineering areas.

The Undergraduate Program

Degree and Program Options

The Department of Structural Engineering offers an unique engineering program leading to the B.S. degree in structural engineering which is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (EAC/ABET). The Department of Structural Engineering also offers traditional non-accredited engineering programs leading to the B.S. degree in aerospace engineering and engineering sciences. The B.S. programs require a minimum of 148 units, plus college requirements in humanities and social sciences.

All Structural Engineering programs of study have strong components in laboratory experimentation, numerical computation, and engineering design. Design is emphasized throughout the curricula by open-ended homework problems, by laboratory and computer courses which include student-initiated projects, and finally, by senior design project courses which involve teams of students working to solve engineering design problems brought in from industry. The Structural Engineering programs are designed to prepare students receiving bachelor's degrees for professional careers or for graduate education in their area of specialization. In addition, the programs can also be taken by students who intend to use their undergraduate engineering education as preparation for postgraduate professional training in non-technical fields such as business administration, law or medicine.

Structural Engineering is concerned with the design and analysis of civil, mechanical, aerospace, marine, naval, and offshore structures. Examples include bridges, dams, buildings, aircraft, spacecraft, ships, oil platforms, automobiles, and other transportation vehicles. This field requires a thorough knowledge of the behavior of solids (concrete, soils, rock, metals, plastics, and composite materials), fluid mechanics as it relates to structural loads, dynamics as it relates to structural response, mathematics for the generation of theoretical structural models and numerical analysis, and computer science for simulation purposes associated with computer-aided design, response analyses, and data acquisition. Basic understanding of materials behavior and structural performance is enhanced by laboratory courses involving static and dynamic stress failure tests of structural
models, and response of structural systems. Within this area, students can specialize in (a) civil structures, (b) aerospace structures, (c) renewal of structures, or (d) earthquake engineering.

Aerospace engineering is a four-year curriculum that begins with fundamental engineering courses in mechanics, thermodynamics, materials, solid mechanics, fluid mechanics, and heat transfer. Additional courses are required in aerospace structures, aerodynamics, flight mechanics, propulsion, controls, and aerospace design. Graduates of this program will normally enter the aerospace industry to develop aircraft and spacecraft, but also may find employment in other areas that use similar technologies, such as structural, mechanical, and energy-related fields. Examples include automobile, naval, sporting equipment manufacturers, and structural analysis and design firms. This program is jointly administered by the Departments of Structural Engineering (SE), and Mechanical and Aerospace Engineering (MAE).

The engineering sciences program follows the overall Structural Engineering program except that the number of required design courses are reduced. In addition to core courses in dynamics, vibrations, structures, fluid mechanics, thermodynamics, heat transfer, and laboratory experimentation, a large number of technical electives are scheduled. This aspect of the curriculum allows flexibility by permitting specialization and indepth study in one area of the engineering sciences or through a sequence of courses on various emerging technologies. Students must consult their advisers to develop a sound course of study to fulfill the technical elective requirements of this program.

Major Requirements

Specific course requirements for the major are outlined in a table herein. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) are distributed in the curricula for students to use to meet college generaleducation requirements. To graduate, students must maintain an overall GPA of at least 2.0, and the department requires at least a C - grade in each course required for the major.

Deviations from the program of study must be approved by the Undergraduate Affairs Committee prior to taking alternative courses. In cases where a student needs to take a course outside

UCSD, prior departmental approval is essential. In addition, technical elective (TE) course selections must have departmental approval prior to taking the courses. In the accredited program, TE courses are restricted to meet ABET standards. Courses such as SE 195, SE 197 and SE 198 are not allowed as technical electives in meeting the upperdivision major requirements. SE 199 can be used as a technical elective only under restrictive conditions. Policies regarding these conditions may be obtained from the department's Student Affairs Office.

Students with different academic preparations may vary the scheduling of lower-division courses such as math, physics and chemistry, but should consult the department prior to doing so. Deviations in scheduling lower-division Structural Engineering courses are discouraged due to scheduling constraints. It is strongly advised that students taking courses outside UCSD seek prior approval from the appropriate departments before doing so. A tentative schedule of course offerings is available from the department each spring quarter for the following academic year.

General-Education/College Requirement

For graduation, each student must satisfy general-education course requirements determined by the student's college, as well as the major requirements determined by the department. The five colleges at UCSD require widely different general-education courses, and the number of such courses differs from one college to another. Each student should choose his or her college carefully, considering the special nature of the college and the breadth of general education.

The Structural Engineering program allows for twelve humanities and social science (HSS) courses so that students can fulfill their college requirements. In the ABET accredited programs, students must develop a program that includes a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. It should be noted, however, that some colleges may require more than twelve HSS courses indicated in the curriculum tables. Accordingly, students in these colleges may take longer to graduate than the indicated four-year schedule. Students must consult with their college to determine which HSS courses to take.

Professional Licensing

All students are encouraged to take the Engineering-in-Training (EIT) examination as the first step in becoming licensed as a professional engineer (PE). Students graduating from an accredited program can take the PE examination after EIT certification and two years of work experience; students graduating from a nonaccredited program can take the PE examination after EIT certification and four years of work experience.

For further information please contact the Student Affairs Office or your local Board of Registration for Professional Engineers and Land Surveyors.

STRUCTURAL ENGINEERING

(ABET Accredited Program)

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21 C
SE 1	MAE 92	SE 2
Chem. 6	Phys. 2A	Phys. 2B/2BL
HSS ${ }^{1}$	HSS	HSS
SOPHOMORE YEAR		
Math. 21 D	Math. 20F	Math. 20 E
Phys. $2 \mathrm{C} / 2 \mathrm{CL}$	SE 102	SE 103
SE 101A ${ }^{2}$	SE 101B ${ }^{2}$	SE 110A ${ }^{2}$
HSS	HSS	HSS
JUNIOR YEAR		
SE $121{ }^{2}$	SE 120	MAE 170^{2}
SE 125	MAE 101A ${ }^{2}$	TE ${ }^{3}$
SE 1108	SE 130A ${ }^{2}$	SE 1308 ${ }^{2}$
HSS	HSS	HSS
SENIOR YEAR		
SE 101C²	SE 131^{2}	SE 140^{2}
TE	TE	FS
FS ${ }^{4}$	FS	FS
HSS	HSS	HSS

${ }^{1}$ In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finarice, or personnel administration. Tweive HSS courses are listed here; individual college requirements may be higher.
${ }^{2}$ Numbering change from course previously listed under AMES.
${ }^{3}$ Technical elective (TE) course must be an upper-division or graduate course in the engineering sciences, natural sciences or mathematics, selected with prior approval of the department to meet ABET standards.
${ }^{4}$ Students must take one full focus sequence (FS) in either (a) Civil Structures (SE 150, SE 151, SE 152, SE 182), or (b) Aerospace Structures (SE 160A, SE 160B, SE 162, SE 163), or (c) Renewal of Structures (SE 170, SE 171, SE 162, SE 163), or (e) Earthquake Engineering (SE 180, SE 181, SE 182, SE 152). Students should note that not all focus sequence classes will be offered every year.

ENGINEERING SCIENCES
(Non-Accredited Program)

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21 C
SE 1	MAE 9^{2}	SE 2
Chem. 6	Phys. 2A	Phys. 2B/2BL
HSS'	HSS	HSS
SOPHOMORE YEAR		
Math. 21D	Math. 20 F	Math. 20E
Phys. 2C/2CL	SE 102	SE 103
SE 101A ${ }^{2}$	SE 101B ${ }^{2}$	SE 110A ${ }^{2}$
HSS	HSS	HSS
JUNIOR YEAR		
SE 121^{2}	SE 120	MAE 170^{2}
SE 125	MAE 101A ${ }^{2}$	TE ${ }^{3}$
SE 1108	SE 130A ${ }^{2}$	SE 130B ${ }^{2}$
HSS	HSS	HSS
SENIOR YEAR		
SE 101C²	SE 131 ${ }^{2}$	SE 140^{2}
TE	TE	TE
TE	TE	TE
HSS	HSS	HSS

${ }^{1}$ In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.
${ }^{2}$ Numbering change from course previously listed under AMES.
${ }^{3}$ Technical elective (TE) course must be an upper-division or graduate course in the engineering sciences, natural sciences or mathematics, selected with prior approval of the department to meet ABET standards.

AEROSPACE ENGINEERING

(Non-Accredited Program)

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Math. 20B	Math. 21 C
MAE 12	Phys. 2A	Phys. 2B/2BL
Chem. 6A ${ }^{4}$	Chem. 6B	MAE 3^{2}
HSS ${ }^{1}$	HSS	HSS
SOPHOMORE YEAR		
Math. 21 D	Math. 20 F	Math. 20E
Phys. 2C/2CL	MAE 9/10 ${ }^{2}$	MAE 130 B 2 or SE 101B ${ }^{2}$
HSS	MAE 130A ${ }^{2}$ or SE 101A ${ }^{2}$	MAE 131 ${ }^{2}$
HSS	HSS	SE 2
JUNIOR YEAR		
MAE 110A ${ }^{2}$	MAE 101A ${ }^{2}$	MAE 1018 ${ }^{2}$
MAE 105^{2}	ECE 101	MAE 141A ${ }^{2}$
MAE $140{ }^{2}$	MAE 130C ${ }^{2}$	SE 160A
HSS	HSS	MAE 170^{2}

gains, operator norms, limits on performance. Mode! uncertainties, stability and performance robustness. Design of robust controllers, H_{-}inf and mu synthesis. Controller reduction. Prerequisite: MAE 141B or MAE 280A.
285. Optimal Control and Estimation

Functional optimization, Bellman's principle of optimality, optimal control and the Pontriagin maximal principle, matrix maximum principle, two-point boundary value problems, Hamilton's principle in dynamics, quadratic costs and linear systems, LQG and optimal estimation, Stochastic processes, case studies. Prerequisite: MAE 280A

286. Optimization and Control of Fluid-Mechanical

 Systems (4)Model-based control approaches for systems governed by the Navier-Stokes equation are presented. Topics discussed include: transition delay, stabilization of convection, turbulence mitigation and enhancement, noise reduction, weather forecasting, and aerodynamic shape optimization. A general mathematical framework is developed and discussed for robust control in such systems. Techniques for determination of effective control approaches by large-scale simulation are discussed. Gradient-based techniques and reduced-storage inverse-Hessein techniques (BFGS, DFP, SQP) are presented. A class project is required. Prerequisite: consent of instructor.
287. Control of Distributed Parameter Systems (4) Strongly continuous semigroups, infinitesmal generators, unbounded closed linear operators, Hille-Yosida theorem, Riesz-spectral operators. Existence and uniqueness of solutions of abstract evolution equations, pertubation and composite systems. Boundary control systems. Controllability, exact and approximate, Hilbert uniqueness method, fixed point method. Inputoutput maps, transfer functions. Exponential stability, stabilizability, Lyapunov equation. Controllability via stabiliability. Compensator design. Prerequisite: MAE 280A or consent of instructor.

290A. Numerical Methods in Science and

Engineering (4)
A general introductory course to numerical methods. Introduction to linear calculus, solution of systems of linear and nonlinear algebraic equations, the algebraic eigenvalue problem, polynomial and trigonometric function interpolation, function differentiation and integration, function approximation. Prerequisite: MAE 107 or consent of instructor.

290B. Numerical Methods for Differential Equations (4) Numerical solution of differential equations in mathematical physics and engineering, ordinary and partial differential equations. Linear and nonlinear hyperbolic parabolic, and elliptic equations, with emphasis on prototypical cases, the convection-diffusion equation, Laplace's and Poisson equation. Finite difference methods will be considered in depth, and additional topics. Prerequisite: MAE 290A or consent of instructor.
291. Design and Mechanics in Computer Technology (4) Design and mechanics problems inherent in computer peripherals such as disk files, tape drives, and printers. Formulation and solution of problems involving mechanics, fluid mechanics, and materials; Reynolds equation, slider bearings; friction and wear; actuator design, impact printing; silicon fluid jets. Prerequisite: consent of instructor.
292. Computer-Aided Design and Analysis (4) Introduction to 2-D and 3-D computer-aided design. Design problems may include: ball bearing kinematics, Weibull statistics, non-repeatable spindle run-out, four bar linkages, beam deflection and vibration, design of magnetic head suspension, hydrodynamic theory of lubrication, air bearings, heat transfer, optical servo, design of ink jet print head. Prerequisite: consent of instructor.

293. Advanced Computer Graphics for Engineers and

 Scientists (4)Advanced topics used to enhance scientific and engineering visualization. C programming assignments and the use of advanced graphics software. Continuation of topics from MAE 152, including color, computational geometry, 3-D contouring, volume visualization, and hardware architectures. Prerequisite: MAE 152 or consent of instructor.

294A. Methods in Applied Mechanics I (4)
Linear algebra and linear spaces. Applications to linear transformations and equations, tensor analysis, linear programming and network analysis. Linear ordinary differential equations and difference equations, integral and discrete transforms, and spectral theory. Applications to linear stability, stochastic processes and numerical methods. Prerequisite: Math. 110, Math.120A , or consent of instructor.

294B. Methods in Applied Mechanics II (4)
Nonlinear ordinary differential and difference equations, applications to dynamical systems, stability, bifurcation and chaos. Regular and singular perturbations, asymptotic expansions and multiscale analyses. Applications to the dynamics of mechanical, chemical and biological systems. Prerequisite: MAE 294A or consent of instructor.

294C. Methods in Applied Mechanics III (4)
Partial differential equations and boundary-value problems, classification of PDE's and transform methods. Green's functions and spectral theory. Non-linear PDE's, variational methods and the methods of characteristics. Non- linear waves and shocks. Asymptotic methods: WKB and stationary phase. Galerkin methods and numberical analysis of PDE's. Applications to continuum mechanics and transport phenomena. Prerequisite: MAE 294B or consent of instructor.
296. Independent Study (4)

Independent reading or research on a problem as arranged by a designated faculty member. Must be taken for a letter grade only. Prerequisite: consent of instructor.

298. Directed Group Study (1-4)

Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor. ($\mathrm{S} / \mathrm{\cup}$ grades permitted.)
299. Graduate Research (1-12)
(S / \cup grades only.)
501. Teaching Experience (2)

Teaching experience in an appropriate MAE undergraduate course under direction of the faculty member in charge of the course. Lecturing one hour per week in either a problem-solving section or regular lecture. (S/U grade only.) Prerequisites: consent of instructor and the MAE department.

Structural Engineering

STUDENT AFFAIRS: 349 Science and Engineering Research Facility (SERF), University Center http://www.structures.ucsd.edu

Professors

R.J. Asaro, Ph.D.
A.W. Elgamal, Ph.D.
A. Filiatrault, Ph.D.
G.A. Hegemier, Ph.D.
V. Karbhari, Ph.D., Vice Chair
J.B. Kosmatka, Ph.D.
J.E. Luco, Ph.D., Associate Dean, School of Engineering
M.J.N. Priestley, Ph.D., Emeritus
F. Seible, Ph.D., P.E., Chair
C.M. Uang, Ph.D.

Associate Professor

J. Restrepo, Ph.D.

Assistant Professors

S.A. Ashford, Ph.D., P.E. P. Krysl, Ph.D.
F. Lanza di Scalea, Ph.D.

Affiliated Faculty

R. Englekirk, Ph.D., P.E., Adjunct Professor

Professional Research Staff

G. Benzoni, Assistant Research Scientist
B. Kad, Ph.D., Associate Research Scientist
S. Megally, Assistant Project Scientist
J.Meneses, Ph.D., Assistant Project Scientist
L. Zhao, Ph.D., Assistant Project Scientist

Structural Engineering is the branch of engineering concerned with the design and analysis of civil, mechanical, aerospace, marine, naval and offshore structures. It requires knowledge and competence in the areas of materials, response of individual structural components and the behavior of entire structural systems.

Department Focus

The instructional and research programs of the department are grouped into four programmatic focus areas: civil structures, aerospace and composite structures, renewal of structures, and earth-
the-art techniques, students will gain hands-on experience with modern experimental tools in the area of mechanics and materials. Prerequisites: consent of the instructor.

248. Advances in Magnetic Recording (4)

This course will address recent advances in mechanics, tribology, and materials problems of magnetic recording technology. Of special interest will be the treatment of the head/disk and head/tape interface, the numerical schemes used to model the head/medium interface and advanced tribological phenomena needed to understand this fast developing and changing technology. Additional (guest) lecturers on magnetic recording theory and signal processing will be part of the class.
249. Advances in Materials Computations (4)

This course will cover nonlinear finite element methods in large deformations and nonlinear materials. Particular emphasis will be placed on material models that are appropriate for high strain rates, high pressures, and phase transformations. Prerequisites: MAE 213A, 232A.

256. Rheology of Fluids (4)

Continuum mechanics of fluids; definition of material functions for viscous and viscoelastic liquids; principles of rheological measurement; relationship to molecular structure. Prerequisite: consent of instructor.
258. Special Topics in Chemical Engineering (4)

Directed study of some area of specialization not covered in depth in the regular course offerings. Prerequisite: consent of instructor.

261. Sensors and Measurements (4)

Manufacturing sensors and measurement systems, measurement techniques, modern metrology, statistical methods, and experiment design. Prerequisite: consent of instructor.

262. Manufacturing Systems (4)

The manufacturing process as a system. Design, production, inspection, quality control, inventory control, material handling, and other functional engineering components. Information flow among components and the effect of components on the whole system. Statistical and process control techniques. Prerequisite: consent of instructor.

270. Mechanics of Powder Processing (4)

Powder packing structures. Methods of powder manufacturing, rapid prototyping. Fundamentals of the continuum mechanics of powder deformation, densification in non-uniform temperature fields. Micromechanical models of cold powder yielding. Hot consolidation fundamentals, micromechanical models of plastic yielding, power-law creep, diffusion. Prerequisite: MAE 231A-C, 223B, or consent of instructor.

271A. Thermodynamics of Solids (4)

The thermodynamics and statistical mechanics of solids. Basic concepts, equilibrium properties of alloy systems, thermodynamic information from phase diagrams, surfaces and interfaces, crystalline defects. Cross-listed with MATS 201A. Prerequisite: consent of instructor.

271B. Solid State Diffusion and Reaction Kinetics (4)

Thermally activated processes, Boltzmann factor, homogenous and heterogenous reactions, solid state diffusion, Fick's laws, diffusion mechanisms, Kirkendall effect, Boltzmann-Matano analysis, high diffusivity paths. Cross-listed with MATS 201 B. Prerequisite: consent of instructor.

271C. Phase Transformations (4)

Classification of phase transformations; displacive and reconstructive transformations; classical and non-classical theories of nucleation; Becker-Doering, VolmerWeber, lattice instabilities, spinodal decomposition. Growth theories; interface migration, stress effects, ter-race-ledge mechanisms, epitaxial growth, kinetics and mechanics. Precipitation. Order-disorder transformations. Solidification. Amorphization. Cross-listed with MATS 201C. Prerequisites: consent of instructor.

272. Imperfections in Solids (4)

Point, line, and planar defects in crystalline solids, including vacancies, self interstitials, solute atoms, dislocations, stacking faults, and grain boundaries; effects of imperfections on mechanical properties; interactions of dislocations with point defects; strain hardening by micro-obstacles, precipitation, and alloying elements Cross-listed with MATS 205A. Prerequisite: MAE 141A or consent of instructor.

273A. Dynamic Behavior of Materials (4)

Elastic waves in continuum; longitudinal and shear waves. Surface waves. Plastic waves; shock waves, Rankine-Hugoniot relations. Method of characteristics, differential and difference form of conservation equations; dynamic plasticity and dynamic fracture. Shock wave reflection and interaction. Cross listed with MATS 213A. Prerequisite: consent of instructor.

273B. Dynamic Behavior of Materials II (4)
Shock-induced phase transformations and reactions. Wave propagation through distended materials. Impact;Mie-Gruneisan and other equations of state, the Gurney equation. Detonation theory. Dislocation behavior at high strain rates. Shear instabilities. Spalling and fragmentation. Cross-listed with MATS 213B. Prerequisite: consent of instructor.

275. Structure and Bonding of Solids (4)

Key concepts in the atomic structure and bonding of solids such as metals, ceramics, and semiconductors. symmetry operations, point groups, lattice types, space groups, simple and complex inorganic compounds, structure/property comparisons, structure determination with X-ray diffraction. Ionic, covalent, mettalic bonding compared with physical properties. Atomic and molecular orbitals, bands vs. bonds, free electron theory. Cross-listed with MATS 227. Prerequisite: consent of instructor.

276AB. Synthesis and Processing of Advanced

Materials (4)
Introduction to various materials processing techniques used in fabricating dense bodies with optimal structure and properties. Solidification processing, chemical synthesis of ceramics, theory of densification, composite fabrication, superconductor synthesis, electronic and optical materials processing, and techniques to generate amorphons solids. Cross-listed with MATS 233AB. Prerequisite: MAE 141A or consent of instructor.

277. Ceramic and Glass Materials (4)

Powder synthesis, powder compaction and densification via different processing routes. Phase equilibria and crystallography in ceramic materials. Sintering liquid, and vapor phase processing and single crystal growth. Control of the microstructural development and interfacial properties optimize properties for structural, thermal, electrical, or magnetic use. Topics in processing and use of advanced ceramic materials. Glass formation and structure, phase separation, viscous flow and relaxation. Cross-listed with MATS 236. Prerequisite: MAE 141A or consent of instructor.

280A. Linear Systems Theory (4)

Linear algebra: inner products, outer products, vector norms, matrix norms, least squares problems, Jordan forms, coordinate transformations, positive definite matrices, etc. Properties of linear dynamic systems described by ODEs: observability, controllability, detectability, stabilizability, trackability, optimality. Control systems design: state estimation, pole assignment, linear quadratic control. Prerequisite: MAE 141A or consent of instructor.

280B. Linear Control Design (4)

Parametrization of all stabilizing output feedback controllers, covariance controliers, H -infinity controllers, and L-2 to L-infinity controllers. Continuous and dis-crete-time treatment. Alternating projection algorithms for solving output feedback problems. Model reduction. All control design problems reduced to one critical theorem in linear algebra. Prerequisite: MAE 280A

281A. Nonlinear Systems (4)

Existence and uniqueness of solutions of EDE's, sensitivity equations. Stability, direct and converse Lyapunov theorems, LaSalle's theorem, linearization, invariance theorems. Center manifold theorem. Stability of perturbed systems with vanishing and non-vanishing perturbations, input-to-state ability, comparison method. Input-output stability. Perturbation theory and averaging. Singular perturbations. Circle and Popov criteria. Prerequisite: MAE 280A.

281B. Nonlinear Control (4)
Small gain theorem, passivity. Describing functions. Nonlinear controllability, feedback linearization, inputstate and input-output linearization, zero dynamics. Stabilization, Brockett's necessary conditions (local), control Lyapunov functions, Sontag's formula (global). Integrator back stepping, forwarding. Inverse optimality, stability margins. Disturbance attenuation, deterministic and stochastic, nonlinear H-infinity. Nonlinear observers. Prerequisite: MAE 281A.
282. Adaptive Control (4)

Parametric models. Parameter identifiers and algorithms, Spr-Lyapunov, gradient, least-squares, persistence of excitation, adaptive observers. Model reference adaptive control, certainity equivalence. Pole placement, polynomial, LQR, indirect. Robustification, parameter drift, leakage, projection, dead zone, dynamic normalization. Adaptive nonlinear control, tuning functions, modular design. Extremum seeking. Prerequisites: MAE 218A or consent of instructor.

283A. Parametric Identification: Theory and

Methods (4)
Constructing dynamical models from experimental data. Deterministic and stochastic discrete time signals. Discrete time systems. Non-parametric identification: correlation and spectral analysis. Parametric identification: realization and prediction error methods, least squares estimation, approximate modeling. Experiment design. Frequency domain identification. Prerequisite: MAE 141 B recommended.

283B. Approximate Identification and Control (4)
Identification for control: approximate identification, estimation of models via closed-loop experiments. Closed-loop identification techniques. Estimation of model uncertainty. Model invalidation techniques. Iterative techniques for model estimation and control design. Prerequisite: MAE 283A.
284. Robust and Multi-Variable Control (4)

Multivariable feedback systems: transfer function matrices, Smith-McMillan form, poles, zeros, principal

SENIOR YEAR

MAE $101 C^{2}$	MAE $155 A^{2}$	MAE 1558^{2}
MAE 150^{2}	MAE $175 A^{2}$	MAE 113^{2}
MAE 104^{2}	MAE 142^{2}	TE
SE $160 B$	HSS	HSS

${ }^{1}$ In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS cours es are listed here; individual college requirements may be higher.
${ }^{2}$ Numbering change from course previously listed under AMES.
${ }^{3}$ Technical elective (TE) course must be an upper-division or graduate course in the engineering sciences, natural sciences or mathematics, selected with prior approval of the department to meet ABET standards.
${ }^{4}$ Chem. $6 \mathrm{AH}-6 \mathrm{BH}$ sequence may be taken in place of Chem. 6A-B.

Policies and Procedures for Structural Engineering Undergraduate Students

Admission to the Major

Admission to the department as a Structural Engineering major or minor, or to fulfill a major in another department which requires Structural Engineering courses, is in accordance with the general requirements established by the School of Engineering. The admission requirements and procedures are described in detail in the section on "Admission to the School of Engineering" in this catalog. Applicants who have demonstrated excellent academic performance prior to being admitted to UCSD will be admitted directly to the engineering major of their choice. These directly admitted students and all students are expected to complete lower- and upper-division courses, as suggested in the curriculum tables, in a timely fashion in the sequences outlined.

Transfer Students

Requirements for admission as a Structural Engineering major or minor, or into Structural Engineering courses, are the same for transfer students as they are for continuing students (see section on "Admission to the School of Engineering" in this general catalog). Accordingly, when planning their program, transfer students should be mindful of lower-division prerequisite course requirements, as well as for meeting collegiate requirements.

Students who have taken equivalent courses elsewhere may request to have transfer credits apply toward the department's major requirements. This is accomplished by submitting a petition for transfer credits together with a transcript and catalog course description from the institution where the course(s) were taken. These documents are reviewed for approval by the Structural Engineering Undergraduate Affairs Committee. No transfer credit will be given for courses similar to SE 1 . SE 1 must be taken by all students majoring in Structural Engineering.

Transfer petitions are available from the Structural Engineering Student Affairs Office.

Academic Advising

Upon arrival, students must make an appointment with the undergraduate adviser in the Structural Engineering Student Affairs Office to plan a program of study. The program plan may be revised in subsequent years, but revisions involving curricular requirements require approval by the undergraduate adviser or the Undergraduate Affairs Committee. Because some courses and/or curricular changes may be made every year, it is imperative that students consult with the department's undergraduate adviser and their assigned faculty adviser on an annual basis.

Many Structural Engineering courses are offered only once a year and therefore should be taken in the recommended sequence. If courses are taken out of sequence, it may not always be possible to enroll in subsequent courses as desired or needed. If this occurs, students should seek immediate department advice. When a student deviates from the sequence of courses specified for the curriculum in this catalog, it may be impossible to complete the Structural
Engineering major within the normal four-year period. Structural Engineering advisers will be monitoring the progress of students in order for them to remain on track.

In addition to the advise available through the Structural Engineering Student Affairs Office, programmatic or technical advice may be obtained from Structural Engineering faculty members. A specific Structural Engineering faculty adviser is assigned to each Structural Engineering student. All Structural Engineering students are required to meet with their faculty adviser at least once a year, preferably before the beginning of fall quarter.

Program Alterations/Exceptions to Requirements

Variations from, or exceptions to, any program or course requirements are possible only if a petition is approved by the Structural Engineering Undergraduate Affairs Committee before the courses in question are taken. Petition forms may be obtained from the Structural Engineering Student Affairs Office and must be processed through this office.

Independent Study

Structural Engineering students may take SE 199, Independent Study for Undergraduates, under the guidance of a Structural Engineering faculty member. Normally, this course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division technical elective course requirements for the major. Students interested in this alternative must identify a faculty member with whom they wish to work and propose a twoquarter research or study topic. After obtaining the faculty member's concurrence on the topic and scope of the study, the student must submit a Special Studies Course form (each quarter) and the "SE 199 as Technical Elective Contract" form to the Structural Engineering Undergraduate Affairs Committee. These forms must be completed, approved, and processed prior to the beginning of the quarter in which the course is to be taken. This should not be done during the add/drop period. Detailed policy in this regard and the requisite forms may be obtained from the Students Affair Office.

Teaching

Students interested in participating in the instructional activities of the department may take SE 195, Undergraduate Teaching. Policy in this regard and the appropriate forms may be obtained from the Structural Engineering Student Affairs Office.

Bachelor's/Master's Program

The department offers a bachelor's/master's degree program to enable students to complete both the B.S. and M.S. degrees in an accelerated timeframe. Undergraduate students in the Department of Structural Engineering who have at least 156 quarter units with a cumulative 3.5 GPA are eligible to apply. Acceptance into this
program is an honor which carries with it practical benefits-the graduate application process is simplified (no GREs required) and advanced students are given access to graduate level courses. Upon acceptance as an undergraduate into the program, a faculty member will be assigned who will serve as the student's adviser. Interested students should contact the Structural Engineering Student Affairs Office. Students must fulfill all requirements for the B.S. degree prior to being formally admitted to graduate status.

The Graduate Program

The Department of Structural Engineering offers instruction leading to the degrees of Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) in Structural Engineering (SE). The graduate program is aimed at training a select number of highly skilled professionals in structural engineering with the academic and engineering credentials to assume leadership roles in industry and academia.

The M.S. degree program is intended to provide students with additional fundamental knowledge as well as specialized advanced knowledge in selected structural engineering aspects over and above the undergraduate degree course work.

The Doctor of Philosophy (Ph.D.) degree program is intended to prepare students for careers in teaching, research, and/or in their chosen professional specialties. The Ph.D. program requires a departmental comprehensive examination, a Ph.D. candidacy examination, a Ph.D. dissertation based on new and unique research, and a dissertation defense.

Both degrees offer opportunities for training in one or more of the three research focus areas of the SE department which are in (1) Earthquake Engineering, (2) Advanced Composites and Aerospace Structural Systems, and (3) Renewal Engineering.

Admission to the UCSD graduate division requires at least a B.S. degree in engineering, physical sciences, or mathematics with an overall upper-division GPA of 3.0. Applicants must provide three letters of recommendation and recent GRE general test scores. A minimum TOEFL score of 550 (213 computer-based) is required from international applicants whose native language is not English. Based on the candidate's background, qualifications, and career objectives, admission to
the program is in one of two categories:M.S., or Ph.D.

Applicants seeking enrollment in SE courses via UC Extension's concurrent registration program are advised to refer to the Graduate Studies Transferring Credit section of the UCSD Catalog for clarification.

Master's Degree Program

The M.S. degree program is intended to provide the student with additional fundamental knowledge as well as specialized advanced knowledge in selected structural engineering aspects over and above the undergraduate degree course work. Two plans, the M.S. Thesis Plan and the M.S. Comprehensive Examination Plan, are offered. The M.S. Thesis Plan is designed for those students with an interest in research prior to entering the structural engineering profession or prior to entering a doctoral degree program. The M.S. Thesis Plan involves course work and research culminating with the preparation and defense of a Master's thesis. The M.S. Comprehensive Examination Plan involves course work and culminates with a public oral presentation related to the courses the student has taken. The topic is selected by the student's adviser. This presentation is evaluated by a committee of three faculty and must take place in the final quarter of courses.
M.S. students must complete forty-eight units of credit for graduation. For the M.S. Comprehensive Examination Plan all forty-eight units of credit must consist of regular courses (twelve courses). For the M.S. Thesis Plan, 36 units (nine courses) from regular courses are required, in addition to 12 units of graduate research for the Master's Thesis. For both M.S. plans, students are required to complete a minimum of two sequences from the following focus areas:

1. Structural Analysis
2. Structural Design
3. Earthquake Engineering
4. Advanced Composites
5. Solid Mechanics

A sequence is composed of three regular courses from the same focus area. The courses comprising the focus sequences are listed in the table in this section. To meet the specific needs of some students, other focus areas may be developed by a student in consultation with their adviser, but these must be approved by the SE Graduate Affairs Committee. To allow for greater
flexibility in the program, the remaining credits required from courses may be earned by completing additional focus sequences, parts of focus sequences, graduate seminars, or other appropriate courses. Students may elect to take other appropriate technical electives (with the approval of their adviser and the SE Graduate Affairs Committee). Up to twelve units of upper division undergraduate (100 -level) courses will be allowed in the M.S. program.

The department also offers two seminar courses each quarter dealing with current research topics in Earthquake Engineering (SE 290) and Advanced Composites (SE 291). All Master's students are required to take one of these two seminar courses each quarter they are registered.

Focus Sequences

FOCUS SEQUENCE	COURSES
Structural Analysis	Advanced Structural Analysis Structural Stability Structural Dynamics
Structural Design	Advanced RC/PC Design Advanced Structural Steel Design Bridge Design
Earthquake Engineering	Structural Dynamics Earthquake Engineering Geotechnical Earthquake Engineering Advanced Seismic Design of Structures
Advanced Composites	Design of Composite Structures Processing Science of Composites Experimental Mechanics and NDE Mechanics of Laminated Composite Structures
Solid Mechanics	Solid Mechanics for Structural and Aerospace Engineering Theory of Elasticity Theory of Plasticity and Viscoelasticity Experimental Mechanics and Non-destructive Evaluation

The thesis defense is the final examination for students enrolled in the M.S. thesis plan and must be conducted after completion of all course work. Upon completion of the research project, the student writes a thesis that must be successfully defended in an oral examination and public presentation conducted by a committee composed of three faculty. A complete copy of the student's thesis must be submitted to each member of the
M.S. thesis committee (comprised of a minimum of three faculty) at least two weeks before the defense.

Doctoral Degree Program

The Ph.D. program is intended to prepare students for a variety of careers in research, teaching and advanced professional practice in the broad sense of structural engineering, encompassing civil and aerospace structures, earthquake and geotechnical engineering, composites, and engineering mechanics. Depending on the student's background and ability, research is initiated as soon as possible. All students, in consultation with their advisers, develop course programs that will prepare them for the Departmental Comprehensive Examination and for their dissertation research However, these programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree. Doctoral students who have passed the Departmental Comprehensive Examination may take any course for an S/U grade, with the exception of any course that the student's Departmental Comprehensive or Ph.D. Candidacy Examination Committee stipulates must be taken in order to remove a deficiency. It is strongly recommended that all Structural Engineering graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Comprehensive Examination.

The department also offers two seminar courses each quarter dealing with current research topics in Earthquake Engineering (SE 290) and in Advanced Composite Materials (SE 291). All Ph.D. students are required to take one of these two seminar courses each quarter they are registered.

Doctoral Examinations: A Structural Engineering Ph.D. student is required to pass three examinations. The first is a Departmental Comprehensive Examination which should be taken within three to six quarters of full-time graduate study and requires a 3.5 GPA. This examination is intended to determine the student's ability to successfully pursue a research project at a level appropriate for the doctoral degree. It is administered by at least four faculty, three of whom must be in Structural Engineering. The student is responsible for material pertaining to four focus areas. In order to insure appropriate
breadth, the focus areas should consist of the following: (a) two focus areas within Structural Engineering which are closely related to the student's research interests, (b) one focus area within Structural Engineering that is not directly related to the student's area of research, and (c) one minor focus area outside the Department of Structural Engineering. Minor areas too closely related to the major areas will not be approved by the SE Graduate Affairs Committee. The Solid Mechanics Focus Sequence, which is jointly taught by Structural Engineering and the Department of Mechanical and Aerospace Engineering, cannot be used to satisfy the outside Structural Engineering requirement. Since the examination areas must be approved by the SE Graduate Affairs Committee, students are advised to seek such approval well before their expected examination date, preferably while planning their graduate studies. Although students are not required to take particular courses in preparation for the departmental comprehensive examination, the scope of the examination in each area is associated with a set of three graduate courses, generally focus sequences offered or approved by the department. A candidate can develop a sense of the level of knowledge expected to be demonstrated during the examination by studying the appropriate syllabi and/or discussing the course content with faculty experienced in teaching the courses involved. The Departmental Comprehensive Examination may be a written or an oral examination, at the discretion of the committee.

Teaching Experience is required of all Structural Engineering Ph.D. students prior to taking the Ph.D. Candidacy Examination. Teaching experience is defined as lecturing one hour per week in either a problem-solving section or laboratory session, for one quarter in an undergraduate course designated by the department. The requirement can be fulfilled by service as a teaching assistant or taken as a course for academic credit. Students must contact the Student Affairs Office to plan for completion of this requirement.

The Ph.D. Candidacy Examination is the second examination required of Structural Engineering doctoral students. In preparation for the Ph.D. Candidacy Examination, students must have completed the Departmental Comprehensive Examination and the Departmental Teaching Experience requirement, obtained a faculty research adviser, have identified a topic for their
dissertation research, and have made initial progress in that research. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council. In accordance with Academic Senate Regulations 715(D):"A doctoral committee of five or more members shall be appointed by the dean of Graduate Studies under the authority of the Graduate Council.The committee members shall be chosen from at least two departments, and at least two members shall represent academic specialties that differ from the student's chosen specialty. In all cases, each committee must include one tenured UCSD faculty member from outside the student's major department." The committee conducts the Ph.D. Candidacy Examination, during which students must demonstrate the ability to engage in dissertation research. This involves the presentation of a plan for the dissertation research project. A short written document describing the research plan must be submitted to each member of the committee at least two weeks before the Ph.D. Candidacy Examination. The committee may ask questions directly or indirectly related to the research project and general questions that it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the Candidate in Philosophy degree. The Ph.D. Candidacy Examination is an oral examination.

The Dissertation Defense is the final Ph.D. examination. Upon completion of the dissertation research project, the student writes a dissertation that must then be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student's dissertation must be submitted to each member of the doctoral committee at least four weeks before the defense. While the copy of the dissertation handed to the committee is expected to be complete and in final form, it should be noted that students are expected to make changes in the text per direction of the committee as a result of the defense. This examination cannot be conducted earlier than three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and Research and the university librarian represents the final step in completion of all requirements for the Ph.D.

Ph.D.Time Limit Policy. Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

Evaluations. In the spring of each year, the faculty evaluate each doctoral student's overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student's work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate program

COURSES

All students enrolled in Structural Engineering courses or admitted into a Structural Engineering program are expected to meet prerequisite and performance standards, i.e., students may not enroll in any SE courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a Cor better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the various program outlines, course descriptions, and admission procedures for the School of Engineering in this catalog. Furthermore, the majority of SE courses have enrollment restrictions which give priority to, or are open only to, declared pre-engineering students and/or to students who have been admitted to an engineering major. Where these restrictions apply, the registrar will not enroll other students except by department stamp on class enrollment cards. The department expects that students will adhere to these policies on their own volition and enroll in courses accordingly. Students are advised that they may be dropped at any time from course rosters if prerequisites and/or performance standards have not been met.

While some lower-division courses may be offered more than once each year, most SE upperdivision courses are taught only once per year, and courses are scheduled to be consistent with the curricula as shown in the tables. When possible, SE does offer selected large enrollment courses more than once each year. A tentative schedule of course offerings is available from the department each spring for the following academic year.

Some of the courses listed below were previously listed as AMES courses. In these cases,

the old AMES course number is listed in the course description.

LOWER-DIVISION

SE 1. Introduction to Structures and Design (4)
Introduction to structural components, systems from aerospace, civil, mechanical, marine and offshore areas. Structural action, the design process. History of structural engineering. Role and responsibility of structural engineers in society. Engineering economics, costsbenefits analysis. Implications on safety. Professional ethics. Prerequisite: priority enrollment given to pre-structural engineering and structural engineering majors.

SE 2. Structural Materiais (4)
Structure of engineering materials (metals, ceramics, concrete, composites) tailoring to produce desired properties and response in structural components and systems. Mechanical tests, elasticity, plastic deformation, fracture, toughness, creep and fatigue. Selection based on performance requirements/application. Laboratory demonstrations and tests. Prerequisites: Chem. 6A, Phys. 2A. Priority enrollment given to structural engineering majors and mechanical and aerospace engineering majors.

UPPER-DIVISION

SE 101A. Mechanics I: Statics (4)
(Formerly AMES 121A) Principles of statics using vectors. Two and three-dimensional equilibrium of statically determinate structures under discrete and distributed loading including hydrostatics; internal forces and concept of stress; free body diagrams; moment, product of inertia; analysis of trusses and beams. Prerequisites: grades of C - or better in Math. 21 C and Phys. 2A.

SE 101B. Mechanics II: Dynamics (4)
(Formerly AMES 121B) Kinematics and kinetics of particles in two- and three-dimensional motion using vector representation. Orbital mechanics. Work, energy, and power. Conservative forces, conservation principles. Momentum, impulsive motion, and impact. Rigid body kinetics and kinematics; Coriolis acceleration, Eulerian angles. Undamped vibrating systems. Prerequisites: grades of C - or better in Math. 21D, and SE 101A, or MAE 130A.

SE 101C. Structural Mechanics III: Structural

Dynamics (4)
(Formerly AMES 121C) Free and forced vibrations of damped one-degree of freedom systems; vibrations isolation, impact and packaging problems. Analysis of discrete MDOF systems using matrix representation; normal mode of frequencies and modal matrix formulation. Lagrange's equations. Modal superposition for analysis of continuous vibrating systems. Prerequisites: grades of C-or better in Math. 20F and SE 101B. Priority enrollment given to structural engineering majors and mechanical and aerospace engineering majors.

SE 102. Numerical, Computational and Graphical

Tools (4)
Introduction to engineering graphics and computeraided design (CAD). Use of spreadsheets and solvers. introduction to computational algorithms and symbolic computation. Prerequisites: grades of C - or better in MAE 9, and SE 101A. Priority enrollment given to structural engineering majors.

SE 103. Conceptual Structural Design (4)
Introduction to design principles and structural action. Development of design theories, approaches and methodology. Concepts of load and resistance factors, factors of safety, limit and ultimate states, design allowables. Simple design examples from aerospace, civil, marine, offshore and mechanical structural systems. Prerequisites: grade of C- or better in SE 2, SE 101A. Priority enrollment given to structural engineering majors.

SE 110A. Solid Mechanics I (4)
(Formerly AMES 130A) Mechanics of deformable bodies under axial, torsional, shearing, and bending loads. Elastic and plastic uniaxial material response as well as 3-D Hooke's law. Mohr's circle for stress and strain. Problems of design for rods, shafts, beams, columns, pressure vessels, and thin walled members. Prerequisites: grades of C-or better in Math. 21D, 20F, SE 101A. Priority enrollment given to structural engineering majors.

SE 110B. Solid Mechanics II (4)

Advanced concepts in the mechanics of deformable bodies. Unsymmetrical bending of symmetrical and unsymmetrical sections. Bending of curved beams. Shear center and torsional analysis of open and closed sections. Stability analysis of columns, lateral buckling. Application of the theory of elasticity in rectangular coordinates. Prerequisite: grade of C-or better in SE 110A. Priority enrollment given to structural engineering majors.

SE 120. Engineering Graphics \& Computer Aided

Structural Design (4)
Engineering graphics, solid modeling, CAD applications including 2-D and 3-D transformations, 3-D viewing, wire frame and solid models, Hidden surface elimination. Prerequisite: grade of C - or better in MAE 9. Priority enrollment given to structural engineering majors.

SE 121. Numerical Methods in Engineering (4)
(Formerly AMES 154) Numerical methods for applications for engineering problems. Solution of systems of linear and nonlinear equations, function interpolation and curve fitting, function approximation, computation of integrals, numerical differentiation, and solution of systems of ordinary differential equations. Prerequisites: grades of C- or better in MAE 9 and Math 20F. Priority enrollment given to structural engineering majors.

SE 125. Statistics, Probability and Reliability (4)
Probability theory. Statistics, data analysis and inferential statistics, distributions, confidence intervals. Introduction to structural reliability and random phenomena. Applications to components and systems. Priority enrollment given to structural engineering majors.

SE 130A-B. Structural Analysis (4)
(Formerly AMES 132A-B) Classical methods of analysis for statically indeterminate structures. Development of computer codes for the analysis of civil, mechanical, and aerospace structures from the matrix formulation of the classical structural theory, through the direct stiffness formulation, to production-type structural analysis programs. Prerequisites: grades of C - or better in SE 110 A, SE 121, and SE 130A for SE 130B. Priority enrollment given to structural engineering majors.

SE 131. Finite Element Analysis (4)
(Formerly AMES 133) Development of stiffness and mass matrices based upon variational principles. Application to static, dynamic, and stability problems in structural and solid mechanics. Architecture of computer codes for linear and nonlinear finite element
analysis. The use of general purpose finite element structural analysis codes. Prerequisites: admission to the major and MAE 9, SE 110A, and SE 121. Priority enrollment given to structural engineering majors.

SE 140. Structures and Materials Laboratory (4)
(Formerly AMES 173) Introduction to instrumentation and testing techniques. Discussion of standard tension and compression tests. Similitude relationships for structural models. Term project in model structure including complete engineering report on theory, design and results of the term project. Prerequisites: grade of C - or better in SE 103, SE 130B, MAE 170, and senior standing in the major.

SE 142 . Design of Composite Structures (4)
(Formerly AMES 138) Design and analysis of lightweight structures composed of laminated composite materials. Stiffness, strength, failure mechanisms, micromechanics, and hygrothermal behavior. Fabrication and experimental testing. Design projects that involve computer implementation. Prerequisites: admission to major, grade of C - or better in SE 101C, SE 110A-B.

SE 144 . Aerospace Structural Analysis (4)
(Formerly AMES 137) Aspects of structural analysis pertinent to the design of flight vehicles; aerodynamic/inertial loadings, aerospace laminated materials, elements of plate theory, aeroelastic divergence, introduction of matrix methods for structural dynamics and buckling. Prerequisites: grades of C - or better in SE 101C, SE 110A-B. Priority enrollment given to structural engineering majors and mechanical and aerospace engineering majors.

SE 150. Design of Steel Structures (4)

(Formerly AMES 134) Design concepts and loadings for structural systems. Working stress and ultimate strength design theories. Properties of structural steel. Elastic design of tension members, beams, and columns. Design of bolted and welded concentric and eccentric connections. Design of composite floors. Introduction to plastic design. Prerequisites: grade of C_{-} or better in SE 103, and SE 130A. Priority enrollment given to structural engineering majors.

SE 151A-B. Design of Structural Concrete (4)
(Formerly AMES 135/136) Working stress and ultimate strength design theories. Concrete and reinforcement properties. Design of structural components. Concept of prestressing. Design and applications of prestressed structures and components. Prerequisites: grades of C or better in SE 103, and SE 130A-B. Priority enrollment given to structural engineering majors.

SE 152. Seismic Design of Structures (4)

Seismic design philosophy, conceptual design, modeling and analysis, design, isolation and dissipation devices, seismic assessment of existing structures. Prerequisites: grades of C- or better in SE $110 A$ and SE 130A-B. Priority enrollment given to structural engineering majors.

SE 160A. Aerospace Structural Design (4)

Aircraft and spacecraft flight load definition and operational envelopes, metallic and composite material selection and comparison, applied elasticity, failure theories, stiffened shear panels, thin-wall open- and closed-cell torsion, pressure vessels, unsymmetrical beam bending, shear center, shear lag. Prerequisites: grade of C - or better in SE 3 and SE 110A.

SE 160B. Aerospace Structural Design (4)
Work-energy principles, matrix methods, bending of plates and shells, structural stability of beams and plates, tension field beams, wing divergence and control reversal, vibration damping and flutter, fasteners and structural joints, structural test methods. Prerequisite: grade of C - or better in SE 160A. Not offered in 2001-2002.

SE 162. Composites - Materials and Manufacturing (4) Introduction to fibers, resins, composite types, manufacturing methods, stiffness, strength, failure mechanisms, lamination theory, testing. Prerequisites: grades of C- or better in SE 110A, SE 121, and Math 20F. Priority enrollment given to structural engineering majors.

SE 163. Nondestructive Evaluation and Design (4)
Damage detection, materials characterization Introduction to non-destructive evaluation and design Ultrasonics, radiography, thermography, surface NDE, performance and proof testing, stress coatings; vibrational techniques. Prerequisite: grade of C - or better in SE 110A. Priority enrollment given to structural engineering majors. Not offered in 2001-2002.

SE 170. Civil Structures Rehabilitation (4)
Identification of structural distress, lessons from past history, materials and structural concepts related to rehabilitation, seismic retrofit. Strengthening of beams, slabs and walls, design detailing, safety factors, fabrication/ installation methods. Prerequisites: grade of $C-$ or better in SE 103, SE 110A, SE 130A-B, and SE 151. Priority enroliment given to structural engineering majors. Not offered in 2001-2002.

SE 171. Aerospace Structures Repair (4)

Identification of structural distress, corrosion/stress corrosion cracking, fatigue cracking, damage tolerance, integrity and durability of built-up members, patching, health monitoring. Prerequisites: grade of C - or better in SE 103 and SE 130A-B. Priority enrollment given to struc tural engineering majors. Not offered in 2001-2002.

SE 180. Earthquake Engineering (4)

Elements of seismicity and seismology. Seismic hazards Dynamic analysis of structures underground motion Elastic and inelastic response spectra. Modal analysis, nonlinear time-history analysis. Earthquake resistant design. Seismic detailing. Prerequisites: grade of C - or better in SE 110A, and SE 130A. Priority enrollment given to structural engineering majors.

SE 181. Geotechnical Engineering (4)
(Formerly AMES 131A) General introduction to physical and engineering properties of soils. Soil classification and identification methods. Soil exploration, sampling, and in-situ testing techniques. Permeability, seepage, and consolidation phenomena. Bearing capacity equations, stress distribution, and settlements. Prerequisites: grade of C - or better in SE 110A. Priority enrollment given to structural engineering majors.

SE 182. Foundation Engineering (4)
(Formerly AMES 131B) Application of soil mechanics to the analysis, design, and construction of foundations for structures. Settlement of structures, beating capacities of shallow and deep foundations; earth pressures on retaining structures and slope stability. Prerequisite: grade of C-or better in SE 110A. Priority enrollment given to structural engineering majors.

SE 195. Teaching (2-4)

Teaching and tutorial assistance in a SE course under supervision of instructor. Not more than four units may be used to satisfy graduation requirements. (P/NP
grades only.) Prerequisites: B average in major, upper-division standing and consent of department chair. Department stamp required.

SE 197. Engineering Internship (1-4)

An enrichment program, available to a limited number of undergraduate students, which provides work experience with industry, government offices, etc., under the supervision of a faculty member and industrial supervisor. Coordination of the Engineering Internship is conducted through UCSD's Academic Internship Program. Prerequisites: completion of ninety units with a 2.5 GPA and consent of department chair. Department stamp required.

SE 198. Directed Study Group (4)

Directed group study, on a topic or in a field not included in the regular department curriculum, by special arrangement with a faculty member. (P/NP grades only.) Prerequisite: consent of instructor or department stamp.

SE 199. Independent Study (4)
Independent reading or research on a problem by special arrangement with a faculty member. (P/NP grades only.) Prerequisite: consent of instructor or department stamp.

GRADUATE

SE 201. Advanced Structural Analysis (4)
(Formerly AMES 230) Applications of advanced analytical concepts to structural engineering problems. Effects of approximations in the descretization and the type of finite elements under consideration. An introduction is given to the nonlinear behavior of structural systems focusing on basic concepts and computational techniques. Prerequisites: SE 130A-B or equivalent, or consent of instructor.

SE 202. Structural Stability (4)

(Formerly AMES 236) Static, dynamic, and energy-based techniques and predicting elastic stability. Linear and nonlinear analysis of classical and shear deformable beams and plates. Ritz, Galerkin, and finite element approaches for frames and reinforced shells. Nonconservative aerodynamic (divergence flutter) and follower forces. Prerequisite: SE 110B or consent of instructor.

SE 203. Structural Dynamics (4)
(Formerly AMES 237) Response of the linear systems to harmonic, periodic and transient excitations. Duhamel's integral response spectra. Principles of dynamics, Hamilton's principle and Lagrange's equations. Linearization of the equations of motion. Free and forced vibrations. Matrix iteration, Jacobi, normal mode and frequency response method. Prerequisites: MAE $231 A-B$ or consent of instructor.

SE 204. Advanced Structural Dynamics (4)

Free- and forced-vibration response of continuous systems including axial and torsional vibrations of bars and transverse vibrations of beams, membranes and plates. Differential and integral formulations of the eigenvalue problem. Perturbation and iteration methods. Introduction to structural control.

SE 205. Random Vibrations (4)
introduction to probability theory and random processes. Correlation and power spectral density functions. Estimation of correlation functions and ergodicity. Stochastic dynamic analysis of structures subjected to stationary and non-stationary random excitations.

Crossings, first-excursion probability, and distributions of peaks and extremes.

SE 207. Topics in Structural Engineering (4)

A course to be given at the discretion of the faculty in which topics of current interest in structural engineering will be presented.

SE 211. Advanced Reinforced and Prestressed Concrete Design (4)

(Formerly AMES 240) Advanced topics in concrete design, including frame and shear wall structures, design of connections. reinforced and prestressed con crete system evaluation for seismic resistance including confinement and ductility requirements. Upper and lower bound theories for slab design. Prerequisites: SE 151, or equivalent background in basic RC/PC design, or consent of instructor.

SE 212. Advanced Structural Steel Design (4)
(Formerly AMES 245) Load and resistance factor design (LRFD) philosophy. Behavior and design of steel elements for global and local buckling. Bracing requirements for stability. Conventional and advanced analysis techniques for P-delta effects. Cyclic behavior. Ductility requirement for seismic design. Composite construction. Prerequisites: SE 201 and SE 150, or equivalent course, or consent of instructor.

SE 213. Bridge Design (4)
(Formerly AMES 242) Design and analysis of bridge structures, construction methods, load conditions. Special problems in analysis-box girders, curved and skewed bridges, environmental and seismic loads Bearings and expansion joints. Time- temperature dependent superstructure deformations. Conceptual/ preliminary bridge design project. Prerequisites: SE 201, and fundamental courses in RC and PC design, or consent of instructor.

SE 214. Masonry Structures (4)
(Formerly AMES 243) Analysis and design of unreinforced and reinforced masonry structures using advanced analytical techniques and design philosophies. Material properties, stability, and buckling of unreinforced masonry. Flexural strength, shear strength, stiffness, and ductility of reinforced masonry elements. Design for seismic loads. Prerequisites: SE 151, or equivalent basic reinforced concrete course, or consent of instructor.

SE 221. Earthquake Engineering (4)

(Formerly AMES 239) Introduction to plate tectonics and seismology. Rupture mechanism, measures of magnitude and intensity, earthquake occurrence and relation to geologic, tectonic processes. Probabilistic seismic hazard analysis. Strong earthquake ground motion; site effects on ground motion; structural response; soil-structure interaction; design criteria; code requirements.

SE 222. Geotechnical Earthquake Engineering (4)
Influence of soil conditions on ground motion characteristics; dynamic behavior of soils, computation of ground response using wave propagation analysis and finite element analysis; evaluation and mitigation of soil liquefaction; soil-structure interaction; lateral pressures on earth retaining structures; analysis of slope stability.

SE 223. Advanced Seismic Design of Structures (4) Introduction to fundamental concepts in seismic design of structures. Ductility. Elastic and inelastic response. Time-history analysis. Response spectral analysis. Force- and displacement-based design.

Capacity design principles. Learning from earthquake damage. Performance-based design concepts.

SE 234. Plates and Shells (4)

General mathematical formulation of the theory of thin elastic shells; linear membrane and bending theories finite strain and rotation theories; shells of revolution; shallow shells; selected static and dynamic problems: survey of recent advances.

SE 241. Advanced Soil Mechanics (4)
Advanced treatment of topics in soil mechanics, including state of stress, pore pressure, consolidation and settlement analysis, shear strength of cohesionless and cohesive soils, mechanisms of ground improvement, and slope stability analysis. Concepts in course reinforced by laboratory experiments.

SE 242. Advanced Foundation Engineering (4)

Advanced treatment of topics in foundation engineering, including earth pressure theories, design of earth retaining structures, bearing capacity, ground improvement for foundation support, analysis and design of shallow and deep foundations, including drilled piers and driven piles.

SE 243. Soil-Structure Interaction (4)
Advanced treatment of soils interaction with structures, including shallow and deep foundations, bridge abutments, retaining walls, and buried structures subjected to static and dynamic loading. Elastic approximation Linear and nonlinear Winkler models $p-y$ and $t-z$ curves.

SE 244. Numerical Methods in Geomechanics (4)
Application of the finite element method to static and dynamic analysis of geotechnical structures. One-, 2and 3-D seismic site response of earth structures and slopes. Pore-pressure generation and effects during cyclic loading. System identification using strong motion array data.

SE 245. Constitutive Modeling and Numerica

Implementation (4)
Development and numerical implementation of procedures to model the nonlinear behavior of engineering materials, including soil and concrete. Inelastic hyperbolic and elasto-plastic modeling of hysteretic response to cyclic loading. Behavior of soil-structure systems under transient loading, such as seismic earth quake excitation, will be discussed.

SE 251. Processing Science of Composites (4)
Introduction to processing, fabrication methods process models; materials-process-microstructure interaction; materials selection; form and quality control. Wet layup/sprayup, autoclave cure, SMC; injection molding, RTM; resin infusion; winding and fiber placement; pultrusion. Process induced defects, environmental considerations.

SE 252. Experimental Mechanics and NDE (4)

Theory of electrical resistance strain gages, full-field coherent optical methods including photoelasticity, moire' and speckle interferometry, ultrasonics, thermography and fiberoptic sensing. Applications to materials characterization, defect detection and health monitoring of structures with emphasis on fiber-reinforced composites. Prerequisites: SE 101A, SE 110A, and MAE 131B, or consent of the instructor.

SE 253. Mechanics of Laminated Composite

Structures (4)
(Formerly AMES 241) Macro- and micro-material modeling. Classical and shear deformable laminate beam
and plate theories developed via energy principles Ritz, Galerkin, and finite element-based solutions to static, vibration, and stability problems. Assignments include computer program development and use of existing commercial programs. Prerequisites: SE 101C, SE 110B, and SE 162 or equivalent, or permission of the instructor

SE 255. Textile Composite Structures (4)

Introduction to textile structure and behavior, mechanics of yarns and fabrics as relevant to structural composites and geotechnical applications. Mechanics of textiles and fabric-based composites. Applications in fiber reinforced composites, coated textile structures, geotextiles.

SE 261. Aerospace Engineering Design (4)

Advanced topics in the design of weight-critical aero space structures. Topics include: static, dynamic and environmental load definitions; metallics and polymeric composite material selection; semi-monocoque analysis techniques, and bolted/bonded connections Design procedures for sizing the structural components of aircraft and spacecraft will be reviewed.

SE 262. Aerospace Structures Repair (4)
Design and analysis for repairing weight-critical aerospace structures. Identification of primary and secondary structural components, review of NASA/FAA approved repair techniques for metallic and composite structural components.

SE 271. Solid Mechanics for Structural and Aerospace

 Engineering (4)Application of principles of solid mechanics to struc tural components and systems, description of stresses, strains, and deformation. Use of conservation equations and principle of minimum potential energy. Development of constitutive equations for metallic cementitious and polymeric materials. Prerequisites: SE 110A, or consent of instructor.

SE 272. Theory of Elasticity (4)

Development, formulation, and application of field equations of elasticity and variational principles for structural applications in civil and aerospace area. Use of plane stress and plane strain formulation, solution of typical boundary value problems. Prerequisites: SE 271 or consent of instructor.

SE 273. Theory of Plasticity and Viscoelasticity (4)

Mechanical models of viscoelastic, plastic, and viscoplastic behavior in simple shear or uniaxial stress. Constitutive relations for three-dimensional states of stress and strain. Application to selected technological problems for civil and aerospace structural applications. Prerequisites: SE 272, or consent of instructor

SE 290. Seminar in Earthquake Engineering (2)
Weekly seminar and discussion by faculty, visitors, postdoctoral research fellows and graduate students concerning research topics in earthquake engineering and related subjects. May be repeated for credit Prerequisite: consent of instructor. (S/U grades only.)

SE 291. Seminar in Advanced Composite Structures (2) Weekly seminar and discussion by faculty, visitors, post doctoral research fellows and graduate students concerning research topics in advanced composite structures and related subjects. May be repeated for credit. Prerequisite: consent of instructor. (S/U grades only.)

SE 296. Independent Study

Prerequisite: consent of instructor.
SE 298. Directed Group Study (1-4)
Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor.

SE 299. Graduate Research (1-12)
(S / U grades permitted.)
SE 501. Teaching Experience (2)
(Formerly AMES 501) Teaching experience in an appropriate $S E$ undergraduate course under direction of the faculty member in charge of the course. Lecturing one hour per week in either a problem-solving section or regular lecture. Prerequisite: consent of instructor and the department. (SU grades permitted.)

English as a Second Language

OFFICE: 3232 Literature Building, Warren College
http://provost.ucsd.edu/es//

Director

Margaret Loken, M.A.
The English as a Second Language Program (ESL) offers three courses designed for students whose home language is not English (ESL 10, 11, 20) and two courses that may be taken by any upper-division student, regardless of home language (ESL 110,111).

ESL 10-Intermediate Writing is a required course for all undergraduates who have not satisfied the Subject A requirement and who have been designated as needing the course based on their Subject A Examination. They must earn the equivalent of a C and have their instructor's recommendation to enroll in the Subject A writing course. Those who earn an equivalent of an A or B will also be recommended to take the Subject A exit exam, with the possibility of going on to their college writing program should they pass.

COURSES

10. Intermediate Writing (4)

This course is designed to provide intensive practice in the conventions of academic English to those students whose first language is not English. This course prepares students for the Subject A writing course. May be repeated once for credit, a second time for workload credit only. Prerequisite: A department stamp is required.
11. Writing Workshop (2)

This course is offered to any students who need additional help improving their writing. The course includes class discussion and individualized instruction, and addresses students' grammar and syntax needs. Prerequisite: A department stamp is required.
20. ESL Writing for Graduate Students (4)

This course, designed for graduate students whose first language is not English, provides practice in the conventions of academic writing required in specific fields of study. Students deal with common rhetorical and grammatical issues but work on writing tasks for their respective disciplines. Workload credit only. May be repeated. Prerequisite: A department stamp is required.

110. Academic Reading and Writing (4)

This course is designed to help students improve their comprehension of academic texts and to respond to those texts in sophisticated writing that is appropriate for its purpose and audience. The focus of the course is on developing critical reading, strategies, organizing and synthesizing information, and writing effectively structured and developed essays. In addition, students gain proficiency in accurately and effectively using English grammar, structure, and vocabulary. Prerequisites: fulfillment of Subject A requirement. Fulfillment of College Writing requirement
111. Academic Speaking and Writing

This course is designed to help students become more proficient speakers and writers in an academic setting Students write essays and short assignments that serve as springboards for and follow ups to speaking assign ments which include group discussion, oral presentations, and impromptu tasks. The focus is on effective, appropriate communication, with an emphasis on clear coherent speaking and writing that is both effective rhetorically and accurate in grammer, structure, and word use. Prerequisite: fulfillment of Subject A requirement. Fulfillment of College Writing requirement.
500. Apprentice Teaching of ESL (1-4)

The course, designed for graduate students serving as teaching assistants, includes discussion of teaching theories, techniques, and materials under the supervision of the instructor in charge of the course. Prerequisite: a department stamp is required.

Environmental Studies

OFFICE: 2073 Humanities and Social Sciences Building, Muir College, (858) 534-3589 http://provost.ucsd.edu/muir/instructional/ environmental-studies

Faculty

Georgios Anagnostopoulos, Ph.D., Professor, Philosophy
Richard Carson, Ph.D., Professor, Economics Pao Chau, Ph.D, Professor, MAE Michael Gilpin, Ph.D., Professor, Biology Mark Hineline, Ph.D., Lecturer, History

Patrick Ledden, Ph.D., Senior Lecturer with Security of Employment/Provost, Muir College
James Moore, Ph.D., Associate Professor, Anthropology
Keith Pezzoli, Ph.D., Lecturer, Director/Field Studies, Urban Studies and Planning
Mark J. Spalding, J.D., Lecturer, IRPS
Shirley Strum, Ph.D., Professor, Anthropology
Mark Thiemens, Ph.D., Professor, Chemistry and Biochemistry
David Woodruff, Ph.D., Professor, Biology

Minor in Environmental Studies

The minor addresses the scientific, technical, social, and cultural issues raised by the conflicting needs of the worldwide complex of preindustrial, industrial, and postindustrial societies.

Some of the courses related to the minor, particularly those in Group A, have significant prerequisites; students planning an Environmental Studies minor should check catalog course descriptions carefully. Some credit toward the minor may be gained through independent study, field research, study abroad, the Academic Internship Program, and others (prior approval strongly recommended). Petitions for petitionable courses (noted with a \# sign), transfer courses, and individual additions to the courses listed below must be approved by the chair of the Environmental Studies Steering Committee. For updates, individual advising, and quarterly lists of available courses, please come to the Environmental Studies Office: Muir Interdisciplinary Studies, 2073 HSS, mail code 0106, phone (858) 534-3589. The minor is structured as follows:

Required:
Environmental Studies 30, usually offered in the fall quarter.
Environmental Studies 130, usually offered in the spring quarter (need not be taken consecutively).

Required:

Five additional courses, at least four in the upper-division, from the following two groups. At least one course must be taken from Group A and one from Group B.

Group A-Natural Sciences

Biology LD 3. Organismic and Evolutionary
Biology
Biology EB 120. General Ecology
Biology EB 121. General Ecology Laboratory

Biology EB 130. Introductory Marine Ecology Biology EB 140. Biodiversity
Biology EB 176. Conservation and the Human
Predicament (cross-listed with ANBI 132)
Biology EB 178. Principles of Conservation Biology
Biology EB 179. Conservation Biology Laboratory
Chemistry 15. Chemistry of the Universe
Chemistry 149A. Environmental Chemistry
Chemistry 149B. Environmental Chemistry
Chemistry 173. Atmospheric Chemistry
Earth Sciences 10.The Earth
Earth Sciences 12 . History of Earth and Evolution
Earth Sciences 20. The Atmosphere
Earth Sciences 30. The Oceans
Earth Sciences 40 . Earth Sciences and the Environment
Earth Sciences 150. Environmental Perils
\#Earth Sciences 101. Introduction to Earth and Environmental Science
Environmental Studies 102 . Selected Topics in Environmental Studies (when taught from a natural sciences perspective)
Environmental Systems 101. The Living Earth
MAE 118A. Energy: Non-Nuclear Energy Technologies
Physics 12. Energy and the Environment Science, Technology, Public Affairs 35 . Society and the Sea

Group B-Social Sciences/Humanities

Anthropology GN 182. Origins of Agriculture and Sedentism (was ANGN 100)

Anthropology GN 160. Nature, Culture and Environmentalism
\#Anthropology GN 163. Technical Revolutions and Evolution
Anthropology BI 132. Conservation and the Human Predicament (cross-listed with BIEB 176)
Communication CUL 148. Communication and the Environment
\#Communication CUL. 175. Advanced Topics in Communication: Culture
Economics 131. Economics of the Environment
Economics 132. Energy Economics
Economics 145. Economics of Ocean Resources
Environmental Studies 102. Selected Topics in Environmental Studies (when taught from a humanities/social sciences perspective)
Environmental Studies 110. Environmental Law \#History SC 100.Understanding the Earth/ Historical Topics
\#History SC 104. History of Popular Science History SC 105A. History of Environmentalism: Ecology

History SC 105B. History of Environmentalism:
Physical Systems
\#History TO 121. Geographic Information Systems for Historians and Social Scientists
\#History US 114. California History
\#History US 117. History of Los Angeles
History US 137. The Built Environment in the
Twentieth Century
History US 154. Western Environmental History (cross-listed with USP 160)
\#History US 162. American West
\#IRPS GN 257. Policy Analysis
\#IRPS GN 290/490. Special Topics in Pacific International Affairs
IRPS GN 458. International Environmental Policy
IRPS GN 459. Conflict Resolution of Environmental Issues
\#Literature EN 147. Metamorphoses of the Symbol
\#Literature EN 148. Genres in English and American Literature
\#Literature EN 149. Themes/English and American Literature
\#Literature GN 160 . Specialized Genres in Literature
\#Literature WR 122. Writing for the Sciences \#Literature WR 127. General Nonfiction Prose Workshop
\#Literature WR 142. Forms of Written Discourse
Philosophy 148. Philosophy and the Environment
Philosophy 164. Technology and Human Values
\#Political Science 154. Special Topics in International Relations
Political Science 162. Environmental Policy
Sociology D 184. Societal Evolution and Economic Development
\#Sociology D 185. The Political Economy of Development and Underdevelopment
Urban Studies \& Planning 2. Urban World System
Urban Studies \& Planning 105. Environmental and Urban Planning Problems:The U.S.-Mexico Border
Urban Studies \& Planning 124. Land Use Planning
Urban Studies \& Planning 144. Environmental and Preventive Health Issues
Urban Studies \& Planning 160. Western Environmental History (cross-listed with HIUS 154)
Urban Studies \& Planning 171. Sustainable Development
Urban Studies \& Planning 175. Environmental Problems of Urban Studies
\#Visual Arts 107G. Earthworks to Ecological Art

\#Visual Arts 131. Special Projects in Media

\#These courses satisfy minor requirements only when taught with an emphasis on environmental considerations. They must be petitioned for minor credit.
Instructor's approval required for enroliment.

COURSES

30. Environmental Issues: Natural Sciences (4)

Examines global and regional environmental issues.
The approach is to consider the scientific basis for policy options. Simple principles of chemistry and biology are introduced. The scope of problems include: air and water pollution, climate modification, solid-waste disposal, hazardous-waste treatment, and environmental impact assessment. Prerequisite: none.
90. Undergraduate Seminar (1)

Provides an introduction to environmental studies. Faculty members from departments in natural sciences, social sciences, and humanities offer perspectives on human interaction with the environment and the ways in which the interplay between nature and culture can be analyzed. May be repeated for credit as topics vary.
102. Selected Topics in Environmental Studies (4)

An interdisciplinary course focusing on one of a variety of topics related to environmental studies such as environmental policy and politics, foreign study in environmental problems, environmental history, nature writers, ethics and the environment. May be repeated for credit as topics vary. Prerequisite: upper-division standing or consent of instructor.

110.Environmental Law (4)

Explores environmental policy in the United States and the ways in which it is reflected in law. The social and political issues addressed include environmental justice and environmental racism, as well as the role of government in implementing environmental law. Prerequisite: upper-division standing or consent of instructor.
130. Environmental Issues: Social Sciences (4)

Explores contemporary environmental issues from the perspective of the social sciences. It includes the cultural framing of environmental issues and appropriate social action, the analysis of economic incentives and constraints, and a comparison of policy approaches. Prerequisite: upper-division standing or consent of instructor.

198. Directed Group Study (4)

Directed group research and study, normally with a focus on areas not otherwise covered in the curriculum. Prerequisite: upper-division standing or consent of instructor. Department stamp required.
500. Apprentice Teaching in Environmental Studies (4)

A course in which taching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation and grading of examinations and other wirtten exercises, and student relations. Prerequisite: graduate standing.

Environmental Systems

Office: 188 Galbraith Hall, Revelle College

Program Faculty

Mark H.Thiemens, Professor, Chemistry and Biochemistry, Program Director
Ronald S. Burton, Professor, Marine Biology, SIO
Richard T. Carson, Professor, Economics
William S. Hodgkiss, Professor, Electrical Engineering, SIO
Joshua R. Kohn, Associate Professor, Biology Paul Linden, Professor, MAE
T. Guy Masters, Professor, Geophysics, SIO

Naomi Oreskes, Associate Professor, History Brian Palenik, Associate Professor, Marine Biology, SIO
Keith Pezzoli, Lecturer, Urban Studies and Planning
Frank L. Powell, Professor, Medicine/White Mountain Research Station
Jeffrey B. Remmel, Professor, Mathematics Richard C. J. Somerville, Professor, Meteorology, SIO

There can be little doubt that in the twentyfirst century the global human community is facing a substantial growth in the environmental consequences of providing food, energy, materials, and basic services to a population of more than six billion inhabitants. The Environmental Systems Program recognizes the growing demand for environmental specialists and is designed to prepare undergraduates to enter a broad spectrum of environmental careers and graduate programs in, for example, the natural sciences, the social sciences, public policy, law, and business. The program offers both a B.S. and a B.A. in environmental systems. This interdisciplinary program recognizes that local, national, regional, international, and global environmental problems do not fit neatly into traditional academic departments. A measurable part of society's inability to effectively manage complex environmental problems stems from the lack of specialists who can apply analytical tools that cross disciplinary boundaries. Many environmental specialists possess little training in the natural sciences including both the fundamental ideas and methodologies of the earth and environmental sciences. The environmental systems major was created to address both of these shortcomings.

To encourage and foster an interdisciplinary focus in the major, the Environmental Systems

Program is supported by a wide range of UCSD faculty representing the natural sciences, the social sciences, the humanities, engineering, and medicine. The program includes a required lowerdivision core, an upper-division"integrating course sequence," two other upper-division courses and statistics, an advanced track, and a senior integrative project and seminar. There is a strong emphasis on a rigorous natural science foundation as well as an introduction to the policy sciences for all students enrolled in the major. The program places a significant value on interdisciplinary problem-solving and, in this connection, requires all students in the major to complete an off-campus "integrative project." The integrative project might involve work with endangered species including, for example, the development of habitat conservation plans. Other examples might include projects in coastal zone management, environmental health, marine pollution, climate change adaptation and mitigation, environmental justice, and urban air quality. The Environmental Systems Program will assist students in the major in locating off-campus entities with which to conduct their projects. To complete the integrative project requirement, all students will participate in the senior seminar where formal reports on the projects will be completed and presented.

The Environmental Systems Major

The requirements for completion of the environmental systems major include a lower-division core, two upper-division courses, a three course upper-division integrating sequence (ESYS 101, ESYS 102, ESYS 103), an upper-division statistics course, advanced courses in one of four tracks, and the integrative project (ESYS 190A) and senior seminar (ESYS 190B). Any questions concerning the requirements should be directed to the associate director or the program administrator. Students completing the advanced tracks in "Earth Sciences,""Ecology, Behavior, and Evolution," and "Environmental Chemistry" will be awarded a B.S. in environmental systems. The B.A. in environmental systems will be granted to students completing the "Environmental Policy" track within the major.

A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. Students must receive a grade of Cor better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the
major of 2.5 or greater may petition to have one grade of D accepted. All courses (lower- and upper-division) required for the major must be taken for a letter grade.

LOWER-DIVISION CORE REQUIREMENTS

Biology 3-BILD 3
Chemistry 6A,6B, 6BL, 6C-Environmental Chemistry track students must also complete Chemistry 6CL
Physics 1A, 1B, 1C-Earth Sciences track students complete Physics 2A-B-C
Mathematics 10A, 10B, 10C-Earth Sciences track students complete Math 20A-B, 21C, and Math 21 D is recommended

Economics 2A

UPPER-DIVISION CORE REQUIREMENTS

Economics 131. Economics of the Environment

Political Science 160AA. Introduction to
Policy Analysis or
Political Science 168. Policy Assessment
"Integrating Course Sequence"
Environmental Systems 101.The Living Earth
Environmental Systems 102. The Solid and Fluid Earth

Environmental Systems 103. The Human Earth

Environmental Systems Major Tracks

There are four advanced tracks in which students must complete a minimum of seven upperdivision courses. Students will select courses following the requirements below in consultation with a faculty adviser.
Earth Sciences
Ecology, Behavior, and Evolution
Environmental Chemistry
Environmental Policy
The program is working with the School of Engineering to create an"Environmental Engineering" track to be offered at a future date.

Earth Sciences Track

Required upper-division courses:

ERTH 101. Introduction to Earth and Environmental Sciences

ERTH 102. Introduction to Geochemistry MATH 183. Statistical Methods (This statistics course, required in sophomore year)
Upper-division electives: (must complete a minimum of seven courses)

Solid Earth emphasis:

ERTH 103. Introduction to Geophysics ERTH 104.Geobiology
ERTH 120. Introduction to Mineralogy
ERTH 130. Geodynamics of Terrestrial Planets
ERTH 144. Isotope Geochemistry
ERTH 160. Introduction to Tectonics
ERTH 162A. Introduction to Field Geology
ERTH 162L. Structural Analysis for Field Geology

ERTH 180. Geophysics of Natural Resources
ERTH 182. Field Geophysics
SIO 210. Physical Oceanography
SIO 260. Marine Chemistry
SIO 240. Marine Geology
Other ERTH/SIO courses by petition

Ocean/Atmosphere emphasis:

ERTH 142. Atmospheric Chemistry and Biochemical Cycles
Chemistry 149A. Environmental Chemistry
Chemistry 173. Atmospheric Chemistry
SIO 240. Marine Geology
SIO 269. Special Topics in Marine Chemistry
SIO 280. Biological Oceanography
BIEB 130. Introduction to Marine Ecology
Other ERTH/SIO courses by petition.
CURRICULUM GUIDE PLANNING

FALL	WINTER	SPRING
FRESHMAN		
Chem. 6A	Chem. 6B	Chem. 6C
Math. 20A	Math. 20B	Math. 21C
	Chem.6BL	BILD 3
SOPHOMORE	Phys.2B	Phys. 2C
Math. 21D (recommended) Phys.2A	Econ. 131	UD ESYS elective
Econ. 2a		Poli. 160AA or 168

JUNIOR		
ERTH 101	ERTH 102	ESYS 103
ESYS 101	ESYS 102	UD ESYS elective
Math. 183	UD ESYS elective	UD ESY' elective
SENIOR		
ESYS 190A	ESYS 190A	ESYS 190B
UD ESYS elective	UD ESYS elective	UD ESYS elective

Ecology, Behavior, and Evolution Track

Required upper-division courses:
BICD 100. Genetics
BIEB 100. Biometry (satisfies upper-division statistics requirement)

Upper-division electives [six courses required, including at least one lab course, selected from the courses below.] Students may satisfy some part of the upper-division elective requirements through enrollment in the Environmental Biology Program at the White Mountain Research Station (WMRS). The courses that make up this program are listed below as BIEB 170-17i-172. For details contact the Environmental Systems Program office.

BIBC 100. Structural Biochemistry
BIBC 102. Metabolic Biochemistry
BIBC 103. Biochemical Techniques
BIBC 115. Computer Programming in Biology
BIBC 120. Nutrition
BIBC 130. Marine Biochemistry
BICD 110. Cell Biology
BICD 120. Fundamental of Plant Biology
BICD 130. Embryos, Genes, and Development
BICD 134. Human Reproduction and Development

BIEB 120. General Ecology
BIEB 121.Ecology Laboratory
BIEB 126. Plant Ecology
BIEB 130. Introduction to Marine Ecology
BIEB 140. Biodiversity
BIEB 150.Evolution
BIEB 156. Population Genetics
BIEB 164. Behavioral Ecology
BIEB 166. Animal Communication
BIEB 170. Field Ecology (WMRS)
BIEB 171.Physiological Ecology (WMRS)
BIEB 172. Applied Conservation Biology (WMRS)

BIEB 176. Conservation and the Human Predicament

BIEB 178. Principles of Conservation Ecology
BIEB 179. Conservation Biology Laboratory
BIEB 180. Principles of Conservation Genetics
BIMM 100. Molecular Biology
BIMM 110. Molecular Basis of Disease
BIMM 114.Virology
BIMM 120. Bacteriology
BIMM 121.Laboratory in Microbiology
BIMM 124. Medical Microbiology
BIMM 126. Environmental Microbiology
BIMM 127. Environmental Microbiology Laboratory
BIPN 100. Mammalian Physiology I
BIPN 102. Mammalian Physiology II
BIPN 105. Animal Physiology Lab (6)
BIPN 106. Comparative Physiology (4)
CURRICULUM GUIDE PLANNING

FALL	WINTER	SPRING
FRESHMAN		
Chem. 6A	Chem. 6B	Chem. 6C
Math. 10A	Chem. 6BL	Math. 10C
	Math. 10B	BILD 3
SOPHOMORE		
Phys. 1A	Phys. 1B	Phys. 1C
ECon. 2A	Econ. 131	UD ESYS elective
BICD 100	BIEB 100 (statistics)	Poli. 160AA or 168
JUNIOR		
ESYS 101	ESYS 102	ESYS 103
UD ESYS elective lab	UD ESYS elective	UD ESYS elective
SENIOR		
ESYS 190A	ESYS 190A	ESYS 190B
UD ESYS elective		UD ESYS Elective

Environmental Chemistry Track

Students must complete two of the following courses:

Chemistry 149A. Environmental Chemistry
Chemistry 149B. Environmental Chemistry
Chemistry 173. Atmospheric Chemistry
Students must complete:
Math. 183. Statistical Methods (This statistics course required in sophomore year)

Chemistry 140A and B. Organic Chemistry
One upper-division lab from either:
Chemistry 106. Instrumental Analysis Laboratory

Chemistry 143A. Organic Chemistry Laboratory
Two other upper-division courses, for example:
Chemistry 122. Biochemical Evolution
Chemistry 124. Bioinorganic Chemistry
Chemistry 126/127. Physical Chemistry
Chemistry 131/132/133. Physical Chemistry
Chemistry 140C. Organic Chemistry

CURRICULUM GUIDE PLANNING

FALL	WINTER	SPRING
FRESHMAN		
Chem. 6A	Chem. 6B	Chem.6C
Math. 10A	Chem.6BL	Math. 10C
BILD 3	Math. 10B	Chem. 6CL
SOPHOMORE		
Phys.1A	Phys.1B	Phys. 1C
Econ. 2A	Econ. 131	Chem. 140A
Math.183		Poli.160AA or 168
JUNIOR		
Chem. 140B	*Chem. 149B	*Chem. 173
*Chem. 149A	Chem. 106 OR	Chem. 143A
ESYS 101	ESYS 102	ESYS 103
SENIOR		
ESYS 190A	ESYS 190A	ESYS 190B
UD ESYS elective	UD ESYS elective	

* Choose (2) out of 3

Environmental Policy Track

Students complete a minimum of seven courses selected from the following list. It is also possible to complete the requirements for the Environmental Policy track with a specialization that includes courses from one of the other tracks. For example, a course of study with a focus on conservation biology and policy for students who may be interested in the policy and scientific dimensions of habitat conservation planning for endangered species, would include advanced courses from the Ecology, Behavior, and Evolution track.

One upper-division Statistics course—ANGN 157.
The Analysis of Systematic Data
Economics 132. Energy Economics
Economics 125. Economics of Population Growth
Economics 116. Economic Development
Economics 130. Public Policy
Political Science 102L. The Politics of Regulation
Political Science 150A. Politics of Immigration
IR-PS 452*. Seminar on the Environment
IR-PS 453*. Sustainable Development
IR-PS 458*. International Environmental Policy

HISC 105. History of Environmentalism
HIUS 154. Western Environmental History
ANBI 132. Conservation and the Human Predicament
Com/Cul 148. Communication and the Environment
Env. Studies 102. Selected Topics in Environmental Studies
Env. Studies 110. Environmental Law
Philosophy 148. Philosophy of the Environment Philosophy 164. Technology and Human Values USP 124. Land Use Planning
USP 144. Environmental and Preventive Health Issues
USP 170. Planning Theory and Practice
USP 171. Sustainable Development
Other courses may be substituted by petition.

* These graduate courses are offered through the Graduate School of International Relations and Pacific Studies. Enrollment in these courses requires the permission of the instructor.

CURRICULUM GUIDE PLANNING

FALL	WINTER	SPRING
FRESHMAN		
Chem. 6A	Chem. 6B	Chem. 6C
Math. 10A	Math. 10B	Math. 10C
	Chem. 6BL	BILD 3
SOPHOMORE		
Phys. 1A	Phys. 18	Phys. 1C
ECon. 2A	Econ. 131	ANGN 157
		Poli. 160AA or 168
JUNIOR		
ESYS 101	ESYS 102	ESYS 103
UDESYS elective	UD ESYS elective	UD ESYS elective
SENIOR		
ESYS 190A	ESYS 190A	ESYS 190B
UD ESYS elective	UD ESYS elective	UD ESYS elective
		UD ESYS elective

courses

Many of the courses that are used to fulfill the requirements of the environmental systems major are offered by other departments and programs. Most of these courses are offered on a regular basis. Students should consult the Schedule of Classes or contact the Environmental Systems Office in order to obtain current information. The
courses below are offered directly through the Environmental Systems Program.

LOWER-DIVISION

ESYS 10. Introduction to Environmental Systems (4)
This course explores the interdisciplinary character of environmental issues through an examination of a particular topic [climate change, for example] from numerous disciplinary perspectives [e.g., biology, chemistry, physics, political science, and economics]. Prerequisite: none. (W)

UPPER-DIVISION

ESYS 101. The Living Earth (4)
This course will survey the basic biochemical and physiological processes governing the relationship between organisms and their environments. Fundamentals of molecular biology, enzyme reactions, photosynthesis, and central metabolic processes, mechanisms underlying homeostasis at cellular and organismal levels will be discussed with a view toward understanding the adaptations and sensitivity of biological systems to environmental perturbations. Prerequisites: Math. 10A, 10B, 10C, BILD 3, CHEM 6A-B-C, Physics 1A-B-C. (F)

ESYS 102. The Solid and Fluid Earth (4)

The physical Earth system can be divided into three components: the solid earth, the liquid earth, and the atmosphere. These components are all dynamic and interact in complex ways with profound impacts on our environment. We will examine the controls of natural phenomena such as earthquakes, volcanoes, landslides, soil formation (and destruction), and changes in sealevel and climate. Prerequisites: Math. 10A, 10B, 10C, BILD 3, CHEM 6A-B-C, Physics 1A-B-C plus either Chem/Physics lab. (W)

ESYS 103. The Human Earth (4)

This course explores the global impacts of humanity through an understanding of population growth, the production and consumption of energy, the use of renewable and non-renewable resources, and the role of advances in technology. Building on the material covered in ESYS 101 and ESYS 102, this course employs a range of social science tools from policy analysis to economics to explore the human dimension of global environmental change. Prerequisites: Economics $2 A$ and 131, ESYS 101 and 102, Political Science 160AA or 168. (S)

ESYS 190A. Environmental Systems Integrative

Project (8)
Students are required to pursue research on an interdisciplinary environmental problem either individually or as part of a team over two terms (this may include summer term). The project will be conducted as an off-campus internship where students might work on, for example, the development of a comprehensive management plan for a threatened ecosystem. Students will work with an off-campus environmental group or agency. Prerequisites:ESYS 103 and upper-division standing.
ESYS 190B. Environmental Systems Senior Seminar (2) The seminar, to be completed in the senior year, provides a venue for the development, presentation, and evaluation of the Environmental Systems Integrative Project reports. The seminar will include work on research methods as well as paper presentation skills. Distinction in the major will be awarded for outstanding projects and reports. Prerequisite: ESYS 190A.

Ethnic Studies

OFFICE: Social Science Building, Rm. 201 http://www.ethnicstudies.ucsd.edu

Faculty

Robert Alvarez, Ph.D., Associate Professor Charles Briggs, Ph.D., Professor and Department Chair
Yen Le Espiritu, Ph.D., Professor
Ross Frank, Ph.D., Associate Professor Ramón A. Gutierrez, Ph.D., Chancellor's

Associates Endowed Chair and Professor
George Lipsitz, Ph.D., Professor
Natalia Molina, Ph.D., Assistant Professor
Jane Rhodes, Ph.D., Associate Professor
Leland Saito, Ph.D., Associate Professor
Denise Ferreira da Silva, Ph.D., Assistant Professor

Associated Faculty

James Cheatham, Emeritus, Music
Matthew Chen, Linguistics
Anthony Curiel, Theatre and Dance
Steve Erie, Political Science
Claudio Fenner-Lopez, Emeritus,
Communication/Visual Arts
Floyd Gaffney, Emeritus, Theatre and Dance
Harry Hirsch, Political Science
Jorge Huerta, Theatre and Dance
Arend Lijphardt, Emeritus, Political Science
James Lin, Mathematics
Lisa Lowe, Literature
Cecil Lytle, Music
George Mariscal, Literature
Masao Miyoshi, Literature
Vicente Rafael, Communication
Edward Reynolds, History
Ramon Eduardo Ruiz, Emeritus, History
Marta Sanchez, Literature
Rosaura Sanchez, Literature
Faustina Solis, Emeritus, Urban Studies/
Family and Preventive Medicine
Olga Vasquez, Communication
Ethnic studies is the study of the social, cultural, and historical forces that have shaped the development of America's diverse ethnic peoples over the last 500 years and which continue to shape our future. Focusing on immigration, slavery, and confinement, those three social processes that combined to create in the United States a nation of nations, ethnic studies intensively exam-
ines the histories, languages, and cultures of America's racial and ethnic minority groups in and of themselves, in their relationships to each other, and, particularly, in structural contexts of power.

The curriculum of the Department of Ethnic Studies is designed to 1) study intensively the particular histories of different ethnic and racial groups in the United States, especially intragroup stratification; 2) to draw larger theoretical lessons from comparisons among these groups; 3) to articulate general principles that shape racial and ethnic relations both currently and historically; and 4) to explore how ethnic identity is constructed and reconstructed over time both internally and externally.

A degree in ethnic studies offers training of special interest to those considering admission to graduate or professional schools and careers in education, law, medicine, public health, social work, journalism, business, city planning, politics, psychology, international relations, or creative writing. A major in ethnic studies is designed to impart fundamental skills in critical thinking, comparative analysis, social theory and research analysis, and written expression. These skills will give students the opportunity to satisfy the increasingly rigorous expectations of graduate admissions committees and prospective employers for a broad liberal arts perspective.

An ethnic studies major offers excellent preparation for teaching in the elementary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program for information about the prerequisite and professional preparation requirements. It is recommended that you contact TEP as early as possible in your academic career.

The Major

To receive a B.A. degree with a major in ethnic studies, students must meet the following requirements:

1. A three-quarter course lower-division sequence (Ethnic Studies 1A-B-C). Ideally this sequence should be taken during the sophomore year as an intensive introduction to the history and theoretical dimensions of ethnic diversity in the United States. Ethnic Studies 1A-B-C, Introduction to Ethnic Studies, will consist of the following three courses: Population Histories of the United States, Immigration and

Assimilation in American Life, Race and Ethnic Relations in the United States.
2. A minimum of twelve four-unit upper-division courses in the Department of Ethnic Studies must be completed from the following five categories:
A. One four-unit upper-division course that intensively explores the theory and comparative methods of ethnic studies (Ethnic Studies 100:Theories and Methods of Ethnic Studies). All ethnic studies majors should complete this course before proceeding with the other requirements listed below.
B. Four upper-division ethnic studies history and social science courses from those listed below:

ETHN 105: Ethnic Diversity and the City
ETHN 106: Ethnoracial Transformations of U.S. Communities

ETHN 107: Field Work in Racial and Ethnic Communities

ETHN 112: History of Native Americans in the United States
ETHN 118: Contemporary Immigration Issues
ETHN 119: Multiracial Societies in the Americas
ETHN 120: Comparative Asian-American History, 1850-1965

ETHN 121: Contemporary Asian-American History
ETHN 123: Asian-American Politics
ETHN 125: Asian-American History
ETHN 130: Social and Economic History of the Southwest I
ETHN 131: Social and Economic History of the Southwest II

ETHN 134: Immigration and Ethnicity in Modern American Society
ETHN 150: Politics of Cultural Pluralism and National Integration
ETHN 151: Ethnic Politics in America
ETHN 152: Law and Civil Rights
ETHN 160: Black Politics and Protest in the Early 20th Century (1885-1941)
ETHN 161: Black Politics and Protest Since 1941

ETHN 162: Cultural Contact and Exchange
ETHN 163: Leisure in Urban America
ETHN 165: Sex and Gender in African American Communities

ETHN 166: The Black Press and SocialChange
ETHN 167: African-American History in War and Peace: 1917 to the Present

ETHN 170A: Origins of the Atlantic World, c. 1450-1650

ETHN 170B: Slavery and the Atlantic World
ETHN 197: Field Work in Racial and Ethnic Communities*

ETHN 198: Directed Group Studies*
ETHN 199: Supervised Independent Study and Research*
*Only two will be counted in fulfillment of this requirement.

Colloquia

ETHN 180: Topics in Mexican-American History
ETHN 181: Topics in the Comparative History of Modern Slavery

ETHN 182: Segregation, Freedom Movements, and the Crisis of the Twentieth Century

ETHN 183: Gender, Race, Ethnicity, and Class
ETHN 184: Black Intellectuals in the Twentieth Century

ETHN 186: The Ethnic Press in the United States

ETHN 187: Black Nationalism
ETHN 189: Special Topics in Ethnic Studies
C. At least three upper-division courses that focus on language and ethnicity:
ETHN 140: Language and American Ethnicity
ETHN 141: Language, Culture, and Inequality
ETHN 142: Medicine, Race, and the Global Politics of Inequality

ETHN 145: Spanish Language in the United States

ETHN 185: Discourse, Power, and Inequality

Due to the limited course offerings in this general area during the 2001-2002 academic year, students may petition to count courses on language and ethnicity offered
by other departments. Some courses in foreign language at the upper-division level or area studies (Latin American Studies, Third World Studies, Japanese Studies, etc.) may be counted in partial fulfillment of this requirement, with the consent of the department. Students must seek faculty advice on which courses would best satisfy the requirement and yield the most rigorous training.
D. At least three upper-division ethnic studies courses on the literature and cultural expressions of American racial and ethnic minorities:

ETHN 101: Ethnic Images in Film
ETHN 110: Cultural World Views of Native Americans

ETHN 111: Native American Literature
ETHN 122: Asian-American Culture and Identity
ETHN 124: Asian-American Literature
ETHN 132: Chicano Dramatic Literature
ETHN 133: Hispanic-American Dramatic Literature

ETHN 135: Development of Chicano Literature

ETHN 136: Themes and Motifs in Chicano Literature

ETHN 137: Chicano Prose
ETHN 138: Chicano Poetry
ETHN 139: Chicano Literature in English
ETHN 146A: Theatrical Ensemble
ETHN 164: African Americans and the Mass Media
ETHN 168: Comparative Ethnic Literature

ETHN 172: Afro-American Prose
ETHN 173: Afro-American Poetry
ETHN 174: Themes in Afro-American Literature

ETHN 175: Literature of the Harlem Renaissance

ETHN 176: Black Music/Black Texts: Communication and Cultural Expression

ETHN 177: African Heritage in Contemporary Drama:

African, Caribbean, and African American

ETHN 178: Blues: An Oral Tradition
ETHN 179A: Jazz Roots and Early Development (1900-1943)

ETHN 179B: Jazz Since 1946: Freedom and Form
E. One four-unit field methods course (Ethnic Studies 190: Research Methods: Studying Ethnic and Racial Communities).
3. Since the goal of the Department of Ethnic Studies is to intensively study both the particular histories of various ethnic and racial groups in the United States and to draw larger theoretical lessons from comparisons among and between groups, students may not fulfill requirements $2 B$ and $2 D$ by focusing all of the seven required courses on only one ethnic or racial group.

The Honors Program

Consistent with other research opportunities offered to undergraduates on the UCSD campus, the department offers the Honors Program to ethnic studies majors in their senior or junior year the opportunity to conduct original research using interdisciplinary methodologies in the comparative study of race and ethnicity. To enroll in the Honors Program, an undergraduate must have a minimum grade-point average of 3.5 in ethnic studies classes counted towards the major. Students with a GPA in the major of lower than 3.5 may be admitted by exception if they show promise of success in research.

The Honors Program will be an extension of current departmental offerings using existing faculty resources. Ethnic studies and affiliated faculty will choose to advise students who successfully complete ETHN 191 and continue in the Honors Program based related research interests. The student will enroll in ETHN 192 and ETHN 193 with the appropiate faculty adviser. Students who complete the sequence ETHN 191, ETHN 192, and ETHN 193 will receive one credit towards the " B " (Social Studies/Humanities) requirements for the ethnic studies major.
191. Undergraduate Research in Ethnic Studies (4)

This course is designed to help conduct their own research rather than merely read the research of others. The course will introduce students to research paradigms in ethnic studies, familiarize them with finding
aids and other library resources, and involve them in the design of research plans.

192. Honors Research in Ethnic Studies (4)

This course is a continuation of Ethnic Studies 191Undergraduate Research in Ethnic Studies. Students who have completed ETHN 191 and selected a faculty research adviser may enroll in this course. During the quarter the research for the honors project will be completed under the faculty adviser's supervision. Faculty advisers will meet weekly with their honor students to oversee the progress made in carrying out the plan of research.

193. Honors Research in Ethnic Studies (4)

This course is a continuation of Ethnic Studies 192 Honors Research in Ethnic Studies. Students who have completed ETHN 192 and are continuing to work with a faculty research adviser may enroll in this course. During the quarter the written drafts and final honors paper will be completed under the faculty adviser's supervision. The student will meet weekly with the faculty adviser in order to prepare drafts and the final version of the honors paper.
Ethnic Studies 191, 192, and 193 must be taken for letter grade only.

The Minor

Students may minor in ethnic studies. Students wishing to minor in ethnic studies must take seven four-unit upper-division courses from the department's offerings. The department offers several options that allow students to take courses about a variety of ethnic groups or about one group. But all students minoring in ethnic studies must enroll in our two courses in analytic and comparative study of ethnicity-Theories and Methods of Ethnic Studies (ETHN 100) and Research Methods: Studying Ethnic and Racial Communities (ETHN 190.) The minor also requires that at least two, but no more than three of the five remaining courses be selected from either the ethnic studies history and social studies courses (listed above as 2B), or the ethnic studies literature and cultural expressions courses (listed above as 2D.) While the language and ethnicity courses currently offered may also be used to satisfy this requirement, foreign language and area studies courses from other departments may not.

Students interested in the African-American experience should consider the following courses:

ETHN 160: Black Politics and Protest in the Early 20th Century (1885-1941)
ETHN 161: Black Politics and Protest Since 1941

ETHN 164: African Americans and the Mass Media

ETHN 165: Sex and Gender in African American Communities
ETHN 166: The Black Press and Social Change

ETHN 167: African-American History in War and Peace: 1917 to the Present

ETHN 170A: Origins of the Atlantic World, C. 1450-1650

ETHN 170B: Slavery and the Atlantic World
ETHN 172: Afro-American Prose
ETHN 173: Afro-American Poetry
ETHN 174: Themes in Afro-American Literature

ETHN 175: Literature of the Harlem Renaissance

ETHN 176: Black Music/Black Texts: Communication and Cultural Expression

ETHN 177: African Heritage in Contemporary Drama: African, Caribbean, and African American
ETHN 178: Biues: An Oral Tradition
ETHN 179A: Jazz Roots and Early Development (1900-1943)

ETHN 179B: Jazz Since 1946: Freedom and Form
ETHN 181: Topics in the Comparative History of Modern Slavery

ETHN 182: Segregation, Freedom Movements, and the Crisis of the Twentieth Century
ETHN 184: Black Intellectuals in the Twentieth Century
ETHN 187: Black Nationalism
LTEN 188: Contemporary Caribbean Literature

THHS 153: Dance History: Jazz Dance and Related Ethnic Studies

Students interested in the Chicano Experience should consider the following courses:

ETHN 132: Chicano Dramatic Literature
ETHN 133: Hispanic-American Dramatic Literature

ETHN 135: The Development of Chicano Literature

ETHN 136: Themes and Motifs in Chicano Literature

ETHN 137: Chicano Prose
ETHN 138: Chicano Poetry
ETHN 139: Chicano Literature in English
ETHN 145: Spanish Language in the United States

ETHN 180: Topics in Mexican American History

Students interested in the Asian-American experience should consider the following courses:

ETHN 120: Comparative Asian-American History
ETHN 121: Contemporary Asian-American History
ETHN 122: Asian-American Culture and Identity
ETHN 123: Asian-American Politics
ETHN 124: Asian-American Literature
ETHN 125: Asian-American History
Students interested in the Native American experience should consider the following courses:

ETHN 110:	Cultural World Views of Native Americans
ETHN 111:	Native American Literature
ETHN 112:	History of Native Americans in the United States
SoCD 181:	The Sociology of Indian-White Relations

The Graduate Program

The UCSD Department of Ethnic Studies emphasizes comparative, analytic, and relational study of ethnicity and race in the United States. Our fields of emphasis include intercultural communication and conflict, population histories of the Americas, ethnicity and identity, immigration and assimilation, ethnic politics and social movements, race and racism, urban ethnicity, gender and ethnicity, intellectual and cultural histories of ethnic groups, cultural pluralism, national integration, language and ethnic life, and mass media representations of ethnic identity.

Admission

New students are admitted in the fall quarter of each academic year. Prospective applicants should submit the official application for admis-
sion and awards (same form), one set of official transcripts from each institution attended after high school, official scores from the Graduate Record Examination, application fee, at least three letters of recommendation, and one or more samples of the applicant's own writing, such as term papers. Additionally, foreign applicants must submit official scores from the Test of English as a Foreign Language (TOEFL). Applicants are encouraged to visit the department to talk with faculty and graduate students. The application deadline is January 15.

Program of Study

Students are required to enroll as full-time graduate students, to carry a minimum enrollment of twelve units of graduate-level courses each quarter, and to maintain a grade-point average of 3.2 or better. To obtain an M.A. degree students must take fifty-one units of course work and write a master's thesis.

Core Curriculum Sequence Requirements

1. Ethnic Studies 200A-B-C, Core Seminar

All graduate students will be required to take the introductory three-quarter core seminar (four units each, twelve units total) during their first year in the program. This course covers ethnic studies theory, the history of ethnic studies, and controversies in ethnic studies.
2. Ethnic Studies 210, Research Seminar

During the first year of graduate study, all students will be required to take (1) one-quarter of the research seminar (4 units). This course introduces students to the practice of original discovery research in the field of racial and ethnic studies, including articulating a research problem, placing it within theoretical discussions, selecting appropriate methods, and analyzing data.
3. Ethnic Studies 230, Department Colloquium During the first two years of graduate study, all students will be required to enroll in three onequarter colloquia required by the department. In Ethnic Studies 230, department faculty and visiting lecturers will make presentations about research in progress in our field. This colloquium is a one-unit course and must be taken for a total of three quarters.
4. Ethnic Studies 240, Multidisciplinary Research Methods in Ethnic Studies During the first two years of graduate study, students must enroll in two (2) four-unit disci-
plinary methods courses. The first course must be Ethnic Studies 240; Multidisciplinary Research Methods in Ethnic Studies. Depending upon the student's research interests, the second course will be selected (in consultation with the student's graduate adviser) from those graduate methods courses offered by UCSD Humanities and Social Science Departments.

5. Ethnic Studies 290A-B, Master's Thesis Preparation

Students are required to write a master's thesis as part of the requirements for the master of arts in ethnic studies. Students should enroll in thesis preparation courses in the fall and spring quarters of the second year of graduate studies.

6. Ethnic Studies 295A-B-C, Dissertation Seminar

By the end of their fourth year, all candidates for the Ph.D. degree must take Ethnic Studies 295A-$B-C$, the Dissertation Seminar. This is a threequarter seminar about all phases of dissertation research and writing. Students will begin their dissertations while taking this seminar.

Foreign Language Requirement

Competence in one or more foreign languages is encouraged but not required at the M.A. level. All doctoral candidates must satisfy the department's graduate committee that they have adequate linguistic competence in one foreign language relevant to their area of research by translating three pages of scholarly text written in the designated foreign language. The graduate committee may waive the language requirement and test the candidate on other specialized skills in instances where knowledge of a foreign language is not relevant to the candidate's areas of research.

Instruction in Quantification

The department encourages graduate students to employ quantitative methods where appropriate. Instruction in quantitative methods can fulfill elective requirements; recommended courses include Sociology 205 and 206-Survey and Demographic Methods, Political Science 270—Quantitative Methods in Political Science. In cases where a reading knowledge of evidence assembled through quantitative methods would be useful, students who obtain the permission of the director of Graduate Studies may fulfill elective requirements by taking no more than two selected undergraduate courses including

Sociology 103-Computer Applications to Data Management in Sociology, Sociology 107Demographic Methods, Sociology 108Quantitative Analysis of Survey Data, Sociology 109-Quantitative Analysis of Sociological Data, Political Science 170-Quantitative Political Science, among others.

The Master's Degree

Students entering the ethnic studies doctoral program must first complete a master's degree before continuing toward the doctorate. University regulations prohibit entering students who already have a master's degree from receiving a second master's degree. Nonetheless, students who are admitted to the ethnic studies doctoral program with a master's degree must complete all the requirements for the ethnic studies master of arts degree. The M.A. will also be a terminal degree for those students denied admission to candidacy.
To obtain the M.A. degree, students must complete the department's course requirements satisfactorily. At the end of the second year in the graduate program, students must submit a written thesis to their Master's Thesis Committee (MTC). The committee will assess the quality of the work and determine whether it demonstrates the likelihood of success in conducting doctoral research.
The final decision regarding the M.A. degree is based on grades, the master's thesis, and yearly faculty evaluations. The Graduate Program Commitee awards three possible grades: Pass, M.A. Only, and No Pass. All passing students (with the exception of those who already have a master's degree in ethnic studies from another institution) receive the master of arts degree and proceed in their course of studies for the doctorate. Students who receive M.A. Only evaluations gain the master's degree but may not continue in the department's Ph.D. program. Students who receive a No Pass evaluation must withdraw from the program without a graduate degree.
The master's degree is earned as one of the requirements for the Ph.D. and is based on the quality of the student's work during the first two years in the graduate program. At the end of the second year, students are evaluated by the Graduate Program Committee for the master's degree. At that time, the committee (GPC) ascertains the student's suitability for doctoral work and recommends either advancement to Ph.D. work or termination.

Requirements for the Qualifying Examinations

When students complete all the core curriculum requirements and have taken five four-unit elective courses in appropriate areas or disciplines, they are eligible to take the qualifying examination for the Ph.D. degree. Students will be encouraged to take the exam by the end of their third year in the program, but this examination must be completed by the end of the student's fourth year in the program. The qualifying exam is both written and oral; it consists of two parts. Part one tests the student's basic competence and knowledge of ethnic studies scholarship as spelled out in the Department of Ethnic Studies required graduate reading list. The reading list will be distributed to every student entering the graduate program. Over the next three years, students are required to read all of these books and articles, and to have their mastery of these readings tested during the qualifying examination. Part two of the examination requires the submission of a dissertation prospectus. The dissertation prospectus is a written document that 1) specifies the dissertation research topic; 2) places the dissertation research in the context of the relevant literature in the field; 3) identifies the significance of the project as original discovery scholarship; 4) explains and justifies the research methods to be employed; 5) establishes the feasibility of the research and identifies the primary sources or data bases to be used;6) indicates the anticipated steps leading to completion of the project; and 7) provides a timetable for the research and writing phases of the project.

The Doctoral Committee consists of five persons proposed by the student and accepted by the department chair and the office of Graduate Studies and Research according to graduate council regulations. A sixth member of the committee may be added with the approval of the department chair. Students are expected to select the chair of their examination committee by the winter quarter of the third year of study. The chair of the Ph.D. Examination Committee serves as the student's adviser for the remainder of the student's graduate program. Three of the Examination Committee members must be Department of Ethnic Studies faculty; the other two must be from other departments.

Fourteen days before the scheduled qualifying examination, the student must submit the written dissertation prospectus to the examination committee. On this same day, the student will receive
from the chair of the examination committee a three-question written exam testing knowledge of the required graduate reading list. Seven days before the scheduled qualifying examination, the student must submit written answers to the questions that have been posed, distributing copies of these essays to all examination committee members. A two-hour oral examination will occur on the appointed date. At the two-hour oral exam, the student will answer questions posed by the committee about the student's dissertation prospectus, mastery of the required graduate reading list, answers to the written part of the exam, and comprehensive knowledge of ethnic studies scholarship. Based on written papers and on oral performance, three possible grades will be selected by the examination committee: No Pass, Pass, and High Pass. Students who receive a No Pass must retake the qualifying examination within one year and obtain a Pass grade to remain in the doctoral program.

The Doctoral Dissertation

Once students pass the qualifying exam, they may begin dissertation research. Students are expected to consult with their committee members on a regular basis during the research process. All Ph.D. candidates must take Ethnic Studies 295A-B-C by the end of their fourth year.

All doctoral students will be evaluated annually by the doctoral committee and given a written report signed by the thesis adviser according to campus policy.

When the dissertation has been substantially completed and once committee members have had the opportunity to review drafts of the written work, the committee meets (with or without the student present at the discretion of the committee chair) to consider the progress made and to identify concerns, changes to be made, or further research to be done. Once the committee members are substantially satisfied with the written work, the student, in consultation with the committee, schedules the oral defense of the dissertation. By university regulation, the defense is open to the public.

The final version of the dissertation must be approved by each member of the doctoral committee. Having successfully defended the dissertation in oral examination, the student is eligible to receive the Ph.D. degree. The final version of the dissertation is then filed with the university librarian via the office of Graduate Studies and Research. Acceptance of the dissertation by the
university librarian is the final step in completing all requirements for the Ph.D.

Departmental Ph.D.Time Limits Policy

Pre-candidacy status, that is, the registered time before a student passes the qualifying examination and thereby advances to Ph.D. candidacy, may not exceed four years. Normative time for a Ph.D. in ethnic studies is six years. Normative time is defined as that period of time in which students under normal circumstances are expected to complete their doctoral program. To provide an incentive for students to complete the Ph.D. within normative time, students will only be eligible for departmental financial support for six years (eighteen quarters). By university policies, the doctoral dissertation must be submitted and defended within eight years. To meet this normative time limit, and to meet departmental requirements, students must complete the Qualifying Examination by the end of the fourth year.

In the spring quarter each year, the Graduate Program Committee will assess the progress of each pre-candidacy student on the basis of evaluations submitted by three faculty members chosen by the student. The committee will establish that the student is in good standing, recommend additional course work, or recommend dismissal. The committee may wish to meet with some students in person to discuss the student's evaluation and progress toward the degree.

COURSES

LOWER-DIVISION

1A. Introduction to Ethnic Studies: Population Histories

 of the United States (4)This course examines the comparative historical demography of what is today the United States, focusing on the arrival, growth, distribution, and redistribution of immigrants from Asia, Europe, Africa, and Latin America.

1B. Introduction to Ethnic Studies: Immigration and

 Assimilation in American Life (4)A history of immigration to the United States from colonial times to the present, with emphasis on the roles of ethnic and racial groups in economics, power relations between dominant and subordinate groups, and contemporary ethnic and racial consciousness.

1C. Introduction to Ethnic Studies: Race and Ethnic Relations in the United States (4)
This course examines the theoretical literature on race and ethnicity, focusing on issues of domination and subordination, and the historical emergence of racism and ethnic conflict. Attention is given to class and gender differences within racial and ethnic groups.

90. Undergraduate Seminar (1)

A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by department faculty. Enrollment is limited.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor.

100. Theories and Methods in Ethnic Studies (4) An introduction to research in ethnic studies with special emphasis on theories, concepts, and methods. Students will explore how racial and ethnic categories are shaped by gender, class, and regional experiences and will study ethnicity and race in comparative perspective.

101. Ethnic Images in Film (4)

An upper-division lecture course studying representations of ethnicity in the American cinema. Topics include ethnic images as narrative devices, the social implications of ethnic images, and the role of film in shaping and reflecting societal power relations.
105. Ethnic Diversity and the City (4)

This course will examine the city as a crucible of ethnic identity exploring both the racial and ethnic dimensions of urban life in the U.S. from the Civil War to the present.

106. Ethnoracial Transformations of U.S.

Communities (4)

Course examines the rapid growth of ethnic/racial minority populations in U.S. cities; how long-term residents respond to these ethnoracial transformations; how ethnic/racial groups are/are not being incorporated into American institutions; and implications of these transformations for the nation.
107. Field Work in Racial and Ethnic Communities (4)

This is a research course examining social, economic, and political issues in ethnic and racial communities through a variety of research methods which may include interviews, and archival, library, and historical research.

110. Cultural World Views of Native Americans (4)

Using interdisciplinary methods, this course examines the cultural world views of various Native American societies in the United States through an exploration of written literary texts and other expressive cultural forms such as dance, art, song, religious and medicinal rituals.

111. Native American Literature (4)

This course analyzes Native American written and oral traditions. Students will read chronicles and commentaries on published texts, historic speeches, trickster narratives, oratorical and prophetic tribal epics, and will delve into the methodological problems posed by tribal literature in translation.

112. History of Native Americans in the United States (4)

This course examines the history of Native Americans in the United States, with emphasis on the lifeways, mores, warfare, and relations with the United States government. Attention is given to the background and evolution of acculturation up to the present day.
118. Contemporary Immigration Issues (4)

This course examines the diversity of today's immi-grants-their social origins and contexts of exit and
their adaptation experiences and contexts of incorporation. Prerequisite: upper-division standing or consent of instructor.
119. Multiracial Societies in the Americas (4)

This course explores the genesis, evolution, and contradictions of racially heterogeneous societies in the Americas, from European conquest to the present. Topics: the social history of Indians, blacks, Asians, and their interactions with Europeans, and racial, sexual, and class divisions.

120. Comparative Asian-American History

1850-1965 (4)
Using comparative methods of analysis, this course will examine the historical experience of Asian-Americans in areas such as immigration, settlement patterns, labor, economic development, race relations, community institutions, and occupational patterns between 1850 and 1965.
121. Contemporary Asian-American History (4)

The course will study changes in Asian-American communities as a result of renewed immigration since 1965; the influx of refugees from Vietnam, Kampuchea, and Laos; the impact of contemporary social movements on Asian-Americans' current economic, social, and political status.
122. Asian-American Culture and Identity (4)

A survey of Asian-American cultural expressions in literature, art, and music to understand the social experiences that helped forge Asian-American identity. Topics: culture conflict, media portrayals, assimilation pressures, the model minority myth, and interethnic and class relations.
123. Asian-American Politics (4)

This course will examine the development of AsianAmerican politics by studying the historical and contemporary factors, such as political and economic exclusion, that have contributed to the importance and complexity of ethnicity as a mobilizing force in politics.
124. Asian-American Literature (4)

Selected topics in the literature by men and women of Asian descent who live and write in the United States. May be repeated for credit when topics vary. (Crosslisted with LTEN 181.)
125. Asian-American History (4)

Explore how Asian Americans were involved in the political, economic and cultural formation of United States society. Topics include migration; labor systems; gender, sexuality and social organization; racial ideologies and anti-Asian movements; and nationalism and debates over citizenship. (Cross-listed with HIUS 124.)
130. Social and Economic History of the Southwest I (4) This course examines the history of the Spanish and Mexican Borderlands (what became the U.S. Southwest) from roughly 1400 to the end of the U.S.Mexican war in 1848, focusing specifically on the area's social, cultural, and political development. (Cross-listed with HIUS 158.)
131. Social and Economic History of the Southwest II (4) This course examines the history of the American Southwest from the U.S.-Mexican War in 1846-48 to the present, focusing on immigration, racial and ethnic conflict, and the growth of Chicano national identity. (Cross-listed with HIUS 159.)
132. Chicano Dramatic Literature (4)

Focusing on the contemporary evolution of Chicano dramatic literature, the course will analyze playwrights and theatre groups that express the Chicano experience in the United States, examining relevant actos, plays, and documentaries for their contributions to the developing Chicano theatre movement. (Cross-listed with THHS 110.)
133. Hispanic-American Dramatic Literature

This course examines the plays of leading CubanAmerican, Puerto Rican, and Chicano playwrights in an effort to understand the experiences of these HispanicAmerican groups in the United States. (Cross-listed with THHS 111.)

134. Immigration and Ethnicity in Modern American

 Society (4)Comparative study of immigration and ethnic-group formation in the United States from 1880 to the present. Topics include immigrant adaptation, competing theories about the experiences of different ethnic groups, and the persistence of ethnic attachments in modern American society. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be required to submit a more substantial piece of work. (Cross-listed with HIUS 180.) Prerequisites: upper-division standing and department stamp.
135. Development of Chicano Literature (4)

A cross-genre survey of major works in Chicano literature from its beginning to the present with primary emphasis on contemporary works. Speaking, writing, and reading knowledge of Spanish is required. (Crosslisted with Lit/Sp 150.)
136. Themes and Motifs in Chicano Literature (4)

This course is organized around some of the significant themes and ideas expressed in specific Chicano writings. The importance of these themes to particular Chicano experience is considered. Speaking, writing, and reading knowledge of Spanish is required. (Crosslisted with Lit/Sp 151.)

137. Chicano Prose (4)

A study of the different genres of Chicano prose: novel, short story, poetry, autobiography. Attention is given to Chicano prose styles and the historical and cultural movement in which they develop. Speaking, writing, and reading knowledge of Spanish is required. (Crosslisted with Lit/Sp 152.)

138. Chicano Poetry (4)

An analysis and discussion of major forms and modes of Chicano poetry, with primary emphasis on the developing styles of the poets and on the study of texts' and authors' historical moments. Speaking, writing, and reading knowledge of Spanish is required. (Cross-listed with Lit/Sp 153.)
139. Chicano Literature in English (4)

Introduction to the literature in English by the Chicano population, the men and women of Mexican descent who live and write in the United States. The primary focus is the contemporary period. (Cross-listed with Lit/En 180.)
140. Language and American Ethnicity (4)

This course examines the intersection of language and ethnicity in the United States, focusing on the social and political impact of bilingualism, ethnically based English dialects, and standard and nonstandard English.

141. Language, Culture, and Inequality (4)

A critical review of conceptions of language and how they have been deployed in constructing images of culture, race, ethnicity, gender, sexuality, and class. Topics include cultural and linguistic relativism, structuralism, symbolic and cognitive approaches, ethnomethodology, sociolinguistics, ethnography of speaking, performance, and ethnopoetics. Prerequisite: upper-division standing.

142. Medicine, Race, and the Global Politics of

 Inequality (4)Globalization fosters both the transmission of AIDS, cholera, tuberculosis, and other infectious diseases and gross inequalities in the resources available to prevent and cure them. This course focuses on how race, ethnicity, gender, sexuality, class, and nation both shape and are shaped by the social construction of health and disease worldwide. Prerequisite: upper-division standing or consent of instructor
145. Spanish Language in the United States (4)

A sociolinguistic study of the popular dialects in the United States and their relation to other Latin American dialects. The course will cover phonological and syntactic differences between the dialects as well as the influence of English on the Southwest dialects. (Cross-listed with Lit/Sp 162.)

146A.Theatrical Ensemble (4-4)

An intensive theatre practicum designed to generate theatre created by an ensemble, with particular emphasis upon the analysis of text. Students will explore and analyze scripts and authors. Ensemble segments include: black theatre, Chicano theatre, feminist theatre, commedia dell'arte theatre. (Cross-listed with THAC 120.)

150. Politics of Cultural Pluralism and National Integration (4)

This course comparatively analyzes the problems posed by subnational loyalties founded on ethnic, linguistic, racial, religious, and caste identities in Asia, Africa, Europe, and the Western Hemisphere. Particular attention will be given to the processes of national integration in multicultural politics.
151. Ethnic Politics in America (4)

This course will survey the political effects of immigration, ethnic mobilization, and community building in America, and the contemporary role of ethnicity in politics and intergroup relations.

152. Law and Civil Rights (4)

In this course students explore the relationship between race, class, and law as it applies to civil rights both in an historical and a contemporary context. Topics include racism and the law, history of the 14th Amendment, equal protection, school desegregation, and affirmative action.

160. Black Politics and Protest 1885-1941 (4)

An examination of the evolution of black thought and activism from Booker T. Washington's Atlanta Exposition Address to A. Philip Randolph's March on Washington Movement. Particular attention paid to black institutions and their relationship to the federal government.

161. Black Politics and Protest Since 1941 (4)

 Discussion of black social, political, and intellectual experiences since the publication of Richard Wright's Native Son. Close examination of blacks' involvement in and relationships to Second World War, Cold War, Civil Rights Movement, Black Power Movement, ReaganRevolution, and Underclass Debate. (Cross-listed with USP 135B.)
162. Cultural Contact and Exchange (4)

An examination of the comparative histories of cultural contact and exchange between indigenous peoples and "outsiders." Particular attention will be paid to the way in which social hierarchy and cultural belief systems guide the balance of power between dissimilar societies.
163. Leisure in Urban America (4)

Historical examination of how leisure has shaped the American urban landscape. Course will explore connections between spectator sports and the rise of "urban mentalities"; sports franchises, urban redevelopment schemes, and racial and ethnic communities; and sports mythology and civil pride.
164. African Americans and the Mass Media (4)

This course will examine the media representations of African Americans from slavery through the twentieth century. Attention will be paid to the emergence and transmission of enduring stereotypes, and their relationship to changing social, political, and economic frameworks in the United States. The course will also consider African Americans' responses to and interpretations of these mediated images.

165. Sex and Gender in African American

Communities (4)
This course will investigate the changing constructions of sex, gender, and sexuality in African American communities defined by historical period, region, and class. Topics will incude the sexual division of labor, myths of black sexuality, the rise of black feminism, black masculinity, and queer politics.

166. The Black Press and Social Change (4)

An investigation of the black press-including newspapers, periodicals, and electronic media-as agents for social change in African American history. The course will consider the changing cultural and political functions of the black press, economic forces, and the work of influential journalists, artists, and intellectuals.

167. African-American History in War and Peace:

1917 to the Present (4)
The social, political, economic, and ideological pressures generated during the international conflicts of the twentieth century have had an enormous impact on American life. This course examines how the pressures of "total war" and "cold war" shaped the AfricanAmerican experience in both war and peacetime. (Cross-listed with HIUS 138)

168. Comparative Ethnic Literature (4)

A lecture-discussion course that juxtaposes the experience of two or more U.S. ethnic groups and examines their relationship with the dominant culture. Students will analyze a variety of texts representing the history of ethnicity in this country. Topics will vary.
170. Origins of the Atlantic World, c. 1450-1650 (4)

An examination of interactions among the peoples of western Europe, Africa, and the Americas that transformed the Atlantic basin into an interconnected "Atlantic World." Topics will include maritime technology and the European Age of Discovery, colonization in the Americas, the beginnings of the transatlantic slave trade, and early development of plantation slavery in the New World. (Cross-listed with HIUS 135A.)

170B. Slavery and the Atlantic World (4)
The development of the Atlantic slave trade and the spread of racial slavery in the Americas before 1800.

Explores the diversity of slave labor in the Americas and the different slave cultures African Americans produced under the constraints of slavery. (Cross-listed with HIUS 135B.)
172. Afro-American Prose (4)

Students will analyze and discuss the novel, the personal narrative, and other prose genres, with particular emphasis on the developing characters of AfroAmerican narrative and the cultural and social circumstances that influence their development. (Cross-listed with Lit/En 183.)
173. Afro-American Poetry (4)

A close reading and analysis of selected works of AfroAmerican poetry as they reflect styles and themes that recur in the literature. (Cross-listed with Lit/En 184.)

174. Themes in Afro-American Literature (4)

This course focuses on the influence of slavery upon African American writers. Our concern is not upon what slavery was but upon what it is within the works and what these texts reveal about themselves, their authors, and their audiences. (Cross-listed with Lit/En 185.)
175. Literature of the Harlem Renaissance (4)

The Harlem Renaissance (1917-39) focuses on the emergence of the "New Negro" and the impact of this concept on black literature, art, and music. Writers studied include Claude McKay, Zora N. Hurston, and Langston Hughes. Special emphasis on new themes and forms. (Cross-listed with Lit/En 186.)

176. Black Music/Black Texts: Communication and

 Cultural Expression (4)This course explores the role of music as a traditional form of communication among Africans, AfroAmericans, and West Indians. Special attention given to poetry of black music, including blues and other forms of vocal music expressive of contestatory political attitudes. (Cross-listed with Lit/En 187.)
177. African Heritage in Contemporary Drama: African, Caribbean, and African American (4)
From Lorraine Hansberry's Raisin in the Sun to the latest plays of Ed Bullins, black drama has mirrored and, occasionally, forecast the mood and aspirations of black people in America. The course examines plays, playwrights, and participants in contemporary black theatre. (Cross-listed with THHS 109.)

178. Blues: An Oral Tradition (4)

This course will examine the development of the Blues from its roots in work-songs and the minstrel show to its flowering in the Mississippi Delta to the development of Urban blues and the close relationship of the Blues with Jazz, Rhythm and Blues, and Rock and Roll. (Cross-listed with Music 126.)

179A. Jazz Roots and Early Development

(1900-1943) (4)
This course will trace the early development of Jazz and the diverse traditions which helped create this uniquely American art form. We will witness the emergence of Louis Armstrong in New Orleans and examine the composer's role in Jazz with Jelly Roll Morton and Duke Ellington. (Cross-listed with Music 127A.)
1798. Jazz Since 1946: Freedom and Form (4)

This course will examine the evolution of Jazz from 1943 to the present. The course will survey the contrasting and competing styles in Jazz from BEBOP to COOL to the avant garde and fusion. (Cross-listed with Music 127B.)

Colloquia

180. Topics in Mexican-American History (4)

This colloquium studies the racial representation of Mexican-Americans in the United States from the nineteenth century to the present, examining critically the theories and methods of the humanities and social sciences. (Cross-listed with HIUS 167.)

181. Topics in the Comparative History of Modern

 Slavery (4)Slavery was both a thread of continuity in the history of the Americas and distinctive institution in the specific social settings. The purpose of this course is to examine and discuss readings that explore topics in the Caribbean and the U.S. Because topics will vary, the seminar may be taken more than once for credit, with permission of the instructor. Requirements vary for undergraduates, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisite: upper-division or consent of instructor. (Cross-listed with HIUS 164.)

182. Segregation, Freedom Movements, and the Crisis of

 the Twentieth Century (4)A reading and discussion seminar that views the origins of segregation and the social movements that challenged it between 1890 and 1970 in a comparative framework. (Cross-listed with HIUS 165.)

183. Gender, Race, Ethnicity, and Class

Gender is often neglected in studies of ethnic/racial politics. This seminar explores the relationship of race, ethnicity, class, and gender by examining the participation of working class women of color in community politics and how they challenge mainstream political theory.

184. Black Intellectuals in the Twentieth Century (4)

An analysis of black cultural and intellectual production since 1895. Course will explore how race and race-consciousness have influenced the dialogue between ideas and social experience; and how other factors--i.e., age, gender, and class-affected scholars' insights.

185. Discourse, Power, and Inequality (4)

While discourse analysis has transformed numerous disciplines, a gap separates perspectives that envision discourse as practices that construct inequality from approaches which treat discourse as everyday language. This course engages both perspectives critically in analyzing law, medicine, and popular culture.
186. The Ethnic Press in the United States (4)

Readings and research on news media institutions established in ethnic communities since the nineteenth century. The course will trace the emergence, development, and longevity of ethnic presses, their role in cultivating and maintaining ethnic identity, and their attempts to respond to and resist images in mainstream media.

187. Black Nationalism (4)

This course will investigate the ideologies and practices of black nationalist movements in the United States and/or across the black Diaspora, focusing on their political philosophy, political culture, and gender and class structure.

189. Special Topics in Ethnic Studies (4)

A reading and discussion course that explores special topics in ethnic studies. Themes will vary from quarter to quarter; therefore, course may be repeated for credit.

Seminars and Independent Studies

190. Research Methods: Studying Racial and Ethnic

 Communities (4)The course offers students the basic research methods with which to study ethnic and racial communities. The various topics to be explored include human and physical geography, transportation, employment, economic structure, cultural values, housing, health, education, and intergroup relations.
197. Fieldwork in Racial and Ethnic Communities (4) This course comprises supervised community fieldwork on topics of importance to racial and ethnic communities in the greater San Diego area. Regular individual meetings with faculty sponsor and written reports are required. (May be repeated for credit.)
198. Directed Group Studies (4)

Directed group study on a topic or in a field not included in the regular department curriculum by special arrangement with a faculty member. (May be repeated for credit.)
199. Supervised Independent Study and Research (4) Individual research on a topic that leads to the writing of a major paper. (May be repeated for credit.)

GRADUATE

200A. History of Ethnic Studies (4)

This course charts the origins of ethnic studies research, the emergence of dominant paradigms, and the history of race and ethnic issues across and within disciplines.

200B. Theories of Ethnic Studies (4)
A critical exploration of the ways in which theories of ethnic studies have constituted as well as analyzed knowledge and ethnic identity.

200C. Controversies in Ethnic Studies (4)
This course is structured around contemporary events and debates over theories, methods, and objects of inquiry in ethnic studies.
210. Research Seminar in Ethnic Studies (4)

This course introduces students to the practice of original discovery research in the field of racial and ethnic studies, including articulating a research problem, placing it within theoretical discussions, selecting appropriate methods, and analyzing data.
230. Departmental Colloquium (1)

This course is a forum for the presentation of recent research by guests, faculty, and students. This course may be repeated three times for credit.

240. Multidiciplinary Research Methods in

Ethnic Studies (4)
A critical introduction to the broad range of methods used in ethnic studies research and how they have shaped social constructions of race, ethnicity, gender, class, and sexuality.

250. Panethnicity in the United States (4)

This course compares and contrasts the experiences of the major panethnic groups in the United States, paying particular attention to the construction of ethnicity within contexts of power.
251. Cultural Pluralism and National Integration (4)

This course explores the ways in which nations and states around the world have imagined and managed
the linguistic, racial, and religious differences of their citizens.
252. Ethnic Leadership in Comparative Perspective (4) Readings and discussion on political and intellectual leadership in racial and ethnic communities. A critical focus will be placed on the tensions underlying leadership formation.
253. Mass Media and Ethnic Identity (4)

This course examines the ways that ethnic identity influences the practices of mass media, and the ways in which mass media shape and reflect ethnic identity.
254. Race and Racism (4)

This course examines inequality based on race with a focus on the institutions, symbols, and social practices which structure and maintain racism. Particular attention is given to laws and social policy which reinforce racial inequality.

255. Diaspora, Migration, and Return in the Post-Fordist

 Age (4)This course studies the relationship between the transnational economy, new technologies, and mass migration in the contemporary world.
256. Gender, Sexuality, and Ethnic Identity (4)

This course studies the body cross-culturally as a site for the construction of gender, sex, ethnic, and racial identities.

257A-B. Social Theory (4-4)

An intensive survey of social and cultural theory, focusing on how constructions of science, language, politics, and social inequality shaped early modernity, Romantic Nationalism, Marxism, cultural relativity, psychoanalysis, and fin de siecle social thought. The second quarter surveys poststructuralist, postmodern, feminist, Subaltern Studies, globalization, and other critiques. ETHN 257A is not a prerequisite for ETHN 257B.
258. Ethnic Conflict and Cooperation

This course critically examines theories and research on racial and ethnic relations. In particular, it will address how such relations are linked to, and emerge from, everyday activities and structural factors.

259. Comparative Conquests, Colonization, and

Resistance in the Americas (4)
This course will offer a comparative survey of the impact of European interactions with Native nations and populations in the New World, from Peru to Canada. Readings will emphasize modes of initial interaction, patterns of European colonization, and Native adaptation and resistance, and broader changes in Native culture and cosmology as a result of conquest and colonization.

289. Topics in Ethnic Studies Research (4)

This course is a research seminar on themes of contemporary and historic importance in ethnic studies. Themes will be determined by instructor. Course may be repeated three times for credit.

290A-B. Master's Thesis Preparation (4-4)
All graduate students are required to write a master's thesis as part of the requirements for the master of arts in ethnic studies. Students should enroll in the thesis preparation courses in the fall and spring quarters of the second year of graduate studies.
298. Directed Reading (1-12)

This is an independent research or individual guided tutorial in an area not covered by present course offer-
ings. This course may be repeated for an indefinite number of times due to the independent nature of the content of the course.
299. Thesis Research (1-12)

Open to graduate students conducting doctoral thesis research. This course may be repeated for an indefinite number of times due to the independent nature of thesis research and writing.
500. Apprentice Teaching in Ethnic Studies (4) A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation and grading of examinations and other written exercises, and student relations.

German Studies

OFFICE: 3024 Humanities and Social Sciences
Building, Muir College (CAESAR Office) (858) 534-3210

Program Director

Todd C. Kontje, Professor, Literature

Faculty

Frank Biess, Assistant Professor, History Elizabeth Bredeck, Lecturer, Literature William M. Chandler, Professor, Political Science Harvey S. Goldman, Professor, Sociology Michael O. Hardimon, Associate Professor, Philosophy
Todd C. Kontje, Professor, Literature
David S. Luft , Professor, History
Wayne M. Martin, Associate Professor, Philosophy
William A. O'Brien, Associate Professor, Literature
Frederick A. Olafson, Professor Emeritus, Philosophy
Carol Plantamura, Professor, Music
John Rouse, Associate Professor, Theatre and Dance Jane Stevens, Associate Professor, Music
Tracy B. Strong, Professor, Political Science
Cynthia Walk, Associate Professor, Literature

Program Description

German Studies is an interdisciplinary program that offers both a major and a minor for students with broad academic interests in the Germanspeaking world.

In consultation with a faculty adviser in the program, students design individual plans of study from the many core courses offered in the Departments of History, Literature, Music,

Philosophy, Political Science, Sociology, and Theatre and Dance. Further courses, including some offered by other departments, may be incorporated into the student's program, if they bear directly on German studies. Students considering a major or minor should consult a member of the German Studies faculty as early as possible.

Students need to attain competence in German (two years of university-level language courses or the equivalent) before they can take certain required upper-division courses. It is recommended that students attain this level of competence early in the program.

Study Abroad

All German Studies students are strongly encouraged to make overseas study an integral part of their program. The UC Education Abroad Program (EAP) conducts formal programs of study in Berlin, Grttingen, and Bayreuth ranging from one-quarter, intensive beginning language programs to a full year of study at a German university. In addition, Eleanor Roosevelt College administers a full-year exchange program with Augsburg University. Students may petition to use up to five courses completed while studying abroad in their major, and three in their minor.

Senior Honors Thesis

At the beginning of his or her senior year, a student major in German Studies may elect to write a Senior Honor's Thesis. To be eligible, the student must have a GPA of 3.5 in the German Studies major at the beginning of the senior year.

To begin work, the student forms a committee of three appropriate faculty members, including a committee chair, who is chosen from among the German Studies Core Faculty. The chair supervises the student in a two-quarter program of independent study to research and write an Honor's Thesis of approximately thirty to fifty pages (GMST 196A/B; the two courses count among the required twelve for the major). The student defends the thesis in a one-hour oral exam with the full committee, which is charged with recommending the degree of honors that will appear on the student's transcript and diploma.

The Major

The major in German Studies requires twelve upper-division courses chosen from the core course list, and includes:

German Studies 100 and 101 (Literature Department)
three courses in German Literature two courses in History
five additional core courses, taken in at least two different departments. At least two of these courses must be taken outside the literature department.

Students plan their major in consultation with their German Studies faculty adviser, and submit it to the program director for approval.

The Minor

The minor in German Studies consists of seven courses, at least five of which must be upper-division, including:

German Studies 100 or 101 (literature department)

At least six additional core courses, taken in at least two departments.

Students plan their minor in consultation with their German Studies faculty adviser, and submit it to the program director for approval.

Core Courses

Courses marked with an asterisk (*) frequently cover topics bearing on German Studies. Students should check the departments' quarterly course descriptions and yearly course spreads for their applicability to the program, and discuss them in advance with their German Studies adviser.

GERMAN STUDIES

GMST 196A/B. Honors Thesis

HISTORY

HIEU 125. Reformation Europe
HIEU 132. German Politics and Culture: 1648-1848

HIEU 142. European Intellectual History: 1780-1870

HIEU 143. European Intellectual History: 1870-1945

HIEU 146. Fascism, Communism, and the Crisis of Liberal Democracy

HIEU 154. Modern German History
HIEU 155. Modern Austria
HIEU 177. Special Topics in Modern German Thought

LITERATURE

LTGM 2A. Readings and Interpretations
LTGM 2B. Advanced Readings and Interpretations

LTGM 2C. Composition and Conversation
LTGM 100. German Studies I: Aesthetic Cultures
LTGM 101. German Studies II: National Identities

LTGM 123. Eighteenth-Century German Literature
LTGM 124. Goethe
LTGM 125. Nineteenth-Century German Literature

LTGM 126. Twentieth-Century German Literature
LTGM 130. German Literary Prose
LTGM 131. German Dramatic Literature
LTGM 132. German Poetry
LTGM 160. Composition and Stylistics
LTGM 170. Literature and Ideas
LTEU 110.European Romanticism*
LTEU 130. German Literature in Translation
LTWL 4B. Fiction and Film in TwentiethCentury Societies*
LTWL 160. Women and Literature*
LTWL 170. Specialized Genres in Literature*
LTWL 172. Special Topics in Literature*
LTWL 176. Literature and Ideas*
LTWL 180. Film Studies and Literature: Film History*

LTWL 183. Film Studies and Literature: Director's Work*

LTWL 185. Film Studies and Literature: Interdisciplinary Issues*

MUSIC

MUS 113. Topics in Classic, Romantic, and Modern Music*

PHILOSOPHY

PHIL 106.Kant
PHIL 107. Hegel
PHIL 108. 19th-Century Philosophy*
PHIL 110. Wittgenstein
PHIL 180. Phenomenology
PHIL 181. Existentialism

PHIL 182. Marx and Marxism
PHIL 183. Topics in Continental Philosophy*

POLITICAL SCIENCE

POLI 110C. Revolution and Reaction: Political Thought from Kant to Nietzsche

POLI 114B. Marxist Political Thought
POLI 120B. The German Political System
POLI 120D. Germany: Before, During, and After Division
POLI 120H. European Integration*

SOCIOLOGY

SOCA 101M.Marxism, Culture, and Politics SOCD 178. The Holocaust

THEATRE AND DANCE

THHS 101. Topics in Dramatic Literature and Theatre History*
THHS 102. Masters of Theatre*

Greek Literature

See Literature.

Health CareSocial Issues

OFFICE: Interdisciplinary Programs, Literature Building, Second Floor, Room 3238, Warren College

Health care-social issues is an interdisciplinary minor designed to enhance students' competence in analyzing complex social and ethical implications and ramifications of health care issues, policies, and delivery systems. Students gain an understanding of how the economy, culture, technology, sociological and psychological processes influence modern health care. Although it is administered by Warren College, it is available to all UCSD students with a general interest in health care as well as to students considering health care careers. This minor offers UCSD students the opportunity to examine health carerelated issues from the perspectives of a wide
range of disciplines that include anthropology, contemporary issues, economics, ethnic studies, philosophy, psychology, sociology, urban studies, and science and technology. By bringing together course work from these academic departments, this interdisciplinary curriculum offers a breadth of intellectual experience that enhances students' undergraduate education and their preparation for professional and postgraduate education in health care professions.

Students should consult an academic adviser in their college provost's office to determine how the health care-social issues minor can best meet their college's graduation requirements. Declarations must first be reviewed and approved by the coordinator of Interdisciplinary Programs and then by the student's college academic advising office.

Students are strongly urged to supplement the health care-social issues minor with a healthrelated internship. The Academic Internship Program offers internship placements in clinical settings and with medical research teams that provide valuable experience, career clarification, and an opportunity to apply theories learned in course work. Juniors and seniors with at least a 2.5 overall grade-point average (some placements require a 3.0 GPA) are eligible and can earn from four to sixteen units of academic credit for the internship experience.
Further information on related programs and activities is available at the Interdisciplinary Programs Office, Literature Building, Second Floor, Room 3238, Warren College, or call (858) 534-1704. Web site:http://warren.ucsd.edu/health

Health Care-Social Issues Minor Requirements

The minor consists of seven courses (three required and four electives). At least five courses must be taken at the upper-division level.
Students who entered UCSD prior to January 1, 1998 are required to take six courses (three required, three electives, and four must be upperdivision). Upper-division courses must not overlap with courses in the student's major and must be distributed in two or more disciplines. Lower-division elective courses that are not health-related (Economics 1A-B/Psychology 1-60) must be followed by a health-related upper-division course in the same department. For full descriptions of the following courses, please see departmental listings.

The health care-social issues minor is applicable as a Warren College program of concentration in the social sciences.

Required Courses

Sociology/L 40—Sociology of Health Care Issues
Philosophy 163-Bio-Medical Ethics
One course in Urban Studies and Planning chosen from the following:

143-The U.S. Health Care System
144-Environmental and Preventive Health Issues
145-Aging: Social and Health Policy Issues
147-Case Studies in Health Care Programs: The Poor and Underserved
(Additional urban studies and planning courses may be taken to fulfill elective requirements in the minor.)

Elective Course Options

Four courses (three before January 1,1998) to be chosen from the following list. At least three (two before January 1,1998) must be upper-division and must not overlap with courses in the student's major.

Anthropology

Lower-Division

1-Introduction to Culture
2-Human Origins

General

128-The Anthropology of Medicine

Contemporary Issues

22-Human Sexuality
40-The AIDS Epidemic
136-The Anthropology of Medicine

Economics

1A-B—Elements of Economics
138A-B-Economics of Health

Ethnic Studies

142-Medicine, Race, and the Global Politics of Inequality

Philosophy

147-Philosophy of Biology
148-Philosophy and the Environment
151-Philosophy of Neuroscience
162-Contemporary Moral Issues

164-Technology and Human Values
165-Professional Ethics

Psychology

1-Psychology
2-General Psychology:Biological Foundations
60-Introduction to Statistics
104-Introduction to Social Psychology
124-Introduction to Clinical Psychology
134-Eating Disorders
153-Clinical Psychology
154-Behavior Modification
155-Social Psychology and Medicine
163-Abnormal Psychology
168-Psychological Disorders of Childhood
169-Brain Damage and Mental Function
172-Psychology of Human Sexuality
179—Drugs, Addiction, and Mental Disorder
181-Drugs and Behavior

Science, Technology, and Public Affairs

181-Elements of International Medicine

Sociology

Lower-Division

1A, 1B—The Study of Society

Cluster B

120S-Special Topics in Culture, Language, and Social Interaction (prior approval of topic required)
143-Suicide

Cluster C

134-The Making of Modern Medicine
135-Medical Sociology
136A-Sociology of Mental Illness: Historical Approach
136B-Sociology of Mental Illness in Contemporary Society
159-Special Topics in Social Organizations and Institutions (prior approval of topic required)

Urban Studies and Planning

143-The U.S. Health Care System
144-Environmental and Preventive Health Issues
145-Aging: Social and Health Policy Issues
147-Case Studies in Health Care Programs: The Poor and Underserved

Recommended Internship Experience

Health care-related internship (AIP 197): to be arranged at least one quarter in advance through
the Academic Internship Program, Literature Building, Second Floor, Warren College. Clinical and research placements are available. For each four units of credit, ten hours per week for one quarter plus a ten-page research paper are required

Hebrew Literature

See Literature.

History

OFFICE: Room 5016, Humanities and Social Sciences Bldg., Muir College
(858) 534-1996
history@ucsd.edu
http://history.ucsd.edu

Professors

Michael A. Bernstein, Ph.D.
Robert S. Edelman, Ph.D.
Joseph W. Esherick, Ph.D., Hsiu Professor of Chinese Studies
David Noel Freedman, Ph.D., Endowed Chair, Biblical Studies
David M. Goodblatt, Ph.D., Endowed Chair, Judaic Studies
Judith M. Hughes, Ph.D.
Christine F. Hünefeldt, Ph.D.
David S.Luft, Ph.D.
Michael P. Monteón, Ph.D.
Alden A. Mosshammer, Ph.D.
Michael E. Parrish, Ph.D.
Paul G. Pickowicz, Ph.D.
William H. Propp, Ph.D.
Edward Reynolds, Ph.D.
David R. Ringrose, Ph.D.
Eric Van Young, Ph.D., Chair
Daniel F.Vickers, Ph.D.
Robert S.Westman, Ph.D.

Associate Professors

Dain E. Borges, Ph.D.
Takashi Fujitani, Ph.D.
David G. Gutiérrez, Ph.D., Academic Senate Distinguished Teaching Award

Hasan Kayali, Ph.D., Vice Chair
Rachel Klein, Ph.D.
John A. Marino, Ph.D.
Michael Meranze, Ph.D.
Naomi Oreskes, Ph.D.
Pamela B. Radcliff, Ph.D., Academic
Senate Distinguished Teaching Award
Nayan B. Shah, Ph.D.
Stefan A.Tanaka, Ph.D.
Cynthia M. Truant, Ph.D.

Assistant Professors

Frank P. Biess, Ph.D.
Nancy Caciola, Ph.D.
Marta E. Hanson, Ph.D.
Becky M. Nicolaides, Ph.D.
Stephanie E. Smallwood, Ph.D.

Lecturer with Security of Employment

Ping C. Hu

Adjunct Faculty

Michal Belknap, Ph.D., Professor, California Western School of Law
Amy Bridges, Ph.D., Professor, Political Science
Suzanne Cahill, Ph.D., Associate Adjunct Professor
William F. Deverell, Ph.D., Associate Adjunct
Protessor, California Institute of Technology
Paul Drake, Ph.D., Professor, Political Science and Institute of the Americas Chair for Inter-American Affairs
Steve Erie, Ph.D., Associate Professor, Political Science
Ramón Gutiérrez, Ph.D., Professor, Ethnic
Studies and Chancellor's Associates
Endowed Chair
Peter H. Smith, Ph.D., Professor, Political
Science and Simón Bólivar Chair in Latin
American Studies

Emeritus Professors

Guillermo Cespedes, Ph.D.
Stanley A. Chodorow, Ph.D.
John S. Galbraith, Ph.D.
Gabriel Jackson, Ph.D.
Thomas A. Metzger, Ph.D.
Allan Mitchell, Ph.D.
Earl Pomeroy, Ph.D.
Martin J. S. Rudwick, Ph.D.
Ramón Eduardo Ruíz, Ph.D.

The Undergraduate Program

"Whereas other subjects may make us smarter for next time," said the great historian of the

Renaissance, Jakob Burckhardt,"the study of history makes us wiser forever." This major is, moreover, an excellent preparation for a number of rewarding careers in university and college teaching and research, law, government, diplomacy, international business, education, and even medicine. At the crossroads of the humanities, the arts, and the social sciences, history is the study of human experience as it has unfolded over the ages. As an academic discipline it presents a unique gateway both to the richness of our cultural heritage and to the immense variety of world civilizations.

Students wishing to declare a major in history should first consult with the Director of Undergraduate Studies. After determining the student's likely field of emphasis, the student should then select an appropriate faculty adviser. In consultation with this faculty adviser, the student should formulate a coherent program of history courses that will lead to completion of the major. All undergraduate majors are strongly encouraged to consult with the faculty adviser at least once each quarter. Any difficulties in the advising procedure or in registration formalities should be reported to the director of Undergraduate Studies.

Department fields are as follows: Africa (HIAF), East Asia (HIEA), Europe (HIEU), Near East (HINE), Latin America (HILA), History of Science (HISC), and U.S. History (HIUS). In carrying on its work, the department also administers the following special research and instructional units: Chinese Studies; the Committee on Area and Ethnic Studies and Research (CAESAR), which includes Classical Studies, German Studies, Italian Studies, Japanese Studies, Middle East Studies, Russian Soviet Studies, Judaic Studies; Science Studies; Study of Religion; the Project on the History and Culture of the American Southwest; and the Project in Southern (U.S.) History.

The department is fortunate in having the research and professional activities of its faculty supported by the Laura and John Galbraith Faculty Development Fund.

Basic requirements for the major are as follows:

1. A three-quarter lower-division sequence.
2. Twelve four-unit upper-division courses, which must include the following distribution of courses:
a) Seven courses in a field of emphasis. (In certain cases, with approval of the academic adviser, two of these courses may be in a neighboring discipline.)
b) Five courses in other fields within the department, selected to complement the student's concentration.
c) Three of the twelve courses must focus on the period before 1800 . These courses are indicated by the symbol (+).
d) At least one of the twelve courses must be a colloquium in which students would be required to write a substantial term paper. Colloquia are those courses with numbers between 160 and 190, or others approved by the undergraduate adviser. Note:The colloquium does not have to be in the major field of emphasis.
*Requirement 2 d applies only to students entering UCSD after September 1, 1998.

Students majoring in history will normally take at least eight of their twelve upper-division history courses at UCSD. Exceptions to this rule may be made for transfer students and for students participating in the EAP/OAP program.

In special cases, upon approval of the director of Undergraduate Studies, students may devise a field of emphasis (e.g., economic, legal, or social history) other than those designated above. Special independent study courses, such as HITO 197, HITO 198, and HITO 199, are available for students. These courses are especially recommended for those students interested in the Honors Program and in Graduate study.

With the exception of 199 courses, all work in the major must be taken for a letter grade. Of the twelve upper-division courses required in the major, no more than two may be History 199 credits. (Exceptions to these rules may be allowed upon petition to the director of Undergraduate Studies.)

Lower-division sequences may be selected from the following:

HILD 2 A-B-C	United States History
HILD 7 A-B-C	Race and Ethnicity in
	the U.S.A.
HILD 10-11-12-13	East Asia

Students may also satisfy the lower-division requirement for the major by completing the Revelle College Humanities Sequence or the Fifth College Sequence, "Making of the Modern World." Students entering with AP credit in history may waive part of the lower-division requirement. Transfer students, after consulting with the director of Undergraduate Studies, may petition to substitute a two-semester or three-quarter survey
from another school for the department's lowerdivision requirement.

Established in 1983, the Armin Rappaport Memorial fund endows an annual prize for the outstanding graduating student in the major. The recipient of the award is announced at every June Commencement.

The Honors Program

The department offers a special program for outstanding students. The Honors Program is especially recommended for those students interested in pursuing graduate study in history or allied fields. It is also a particularly effective preparation for professional careers. Candidates for history honors are chosen during the spring quarter from among juniors in history who have taken at least four upper-division courses in the department. Juniors with a 3.5 GPA in history (3.0 overall) are eligible to apply. Admission to the program is based on the student's academic work. Interested candidates should complete the application form (available in the Department of History office) prior to May 10.

In addition to regular course work in the department, the honors program consists of a colloquium in historiography offered in the fall quarter of the senior year and a program of independent study leading to the completion of an honors essay on a topic of the student's choice. During the fall quarter of the senior year, candidates select a topic and begin preliminary work on the honors essay in consultation with a major field adviser (HITO 194). During the winter quarter the student pursues a course of independent study devoted to the completion of the honors essay (HITO 195). The award of history honors is based on satisfactory completion of the colloquium in history and the honors essay. Students are expected to maintain an average of 3.5 or better in all work taken within the department. Honors candidates must include at least three colloquia in their regular course work.

Candidates for history honors should organize their work as follows:

1. Six quarter-courses in one of the major fields offered by the department.
2. Three quarter-courses in a field other than the primary one.
3. Three of these nine quarter courses must be colloquia.
4. HITO 196. Colloquium in History;
5. HITO 194 and 195. History Honors-Honors Essay.

Minors in History

Effective winter quarter 1998, the minor consists of at least seven courses, five of which must be upper-divsion. Although there is no specific distribution requirement, the courses should be selected to constitute a coherent curriculum. No more than two upper-division courses applied to a minor may be taken for Pass/No Pass. Prospective minors in history should consult with an undergraduate adviser for approval of their program.

Education Abroad Program

Students are encouraged to participate in the UC Education Abroad Program (EAP) of UCSD's Opportunities Abroad Program (OAP), while still making progress toward completing their major. Students considering this option should discuss their plans with the departmental Educational Abroad faculty adviser before going abroad, and courses taken abroad must be approved by the department. (For more information on departmental procedures for study aboard see undergraduate program http://history.ucsd.edu. EAP is detailed in the Educational Abroad Program of the UCSD General Catalog, or visit http://www/icenter/pao. Financial aid is applicable to study abroad, and study abroad scholarships are available. Interested students should contact the Programs Abroad Office in the International Center.

The Graduate Program

The Master's Program

The Department of History offers master's degrees in the fields of Chinese studies, modern European history (1500 to the present), history of science, Latin American history, and United States history. The department also provides the opportunity for students to design special M.A. programs in areas such as African history, medieval European history, and Judaic studies. In consultation with an appropriate faculty member, stu-
dents may petition the department for approval for a special M.A.

Admission is based on the applicant's undergraduate preparation; previous graduate work, if any, three letters of recommendation; one or two papers (preferably written for history courses); and scores from the Graduate Record Examination (GRE). The GRE subject exam in history is not required. The Test of English as a Foreign Language (TOEFL) is required for foreign applicants. A minimum score of 550 for the paper-based test or a score of 213 for the com-puter-based test is required on the TOEFL. The minimum grade-point average for admission is 3.0 with a higher average in history and related subjects. While proficiency in a foreign language is not an absolute requirement for admission (except in Latin America history, where a reading knowledge of Spanish is required), prospective applicants are strongly urged to begin study of a foreign language appropriate to the proposed area of concentration as early as possible in their academic career. With very few exceptions, students are expected to begin their programs in the fall quarter. The deadline for application is January 15. Master's students ordinarily do not receive financial aid from the department or the university except when funds are not utilized for support of Ph.D. candidates.

General Requirements

Candidates for the master's degree are expected to finish the program in one academic year of full-time study or two years of part-time work. The program requires completion of thirty-six units, of which at least twenty units must be in colloquia, conjoined courses, directed readings, and seminars. In addition to course requirements, students must pass a comprehensive oral examination. Students in European or Latin American history and in certain special areas must demonstrate reading knowledge of at least one foreign language relevant to their course work.

Area of Concentration: Chinese Studies

Chinese studies is an interdisciplinary program that allows the graduate student interested in China to take advantage of the university's offerings in various departments to build a coordinated graduate program leading to an M.A. degree in history. Although the program is offered under
the auspices of the Department of History, the student selects courses in the Departments of Anthropology, Linguistics, Literature, Political Science, and Sociology, as well as History.

Area of Concentration: Europe

Candidates for the M.A. degree in European history pursue a program concentrating on the history of modern Europe. The program provides background in earlier European history in order to place modern Europe in perspective. Some training in a discipline other than history is also recommended. The requirement of nine courses (thirty-six units) is normally distributed as follows:

1. A two-quarter research seminar, to be selected from HIGR 230, 231, or 232.
2. Three one-quarter courses concerning the historical literature about central problems in European history:HIGR 200, 220, 221, and 222 are the preferred options. If any of them are not scheduled for the year, other graduatelevel colloquia may be substituted with approval of the student's graduate adviser.
3. Two courses in preindustrial Europe, 14501750: HIGR 200, 220, and 221 may be counted for this requirement.
4. Two courses in industrial Europe since 1750 : HIGR 221 and 222 may be counted for this requirement, as well as appropriate graduate level colloquia.
Note: HIGR 221 may NOT be used for both (3) and (4).
5. One course in a discipline other than history, if relevant to the student's program.

Area of Concentration: History of Science

The master's program in history of science provides a broad background in preparation for a variety of careers related to science and technology, business, journalism, education, government, or for more advanced degree work. The nine courses (thirty-six units) required are normally distributed as follows:

1. Two courses in science in early modern Europe.
2. Two courses in science since 1750 .
3. A two-quarter research seminar.
4. The remaining courses are chosen in consultation with the faculty in history of science. For students whose previous training has been
mainly scientific, these will include courses in historical fields other than the history of science. For students who already have historical training, they may include one or more courses related to the sciences.

Area of Concentration: Latin America

This program offers the student a general preparation in the history of Latin America. Students will have the opportunity to specialize in national or colonial periods and can emphasize work in one country. Advanced work in another discipline related to Latin America may also be included in the program. Thirty-six units normally should be distributed as follows:

1. HIGR 245A-B-C.
2. Three graduate courses in Latin American history.
3. Three other courses related to Latin America in history or in other disciplines.

Area of Concentration: United States

This area of concentration offers the M.A. candidate a broad grounding in the literature of American history from the colonial period to the present. In addition to a shared core of courses, students specialize in a topical field of their own choosing. Training in a related discipline outside of history is encouraged. The requirement of nine courses (thirty-six units) is ordinarily distributed as follows:

1. HIGR 265A-B-C. The Literature of American History. These colloquia are required of all entering graduate students in American history.
2. A two-quarter research seminar.
3. Two courses in a single topical field chosen from African-American history, history of the borderiands and Southwest, Chicano history, economic history, legal and constitutional history, political history, social and cultural history, history of the South, history of the West, or history of women and gender.
4. Two additional courses chosen in consultation with the student's adviser. These courses may be in a related field outside the department.
5. At least six of the nine courses must be colloquia or graduate-level courses. Students may take conjoined courses, directed readings, research seminars, or the 265 series to meet this requirement.

Ph.D. Program

Admission

The Department of History offers the doctor of philosophy degree in the fields of ancient history, East Asian history, European history, history of science, Latin American history, and United States history.

Admission is based on the applicant's undergraduate preparation; previous graduate work, if any; three letters of recommendation; one or two papers (preferably written for history courses); and scores from the Graduate Record Examination (GRE). The GRE subject exam in history is not required. The Test of English as a Foreign Language (TOEFL) is required for foreign applicants. A minimum score of 550 for the paper-based test or a score of 213 for the com-puter-based test is required on the TOEFL. The minimum grade-point average for admission is 3.0 with a higher average in history and related subjects. In most areas of concentration, knowledge of at least two foreign languages will be required during a student's academic career. In general, applicants are expected to have a reading knowledge of the language most appropriate to their major field at the time of admission. Thus, students in ancient history, East Asian history, European history, history of science, and Latin American hisitory should have a working knowledge of one foreign language at the time of admission. With very few exceptions, students are expected to begin their programs in the fall quarter. The deadline for application is January 15.

Fields of Study

During the first year of residence each student, after consulting with a graduate adviser in the area of concentration, selects one major field of study and two minor fields. Within a major field the student should indicate a special interest from which the dissertation may develop. The first minor is ordinarily a supplementary field within the student's area of concentration, while the second minor is a complementary field outside the area of concentration. The basic programs of study are as follows:

I. ANCIENT HISTORY

Students in ancient history will be expected to demonstrate a broad mastery of the entire field, with special concentration as follows:

A. Major Fields

1.The ancient Near East, with emphasis on the civilization of the northwest Semitic peoples during the Bronze and early Iron Ages.
2. The history of Israel in the biblical period.
3. The history of the Jewish people in antiquity.
B. First Minor

1. One of the fields listed above not chosen as the major field.
2. Greek and Roman history.
3. The Middle East before Islam (western Asia and northeastern Africa from the sixth century b.c.e. to the seventh century c.e.)

C. Second Minor

1. A field of history outside of ancient history.
2. A related discipline, offered through another department.
D. Language Requirements
3. All students will be expected to demonstrate a reading knowledge of two modern foreign languages, usually French and German. This requirement may be satisfied by any of the means recognized by the department.
4. All students will be expected to demonstrate a reading knowledge of at least one and usually two of the three following ancient languages: Greek, Hebrew, and Latin. The languages will be chosen as appropriate to the student's particular interests and the requirement will be satisfied by departmental examination.
5. The second and sometimes third language not elected under (2) may be required if necessary for the student's research. Additional languages, such as Akkadian, Aramaic, Egyptian, Ugaritic, Phoenician, and middle and modern Hebrew, may be required as necessary for the student's research. The required level of competence will be set as appropriate to the student's needs and the requirement will be satisfied by departmental examination.

II. EAST ASIAN HISTORY

Students in East Asian history will be expected to demonstrate a broad competence in the entire field, with special concentration as follows:
A. Major Fields

1. Modern China
2. Modern Japan
B. Minor Fields

For students majoring in Chinese history, students will be expected to pass three minor fields in order to broaden each student's perspective on East Asian history:

1. Premodern Chinese history.
2. Modern Japanese history.
3. A history field outside of East Asia, or a discipline outside of history.
For students majoring in Japanese history:
4. A field in history.
5. A related field offered through another department.
Note: One of the minor fields must not focus exclusively on East Asia.
C. Language Requirements

For students majoring in Chinese history:students must demonstrate a reading knowledge of Chinese and a reading knowledge of a second foreign language related to the student's research interests.
For students majoring in Japanese history: students must demonstrate a reading and speaking knowledge of Japanese. Depending on specialization, reading knowledge of a second foreign language might be necessary.

III. EUROPEAN HISTORY

The graduate program in European history is designed to achieve a dual objective: to encourage a broad mastery of historical methods and literature in various fields, as well as to develop a special focus of research within a single area or epoch. The distribution of offerings is as follows:
A. Major Fields

1. Modern Europe, with a specialty in Britain, France, Germany, Italy, Spain, diplomatic history, economic history, intellectual history, or social history.
2. Early modern Europe, with a specialty in the cultural, economic, or social history of one region.

B. First Minor

Any of the following fields may be selected provided that the study concentrates on a chronological period outside the major.

1. Classical Greece and Rome
2. Medieval Europe
3. Early modern Europe
4. Modern Europe
5. A national history
C. Second Minor
6. The history of a geographic area outside of Western Europe
7. History of science
8. Women's history
9. A related discipline, offered through another department.

D. Language Requirements

The department requires Ph.D. candidates in European history to demonstrate competency in two languages in addition to English before advancement to candidacy.

IV. HISTORY OF SCIENCE

Note: Students should indicate whether they are also applicants for admission to the interdepartmental program in Science Studies (history, philosophy, and sociology of science).

A. Major Fields

1. Science in early modern Europe.
2. Science in the eighteenth and nineteenth centuries.
3. Science in the twentieth century.
4. Another field of comparable breadth, defined in consultation with the major field adviser.
B. First and Second Minor Fields (Any two of the following may be selected, in consultation with the major field adviser.)
5. Science Studies (mandatory for students in the Science Studies program).
6. Any of the other fields offered by the department, provided that it offers general historical understanding of the same period as the major field.
7. A field of history of science not chosen as the major field.
8. A second field of history, provided that it concentrates on a period or region other than that chosen for the first minor field.
9. A related discipline, offered through another department. Note: this field may be in the physical or life sciences.

C. Language Requirements

Competency in one or two languages in addition to English before advancement to candidacy is required. The requirement will vary depending on chosen major field.

V. LATIN AMERICAN HISTORY

Doctoral candidates in Latin American history are expected to gain a broad chronological and geographical mastery of the field as a whole. The oral examination in the major field, while concentrating on the student's special area of interest, will be a comprehensive examination covering the whole field of Latin American history.

A. Major Fields

1. The national period of Latin America, with a specialty in the Andean Republics, Brazil, the Caribbean, Mexico, or the Southern Cone countries.
2. Colonial Latin America, with an emphasis on one major region.
B. First Minor

The student should select either the national period or the colonial period as a chronological supplement to the major.
C. Second Minor

1. The history of another geographic area outside Latin America and the Caribbean.
2. An area of discipline, offered through another department, related to the student's dissertation or preparation for university teaching.
D. Language Requirement

Competency in two languages in addition to English before advancement to candidacy is required. Normally the first of these will be Spanish. The second may be Portuguese or another European or non-European language, including an indigenous language of the Americas.

VI. UNITED STATES HISTORY

A. Major Fields

1. Colonial and National period to 1877.
2. Modern America, 1877 to the present.
B. First Minor
3. One of the above fields not chosen as the major field.
4. One of the following topical fields:

African-American history, history of the borderlands and Southwest, Chicano history, economic history, legal and constitutional history, political history, social and cultural history, history of the South, history of the West, or history of women and gender.
C. Second Minor

1. A geographic area outside the United States in either the premodern or modern period.
2. A related discipline offered through another department.
D. Language Requirement

Competency in one language in addition to English before advancement to candidacy is required.

VII. DUAL DEGREE PROGRAM

Students who wish to earn both the Ph.D. in history from UCSD and the Juris Doctor from California Western School of Law must apply to and be independently accepted into both programs under each of the campus' standards and procedures.

Students pursuing the dual degree program will normatly alternate years at each institution, in a manner agreed on by the students' advisers and appropriate committees. Thus, for example, a student may spend his or her first year at Cal Western, his or her second year at UCSD, and so on through the program. At least one year at each institution must be completed by the end of three years.

Each institution will accept a small number of course credits from the other institution to satisfy its degree requirements. Cal Western remains on a semester system, while UCSD continues on a quarter system. With the exception of the historiography and research seminars and subject to approval by a faculty adviser and the graduate committee, the Department of History will accept for credit up to two classes from Cal Western.

VIII. OTHER FIELDS

Students may be admitted to graduate study leading to the Ph.D. in fields other than those listed above upon the recommendation of an appropriate faculty member. In such cases, a special program of study appropriate to the field will be devised by the major field adviser, subject to the approval of the department's graduate committee.

Note: The department also offers graduate work in African history. When appropriate, students may select a minor field in this area.

Ph.D. Course Work

A normal full-time program consists of 12 units per quarter. Ph.D. students are expected to complete at least one of the following minimum formal courses of study prior to their qualifying examination: (1) two two-quarter research seminars, three one-quarter historiography courses in their major field and five other courses (which may be a combination of colloquia, conjoined courses, or directed readings); or (2) three twoquarter research seminars (not necessarily in the same field), three one-quarter historiography courses in their major field, and three other courses (which may be a combination of colloquia, conjoined courses, or directed readings). Students are encouraged to take their first research seminar in their major field during the initial year of graduate study. A maximum of four units per quarter may be taken in teaching assistantships.

Part-time Study

Students who enroll in fewer than twelve graduate or upper-division units per quarter are considered part-time students. Part-time study may be pursued in several master's programs and a few Ph.D. programs at UCSD. Approval for individual students to enroll on a part-time basis may be given for reasons of occupation, family responsibilities, or health. Individuals who are interested in part-time study and meet the above qualifications should see the department's graduate coordinator.

Part-time students must satisfy the same admission requirements as full-time students and are eligible, at the discretion of the department, for 25 percent time teaching or research assistantships. Students who are approved by the dean of Graduate Studies and Research for enrollment in a program of half-time study or less (maximum of six units) may be eligible for a reduction in fees. All other students pay the same fees as full-time students.

Ph.D. and M.A. Language Requirements

Ph.D. candidates in Chinese, European, and Latin American history must demonstrate competency in two foreign languages. Ph.D. candidates
in history of science, Japanese, and United States history, as well as M.A. candidates in European and Latin American history, must demonstrate competency in one foreign language. Ph.D. candidates in ancient history require two modern foreign languages as well as the relevant ancient languages. Additional languages appropriate to the special field of study as well as language requirements for a candidate in a field other than those already mentioned may be required by the Graduate Committee in consultation with the student's major field adviser. Students may satisfy the foreign language requirement in one of the following ways:
A. By completing, with a grade of B - or better in each term, a two-year language sequence from the student's undergraduate institution. Such a sequence must have been completed within two years of the time the request is made to the Graduate Committee for certification of competency.
B. By completing, with a satisfactory (S) grade in each term, a two-year, lower-division sequence in the language approved by the Graduate Committee.
C. By completing, with a satisfactory (S) grade in each term, a one-year, upper-division sequence in the language approved by the Graduate Committee.
D. By passing a translation examination administered by a departmental faculty member who is proficient in the language. (This is the only option available for Chinese and Japanese.)
Students are urged to complete at least one foreign language examination by the end of the first year of study and must do so by the beginning of their third year. Failure to meet this requirement is grounds for denial of financial support. No student may take the oral qualifying examination before completing all language requirements.

Ph.D. Examinations

A. Minor Fields

Ph.D. candidates are strongly encouraged to take at least one minor field examination by the end of fall quarter of their second year and to complete all examinations by the end of their third year. Generally, the department recognizes two types of minor fields. The most common minor field is a teaching field. That is, passing a minor field in an area certifies, on a student's record and resume, that the student
has mastered the literature and the major issues in a field sufficient to qualify the student to teach in that area. (An example would be a minor field in modern Japanese history for an East Asian history student specializing in modern China; or medieval history for a Europeanist.) A second type of minor field is designed to familiarize a student with a range of theoretical and comparative issues which will be useful in the formulation of a dissertation topic and future research in the student's major field. (An example might be Latin American history for a student working in United States ethnic history; or sociology for a student in any field.) For a minor field taken outside the department, the minor field adviser (not the student or major field adviser) determines the level of expertise sufficient to warrant certification in that field.

Reading lists are negotiated between students and their minor field adviser, but, as a guideline, they should include about 50 titles with 40-70 titles representing a reasonable range. The reading list is agreed upon, at least three months in advance, by the student and faculty member administering the minor field examination. The list is intended to establish what will be expected of the student and to prevent confusion over the material to be covered. Most minor fields include a written examination; these may be in the form of a three-hour departmental exam or a twenty-four hour take-home exam at the administering professor's discretion. (Minor field examinations in East Asian history will be oral; those in history of science may be either written or oral.) The professor composes and grades the written examination.

Students who fail a minor field examination may petition the Graduate Committee for permission to sit for the examination again at any time during the following two quarters, as long as pre-candidacy time limits are not exceeded. A second failure results automatically in dismissal from the program.
B. Oral Qualifying Examination and Candidacy

Students are normally expected to take their qualifying examination no later than the spring of their third year of study (except as otherwise specified by the individual fields), and are required to do so in four years. Students must fulfill all course work, minor field, and language requirements before taking their qualifying
examination. The qualifying examination is an oral test in the student's major field of study, conducted by at least five examiners, three of whom must be members of the Department of History. Students are strongly encouraged to select one department examiner from outside their core field group. At least one examiner must be a tenured faculty member from a discipline outside the department. Students should consult with their adviser about the composition of the examining committee well before their examination. The examination committee also serves as the dissertation committee. The membership of the committee must be approved by the Department Chair and ultimately the Dean of graduate studies. The date of the examination is determined by consultation between the candidate and the examining committee. In addition to the major field book list, it is required that students also submit a dissertation prospectus to the committee before the oral examination. The examination, which will include a discussion of the student's prospectus, lasts approximately two to three hours.
Should a candidate fail the examination, the examining committee will consult with the student to clarify weaknesses in preparation for taking the examination a second time. If a second oral examination is warranted, the department requires that it should be taken no later than one quarter after the first examination. If the candidate fails the oral examination a second time, his or her candidacy will be terminated.
An M.A. degree may also be awarded to continuing Ph.D. students upon successfully passing the oral qualifying examination. The M.A. is not automatically awarded; students must apply in advance to receive the degree. Note: Students who wish to receive an M.A. degree as part of the Ph.D. program must apply for master's degree candidacy during the first two weeks of the quarter in which they expect to receive the degree. Please see the graduate coordinator regarding this application.
The various requirements noted above apply to students who have done no previous graduate work in history. If a candidate has completed some graduate work before entering UCSD, there may be appropriate adjustments in course work, as approved by general petition to the Graduate Committee. Nevertheless, all candidates are required to meet language
requirements, pass field examinations, as well as complete and defend a dissertation.

Dissertation

After completing all relevant examinations and language requirements, the student is expected to write a dissertation under the supervision of his or her faculty adviser and the doctoral committee. The Department of History has established the following guidelines for dissertation work. The dissertation should:

- represent an original and significant contribution to knowledge.
- be based upon primary research.
- clearly demonstrate the capacity of the student to pursue independent historical research.
- be written in clear and coherent prose.

Decisions concerning the scope of the dissertation and its length will depend upon the nature of the problem and the documentation. The department assumes that most students will have completed their research and writing by the end of their sixth year of study. The scope and length of the dissertation should therefore be such that a complete project can be executed in no more than three years. Whatever the scope or length of the dissertation it should be capable of further development for publication as a series of articles in scholarly journals, or as a book.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

Opportunities for Teaching

Undergraduate teaching, for which graduate teaching assistants earn regular academic credit, is an integral part of the graduate program at UCSD. To prepare for an academic career, the Ph.D. candidate is encouraged to assist in courses offered by the department ordinarily as a course reader (grader) or teaching assistant. A maximum of four units may be taken in undergraduate teaching. When such an opportunity is not available, a student may teach in various programs outside the department.
The department considers experience in teaching an important part of a graduate student's professional training. Based upon financial aid forms
that graduate students complete during the previous winter quarter, the Graduate Committee assigns History Department teaching assistantships and recommends teaching assistantships outside of the department for the upcoming academic year.

Students must maintain a minimum gradepoint average of 3.0 in order to receive academic employment on campus.

Financial Support

Upon recommendation of the department, several types of financial aid are available to graduate students: full or partial remission of fees and tuition, fellowships, research assistantships, teaching assistantships, readerships, and travel grants. Graduate students are eligible for one or a combination of the six forms of financial support.

Fellowships and research assistantships are granted by the Office of Graduate Studies and Research (OGSR) upon the recommendation of the department. Teaching assistants are appointed by the department upon the recommendation of the graduate committee and by the college writing programs. Readers are appointed by the department upon the recommendation of the professor whose course requires such assistance. At the discretion of the department, half-time graduate students are eligible for 25 percent TAships or GSRships.

For a small number of outstanding incoming students, the department will award a four year package of guaranteed funding which would include two years of a fellowship and two years of employment as a teaching assistant.
Departmental policy has been to seek seven years of support for students in the program. In recent years all students needing support have received either fellowships, or teaching assistant, research assistant positions. To the extent that resources are insufficient to meet the need, the department, on the advice of the graduate committee, will rank students using a combined criterion of academic performance and financial need.

Graduate students must maintain a minimum grade-point average of 3.0 to be considered for any type of financial aid. Financial support is not renewed automatically but is approved by the department on a yearly basis.

The Office of Graduate Studies and Research grants partial remission of fees for nine quarters after advancement to candidacy ("normative
time") if the student is advanced to candidacy by the end of the third year. (If the student delays advancement, the amount of normative time is reduced accordingly.) Upon expiration of normative time the student must complete the dissertation or resume full payment of fees.

Job Placement

In recent years, 75 percent of the department's Ph.D. graduates received positions as tenure-track assistant professors at colleges and universities around the country. The remaining 25 percent are currently administrators, visiting scholars, lecturers, or postdoctoral fellows at various educational institutions. Experience indicates that many from this latter group will eventually get professional appointments.

COURSES

LOWER-DIVISION

HILD 2A-B-C. United States

A year-long lower-division course that will provide students with a background in United States history from colonial times to the present, concentrating on social, economic, and political developments. (Satisfies Muir College humanities requirement and American History and Institutions requirement.)

HILD 7A-B-C. Race and Ethnicity in the United States

Lectures and discussions surveying the topics of race, slavery, demographic patterns, ethnic variety, rural and urban life in the U.S.A., with special focus on European, Asian, and Mexican immigration.

HILD 7A. Race and Ethnicity in the United States (4) A lecture-discussion course on the comparative ethnic history of the United States. Of central concern will be slavery, race, oppression, mass migrations, ethnicity, city life in industrial America, and power and protest in modern America. Smallwood

HILD 7B. Race and Ethnicity in the United States (4) A lecture-discussion course on the comparative ethnic history of the United States. Of central concern will be the Asian-American and white ethnic groups, race, oppression, mass migrations, ethnicity, city life in industrial America, and power and protest in modern America. Shah

HILD 7C. Race and Ethnicity in the United States (4) A lecture-discussion course on the comparative ethnic history of the United States. Of central concern will be the Mexican-American, race, oppression, mass migrations, ethnicity, city life in industrial America, and power and protest in modern America. Gutiérrez

HILD 10-11-12. East Asia

A lower-division survey that compares and contrasts the development of China and Japan from ancient times to the present. Themes include the nature of traditional East Asian society and culture, East Asian responses to political and economic challenges posed
by an industrialized West, and war, revolution and modernization in the twentieth century.

HILD 10. East Asia: The Great Tradition (4)
Examines the evolving characteristics of East Asian culture and civilization before 1600 . Contrasts the rise of imperial Confucian governance in China to the development of feudal society in Japan. Pickowicz, Esherick.

HILD 11. East Asia and the West (4)

Compares Chinese and Japanese responses to Western imperialism after 1600, focusing on popular protest and dynastic decline in China and the rise of the modernizing nation state in Japan. Pickowicz, Esherick, Fujitani.

HILD 12. Twentieth-Century East Asia (4)
Deals with the rise of East Asia in the Pacific Century. This course stresses the emergence of a regionally dominant Japan before and after World War II and examines the process of revolution and state-building in China during the Nationalist and Communist eras. Pickowicz, Esherick.

HILD 13. Twentieth-Century Japan (4)

(Cross-listed with JAPN 13.) While Japan had operated on the margins of the Chinese world order up to the nineteenth century, by the twentieth century it embarked on a completely different course, symbolized by Fukuzawa Yukichi's famous essay "escaping Asia." This course will examine the moments of this nonWestern country's attempts to become modern. Issues will be organized chronologically, but will cover economic, social, political, and cultural events. Tanaka

UPPER-DIVISION

Please note:The following upper-division courses are offered on a regular basis, although not every class is available every year. Check with the department to see what is available each quarter.

AFRICA

Lecture Courses

HIAF 110. History of Africa to 1880 (4)
A survey of pre-colonial Africa, concentrating on ancient Africa, Islam, state formation, the slave trade and abolition, and European penetration of the interior. Prerequisite: upper-division standing. Reynolds. +

HIAF 111. Modern Africa Since 1880 (4)

A survey of African history dealing with the European scramble for territory, primary resistance movements, the rise of nationalism and the response of metropolitan powers, the transfer of power, self-rule and military coups, and the quest for identity and unity. Prerequisite: upper-division standing. Reynolds

HIAF 120. History of South Africa (4)

The origins and the interaction between the peoples of South Africa. Special attention will be devoted to industrial development, urbanization, African and Afrikaner nationalism, and the origin and development of apartheid and its consequences. Prerequisite: upper-division standing. Reynolds

HIAF 130. African Society and the Slave Trade (4)
Topics include trans-Saharan trade, slavery with African societies, Atlantic slave trade, East African slave trade,
problems of numbers exported and profitability, impact of slave trade on African society, and the abolition of the slave trade. Prerequisite: upper-division standing. Reynolds

HIAF 140. Economic History of Africa (4)
Lecture-discussion course on the economic development of sub-Saharan Africa from earliest times to the present. Topics will include: pre-European trade, the Atlantic slave trade, the era of legitimate trade, economic imperialism and the colonial economy, and postindependence economic development. Prerequisite: upper-division standing. Reynolds +

Colloquia

The following courses are available to both undergraduate and graduate students.
Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.
HIAF 160/260. Special Topics in the Economic History of Africa (4)
This course will examine selected topics in African economic history. Topics will include the precolonial economy, economics of colonialism, economics of underdevelopment, and postcolonial economic development. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: completion of several upper-division history courses or consent of instructor. Department stamp required. Reynoids

HIAF 161/261. Special Topics in African History (4)

This colloquium is intended for students with sufficient background in African history. Topics, which vary from year to year, will include traditional political, economic, and religious systems, and theory and practice of indirect rule, decolonization, African socialism, and panAfricanism. Department stamp required. Reynolds

HIAF 199. Independent Study in African History (4)
Directed readings for undergraduates. Prerequisite: consent of instructor and academic adviser required.

EAST ASIA

Lecture Courses

HIEA 111. Japan: Twelfth to Mid-Nineteenth

Centuries (4)

Covers important political issues-such as the medieval decentralization of state power, unification in the sixteenth and seventeenth centuries, the Tokugawa system of rule, and conflicts between rulers and ruled-while examining long-term changes in economy, society, and culture. Fujitani +

HIEA 112. Japan: From the Mid-Nineteenth Century through the U.S. Occupation (4)
Topics include the Meiji Restoration, nationalism, industrialization, imperialism, Taish ${ }^{\text {M }}$ Democracy, and the Occupation. Special attention will be given to the costs as well as benefits of "modernization" and the relations between dominant and subordinated cultures and groups within Japan. Fujitani

HIEA 113. The Fifteen-Year War in Asia and the

Pacific (4)
Lecture-discussion course approaching the 1931-1945 war through various "local," rather than simply nationa!, experiences. Perspectives examined include those of marginalized groups within Japan, Japanese Americans, Pacific Islanders, and other elites and nonelites in Asian and Pacific settings. Fujitani

HIEA 114. Postwar Japan (4)
Examines social, cultural, political, and economic transformations and continuities in Japan since World War II. Emphases will differ by instructor. Prerequisite: upperdivision standing. Fujitani and Tanaka

HIEA 115. Social and Cultural History of Twentieth-

Century Japan (4)

Japanese culture and society changed dramatically during the twentieth century. This course will focus on the transformation of cultural codes into what we know as "Japanese", the politics of culture, and the interaction between individuals and society. Tanaka

HIEA 116. Japan-U.S. Relations (4)
Survey of relations between Japan and the United States in the nineteenth and twentieth centuries. Although the focus will be on these nation-states, the course will be framed within the global transformation of societies. Topics include cultural frameworks, political and economic changes, colonialism and imperialism, and migration. Tanaka

HIEA 120. Classical Chinese Philosophy and Culture (4) Course covers the period from the second millennium B.C. to second century A.D. This is a formative period in Chinese history, witnessing the flowering of philosophical schools-Confucianism, Taoism, and Realism. It was also during this period that the foundations of Chinese political and social structures were laid down. Staff +

HIEA 121. Medieval Chinese Culture and Society (4) This course covers the period from the sixth century to thirteenth century, the time of the glorious T'ang and Sung dynasties. We focus on the "medieval revolution" that changed the political, economic, and social life of the empire. As much as possible we study these changes from the eyes of the people who lived through them-aristocrats, peasants, soldiers, merchants, women. Prerequisite: HIEA 120 recommended but not required. Staff +

HIEA 122. Late Imperial Chinese Culture and Society (4) This course surveys Chinese culture and society from the fifteenth century to the eighteenth century. We will explore the experiences of a range of political actors emperors, scholar-officials, merchants, peasants, and women from all classes. Prerequisites: HIEA 120 and EA 121 recommended but not required. Staff +

HIEA 123. Food in Chinese History (4)
This course examines the production, distribution, preparation, and consumption of food in Chinese history to illuminate such themes as state agricultural policies, regional transportation and trade networks, dynamics of social interactions and gendered divisions of labor. Prerequisite: upper-division standing. Staff

HIEA 124. Science in China and the West from Ancient Times to the Seventeenth Century (4)
(Same as HISC 110.) Joseph Needham asked why a scientific revolution occurred only in early modern Europe when, until that time, the Chinese had been more successful in applying knowledge of nature to society.

Examination of Needham's famous "question" and beyond. Comparative representations of the heavens, earth, and body to the arrival of the Jesuits in China. Prerequisite: upper-division standing. Westman and Hanson +

HIEA 130. History of the Modern Chinese Revolution:

1800-1911 (4)
This course stresses the major social, political, and intellectual problems of China in the period from the Opium War to the Revolution of 1911. Special emphasis is placed on the nature of traditional Chinese society and values, the impact of Western imperialism and popular rebellion on the traditional order, reform movements, and the origins of the early revolutionary movement. Pickowicz

HIEA 131. History of the Modern Chinese Revolution: 1911-1949 (4)
This course deals with the formative period of the twentieth-century Chinese revolution. Considerable stress is placed on the iconoclastic New Culture period, the rise of the student movement, Chinese communism, the labor movement, revolutionary nationalism, and the emergence of the peasant movement. Pickowicz

HIEA 132. History of the People's Republic of China (4)
This course analyzes the history of the PRC from 1949 to the present. Special emphasis is placed on the problem of postrevolutionary institutionalization, the role of ideology, the tension between city and countryside, Maoism, the Great Leap Forward, the Cultural Revolution. Pickowicz

HIEA 133. Twentieth Century China: Cultural History (4) This course looks at how the historical problems of twentieth- century China are treated in the popular and elite cultures of the nationalist and communist eras. Special emphasis is placed on film and fiction. Knowledge of Chinese required. Pickowicz

HIEA 137. Women and Family in Chinese History (4)
We explore how the Confucian philosophy influenced the way the Chinese look at the family and the role of women in it, as well as the domestic lives that men and women actually led from the classical times to the present day. Prerequisite: upper-division standing. Staff +

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HIEA 160/260. Colloquium on Modern Japanese

History (4)
This colloquium examines controversial domestic and international issues in Japanese history from 1850 to recent times. Topics will vary from year to year. Prerequisite: department stamp, consent of instructor. Staff

HIEA 161/261. Representing Japan (4)
Analyzes Anglo-American representations of Japan and "Japaneseness" from mid-nineteenth century to present. Primary focus on literary, visual, and theatrical works that have had a significant and direct impact upon popular (or public) culture and perceptions.

Prerequisite: department stamp or consent of instructor. Fujitani

HIEA 162/262. History of Women in China (4)
This course concerns women in Chinese history in Imperial times. This course will focus on women's changing roles in the family, society, and culture. Topics will vary from year to year. Requirements will vary for undergraduate, M.A., and Ph.D. students. Prerequisite: upper-division standing. Hanson

HIEA 164/264. Seminar in Late Imperial Chinese History (4)
Special topics in late Imperial Chinese history. Topics will vary from year to year. Requirements will vary for M.A. and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work Prerequisite: upper-division standing or consent of instructor. Staff

HIEA 167/267. Special Topics in Modern Chinese

History (4)
This seminar examines controversial, domestic, and international issues in Chinese history from 1800 to recent times. Prerequisite: department stamp or consent of instructor. Esherick

HIEA 168/268. Topics in Classical and Medieval

 Chinese History (4)This course covers specific topics in Chinese society thought, religion, culture, and history from the Zhon through the Song dynasties. It always involves reading primary sources. Prerequisites: upper-division standing or consent of instructor, department stamp. Cahill +

HIEA 170/270. Colloquium of Science, Technology, and Medicine in China (4)
In this course students will examine Chinese history through writings on nature, the heavens, and the human body. The focus will be on the traditional Chinese sciences: medicine, divination, astronomy, alchemy, and geomancy. Discussion will be based on primary Chinese sources in English translation including literary, religious, philosophical, governmental, and medical texts. Prerequisite: department stamp. Hanson

HIEA 199. Independent Study in East Asian History (4) Directed reading for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor required. Staff

EUROPE

See History of Science for more European courses (HISC 101ABC, HISC 106)

Lecture Courses

HIEU 100. Early Greece (4)
The social, political, and cultural history of the ancient Greek world from the Bronze Age to the Persian Wars (2000-480 B.C.). Mosshammer +

HIEU 101. Greece in the Classical Age (4)
The social, political, and cultural history of the ancient Greek world from the Persian Wars to the death of Alexander the Great (480-323 B.C.). Mosshammer +

HIEU 102. The Roman Republic (4)
The political, economic, and intellectual history of the Roman world from the foundation of Rome to the time of Julius Caesar. Mosshammer +

HIEU 103.The Roman Empire (4)
The political, economic, and intellectual history of the Roman world from the time of Julius Caesar to the death of Justinian (A.D. 565). Mosshammer +

HIEU 105. The Early Christian Church (4)
A study of the origin and development of early Christian thought, literature, and institutions from the New Testament period to the Council of Chalcedon (451). Mosshamer +

HIEU 110. The Rise of Europe (4)

The development of European society and culture from the decline of the Roman Empire to 1050. Prerequisite: Humanities sequence or its equivalent. Caciola +

HIEU 111. Europe in the Middle Ages (4)
The development of European society and culture from 1050 to 1400. Prerequisite: Humanities sequence or its equivalent. Caciola +

HIEU 113. Rule, Conflict, and Dissent in the Middle Ages (4)
This course explores the question of religious and polit ical dissent in Europe from the twelfth through the fifteenth centuries. We will explore the tensions between ideal models of religious and cultural unity, and the realities of community conflict, heretical controversies, and popular uprisings. Caciola +

HIEU 114. Preindustrial Light and Magic (4)
This course examines the social history of ideas about the supernatural from the fifth through the fifeenth centuries. Emphasis upon the dynamic, reciprocal cultural influences of various communities and sub-cultures. Topics include the syncretism of Christianity with fold beliefs; the cult of the saints; visions of the afterlife. Caciola +

HIEU 115/VIS 121E. The Pursuit of the Millennium (4) The year 2000 provokes questions about the transformation of time, culture, and society. Taking the year 1000 as a touchstone, this class examines the history of apocalyptic expectations in the Middle Ages through a close scrutiny of both texts and art. Caciola/Smith +

HIEU 120. Early Renaissance Italy: Dante to the Medici

 (1300-1494)The economic and political transformation of latemedieval Italy from the heyday of mercantile expansion before the plague to the dissolution of the italian state system with the French invasions of 1494. Special focus upon family, associational life and factionalism in the city, the development of the techniques of capitalist accumulation, and the spread of humanism. Prerequisite: upper-division standing. Marino +

HIEU 122. Politics Italian Renaissance Style (4)
Modern political and historical thought find their roots in the realistic examination of fifteenth- and sixteenthcentury Italian political experience. Contemporary Renaissance humanists and thinkers-Machiavelli, Guicciardini, Castiglione, Botero, and Campanellatested classical, Christian, and legal models against practical necessities. Marino +

HIEU 123. Renaissance Europe (4)
This course explores the age of the Renaissance from approximately the middle of the fourteenth century to the middle of the sixteenth (1350-1550) as a period of great change and diversity, a dynamic moment of discovery, exploration, and expansion, not only in geography but also in politics, economics, religion, art, and science. Marino +

HIEU 124/VIS 122E. The City in Italy (4)

Each of the great Italian cities has a style and heritage all its own. This course considers the social, political, economic, and religious aspects of civic life which gave rise to the unique characteristics of such cities as Florence, Siena, Venice, or Rome. Emphasis will be placed on the function and content of civic art, the architecture of public buildings, and the design of the urban environment. The specific content of the course, the city or cities and periods under consideration, will vary. Marino +

HIEU 125. Reformation Europe (4)

The intellectual and social history of the Reformation and Counter-Reformation from the French invasions to the Edict of Nantes. Emphasis is upon reform from below and above, the transformation of grass-roots spirituality into institutional control. Prerequisite: upperdivision standing or consent of instructor. Marino +

HIEU 126. Age of Expansion: Europe and the World,

1400-1600 (4)
Course will begin with a survey of the major empires of the fifteenth century, concentrating on the links between them. It will then examine the entrance of Europeans on the global scene in the sixteenth century. This part of the course will examine European/nonEuropean encounters, focusing on perceptions, economic interaction, and institutional adaptation and will emphasize the Hispanic American, Ottoman, and Indian Ocean cases. Ringrose and Marino +

HIEU 128. Europe Since 1945

An analysis of European history since the end of the Second World War. Focus is on political, social, economic, and cultural developments within European societies as well as on Europe's relationship with the wider world (the Cold War, decolonization). Biess

HIEU 129. Paris, Past and Present (4)
This course surveys the historical and cultural significance of Paris from about 1500 to the present. The focus is on interactions between political, architectural, and urban evolutions, and the changing populations of Paris in times of war, revolutions, and peace. Truant +

HIEU 130. Europe in the Eighteenth Century (4)
A lecture-discussion course focusing on Europe from 1688-1789. Emphasis is on the social, cultural, and intellectual history of France, Germany, and England. Topics considered will include family life, urban and rural production and unrest, the poor, absolutism, and the Enlightenment from Voltaire to Rousseau. Prerequisite: upper-division standing. Truant +

HIEU 131. The French Revolution: 1789-1814 (4)

This course examines the Revolution in France and its impact in Europe and the Caribbean. Special emphasis will be given to the origins of the Revolution, the development of political and popular radicalism and symbolism from 1789 to 1794 , the role of political participants (e.g., women, sans-culottes, Robespierre), and the legacy of revolutionary wars and the Napeoleonic system on Europe. Prerequisite: upper-division standing. Truant +

HIEU 132. German Politics and Culture: 1648-1848 (4)

A lecture-discussion course on the political and cultural history of Germany in the early modern period. Luft +

HIEU 134. The Formation of the Russian Empire,

800-1855 (4)
State-building and imperial expansion among the peoples of the East Slavic lands of Europe and Asia from the origins of the Russian state in ninth-century Kiev,
through Peter the Great's empire up to the middle of the nineteenth century. Prerequisite: upper-division standing or consent of instructor. Edelman +

HIEU 135. European Economy and Society: 1000-1750 Underlying structures of rural economy and society, geography, population, resources, technology. Evolution of commercial cities, unification of the European market systems, mercantilism, emergence of bureaucracies. Economic and social background of the industrial revolution. Prerequisite: upper-division standing or consent of instructor. Ringrose +

HIEU 136A. European Society and Social Thought,

 1688-1870 (4)A lecture and discussion course on European political and cultural development and social theory from 16881870. Important writings will be considered both as responses to and as provocations for political and cultural change. Truant +

HIEU 136B. European Society and Social Thought,

1870-1989 (4)
A lecture and discussion course on European political and cultural development and theory from 1870-1989. Important writings will be considered both as responses to and as provocations for political and cultural change. J. M. Hughes

HIEU 138. Imperial Spain, 1476-1808 (4)
The rise and decline of Spain's European empire from Ferdinand and Isabella to 1700 . The revival of Spain and her return to European affairs in the eighteenth century. Prerequisite: upper-division standing or graduate standing. Ringrose +

HIEU 141. European Diplomatic History, 1870-1945 (4) European imperialism, alliances, and the outbreak of the First World War. The postwar settlement and its breakdown. The advent of Hitler and the disarray of the western democracies. The Second World War and the emergence of the super powers. J.M. Hughes

HIEU 142. European Intellectual History, 1780-1870 (4) European thought from the late Enlightenment and the French Revolution to Marx and Baudelaire, emphasizing the origins of romanticism, idealism, and positivism in England, Germany, and France. Prerequisite: upperdivision standing or consent of instructor. Luft

HIEU 143. European Intellectual History, 1870-1945 (4) A lecture-discussion course on the crisis of bourgeois culture, the redefinition of Marxist ideology, and the transformation of modern social theory. Readings will include Nietzsche, Sorel, Weber, Freud, and Musil. (This course satisfies the minor in the Humanities Program.) Prerequisite: upper-division standing. Luft

HIEU 146. Fascism, Communism, and the Crisis of Liberal Democracy:Europe 1919-1945 (4)
A consideration of the political, social, and cultural crisis that faced Western liberal democracies in the interwar period, with emphasis on the mass movements that opposed bourgeois liberalism from both the left and the right. Radcliff

HIEU 147. The History of Women in Europe: Middle Ages to the Early Modern Era (4)
This course explores shifts in the roles and representations of women from the early middle ages, through the Renaissance and Reformation, and up to the seventeenth century. Topics will be examined across the European social order and include gender and sexuality, holy women, religious movements, and production
and reproduction. Prerequisite: upper-division standing. Truant +

HIEU 148. European Women: the Enlightenment to the

 Victorian Era (4)This course explores shifts in the roles and representations of women from the late seventeenth century to about 1870 . Topics are examined across the European social order and include: gender and sexuality, women writers and print culture, women's participation in the French and industrial revolutions, and the emergence of feminist movements. Prerequisite: upper-division standing or consent of instructor. Truant +

HIEU 149. History of Women in Europe: 1870 to the

 Present (4)This course explores the history of women across classes from 1870 to the present, with an emphasis on the variety of women's experience and the efforts towards and obstacles to empowerment. Topics include: women and the state, science and gender, feminist movements and the evolution of women's work. Prerequisite: upperdivision standing. Radeliff

HIEU 150. Modern British History (4)
Emphasis on changes in social structure and corresponding shifts in political power. The expansion and the end of empire. Two World Wars and the erosion of economic leadership. Prerequisite: upper-division standing or consent of instructor. J.M. Hughes

HIEU 151. Spain since 1808 (4)
Social, political, cultural history of Spain since Napoleon. Features second Spanish Republic, the Civil War, Franco era, and transition to democracy. Prerequisite: upper-division standing. Ringrose

HIEU 153A. Nineteenth-Century France (4)

A study of the social, intellectual, and political currents in French history from the Revolution of 1789 to the eve of the First World War. Lectures, slides, films, readings, and discussions. Staff

HIEU 153B. Twentieth-Century France (4)
A study of the social, intellectual, and political currents in French history from the First World War to the present. Lectures, slides, films, readings, and discussions. Staff

HIEU 154. Modem German History: From Bismarck to

 Hitler (4)An analysis of the volatile course of German history from unification to the collapse of the Nazi dictatorship. Focus is on domestic developments inside Germany as well as on their impact on European and global politics in the twentieth century. Biess

HIEU 155. Modern Austria (4)
The political, social, and intellectual history of Austria from Maria Theresa to the First Republic with special emphasis on the crisis of liberal culture in the late nineteenth century. Prerequisite: upper-division standing or consent of instructor. Luft

HIEU 156. The Russian Empire and the Soviet Union,

 1855-1991 (4)War, revolution, development, and terror in the multinational empires of the nineteenth and twentieth centuries. Prerequisite: upper-division standing or consent of instructor. Edelman

Colloquia

The following courses are available to both undergraduate and graduate students.

Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HIEU 160/260. Topics in the History of Greece (4)
A seminar focusing on selected topics in Greek history from the Bronze Age to the Roman Conquest. Prerequisite: upper-division standing or consent of instructor. Mosshammer

HIEU 161/261. Topics in Roman History (4)
A seminar focusing on selected topics in Roman history and culture from the period of the Kings to the later Roman Empire. Prerequisite: upper-division or graduate standing or consent of instructor. Mosshammer +

HIEU 163/263. Special Topics in Medieval History (4) Intensive study of special problems or periods in the history of medieval Europe. Topics vary from year to year, and students may therefore repeat the course for credit. Prerequisites: background in European history and upper-division standing. Caciola +

HIEU 165/265. Special Topics in Early Modern Spain (4) Readings and discussion of recent studies on Spain in the early modern period: the Hapsburg Empire to 1700, social and economic conditions of Spain in the Enlightenment of the eighteenth century, and the breakup of the Old Regime after 1790. Prerequisite: background in European history. Ringrose +

HIEU 167/267. Special Topics in the Social History of Early Modern Europe (4)
Topic varies from year to year. May be repeated for credit. Prerequisite: upper-division or graduate standing. Truant +

HIEU 169/269. The History of Books from Ancient Greece to the Early Seventeenth Century (4)
The handwritten and the printed text as both material and intellectual object. The effects of print and engraving on layout, new possibilities for visual illustration, the standardization of languages, biblical translation, the transmission of science and philosophy, the question of orality verses literacy, and the transformation of the author, reader, producer, and collector. Prerequisite: upper-division standing or consent of instructor. Giard +

HIEU 171/271. Special Topics in Twentieth-Century

 Europe (4)This course alternates with HIEU 170 . Topics will vary from year to year. Prerequisite: background in European history. Staff

HIEU 172/272. War in the Twentieth Century (4)
Reckonings by novelists, essayists, and biographers with the phenomenon of contemporary warfare as an unprecedented experience and an abiding threat. Prerequisite: upper-division standing or consent of instructor. J.M. Hughes

HIEU 175/275. Selected Topics in the History of

Nineteenth- and Twentieth-Century Spain (4)
Topics may include economic development, modernization, political change, intellectual history, and the transition to democracy. Prerequisite: upper-division standing or consent of instructor. Ringrose

HIEU 177/277. Special Topics in Modern German

Thought (4)
Topics will vary from year to year. (Satisfies the Humanities Program minor.) Prerequisite: background in European history. Luft

HIEU 177A/277A. The Two Germanys Since 1945

An analysis of the parallel and divergent paths of East and West Germany since 1945. Focus is on the close interrelationship between both postwar societies as well as on the origins of the East German revolution and unification in 1989-90. Prerequisite: upper-division standing or consent of instructor. Biess

HIEU 178/278. Topics in Russian History and Popular

 Culture (4)Topics will vary from year to year. Graduate students are required to submit a more substantial paper. Prerequisite: upper-division standing or consent of instructor. Edelman

HIEU 180/280. Topics in European Women's History (4)
The specific content of the course will vary from year to year, but will always analyze in depth a limited number of issues in European women's history. Prerequisite: upper-division standing or consent of instructor. Radcliff, Truant

HIEU 199. Independent Study in European History (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor. Staff

HISTORY OF SCIENCE

Lecture Courses

HISC 100. The Discovery of Deep Time (4)
The discovery of the vast scale of the past history of the natural world, and the consequent dwarfing of human history, from the chronologies of the seventeenth century, through the emergence of the science of geology, to the planetary histories of the twentieth century. Staff

HISC 101A. Science in the Greek and Roman World (4) A survey of the principal features of ancient science: the origins of Greek naturalism, the criticism of magic, notions of quantification. Topics may include astronomy, astrology, geography, geometry, optics, mechanics and physical theory, classification of living beings, and human cognition. Emphasis on primary sources, such as the presocratic natural philosophers: Plato, Artistotle, Euclid, Archimedes, Ptolemy, Pliny Galen, and Proclus. Prerequisite: upper-division standing. Westman and Giard +

HISC 101B. Medieval Science in the Latin West, ca.

500-1500 (4)
Styles of the medieval scientific imagination. Reception and assimilation of the learning of the ancient world, especially Aristotle, Plato, Euclid, Galen, and Ptolemy. Struggles to reconcile Greek, Arabic, and Christian ideals of knowledge. Rise of universities. Natural philosophy, logic, geometry, optics, astronomy, astrology, mechanics, geography, and classification of living beings. Prerequisite: upper-division standing. Westman and Giard +

HISC 101C. Early Modern Science (4)
Early forms of modern science, mid-15th to 17th centuries. The revolution in printing. Sites of knowledgemaking: university and court cultures, museums, academies. Astrology, astronomy, literature of the heavens, prophecy and apocalyptic expectation. Natural history, medicine, alchemy, magic and the physico-mathematical sciences. Prerequisite: upper-division standing. Westman and Giard +

HISC 102. The Physical Sciences in the Twentieth

Century (4)

Major conceptual changes in physical science, and their historical contexts. Quantum and relativity theories, atomic and nuclear physics Òinvades' new territories: the rise of astrophysics, geophysics and chemical physics. The changing nature of the physical science enterprise. Prerequisite: at least one year of science courses. Staff

HISC 103. Gender and Science in Historial

Perspective (4)
This course will examine the history of women's struggles and strategies for access and equality in professional science. Questions related to gender bias in sci-ence-as a social institution and as an epistemological enterprise - will be addressed in light of the historical and biographical readings. Staff

HISC 104. History of Popular Science (4)
Historical aspects of the popularization of science. The changing relation between expert science and popular understanding. The reciprocal impact of scientific discoveries and theories, and popular conceptions of the natural world. Prerequisite: upper-division standing. Staff

HISC 105. History of Environmentalism (4)
History of human effects on the natural environment, and with environmentalist interpretations of the history of science. Staff

HISC 106. The Scientific Revolution (4)
A cultural history of the formation of early modern science in the sixteenth and seventeenth centuries: the social forms of scientific life; the construction and meaning of the new cosmologies from Copernicus to Newton; the science of politics and the politics of science; the origins of experimental practice; how Sir Isaac Newton restored law and order to the West. Prerequisite: upper-division standing. Westman +

HISC 107. The Emergence of Modern Science

The development of the modern conception of the sciences, and of the modern social and institutional structure of scientific activity, chiefly in Europe, during the eighteenth and nineteenth centuries. Prerequisite: upper-division standing. Staff

HISC 108. Science and Technology in the Twentieth

Century (4)
The origins and development of the modern scientifictechnological enterprise, with science in industry, government, and war. Cultural, social, and economic implications of major scientific advances. The changing social role of the scientist. Prerequisite: upper-division standing. Oreskes

HISC 109. History of Evolutionary Theories (4)

History of theories to account for the diversity of organisms. Darwin's theory of evolution by natural selection and its modern versions. Implications of evolutionary theories for understanding human beings in relation to the rest of the natural world. Prerequisite: upper-division standing. Staff

HISC 110. Science in China and the West from Ancient

 Times to the Seventeenth Century (4)Joseph Needham asked why a scientific revolution occurred only in early modern Europe when, until that time, the Chinese had been more successful in applying knowledge of nature to society. Examination of Needham's famous "question" and beyond. Comparative representations of the heavens, earth, and body to the arrival of the Jesuits in China. Westman and Hanson +

HISC 111. Origins of the Atomic Age (4)
The atomic bomb changed the world. We examine the origins and impact of the atomic age: the discovery of radioactivity; the Manhattan project and bombings of Hiroshima and Nagasaki; the H-bomb, nuclear fallout, and the modern environmental movement. Prerequisite: upper-division standing or consent of instructor. Oreskes

Colloquia

The following courses are available to both undergraduate and graduate students.
Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HISC 160/260. Historical Approaches to the Study of

 Science (4)Major recent publications in the history of science will be discussed and analyzed; the topics will range in period from the seventeenth century to the twentieth, and will deal with all major branches of natural science. Special topics. Topics will vary from year to year. Prerequisite: consent of instructor. Staff

HISC 162/262. Problems in the History of Science and Religion (4)
Intensive study of specific problems in the relation between science and religion. The problems may range in period from the Renaissance to the twentieth century. Topics vary from year to year, and students may therefore repeat the course for credit. Prerequisite: upper-division standing. Staff

HISC 163/263. Topics in the History of the Life and Earth Sciences (4)
Intensive study of specific problems in the life sciences and earth sciences, ranging in period from the Renaissance to the twentieth century. Topics vary from year to year, and students may therefore repeat the course for credit. Staff

HISC 164/264. Topics in the History of the Physical

 SciencesIntensive study of specific problems in the physical (including chemical and mathematical) sciences, ranging in period from the Renaissance to the twentieth century. Topics vary from year to year, and students may therefore repeat the course for credit. R.M. Friedman

HISC 165/265. Topics in 20th Century Science and

 CultureThis is a seminar open to advanced undergraduates and graduate students, which explores topics at the interface of science, technology, and culture, from the late nineteenth century to the present. Topics change yearly; may be repeated for credit with instructor's permission. Requirements vary for undergraduates, M.A. and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor. Oreskes

HISC 167/267. Topics in History of Medicine (4) Intensive study of specific problems in the history of medicine. Topics will vary from year to year, and students may therefore repeat the course for credit. Prerequisite: department stamp required. Staff

HISC 199. Independent Study in the History of

Science (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor. Staff

LATIN AMERICA

Lecture Courses

HILA 100. Latin America-Colonial Transformations (4) Lecture-discussion survey of Latin America from the pre-Columbian era to 1825 . It addresses such issues as the nature of indigenous cultures, the implanting of colonial institutions, native resistance and adaptations, late colonial growth and the onset of independence. Van Young +

HILA 101. Latin America: The Construction of Independence 1810-1898 (4)

Lecture-discussion survey of Latin America in the nineteenth century. It addresses such issues as the collapse of colonial practices in the society and economy as well as the creation of national governments, political instability, disparities among regions within particular countries, and of economies oriented toward the export of goods to Europe and the United States. Van Young

HILA 102. Latin America in the Twentieth Century (4)
This course surveys the history of the region by focusing on two interrelated phenomena: the absence of democracy in most nations and the region's economic dependence on more advanced countries, especially the United States. Among the topics discussed will be the Mexican Revolution, the military in politics, labor movements, the wars in Central America, liberation theology, and the current debt crisis. Prerequisite: upperdivision standing or consent of instructor. Monteón

HILA 103. Revolution in Modern Latin America

A political, economic, and social examination of the causes and consequences of the Mexican, Cuban, and Nicaraguan revolutions. Also examine guerrilla movements that failed to gain power in their respective countries, namely the Shinning Path in Peru, FARC in Colombia, and the Zapatistas in Mexico. Prerequisite: upper-division standing. Staff

HILA 104. Modern U.S.-Latin American Relations
A survey of inter-American relations during the twentieth century. Emphasis will be placed on U.S. territorial and economic expansion, U.S. national-security and ideological morality, and Latin American efforts to influence U.S. policy in order to strengthen, in most cases, elite domination of society. Prerequisite: upper-division standing. Staff

HILA 107. State and Society in Nineteenth- and Twentieth-Century Latin America (4)
This course seeks to outline the main trends of thought concerning state theory and to evaluate how and when such trends have either been applied or originated in Latin American history. Special consideration will be given to the ways in which peasants and Indians participated in the molding of modern states in Latin America and created their "own" ways of political participation. The final issue we want to address is the question about the "political projects" that can be identified through a reading of nineteenth- and twentiethcentury history. Hünefeldt

HILA 112. Economic and Social History of the Andean Region (4)
Study of the economic and social problems of the Andean region from the colonial period until the crisis of 1912 , with special attention to theoretical models to explain the processes of change. Staff

HILA 113. Lord and Peasant in Latin America (4)
Examination of the historical roots of population problems, social conflict, and revolution in Latin America, with emphasis on man/land relationships. Special emphasis on modern reform efforts and on Mexico, Cuba, Brazil, and Argentina. Lecture, discussion, reading, and films. Prerequisite: upper-division standing or consent of instructor. Van Young

HILA 114. Social History of Colonial Latin America (4)
The course will examine the evolution of multiracial societies in Brazil and Spanish America, with some attention to the Anglo-American colonies by way of comparison. Particular emphasis on the relationship of race to class and on topics such as race mixture, agrarian structures, slavery, urban life, and crime and social protest. Prerequisite: upper-division standing. Van Young +

HILA 115. The Latin American City, a History (4)
A survey of the development of urban forms of Latin America and of the role that cities played in the region as administrative and economic centers. After a brief survey of pre-Columbian centers, the lectures will trace the development of cities as outposts of the Iberian empires and as "city-states" that formed the nuclei of new nations after 1810. The course concentrates primarily on the cities of South America, but some references will be made to Mexico City. It ends with a discussion of modern social ills and Third World urbanization. Lima, Santiago de Chile, Buenos Aires, Rio de Janeiro, and Sao Paulo are its principal examples. Prerequisite: upperdivision standing. Monteón

HILA 116. Encounter of Two Worlds: Early Colonial Latin America (4)
A lecture course concentrating on the first century or so of the colonial period, from Columbus to about 1600. Topics will include changing European cosmography, the New World indigenous civilizations, mutual perceptions of the two cultural traditions during the conquest and early colonial eras, and evolving colonial society, all with an emphasis on cultural history. Van Young +

HILA 117. Indians, Blacks, and Whites: Family Relations in Latin America (4)
The development of family structures and relations among different ethnic groups. State and economy define and are defined by family relations. Thus this family approach also provides an understanding of broader socio-economic processes and cultural issues. Hünefeldt

HILA 120. History of Argentina (4)

A survey from the colonial period to the present, with an emphasis on the nineteenth and twentieth centuries. Among the topics covered: the expansion of the frontier, the creation of a cosmopolitan, predominately European culture, and the failure of industrialization to provide an economic basis for democracy. Prerequisite: upper-division standing. Monteón

HILA 121. History of Brazil (4)
From colonial times to the present, with an emphasis on the nineteenth and twentieth centuries. Among the topics covered: the evolution of a slave-based economy, the key differences among regions, the military in
politics, and the creation of the most populous and industrialized country in Latin America. Prerequisite. upper-division standing. Monteón

HILA 122. Cuba: From Colony to Socialist Republic

A lecture-discussion course on the historical roots of revolutionary Cuba, with special emphasis on the impact of the United States on the island's development and society. Prerequisite: upper-division standing. Borges

HILA 123. The Incas and Their Ancestors (4)
The Incas called their realm Tahuantinsuyu (Land of the Four Quarters). But the Incas were only one of the many ethnic groups in the Andean region. Many different other groups became a part of the Tahuantinsuyu in the wake of Inca expansion. Over the past decade new and fascinating information on these processes have been published, and allows for a re-reading of Inca history between 900 and 1535. Hünefeldt +

HILA 131. A History of Mexico (4)
A century of Mexican history, 1821-1924: the quest for political unity and economic solvency, the forging of a nationality, the Gilded Age and aftermath, the ambivalent Revolution of Zapata and his enemies. Prerequisite: upper-division standing or consent of instructor. +

HILA 132.A History of Contemporary Mexico (4) The paradox of a conservative state as heir to a legendary social upheaval, with special emphasis on the mural art renaissance, the school crusade, the economic dilemma, and the failure to eradicate poverty and inequality. Lectures and discussion. Prerequisite: upperdivision standing or consent of instructor.

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HILA 160/260. Topics in Latin American Colonial History, 1500-1820 (4)
Topics will deal with the social, economic, and political history of the Spanish and Portuguese experience in the new world and the presence of the black and the indian. Prerequisites: department stamp required and background in Latin American history. Van Young +

HILA 161/261. History of Women in Latin America (4)

A broad historical overview of Hispanic-American women's history focusing on issues of gender, sexuality, and the family as they relate to women, as well as the historiographical issues in Latin American and Chicana women's history. Prerequisites: upper-division standing and consent of instructor. Staff

HILA 162/262. Special Topics in Latin American

History (4)

Topics will vary from year to year or quarter to quarter. May be repeated for an infinite number of times due to the nature of the content of the course always changing. Prerequisite: upper-division standing or consent of instructor. Hünefeldt

HILA 166/266. Cuba: From Colony to Socialist

Republic (4)
A colloquium on the historical roots of revolutionary Cuba, with special emphasis on the impact of the

United States on the island's development and society Staff

HILA 170/270. Topics in Latin American History,

1820-1910

Topics may vary from year to year. May be repeated for credit. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students must be required to submit a more substantial piece of work. Prerequisite: upper-division or graduate standing Hünefeldt

HILA 171/271. Topics in Latin American History 1910

Topics may vary from year to year. May be repeated for credit. Requirements will vary for undergraduates, M.A. and Ph.D. students. Graduate students must be required to submit a more substantial piece of work Prerequisite: upper-division or graduate standing. Monteón

HILA 199. Independent Study in Latin American

 History (4)Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor and department stamp. Staff

NEAR EAST

Lecture Courses

HINE 100. The Ancient Near East and Israel (4) Introduction to the history and literature of ancient Israel, from c. 1200 B.C.E. to C. 500 B.C.E. Reading from the Bible, historical and archaeological surveys, and studies of authorship. Professors D.N. Freedman (Hist), W.H. Propp (Hist), R.E. Friedman (Lit) +

HINE 102. The Jews in Their Homeland in Antiquity (4)
The Jews in israel from the sixth century B.C.E. to the seventh century C.E. Statehood, nationalism, and autonomy within the framework of the Persian empire, the Hellenistic kingdoms, and the Roman-Byzantine empire. Cultural and religious developments Prerequisite: upper-division standing. Goodblatt +

HINE 103. The Jewish Diaspora in Antiquity (4)
The Jews outside their homeland in pre-Islamic times, concentrating on the Greco-Roman West and the Parthian-Sasanian East. Topics include assimilation and survival; antisemitism and missionizing; patterns of organization and autonomy; cultural and religious developments. Prerequisite: upper-division standing. Goodblatt +

HINE 104. The Bible and the Near East: The Primary History (4)
This course covers the first nine books of the Hebrew Bible, including the Torah and Former Prophets. D.N. Freedman +

HINE 105. The Bible and the Near East:The Prophets (4) This course covers the four books of the Latter Prophets, including the three major prophets, Isaiah, Ezekiel, and Jeremiah, and the twelve minor prophets. D.N. Freedman +

HINE 106. The Bible and the Near East:The Writings (4) This course covers the books of the Hebrew Bible not covered in HINE 104 and HINE 105. It will include Psalms, Proverbs, Job, the Megillot, Daniel, and the Chronicler's Work. D.N. Freedman +

HINE 108. The Middle East before Islam (4)
The peoples, politics, and cultures of Southwest Asia and Egypt from the sixth century B.C.E. to the seventh
century C.E. The Achemenid Empire, the Ptolemaic and Seleucid kingdoms, the Roman Orient, the Parthian and Sasanian states. Prerequisite: upper-division standing Goodblatt +

HINE 109. Learning to Read Biblical Hebrew

Inculcation of the linguistic and grammatical knowledge needed to understand the Hebrew Bible in its original tongue. Emphasis is placed on acquiring a basic vocabulary, mastering fundamentals of grammar, and practice at reading. No previous knowledge of Hebrew is required. Freedman +

HINE 114. History of the Islamic Middle East

A survey of the Middle East from the rise of Islam to the region's economic, political, and cultural integration into the West (mid-nineteenth century). Emphasis on socioeconomic and political change in the early Arab empires and the Ottoman state. Kayali +

HINE 116. The Middle East in the Age of European

 Empires (1798-1914) (4)Examines the contacts of the late Ottoman Empire and Qajar Iran with Europe from the Napoleonic invasion of Egypt to World War I, the diverse facets of the relationship with the West, and the reshaping of the institutions of the Islamic states and societies. Kayali

HINE 118. The Middle East in the Twentieth Century (4)
An introduction to the history of the Middle East since 1914. Themes such as nationalism, imperialism, the oil revolution, and religious revivalism will be treated with in a broad chronological and comparative framework drawing on the experience of selected countries. Kayali

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HINE 160/260. Special Topics in the Bible and Ancient Near East (4)
The study of a single book, period, or issue in the Bible, in the context of the ancient Near Eastern world. Prerequisite: department stamp required or consent of instructor. D.N. Freedman +

HINE 166/266. Nationalism in the Middle East (4)
Growth of nationalism in relation to imperialism, religion, and revolution in the nineteenth- and twentieth century Middle East. Emergence of cultural and political ethnic consciousness in the Ottoman state. Comparative study of Arab, Iranian, and Turkish nationalism as well as Zionism. Prerequisite: department stamp or consent of instructor. Kayali

HINE 170/270. Special Topics in Jewish History (4)
This course studies a period or theme in Jewish history. Topics will vary from year to year. Prerequisite: department stamp required. Goodblatt

HINE 171A/271A. Introduction to Aramaic Language (4) General introduction to Aramaic dialects, intense study of Targumic Aramaic.Prerequisites: knowledge of Hebrew alphabet; acquaintance with a cognate Semitic language highly desirable. Propp +

HINE 171B/271B. Introduction to Aramaic Dialects (4) Study of Ancient Inscriptional, Persian, Imperial, and Syriac Aramaic. Prerequisite: HINE 171A/271A. Propp +

HINE 171C/271C. Continued Study of Aramaic

Dialects (4)
Study of Qumran and Babylonian Talmudic Aramaic. Prerequisite: HINE171B/271B. Propp +

HINE 172A/272A. The Evolution of the Northwest Semitic Dialects (4)
Principles of historical linguistics, application to the languages of the ancient Levant. Prerequisites: knowledge of at least one Semitic language; a course in general linguistics also desirable. Propp +

HINE 172B/272B. Introduction to Ugaritic (4) Decipherment of Ugaritic tablets, history and culture of ancient Ugarit, study of Ugaritic mythic texts. Prerequisite: HINE 172A/272A. Propp +

HINE 172C/272C. Advanced Ugaritic (4)

Continued study of Ugaritic literature, comparison with Canaanite inscriptions. Prerequisite: HINE 172B/272B. Propp +

HINE 173A/273A. Introduction to Akkadian Language

 and Mesopotamian Culture (4)Students study cuneiform script and elements of Babylonian-Assyrian grammar, as well as the history of ancient Mesopotamia. Propp +

HINE 173B/273B. Continued Akkadian Language (4)
Students begin to read and analyze ancient Mesopotamian texts from a variety of genres. Prerequisite: HINE 173A/273A. Propp +

HINE 173C/273C. Advanced Akkadian Language (4)

Continued study of Mesopotamian literature and history. Prerequisite: HINE 173B/273B. Propp +

HINE 181/281. Problems in the Study of Hebrew

Manuscripts (4)

Detailed study of a portion of biblical text. Focus on text-critical and source-critical problems. Prerequisite: upper-division or graduate standing. Propp +

HINE 186/286. Special Topics in Middle Eastern

History (4)
Focused study of historical roots of contemporary problems in the Middle East: Islamic modernism and Islamist movements; contacts with the West; ethnic and religious minorities; role of the military; economic resources and development. Department stamp and permission of instructor. Kayali

HINE 199. Independent Study in Near Eastern

History (4)

Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor. Staff

HISTORY OF RELIGION

HIRE 115. Women in Chinese Religions (4)
This course covers east Asian religions and traditions including: Daoism, Buddhism, Confusianism, and Falk religions. Topics will vary each quarter. Prerequisite: upper-division standing. Cahill +

HIRE 120. Buddhist Thought and Practice (4)

An introduction to the Buddhist religion, with attention to its moral and philosophical teachings, its modes of practice (e.g.meditation, ritual), and its social and insti-
tutional contexts. The course takes a historical approach, concentrating on the traditions as they developed within India. Cohen

UNITED STATES

See History of Science for more U.S. courses (HISC 105, HISC 108, HISC 111)

Lecture Courses

HIUS 100. Colonial Period to 1763 (4)
Political and social history of the thirteen colonies: European background, settlement and expansion, beginnings of culture, and the imperial context. Prerequisite: upper-division standing. Staff +

HIUS 101. The American Revolution (4)
Causes and consequences of the revolution: intellectual and social change, the problems of the new nation, the Constitution, and the origins of political parties. Prerequisite: upper-division standing. Staff +

HIUS 102. The Age of Encounters, 1492-1630 (4)
Europeans, Native Americans, and Africans in North America from Columbus' first voyage to early English colonization. Emphasis on cultural, political, and ecological consequences of contact. Topics include the Spanish Conquest, the origins of the African slave trade, Iroquois-French commerce, and the early history of California. Staff +

HIUS 105. Thomas Jefferson and Early American
 History (4)

This course will study Thomas Jefferson, both as an influential American in his own right and as a window onto the age of the American Revolution, the Enlightenment, and the early American Republic. Students will read both biographical materials and original documents to address various aspects of Jefferson's life and times. Prerequisite: upper-division standing. Staff +

HIUS 107. The Early Republic (4)

This course will examine the transformation of American society and politics between the American Revolution and the Jacksonian period. Topics to be considered include the emergence of domesticity, the development of political parties, the expansion of capitalist relations, the debate over slavery, the early labor movement, and the origins and motivations of middleclass reform. Meranze +

HIUS 108/ETHN 112. History of Native Americans in the United States

This course examines the history of Native Americans in the United States, with emphasis on the lifeways, mores, warfare, and relations with the United States government. Attention is given to the background and evolution of acculturation up to the present day. Prerequisite: upper-division standing. Frank

HIUS 110. The Rise and Fall of the Old South (4)
This course examines the history of the American South from first settlement to the Civil War. Special attention will be devoted to the emergence of slavery and the plantation system, the role of the South in the Revolution and Constitution, the relations between planters and yeomen, the development of slave communities, and the growing sectional conflict. Prerequisite: upper-division standing or consent of instructor. Staff

HIUS 111. The Making of the New South (4)
This course will focus on the American South between the Civil War and the civil rights movement. Topics include emancipation and Reconstruction, the new plantation system, agrarian radicalism, segregation and disfranchisement, the onset of industrialization, Southern culture black and white, and the recent struggles for civil and political rights. Staff

HIUS 112. The Era of Civil War and Reconstruction (4) This course is chiefly a social and political history of the United States between 1848 and 1877. It explores the developing sectional conflict, disunion and civil war, and the process of reconstructing the nation; and it places the American experience in an international and comparative context. Prerequisite: upper-division standing or consent of instructor. Staff

HIUS 114. California History (4)
This course examines California history from 1800 onward, with an emphasis on social, economic, and political change. The course will explore the effect of national and international events as well as the ways in which California-the ideal and the real-shapes the American experience. Staff

HIUS 115. History of Sexuality in the United States

Constructions of sex and sexuality in the United States from the time of pre-contact Native America to the present, focusing on sexual behaviors, sexual ideologies, and the uses of sexuality for social control. Staff

HIUS 116. War and American Society (4)

The connection between social relations and America's wars. Ways that American society has influenced decisions to prepare for or go to war as well as the impact of war on class relations and ideologies of race and gender. Wars considered will include the Revolutionary and Civii Wars, the two World Wars, and Korea and Vietnam. Prerequisite: upper-division standing. Staff

HIUS 117. History of Los Angeles (4)
This course examines the history of Los Angeles from the early nineteenth century to the present. Particular issues to be addressed include urbanization, ethnicity, politics, technological change, and cultural diversification. Staff

HIUS 120. American Politics and Society,

1900-1942 (4)
A lecture-discussion course on American politics and society from the era of Theodore Roosevelt to Pearl Harbor. Among the topics covered: the progressive movement, the impact of the Great War, the economic boom and collapse of the 1920s, and the New Deal. Prerequisite: upper-division standing. Parrish

HIUS 121. American Politics and Society,

1942-Present (4)
A lecture-discussion course on American politics and society, Pearl Harbor to the present. Among the topics covered: the origins of the cold war, the Red scare, the civil rights movement, the counterculture of the 1960s, and the neoconservatism of the Nixon-Reagan era. Prerequisite: upper-division standing. Parrish

HIUS 124/ETHN 125. Asian American History

Explore how Asian Americans were involved in the political, economic, and cultural formation of United States society. Topics include migration; labor systems; gender, sexuality and social organization; racial ideologies and anti-Asian movements; and nationalism and debates over citizenship. Shah

HIUS 125. Six Weeks Before the Mast: The Experience of Seafaring in American History

America's encounter with its ocean frontier from colonial times to the present. Discovery, technology, piracy fisheries, peacetime commerce, naval conflict, seaboard life, and seaport society will all be investigated through the medium of lectures, discussion, and film. Vickers

HIUS 130. Cultural History from 1607 to the Civil War (4) This course will explore connections between American culture and the transformation of class relations, gender ideology, and political thought. Topics will include the transformation of religious perspectives and practices, republican art and architecture, artisan and working-class culture, the changing place of art and artists in American society, antebellum reform movements, antislavery and proslavery thought. Prerequisite: upper-division standing or consent of instructor. Klein +

HIUS 131. Cultural History from the Civl War to the

 Present (4)This course will focus on the transformation of work and leisure and the development of consumer culture Students will consider connections between culture, class relations, gender ideology, and politics. Topics will include labor radicalism, Taylorism, the development of organized sports, the rise of department stores, the transformation of middle-class sexual morality, the growth of commercial entertainment, and the culture of the cold war. Klein

HIUS 134. Art and Society in America

The evolution and interaction of American art and society from the colonial period to the early twentieth century. Staff

HIUS 135A/ETHN 170A. Origins of the Atlantic World,

c. 1450-1650 (4)

An examination of interactions among the peoples of western Europe, Africa, and the Americas that trans formed the Atlantic basin into an interconnected "Atlantic World." Topics will include maritime technology and the European Age of Discovery, colonization in the Americas, the beginnings of the transatlantic slave trade and the early development of plantation slavery in the New World. Prerequisite: upper-division standing or consent of instructor. Smallwood +

HIUS 135B/ETHN 170B. Slavery and the Atlantic

World (4)
The development of the Atlantic slave trade and the spread of racial slavery in the Americas before 1800. Explores the diversity of slave labor in the Americas and the different slave cultures African Americans produced under the constraints of slavery. Prerequisite: upper-division standing or consent of instructor. Smallwood +

HIUS 137. The Built Environment in the Twentieth

Century

An examination of urban and regiona planning as well as piecemeal change in the built environment. Topics include urban and suburban housing, work environments, public spaces, transportation and utility infrastructures, utopianism. Prerequisite: consent of instructor. Staff

HIUS 140/ECON 158A. Economic History of the United

 States I (4)The United States as a raw materials producer, as an agrarian society, and as an industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and nine-
teenth- and early twentieth-century transformations of American capitalism. Bernstein

HIUS 141/ECON 158B. Economic History of the United

States II (4)

The United States as modern industrial nation Emphasis on the logic of the growth process, the socia and political tensions accompanying expansion, and twentieth-century transformations of American capitalism. Bernstein

HIUS 146. Early American Labor History, 1600-1850 (4) A history of labor systems and activity in early America The course will address work relations affecting Indians, slaves, artisans, indentured servants, laborers, yeomen and tenant farmers as well as work culture, political consciousness, labor organization, and working-class protest. Prerequisite: upper-division standing. Staff +

HIUS 147/USP 165. History of the American Suburb (4)
This seminar explores the development of suburbs in America, from the early nineteenth century to the contemporary era. Topics include suburban formation class, ethnic and racial dimensions, government influ ences, social life, and cultural responses to suburbia. The class will explore competing theories of suburbanization as it surveys the major literature. Prerequisite: upper-division standing. Nicolaides

HIUS 148/USP 103. The American City in the Twentieth Century (4)

This course focuses on the phenomenon of modern American urbanization. Case studies of individual cities will help illustrate the social, political, and environmental consequences of rapid urban expansion, as well as the ways in which urban problems have been dealt with historically. Staff

HIUS 149. The United States in the 1960s (4)
An overview of the social and political developments that polarized American society in the tumultuous decade of the 1960 s. Themes include the social impact of the post-war "baby boom," the domestic and foreign policy implications of the Cold War; the evolution of the civil rights and women's movements; and the transfor mation of American popular culture. D. Gutierrez

HIUS 150. American Legal History to 1865 (4)
The history of American law and legal institutions. This quarter focuses on crime and punishment in the colonial era, the emergence of theories of popular sovereignty, the forging of the Constitution and American federalism, the relationship between law and economic change, and the crisis of slavery and Union Prerequisite: upper-division standing. Parrish +

HIUS 151. American Legal History since 1865 (4)
The history of American law and legal institutions. This course examines race relations and law, the rise of big business, the origins of the modern welfare state during the Great Depression, the crisis of civil liberties pro duced by two world wars and McCarthyism, and the Constitutional revolution wrought by the Warren Court HIUS 150 is not a prerequisite for HIUS 151. Prerequisite: upper-division standing. Parrish

HIUS 153. American Political Trials (4)
Survey of politicized criminal trials and impeachments from Colonial times to the 1880 s. Examines politicallymotived prosecutions and trials that became subjects of political controversy, were exploited by defendants for political purposes, or had their outcomes determined by political considerations. Parrish +

HIUS 154. Western Environmental History (4)
This course examines human interaction with the west ern American environment and explores the distinction between the objective environmental understanding of science and the subjective views of history and his torians. The course will also analyze the most com pelling environmental issues in the contemporary West. Staff

HIUS 156. American Women, American Womanhood (4) This course explores the emergence of a dominant ideology of womanhood in America in the early nine teenth century and contrasts the ideal with the historically diverse experience of women of different races and classes, from settlement to 1870 . Topics include witchcraft, evangelicalism, cult of domesticity, sexuality, rise of industrial capitalism and the transformation of women's work, Civil War, and the first feminist move ment. Prerequisite: upper-division standing. Staff +

HIUS 157. American Women, American Womanhood 1870 to Present
This course explores the making of the ideology of womanhood in modern America and the diversity of American women's experience from 1870 to the present. Topics include the suffrage movement, the struggle for reproductive rights and the ERA; immigrant and working-class women, women's work, and labor organ ization; education, the modern feminist movement and the contemporary politics of reproduction, including abortion and surrogate motherhood. Prerequisite: upper-division standing. Staff

HIUS 158/ETHN 130. Social and Economic History of the Southwest I (4)

This course examines the history of the Spanish and Mexican borderlands (what became the U.S. Southwest) from roughly 1400 to the end of the U.S.-Mexico War in 1848, focusing specifically on the area's social cultural, and political development. Staff +

HIUS 159/ETHN 131. Social and Economic History of the

 Southwest II (4)(Cross-listed as Ethnic Studies 131.) This course exam ines the history of the Amnerican Southwest from the U.S. Mexican War in 1846-48 to the present, focusing on immigration, racial and ethnic conflict, and the growth of Chicano national identity. Gutiérrez, D.

Colloquia

The following courses are available to both undergraduate and graduate students.
Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HIUS 160/260. Industrialization and Early American Society (4)
A course examining the initial stages of industrialization in the late eighteenth and early nineteenth centuries. Special attention to how various communities and trades responded to the intervention of large-scale capital, machine technology, and the rise of factory methods of production. Staff

HIUS 162/262. The American West (4)
This colloquium will explore critical issues in American social history. Topics and chronological focus will vary
from year to year. Prerequisite: department stamp required. Nicolaides

HIUS 164/264/ETHN 181. American Slave Communities in Comparative Perspective (4)
Slavery was both a thread of continuity in the history of the Americas and a distinctive institution in specific social settings. The purpose of this course is to examine and discuss readings that explore topics in the emergence, consolidation, and destruction of New World slave regimes in regions of the Caribbean and the United States. Because topics will vary, the seminar may be taken more than once for credit, with consent of the instructor. Prerequisite: upper-division standing or consent of instructor. Smallwood

HIUS 165/ETHN 182. Segregation, Freedom Movements, and the Crisis of the Twentieth Century (4)
A reading and discussion seminar that views the origins of segregation and the social movements that challenged it between 1890 and 1970 in comparative framework. Prerequisite: upper-division standing. Staff

HIUS 166/266. Topics in Southern History (4)
Specific topics will vary from year to year, including slavery, Civil War and Reconstruction, the AfroAmerican experience, race relations. Staff

HIUS 167/267/ETHN 180. Topics in Mexican-American

 History (4)This colloquium studies the racial representation of Mexican Americans in the United States from the nineteenth century to the present, examining critically the theories and methods of the humanities and social sciences. Prerequisite: upper-division standing. Staff

HIUS 169/269. Topics in American Legal and

 Constitutional History (4)A reading and discussion course on topics that vary from year to year, including American federalism, the history of civil liberties, and the Supreme Court. Prerequisite: consent of instructor. Parrish

HIUS 170/270. Topics in Colonial History (4)
Colloquium on selected topics in late colonial history, with special attention to issues often neglected. Topics will vary from year to year, and the course may therefore be repeated for credit. Prerequisite: department stamp required. Meranze

HIUS 171/271. Topics in the American Revolution (4) Colloquium dealing with selected topics on the American Revolution and formation of the United States. Themes will vary from year to year. Prerequisite: department stamp or consent of instructor. Meranze

HIUS 172/272. Feminist Traditions in America (4)
In this course original documents are used to explore competing definitions of feminism and the diversity of feminist traditions in the United States from the eighteenth century to the present day. Three arenas of feminist activity are considered-women's social and political activism, the female intellectual tradition, and feminist theory. Documents and topics change annually, so course may be repeated for credit. Staff

HIUS 173/273. Topics in American Women's History (4) The specific content of the course will vary from year to year but will always analyze in depth a limited number of issues in American women's history. Special topics. Staff

HIUS 175/275. Crime, Law, and Society in the United

 States, 1600-1900This colloquium, examines the changing relationships between crime, the law, and society in the United States. We will pay particular attention to the changing forms of punishment, perceptions of crime and criminals, and the place of criminal law in the social order. Requirements will vary for undergraduates, M.A., and Ph.D. students. Prerequisite: upper-division standing or consent of instructor. Meranze

HIUS 176/276. Race and Sexual Politics

This seminar will explore the histories of sexual relations, politics, and cultures that both cross and define racial boundaries in the nineteenth and twentieth centuries. Reading will focus on the United States as well as take up studies sited in Canada and Latin America. Graduate students are expected to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor. Shah

HIUS 180/ETHN 134. Immigration and Ethnicity in

 Modern American Society (4)Comparative study of immigration and ethnic-group formation in the United States from 1880 to the present. Topics include immigrant adaptation, competing theories about the experiences of different ethnic groups, and the persistence of ethnic attachments in modern American society. Prerequisite: upper-division standing. Gutiérrez, D.

HIUS 181/281. Topics in Twentieth Century United States

 History (4)A colloquium dealing with special topics in U.S. history from 1900 to the present. Themes will vary from year to year. Prerequisite: department stamp or consent of instructor. Parrish.

HIUS 182/282. Special Topics in Intellectual History:
Politics and Culture in the United States, 1776-1860 (4) An examination of the cultural and political construction of the American nation. Topics include: how citizenship and national community were imagined and contested; the importance of class, gender, and race in the nation's public sphere; and debates over slavery, expansion, and democracy in defining national purpose. Prerequisites: graduate standing or consent of instructor; department stamp required. Meranze

HIUS 184. Special Topics in American Urban History (4) This colloquium explores various topics in the history of urban America, including the process of city development, social patterning in urban areas, city life and cultural styles, suburbanization, and the urban west. Topics will vary from year to year. Prerequisite: department stamp or consent of instructor. Nicolaides

HIUS 186/286. Special Topics in the History of Los

 AngelesThis course will be a thematic examination of special topics in the history of Los Angeles. Special attention will be paid to weaving together issues of ethnicity, gender, politics, and the environment. Graduate students are expected to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor. Nicolaides

HIUS 189/289 The Social History of Seafaring in Early

 AmericaAll American colonies were originally maritime colonies. This seminar examines the history of fishing, whaling, shipping, and freebooting during the age of sail and investigates through primary and secondary sources the experience of living in communities that
followed the sea. Course requirements and/or grading will differ for graduate and undergraduate students. Graduate students are expected to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor. Vickers

HIUS 199. Independent Study in United States

History (4)

Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor and department stamp required. Staff

TOPICS

Courses

HITO 100. Religious Traditions: Ancient Near Eastern Religions (4)
A comprehensive study of the ancient religious traditions of the world. The course will cover tribal religions, classical polytheism, and the religion of the ancient Hebrews. Prerequisite: upper-division standing. Staff +

HITO 101. Religious Traditions: Judaism, Christianity,

Islam (4)
A comprehensive study of the Western religious traditions. The course will cover Judaism, Christianity, and Islam. Prerequisite: upper-division standing. Staff +

HITO 102. Religious Traditions: East Asian Religious Traditions (4)
Introduction to the major religious traditions of Asia: Hinduism, Buddhism, Taoism, Shinto, and Confucianism. The course will focus on one religion each year. Since special topics will vary from year to year the course may be repeated for credit three times. Prerequisite: upperdivision standing. Cahill +

HITO 104. The Jews and Judaism in the Ancient and

 Medieval Worlds (4)The political and cultural history of the Jews through the early modern period. Life under ancient empires, Christianity and Islam. The post-biblical development of the Jewish religion and its eventual crystallization into the classical, rabbinic model. Goodblatt

HITO 105. The Jews and Judaism in the Modern

World (4)

Topics include the political emancipation of the Jews of Europe; the emergence of Reform, Conservative, and Modern Orthodox Judaism; hasidism; modern antisemitism; Jewish socialism; zionism; the Holocaust; the American Jewish community; the State of Israel. Goodblatt

HITO 111/211. Marxian Theory (4)

A survey and examination of the principal writings of Marx concerning economic theory and analysis. Emphasis on the theory of value, production, technical change, reproduction and accumulation. Some consideration will also be made of certain neo-Marxist contributions and critiques. Prerequisite: introductory economics or consent of instructor. Bernstein

HITO 112. The History of Psychoanalysis (4)
A lecture-discussion course tracing the development of psychoanalysis. The late nineteenth-century intellectual context. Freud's major contributions. Psychoanalysis in practice. Post-Freudian transformations. Prerequisite: upper-division standing or consent of instructor. J.M. Hughes

HITO 117 World History. 1200-1800

This course examines the interaction between sections of the globe after 1200 . It emphasizes factors operating
on a transcontinental scale (disease, climate, migration) and historical/cultural phenomena that bridge distance (religion, trade, urban systems). This is not narrative history, but a study of developments that operated on a giobal scale and constituted the first phase of globalization. Prerequisite: upper-division standing or consent of instructor. Ringrose +

HITO 121. Geographic Information Systems for

Historians and Social Scientists (4)

This course provides an introduction to the use of geographic information systems (GIS) in the analysis and display of data of interest to historians and social scien tists. Topics include cartographic theory and aesthetics, data collection and retrieval, and training in the use of the ArcView GIS program. Prerequisite: upper-division standing. Staff

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HITO 162/262. Economic Development in Historica

 Perspective (4)An inquiry into economic growth and development as a process of historical transformation. Topics will vary from year to year, but some examples are: the transition from feudalism to capitalism in Europe and North America; the social and political tensions accompanying the rise of capitalism; the role of the state and the juridical environment in economic development; and the sources and organization of the managerial and financial control of enterprise. Bernstein

HITO 164/264. Gender Differences in Historical

Perspective (4)

An inquiry into how over the past century a number of disciplines (principally psychoanalysis, psychology, and anthropology) have treated gender differences. Prerequisite: department stamp or consent of instructor. J. M Hughes

HITO 167/267. Cultural History of the Early Modern

Europe and Early America (4)

A comparative examination of the cultural history of early modern Europe and early America (15001800), with special emphasis on questions of religion and magic, ritual, print culture, and cross-cultural encounters. Prerequisite: department stamp or consent of instructor. +

HITO 169. History and Historians (4)
An introduction to the history of historical writing Through discussion of selected readings, the course will focus on such issues as the development of historical thought, the nature of historiographical debates, the interpretation of sources, and the use of theoretical models in writing history. Courses can apply to any concentration within the history major. Prerequisite: upper-division standing. (History majors only.) Staff

HITO 173/273. Time, Space, and the Politics of

 Development (4)This course will focus on the idea and practice of development as a way to examine the transformation of spatial and temporal categories in modern society. Topics will range from the conceptual-notions of temporali-
ty--to the practical-modernization in the non-West Topics vary from year to year. Prerequisite: upper-division standing or consent of instructor. Tanaka

HITO 193/POLI 194/COM GEN 194/USP 194. Research

Seminar in Washington D.C. (6)
Course attached to six-unit internship taken by student participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial historical research paper. Prerequisites department stamp required; participating in UCDC pro gram. Staff

HITO 194. History Honors (4)
A program of independent study providing candidates for history honors an opportunity to develop, in consultation with an adviser, a preliminary proposal for the honors essay. An IP grade will be awarded at the end of this quarter. A final grade will be given for both quarters at the end of HITO 195. Prerequisite:consent of instructor. Department stamp required. Staff

HITO 195. The Honors Essay (4)
Independent study under the supervision of a faculty member leading to the preparation of an honors essay A letter grade for both HITO 194 and 195 will be given at the completion of this quarter. Prerequisite: consent of instructor. Department stamp required. Staff

HITO 196. Colloquium in History (4)
The nature and uses of history are explored through the study of the historian's craft based on critical analysis of historical literature relating to selected topics of concern to all historians. Required of all candidates for history honors and open to other interested students with the instructor's consent. Department stamp required. Staff

HITO 198. Directed Group Study (4)
Directed group study on a topic not generally included in the regular curriculum. Students must make arrangements with individual faculty members. (P/NP grades only.) Prerequisite: consent of instructor. Staff

HITO 199. Independent Study for Undergraduates (4)
Independent study on a topic not generally included in the regular curriculum. Students must make arrangements with individual faculty members. (P/NP grades only.) Prerequisites: upper-division standing and consent of instructor. Staff

GRADUATE

Graduate standing is a prerequisite for all gradu-ate-level courses.

HIGR 200. History and Social Theory (4)
A weekly reading/writing seminar. Themes include historical sociology and large-scale history, interdisciplinary approaches to history (anthropological, psychoan alytic, etc.), and historical method. Students from all fields welcome, though emphasis primarily on early modern period (1500-1800).

HIGR 201. Theory and Method in Historical Research (4) A weekly reading/writing seminar that seeks to introduce students to major theoretical and analytical trends in writing of history. Themes will vary but will include interdisciplinary approaches to historical research and method. Students from all fields welcome although the emphasis in the course will be on the modern era (1789-present). Bernstein and departmental faculty

HIGR 202. An Inquiry Concerning Historical
Understanding (4)
This seminar will concern the difficulty of understanding past beliefs which are no longer ours, and the ways in which this recurrent misunderstanding marked the encounter of the other. Our attention will be focused on two historical moments: the Greco-Roman Antiquity (Pagans v. Christians) and the conquest of the New World (Western Europe v. Indians). We will study in par allel primary and secondary sources. Giard

HIGR 203. History of Visual Perception, Cognition and Representation (4)

Visual perception and pictorial representation will be analyzed in the ways they were practiced, considered and conceptualized in diverse historical and cultural contexts. Sources may include narratives, treatises on vision, cognition optics and perspective, maps, illustrations, paintings. Topics will vary from year to year and students may therefore repeat the course for credit Giard

HIGR 205. Feminist Historical Studies (4)
An introduction to feminist historical studies, this course is designed for interested graduate students from all history field groups. Graduate students from other disciplines are also encouraged to participate The course will provide students a rigorous training in women's history, in the feminist theories that undergird that scholarship, and in the emergent field of gender analysis. The particular content of the course will change from year to year, but each course will include theoretical texts, historical case studies, and primary sources. Readings will be drawn from different time and places. This course is strongly recommended for those preparing minor fields in women's history. The course can be repeated twice for credit.

HIGR 207. Nationalism, Colonialism and Race (4)
A transdisciplinary and comparative course on the interplay of nationalism, colonialism, and race (as well as class and gender/sexuality) in the nineteenth and twentieth centuries. Texts will include classics by authors such as Franz Fanon, as well as theoretically informed newer works that analyze a variety of nation al and colonial conditions historically. Fujitani

HIGR 210. Historical Scholarship on Modern Chinese
History (4)
This course will introduce students to the monograph ic literature and the main historiographic controversies of modern Chinese history.

HIGR 211. Historical Scholarship on Modern Japanese

 History (4)This course will introduce students to the monograph ic literature and the main historiographic controversies of modern Japanese history.

HIGR 212. Historical Scholarship on Modern East Asian History (4)
This course will introduce students to the monograph ic literature and the main historiographic controversies of modern East Asian history.

HIGR 213. Sources on Modern Chinese History (4)
An introduction to Chinese documentary sources and collections on Qing and Republican History. This course will introduce students to the language of Qing documents, and to the contents and uses of imperial documents and archives, documentary collections, periodicals, gazetteers, etc

HIGR 214. Readings in Japanese on Modern Japan (4) A one-quarter research and writing course based upon readings in Japanese on modern Japan. Emphasis on selection, collection, and critical evaluation of texts for historical research. Topics will vary from year to year and may be repeated with instructor's permission. Prerequisite: graduate standing or permission of instructor. Fujitani

HIGR 215A-B. Research Seminar in Modern Chinese

 History (4-4)A two-quarter research seminar in Chinese history. A paper, based on original research, will be due in the second quarter. Seminar topics will vary. Reading knowledge of Chinese is expected. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: $215 A$ is a prerequisite for $215 B$.

HIGR 216A-B. Research Seminar in Modern Japanese

 History (4-4)A two-quarter research seminar in Japanese history. A paper, based on original research, will be due in the second quarter. Seminar topics will vary. Reading knowledge of Japanese is expected. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: $216 A$ is a prerequisite for $216 B$.

HIGR 220. Historical Scholarship on European History, 1500-1715 (4)
Introduction to the historiography of Renaissance, Reformation, and early modern Europe: an overview of methodologies with emphasis on sources and critical approaches. Required for all beginning European history graduate students.

HIGR 221. Historical Scholarship on European History

 1715-1850 (4)Selected topics in European history from the early modern to the modern era. Readings and discussions focus on issues of methodology and interpretation. Required for all beginning European history graduate students.

HIGR 222. Historical Scholarship on European History

 since 1850 (4)Critical evaluation of selected topics in the period of modern Europe from the mid-nineteenth century to the present. Required for all beginning European history graduate students.

HIGR 225. Readings in Modern Russian History ((4)

Students will read major works on Revolutionary Russia and Soviet history. Attention will be paid to both classic and revisionist works. Edelman

HIGR 227A-B. Seminar in Spanish History (4-4)
Readings and critical analysis of selected topics and important works in the history of Spain. May be repeated as content changes. Proficiency in Spanish required to repeat course, but not for the first time taken. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisites: fluent reading knowledge of Spanish desired. German or French also desirable. Ringrose

HIGR 230A-B. Research Seminar in Early Modern
 Europe (4-4)

Selected topics in the period from the sixteenth century through the early nineteenth, with an emphasis on the theory and practice of socio-economic history. An IP grade will be awarded at the end of the first quarter.

Final grade will not be given until the end of the second quarter. Prerequisite: 230 A is a prerequisite for 230 B .

HIGR 231A-B. Research Seminar in Modern European Intellectual and Cultural History (4-4)
Selected topics in the period of the nineteenth and twentieth centuries. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 231 A is a prerequisite for 231B.

HIGR 232A-B. Research Seminar in Modern European Social and Political History (4-4)
Selected topics in the period of the nineteenth and twentieth centuries. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 232 A is a prerequisite for 232B

HIGR 236A-B. Research Seminar in History of Science

 (4-4)A two-quarter research seminar comprising intensive study of a specific topic in the history of science. The first quarter will be devoted to readings and discussions; the second chiefly to the writing of individual research papers. Topics vary from year to year, and students may therefore repeat the course for credit. An IP grade will be awarded at the end of the first quarter Final grade will not be given until the end of the second quarter.

HIGR 237. Topics in the History of Ocean Sciences (4)

(Cross-listed with SIO 201.) Intensive study of specific problems in the history of the ocean sciences, and of related earth and atmospheric sciences, in the modern period. Topics vary from year to year, and students may therefore repeat the course for credit. Staff

HIGR 238. Introduction to Science Studies (4)
(Cross-listed as Communication 225A, Philosophy 209A, and Sociology 255A.) Study and discussion of classic work in history of science, sociology of science and philosophy of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

HIGR 239. Seminar in Science Studies (4)

(Cross-listed as Communication 225B, Philosophy 209B and Sociology 255B.) Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. May be repeated as course content changes annually. Prerequisite: enrollment in Science Studies Program.

HIGR 240. Colloquium in Science Studies (4)
(Cross-listed as Communication 225C, Philosophy 209C and Sociology 255C.) A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required for all students in the Science Studies Program. May be repeated as course content changes annually. Prerequisite: enrollment in the Science Studies Program.

HIGR 245A-B-C. Historical Scholarship on Latin American History (4-4-4)
Introduction to the literature of Latin American history. A three-quarter sequence of readings and discussions taught each quarter by members of the staff. Required for all beginning students for a graduate degree specializing in Latin American history; open and strongly recommended to other students using Latin American history as a secondary field for a graduate degree. HIGR 245 A covers the colonial period, from conquest to inde-
pendence to today; HIGR 245B covers South America from independence to today; HIGR 245C covers Mexico, Cuba, and Central America from independence to today. The three quarters need not be taken in sequence. Reading knowledge of Spanish is required.

HIGR 247A-B. Research Seminar in Colonial Latin

 America (4-4)A two-quarter course involving readings and research on sixteenth- through eighteenth-century Latin America. Students are expected to compose a paper based on original research that is due in the second quarter. Reading knowledge of Spanish required. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter.

HIGR 248A-B. Research Seminar in Latin America,

National Period (4-4)
A two-quarter course involving readings and research; the first quarter is devoted to the nineteenth and the second quarter to the twentieth century. Students are expected to compose a paper based on original research that is due in the second quarter. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Reading knowledge of Spanish and/or Portuguese is helpful but not required.

HIGR 249. Topics in Colonial Latin America (4)
One or two topics in colonial history will be analyzed in depth; reading knowledge of Spanish is expected.

HIGR 250. Topics in the National Period of Latin
America (4)
One or two topics in the national period or the nationat history of one country will be analyzed in depth; a reading knowledge of Spanish is expected.

HIGR 251. Topics in the History of Mexico (4)
One or two topics in the history of Mexico will be examined in depth. A reading knowledge of Spanish is expected. Topics vary from year to year, and students may therefore repeat the course for credit.

HIGR 252. History, Social Evolution, and Intellectuals in the Andes: Mariátegui, Haya de la Torre, and
Arguedas (4)
The course will study three major twentieth-century interpreters of Andean history and society. Mariátegui is Latin America's most original socialist intellectual Haya de la Torre is the founder of Peru's most important party; and Arguedas was the most profound interpreter of the role of Indian peasants in the Andean nations.

HIGR 260A-B-C. Historical Scholarship on Judaic Studies (4-4-4)
Weekly graduate seminar. Faculty and students present results of research. Student research may be towards course work on thesis.

HIGR 261. Seminar in the Hebrew Bible (4)
Systematic reading and rendering of the books of the Hebrew Bible in order. Adequate knowledge of Biblica! Hebrew is required. Freedman

HIGR 264. Topics in Pre-Islamic Jewish History (4)
An examination in depth of selected topics in the his tory of the Jewish people and Jewish civilization in preIslamic times. Goodblatt

HIGR 265A-B-C. Historical Scholarship on American

History (4-4-4)
A three-quarter sequence of readings and discussions on the bibliographical and monographic literature of American history from the colonial period to the present. Taught by different members of the staff each quarter, the course is required of all beginning graduate students in American history.

HIGR 267A-B. Research Seminar in United States History (4-4)
Readings and discussion in selected areas of American history for advanced graduate students. An IP (in progress) grade will be awarded the first quarter. The second quarter will be devoted to the presentation, discussion, and evaluation of work in progress. A final grade will be awarded at the end of the second quarter. Prerequisite: 267A is a prerequisite for 267B.

HIGR 272. Seminar in Southern History (4)
Analysis of major works on the history of the southern United States, focusing on social groups, class and race relations, economic development, culture, and politics. An intercampus course taught jointly by participating faculty from UCSD, UCI, and UCR. May be repeated for credit due to the content changing from quarter to quarter. Special topics.

HIGR 273. The Culture of Consumption (4)
(Cross-listed with COGR 240.) This course will explore the development and cultural manifestations of consumerism in the nineteenth and twentieth centuries. Topics will include the rise of museums, the development of mass-market journalism and literature, advertising, and the growth of commercial amusements. Readings focus primarily on the United States. Students will be encouraged to think historically and comparatively. Klein

HIGR 274. Topics in Western American History (4)
This course is a one-quarter colloquium devoted to the examination of major issues in the history of the American West. Topics addressed will include, but not be limited to, the region's social, cultural, environmental, and political history. Historiographical debates will be analyzed, as well as crucial problems related to the definition of the field and region. Students will be expected to participate fully in class discussions and write several essays pertaining to the course themes and readings. Department of History graduate students are encouraged to enroll in research seminar HIGR 275A-B instead of taking this colloquium.

HIGR 275A-B. Seminar in Western American

History (4-4)

This course is a two-quarter research sequence in Western American history. The first quarter will cover selected topics of the nineteenth and twentieth centuries of the American West, with an emphasis on the region's social, cultural, environmental, and political history. The second quarter is devoted to the writing of a major research paper in the field. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 275A is a prerequisite for 275B.

HIGR 295. Thesis Seminar (4)

For students advanced to candidacy to the doctorate. Discussion, criticism, and revision of drafts of chapters of theses and of work to be submitted for publication.

HIGR 296. M.A. Thesis Direction (8)

independent work by graduate students engaged in research and writing of thesis.

HIGR 298. Directed Reading (1-12)

Guided and supervised reading in the literature of the several fields of history. This course may be repeated for an indefinite number of times due to the independent nature of the content of the course. ($5 / \mathrm{U}$ grades permitted.)

HIGR 299. Ph.D. Thesis Direction (1-12)
Independent work by graduate students engaged in research and writing of doctoral theses. This course may be repeated for an indefinite number of times due to the independent nature of thesis writing and research. (S/U grades only.)

HIGR 500. Apprentice Teaching in History (1-4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation and grading of examinations and other written exercises, and student relations. (S/U grades only.)

Human Development Program

OFFICE: 2839 AP\&M Annex, Muir College WEB PAGE:http://www.hdp.ucsd.edu

Professors

Mark Appelbaum, Ph.D., Psychology
Elizabeth Bates, Ph.D., Cognitive
Science/Psychology
Ursula Bellugi, Ph.D., Adjunct/Psychology
(Salk Institute)
Charles Briggs, Ph.D., Ethnic Studies
Sandra Brown, Ph.D., Psychology and Psychiatry
Aaron V. Cicourel, Ph.D., Emeritus, Cognitive
Science/Sociology
Michael Cole, Ph.D., University Professor, Communication
Eric Courchesne, Ph.D., Neurosciences
Jean M. Mandler, Ph.D., Emeritus, Cognitive Science
Hugh B. Mehan, Ph.D., Sociology/CREATE
Carol Padden, Ph.D., Communication
Laura Schreibman, Ph.D., Psychology
Joan Stiles, Ph.D., Director, Cognitive Science

Associate Professors

Farrell Ackerman, Ph.D., Linguistics
Jim Moore, Ph.D., Anthropology
Olga A.Vasquez, Ph.D., Communication

Assistant Professors

Gedeon Deak, Ph.D., Cognitive Science
Karen Dobkins, Ph.D., Psychology

Gail Heyman, Ph.D., Psychology
Shirley McGuire, Ph.D., Psychology

Lecturer with Security of Employment
Paula Levin, Ph.D., Teacher Education Program

Lecturers

Patricia Lee Fargo, Ph.D., Human Development Program
Stephen Potts, Ph.D., Literature
Maria Tillmanns, Ph.D., Human Development Program

The Human Development Major

The scientific study of human development focuses on issues of growth, development, and behavioral change across the lifespan. The Human Development Program is interdisciplinary, incorporating courses from the departments of anthropology, biology, cognitive science, communication, ethnic studies, history, linguistics, literature, psychology, sociology, the Teacher Education Program, and Urban Studies and Planning Program. The curriculum is designed to emphasize the idea of development as an essential perspective from which to understand human behavior. The courses cover a broad spectrum of issues in human devel-opment--from brain and perceptual development, to reasoning and problem solving, to social interaction and the evolution of cultural systems. The Human Development Program unifies and coordinates the excellent research and teaching resources currently available on campus in this area and profiles the factors which influence the ways in which humans develop and change.

Human development is a very large field, but there is a set of basic questions which serve to define and integrate it:What underlies the development of human knowledge? To what extent is the capacity to know, indeed the concepts themselves, encoded in the genes? How is the role of learning and environmental influences accounted for? How do we learn? What are the ways in which children become competent participants in their social groups? What is the origin and nature of social interaction and organization?

The study of human development has become increasingly central to a wide range of important issues affecting infants, young children and adolescents, as well as the changing structure of the American family and public policy on children
and education. An understanding of the processes which underlie human development is crucial to our evaluation of these issues and to our ability to offer avenues for remediation of the attendant problems. The three major areas of study within the Human Development Program are: Biological Development, Psychological Development, and Socio-Cultural Development. These areas consider issues which pertain to development of specific neural and cognitive processes and development within a larger social and cultural context.

Career Guidance

A degree in human development offers training of special interest to those considering admission to graduate or professional schools and careers in medicine, law, education, counseling, clinical psychology, public health, public policy, public administration, or social work. Students who are interested in these areas are advised to see a Human Development Program adviser for assistance in selecting elective and major courses. A major in human development is designed to impart fundamental skills in critical thinking, comparative analysis, research analysis, and written expression.

A human development major can offer preparation for teaching in elementary schools. However, if you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program for information about prerequisite and professional preparation requirements. It is recommended you contact TEP as early as possible in your academic career.

Education Abroad

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD's Opportunities Abroad Program (OAP) while still making progress towards their major. Students interested in studying abroad should see a Human Development Program adviser to discuss curriculum plans and appropriate courses. Information on EAP/OAP is detailed in the Education Abroad Program section of the UCSD General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://www/icenter/pao. Financial aid is applicable and special study abroad scholarships are readily available.

Prerequisites for Human Development Majors

A bachelor of arts degree in human development will be given to students who satisfactorily complete the general-education and graduation requirements of Marshall, Muir, Revelle, Roosevelt, or Warren College in addition to the Human Development Program requirements described below.

Grade Requirements for the Major

A minimum grade-point average of 2.0 is required in the major. Students must receive a grade of C - or better in any course counted toward fulfillment of the major requirements. All courses taken to satisfy the Program's lowerand upper-division requirements must be taken for a letter grade. HDP 1, HDP 150, and HDP 191 must be taken in residence.

Lower-Division Requirements

The lower-division requirements for the major in human development are:

1. Introductory course in human development (HDP 1). This course must be taken at UCSD.
2. One quarter of statistics. (Psychology 60, Cognitive Science 14, or the equivalent.)
3. Two natural science courses. This requirement should be fulfilled by taking general introductory courses in the physical and life sciences (i.e., biology, chemistry, and physics). The following is a list of acceptable natural science courses offered at UCSD:

Biology: 1, 2, 3, 10, 12
Chemistry: 4, 6A, 6B, 6C, 11, 12, 13
Cognitive Science: 17
Earth Science: 10,12
Physics: Any of the 1 and 2 series, 10, 11
4. One introductory computer course. (MAE 5, COGS 3, CSE 5A, or the equivalent.)
5. Two formal skills courses. The courses may consist of any combination of courses in college level mathematics or logic. One quarter of calculus is strongly recommended. Acceptable logic courses include Linguistics 17, Philosophy 10 and 12.

Lower-division requirements $\mathbf{1}$ and $\mathbf{2}$ should be taken prior to enrolling in upper-division course work. It is recommended that all other lowerdivision requirements be completed by the end of the sophomore year.

Upper-Division Requirements

The upper-division requirements for a major in human development are:

1. one laboratory course
2. four foundation courses
3. seven upper-division developmental courses
4. one advanced level human development course
5. one quarter of field research

LABORATORY COURSES (ONE COURSE)

Each student is required to complete one laboratory course from the list of approved courses. The laboratory course is intended to introduce students to the methodologies used in the study of human development. Students are to choose one of:

Biology, BICD 131: Embryology Laboratory
Biology, BICD 133: Developmental Biology Lab
Biology, BIEB 165: Behavioral Ecology Laboratory
Cognitive Science, COGS 130: Everyday Cognition
Human Development, HDP 130/Communication, COHI 108: The Development of Communication in Children

Human Development, HDP 131: Fifth Dimension for Elementary Schools
Human Development, HDP 135/COMT 116/PSYC 128: Practicum in Child Development
Psychology, PSYC 117:Laboratory in Developmental Psychology
Sociology, SOCA 110A-B-C

FOUNDATION COURSES (FOUR UPPER-DIVISION COURSES)

The study of development provides an essential perspective of how human beings come to know and interact with the world. However, this perspective must be grounded in a knowledge of the larger fields of study. It is crucial that students of human development are well-versed in the
major theoretical and empirical issues of the related parent disciplines. The foundation course list is divided into the three major areas of study,
Biological, Psychological, and Socio-Cultural.
Within each area a number of foundation courses are indicated. Students are required to take at least four foundation courses. Students must take at least one course in each of the three major areas and may take the remaining course in any area they wish.

BIOLOGICAL

Anthropology, ANBI 139: Introduction to the Primate Brain

Biology, BICD 100: Genetics
Biology, BIEB 150: Evolution
Biology, BIEB 156: Population Genetics
Biology, BIEB 164: Behavioral Ecology
Biology, BIMM 100: Molecular Biology
Cognitive Science, COGS 107A-B-C: Cognitive Neuroscience

Cognitive Science, COGS 172: Brain Disorders and Cognition
Linguistics, LIGN 172: Language and the Brain
Psychology, PSYC 102: Introduction to Sensation and Perception
Psychology, PSYC 106: Introduction to Physiological Psychology
Psychology, PSYC 145: Psychology of Language
Psychology, PSYC 176: Functional Neuroanatomy

PSYCHOLOGICAL

Anthropology, ANPR 107: Psychological Anthropology

Anthropology, ANGN 118: Cognitive Anthropology
Cognitive Science, COGS 101A-B-C:Cognitive Theory and Phenomena
Cognitive Science, COGS 107A-B-C:Cognitive Neuroscience

Cognitive Science, COGS 151: Analogy and Conceptual Systems
Cognitive Science, COGS 172: Brain Disorders and Cognition
Communication, COHI 100 : Introduction to Communication and the Individual

Linguistics, LIGN 101: Introduction to the Study of Language

Linguistics, LIGN 104:Language and Conceptualization

Linguistics, LIGN 172: Language and the Brain
Psychology, PSYC 103: Introduction to Principles of Behavior
Psychology, PSYC 105: Introduction to Cognitive Psychology
Psychology, PSYC 131: Personality Theory and Research
Psychology, PSYC 165: Cultural Perspectives on Cognition and Perception

SOCIO-CULTURAL

Anthropology, ANPR 105: Social Anthropology
Anthropology, ANPR 106: Cultural Anthropology
Communication, COCU 100: Introduction to Communication \& Culture
Ethnic Studies, ETHN 141: Language and Culture

Psychology, PSYC 104: Intro/Social Psychology or Sociology, SOCB 112: Social Psychology (Students may not receive credit for both PSYC 104 \& SOCB 112.)
Sociology, SOCB 115: Language and Society
Sociology, SOCB 118A/Linguistics, LIGN 174: Gender and Language in Society
Sociology, SOCB 127: Language, Identity, and Community
Sociology, SOCB 142: Social Deviance
Sociology, SOCC 126/Teacher Education Program, TEP 126: Social Organization of Education

Sociology, SOCC 152/Urban Studies and Planning, USP 133: Social Inequality and Public Policy

DEVELOPMENTAL COURSES (SEVEN UPPERDIVISION COURSES)

Each student is required to complete seven developmental courses from the approved list. The developmental course list is divided into the three major areas of study, Biological Development, Psychological Development, and SocioCultural Development. Within the seven developmental courses, a distribution requirement must be met by 1) taking one course from each of the three major areas of study and 2) by taking three courses from those denoted by the asterisk * from any of the three areas. Please note
some courses appear in more than one area of study such as Psychology 101 and 180, and may not be counted towards more than one area of study. The distribution requirement is intended to provide students with breadth within the area of human development. In addition to the distribution requirements, each student is required to complete the remaining courses chosen from the approved developmental course list. The program allows considerable flexibility in selection of developmental courses. Students may focus on a particular area, or they may define their course of study more broadly by selecting courses across the range of areas offered.

BIOLOGICAL DEVELOPMENT

Anthropology, ANBI 140:The Evolution of the Human Brain

Anthropology, ANBI 159: Biological and Cultural Perspectives on Intelligence
Biology, BICD 134:Human Reproduction \& Development (Requires a strong biology background. Students may not receive credit for both BILD 24 \& BICD 134. See the HDP student affairs coordinator prior to enrollment).
Biology, BICD 130*: Embryology
Biology, BIPN 144*: Developmental Neurobiology
Cognitive Science, COGS 115*: Neurological Development and Cognitive Change
Cognitive Science, COGS 184: Modeling the Evolution of Cognition

Psychology, PSYC 168: Psychological Disorders of Childhood
Psychology, PSYC 180*: Adolescence

PSYCHOLOGICAL DEVELOPMENT

Anthropology, ANBI 159: Biological and Cultural Perspectives on Intelligence
Cognitive Science, COGS 113/Psychology, PSYC 136*: Cognitive Development
Cognitive Science, COGS 156/Psychology, PSYC 126*:Language Development
Communication, $\mathrm{COHI} 100^{*}$: Introduction to Communication and the Individual

Communication, COHI 121*: Literacy, Social Organization, and the Individual
Linguistics, LIGN 170: Psycholinguistics

Linguistics, LIGN 171*: Child Language Acquisition

Linguistics, LIGN 179: Second Language Acquisition
Literature, LTWL 114: Children's Literature
Literature, LTWL 116: Adolescent Literature
Psychology, PSYC 101*: Introduction to Developmental Psychology
Psychology, PSYC 122: Aging
Psychology, PSYC 156*: Cognitive Development in Infancy
Psychology, PSYC 167*: Social and Emotional Development
Psychology, PSYC 168: Psychological Disorders of Childhood
Psychology, PSYC 172: Psychology of Human Sexuality

Psychology, PSYC 174/Cognitive Science, COGS 154*: Communication Disorders in Children and Adults

Psychology, PSYC 180*: Adolescence
Teacher Education Program, TEP 115*: Child Development and Education

Teacher Education Program, TEP 118*: Adolescent Development and Education

SOCIO-CULTURAL DEVELOPMENT

Anthropology, ANBI 159: Biological and Cultural Perspectives on Intelligence
Communication, COHI 121^{*} : Literacy, Social Organization, and the Individual
Communication, $\mathrm{COHI} 123^{*}$: Children and Media

Literature, LTWL 114: Children's Literature Literature, LTWL 116: Adolescent Literature
Psychology, PSYC 101*: Introduction to Developmental Psychology
Psychology, PSYC 180*: Adolescence
Sociology, SOCB 131: Sociology of Youth
Sociology, SOCC 129*: The Family
Teacher Education Program, TEP 115: Child Development and Education
Teacher Education Program, TEP/SOCB 117*: Language, Culture, and Education
Teacher Education Program, TEP 118*: Adolescent Development and Education

Urban Studies and Planning, USP 145: AgingSocial and Health Policy Issues

Advanced Human Development Requirement HDP 150

Seminar for graduating HDP seniors. Readings and discussion of special topics in human development. Provides advanced-level study on subfields of human development. Topics vary quarterly. Prerequisites: HDP1, HDP 191, senior standing, and department approval two quarters prior to enrollemnt.

Field Research Requirement HDP 191

This course provides students with the opportunity to participate jointly in a research project in conjunction with a mentor/collaborator from a local service site. This applied research experience allows students to design and conduct research projects in a variety of settings ranging from laboratory research settings to service oriented placements. In addition to literature research and a final paper at the end of the quarter, students will participate at an off-campus site for a minimum of four hours per week. Research sites are prearranged one quarter in advance (see the student affairs coordinator for enrollment information). Students' interests and future career plans are considered for site placement. Various research orientations and methodologies are reviewed in class. Prerequisites: HDP 1 and department approval two quarters prior to enrollment.

Honors in Human Development HDP 194A-B-C

The Human Development Program offers an honors option for those students who have demonstrated excellence in the human development major. Human development honors allows eligible undergraduates to explore advanced issues in the field through an honors thesis on a topic of their choice and under faculty supervision. In order to be admitted to the honors program, students must have 1) junior standing and 2) maintained a minimum cumulative grade-point average of 3.2 , and a 3.5 GPA for courses taken in the human development major. Interested students need to apply for departmental honors in spring quarter of their junior year. Students in the honors program are expected to complete the following courses in addition to those required for the major:

1. An advanced course in statistics or methods design (see the student affairs coordinator for more information).
2. HDP 194A-B-C, a year-long independent research project, which results in an Honors Thesis.

The Minor Program

A total of seven courses are required to complete a minor in human development. These include Introduction to Human Development (HDP 1), three developmental courses denoted by the asterisk*, and three additional developmental courses, one from each major area of study from the developmental course list.

FINISH-IN-FOUR PLAN

This plan is provided to help students fit the human development major requirements into a four-year schedule. Students interested in a particular career field should see the student affairs coordinator for more specific Finish-In-Four plans for their particular college.

FALL	WINTER	SPRING
FRESHMAN YEAR		
Natural Science	Natural Science	Computer
Formal Skills	Formal Skills	
SOPHOMORE YEAR		
Statistics HDP 1 HDP Lab Foundation Foundation Foundation JUNIOR YEAR Foundation Development Development Development Development Field Research Advanced Statistics** SENIOR YEAR Development HDP 150 Development Honor's Thesis** Development Honor's Thesis**		

** Only required for students participating in the HDP
Honor's Program.

COURSES

LOWER-DIVISION

HDP 1. Introduction to Human Development (4)
This course introduces students to the central issues in the basic areas in human development. The course will explain relationships between biological, cognitive, social, and cultural aspects of development. Offered once per year.

UPPER-DIVISION

HDP 130. Development of Communication in Children (4) (Same as COHI 108 .) The course serves as an introduction to research methods in the study of child develop-
ment. The special focus of the course will be on how children acquire competence in symbolic communication, including language, drawing, writing, and number systems. Observation of children in their interactions with each other and adults will be required. Prerequisite: HDP 1 or COHI 100. (S)

HDP 131. Fifth Dimension for Elementary Schools (6)

Students will participate four hours per week in classrooms at Torrey Pines Elementary School integrating the Fifth Dimension model of collaborative exploratory learning. Outside work will include readings and class preparation, as well as responding to children's written inquiries, writing field notes, and writing a paper. Prerequisite: HDP 1 (F,W, S)

HDP 135. Practicum in Child Development (6)

(Same as COMT 116/PSYC 128.) A combined lecture and laboratory course for students in psychology, communication, and human development. Student backgrounds should include a background in general psychology or communication. Students will be expected to spend four hours a week in a supervised practical after-school setting at one of the community field sites involving children. Additional time will be devoted to readings and class prep, as well as, six hours a week transcribing field notes and writing a paper on some aspect of the field work experience as it relates to class lectures and readings. Prerequisite: HDP 1 or COH 1100 or PSYC 101. (F, W, S)

HDP 150. Advanced Human Development (4)

Seminar for graduating HDP seniors. Readings and discussion of special topics in human development. Provides advanced-level study on subfields of human development. Topics vary quarterly. Prerequisites: HDPI, HDP 191, senior standing, and department approval. (F, W, S)

HDP 191. Field Research in Human Development (4)

This course provides students the opportunity to participate jointly in a research project in conjunction with a mentor/collaborator from a local service site. Students will participate at an off-campus site for a minimum of four hours per week for a ten-week quarter. Research sites are arranged by the instructor prior to the tenweek quarter. Students choose among research sites according to their interests and future career plans. This applied research experience allows students to participate in different aspects of research projects in a variety of settings. Students employ various research methods reviewed in class that are suited to the particular research settings. Prerequisites: HDP 1 and department approval one quarter prior to enrollment. (F,W, S)

HDP 194A-B-C. Honors Thesis (4-4-4)

Students will take part in a weekly research seminar. In addition, they will plan and carry out a three-quarter research project under the guidance of a faculty member. The project will form the basis for their senior honors thesis. Prerequisites: overall GPA of 3.2 , and a 3.5 GPA for courses taken in the human development major; an advanced course in statistics or experimental design, and consent of instructor.

HDP 199. Independent Study in Human Development (4) Independent study and research under the direction of a faculty member. Prerequisite: Consent of the instructor and department.

Humanities

OFFICE: Galbraith Hall, Room 180, Revelle College
http://iacs5.ucsd.edu/~hu3f/index.html
The Humanities Program offers interdisciplinary courses in history, philosophy, and literature, with a focus on major aspects of the Western humanistic tradition. In these courses, students examine the development of a wide variety of ideas and forms of expression that exert a major influence on modern America. Through lectures and class discussions, and through the writing of essays, students learn to interpret literary, historical, and philosophical texts and to conduct independent critical assessments of documents and ideas.

The sequence of courses, Humanities 1 through 5 , meets the humanities and writing requirement of Revelle College. Instruction in uni-versity-level writing is part of all five courses, but students in Humanities 1 and 2 (six units each) receive intensive writing instruction.
Students must have satisfied the university's Subject A requirement before registering for any part of the humanities sequence. Humanities 1 and 2 must be taken before Humanities 3-4-5.
For detailed description of the Revelle College humanities requirement, see "Revelle College, General-Education Requirements, Humanities."

COURSES

LOWER-DIVISION

1. The Foundations of Western Civilization: Israel and Greece (6)
Texts from the Hebrew Bible and from Greek epic, history, drama, and philosophy in their cultural context. Revelle students must take course for letter grade. Prerequisite: satisfaction of the Subject A requirement. (W)
2. Rome, Christianity, and the Middle Ages (6)

The Roman Empire, the Christian transformation of the classical world in late antiquity, and the rise of a European culture during the Middle Ages. Representative texts from Latin authors, early Christian literature, the Germanic tradition, and the high Middle Ages. Revelle students must take course for letter grade. Prerequisite: satisfaction of the Subject A requirement. (S)

3. Renaissance, Reformation, and Early Modern Europe (4)

The revival of classical culture and values and the reaction against medieval ideas concerning the place of
human beings in the world. The Protestant Reformation and its intellectual and political consequences. The philosophical background to the scientific revolution. Revelle students must take course for letter grade. Prerequisite: satisfaction of the Subject A requirement. (F)

4. Enlightenment, Romanticism, Revolution

(1660-1848) (4)
The enlightenment's revisions of traditional thought; the rise of classical liberalism; the era of the first modern political revolutions; romantic ideas of nature and human life. Revelle students must take course for letter grade. Prerequisite: satisfaction of the Subject A requirement. (W)
5. Modern Culture (1848-present) (4)

Chatlenges to liberalism posed by such movements as socialism, imperialism, and nationalism; the growth of new forms of self-expression and new conceptions of individual psychology. Revelle students must take course for letter grade. Prerequisite: Satisfaction of the Subject A requirement. (S)
199. Special Studies (2-4)

Individually guided readings or projects in area of humanities not normally covered in standard curriculum. Prerequisite: upper-division standing or consent of instructor.

200. Seminar in the Humanities (4)

Selected topics in the history, iiterature, and thought of Mediterranean antiquity and its successor-cultures. Emphasis on identifying both common themes and cultural distinctiveness. Discussion of pedagogical approaches to this material. Required of all graduate instructional assistants in the humanities sequence. Prerequisite: graduate standing. (F)

The Humanities Minor

The humanities minor consists of at least seven courses chosen from the listings of the Departments of History, Philosophy, Literature, Visual Arts, Music, and Theatre. All seven courses may be selected from the upper-division offerings, but at least five upper-division courses must be included. Students for whom Humanities 1-5 fulfill general education requirements may use two of these courses towards fulfillment of requirements for the humanities minor.

For students who entered UCSD before January 1, 1998, the required number of courses for the minor is six courses, at least three of which must be upper-division.

Courses selected for the minor must be selected from the offerings of more than one department. They must concern themselves with more than one historical, national, or ethnic culture; and they must offer broad treatment of centrally important topics in the humanities. Thus, a course on the history of the United States since the Civil War would be appropriate for the humanities minor, while a course in the history of California would not.

Here are some examples of study lists appropriate for the present humanities minor:

Example 1:

History:HILD 2AB: United States
History: HILD 11: East Asia and the West
Literature: LTEA 110B: Modern Chinese
Fiction in Translation
Philosophy 160: Ethical Theory
Philosophy 153: Philosophy of History

Example 2:

History:HILA 102: Latin America in the Twentieth Century
History: HIAF 111:Modern Africa since 1880
Literature: LTAM 110:Latin American Literature in Translation
Literature: LTEN 184: African-American Poetry
Music 113: Music of the Baroque, Classic, and Romantic Periods
Visual Arts 126DN: African and African-American Art

Example 3:

Literature: LTEN 145:The English Novel in The Twentieth Century
Literature: LTEN 146:Women and English/ American Literature
Literature: LTNE 100:The Bible and Western Literature
Philosophy 175: Aesthetics
Philosophy 177: Philosophy and Literature
Theatre:TH/HS 1:History of Theatre I:Classical to Renaissance

Students should review their plans for the minor with the humanities adviser as well as with the advisers in their college. Before undertaking the minor, students must submit a study list for approval to the humanities office.

The Humanities Majors

Normally, students interested in majoring in humanities must choose a specific major in the humanities departments, i.e., history, literature, or philosophy. But students from Revelle and Muir Colleges may request to graduate with an approved individual/special project major in the humanities.

International Relations and Pacific Studies Graduate School (IR/PS)

OFFICE: Building 4, Level 1, Robinson Building Complex

Professors

Peter F. Cowhey, Ph.D. Richard E. Feinberg, Ph.D. Peter A. Gourevitch, Ph.D. Stephan M. Haggard, Ph.D., Interim Dean Takeo Hoshi, Ph.D. Chalmers Johnson, Emeritus Miles E. Kahler, Ph.D. Alex Kane, Ph.D. Lawrence B. Krause, Ph.D., Emeritus Ellis S. Krauss, Ph.D.
Bruce N. Lehmann, Ph.D.
Barry J. Naughton, Ph.D.
Susan L. Shirk, Ph.D.
Matthew F. Shugart, Ph.D.
C. Peter Timmer, Ph.D.
Y.-H.Tohsaku, Ph.D.

Jeffrey R.Vincent, Ph.D.

Associate Professors

Roger E. Bohn, Ph.D.
Andrew J. MacIntyre, Ph.D.
Ulrike Schaede, Ph.D.

Assistant Professors

Mikhail M. Klimenko, Ph.D.
Marcel J. Lopez, Ph.D.
Barbara F. Walter, Ph.D.
Christopher M. Woodruff, Ph.D.

Adjunct Professors

Marsha A. Chandler, Ph.D. William M. Chandler, Ph.D. Wayne A. Cornelius, Ph.D. Paul W. Drake, Ph.D. Theodore Groves, Ph.D. Germaine A. Hoston, Ph.D. David A. Lake, Ph.D. David R. Mares, Ph.D. Michael M. May, Ph.D. James E. Rauch, Ph.D. Albert H. Rubenstein, Ph.D. Peter H. Smith, Ph.D.

Associate Adjunct Professors

Julian R. Betts, Ph. D. Lisa R. Shaffer, Ph.D.
Dale E. Squires, Ph.D.
Christena L.Turner, Ph.D.

The Master of Pacific International Affairs (MPIA)

Requirements for Admission

Students interested in pursuing the MPIA degree program at UCSD's Graduate School of International Relations and Pacific Studies (IR/PS) must have earned a B.A., or its equivalent, with training comparable to that provided by the University of California. A minimum scholastic average of 3.0 or better is required for course work completed in upper-division or prior graduate study. Undergraduate preparation that includes one or more of the following is strongly encouraged: the social sciences (specifically economics and political science) and history; and quantitative methods (such as calculus and statistics); foreign language and related area studies courses. Students with an undergraduate background in the sciences, engineering, or the arts are also encouraged to explore this degree program. The admissions committee looks for students with previous professional employment, a history of meaningful international experience, and demonstrated leadership ability.

Applicants must submit three letters of recommendation from individuals who can attest to their academic or professional competence and to the depth of their interest in pursuing graduate training in international affairs.

Applicants are required to submit the Graduate Record Exam (GRE) scores (verbal, quantitative, and analytical). (Indicate code \#R4836 for UCSD, IR/PS department code \#1901.) Scores from the Graduate Management Admission Test (GMAT) may be substituted. (Indicate code \#4927 for UCSD, Pacific International Affairs.) A minimum score of 550 on the paper/pencil version and a minimum score of 213 on the computer-based version of the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. Students who score below 600 on the paper/pencil and

250 on the computer-based TOEFL examination are strongly encouraged to enroll in an English as a second language program before beginning graduate work. (UCSD Extension offers an excellent English language program during the summer, as well as the academic year. For further information, call (858) 534-3400).

Interviews are not required for admission to the MPIA program. Orientation tours are available for all applicants who would like further information about the degree programs. Tours assist applicants in becoming better acquainted with IR/PS's graduate programs and in understanding how these programs might relate to their longterm career goals. To receive a tour schedule, applicants should contact the IR/PS Office of Admissions at (858) 534-5914.

The MPIA is a two-year, full-time program. Those students who enter, however, with no previous language training in Mandarin Chinese, Japanese, Korean, Spanish, Bahasa Indonesian, or Vietnamese will need to spend more time in the program. Part-time study is feasible within the MPIA curriculum. The maximum course load for half-time study is six units.

The MPIA Curriculum * ${ }^{\text {(96 units) }}$

Core Curriculum

The Core Curriculum is designed to integrate the diverse subject areas of international management, international relations, applied economics, technology management, and comparative public policy, as well as regional studies and foreign language. All components of the Core Curriculum are required of MPIA students. Core courses list as follows:

- Economics (Managerial and International)
- Management (Accounting and Finance)
- International Relations (International Politics and Security, and the Politics of International Economic Relations)
- Policy-Making Processes
- Regional Specialization: Students are required to specialize in one particular country or region in the Pacific. To fulfill this requirement, students must take three courses in one of five areas: China, Japan, Korea, Southeast Asia, or Latin America.
- Foreign Language: A minimum level of language proficiency must be met through examination prior to award of the MPIA degree. Students' designated foreign language must correspond to the geographical area selected for regional specialization.
- Quantitative Methods (two-quarter sequence)
- Capstone Sequence:

Management and Policy International Business Simulation Laboratory

TWO-YEAR MASTER'S PROGRAM SAMPLE

First Year

Fall

Policy-Making Processes (4)
Managerial Economics (4)
International Politics and Security (4)
Quantitative Methods (2)
Elective (4)/Language (4)
Winter
International Economics (4)
Accounting (4)
Quantitative Methods (2)
Elective (4)/Language (4)
Spring
The Politics of International Economic Relations (4)
Finance (4)
Elective (4)
Elective (4)/Language (4)

Second Year

Fall
Management and Policy (4)
Elective (4) or
Regional Specialization* (4)
Elective (4)/Language (4)
Elective (4)
Winter
International Business Simulation Laboratory (4)
Elective (4) or
Regional Specialization* (4)
Elective (4)/Language (4)
Elective (4)
Spring
Elective (4)
Elective (4) or
Regional Specialization* (4)
Elective (4)/Language (4)

* Three regional specialization courses are required.

This program summary represents a sequence of courses that most MPIA students are likely to take.

Concentrations and Electives

The MPIA program's elective course work allows for flexibility in response to the wide diversity of marketplace employment options as well as in students' backgrounds, interests, and needs. Students have the opportunity to declare a career concentration. Although concentration in a career is not mandatory, it enables individuals to work closely with other students and faculty who share similar interests. In addition, concentration in a particular career area may serve to enhance career entry opportunities and improve initial on-the-job performance.

Career Concentrations

A career concentration requires that the student take six courses in one of four career concentration areas. IR/PS offers career concentrations in the following areas:

International Management: Includes intermediate and advanced courses in such areas as corporate finance, accounting, and international marketing-similar to those offered in M.B.A. pro-grams-as well as courses focusing on international business activities, such as multinational corporations, project analysis and planning, trade, and risk analysis.

International Relations: Emphasizes the political economic factors operating in the global environment, as well as on the traditional areas of international strategy and security. Particular attention is given to the Pacific region as an international subsystem.

Comparative Policy Analysis: Develops tools and comparative perspective to analyze and evaluate public policies. The curriculum combines case study and applied courses with theoretical and analytical tools.

International Technology Management: Designed for students with technical or scientific undergraduate training. The course work emphasizes technology management and technology policy, allowing students to apply their backgrounds to issues which will be important in the twenty-first century. Courses are chosen by students from a selected curriculum that includes: operations management, technology management, policymaking, corporate finance, international marketing, and environmental policy. The concentration prepares graduates for careers in
business (technology management) and government (technology policy).

Note: Specific course requirements for fulfilling a concentration may be obtained at the IR/PS Student Affairs Office.

Capstone Sequence

Management and Policy

Management and Policy is an integrative course that asks students to solve realistic managerial problems, using concepts and tools from throughout the IR/PS curriculum. Harvard-style case studies provide a first-person perspective, with incomplete information and conflicting objectives. Specific topics include negotiation, organizational behavior, business strategy, and others. Many of the cases emphasize the need to combine quantitative and qualitative analysis to make effective decisions.

International Business Simulation Laboratory

Assuming roles of government officers, corporate executives, mutual-fund portfolio managers, and newspaper reporters, students manage the affairs of the international organizations in a simulation exercise that is run through the Web and includes participants from other schools.

Foreign Language

IR/PS considers foreign language competency an indispensable skill for international relations professionals. All students are expected to acquire the language skills necessary to work in the Pacific region. The foreign language proficiency requirement is designed to ensure that students achieve a level of competency sufficient for professional interaction. Students are placed in foreign language courses based on prior preparation and on the results of a placement test administered during the week of orientation. Students who miss the placement exam should contact the IR/PS Language Program office (RBC 1308) for instructions.

At the present time, students can fulfill the foreign language requirement in Mandarin Chinese, Vietnamese, Japanese, Korean, Brazilian Portuguese, Bahasa Indonesia, or Spanish. Students may also fulfill their language proficiency requirement in other languages, such as Thai, Tagalog, Bahasa Malay, and other Chinese dialects; but, due to resource constraints, IR/PS cannot provide instructional support at this time. Please con-
tact the IR/PS Language Program or the Office of Student Affairs for additional information. The language selected for the requirement must coincide with the student's regional specialization. As languages differ greatly in their relative degree of difficulty, the level of required competency varies among these languages. The minimum required level of proficiency for Spanish is equivalent to 2+ on the Foreign Service Institute Scales (FSI), 2 for Portuguese, and 2 - for Mandarin Chinese, Vietnamese, Japanese, Korean, and other Asian languages. Students must pass the proficiency examination in speaking and reading administered by the IR/PS Language Program or other approved testing service before receiving their degree. The writing proficiency examination is optional.

A variety of language courses are offered by UCSD.IR/PS is currently offering four-unit language courses for professional proficiency in the six languages at intermediate to advanced levels. Students with a lower level of language proficiency are encouraged to take beginning and intermediate language courses offered by the Chinese Studies Program, the Japanese Studies Program, and the Departments of Linguistics or Literature. These courses serve as prerequisites for the language proficiency courses offered at IR/PS, which, in turn, prepare students for the proficiency examination.

Students may prepare for the proficiency examination in a variety of ways, depending on their language background, aptitude for learning languages, and actual time and effort invested in language study at IR/PS. In general, students fall into one of four categories with respect to language study: 1) those who enter at a superior level of proficiency may be waived out of the language courses; 2) those who enter with a rough equivalence of three years of Chinese, Japanese, or Korean or two-plus years of Spanish should be able to achieve the requisite level in two years without any intensive language training during the first summer; 3) those who enter with a rough equivalence of two years of Mandarin Chinese, Japanese, or Korean language or one-plus years of Spanisti will usually be able to achieve the requisite level in two years by a combination of intensive language study in the summer and the six language courses for professional proficiency in the two-year program; 4) those who enter with less training in these foreign languages will need to spend at least two and one-half to three years
in the program. Intensive sessions for two or three summers and language courses during the academic year should enable students to achieve the required proficiency.

The proficiency examination will be given throughout the academic year. Most students take the proficiency examination during the spring quarter of their final year. To take the examination, students must complete the language skills selfassessment, which is designed to assess a student's readiness to pass the language proficiency requirement. Students have two opportunities to take the proficiency examination given at IR/PS free of charge. An administrative fee will be charged for each subsequent examination.

Internships

Students are encouraged to participate in various internship programs that are available in business and industry, federal and state government, and through various foundations and institutions. The school has established links to a number of programs with available internships.

Education Abroad Program

Students are encouraged to participate in the Education Abroad Programs (EAP) in their second year of study. Though this will necessitate a third year of study to meet MPIA requirements, the opportunity provides unparalleled experience in the selected regional study area and language. By petition, certain credits earned through EAP may be applied to the MPIA degree requirements.

Career Development and Opportunities

The IR/PS Career Management Center (CMC) provides students with assistance in professional career development. This assistance begins ir, the student's first quarter and continues through the interviewing process in the final quarter.

Career services include individual advising appointments, workshops, speaker forums, special events, and a library containing international resources and employment opportunity listings. Specialized workshops explore resume writing, cover letters, salary and benefits negotiation, joboffer evaluation, interviewing skills (including videotaped mock interviews), career goals, labor market trends, and effective job search strategies.

The Ph.D. in Economics and International Affairs

Requirements for Admission

Students who seek admission to the program must have a B.A. or the equivalent from an institution of comparable standing to the University of California. Preference will be given to students with prior academic records of distinction and to those who have a background in one of the fields of emphasis and/or geographical areas covered by the program. GRE scores (verbal, quantitative, and analytical) are required of all applicants. (Indicate code \#R4836 for UCSD, IR/PS department code \#1901.)

A minimum score of 550 on the paper/pencil version and a minimum score of 213 on the com-puter-based version of the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. Students who score below 600 on the paper/pencil and 250 on the computer-based TOEFL examination are strongly encouraged to enroll in an English-as-a-Second-Language Program (ESL) before beginning doctoral work.

The Ph.D. Curriculum

Program of Study

The Ph.D. in economics and international affairs prepares students for research careers in economics, with an emphasis on international affairs and the Pacific region. The program combines the analytical skills of economics with political economy, institutional analysis, and region/ empirical knowledge.

Program Advisory Committee

Each student is assigned a Program Advisory Committee of four economics and IR/PS faculty, at least one must be from economics, one from IR/PS and one outside member from another UCSD department. With this committee, the student works out a plan of study that the committee must approve. The student must make satisfactory progress in a coherent program of course work and reading courses, which meet the approval of the Program Advisory Committee.

Course Requirements

The Ph.D.curriculum in economics and international affairs is designed to provide students with basic training in the techniques of modern economics, as well as empirical and institutional knowledge of the Pacific region. The first year will consist of the three sequences of microeconomics, macroeconomics, and econometrics, taught in the Department of Economics. The second year will consist of continuation of the three series plus seven electives. Two of these electives will be an IR/PS sequence in political economy. In subsequent years, courses will consist of the regional sequence, an empirical project, and two third-year papers.

Regional Requirement

Students must take at least three courses, one of which may be a reading course on policy processes and issues in the Pacific region. These courses may consider the Pacific region as a whole, as a sub-region, or examine individual countries. The courses may be in both IR/PS and, with prior permission, related departments. Some students may choose to take more than the minimum three courses to deepen their knowledge of a particular country or area. Comprehensive examination on regional areas is not required.

Language Requirement

Students are expected to achieve a level appropriate to the student's dissertation topic of reading proficiency in at least one foreign language. Proficiency may be verified by examination or by certification by thesis supervisor.

Comprehensive Examinations

Students must pass written comprehensive exams in microeconomics, macroeconomics, and econometrics, which will be administered and graded by the economics department.

Dissertation

Candidates must present a dissertation prospectus no later than March of their third year in the doctoral program. They will be examined on their prospectus by their dissertation committee and must complete a dissertation, which makes a substantial and original contribution to knowledge commensurate with the standards of the University of California in order to receive the Ph.D. degree.

Oral Defense

Students will defend their dissertation at a final oral examination, which will be open to the public.

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of five years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

The Ph.D. in Political Science and International Affairs

Requirements for Admission

Students who seek admission to the program must have a B.A. or the equivalent from an institution of comparable standing to the University of California. Preference will be given to students with prior academic records of distinction and to those who have a background in one of the fields of emphasis and/or geographical areas covered by the program. GRE scores (verbal, quantitative, and analytical) are required of all applicants. (Indicate code \#R4836 UCSD, IR/PS department code \#1901.)

A minimum score of 550 on the paper/pencil version and 213 on the computer-based version of the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. Students who score below 600 on the paper/pencil and 250 on the computer-based TOEFL examination are strongly encouraged to enroll in an English-as-a-SecondLanguage Program (ESL) before beginning doctoral work. (UCSD Extension offers an excellent ESL during summer as well as the academic year. For further information, call (858) 534-3400.)

The Ph.D. Curriculum

Program of Study

The Ph.D. in political science and international affairs prepares students for research careers in political science, with an emphasis in either international policy analysis or comparative policy analysis. The program combines the analytical skills of political science with political economy, institutional analysis, policy analysis (especially economic policy) and regional training, with special attention to East Asia and/or Latin America

Course Requirements

The Ph.D. curriculum in political science and international affairs is designed to provide students with basic training in the techniques of modern political science, as well as applications to specific policy areas and countries or regions.

Seventeen courses are required prior to advancement to candidacy. There is a common core sequence, consisting of comparative public policy, two courses in comparative politics, two courses in international relations and research design. Each student must declare a primary field of either international policy analysis (IPA) or comparative policy analysis (CPA), consisting of three specialized courses. There is also a regional focus of five courses. Three additional courses must be taken from a set of electives.

Regional Requirement

The regional focus consists of international relations of Asia Pacific or international relations of the Americas (depending on which region is the student's primary region), three additional courses in the student's primary region, and one course in another region offered by either IR/PS or the Department of Political Science are required. By petition, students may count a region other than one of the IR/PS offerings (currently China, East Asia, Japan, Latin America, or Southeast Asia) as their primary region.

Language Requirement

All students in the program are required to meet a high standard of proficiency in a foreign language before being advanced to candidacy. The language must be linked to the student's region.

Seminar Papers

Each student must submit two seminar papers, one in each field. The penultimate draft of each seminar paper must be completed prior to taking the appropriate field exam, and the final draft must be completed by the end of the quarter in which the exam is taken. Both papers must demonstrate knowledge of the student's regional focus, as well as knowledge of relevant theory in the field. At least one of the papers must also demonstrate knowledge of a substantive policy area, related to the student's primary focus field.

Comprehensive Examinations

Each student must pass two comprehensive examinations, one in international relations and
one in comparative politics. Each exam will be graded by a joint committee consisting of three permanent faculty members, with at least one from political science and at least one from IR/PS.

The primary field exam contains a focus field, which may be either a substantive field of policy analysis (e.g. trade, environment, international finance) or the student's chosen primary region. Regardless of focus field, that part of the exam shali test the student's knowledge of theoretical literature and ability to apply it to a policy issue of relevance to the region.

Dissertation

Candidates must present a dissertation prospectus to be examined by their dissertation committee, and must complete a dissertation which makes a substantial and original contribution to knowledge commensurate with the standards of the University of California in order to receive the Ph.D. degree. The dissertation committee shall consist of four faculty members chosen from the Department of Political Science and IR/PS, with at least one from each unit. A fifth member must be from outside the department and IR/PS.

Oral Defense

Students will defend their dissertation at a final oral examination, which will be open to the public.

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of the fourth year. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

The Ph.D. in International Affairs

Pending final approval of the joint Ph.D. degree programs in economics and international affairs, and political science and international affairs, no future admissions will be made to the Ph.D in International Affairs Program.

International Career Associates Program

The International Career Associates Program (ICAP) is designed for working professionals seeking additional exposure to the various areas of international management, international relations, and comparative public policy.

Participants in the program spend an academic year at IR/PS, usually beginning in mid-September
and ending in mid-June. Under the auspices of the program, professionals have an opportunity to further internationalize their knowledge and experience, as well as enhance their professional development in such areas as finance, management, marketing, accounting, quantitative methods, econometrics, long-range strategic planning, international affairs, and comparative decisionmaking. The program of study is tailored to individual interests under the guidance of the program's director and faculty advisers.

IR/PS offers:

- An individualized one-year program leading to a Certificate of Study
- An optional summer program preceding the academic year
- An academic tutorial program
- Opportunities to interact with worldrenowned Pacific Rim scholars and policymakers
- Special seminars and lectures by academics and professionals
- IR/PS-sponsored cultural events and field trips to local, state, and national organizations and government offices
For further information, contact the International Career Associates Program office at (858) 534-7420.

The Korea-Pacific Program

The Korea-Pacific Program was formed in September 1989 in recognition of the growing importance of Korea in the world, of Korean-U.S. relationships, and of the Korean model of social and economic development.

Directed by IR/PS Professor Stephan M. Haggard, the program promotes the understanding of Korea in an international context and encourages the study of Korea in a university setting by offering courses in the country's society, economics, language, and policymaking. Research is supported on contemporary Korean society and policy issues. Outreach to the community is offered through seminars, lectures, courses, and cultural events, including performances and exhibits in the Korean arts.

In comparison with other Korean studies programs in the United States, the IR/PS Korea-Pacific Program is distinctive in several respects: it concentrates on contemporary Korea, focuses on policy questions, stresses the foundations of Korean
economic growth, explores Korea's international relations, and seeks to understand Korea in a broad regional context.

The Korea-Pacific Program is supported by a strong Korean language component, encourages a broad understanding of Korean culture and history, and has a strong community base in and around its university setting.

The ASEAN-Pacific Project

The ASEAN-Pacific Project is one of several major regional and theme-based nodes of activity within the Graduate School of International Relations and Pacific Studies. Its mandate is to support students and to serve as a catalyst for the development of Southeast Asia-related teaching and research activities within the school. The director of the project is Associate Professor Andrew MacIntyre.

The ASEAN-Pacific Project extends the success of the school's original Vietnam-Pacific Project, with scope being broadened to embrace the other countries of Southeast Asia.

The project is built upon private donations to the school, with this resource being supplemented by resources obtained from external grant agencies and the university. One of the primary goals of the project's private benefactors has been to support students at the school interested in Southeast Asia. To this end fellowships (covering tuition and/or a stipend) have been offered on a competitive basis to students from the United States and Southeast Asia enrolled in both the MPIA and Ph.D. programs. Additionally, travel fellowships have been offered to support students wanting to travel to Southeast Asia during the summer or to pursue internship opportunities that are Southeast Asia-related.

The project also serves as a catalyst and facilitator for research projects within the school relating to Southeast Asia. Examples of this include a study of the development of small and medium enterprises in Vietnam, the relocation of the global magnetic disk drive industry to Southeast Asia, and the dynamics of off-budget government spending in Indonesia. The project also supports visiting speakers for seminars on topics relating to Southeast Asia.

The third major leg of the ASEAN-Pacific Project has been to support the development of teaching resources. To date the focus of activity in this area has been on the development of Vietnamese language instruction at the school.

COURSES

MPIA CORE CURRICULUM

IRCO 400. Policy-Making Processes (4)
A course designed to teach students how to "read" a country's political and economic system. The course will examine how the evolution of different institutional frameworks in the countries of the Pacific region influences the way in which political choices are made.

IRCO 401.Managerial Economics (4)
Survey of basic tools in economics. Examination of how commodity demand is determined, what affects supply of the commodity, how price is determined, when optimal market allocation of resources and failure occurs, and basic topics concerning the aggregate economy.

IRCO 403. International Economics (4)
The theory and mechanics of international economics. Included will be such topics as real trade theory, international movements of capital, the effects of trade and capital flows on domestic economies, and policies toward trade and foreign investment.

IRCO 410. International Politics and Security (4)
Development of analytic tools for understanding international relations with applications to contemporary problems such as the environment, nuclear proliferation, human rights, humanitarian interventions, and the roots of conflict and cooperation among countries.

IRCO 411. The Politics of International Economic

 Relations (4)The course presents explanations for the political organization of international economic relations in different issue-areas. Additional topics include international economic inequality, efforts by states to manipulate economic relations for strategic gain, and the prospects for regional and global organizations.

IRCO 420. Accounting (4)

An introduction to financial accounting designed to prepare students to understand their own organizations' international operations and interpret information from outside organizations. The emphasis will be on understanding the potential uses and limitations of accounting information for various management purposes, and the procedural aspects of accounting will be introduced only to the extent necessary to explicate the basic concepts.

IRCO 421. Finance (4)

This course surveys the financial problems facing managers and analyzes financial institutions, financial instruments, and capital markets. Tools acquired will prepare students to analyze international financial topics such as exchange rate behavior, the management of international risk, and international financing. Prerequisites: IRCO 420,453, and 454.

IRCO 453. Quantitative Methods: Decision Making and

 Scenario Analysis (2)This course is designed to provide proficiency in quantitative methods that are used for optimization and decision making. It first develops graphic and analytical solutions to resource allocation and efficient production. Next, scenario analysis and elements of decision making under uncertainty are introduced. Finally, the use of spreadsheets is applied to data analysis and problem solving.

IRCO 454. Quantitative Methods: Decision Making under Uncertainty (2)
This course covers elements from statistics that are central to business decision making under uncertainty. In particular, regression analysis and estimation will be applied to problems of forecasting and optimization.

IRCO 460. Management and Policy (4)

A case-based class that aims to synthesize the material learned in the first year and apply it to solve real-world problems in business and public policy, strategy, and management. Prerequisites: IRCO 400, 401, 403, 410, 411, $420,421,453$ and 454 , or consent of instructor.

IRCO 461. International Business and Policy

Simulation (4)

To simulate a complete international economic system, students participate in a corporate, government, investment management, or newspaper team. They make weekly decisions and discuss results in class. Prerequisites. IRCO 400, 401, 403, 410, 411, 420, 421, 453, 454 and 460 or consent of instructor.

GENERAL COURSES

Not all general courses are offered each year.
IRGN 400. International Relations of the Pacific (4)
International relations and developing international political economies of nations bordering the Pacific. Topics include: the "Pacific Basin" concept; the U.S. and "hegemonic-stability" theory; legacies of Korean War and Sino-Soviet dispute; immigration patterns and their consequences; and Japan's foreign policy.

IRGN 402. International Political Economy: Money and

Finance (4)

Examination of effects of national policies and international collaboration of public and private international financial insitutions, in particular management of international debt crises, economic policy coordination, and the role of international lender of last resort. Prerequisite: IRCO 411 or consent of instructor. Conjoined with Political Science 144D and 262.

IRGN 403. International Political Economy: Trade (4)
This course examines the evolution of the international trading system, emphasizing issues of politics and policy. Topics include developments in the GATT, the emergence of regional trading blocs, protectionism, industrial policy, and the relationship between trade and direct investment. Students choose a particular sector to develop expertise. Prerequisite: IRCO 411 or consent of instructor.

IRGN 404. Chinese Politics (4)
This course will analyze post-1949 Chinese politics, including political institutions, the policy making process, and citizen political behavior. Special attention will be paid to the prospects for political reform in China.

IRGN 406. The Politics of Democratization (4)
This course will examine the following questions: Why do some countries fail and others succeed in establishing democracies? How do leaders "institutionalize uncertainty"? Should economic or political liberalization come first? Why are there periodic "waves" of democratic breakthrough and breakdown?

IRGN 407. Bureaucracy and Public Policy (4)
What determines the degree of influence bureaucrats exert over public policy outcomes, versus the influence of politicians? Overview of themes such as develop-
mental state, state autonomy, legislative oversight, clientelism, corruption. Applications to Japan, East Asia, United States, and Latin America. Prerequisite: IRCO 400 or permission of instructor.

IRGN 408. Internal Conflict after the Cold War (4)
Will examine the causes of civil wars and the problems with resolution and state reconstruction. Theoretical approaches discussed will then be applied to three recent case studies: Cambodia, Rwanda, and Bosnia. Policy implications for the international community will be discussed. Prerequisite: IRCO 410.

IRGN 409. Economic Policy in Latin America (4)
This course seeks to enhance the students' understanding of the main policy alternatives open to the largest Latin American countries. Development and stabilization policies are analyzed, emphasizing current debate between conventional and heterodox policy packages and their impact on decisionmaking. Prerequisites: IRCO 401, IRCO 403.

IRGN 411 . Business and Management in Japan (4)
This course introduces the main aspects of Japanese business and industrial organization (keiretsu), Japanese management practices, and the representation and influence of business interests in the Japanese political economy.

IRGN 412. The Politics of International

Competitiveness (4)

Examination of policy debates concerning international economic relations: what policies promote or encourage effective participation in the international economy, and what political factors support or oppose such policies? Examples are drawn from the experiences of the U.S., Japan, Europe, Latin America, and East Asia.

IRGN 413.The Political Economy of Regulated

 International Markets (4)This course examines the politics and economics of world markets that are subject to extensive government regulation. Cases include examples from the services, manufacturing, and commodities markets. The course investigates why there are different types of regulation for each market, how global regulations interact with national regulations, and how firms respond to regulations.

IRGN 414. U.S. Strategic Policy Issues in a Changing

World (4)
Strategic issues facing the U.S. in the 90 s will be described and analyzed. Issues taken up will include nuclear weapons policy, space policy, European and Northeast Asia security policies. Political, military and technical aspects of these issues will be analyzed. Prerequisite: graduate status or consent of instructor. Some background in political science and in quantitative analysis of issues desirable.

IRGN 416. Post War Politics in Japan (4)
Overview of postwar politics in Japan, including American Occupation reforms, political institutions, major political factors, mass and elite, and political behavior. Special attention will be paid to the issue of Japan's changing democracy.

IRGN 417. Models of International Change (4)
The seminar will explore models that account for international change by linking international (systemic or structural) and domestic variables. Particular attention will be given to evolutionary and learning models as they have been employed in a number of disciplines. Prerequisite: IRCO 410.

IRGN 418. Trade and Economic Growth: Lessons from Pacific Basin Economies (4)
The purpose of this course is to survey economic relations among Pacific Basin economics, exploring relevant economic and public policy issues. Major topics include:productivity; trade; technology spill-over/transfer; foreign direct investment; factor and human capital accumulation; income distribution; and regional insitutional arrangments. Prerequisites: IRCO 401 and 403.

IRGN 419. Derivative Asset Markets (4)
This course provides an introduction to derivative assets such as options, futures, and swap contracts. The main emphasis is on their valuation, use in hedging, and role as components of liabilities that mitigate risk and agency problems in business firms. Prerequisite. IRCO 421.

IRGN 420. Principles of Marketing (4)
This course develops the micro-economic foundations of market exchange by explicitly examining the marketing details of transactions: demand and product differentiation, incomplete and incorrect information search costs and promotion costs. It is argued that with in this theoretical framework (i.e., model) most observed marketing behavior can be reconciled. The primary objective of this course is to learn to deduce firm and consumer motives from observed behavior Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 421. International Marketing (4)
This course focuses on decision making in international marketing. The impact of cultural, social, political, economic, and other environmental variables on international marketing systems and the decision making process of multilateral marketing operations will be addressed. Prerequisites: IRCO 453 and 454, and IRGN 420 or consent of instructor.

IRGN 422. Investments (4)
An analysis of the risk/return characterics of different assets as perceived by different investors and their implications for security price behavior, emphasizing real world capital market behavior. International aspects include the role of exchange rate risk and international diversification. Prerequisites: IRCO 421, 453, and 454 , or consent of instructor.

IRGN 424. Corporate Finance (4)

The topics covered are dividend policy and capital structure, options, debt financing, and short- and longterm financial planning. Course format will consist mostly lectures, with occasional cases. Some international aspects of corporate finance will also be discussed. Prerequisites: IRCO 401, 403, 420, 421, 453, and 454 , or consent of instructor.

IRGN 427. Competition and Regulation in the Global Communications Market (4)

This course explores the global market for telecommunications, internet, and information services. It analyzes how regulation and international trade rules influence market structure. It examines the politics underlying government rules, and it probes the strategies of corporation in the global market.

RGN 430. Globalization (4)
This seminar surveys ideas about economic globalization. Discussion focuses on production "chains," the division of products into components, and their distribution around the world.

IRGN 431. Fiscal and Monetary Policy (4)
This course examines the effects of fiscal and monetary policies on aggregate variables such as output, nominal
and real interest rates, price level, and employment Additional topics include the inflation/unemployment trade-off, budget deficit, and economic growth.

IRGN 433. International Finance (4)
The international financial system will be addressed, including the perspectives of individual investors, borrowers, and financial intermediaries. Public policy issues including the exchange rate mechanism, financial linkages among countries, optimum currency areas and macro-policy coordination will be discussed. Prerequisites: IRCO 403, 421, or consent of instructor.

IRGN 434. Strategic Analysis (4)
This course analyzes competitive interactions, surveying the modern economic analysis of relationships between and within organizations. The foundations of the course are game theory and the economics of information. Topics include bargaining and contracting, principal-agent models, and bidding models.

IRGN 435. Topics in International Trade (4)
Objective is to develop analytic tools and explore their relevance for trade policy issues. Focuses on a revolving set of issues, including the political economy of trade policy, strategic trade and industrial policy; trade and financial liberalization; the debate on trade, jobs and wages; and trade and international technology transfer. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 437. Strategy and Planning in Production and

 Operations Management (4)This course examines manufacturing, distribution, and service activities that are relevant to the strategic management of operations. It explores the everyday control of operations, the design of the production system, and the interface between operations and other aspects of the firm's overall strategy. Prerequisite: IRGN 438 or consent of instructor.

IRGN 438. Production and Operations Management:

 Analysis and Control (4)This course provides a comprehensive introduction to the fundamental decisions and trade-offs associated with the control of a firm's operations function. It analyzes production processes, quality control, inventory and materials planning, kanban and just-in-time principles. Prerequisites: IRCO 453 and 454, or consent of instructor.

IRGN 439. International Manufacturing Strategy:
Selected Topics (4)
This course covers selected issues emerging from the recent trends in globalization of a firm's manufacturing activities. Topics include globalization of manufacturing base, international comparison of manufacturing management, the role of manufacturing in the global competition. Prerequisite: IRGN 438 or consent of instructor

IRGN 440. Managerial Accounting and Control (4)
Focus on planning, managing, controlling and evaluat ing costs for competitive advantage in global markets Key topics will include cost structure, cost-based mana gerial decision making, strategic cost management JIT/TQC cost management, and accounting control sys tems. Prerequisite: IRCO 420 or consent of instructor.

IRGN 441. Seminar in Advanced Topics in Production and Operations Management (4)
Studies of advanced analytical techniques in operations management. Emphasis is on the application of various analytical methods to operational problems. Students are encouraged to carry out a research project
for the actual application of these techniques. Prerequisite: IRGN 438 or consent of instructor.

IRGN 442. Economic Analysis of Manufacturing Systems (4)
How to evaluate manufacturing process economics. Cost accounting, project evaluation, net present value and other financial measures, making tradeoffs among alternatives, cost of quality losses, assessing intangibles. Impacts of design and operating policies. Fitting manufacturing processes to market and strategy.

IRGN 443. Economics of Telecommunications (4)
This course will focus on the underlying economics of the telecommunications and public policy rationale of regulations applied to this industry. Both theoretical models and case studies will be used to provide better understanding of the telecommunications marketplace and the nature of competition between service providers in the industry. Prerequisite: IRCO 401 or consent of instructor.

IRGN 444. Product Design and Process Development (4) Engineering management, emphasizing creation and improvement of products and processes. Cases, lectures, and team exercises set in various industries, including software. Prerequisites: IRGN 438 or consent of instructor plus experience in manufacturing, engineering, or software.

IRGN 445. Entrepreneurship and Intraprenerurship (4)
Student teams (3-5) are admitted to the course on the basis of a proforma business plan. While teams perfect their plans, class discussions cover aspects of creating and planning new businesses, culminating in presentations of their final plans. Prerequisites: IRCO 400, 401, 403, $410,411,420,421,453$, and 454 , and consent of instructor.

IRGN 446. Applied Data Analysis and Statistical Decision Making (4)
The goal of the course is to teach how to evaluate quantitative information in business and economics contexts, and to make sound managerial decisions in complex situations. Much of the problems and course work will involve statistical software and spreadsheet analysis of data. The course covers various applied multivariate statistical methods beyond basics. Prerequisites: IRCO 453 and 454 , or consent of instructor.

IRGN 447. Organizations (4)
A seminar course based on the modern economics of organization. Covers an eclectic set of readings on a diverse range of organizations, looking at how incentives for collective action are structured. Prerequisites: IRCO 401 and 403.

IRGN 448. Politics and Political Institutions in Southeast Asia (4)
This course examines key aspects of political life in one or two selected Southeast Asia countries focusing on the interrelationship between political problems in these rapidly changing societies and their political institutions. The countries considered may vary from year to year. Prerequisite: IRGN 463 or consent of instructor.

IRGN 449. Making U.S. Foreign Policy (4)
Analysis of the interests, structure and procedures of the main executive branch agencies involved in the formulation of foreign policy, and of the roles of Congress, the media, public opinion, and non-governmental actors. Case studies and "daily briefings" to prepare students to perform professionally in the foreign policy arena. Prerequisite: IRCO 410 or consent of instructor.

IRGN 451. Economic Development (4)
This course examines comparative patterns of industrialization and agricultural modernization with a focus on certain common features of the modernization process and widely varying endowments, policies, and experiences of different countries. Prerequisites: IRCO 401 and 403 , or consent of instructor.

IRGN 453. Sustainable Development (4)

This course will cover the concept of sustainable development, ways in which sustainable development can be measured, evaluation of environmental damages and benefits, and the role of discounting, and will analyze cases demonstrating failure of the market.

IRGN 454. Current Issues in U.S.-Latin American

Relations (4)
This course features active debate of such issues as the collective defense of democracy, coping with revolutionary change, counter-narcotics, anti-corruption, international finance, trade, and U.S.-Mexican and U.S.Brazilian relations. In each case, students analyze the strengths and weaknesses of current U.S. policy and advocate alternative options. Prerequisite: IRCO 410 or consent of instructor.

IRGN 455. Economic Theories of Regional

Integration (4)
This course introduces students to the basic economics of trading blocs and proceeds to more complicated topics in the theory of preferential trading arrangements, customs unions, and currency unions. Students then use the formal theory they have learned to compare economic integration in different parts of the world. Prerequisites: IRCO 401 and 403 or consent of instructor.

IRGN 456. Program Design and Evaluation (4)

Introduction to elements of program design and evaluation. Examines principles and guidelines used in creating a program and evaluating its success or failure. International case studies are explored. Students have the opportunity to develop their own program and evaluation projects.

IRGN 457. Policy Analysis and the Environment (4)
Examination of public policy analysis, such as cost-benefit analysis and project evaluation, for use in policy formation. Sustainable development will receive particular attention. Case studies emphasizing the environment, agriculture and food, and economic development will be included.

IRGN 458. International Environmental Policy (4)
Review of environmental issues, including transboundary air and water pollution, acid rain, ozone depletion, species eradication, whaling, and climate change. Economic, political, and social consequences of international environmental disputes. Current approaches to environmental policy analysis.

IRGN 459. Conflict Resolution of Environmental

Issues (4)
Use of bilateral negotiations (U.S.-Canada), regional organization (ECE and acid rain in Europe), and United Nations specialized agencies (UNEP and WMO on ozone depletion and climate change) to mediate environmental disputes. Consideration of nontraditional approaches resolving international environmental problems.

IRGN 460. The Politics of U.S.Japan Economic

Relations (4)
This course will analyze how the domestic politics of each country, their international negotiations, and their interaction concerning economic issues have affected
the U.S.-Japan relationship. Both the politics of cooperation and integration, and trade friction and conflict will be addressed in part through study of specific cases.

IRGN 461. Doing Business in China (4)

This course describes the Chinese commerical, organizational, and cultural environment. Case studies of foreign businesses in China are examined, and the opportunities and pitfalls of operation in China are considered. Negotiation with Chinese counterparts is covered through a negotiation exercise. The focus is on mainland China, but some attention is given to business in Hong Kong and Taiwan as well. Students are required to prepare business plans for proposed Chinese ventures.

IRGN 462. Problems in the International Political

 Economy of the Asia-Pacific Region (4)This course examines a range of major applied international political economy issues confronting the AsiaPacific region. The central themes in the course are: the sources of rapid economic growth, the significance of international institutions designed to promote economic and regional integration, and the dynamics of major areas of economic and political tension within the region. Prerequisite: IRCO 411 or consent of instructor.

IRGN 463. Political Economy of Southeast Asia (4)
This course provides an introduction to five Southeast Asian countries: Indonesia, Thailand, Malaysia, the Philippines, and Vietnam. The focus will be on nation-al-level political and economic issues in these countries. In addition, a number of region-wide issues will also be examined such as: Chinese business groups and networks; clientelism and corruption; regional trade and investment linkages; democratization; and the implications of political change for future economic development.

IRGN 467. Policymaking and Political Economy in

Japan (4)
The policymaking process in Japan and the interaction and role of state and non-state actors in shaping Japan's economic development. Analysis and comparison, through case studies of industrial policies (toward high-tech and declining industries), and non-industrial policies and their consequences.

IRGN 468. Government and Business in Japan (4)

This course aims to identify and analyze the basic features of the Japanese political economy and govern-ment-business relationships in postwar Japan. Following an introduction to the constituents of Japanese political and industrial organization, specific aspects of financial and industrial policy (MOF/MITI) as well as regulation and corporate governance are discussed.

IRGN 469. The Japanese Financial System (4)
This course studies the financial system in Japan and analyzes its role in the development of the Japanese economy. Topics will include keiretsu and the main bank system, internationalization and deregulation of finance, the Bank of Japan and monetary policy. Prerequisites: IRCO 401 and 403.

IRGN 470.International Business Strategy (4)
This course analyzes corporate strategies and management issues in their international dimensions. Based on numerous case studies, the class examines the strategic opportunities and problems that emerge when companies transfer corporate skills and competence to other countries. Recommended: IRCO 456A.

IRGN 471. Japanese Economy (4)

A broad survey of the Japanese economy, together with in-depth examination of some distinctively Japanese phenomena such as savings behavior, financial structure, industrial organization, and labor markets. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 472. Japanese Corporate Culture (4)
This course examines Japanese cultural values and social relations in the context of business organizations. The central focus will be on the integration of individuals into their organizations and on the human relations characteristic of their work environments.

IRGN 473. APEC: Regional Integration, Policies and Procedures (4)
This course examines regional integration in the Asia Pacific from historical, institutional, and comparative perspectives. It considers the origins of the Asia Pacific Economic Cooperation (APEC) Forum, the diverse interests of APEC member economies, APEC institutional procedures, the implementations of trade and technical assistance initiatives, and the roles of the private sector and NGOs. Student participation and original research is emphasized.

IRGN 474. Latin American Societies: Social Classes and State Policies in a Comparative Perspective (4) Focuses on class structures, political mobilization, and government policies (economic and social policies in particular) in selected South American countries. Special attention will be given to the interaction between domestic and external economic and political processes.

IRGN 476. Doing Business in Latin America (4)
This course will explore the realities of conducting business in Latin America. The focus will be on discussing a variety of cases, mainly in four countries-Mexico, Brazil, Argentina and Chile-covering strategic, operational, organizational, and cross-cultural issues. Course format will consist of case studies and will include the development and presentation of a business plan.

IRGN 477. Latin American Politics (4)
Introductory reading seminar on Latin American politics to acquaint students with leading schools of thought, provide critical perspective on premises and methodology, and identify themes for further inquiry. Themes include authoritarianism, revolution, democratization, regional conflict, and emergence of middlelevel powers.

IRGN 478. Mexican Economic Policy (4)

This course offers an overview of economic policy in Mexico. It covers the shift from "stabilizing growth" in the 1950s and 1960s to crisis in the 1970s and 1980s and current reforms. International interactions and current developments are stressed. Prerequisites: IRCO 401 and 403.

IRGN 479. Politics and Institutions in Latin America (4) Overview of Latin American politics and the "rules of the game," both formal and informal. Key topics include military rule, presidentialism, and clientelism in the region as a whole, with special emphasis on Argentina, Brazil, Chile, and Mexico. Prerequisite: IRCO 400 or consent of instructor.

IRGN 480. Policy-Making in Latin America (4)

This course explores major policy issues in contemporary Latin America, especially the breaakdown of import substitution and subsequent liberalization of
economics. Special attention is given to the coalition strategies of politicians and the capacity of state institutions to deliver public goods. Prerequisite: IRGN 479 or consent of instructor.

IRGN 482. East Asian NICS (4)
Forces explaining the success of four economies in East Asia (South Korea, Taiwan, Hong Kong, Singapore), and two natural resource-rich states (Malaysia, Thailand) will be addressed. Theoretical models, implementation of development policies/strategies, and sociopolitical causes and consequences of development will be discussed. Prerequisites: IRCO 401 and 403, or IRCO 410 and 411, or consent of instructor.

IRGN 484. Korean Politics and Society (4)
This course will examine characteristics and distinctive aspects of contemporary Koreari society and politics. Emphasis will be placed on continuity and change in social values, political culture and leadership, economic growth and its impact, and democratization and its future prospects.

IRGN 485. The Political Economy of South Korea (4)

Analytical review of South Korea's economic performance. Examination of major policy changes (e.g., shifts toward export promotion, heavy and chemical industrial promotion); Korea's industrial structure including the role of large enterprises (chaebol); role of government; links between Korea and other rountries.

IRGN 486. Economic and Social Development of

China (4)
This course examines China's development experience from a generally economic standpoint. Contents include: patterns of traditional Chinese society and economy; geography and resource constraints; impact of the West and Japan; development since 1949; and contemporary problems and options.

IRGN 490. Special Topics in Pacific Internationa

Affairs (4)
A seminar course at an advanced level on a special topic in Pacific international affairs. May be repeated for credit.

IRGN 490x. Additional Special Topics in Pacific

International Affairs (4)
A seminar course at an advanced level on a special topic in Pacific international affairs. Variable instruction times expected.

IRGN 497. Internship (4-12)
Field research in an area relevant to career and/or regional specialization. May be repeated for credit.

IRGN 498. Directed Group Study (2-12)
Directed reading in a selected area. The content of each course is to be decided by the professor directing the course with the approval of the student's faculty adviser. May be repeated for credit.

IRGN 499. Independent Research (2-12)
Independent research under the guidance of a faculty member at IR/PS. May be repeated for credit.

LANGUAGE COURSES

IRLA 1A-B-C. First-Year Korean: Korean Conversation

(2-2-2)

Tutorial meetings to practice Korean conversation. Must be taken with IRLA $1 A X, B X, C X$.

IRLA 1AX-BX-CX. First-Year Korean: Analysis of Korean

 (3-3-3)introduction to the phonology, orthography, morphology, and syntax of the Korean language. Lectures and practice. Prerequisite: must be taken with IRLA IA, B, C.

RLA 3A-B-C. First-Year Vietnamese:Vietnamese

Conversation (2-2-2)
This course consists of tutorial meetings to provide additional training and practice in Vietnamese conversation. This course must be taken with IRLA 3AX-BX-CX.

IRLA 3AX-BX-CX. First-Year Vietnamese: Analysis of

 Vietnamese (3-3-3)This course provides an introduction to the phonology, orthography, morphology, and syntax of the Vietnamese language. The course format consists of lectures and practice. This is a course for students with no Vietnamese background.

IRLA 4A-B-C. Beginning Portuguese: Portuguese

 Conversation (4-4-4)Presentation and practice of basic grammatical structures needed for oral and written communication of Portuguese. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. For students with no Spanish background.

IRLA 11A-B-C. Second-Year Korean: Korean Conversation

 (2-2-2)Tutorial meetings to practice Korean conversation Must be taken with IRLA 11AX-BX-CX. Prerequisites: IRLA 1C and ICX or equivalent.

IRLA $11 A X-B X-C X$. Second-Year Korean: Analysis of

 Korean (3-3-3)A continuation of IRLA 1A, B, C. Through lectures and practice, students will review the basic structure of Korean and will be introduced to an intermediate-level analysis of Korean structure. Must be taken with IRLA 11A-B-C. Prerequisites: IRLA IC and ICX or equivalent.

RLA 33A-B-C. Second-Year Vietnamese:Vietnamese

Conversation (2-2-2)
Tutorial meetings to practice Vietnamese conversation Prerequisites: must be taken with IRLA 33AX, BX, CX. Completion of IRLA $3 A, 3 B, 3 C$ and $3 A X, 3 B X, 3 C X$ or consent of instructor.

IRLA 33AX-BX-CX. Second-Year Vietnamese: Analysis of Vietnamese (3-3-3)
A continuation of first-year Vietnamese. Through lectures and practice students will review the basic structure of Vietnamese and will be introduced to an intermediate level analysis of Vietnamese structure. Prerequisites: IRLA $3 A, 3 B, 3 C, 3 A X, 3 B X, 3 C X$ and must be taken with $33 A, B, C$ or consent of instructor.

IRLA 34A-B-C.Vietnamese for Bilingual Speakers (4-4-4) This course is for those students who have a high level of speaking proficiency in Vietnamese but little or no reading and writing abilities. Special emphasis in the development of reading and writing skills. Prerequisite: consent of instructor.

IRLA 145A-B-C. Vietnamese Language and Civilization

 (4-4-4)This course is designed to enable students at an inter mediate level of proficiency to maintain and improve their Vietnamese language skills through study of Vietnamese text focusing on Vietnamese culture and society from the sixteenth century to the present. Topics that will be examined include religion, politics, economics, and history. Prerequisites: prior ability to read, write and speak Vietnamese language, department stamp.

IRLA 400A-B-C. Chinese Language for Professional

Proficiency (4-4-4)
This course is designed to enable students at a lowintermediate level of proficiency to maintain and improve their Chinese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 401A-B-C. Chinese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Chinese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 402A-B-C. Chinese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at an advanced-intermediate level of proficiency to maintain and improve their Chinese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 403A-B-C. Chinese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at an advanced level of proficiency to maintain and improve their Chinese language skills through a combination of classes, language laboratories, exercises, and other lan guage experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 404A-B-C. Chinese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at a superior level of proficiency to maintain and improve their Chinese language skills through individual training with an instructor. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 406A-B-C. Technical Chinese Language (4)
A course designed to prepare IR/PS technical management track students to meet the language competency requirement in Chinese. Acquisition of technical Ianguage skills through classes, language, language laboratory, exercises, and other activities. Prerequisite: IR/PS technical concentration admission status or by consent of instructor.

IRLA 410A-B-C. Japanese Language for Professional Proficiency (4-4-4)

This course is designed to enable students at a low intermediate level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 411 A-B-C. Japanese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 412A-B-C. Japanese Language for Professional Proficiency (4-4-4)

This course is designed to enable students at an advanced-intermediate level of proficiency to maintain
and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 413A-B-C. Japanese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at an advanced level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 414A-B-C. Japanese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at a superior level of proficiency to maintain and improve their Japanese language skills through individual training with an instructor. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 416A-B-C. Technical Japanese Language (4)

A course designed to prepare IR/PS technical management track students to meet the language competency requirement in Japanese. Acquisition of technical lan guage skills through classes, language, language labo ratory, exercises, and other activities. Prerequisite: IR/PS technical concentration admission status or by consent of instructor.

IRLA 420A-B-C. Korean Language for Professional Proficiency (4-4-4)
This course is designed to enable students at a low intermediate level of proficiency to maintain and improve their Korean language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 421A-B-C. Korean Language for Professional Proficiency (4-4-4)

This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Korean language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 430A-B-C. Portuguese Language for Spanish

Speakers (4-4-4)
This course is designed to enable Spanish-speaking students to acquire proficiency in the Portuguese language through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 431A-B-C. Second Year Portuguese Language for

 Spanish Speakers (4-4-4)A continuation of first-year Portuguese for Spanish speakers. This course is designed to enable Spanishspeaking students to be introduced to an intermediate level of Portuguese language through a combination of classes, language, laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 440A-B-C. Spanish Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at a low intermediate level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and
other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 441A-B-C. Spanish Language for Professional Proficiency (4-4-4)

This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 442A-B-C. Spanish Language for Professional Proficiency (4-4-4)

This course is designed to enable students at an advanced-intermediate level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IP/Lane 443A-B-C. Spanish Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at an advanced level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 444A-B-C. Spanish Language for Professional Proficiency (4-4-4)

This course is designed to enable students at a superior level of proficiency to maintain and improve their Spanish language skills through individual training with an instructor. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 446A-B-C. Technical Spanish Language (4) A course designed to prepare IR/PS technical management track students to meet the language competency requirement in Spanish. Acquisition of technical lan guage skills through classes, language, language laboratory, exercises, and other activities. Prerequisite: IR/PS technical concentration admission status or by consent of instructor

IRLA 450A-B-C.Vietnamese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at a low intermediate level of proficiency to maintain and improve their Vietnamese language skills through a combination of classes, language laboratories, exercis es, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 451A-B-C. Vietnamese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Vietnamese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 452A-B-C.Vietnamese Language for Professional

 Proficiency (4-4-4)This course is designed to enable students at an advanced-intermediate level of proficiency to maintain and improve their Vietnamese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite IR/PS majors only, or by consent of instructor.

IRLA 460A-B-C. Bahasa Indonesia for Professional Proficiency (4-4-4)
This course is designed to enable students with basic knowledge and skills of Bahasa Indonesia to further develop communicative skillis through a combination of classes, exercises, and other language experiences.

IRLA 490. Special Topics in Language (2-12)
A seminar course at an advanced level on core linguistic functions and topics related to international management and policy work in the Pacific Rim area. Prerequisite: proficiency examination must be passed.

IRLA 500. Apprentice Teaching of Language (1-4)
This course, designed for graduate students serving as teaching assistants, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

PH.D. LEVEL COURSES

IRGN 202. International Political Economy: Money and Finance (4)
Examination of effects of national policies and international collaboration of public and private international financial institutions, in particular management of international debt crises, economic policy coordination, and the role of international lender of last resort. Conjoined with Political Science 262. Prerequisite: IRGN 211 or consent of instructor.

IRGN 203. The International Political Economy:Trade (4) This course examines the evolution of the international trading system, emphasizing issues of politics and policy. Topics include developments in the GATT, the emergence of regional trading blocs, protectionism, industrial policy, and the relationship between trade and direct investment. Students choose a particular sector to develop expertise. Prerequisite: IRGN 211 or consent of instructor.

IRGN 204. International Relations of the Pacific (4) International relations and developing international political economies of nations bordering the Pacific. Topics include: the "Pacific Basin" concept; the U.S. and "hegemonic-stability" theory; legacies of the Korean War and Sino-Soviet dispute; immigration patterns and their consequences; and Japan's foreign policy.

IRGN 206. The Politics of Democratization (4)
This course will examine the following questions: Why do some countries fail and others succeed in establishing democracies? How do leaders "institutionalize uncertainty"? Should economic or political liberalization come first? Why are there periodic "waves" of democratic breakthrough and breakdown? Conjoined with Political Science 224.

IRGN 207. Bureaucracy and Public Policy (4)
What determines the degree of influence bureaucrats exert over public policy outcomes, versus the influence of politicians? Overview of themes such as developmental state, state autonomy, legislative oversight, clientelism, corruption. Applications to Japan, East Asia, United States, and Latin America. Conjoined with Political Science 228.

IRGN 208. Internal Conflict after the Cold War (4)
Will examine the causes of civil wars and the problems with resolution and state reconstruction. Theoretical approaches discussed will then be applied to three recent case studies: Cambodia, Rwanda, and Bosnia.

Policy implications for the international community will be discussed. Prerequisites: IRCO 210.

IRGN 209. Principles of Marketing (4)
This course develops the microeconomics foundations of market exchange by explicitly examining the marketing details of transactions: demand and product differentation, incomplete and incorrect information, search costs and promotion costs. It is argued that within this theoretical framework (i.e., model) most observed marketing behavior can be reconciled. The primary objective of this course is to learn to deduce firm and consumer motives from observed behavior. Prerequisites: IRGN 221 and 243, or consent of instructor.

IRGN 210. International Politics and Security (4)
Development of analytic tools for understanding international relations with applications to contemporary problems such as the environment, nuclear proliferation, human rights, humanitarian interventions, and the roots of conflict and cooperation among countries.

IRGN 211. The Politics of International Economic

Relations (4)
The course presents explanations for the political organization of international economic relations in different issue areas. Additional topics include international economic inequality, efforts by states to manipulate economic relations for strategic gain, and the prospects for regional and global organizations.

IRGN 212. The Politics of International

Competitiveness (4)
Examination of policy debates concerning international economic relations: what policies promote or encourage effective participation in the international economy, and what political factors support or oppose such policies? Examples drawn from the experiences of the U.S., Japan, Europe, Latin America, and East Asia

IRGN 213. Derivative Asset Markets (4)
This course provides an introduction to derivative assets such as options, futures, and swap contracts. The main emphases is on their valuation, use in hedging, and role as components of liabilities that mitigate risk and agency problems in business firms. Prerequisite: IRCO 421.

IRGN 214. U.S. Strategic Policy Issues in a Changing

World (4)
Strategic issues facing the U.S. in the 1990 s will be described and analyzed. Issues taken up will include nuclear weapons policy, space policy, European and Northeast Asia security policies. Political, military, and technical aspects of these issues will be analyzed. Some background in political science and in quantitative analysis of issues desirable.

IRGN 215. Competition and Regulation in the Globa

 Communications Market (4)This course explores the global market for telecommunications, Internet, and information services. It analyzes how regulation and international trade rules influence market structure. It examines the politics underlying government rules, and it probes the strategies of corporation in the global market.

IRGN 216. Post War Politics in Japan (4)
Overview of postwar politics in Japan, including American Occupation reforms, political institutions, major political actors, mass and elite, and political behavior. Special attention will be paid to the issue of Japan's changing democracy.

IRGN 217. Models of International Change (4)

The seminar will explore models that account for international change by linking international (systemic or structural) and domestic variables. Particular attention will be given to evolutionary and learning models as they have been employed in a number of disciplines.

IRGN 219A-B-C. Workshop in International Relations (4) Examination of recent research in international politics; development and presentation of research projects by graduate students; presentation of research projects by faculty. Second year students present seminar paper; third year students present dissertation prospectus; candidates make yearly presentation of dissertation research. Prerequisite: Political Science 202 or consent of instructor. Conjoined with Political Science 283A-B-C.

IRGN 220. APEC: Integration, Policies and

Procedures (4)

This course examines regional integration in the Asia Pacific from historical, institutional, and comparative perspectives. It considers the origins of the Asia Pacific Economic Cooperation (APEC) Forum, the diverse interest of APEC member economies. APEC institutional procedures, the implementation of trade and technical assistance initiatives, and the roles of the private sector and NGOs. Student participation and original research is emphasized.

IRGN 221. Managerial Economics (4)
Survey of basic tools in economics. Examination of how commodity demand is determined, what affects supply of the commodity, how price is determined, when optimal market allocation of resources and failures occurs, and basic topics concerning the aggregate economy.

IRGN 222. Investments (4)
An analysis of the risk/return characteristics of different assets as perceived by different investors and their implications for security price behavior, emphasizing real world capital market behavior. International aspects include the role of exchange rate risk and international diversification.

IRGN 224. Corporate Finance (4)
The topics covered are dividend policy and capital structure, options, debt financing, and short- and longterm financial planning. Course format will be mostly lectures with occasional cases. Some international aspects of corporate finance will also be discussed.

IRGN 227. Organizations (4)
A seminar course based on the modern economics of organization. Covers an eclectic set of readings on a diverse range of organizations, looking at how incentives for collective action are structured. Prerequisites: IRGN 221 and 243.

IRGN 228. Government and Business in Japan (4)
This course aims to identify and analyze the basic features of the Japanese political economy and govern-ment-business relationships in postwar Japan. Following an introduction to the constituents of Japanese political and industrial organization, specific aspects of financial and industrial policy (MOF/MITI) as well as regulation and corporate governance are discussed. Additional paper and/or examination will be required at the doctoral level.

IRGN 229. Business and Management in Japan (4)
This course introduces the main aspects of Japanese business and industrial organization (keiretsu), Japanese management practices, and the representation and influence of business interests in the Japanese political economy.

IRGN 230. Trade and Economic Growth: Lessons from Pacific Basin Economies (4)
The purpose of this course is to survey economic relations among Pacific Basin economies, exploring relevant economic and public policy issues. Major topics include: productivity; trade; technology spill-over/transfer; foreign direct investment; factor and human capital accumulation; income distribution; and regional institutional arrangements. Prerequisites: IRGN 221 and IRGN 243.

IRGN 231. Fiscal and Monetary Policy (4)
Effects of fiscal and monetary policies on aggregate variables such as output, nominal and real interest rates, price level, and employment. Additional topics include the inflation/unemployment trade-off, budget deficit, and economic growth.

IRGN 233. International Finance (4)
The international financial system will be addressed including the perspectives of individual investors, borrowers, and financial intermediaries. Public policy issues including the exchange rate mechanism, financial link ages among countries, optimum currency areas, and macro-policy coordination will be discussed.

IRGN 234. Strategic Analysis (4)
This course analyzes competitive interactions, survey ing the modern economic analysis of relationships between and within organizations. The foundations of the course are game theory and the economics of information. Topics include bargaining and contracting, principal-agent models, and bidding models.

IRGN 235. Topics in International Trade (4)
Objective is to develop analytic tools and explore their rele-vance for trade policy issues. Focuses on a revolving set of issues, including the political economy of trade policy, strategic trade and industrial policy, trade and financial liberalization, the debate on trade, jobs, and wages, and trade and international technology transfer.

IRGN 237. Strategy and Planning in Production and

 Operations Management (4)This course examines manufacturing, distribution, and service activities that are relevant to the strategic man agement of operations. It explores the everyday control of operations, the design of the production system, and the interface between operations and other aspects of the firm's overall strategy. Prerequisite: IRGN 238 or con sent of instructor.

IRGN 238. Production and Operations Management:

Analysis and Control (4)

This course provides a comprehensive introduction to the fundamental decisions and trade-offs associated with the control of a firm's operations function. It analyzes production processes, quality control, inventory and materials planning, kanban, and just-in-time principles.

IRGN 239. International Manufacturing Strategy:

Selected Topics (4)

This course covers selected issues emerging from the recent trends in globalization of firms' manufacturing activities. Topics include globalization of the manufacturing base, international comparison of manufacturing management, and the role of manufacturing in the global competition. Prerequisite: IRGN 238 or consent of instructor.

IRGN 240. Applied Data Analysis and Statistical Decision

 Making (4)The goal of the course is to teach how to evaluate quantitative information in business and economics contexts and to make sound managerial decisions in complex situations. Much of the problems and the
course work will invoive statistical software and spreadsheet analysis of data. The course covers various applied multivariate statistical methods beyond basics.

IRGN 241. Seminar in Advanced Topics in Production and Operations Management (4)
Studies of advanced analytical techniques in operations management. Emphasis is on the application of various analytical methods to operational problems. Students are encouraged to carry out a research project for the actual application of these techniques. Prerequisite: IRGN 238 or consent of instructor.

IRGN 242. Economics of Telecommunications (4)
This course will focus on the underlying economics of the telecommunications and public rationale of regulations applied to this industry. Both theoretical models and case studies will be used to provide better understanding of the telecommunications marketplace and the nature of competition between service providers in the industry. Prerequisite: IRGN 221 or consent of instructor.

IRGN 243. International Economics (4)
The theory and mechanics of international economics. inclu-ded will be such topics as real trade theory, international movements of capital, the effects of trade and capital flows on domestic economies, and policies toward trade and foreign investment.

IRGN 244. Product Design and Process Development (4) Engineering management, emphasizing creation and improvement of products and processes. Cases, lectures, and team exercises set in various industries, including software. Prerequisites: IRGN 238 or consent of instructor plus experience in manufacturing, engineering, or software.

IRGN 245. Entrepreneurship (4)
Student teams (3-5) are admitted to the course on the basis of a pro forma business plan. While teams perfect their plans, class discussions cover aspects of creating and planning new businesses, culminating in presentations of their final plans. Prerequisite: consent of instructor.

IRGN 248. Politics and Political Institutions in Southeast

 Asia (4)This course examines key aspects of political life in one or two selected Southeast Asia countries, focusing on the interrelationship between political problems in these rapidly changing societies and their political institutions. The countries considered may vary from year to year. Prerequisite: IRGN 263 or consent of instructor.

IRGN 249. Making U.S. Foreign Policy (4)

Analysis of the interests, structure, and procedures of the main executive branch agencies involved in the formulation of foreign policy, and of the roles of Congress, the media, public opinion, and non-governmental actors. Case studies and "daily briefings" to prepare students to perform professionally in the foreign policy arena. Prerequisite:IRGN 210 or consent of instructor.

IRGN 250. The Politics of U.S.-Japan Economic

Relations (4)
This course will analyze how the domestic politics of each country, their international negotiations, and their interaction concerning economic issues have affected the U.S.-Japan relationship. Both the politics of cooperation and integration, and trade friction and conflict will be addressed in part through study of specific cases.

IRGN 251. Economic Development (4)
This course examines comparative patterns of industrialization and agricultural modernization with a focus on certain common features of the modernization process and widely varying endowments, policies, and experiences of different countries.

IRGN 253. Sustainable Development (4)
The course will cover the concept of sustainable development, ways in which sustainable development can be measured, evaluation of environmental damages and benefits, and the role of discounting, and will analyze cases demonstrating failure of the market.

IRGN 254. International Relations Theory (4)
A survey of the principal theories and approaches to the study of international relations. Conjoined with Political Science 240.

IRGN 255. Globalization (4)
This seminar surveys ideas about economic globalization. Discussion focuses on production "chains,"--the division of products into components, and their distribution around the world.

IRGN 256. Program Design and Evaluation (4)
Introduction to elements of program design and evaluation. Examines principles and guidelines used in creating a program and evaluating its success or failure. International case studies are explored. Students have the opportunity to develop their own program and evaluation projects.

IRGN 257. Policy Analysis and the Environment (4)
Examination of public policy analysis, such as cost-benefit analysis and project evaluation, for use in policy formation. Sustainable development will receive particular attention. Case studies emphasizing the environment, agriculture and food, and economic development will be included.

IRGN 258. International Environmental Policy (4)

Review of environmental issues, including transboundary air and water pollution, acid rain, ozone depletion, species eradication, whaling, and climate change. Economic, political, and social consequences of international environmental disputes. Current approaches to environmental policy analysis.

IRGN 259. Conflict Resolution of Environmental

Issues (4)
Use of bilateral negotiations (U.S.-Canada), regional organization (ECE and acid rain in Europe), and United Nations specialized agencies (UNEP and WMO on ozone depletion and climate change) to mediate environmental disputes. Consideration of nontraditional approaches resolving international environmental problems.

IRGN 260. Economic and Social Development of

China (4)

This course examines China's development experience from a generally economic standpoint. Contents include: patterns of traditional Chinese society and economy; geography and resource constraints; impact of the West and Japan; development since 1949; and contemporary problems and options.

IRGN 261. Chinese Politics (4)
This course will analyze post-1949 Chinese politics, including political institutions, the policymaking process, and citizen political behavior. Special attention
will be given to the prospects for political reform in China.

IRGN 262. Theories of the Politics and Process of Making

 Public Policy (4)Introduction to research methods in comparative policy analysis and to the design of research proposals. Survey of major competing approaches in the field, with analysis of methods used. Special attention to needs of Ph.D. students formulating dissertation proposals.

IRGN 263. Political Economy of Southeast Asia (4)

This course provides an introduction to five Southeast Asian countries: Indonesia, Thailand, Malaysia, the Philippines, and Vietnam. The focus will be on national level political and economic issues in these countries. In addition, a number of region-wide issues will also be examined such as: Chinese business groups and networks; clientelism and corruption; regional trade and investment linkages; democratization; and the implications of political change for future economic development

IRGN 267. Policymaking and Political Economy in

Japan (4)
Examines the policymaking process in Japan, the interaction and role of state and non-state actors in shaping Japan's economy. Analysis and comparison, through case studies of industrial policies (toward high-tech and declining industries), and non-industrial policies and their consequences.

IRGN 268. Political Development and Modern China (4)
This course examines how political development has dominated the study of comparative politics among U.S. academicians since the revival of the Cold War in 1947. The central focus is on the Western philosophical roots of this paradigm in the context of the experience of modern China. Cojoined with Political Science 132C/232C.

IRGN 269. The Japanese Financial System (4)
This course studies the financial system in Japan and analyzes its role in the development of the Japanese economy. Topics will include keiretsu and the main bank system, internationalization and deregualtion of finance, the Bank of Japan and monetary policy. Prerequisites: IRGN 221 and 243.

IRGN 270. International Business Strategy (4)

This course analyzes corporate strategies and management issues in their international dimensions. Based on numerous case studies, the class examines the strategic opportunities and problems that emerge when companies transfer corporate skills and competence to other countries.

IRGN 271. Japanese Economy (4)

A broad survey of the Japanese economy, together with in-depth examination of some distinctively Japanese phenomena such as savings behavior, financial structure, industrial organization, and labor markets.

IRGN 272. Japanese Corporate Culture (4)
This course examines Japanese cultural values and social relations in the context of business organizations. The central focus will be on the integration of individuals into their organizations and on the human relations characteristic of their work environments.

IRGN 273. Current Issues in U.S.-Latin American

Relations (4)

This course features active debate of such issues as the collective defense of democracy, coping with revolu-
tionary change, counternarcotics, anti-corruption, international finance, trade, and U.S.-Mexican and U.S.Brazilian relations. In each case, students analyze the strengths and weaknesses of current U.S. policy and advocate alternative options. Prerequisite: IRCO 410 or consent of instructor

IRGN 274. Economic Policy in Latin America (4)
This course seeks to enhance the students' understanding of the main policy alternatives open to the largest Latin American countries. Development and stabilization policies are analyzed, emphasizing current debate between conventional and heterodox policy packages and their impact on decision making.

IRGN 277. Latin American Politics (4)
Introductory reading seminar on Latin American politics to acquaint students with leading schools of thought, provide critical perspective on premises and methodology, and identify themes for further inquiry. Themes include authoritarianism, revolution, democratization, regional conflict, and emergence of middlelevel powers. Conjoined with Political Science 235A.

IRGN 278. Mexican Economic Policy (4)

This course offers an overview of economic policy in Mexico. It covers the shift from "stabilizing growth" in the 1950s and 1960s to crisis in the 1970s and 1980 s and current reforms. International interactions and current developments are stressed.

IRGN 279. Doing Business in Latin America (4)

This course will explore the realities of conducting business in Latin America. The focus will be on discussing a variety of cases, mainly in four countries-Mexico, Brazil, Argentina and Chile-covering strategic, operational, organizational, and cross-cultural issues. Course format will consist of case studies and will include the development and presentation of a business plan

IRGN 280A-B-C. Graduate Policy Seminar: Comparative Analysis of Political Decision Making (4-4-4)

Three quarter sequence requirement for all doctoral candidates. This course aims to develop theoretical approaches to the study of policymaking in the countries of the Pacific region, including China, Japan, Korea, Taiwan, Hong Kong, Singapore, Latin America, and Canada. The focus is on political institutions and how they structure collective choice and incentives for individual behavior. Participants will research case studies of policymaking and present their findings to the class. As a group, they will also contribute to the process of generating theories about the consequences of different institutional arrangements for policy outcomes.

IRGN 282. East Asian NICS (4)

Forces explaining the success of four economies in East Asia (South Korea, Taiwan, Hong Kong, Singapore), and two natural resource-rich states (Malaysia,Thailand) will be addressed. Theoretical models, implementation of development policies/strategies, and sociopolitical causes and consequences of development will be discussed.

IRGN 284. Korean Politics and Society (4)

This course will examine characteristics and distinctive aspects of contemporary Korean society and politics. Emphasis will be placed on continuity and change in social values, political culture and leadership, economic growth and its impact, and democratization and its future prospects.

IRGN 285. The Political Economy of South Korea (4)
Analytical review of South Korea's economic performance. Examination of major policy changes (e.g., shifts toward export promotion, heavy and chemical industri al promotion); Korea's industrial structure including the role of large enterprise (chaebol); role of government links between Korea and other countries.

IRGN 287. Politics and Institutions in Latin America (4) Overview of Latin American politics and the "rules of the game," both formal and informal. Key topics include military rule, presidentialism, and clientelism in the region as a whole, with special emphasis on Argentina Brazil, Chile, and Mexico.

IRGN 290. Special Topics in Pacific International

Affairs (4)
A seminar course at an advanced level on a special topic in Pacific international affairs. May be repeated for credit

IRGN 298. Directed Group Study (2-12)

Directed reading in a selected area. The content of each course is to be decided by the professor directing the course, with the approval of the student's faculty adviser. May be repeated for credit.

IRGN 299. Independent Research (2-12)
Independent research under the guidance of a faculty member at IR/PS. May be repeated for credit.

Italian Studies

OFFICE: 3024 Humanities and Social Sciences
Building, Muir College (CAESAR Office)
Web site: http://orpheus.ucsd.edu/history/ ItalianStud.htm|

Professor

Robert Westman, Ph.D., History

Associate Professors

Jack Greenstein, Ph.D., Visual Arts
John Marino, Ph.D., History
Stephanie Jed, Ph.D., Italian and
Comparative Literature
Pamela Radcliff, Ph.D., History
Pasquale Verdicchio, Ph.D.,Italian and
Comparative Literature

Assistant Professor

Nancy Caciola, Ph.D., History

Lecturer

Adriana de Marchi Gherini, Ph.D., Italian Language and Literature

Italian studies is an interdisciplinary program in the language, literature, history, and art of Italy.

Italian studies coordinates the resources of the Departments of History, Literature, and Visual Arts, and offers students the opportunity to design a major, leading to a B.A., around the course offerings of these three departments. Students in Italian studies are encouraged to participate in the University of California Education Abroad Program (EAP), which is affiliated with the Universities of Padua, Venice, and Bologna: this provides the possibility of a junior year abroad, including both language courses and courses dealing with various aspects of Italian studies. EAP credits may be transferred back to UCSD to coordinate with on-campus offerings.

The Major Program

A major in Italian studies consists of a choice of twelve upper-division courses in literature, history, and visual arts approved for the program and listed below. Each of the three areas (literature, history, and visual arts) must be represented in the student's program of study, with at least two courses from each field. The particular courses making up each student's major will be selected in consultation with the program adviser. Literature 115 (Medieval Studies) is a required course for all Italian studies majors.

The Minor Program

A minor in Italian studies consists of seven upper-division courses from among those listed below (at least two each from literature, history, and visual arts). Credit from the EAP program may be applied toward the minor.

Additional courses counting toward a major in Italian studies are offered on a year-to-year basis. As these often cannot be listed in the catalog in advance, interested students should consult the program faculty for an up-to-date list.

Upper-Division/Italian Studies

Courses

For description of courses listed below, see appropriate departmental listing.

Literature

LTIT 1A. The Language of the Italian Theater
LTIT 1B. The Language of the Italian Opera

LTIT 1C. The Language of the Italian Film and Literature
LTIT 100. Introduction to Italian Literature
LTIT 110. Selected Topics in Italian Literature (may be repeated for credit as topics vary)
LTIT 115. Medieval Studies
LTIT 116. Sixteenth-Century Prose
LTIT 118. Italian Romanticism
LTIT 122. Studies in Modern Italian Culture
LTIT 136. Studies in Modern Italian Poetry
LTIT 137. Studies in Modern Italian Prose
LTIT 138. Contemporary Italian Thought
LTIT 140. Women in Italy
LTIT 143. Major Italian Authors
LTTT 150. Italian North American Culture
LTIT 161. Advanced Stylistics and Conversation
LTIT 190. Seminar
LTIT 196. Honors Thesis
LTIT 198. Directed Group Study
LTIT 199. Special Studies
N.B.: Students must complete the following prerequisites for all upper-division work in Italian literature:

1. Linguistics/talian 1A-B-C, or LTIT 1A-B-C
2. Literature/Italian $2 A-B, 50$

Visual Arts

122BN. Italian Art of the Early Renaissance 122CN. High Renaissance Art
122D. Michelangelo
122E. The City in Italy
128BN. Topics in Early Modern Art History (when on Italian topic)
129BN. Special Problems in Early Modern Art History (when on Italian topic)

History (HIEU)

122. Politics, Italian Renaissance Style 124. The City in Italy
123. Independent Study for Undergraduates

Japanese Studies

OFFICE: 3024 Humanities and Social Sciences Building, Muir College
Web site:http://orpheus.ucsd.edu/history/ JapaneseStud.html

Faculty

Yumiko Blanford, Lecturer, History (Japanese Language)
Takashi Fujitani, Associate Professor, History
Takeo Hoshi, Professor, International Relations and Pacific Studies
Germain A. Hoston, Professor, Political Science
Hifumi Ito, Lecturer, History (Japanese Language)
Noriko Knickerbocker, Lecturer, History (Japanese Language)
Ellis Krauss, Professor, International Relations and Pacific Studies
Sige-Yuki Kuroda, Professor Emeritus, Linguistics
Mayumi McKee, Lecturer, History (Japanese Language)
Masao Miyoshi, Hajime Mori Professor of Japanese, English, and Comparative Literature
Masato Nishimura, Lecturer, History (Japanese Language)
Ulrike Schaede, Associate Professor, International Relations and Pacific Studies
Stefan Tanaka, Associate Professor, History
Yasu-Hiko Tohsaku, Professor, International Relations and Pacific Studies
Christena Turner, Associate Professor, Sociology
Lisa Yoneyama, Associate Professor, Literature
Joji Yuasa, Professor Emeritus, Music
The Program in Japanese Studies coordinates a variety of campus offerings dealing with the language, history, culture, and political economy of Japan. The program is especially strong in the area of modern and contemporary Japan. In addition to courses available in the Departments of Anthropology, Economics, History, Linguistics, Literature, Music, Political Science and Sociology, qualified undergraduates also may enroll in Japan-related courses in the Graduate School of International Relations and Pacific Studies with consent of instructors.

The Major

A. LOWER-DIVISION REQUIREMENT (9 COURSES)

1. Japanese language: two years lower-division or the transferred equivalent: Japanese Studies 10A-B-C Japanese Studies 20A-B-C
2. The remaining three courses may be chosen from among the following:
a. East Asian History: HILD 10-11-12
b. Eleanor Roosevelt College students may petition to use MMW Courses 2 and 5.
c. Thurgood Marshall College students may petition to use DOC course 1 .
3. The language requirement may be waived by demonstrating the equivalent proficiency through exam.

B. UPPER-DIVISION REQUIREMENT (12 COURSES)

1. Japanese Language: six upper-division language courses or the transferred equivalent from:

Japanese Studies 100A-B-C
Japanese Studies 130A-B-C
Japanese Studies 140A-B-C
Japanese Studies 150A-B-C
2. Japanese Studies 190 (JAPN 190): Selected Topics in Contemporary Japanese Studies. This is a seminar-style course focusing on selected topics in contemporary interdisciplinary studies of Japan. This course will be offered once a year.
3. The remaining five courses must be taken from two or more different disciplines.
a. Students may petition to include two non-language upper-division courses taken abroad under EAP or OAP.
b. Students may include one 199.
c. Students may include one course on China or Korea.
4. All upper-division courses must be taken for a letter grade.
5. The language requirement can be waived by demonstrating the equivalent proficiency through exam. The required number of courses must be fulfilled by taking other non-language upper-division courses.

C. HONORS PROGRAM

1. Junior Standing.
2. A GPA of 3.5 or better in the major.
3. Overall GPA of 3.2 or better.
4. Completion of at least four upper-division non-language courses approved by the Program in Japanese Studies.
5. Recommendation of a faculty sponsor familiar with the student's work.
Students who qualify for honors take a twoquarter sequence Japanese Studies 196A-B (fall and winter quarters preferred) of directed study during which they define a research project, carry out the research, and complete an honors thesis.
The completed honors thesis will be evaluated by a committee consisting of the student's thesis
adviser and one other faculty member appointed by the Japanese studies program director.

The Minor

A minor in Japanese studies consists of at least 15 units of Japanese language (lower or upperdivision) and at least 16 units of upper-division non-language coursework taken from two or more departments. Students may use one nonlanguage course taken abroad. All courses to be used for the minor must be approved by the Program in Japanese Studies and must be taken for a letter grade. Students who are already beyond first- and second-year language levels will be placed in one of our upper-division Japanese language courses, Written Japanese (100ABC), Third-Year Japanese (130ABC), Fourth-Year Japanese (140 ABC), or Advanced Japanese (150 ABC), and will be required to take four upperdivision language courses and three upperdivision non-language courses.

COURSES

All graduate-level courses require permission of the instructor for undergraduate students. Course titles may vary from year to year.

HISTORY

HIEA 110. Japan: Through the Twelfth Century HIEA 111. Japan: Twelfth through Mid-Nineteenth Century
HIEA 112. Japan: from Mid-Nineteenth Century through U.S. Ocupation

HIEA 113. The Fifteen-Year War in Asia and the Pacific HIEA 114. Postwar Japan
HIEA 160. Colloquium on Modern Japanese History
HIEA 161. Representing Japan

JAPANESE STUDIES

JAPN 190. Selected Topics in Contemporary Japanese Studies

LANGUAGE

(Students who have prior preparation of Japanese language are placed in language courses based on the results of a placement exam or an oral interview with an instructor. Students who have lived in Japan, or use Japanese at home are required to take a placement exam administered prior to the beginning of the fall quarter. Contact the Japanese Studies office for more information.)

10A-B-C. First-Year Japanese
(No prior study of Japanese language is required for 10A.) Prerequisites for ' B ' and ' C ': previous course or consent of instructor.

20A-B-C. Second-Year Japanese
Prerequisites: previous course or consent of instructor.
100A-B-C. Japanese for Bilingual Speakers I
(These courses are for those students who have a high level of speaking proficiency in Japanese but no or little reading and writing abilities.) Prerequisite for ' A ': consent of instructor. Prerequisites for ' B ' and ' C ': previous course or consent of instructor.

130A-B-C. Third-Year Japanese
Prerequisites: previous course or consent of instructor.
140A-B-C. Fourth-Year Japanese
Prerequisites: previous course or consent of instructor.
150A-B-C. Advanced Japanese
Prerequisites: previous course or consent of instructor.

LINGUISTICS

146. Structure of Japanese

LITERATURE

LTEA 130. Earlier Japanese Literature in Translation
Quarter offerings will vary among A. General Literature; B. Poetry; C. Prose Fiction; D. Drama; and E. Essays, travelogues, diaries, etc.)

LTEA 132. Later Japanese Literature in Translation (Quarter offerings will vary among A. General Literature; B. Poetry; C. Prose Fiction; D. Drama and Film; and E. Essays, criticism, etc.)
LTEA 134. A Single Japanese Author (in translation)
LTEA 136. Special Topics in Japanese Literature
LTWL 155. Gender Studies
LTCS 120. Historical Perspectives on Culture
LTCS 130. Gender, Race, Ethnicity/Class, and Culture
LTCS 150. Topics in Cultural Studies
Lit/Th 240. Forms and Genres (when on Japan)

MUSIC

(Check with program office as to whether these courses may be used toward a Japanese studies minor.)
111. World Music
211. Seminar in World Music

POLITICAL SCIENCE

132B. Modernity and Identity in East Asia
133A. Introduction to Japanese Politics
133D. Japanese Foreign Policy
133E. Public Policy in Japan
233. Politics and Political Economy in Contemporary Japan

SOCIOLOGY

SOC/D 158J. Religion and Ethics in China and Japan
SOC/B 162R. Religion and Popular Culture in East Asia

GRADUATE SCHOOL OF INTERNATIONAL RELATIONS AND PACIFIC STUDIES

IP/Gen 400. International Relations of the Pacific
IP/Gen 469. The Japanese Financial System
IP/Gen 471/271. Japanese Economy
IP/Gen 472/272. Cultures of Japanese Business Organizations
IP/Core 434A-B/270A-B. Modern Japanese Political Economy

IP/Gen 473/273. Japan's Foreign and Defense Policies
IP/Core 473A-D, 474A-D, 475A-D. Japanese Language Maintenance for Professional Proficiency

Judaic Studies

OFFICE: 4008 Humanities and Social Sciences Building, Muir College
http://orpheus-1.ucsd.edu/history/JudaicStud.html

Faculty

David Noel Freedman, Ph.D., Professor, History; Endowed Chair, Hebrew Biblical Studies Richard Elliott Friedman, Th.D., Professor, Hebrew and Comparative Literature; Katzin Chair in Jewish Civilization; Director, Judaic Studies David M. Goodblatt, Ph.D., Professor, History; Endowed Chair in Judaic Studies Thomas E. Levy, Ph.D., Professor, Anthropology William H.C. Propp, Ph.D., Professor, History

Other Faculty Offering Courses in Judaic Studies

Robert McC. Adams, Adjunct Professor, Anthropology
Guillermo Algaze, Professor, Anthropology
Steven Cassedy, Ph.D., Professor, Literature
Arthur Droge, Ph.D., Professor, Literature
Sanford Lakoff, Ph.D., Professor Emeritus, Political Science
Alden A. Mosshammer, Ph.D., Professor, History Jonathan Saville, Ph.D., Associate Professor Emeritus, Theatre and Dance
Gershon Shafir, Ph.D., Professor, Sociology
Melford E. Spiro, Ph.D., Professor Emeritus, Anthropology
Alana Shuster, Lecturer, Hebrew
Judaic Studies is an interdisciplinary program offering courses, majors, minors, concentrations, and masters and doctoral degrees in Judaic studies that draw upon a variety of perspectives.

Courses are offered in the Departments of Anthropology, History, Literature, Music, Political Science, Philosophy, and Sociology.

Students also have the option within the Literatures of the World major, in the Department of Literature, of concentrating on Judaic literature; or on a combined program of the Literatures of the World major (concentration in Judaic literature) and classical studies.

In addition, Revelle and Muir Colleges have noncontiguous minors in Judaic studies and in Hebrew language and literature; Warren College has Judaic studies and Hebrew literature concentrations; and various general requirements in all colleges can be met by courses in the Judaic area. For details students should inquire at their provost's office or at the Judaic Studies Program office.

The Judaic Studies Program offers scholarships and fellowships for study abroad.

Students are encouraged to participate in the UC Education Abroad Program (EAP) in Jerusalem or Beersheva, and to investigate other options through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/ OAP can fulfill UCSD degree, major, and minor requirements. Interested students should contact the Programs Abroad Office in the International Center for more information. Please visit the Web site at http://orpheus.ucsd.edu/icenter/pao.

In addition, the Judaic Studies Program and UCSD Department of Anthropology offer credit and hands-on experience in Near Eastern archaeology at their archaeological field school in Israel or Jordan. Up to twelve units of academic credit may be earned through the UCSD Summer Session Program. Some scholarships are available through Judaic Studies. For more information call the UCSD Summer Session Office. Or visit our Web site at: http://weber.ucsd.edu/Depts/Anthro/classes/tlevy for our archaeological field schools in Israel and Jordan. For a general overview of the Judaic Studies Program see:http://orpheus.ucsd.edu/ history/JudaicStud.html.

Major

Requirements for the major in Judaic studies are:

1. Judaic Studies 100 or equivalent; HITO 104, HITO 105.
2. Twelve upper-division courses in Judaic studies, to be selected in consultation with a faculty adviser.
3. Upper-division competence in Hebrew, normally to be fulfilled by completion of first- and second-year Hebrew language courses, or equivalent.

Minors

A. Requirements for the minor in Judaic studies:

1. Judaic Studies 100, HITO 104, HITO 105.
2. Four upper-division courses in Judaic studies, to be selected in consultation with a faculty adviser.
B. Requirements for the minor in Hebrew language and literature:
Seven quarter courses in Hebrew language and literature, ordinarily Judaic Studies 1,2,3, 101, 102, and 103 plus one elective course.
Note: Other course combinations for the major and minor may be approved by the student's faculty adviser.

Note: A majority of the courses for the major or minor must be taken at UCSD.

THE PH.D.IN ANCIENT HISTORY

The aim of the doctoral program is to produce skilled, interesting scholars and teachers who are specialists in a particular area but who have also mastered the tools of biblical scholarship in general. These include skills in history, literature, archaeology, anthropology, epigraphy, history of religion, and Near Eastern languages. Each student works in a major field and two minor fields. The program includes coursework in archaeology, and students also have the opportunity to do fieldwork in the program's excavations if they choose. Students must acquire competence in the languages necessary for their work. For those, whose concentration is in Hebrew Bible, the required languages are Hebrew, Greek, Aramaic, Akkadian, Ugaritic, German, and French. For those whose concentration is in post-biblical Jewish history, the required languages are Hebrew, Aramaic, and Greek.

THE PH.D. IN ANTHROPOLOGY (ARCHAEOLOGY)

The Department of Anthropology offers graduate training in social, cultural, and psychological anthropology. Graduate training in anthropological archaeology and biological anthropology has recently begun at UCSD. In conjunction with the

Judaic Studies Program, students may concentrate in Near Eastern archaeology with a focus on Israel and Jordan. Students pursuing anthropological archaeology are expected to take required courses in anthropology and engage in field research.

THE M.A. IN JUDAIC STUDIES

The M.A. in Judaic Studies, offered under the auspices of the Department of History, is an interdisciplinary program permitting the student to select courses primarily in history and literature, but also in anthropology, political science, sociology, and philosophy. Some teaching opportunities may be available for M.A. students as well.

FELLOWSHIPS

Substantial fellowships are available for Ph.D. students. These include:

The Dita Gumpel Judaic Studies Endowed Fellowship
The University Fellowship
The Wexler Family Judaic Studies Fellowship
Fund in honor of David Noel Freedman

Judaic Studies Fellowships

Teaching assistantships in the Revelle College Humanities/Writing Program and in other writing programs. Dissertation fellowships may be awarded to doctoral students at the dissertation stage of their studies. Funds are also available for support of travel to archaeological excavations. Students are also eligible for research-travel funds to other campus libraries of the University of California, as well as for grants that permit research in archives and libraries elsewhere. Students who read papers at scholarly conferences may also receive financial support for their participation.

Archaeology

Since 1993, the Judaic Studies Program has sponsored major archaeological excavations in Israel's northern Negev desert. Shortly after the peace treaty was formalized between Israel and Jordan, the program began a long-term archaeological field program in the Jabal Hamrat Fidan Region (JHF) of southern Jordan. The project aims at studying the influence of early ore procurement and metallurgy on social change from the Neolithic period through the Iron Age. UCSD graduate students play an active role in the fieldwork and laboratory studies of material from these excavations. Qualified students in the pro-
gram are encouraged to use these data as part of their doctoral studies. In 2003, the program plans a major archaeological excavation at the !ron Age metal production town of Khirbet en-Nahas in the JHF research area.

The Judaic Studies Program supports a state-of-the art archaeological laboratory in the Social Sciences Building on the UCSD campus. A wide range of digital-based technologies is used for archaeological data and image processing that are linked through the internet. Labs for processing pottery, stone tools, and other materials are available for student use.

Publications

The program produces a series of volumes: Biblical and Judaic Studies from the University of California, San Diego (published by Eisenbrauns). The Anchor Bible (Commentary, Reference Library, and Dictionary) is edited by David Noel Freedman at UCSD. The program has published four volumes that were developed from international conferences held at UCSD.

Lectures and Conferences

The program regularly hosts international conferences and an annual series of lectures and seminars by distinguished scholars in Hebrew Bible, Archaeology, and Judaica. The Yigal Shiloh Memorial Lecture in Archaeology, is given by an archaeologist each year in memory of Professor Yigal Shiloh.

Application Procedures

The deadline for applications is January 15.
For further information contact:
University of California, San Diego GRADUATE PROGRAM, JUDAIC STUDIES 0104 9500 Gilman Drive
La Jolla, California 92093-0104
email:jdempsey@ucsd.edu

COURSES

Following are course offerings in this area.
For descriptions of the courses listed below, refer to the appropriate department's section of the catalog.
Judaic Studies 1. Beginning Hebrew (4)
Acquisition of basic vocabulary, fundamentals of Hebrew grammar, conversation, and reading.

Judaic Studies 2. Intermediate Hebrew (4)
Continued study of vocabulary and grammar, emphasis on fluency in conversation, and reading.

Judaic Studies 3. Intermediate Hebrew, Continued (4) Vocabulary, grammar, conversation, introduction to literary and nonliterary texts.

Judaic Studies 100. Introduction to Hebrew Bible (4) (Formerly JS 100A) An introduction to the Hebrew Bible focusing on the first five books, the Torah.

Judaic Studies 101. Introduction to Hebrew Texts (4) Reading and analysis of texts from Biblical through modern authors, study of advanced vocabulary and grammar. Course taught in Hebrew and in English.

Judaic Studies 102. Intermediate Hebrew Texts (4)
Further reading and analysis of Hebrew literature from a range of periods. Advanced grammar and vocabulary. Course taught in Hebrew and in English.

Judaic Studies 103. Advanced Hebrew Texts (4)
Synthesis of fluency, reading, and grammatical skills. Reading of texts from a range of periods.

Judaic Studies 110. Introduction to Judaism (4)
An introductory survey of Jewish history, literature, and culture from antiquity to contemporary times. Topics include sacred texts, the variety of groups and views of Judaism, the historical and geographical movements of the Jewish people, and the intersection of religion, ethnicity, and culture.

Judaic Studies 111.Topics in Judaic Studies (4)
Study of a particular period, theme, or literature in Jewish civilization.

ANLD 3. World Prehistory (4)
ANGN 142. Pastoralism in Archaeological Ethnographic Perspective (4)

ANGN 181. (formerly ANGN 145) Anthropological Archaeology (4)
ANGN 183. Chiefdoms, States, and the Emergence of Civilizations (4)

ANPR 194. Archaeological Field School (4)
ANRG 116. Archaeology of Society in Syro-Palestine (4)
ANRG 150. The Rise and Fall of Ancient Israel (4)
ANRG 162. Peoples of the Middle East (4)
HIGR 260A-B-C. Seminar in the Judaic Studies (4-4-4)
HIGR 261. Seminar in Hebrew Bible (4)
HIGR 264. Topics in Pre-Islamic Jewish History (4)
HIGR 295. Thesis Seminar
HIGR 296. M.A. Thesis Direction
HIGR 298. Directed Reading (1-12)
HIGR 299. Ph.D.Thesis Direction (1-12)
HIGR 500. Apprentice Teaching (1-40)
HINE 100. The Ancient Near East and Israel (4)
HINE 102. The Jews in Their Homeland in Antiquity (4)
HINE 103. The Jewish Diaspora in Antiquity (4)
HINE 104. The Bible and the Ancient Near East: The Primary History (4)
HINE 105. The Bible and the Near East:The Prophets (4)
HINE 106. The Bible and the Near East: The Writings (4)
HINE 108. The Middle East before Islam (4)
HINE 114. History of the Islamic Middle East (4)
HINE 115. The Middle East Since 1600 (4)

HINE 116. The Middle East in the Age of European Empires (1798 to 1914) (4)
HINE 118. The Middle East in the Twentieth Century (4)
HINE 160/260. Special Topics in the Bible and Ancient Near East (4)

HINE 166/266. Nationalism in the Middle East (4)
HINE 170/270. Special Topics in Jewish History (4)
HINE 171A/271A. Introduction to Aramaic Language (4)
HINE 171B/270B. Introduction to Aramaic Dialects (4)
Prerequisite: previous course.
HINE 171C/270C. Continued Study of Aramaic
Dialects (4)
Prerequisite: previous course.
HINE 172A/272A. The Evolution of the Northwest Semitic Dialects (4)
Prerequisites: knowledge of at least one Semitic language; a course in general linguistics also desirable.

HINE 172B/272B. Introduction to Ugaritic (4)
Prerequisite: previous course.
HINE 172C/272C. Advanced Ugaritic (4)
Prerequisite: previous course.
HINE 173A/273A. Introduction to Akkadian Language and Mesopotamian Culture (4)

HINE 173B/273B. Continued Akkadian Language (4) Prerequisite: previous course.

HINE 173C/273C. Advanced Akkadian Language (4)
Prerequisite: previous course.
HINE 181/281. Problems in Hebrew Manuscripts (4)
HINE 199. Independent Study in Near Eastern
History (4)
HITO 100. Religious Traditions: Ancient Near Eastern Religions (4)
HITO 101. Religious Traditions: Judaism, Christianity,

Islam (4)

HITO 104. The Jews and Judaism in the Ancient and Medieval Worlds (4)
HITO 105. The Jews and Judaism in the Modern World (4)
Humanities 1.The Foundations of Western Civilization: Israel and Greece (6)
LTCO 212. Studies in the Hebrew Bible (4)
LTNE 100. The Bible and Western Literature (4)
LTNE 101. Bible: The Narrative Books (4)
LTNE 102. Bible: The Prophetic Books (4)
LTNE 103. Bible: The Poetic Books (4)
LTNE 112. Medieval Hebrew Literature (4)
LTNE 131. Western Religious Traditions: Judaism, Christianity, Islam (4)
LTWL 132. The Jewish Experience in Literature
LTWL 134. A Cultural History of American Jewry (4)
LTWL 148. Yiddish Literature in Translation (4)
LTWL 198. Directed Group Study (4)
LTWL 199. Special Studies (4)
Courses cross-listed as LTNE and LTWL may be taken as Hebrew literature by students proficient
in the language or as general literature by students without knowledge of Hebrew.

Philosophy 184. Religious Existentialism (4)
Philosophy 185. Philosophy of Religion (4-4)
Political Science 121. Middle East Politics (4)
RELI 111. Texts and Contexts: Ancient Near Eastern Religions (4)
RELI 112. Texts and Contexts: The Holy Book in Judaism, Christianity, and Islam (4)
Sociology/C 156. Sociology of Religion (4)
Sociology/C 157. Religion in Contemporary Society (4)
Sociology/D 183. Minorities and Nations (4)
Sociology/D 188N. Modern Jewish Societies (4)
Sociology/D 1880. Dilemmas of Israeli Society (4)

Language

See particular languages under linguistics (beginning and intermediate) or literature (advanced).

Language and Communicative Disorders

OFFICE: Cognitive Science Building 261, Mail code: 0526
(619) 594-6775
http://www.crl.ucsd.edu

Professors

Elizabeth Bates, Ph.D., Cognitive Science, Psychology
Ursula Bellugi, Ed.D., Adjunct/Psychology Jeff Elman, Ph.D., Cognitive Science
Mark Kritchevsky, M.D., Clinical Neurosciences
Marta Kutas, Ph.D., Cognitive Science
Carol Padden, Ph.D., Communications
David Swinney, Ph.D., Psychology

Associate Professors

Farrell Ackerman, Ph.D., Linguistics
John Moore, Ph.D., Linguistics

Assistant Professors

Victor Ferreira, Ph.D., Psychology Javier Movellan, Ph.D., Cognitive Science

The Joint Doctoral Program

San Diego State University (SDSU) and the University of California, San Diego (UCSD), offer jointly a doctoral program in Language and Communicative Disorders. The program's focus is the interdisciplinary study of language and communicative disorders. A major emphasis of the program is to apply techniques developed in cognitive science and neuroscience to the study of language and language disorders. The program involves study and research in normal language (including sign languages of the deaf and language impairments), and in the neural bases of language use and language loss. Participating faculty have research interests in a wide range of issues in processes of language development, language and aging, multilingualism, language disorders, assessment, and intervention. Graduates of the program will be qualified to serve as faculty in university programs in a variety of disciplines, and to provide leadership in research and health services. The doctoral program faculty at UCSD are an interdisciplinary group from the Departments of Cognitive Science, Communication, Linguistics, Neurosciences, and Psychology. The doctoral program faculty at SDSU are members of the Departments of Communicative Disorders, Linguistics, and Psychology. The program is coordinated by the doctoral program coordinators at each campus, in conjunction with an Executive Committee comprising three faculty from each campus appointed by the Graduate Deans from each campus.

The program is innovative in that many of the requirements are designed to function as a model of professional preparation specifically incorporating activities in which a successful teacher and researcher must engage after obtaining the Ph.D: students will be required to participate in interdisciplinary research throughout the program, learn about the nature and ethics of research, prepare grant proposals, write manuscripts, and will gain experience in oral presentations and teaching. Graduates from the program will be well prepared for the rigors of an academic/research career. The doctoral program in Language and Communicative Disorders, being interdisciplinary, draws from a variety of undergraduate disciplines including communicative disorders, psychology, cognitive science, linguistics, engineering, and other related sciences. Students should have adequate preparation in mathematics, statistics, and
biological sciences. Backgrounds in neurosciences and/or language sciences, or language disorders is helpful, but not required for admission.

By the end of the first year, all students will select a major field of emphasis by choosing one of three concentrations. The Adult Language concentration is intended to provide intensive education in communicative disorders in adults. Students in this concentration will also develop expertise in the study of language processing in normal adults. The Child Language concentration is intended to provide specialized education in childhood (birth to adolescence) communicative disorders. Students in this concentration will also achieve competence in developmental psycholinguistics emphasizing language acquisition in normally developing children. The Multilingualism concentration is intended to provide education in crosslinguistic, ethnographic, and other comparative studies of communicative disorders in children and/or adults, including those associated with bilingualism and second-language acquisition (including acquisition of sign language in deaf individuals). All students will be required to take some courses in each of the three concentrations. In addition, each student will elect a methods minor, applying one of the new technologies of cognitive neuroscience to research on language and communicative disorders. These may include computer-controlled studies of language processing in real-time functional brain imaging (including event-related brain potentials and/or functional magnetic resonance imaging), or neural-network simulations of communicative disorders.

The program is designed as a five-year curriculum, based on a twelve-month academic year. Students will be admitted to the doctoral program only in the fall semester/quarter. Information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University. To receive an application for admission, contact: SDSU/UCSD Joint Doctoral Program in Language and Communicative Disorders, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1518, (619) 594-6775.

Required courses include the Tools requirement (two courses in statistics/research design, a course in neuroanatomy and physiology, a course in language structure and theory and a professional survival skills course), the Foundations requirement (three courses on normal language and three courses on disorders of language) and
the Electives requirement (at least five courses, with a minimum of three courses related to the chosen concentration, chosen from a broad list of approved options from Anthropology, Cognitive Science, Communicative Disorders, Computer Science, Linguistics, Neurosciences, and Psychology). Consult with adviser for approved list of elective courses. The five required electives must be approved by the student's adviser and the Doctoral Program Coordinators. In addition to their course requirements, students are required to complete three laboratory rotations in different research methodologies (each lasting a minimum of one quarter), two research projects (first year and second year), a qualifying examination for advancement to candidacy, and a dissertation proposal in the form of grant proposal to one of the public agencies that funds research in communicative disorders.

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

COURSES

(See individual departments for details; for courses available at SDSU, see SDSU Graduate Catalogue.)

Tools Requirement:

Quantitative Methods
Psychology 201A-B
Ethics and Survival Skills in Academia
Cognitive Science 241
Neuroanatomy and Neurophysiology
Cognitive Science 201 or Clinical
Neuroanatomy (Neurosciences 253)
Language: Basic Structures and Concepts
Cognitive Science 203 or
(Linguistics 221A and 211A)

Foundations Requirement:

Normal Language and Cognition in Adults
Psychology 244
Aphasia
Cognitive Science 251 or Psychology 245
Development of Normal Language and Cognition in Children

Psychology 215 or Cognitive Science 256

Electives:

Cognitive Science
202: Foundations: Computational Modeling of Cognition
211A-C: Research Methods in Cognitive Science
213: Issues in Cognitive Development
238: Topics in Cognitive Linguistics
260: Seminar on Special Topics
272:Topics in Theoretical Neurobiology
273: Biological Basis of Attention
Communication
200A: Communication as Social Force
200B: Communication and Culture
200C: Communication and the Individual
201B: Ethnographic Methods for Communication Research
201C:Discourse Analysis
222: Childhood and Culture
Linguistics
211A: Introductory Phonology ${ }^{1}$
214:Topics in Phonetics
221A: Introduction to Grammatical Theory ${ }^{1}$
225:Topics in Syntax
249:Topics in Sign Languages of the Deaf
272:Topics in Neurolinguistics
Psychology
218AB: Cognitive Psychology
222: Biological Psychology
227: Cognitive Development
230: Brain, Cognition \& Development
235: Cognitive Psychophysiology
236: Substance Abuse
242A-B-C: Research Topics in Developmental Psychology
244: Special Topics in Psycholinguistics
252: Seminar on Cognitive Neuroscience
254: Functional Brain Imaging
264A-C: Advanced Topics in Language Processes
266: Advanced Topics in Psycholinguistics
Computer Science and Engineering
250AB: Artificial Intelligence
251: Natural Language Processing
253: Neural Networks
256: Statistical Natural Language Processing
258A: Connectionist Natural Language Processing

Neurosciences:
243: Physiological Basis of Human Information
263: Developmental Neurobiology
264: Behavioral Neuroscience
274: Neurobiology of Cognitive Developmental Disorders

Philosophy:

235: Philosophy of Language
1 Students who use this course to fulfill the Tools requirement may not use this as an elective.

Latin American Studies

Office:
Room 1, Gildred Latin American Studies Building, Institute of the Americas Complex http://orpheus.ucsd.edu/las

Professors

Guillermo D. Algaze, Ph.D., Anthropology
Charles Briggs, Ph.D., Ethnic Studies
Jaime Concha, Ph.D., Literature
Wayne A. Cornelius, Ph.D., Political Science
Peter Cowhey, Ph.D., International Relations and Pacific Studies
Paul W. Drake, Ph.D. Political Science
Richard Feinberg, Ph.D., International Relations and Pacific Studies
Ramón Gutiérrez, Ph.D., Ethnic Studies
Stephan Haggard, Ph.D., International Relations and Pacific Studies
Dee Dee Halleck, Ph.D., Communication
Daniel Hallin, Ph.D., Communication
Louis Hock, M.F.A., Visual Arts
Jorge Huerta, Ph.D., Theatre and Dance
David Mares, Ph.D., Political Science
Michael Monteón, Ph.D., History
James E. Rauch, Ph.D., Economics
Rosaura Sánchez, Ph.D., Literature
Matthew Shugart, Ph.D., International Relations and Pacific Studies
Peter H. Smith, Ph.D., Political Science,
Program Director
Eric Van Young, Ph.D., History
Carlos Waisman, Ph.D., Sociology

Adjunct Professor

Kevin Middlebrook, Ph.D., Political Science

Associate Professors

Robert Alvarez, Ph.D., Ethnic Studies
Robert Cancel, Ph.D., Literature
Ann Craig, Ph.D., Political Science
Anthony Curiel, Ph.D., Theatre and Dance
Ross H. Frank, Ph.D., Ethnic Studies
David Gutiérrez, Ph.D., History
James Holston, Ph.D., Anthropology

Christine Hunefeldt, Ph.D., History
George Mariscal, Ph.D., Literature
John C. Moore, Ph.D., Linguistics
Max Parra, Ph.D., Literature
Marta Sánchez, Ph.D., Literature
Olga A. Vásquez, Ph.D., Communication
León Zamosc, Ph.D., Sociology

Assistant Professors

Lisa Catanzarite, Ph.D., Sociology
Denise Ferreira da Silva, Ph.D., Ethnic Studies
Milos Kokotovic, Ph.D., Literature
Elizabeth Newsome, Ph.D., Visual Arts
Christopher Woodruff, Ph.D., International
Relations and Pacific Studies

Lecturers

Claudio Fenner-Lopez, M.A., Visual Arts/ Communication, Emeritus
Karen Lindvall-Larson, M.L.S., Geisel Library
Keith Pezzoli, Ph.D., Urban Studies
Beatrice Pita, Ph.D., Literature
UCSD's program in Latin American Studies has attained national and international distinction for its excellence in teaching, research, and public service. Each year its faculty offers approximately 100 Latin America-related courses in fourteen academic departments, and the Latin American Studies Program offers three interdisciplinary degrees:

- bachelor of arts in Latin American Studies,
- minor in Latin American Studies, and a
- master of arts in Latin American Studies.

Latin American Studies at UCSD offers distinct advantages:

- At the undergraduate level, students may take elective courses on Latin American topics or pursue a minor or a B.A. degree in Latin American Studies. At the graduate level, they can work on Latin America through interdisciplinary master's programs or through doctoral programs in academic departments.
- Latin American Studies integrates teaching, research, and policy analysis, encouraging students to develop interdisciplinary perspectives and to work actively with faculty on research projects and conferences.
- Students participate in the activities of an outstanding array of research and teaching organizations, including the Center for Iberian and Latin American Studies, the Center for U.S.Mexican Studies, the Graduate School of International Relations and Pacific Studies, and
the Institute of the Americas. The Center for Iberian and Latin American Studies (CILAS) sponsors multidisciplinary colloquia, conferences, projects, and publications. The center also awards fellowships and grants each year to promising graduate students.
- Students are encouraged to interact with visiting Latin American scholars and to participate in Latin America-related internships, seminars, clubs, foreign exchange programs, and other extracurricular activities.
- Students at UCSD have access to one of the largest and fastest-growing library collections on Latin America in the United States.

The Curricular Program

Degree programs in Latin American Studies are supervised by an interdisciplinary faculty group under the chairmanship of the director of Latin American Studies. Students in Latin American Studies are encouraged to participate in the Education Abroad Program (EAP) in Brazil, Chile, Costa Rica, or Mexico; by petition, credits earned through EAP can fulfill UCSD's degree requirements.

Undergraduate Major in Latin American Studies

The bachelor of arts in Latin American Studies blends coverage of methodological and theoretical approaches to the study of Latin America with a broad foundation in the humanities and social sciences. Students receiving this degree will be prepared for private and government employment or for graduate training; the major also provides a valuable supplement for those who subsequently pursue professional degrees in business, law, engineering, medicine, or other fields.

To satisfactorily complete the B.A. degree, students must take a broad range of courses from at least three of UCSD's humanities and social science departments. All students entering the major must enroll in LATI 50 "Introduction to Latin America," an interdisciplinary course that prepares majors to build a coherent curriculum on Latin America from UCSD's interdisciplinary offerings (see list of approved courses below). They must also demonstrate proficiency in Spanish.

During the senior year, all B.A. candidates are required to successfully complete LATI 190, a writing seminar. This course will culminate in the
preparation of an interpretive paper based on the secondary analysis of existing scholarly research (approximately twenty to forty pages in length).

As part of the overall requirements, students are strongly encouraged to enroll in four credits of Individual Study (LATI 199) with a member of the Latin Americanist faculty, who will serve as the student's principal adviser.

Study abroad can significantly enhance understanding of Latin America. Students are encouraged to study abroad through the Education Abroad Program before their senior year and may use a maximum of six upper-division courses to satisfy major requirements. These must be approved by the department (based on syllabi and course work) after they have been entered on the student's official record at UCSD.

Students majoring in Latin American studies are also urged to minor in a core discipline such as anthropology, economics, history, literature, political science, or sociology. In summary, the requirements for the bachelor of arts in Latin America Studies are:

LOWER-DIVISION REQUIREMENTS

1. The equivalent of at least two years of collegelevel language instruction in Spanish, comparable to satisfactory completion of Literature/ Spanish 2C; students who satisfy this requirement by examination are strongly encouraged to study Portuguese.
2. Latin American Studies 50.

UPPER-DIVISION REQUIREMENTS

1. Eleven upper-division courses selected, with the approval of the director of Latin American Studies, from a designated list of Latin American studies courses offered in the humanities or social sciences. Students must take course work in at least three departments; and they must take at least three courses, but no more than five, from one department. At least two of the eleven courses must concentrate exclusively on periods earlier than the twentieth century. The collection of courses should be structured so as to provide both depth in a special area of study and breadth across the broader field.
2. Enrollment in the four-credit Senior Seminar (LATI 190), usually to be taken in the winter quarter of the senior year; satisfactory completion of a substantial paper is required of all graduating majors.
3. With the sole exception of LATI 199, all courses must be taken for a letter grade.

Honors in Latin American Studies

Individuals who wish to pursue Honors in Latin American Studies, as distinct from the regular major, must complete nine upper-division courses from at least three departments, with no more than five courses from any single department and with at least two courses on material prior to the twentieth century. Honors students also take a three-quarter sequence during the senior year that will culminate in the presentation and defense of an original thesis based on primary research (usually between 50 and 100 pages in length), and they must maintain a minimum GPA in the major of 3.5 .

In summary, to receive Honors, students must:

1. satisfy all lower-division requirements of the major program;
2. complete nine upper-division courses;
3. complete a three-course sequence consisting of Individual Study, the Senior Seminar, and the Honors Seminar (LATI 199, 190, and 191, respectively);
4. produce an original thesis based on primary research under the direction of a mentor selected from the Latin Americanist faculty, and defend this thesis during the spring quarter before an interdisciplinary faculty committee; and
5. maintain a minimum GPA of 3.5 in the major.

Undergraduate Minor in Latin American Studies

The Latin American Studies minor allows students to explore interdisciplinary approaches to a significant world region while pursuing a major in an academic discipline. To complete the program, students take at least six Latin America-related courses in the humanities and social sciences all taken for a letter grade; five of these courses must be at the upper-division level. Students must also complete the equivalent of two years of collegelevel Spanish or Portuguese.

Master of Arts in Latin American Studies

The master of arts in Latin American Studies is designed for students who seek to integrate a broad range of disciplinary approaches to a world
region of growing international significance. Upon graduation, most students pursue additional advanced degrees in academic or professional fields; others proceed to careers in the private sector, in international organizations, or in government.

To qualify for admission, students must have a B.A. with a grade-point average of at least 3.5 on a 4.0 scale for the final two years of undergraduate study plus satisfactory scores on the Graduate Record Examination. To receive the master of arts in Latin American Studies, a student must:

1. demonstrate foreign language competence in Spanish or Portuguese;
2. complete forty units of course work (ten courses) in at least three fields, with no more than sixteen units in any one department; four of those units must be taken in the Latin American Studies Core Seminar (LATI 200) and four must be taken in the seminar on Latin American Library Resources (LATI 210). Students are encouraged to include four units of independent Research (LATI 299) for work on the master's thesis.
3. successfully complete either a comprehensive exam or master's thesis.

COURSES

LATI 50. Introduction to Latin America (4)
Interdisciplinary overview of society and culture in Latin America-including Mexico, the Caribbean, and South America: legacies of conquest, patterns of economic development, changing roles of women, expressions of popular culture, cycles of political change, and U.S.-Latin American relations.

LATI 120/220. Special Topics in Latin American

Studies (1-4)
A course designed to cover various aspects and various disciplines of Latin American Studies.

LATI 190. Senior Seminar (4)

Research seminar on selected topics in the study of Latin America; all students will be required to prepare and present independent research papers. (Honors students will present drafts of senior research theses, of no less than fifty pages in length; non-honors students will present final versions of analytical papers of approximately twenty-five to forty pages in length.) Prerequisites: satisfactory completion of LATI 50 and a working knowledge of Spanish.

LATI 191. Honors Seminar (4)
Independent reading and research under direction of a member of the faculty group in Latin American Studies; goal is to provide honors students with an opportunity to complete senior research thesis (to be defended before three-person interdisciplinary faculty committee). Prerequisites: successful completion of LATI 50, working knowledge of Spanish; minimum GPA of 3.5 in the major.

LATI 199. Individual Study (4)
Guided and supervised reading of the literature on Latin America in the interdisciplinary areas of anthropology, communications, economics, history, literature, political science, and sociology. For students majoring in Latin American Studies, reading will focus around potential topics for senior papers; for honors students in Latin American Studies, reading will culminate in formulation of a prospectus for the research thesis. Prerequisites: LATI 50 and working knowledge of Spanish.

LATI 200. Core Seminar on Interdisciplinary Research and Methodology in Latin American Studies (4) A team-taught course wherein members of the faculty group in Latin American Studies present diverse disciplinary and thematic approaches to the region. Topics vary from year to year. Grades are based on discussions and on a series of analytical papers. Prerequisite: enrollment in the master's degree program in Latin American Studies or permission of instructor.

LATI 210. Latin American Library Resources (4)
The major research methods and resources for the study of Latin America will be studied. Both conventional library materials (books, journals, documents, microfilm, special collections) and those available electronically (CD ROMs, Infopath, Melvyl) will be explored. Skills will transfer to any major research library Prerequisite: graduate standing or consent of instructor.

LATI 298. Directed Reading (1-12)
Guided and supervised reading of the literature of the several areas included in the interdisciplinary fields of anthropology, communications, economics, history, literature, political science, and sociology. Prerequisite: graduate standing in Latin American Studies.

LATI 299. Independent Research (1-12)
Independent work by graduate students engaged in thesis research and writing under the direct supervision of a faculty adviser.

LATI 500. Teaching Apprenticeship (1-4)
The course is designed for teaching assistants to learn effective teaching methods through supervision and mentorship by the faculty. Student will learn handling of discussions; preparation and grading of examinations and other written exercises; and student relations.

COURSES THAT SATISFY UNDERGRADUATE/GRADUATE DEGREE REQUIREMENTS IN LATIN AMERICAN STUDIES

Approved Interdisciplinary Courses: The following is a list of courses available in UCSD departments that are approved to satisfy the requirements of the major, minor, and master's in Latin American Studies. Please note that these courses may not be offered every quarter or year and new courses may be added. Check the current schedule of classes or the Latin American Studies Web site (http://www.orpheus.ucsd.edu/las) for updated information.

The Departments of Linguistics and Literature and the Graduate School of International Relations and Pacific Studies offer language courses in Spanish and Portuguese. Language courses do not count toward the course
requirements for Latin American Studies degrees.

Anthropology	
ANRG 90	Undergraduate Seminar: Latin American Topics
ANRG 114	Urban Cultures in Latin America
ANRG 121	The Archaeology of South America
ANRG 126	Rise of New World Civilizations: Mesoamerica and the Andes
ANRG 134	The Cultures of Mexico
Communication	
COCU 110	Cinema in Latin America: Visions of a Continent in Transition
COHI 114	Bilingual Communication
COHI 175 Advanced Topics: Chicano Visual	
COSF 140 C	Culture Comparative Media Systems: Latin America and the Caribbean
COGR 275	Communication Development and Learning

Economics

ECON 161 Latin American Economic Development

Ethnic Studies

ETHN 130	Social and Economic History of the Southwest I
ETHN 131	Social and Economic History of the Southwest II
ETHN 132	Chicano Dramatic Literature
ETHN 133	Hispanic American Dramatic Literature
ETHN 135	Development of Chicano Literature
ETHN 136	Themes and Motifs in Chicano Literature
ETHN 137	Chicano Prose
ETHN 138	Chicano Poetry
ETHN 139	Chicano Literature in English
ETHN 180	Special Topics in Mexican-American History
ETHN 189	Special Topics in Ethnic Studies

History	
HILA 100	Latin American Colonial Transformation
HILA 101	Latin American Independence 1810-1898
HILA 102	Latin America in the Twentieth Century
HILA 105	South America: Labor, Coercion, and Society/Nineteenth Century.
HILA 107	State and Society in Nineteenth and Twentieth Century Latin America
HILA 112	Economic and Social History of the Andean Region
HILA 113	Lord and Peasant in Latin America

HILA 114	Social History of Colonial Latin America
HILA 115	Latin American City, A History
HILA 116	Encounter of Two Worlds/Colonial Latin America
HILA 117	Indians, Blacks, Whites: Family Relations in Latin America
HILA 118	Subverting Sovereignty: US Aggression in Latin America, 1898-present
HILA 120	History of Argentina
HILA 121	History of Brazil
HILA 122	Cuba: From Colony to Socialist Republic
HILA 123	The Incas and Their Ancestors
HILA 131	History of Mexico in the Nineteenth Century
HILA 132	History of Contemporary Mexico
HILA 160/260	Topics in Latin American Colonial History 1500-1820
HILA 161/261	History of Women in Latin America
HILA 162/262	Special Topics in Latin American History
HILA 166/266	Cuba: From Colony to Socialist Republic
HILA 170/270	Topics in Latin American History, 1820-1910
HILA 171/271	Special Topics in Latin American History since 1910
HILA 172/272	Machismo and Matriarchy:The Latin American Social Structure
HIGR 245ABC	Seminar in the Literature of Latin American History
HIGR 246ABC	History of Mexico
HIGR 247AB	Readings and Seminar on Colonial Latin America
HIGR 248AB	Readings and Seminar on Latin America, National Period
HIGR 249	Topics in Colonial Latin America
HIGR 250	Topics in the National Period of Latin America
HIGR 251	Topics in the History of Mexico
HIGR 252	History, Social Evolution, and Intellectuais in the Andes
HIUS 186/286	Special Topics in History of Los Angeles
Internationa	Relations and Pacific Studies
IRGN 409	Economic Policy in Latin America
IRGN 410	Politics and Policy in Latin America
IRGN 454	Current Issue/US-Latin American Relations
IRGN 474	Latin American Societies: Social Classes and State Policies
IRGN 476	Doing Business in Latin America
IRGN 477	Latin American Politics
IRGN 478	Mexican Economic Policy
IRGN 479	Politics and Institutions in Latin America
IRGN 490	Special Topics (with Latin American content)

Latin American Studies	
LATI 50	Introduction to Latin America
LATI 120	Special Topics in Latin America
LATI 190	Senior Seminar
LATI 191	Honors Thesis Seminar
LATI 199	Independent Study
LATI 200	Core Seminar in Latin American Studies
LATI 210	Latin American Library Resources
LATI 220	Special Topics in Latin America
LATI 298	Directed Reading
LATI 299	Independent Research
LATI 500	Teaching Apprenticeship
Literature	
LTAM 110	Latin American Literature in Translation
LTAM 120	Mexican Literature in Translation
LTEN 19	Introduction to Chicano Literature
LTEN 180	Chicano Literature in English
LTEN 188	Contemporary Caribbean Literature
LTGN 173	Contemporary Literature/Chicano Literature
LTSP 50BC	Readings in Latin American Topics
LTSP 111	Topics in Golden Age Poetry
LTSP 115	Topics in Golden Age Prose
LTSP 117	Golden Age Drama
LTSP 119ABC	Cervantes
LTSP 130B	Development of Latin American Literature
LTSP 131	Spanish American Literature: Colonial Period
LTSP 132	Spanish American Literature: Nineteenth Century
LTSP 133	Spanish American Literature: Twentieth Century
LTSP 134	Argentine Literature
LTSP 135	Mexican Literature
LTSP 136	Peruvian Literature
LTSP 137	Caribbean Literature
LTSP 140	Spanish American Novel
LTSP 141	Spanish American Poetry
LTSP 142	Spanish American Short Story
LTSP 143	Spanish American Essay
LTSP 144	Spanish American Theatre
LTSP 150	The Development of Chicano Literature
LTSP 151	Themes and Motifs in Chicano Literature
LTSP 152	Chicano Prose
LTSP 153	Chicano Poetry
LTSP 163	Spanish Language in the Americas
LTSP 165	History of the Spanish Language
LTSP 171	Literature and Society Studies

LTSP 172

LTSP 173

LTSP 190
LTSP 224
LTSP 226
LTSP 252

LTSP 253
LTSP 258
LTSP 259
LTSP 272
LTSP 275

Political Science

POLI 134AA,AB Comparative Politics of Latin America
POLI 134BC Politics in Mexico
POLI 134C Politics in Mexico: Research Seminar
POLI 134D Selected Topics in Latin American Politics
POLI 134G Politics in the Andes
POL! 134I Politics in the Southern Cone of Latin America
POLI 134N Politics in Central America
POLI 134P Organizing Women in Latin America
POLI 134Q Organization, Resistance, and Protest in Latin America

POLI 134R Political Parties in Latin America
POLI 145A International Politics and Drugs
POLI 146A US and Latin America: Political and Economic Relations
POLI 146E US and Latin American Relations: Security Issues
POLI 150AB Politics of Immigration
POLI 229 Special Topics: Comparative Politics (if Latin American content)

POLI 230AB The Mexican Political System
POLI 235 Latin American Politics
POLI 235B Regime Transformation in Latin America
POLI 236 Immigration Policy and Politics
POLI 237 Grassroots Organization and Political Change
POLI 248 Special Topic/International Relations: Latin American Foreign Policy

Sociology
SOCC 148M Labor Market Inequality: Los Angeles and the Border Region

SOCC 151M Chicanos in American Society SOCD 188D Latin America: Society and Politics SOCD 189 Ethnicity in Latin America

SOCG 248

SOCG 290
Latin American Societies: Social Classes and State Policies

Ethnicity in Latin America

Theatre and Dance

THGE 125 Topics in Theatre and Film: Latin American Films
THHS 101 Gay/Lesbian Themes in Latino Theatre
THHS 102 Master of Theatre: Luis Valdez
THHS 110 Chicano Dramatic Literature
THHS 111 Hispanic American Dramatic Literature
THDA 132 Dances of the World: Latin American Dances
THGR 252 Topics in Dramaturgy (Chicano Dramatic Literature)
THGR 268 Latin American Dramatic Literature
THGR 269 U.S.-Latino Dramatic Literature

Third World Studies

TWS 22 Latin American Literature
TWS 24 Caribbean Literature
Visual Arts
VIS 21
VIS 126AN Pre-Columbian Art of Ancient Mexico and Central America

VIS 126BN Art and Civilization/Ancient Maya
VIS 128E Topics in Art Theory and Criticism (PreColumbian Art of Ancient Mexico and Central America)

VIS 129E Special Problems in Art Criticism and Theory (Seminar, Pre-Columbian Art)

Latin Literature

See Literature.

Law and Society

OFFICE: Interdisciplinary Programs, Literature Building, Second Floor, Room 3238, Warren College
Law and society is an interdisciplinary minor that emphasizes the complexity and interrelationship of legal, social, and ethical issues in their historical context. Although it is administered by Warren College, it is available to all UCSD students

considering law-related careers or those with a general interest in law as a social institution. The purpose of the program is to enhance students' critical analysis of social and ethical issues related to law and of the legal implications and ramifications of policy and decision-making in their major fields of study. Students examine the role of the legal system and specific legal issues from the perspectives of the social sciences and humanities. Social forces, historical questions, and issues of values will be considered in the context of the legal system. The focus of the minor is on the process of law --how the law both reflects and defines basic social values-and its relation to the political, economic, and social conflicts within society.

The interdisciplinary content of the law and society minor offers UCSD students the opportunity to examine law-related issues from the perspectives of a broad range of disciplines including: communication, economics, environmental studies, ethnic studies, history, linguistics, philosophy, political science, psychology, sociology, urban studies and planning, and critical gender studies.

Students should consult an academic adviser in their college provost's office to determine how the law and society minor can best meet their college's graduation requirements. Declarations must first be reviewed and approved by the coordinator of Interdisciplinary Programs and then by the students' college academic advising office.

Students are strongly urged to supplement the law and society minor with a law-related internship. Both local and out-of-town internships are available to juniors and seniors with at least a 2.5 grade-point average (some placements require a 3.0 GPA) through the Academic Internship Program. The Academic Internship Program offers local placements with lawyers, judges, elected officials, government offices, and public interest groups. In addition, placements are available in Washington, D.C. with senators, representatives, legislative committees, and political action committees. Students may earn from four to sixteen units of academic credit for the internship experience. To apply AIP197 and courses in the UC/DC Program toward minor requirements, contact the Interdisciplinary Programs coordinator.

A number of extracurricular events and programs are also available to students interested in law. Information on these programs and activities is available in the Interdisciplinary Programs Office, Literature Building, Second Floor, Room

3238, Warren College, or call (858) 534-1704. Web site: http://warren.ucsd.edu/law

Law and Society Minor Requirements

The minor consists of seven courses (six for students who entered UCSD before January 1 , 1998), five of which must be upper-division, chosen from the courses listed below. To assure an interdisciplinary learning experience, students must include at least one course from each of the following academic departments: history, philosophy, political science, and sociology. Law and Society 101, Contemporary Legal Issues, may be counted as either political science or sociology, and may be repeated for credit once, for a maximum total of eight units.

Required Courses

1. Political Science 40 -Introduction to Law and Society
2. Law and Society 101-Contemporary Legal Issues
3. One of the following four courses:

History US 150-American Legal History to 1865 History US 151-American Legal History Since 1865
Political Science 104A-The Supreme Court and the Constitution
Political Science 104B-Civil LibertiesFundamental Rights
4. One of the following two courses:

Philosophy 168-Philosophy of Law
Sociology/C-140-Sociology of Law

ELECTIVES CHOSEN FROM THE FOLLOWING:

Communication/SF

139A-B-Law, Communication, and Freedom of Expression

Critical Gender Studies

106-Gender, Equality, and the Law
107-Gender and Reproductive Rights

Dimensions of Culture

2-Justice (open to Marshall College students)

Economics

118A-B-Law and Economics

Ethnic Studies

152-Law and Civil Rights

Environmental Studies

110-Environmental Law

History U.S.

153-American Political Trials
169-American Legal and Constitutional History

Linguistics/General

105-Law and Language

Philosophy

10-Introduction to Logic
12-Logic and Decision Making
162-Contemporary Moral Issues
163-Bio-Medical Ethics
165-Professional Ethics
167-Contemporary Political Philosophy

Political Science

104A-The Supreme Court and the Constitution
104B-Civil Liberties-Fundamental Rights
104C-Civil Liberties—The Rights of Criminals and Minorities
104F-Constitutional Law Seminar
104I-Law and Politics-Courts and Political Controversy
104L-Positive Political Theory of Law
140A-International Law and Organizations

Psychology

162-Psychology and the Law

Sociology

120S/B-Special Topics in Culture, Language, and Social Interaction (prior approval of topic required)
141/C-Crime and Society
142/B-Social Deviance
144/C-Forms of Social Control
145/B-Violence and Society
159/C-Special Topics in Social Organizations and Institutions (prior approval of topic required)

Urban Studies and Planning

124-Land Use Planning
Students may petition to substitute courses in the minor that have substantial legal content. Petitions should be submitted to the Interdisciplinary Programs Office.

Recommended Internship Experience

Law-related internship (AIP 197):To be arranged at least one quarter in advance through the Academic Internship Program, Literature Building, Second Floor, Warren College. For each four units of credit, ten hours a week for one quarter and a ten-page research paper are required.

COURSES

As indicated above, most course work for the Law and Society minor is listed under the academic department providing instruction. Law and Society 101, described below, is an interdisciplinary course. It may be counted toward minor requirements as either political science or sociology. Further information on Law and Society 101 is available in the Interdisciplinary Programs Office.

UPPER-DIVISION

101. Contemporary Legal Issues (4)

This course will deal in depth each year with a different legal issue of contemporary significance, viewed from the perspectives of political science, history, sociology, and philosophy. Required for students completing the law and society minor. May be repeated for credit once, for a maximum total of eight units.

Linguistics

OFFICE: 5237 McGill Hall, Muir College
http://ling.ucsd.edu

Professors

Ronald W. Langacker, Ph.D.
David M. Perlmutter, Ph.D., Academic Senate
Distinguished Teaching Award
Maria Polinsky, Ph.D., Chair

Associate Professors

Farrell Ackerman, Ph.D.
Chris Barker, Ph.D.
Robert E. Kluender, Ph.D.
John Moore, Ph.D.

Assistant Professors

Eric Bakovic, Ph.D.
Andrew Kehler, Ph.D.
Sharon Rose, Ph.D.

Professors Emeritus

Matthew Y. Chen, Ph.D.
Edward S. Klima, Ph.D.
S.-Y. Kuroda, Ph.D.

Margaret H.Langdon, Ph.D.
Leonard D. Newmark, Ph.D.
Sanford A. Schane, Ph.D.
In what ways do languages differ, and in what ways are ail human languages alike? These are the basic questions that the science of linguistics seeks to answer.

In formulating hypotheses about language it has been found that languages have intricate structure at a number of different levels. Phonetics studies the sounds of speech and how they are produced and perceived. Phonology studies the principles by which the sounds of a language are organized into a system and combined into syllables and larger units. Morphology studies the principles by which smaller units of meaning are combined into words. Syntax is the study of the principles by which words are combined into larger units such as phrases and sentences. Semantics studies meaning---the meanings of words and the ways the meanings of words are related to the meanings of larger units such as the phrase, the sentence, and the discourse. Linguists attempt to discover to what extent the principles at each level vary across languages, and to what extent they are universal.

Because language provides a window into the human mind, linguistics plays a central role in the study of human cognition and figures prominently in the field of cognitive science. We know, for example, that all normal children succeed in learning language relatively quickly at a time when their other cognitive abilities are still developing. The universal properties of human language that linguists discover can be used to provide models of this process, to explain why it occurs so rapidly, and to make specific predictions about the way it unfolds. The results of linguistic research can also be tested directly in experimental studies of how language is represented and processed in the mind (psycholinguistics) and brain (neurolinguistics). Language can also be studied in terms of its function as a cognitive system shared by an entire society; sociolinguistics investigate the ways in which the language we use is affected by our social environment.

The department of Linguistics offers a series of lower-division courses designed to introduce nonmajors to the scientific study of language in the
broader perspective of a liberal arts education. These are LIGN 3 (Language as a Social and Cultural Phenomenon), LIGN 4 (Language as a Cognitive System), LIGN 7 (Sign Language and Its Culture), LIGN 8 (Languages and Cultures in America), and LIGN 17 (Making and Breaking Codes). These courses may be used to satisfy the Marshall College disciplinary breadth requirement. Lower-division linguistics courses may be used to satisfy the social sciences requirement at Muir College and Revelle College, and they partially fulfill the requirements for a program of concentration in Warren College. In addition, certain linguistics courses satisfy the American Cultures requirement in Revelle College and the cultural diversity requirement in Muir College and Warren College. LIGN 17 (Making and Breaking Codes) satisfies the Thurgood Marshall Computational Skills requirement in addition to the formal skills requirement in Warren College and in the Human Development Program. Students should consult their college advising offices to determine which linguistics courses satisfy these other requirements.

Linguistics courses are relevant to a wide range of fields of study at UCSD, including anthropology, cognitive science, communication, computer science, human development, law and society, psychology, and sociology, as well as areas such as African studies, Chinese studies, ethnic studies, Judaic studies, Latin American studies, and others. In some cases certain linguistics courses count toward a major or minor in one of these departments or programs. Students should consult with a faculty adviser in linguistics and the other department or program when deciding on their course of study.

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD's Opportunities Abroad Program (OAP) while still making progress toward the major. Students considerating this option should discuss their plans with the department undergraduate adviser before going abroad. Detailed information on EAP/OAP is found in this catalog under the heading "Education Abroad Program."

The Department of Linguistics oversees the Linguistics Language Program, which offers elementary instruction in ASL, French, German, Italian, and Spanish. Courses from the Language Program satisfy general education requirements, as well as the linguistics language requirement. In addition, directed self-instruction is available for a wide variety of languages through LIDS 19.

Note: Please check with the department office for updates concerning programs and course offerings.

The Major Program

General Requirements

Every linguistics major (except the language studies major) must satisfy the undergraduate language requirement and must successfully complete a minimum of twelve upper-division courses, including six required courses and at least five upper-division linguistics electives. In addition to the general major, the department offers a set of enriched major programs in various specializations.

Except for LIGN 199, no course taken on a Pass/Not Pass basis may be counted toward a linguistics major. No more than one quarter of LIGN 199 may be counted toward a linguistics major. At least six of the required upper-division linguistics courses counted toward the major must be taken in residence at UCSD. A letter grade of C - or better is required for every course counted toward a linguistics major, including courses taken to satisfy the department's undergraduate language requirement.

Required Linguistics Courses

Linguistics 101 is required as an introduction to the field and serves as the prerequisite to certain other courses. Students who choose a linguistics major should enroll in it as early as possible.

Every major program in linguistics (except the language studies major) must include the following required courses covering basic areas of the field:

LIGN 101: Introduction to the Study of Language
LIGN 110: Phonetics
LIGN 111: Phonology I
LIGN 120:Morphology
LIGN 121: Syntax I
LIGN 130: Semantics
Students are advised to take these required courses as early as possible, since the background they provide may be needed for other upper-division linguistics courses. Check individual course listings for prerequisite information.

Linguistics Electives

LIGN 104: Language and Conceptualization

LIGN 105: Law and Language
LIGN 108: Languages of Africa
LIGN 115: Phonology II
LIGN 123: Morphology II
LIGN 125: Syntax II
LIGN 141: Language Structures
LIGN 142: Language Typoiogy
LIGN 143: The Structure of Spanish
LIGN 145: Pidgins and Creoles
LIGN 150: Historical Linguistics
LIGN 160: Mathematical Analysis of Language
LIGN 163: Computers and Language
LIGN 165: Computational Linguistics
LIGN 170: Psycholinguistics
LIGN 171:Child Language Acquisition
LIGN 172: Language and the Brain
LIGN 174: Gender and Language in Society
LIGN 175: Sociolinguistics
LIGN 176: Language of Politics and Advertising
LIGN 177:Multilingualism
LIGN 178: Second Language Teaching Methodology
LIGN 179: Second Language Acquisition Research

Restricted Courses

LIGN 195: Apprentice Teaching (does not count as a linguistics elective)
LIGN 199: Independent Study in Linguistics
LIGN 199H: Honors Independent Study in Linguistics

Note to Revelle and Warren students.

Revelle: For Revelle College only, the classification of the linguistics major as humanities, natural science, or social science must be determined on the basis of each student's specific program. The classification of the major program will in turn determine what areas will be acceptable for the noncontiguous minor.

Warren: For Warren College only, any courses taken in departments other than linguistics may not overlap with the student's outside area(s) of concentration.

Undergraduate Language Requirement

Linguistics majors must demonstrate proficiency in one foreign language.
Proficiency in a foreign language may be demonstrated in either of two ways:

1. By passing the reading proficiency examination and the oral interview administered by the

Department of Linguistics in French, German, Italian, or Spanish; or
2. By successfully completing a course given at UCSD representing the fourth quarter (or beyond) of instruction in any single foreign language with a grade of C - or better.
Students are encouraged to satisfy this requirement as early as possible in order to be able to use the language for reference in linguistics courses. Students with native language competence in a language other than English may petition to have English count as satisfying the proficiency requirement.

General Major (12 courses)

The general major in linguistics requires satisfaction of the undergraduate language requirement and successful completion of twelve upper-division courses:

6 required linguistics courses: LIGN 101
LIGN 110
LIGN 111
LIGN 120
LIGN 121
LIGN 130
5 linguistics electives
1 additional linguistics elective or upper-division course in another department pertaining to the study of language

Specialized Majors

Every student with a specialized major must consult the faculty adviser in the Department of Linguistics to have approved an individual curricular plan to satisfy the major requirements for the option chosen. Each specialized major requires satisfaction of the undergraduate language requirement and successful completion of upper-division requirements as specified below. The specialization will be reflected in the wording of a degree, e.g.,"B.A. in Linguistics (with Specialization in Language and Society)."

Cognition and Language (12 courses)

6 required linguistics courses:
LIGN 101
LIGN 110
LIGN 111
LIGN 120

LIGN 121
LIGN 130
4 linguistics electives chosen from:
LIGN 104
LIGN 163
LIGN 165
LIGN 170
LIGN 171
LIGN 172
LIGN 176
LIGN 179
2 additional courses from linguistics or other departments subject to adviser approval.
Courses currently approved to satisfy this requirement include the following (Note: some of these courses may have prerequisites):
Linguistics:
Any upper-division courses (except those used to fulfill requirements A and B).

Anthropology:

ANBI 140:The Evolution of the Human Brain
ANBI 159: Biological and Cultural Perspectives on Intelligence
ANBI 161:Human Evolution
ANBI 173: Cognition in Animals and Humans
Cognitive Science:
COGS 101C: Cognitive Theory and Phenomena: Language and Reasoning
COGS 107C: Cognitive Neuroscience: Neural Bases of Cognition
COGS 108A:Theory of Computation and Formal Systems
COGS 108B: Symbolic Modeling of Cognition
COGS 108C: Neural Network Models of Cognition I
COGS 130: Everyday Cognition
COGS 131: Distributed Cognition
COGS 141: Observation, Protocol, and Discourse Analysis
COGS 142: Philosophy of Cognitive Science
COGS 150: Semantics
COGS 151: Analogy and Conceptual Systems
COGS 153: Language Comprehension
COGS 154: Communication Disorders in Children and Adults
COGS 156: Language Development
COGS 170: Natural and Artificial Symbolic Representational Systems
COGS 181: Neural Network Models of Cognition II

COGS 184: Modeling the Evolution of Cognition
COGS 191:Laboratory Research
Computer Science and Engineering:
CSE 133: Information Retrieval
Philosophy:
PHIL 110:Wittgenstein
PHIL 111:Quine
PHIL 120: Symbolic Logic I
PHIL 121: Symbolic Logic II
PHIL 134: Philosophy of Language
PHIL 135: Meaning and Communication
PHIL 136: Philosophy of Mind
PHIL 150: Philosophy of the Cognitive Sciences

Psychology:

PSYC 105: Introduction to Cognitive Psychology
PSYC 118A: Real-Time Examination of Language Processing
PSYC 118B: Real-Time Examination of Language Processing
PSYC 119: Psycholinguistics/Cognition Laboratory
PSYC 126: Language Development
PSYC 133: Brain and Cognitive Development
PSYC 145: Psychology of Language
PSYC 176: Functional Neuroanatomy
PSYC 185: Communication: Nonverbal and Disfluent

LANGUAGE AND SOCIETY (14 COURSES)

6 required linguistics courses
2 appropriate upper-division courses in other departments (especially the Departments of Anthropology, Communication, Cognitive Science, or Sociology), selected in consultation with the faculty adviser for language and society
1 course in sociolinguistics (by approval of the faculty adviser, may be taken in another department)
5 linguistics electives. Courses particularly relevant to this specialization are:
LIGN 105: Law and Language
LIGN 175: Sociolinguistics
LIGN 176: Language of Politics and Advertising
LIGN 177:Multilingualism

Language Studies Major

Students majoring in language studies must consult with the language studies faculty adviser to approve an individual curricular plan.

The language studies major is designed for students who wish to pursue the study of a particular language from a variety of perspectives. To this end, students will take courses in linguistics and literature, as well as electives in linguistics, literature, culture, and area studies. This major provides preparation for a variety of careers that make use of second language skills. Depending on the elective emphasis, these include international business/law, teaching, translation, interpreting, linguistics, and foreign service. Each language studies major will specialize in one language of concentration. In principle, this could be any language other than English. However, some languages may require that some coursework be completed outside UCSD. Hence, it is recommended that language studies majors consider a year abroad. Students whose language of concentration is American Sign Language will need to consult the faculty adviser for individualized requirements; these students may also consider an exchange year at Gallaudet University.

Requirements:

Lower-division preparation:

- Two years of language instruction in the language of concentration, or equivalent proficiency
- Lower-division prerequisites for upper-division courses in the literature of the language of concentration

Upper-division requirements:

Note: At least two of the upper-division courses must be conducted in the language of concentration. Students are encouraged to increase their academic exposure to their language of concentration by taking one-unit seminars in the language and by participating in the EAP program.
A. 6 upper-division linguistics courses, as follows:
LIGN 101: Introduction to Linguistics
3 courses chosen from: LIGN 104: Language and Conceptualization

LIGN 110: Phonetics
LIGN 111: Phonology I
LIGN 120:Morphology
LIGN 121:Syntax I
LIGN 130: Semantics
LIGN 150: Historical Linguistics
"Structure of" language of concentration (e.g., LIGN 143 Structure of Spanish). If no such course is available, then any upperdivision LIGN course or any course from another department (e.g., literature) that deals with the structure or history of the language of concentration may be substituted (subject to faculty approval).

One additional upper-division LIGN course.
B. 2 upper-division courses in the literature of the language of concentration
C. 4 additional upper-division courses that deal with general linguistics, the language of concentration (e.g. literature), or the corresponding culture/area studies (e.g., anthropology, economics, history, political science, sociology), subject to approval of the faculty advisor.

Approved courses for this requirement include the following (Note: some of these courses may have prerequisites):

Linguistics: Any upper-division courses (except those used to fulfill requirement A).
Literature: Any upper-division courses related to the language of concentration (except those used to fulfill requirement B).

Area Studies: Approved courses are listed by language of concentration; other languages of concentration are possible in principle, but probably require coursework outside of UCSD. ASL

COM/HIP 124:Voice: Deaf People in America

Chinese

ANRG 170:Traditional Chinese Society
ANRG 173: Chinese Popular Religion
HIEA 120: Classical Chinese Philosophy and Culture
HIEA 123: Food in Chinese History
HIEA 130: History of the Modern Chinese Revolution: 1800-1911
HIEA 132: History of the People's Republic of China

HIEA 137: Women and Family in Chinese History
HIEA 167: Special Topics in Modern
Chinese History
POLI 130B: Politics in the People's
Republic of China
POLI 131C: The Chinese Revolution
POLI 132B: Politics and Revolution in China and Japan
SOCD 158J: Religion and Ethics in China and Japan
SOCD 188B:Chinese Society
French
HIEU 129: Paris, Past and Present
HIEU 131:The French Revolution: 1789-1814
HIEU 153A-B: Nineteenth-Century
France--Twentieth-Century France
POL 120C: Politics in France
German
HIEU 132: German Politics and Culture: 1648-1848
HIEU 154: Modern German History
HIEU 177: Special Topics in Modern German Thought
POLI 120B:The German Political System
POLI 120D: Germany: Before, During, and After Division

Hebrew
ANRG 150:The Rise and Fall of Ancient Israel
ANRG 162: Peoples of the Middle East
HINE 100:The Ancient Near East and Israel
HINE 102: The Jews in Their Homeland in Antiquity
HINE 103:The Jewish Diaspora in
Antiquity
HINE 170: Special Topics in Jewish History
HINE 186: Special Topics in Middle Eastern History
POLI 121: Middle East Politics
SOCD 1880: Dilemmas of Israeli Society Italian

HIEU 122: Politics Italian Renaissance Style
HIEU 124:The City in Italy

Japanese

ECON 163: Japanese Economy
HIEA 110: Japan Through the Twelfth Century
HIEA 111: Japan:Twelfth to MidNineteenth Centuries

HIEA 112: Japan: From the Mid-Nineteenth Century through the U.S. Occupation
HIEA 113:The Fifteen-Year War in Asia and the Pacific
HIEA 114: Postwar Japan
HIEA 115: Social and Cultural History of Twentieth-Century Japan
HIEA 116: Japan-U.S. Relations
HIEA 160: Colloquium on Modern Japanese History
HIEA 161: Representing Japan
POLI 1138: Chinese and Japanese Political Thought (I)
POLI 113C:Chinese and Japanese Political Thought (II)
POLI 132B: Politics and Revolution in China and Japan
POLI 133A: Japanese Politics: A Developmental Perspective
POLI 133E: Public Policy in Japan
SOCD 158J: Religion and Ethics in China and Japan
SOCD 188G: Policemen, Businessmen, and Students: Japanese Organizational Cultures

Russian
HIEU 134: Russia: Ninth Century to 1855
HIEU 156: Russia: 1855 to the Present
HIEU 178: Special Topics in Modern Russian History
POLI 126AB: Politics and Economics in Eastern Europe
POLI 130AA:The Soviet Successor States
POLI 130AD:The Politics of the Russian Revolution
POLI 147A: Soviet Foreign Policy
SOCD 188E Soviet Society
Spanish
ANRG 133: Politics and Modernity:Urban Cultures in Latin America
ANRG 134:The Cultures of Mexico
COM/SF 140C: Comparative Media Systems: Latin America and the Caribbean
COM/CUL 110: Cinema in Latin America
ECON 161:Latin American Economic Development
ETHN 132: Chicano Dramatic Literature
ETHN 133: Hispanic-American Dramatic Literature
ETHN 135: Development of Chicano Literature

ETHN 136:Themes and Motifs in Chicano Literature
ETHN 137:Chicano Prose
ETHN 138: Chicano Poetry
ETHN 139:Chicano Literature in English
ETHN 145: Spanish Language in the United States
ETHN 180: Topics in Mexican American History
HIEU 138: Imperial Spain, 1476-1808
HIEU 151: Spain since 1808
HIEU 165: Special Topics in Early Modern Spain
HIEU 175:Selected Topics in the History of Nineteenth- and Twentieth-Century Spain
HILA 100:Latin America-Colonial Transformations
HILA 101: Latin America:The Construction of Independence 1810-1898
HILA 102:Latin America in the Twentieth Century
HILA 105: South America: Labor, Coercion, and Society in the Nineteenth Century
HILA 107: State and Society in Nineteenthand Twentieth-Century Latin America
HILA 112: Economic and Social History of the Andean Region
HILA 113:Lord and Peasant in Latin America
HILA 114: Social History of Colonial Latin America
HILA 115: The Latin American City, A History
HILA 116: Encounter of Two Worlds: Early Colonial Latin America
HILA 117:Indians, Blacks, and Whites: Family Relations in Latin America
HILA 120: History of Argentina
HLA 122: Cuba: From Colony to Socialist Republic
HILA 131: A History of Mexico
HILA 132: A History of Contemporary Mexico
HILA 160:Topics in Latin American Colonial History, 1500-1820
HILA 161: History of Women in Latin America
HILA 162: Special Topics in Latin American History
HILA 166: Cuba: From Colony to Socialist Republic

LATI 120: Special Topics in Latin American Studies
THHS 109: African Heritage in
Contemporary Drama: African,
Caribbean, and African-American
THHS 110:Chicano Dramatic Literature
THHS 111:Hispanic-American Dramatic Literature
POLI 134B: Politics in Mexico
POLI 134C: Politics in Mexico
POLI 134D: Selected Topics in Latin American Politics
POLI 134G: Politics in the Andes
POLI 1341: Politics in the Southern Cone of Latin America
POLI 134N: Politics in Central America
POLI 134P: Organizing Women in Latin America
POLI 134Q: Organization, Resistance, and Protest in Latin America
POLI 134R: Political Parties in Latin America
POLI 146A:The U.S. and Latin America: Political and Economic Relations
POLI 146E: U.S.-Latin American Relations: Security Issues
SOCC 151M: Chicanos in American Society
SOCD 188D: Latin America: Society and Politics

Honors Program

The department offers an honors program for outstanding students. Those students who have a 3.75 GPA in linguistics (3.25 overall) at the end of their junior year are eligible to participate. Students interested in participating in the honors program should consult with their department adviser: admission to the program requires nomination by the adviser and approval of the department faculty.

The honors program requires that two graduate linguistics courses be taken as part of the twelve required courses for the major, and further requires one quarter of LIGN 199H. During one of the two graduate courses, the student, in consultation with the instructor and a faculty adviser, will begin a substantial research project which will be continued during the quarter of 199 H and will culminate in an honors paper. Responsibility for proposing possible projects and completing necessary paperwork rests with the student. Upon successful completion of the requirements the designation "with distinction," "with high distinc-
tion," or "with highest distinction" will appear on the student's diploma.

Independent Study and Directed Group Study in Linguistics for Majors

Upon presentation of a written study proposal or project, and with the consent of the instructor and the adviser, linguistics majors with at least a 3.5 GPA in the major courses may request permission to undertake independent study in linguistics (LIGN 199). No more than one such course (to be taken Pass/Not Pass) may count toward the major.

The Minor Program

The Linguistics minor consists of LIGN 101, plus six additional courses in linguistics, at least four of which must be upper-division. The courses
selected to complete the minor must form a coherent program of study and must be selected in consultation with the linguistics undergradute adviser. The content of these courses will determine whether the linguistics minor is classified as humanities, natural science, or social science.

For all courses counted toward the linguistics minor, the student must receive letter grades of C- or better. Courses counted toward the minor may not be taken on a Pass/Not Pass basis, except LIGN 199. Only one quarter of LIGN 199 may be counted toward the minor.

The Language Studies minor consists of seven courses, at least five of which must be upperdivision:

Literature: One upper-division literature course is required in the language of concentration. This will require proficiency as well as lower-division prerequisites. Therefore, the lower-division courses of the minor may consist of prerequisites for the upper-division literature requirement. American Sign Language students may substitute a non-literature upper-division elective with approval of the faculty adviser.

Linguistics: LIGN 101 is required. In addition students must take either a 'Structure of' course (if available), or one course chosen from LIGN 104, $110,111,120,121,130$, and 150 .

Other: Two additional courses that deal with general linguistics, the language of concentration (e.g., literature), or the corresponding culture, subject to aproval of the faculty adviser are required.

The Ph.D. Program

The UCSD Ph.D. program in linguistics offers rigorous training in multiple areas of theoretical linguistics, including syntax, semantics, phonetics, phonology, and morphology. The department is particularly strong in the study of interface areas, including syntax/semantics, phonetics/phonology, and phonology/syntax. Research conducted in a variety of theoretical frameworks is integrated into the graduate curriculum. Students receive a firm foundation in both formal and cognitive/functionalist approaches to syntax and semantics. In phonology, basic training includes segmental and autosegmental phonology, con-straint-based phonology, syllable theory, metrical theory, and theories of the phonology-morphology interface. The first two years of graduate study are devoted primarily to gaining a strong background in these core theoretical areas.

This theoretical strength of the department is matched by strength in both language study and experimental science. The range of languages represented in faculty research encompasses American Sign Language (ASL), Bantu, Caucasian, Chinese, Finno-Ugric, Germanic, Persian, Romance, Semitic, Slavic, and Uto-Aztecan. The departmental concern with the empirical facts of language is reflected in a field methods requirement for graduate students as well as in the graduate student language requirement (conversational ability in one language other than English and reading ability in two languages other than English). The department has a tradition of working with native speakers of a wide variety of languages. The department's language laboratory maintains a library of written and recorded materials permitting independent study of dozens of languages; it also includes a microcomputer facility for selfinstruction in French, German, Italian, and Spanish. The Linguistics Language Program (LLP) provides basic foreign language instruction for the entire campus, and many linguistics graduate students are employed as TAs in the program. Aside from providing a source of funding, the LLP provides graduate students with valuable teaching experience.

The department houses laboratories devoted to experimental studies of language with emphasis on phonetics, event-related brain potentials (ERPs), computational linguistics, and signed languages. The focus of experimental research in the department is the mutual dependence between mechanisms of language processing and theories
of phonology and syntax. Linguistics graduate students may supplement their theoretical studies with experimental research; in addition to departmental laboratories, graduate students have access to experimental laboratories concerned with language issues in other departments.

The department has a strong commitment to, and is an active and integral part of, the cognitive science and neuroscience communities at UCSD. Most linguistics faculty have joint appointments in the Department of Linguistics and the Cognitive Science Interdisciplinary Ph.D. Program, and participate in the Department of Cognitive Science graduate core course in language (Cognitive Science 201D) as well as in the all-campus Interdisciplirary Program seminar (Cognitive Science 200) on a regular basis. Graduate students in the Cognitive Science Department frequently participate in Linguistics graduate courses, and Linguistics graduate students regularly attend courses in the Cognitive Science Department on neuroscience, child language acquisition, aphasia, neural networks, and semantics and cognition. Linguistics graduate students are eligible to pursue a joint degree in Cognitive Science and Linguistics within the Interdisciplinary Program. Areas of secondary specialization that are especially well represented in the cognitive science community at UCSD and related institutes include child development, connectionist modelling, distributed cognition, language disorders, neuroscience, philosophy, and psycholinguistics.

The department has access to rich informational resources; in addition to the extensive linguistics holdings in the main library, the department maintains a collection of research reports, dissertations, and unpublished papers. Access to the libraries of other universities exists through interlibrary loan.

Preparation

Since linguistics is a highly technical and analytic field, linguistics students will find their undergraduate training in mathematics and the natural sciences especially valuable. Undergraduate work in certain of the social sciences and humanities, particularly psychology, anthropology, philosophy and literature, is also good preparation for linguistics. The ideal candidate for admission will have both experience with foreign languages and some knowledge of the fundamentals of contemporary linguistic theory. Students who, upon admission, are deficient either in their formal linguistics preparation or languages will be advised
by the department on how to make up the deficiency. All graduate students must demonstrate a basic proficiency in phonetics in the first year of graduate study either by passing a basic proficiency test in phonetics upon registration or by taking LIGN 110. New graduate students will be admitted only in the fall of any academic year.

Language Requirements

A candidate for the Ph.D. degree must demonstrate: (1) Conversational ability in one language other than English. (2) A reading knowledge of any one language other than his or her native language, subject to faculty approval.

Required Courses

Candidates for the Ph.D. must pass certain graduate courses prior to taking the qualifying examination. All graduate students must take a common core of thirteen courses. These are:

- four courses in phonetics/phonology: 211A, $211 \mathrm{~B}, 213$, and one of 210,215 or 248
- three courses in Principles and Parameters Theory: 221A, 221B, and 223
- one course in cognitive linguistics: 221 C
- one course in linguistic typology or functional linguistics: 236 or 237
- one course in lexicalist theories: 224
- one course in formal semantics: 230
- one course in field methods: 240
- one course in research paper writing: 293

All required courses (except 293) must be taken for a letter grade.

Evaluations

A graduate student is formally evaluated by the entire faculty at particular stages during the first three years of graduate study. The first evaluation (at the end of the third quarter of graduate study) pertains chiefly to performance in courses. The second (or comprehensive) evaluation (at the end of the sixth quarter) determines the student's fitness to continue in the Ph.D. program. It takes into account performance in course work and ability to engage in original research in one area of linguistics as demonstrated in a research paper. The third evaluation (at the end of the ninth quarter) focuses primarily on a second research paper (which must be in a different area of linguistics from the first).

Qualifying Examination

Candidates for the Ph.D. degree must pass an oral qualifying examination which tests the student's knowledge in the area of specialization. Prior to taking this examination, the student must pass the comprehensive evaluation, satisfy all language requirements, successfully complete all required courses, and demonstrate-through research papers-the ability to carry out independent, dissertation-level research. Students must take the qualifying examination by the end of the fourth year of graduate work.

Colloquium Presentation

Sometime prior to the thesis defense, a student must present a paper orally at a professional gathering. The colloquium requirement is intended to enable a student to develop the skills necessary for organizing research results for oral presentation. The requirement is generally met by presenting a department coiloquium or by presenting a paper at a professional meeting. In either case, a faculty member must certify the acceptability of the presentation.

Dissertation

The candidate for the Ph.D. will write a substantial dissertation incorporating the results of original and independent research carried out under the supervision of the doctoral committee. The candidate will be recommended for the doctor of philosophy degree after having made a successful oral defense of the dissertation before the doctoral committee in a public meeting and after having the final version of the dissertation accepted by Geisel Library.

Apprentice Teaching

As part of their preparation for a future academic career, graduate students in linguistics at UCSD are given special opportunities to participate in teaching programs under the supervision of a professor. Depending on qualifications, students may conduct conversation or analysis classes in lower-division language courses, or may assist a professor in the teaching of a graduate or undergraduate linguistics course.

Other Degrees

Candidates for the Ph.D., who have not previously earned a master's degree, may be granted
the M.A. in linguistics after: 1) satisfactorily completing twelve required courses; all but LIGN 293 must be taken for a letter grade; 2) passing the comprehensive evaluation at the end of the sixth quarter; and 3) demonstrating a reading knowledge of any language except English, subject to faculty approval.

Candidates for the Ph.D. may also be granted the C. Phil. upon completion of all degree requirements other than the dissertation.

Departmental Ph.D. Time Limit Policies

The time a student takes to compiete the Ph.D. depends on a number of factors, including previous preparation and the amount of time spent in teaching or other job commitments. Several policies set an upper limit to the length of the program. All degree requirements other than the dissertation must be completed by the end of the fourth year of graduate work. Total instructional support (TAships, etc.) cannot exceed six years; total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

COURSES

NOTE: Not all courses are offered every year. It is essential that students consult the linguistics adviser when planning their degree programs.

LINGUISTICS

LOWER DIVISION

3. Language as a Social and Cultural Phenomenon (4) Introduction to the study of language: language variation, change, and loss; multilingualism, pidginization, and creolization; language planning, standardization, and prescriptivism; writing systems; the role of language in thought, myth, ritual, advertising, politics, and the law.

4. Language as a Cognitive System (4)

Introduction to the study of language: differences between animal communication, sign systems, and human language; origins and evolution of language; neural basis of language; language acquisition in children and adults; fundamental issues in language and cognition.

7. Sign Language and Its Culture (4)

Deaf history since the eighteenth century. The structure of American Sign Language and comparison with oral languages. ASL poetry and narrative and Deaf people's system of cultural knowledge. Basic questions concerning the nature of language and its relation to culture.
8. Languages and Cultures in America (4)

Language in American culture and society. Standard and non-standard English in school, media, pop-culture, politics; bilingualism and education; cultural perception of language issues over time; languages and cultures in the 'melting pot', including Native American, Hispanic, African-American, Deaf.
17. Making and Breaking Codes (4)

A rigorous analysis of symbolic systems and their interpretations. Students will learn to encode and decode information using progressively more sophisticated methods; topics covered include ancient and modern phonetic writing systems, hieroglyphics, computer languages, and ciphers (secret codes).

UPPER DIVISION

101. Introduction to the Study of Language (4)

Language is what makes us human, but how does it work? This course focuses on speech sounds and sound patterns, how words are formed, organized into sentences, and understood, how language changes, and how it is learned.
104. Language and Conceptualization (4)

How does language reflect the ways humans conceptualize the world? Issues discussed include the relation between language and thought, how languages differ in conceiving and portraying situations, and how cultural differences are reflected in language structure.
105. Law and Language (4)

The interpretation of language in understanding the law: 1) the language of courtroom interaction (hearsay, jury instructions); 2) written legal language (contracts, ambiguity, legal fictions); 3) language-based issues in the law (First Amendment, libel and slander).
108. Languages of Africa (4)

Africa is home to an astonishing variety of languages. This course investigates the characteristics of the major language families as well as population movements and language contact, and how governments attempt to regulate language use.
110. Phonetics (4)

The study of the sounds which make up human language. How sounds are physically produced; acoustics of speech perception; practical training in translating speech signals into written form and in interpreting computerized speech signals. Prerequisite: L/GN 101 or consent of instructor.
111. Phonology I (4)

Why does one language sound different from another? This course analyzes how languages organize sounds into different patterns, how those sounds interact, and how they fit into larger units, such as syllables. Focus on a wide variety of languages and problem-solving. Prerequisite: LIGN 110.
115. Phonology II (4)

Current theoretical approaches to the sound structure of languages. Prerequisite: LIGN 111.
120. Morphology (4)

How do some languages express with one word complex meanings that English needs several words to express? Discovery of underlying principles of word formation through problem-solving and analysis of data from a wide variety of languages. Prerequisite: LIGN 101 or consent of instructor.

121.Syntax I (4)

What universal principles determine how words combine into phrases and sentences? Introduction to research methods and results. Emphasis on how argumentation in problem-solving can be used in the development of theories of language. Prerequisite: LIGN 101 or consent of instructor.

123. Morphology II (4)

Recent developments in morphological theory, with special reference to the interface between morphology and syntax and/or phonology. An illustrative list of issues includes: cyclic effects, non-derived environment blocking, bracket erasure, non-concatenative morphology; item-and-arrangement vs, realizational approaches to morphology. Prerequisite: LIGN 120 or consent of instructor.
125. Syntax II (4)

Topics in the syntax of English and other languages.
Syntactic theory and universals. Prerequisite: LIGN 121.
130. Semantics (4)

Introduction to the formal study of meaning. The meanings of words and phrases have an intricate internal structure that is both logical and intuitive. How, precisely, do words mean what they do in isolation and in context? Prerequisite: LIGN 101 or consent of instructor.

141.Language Structures (4)

Detailed investigation of the structure of one or more languages. May be repeated for credit as topics vary. Prerequisite: LIGN 101 or consent of instructor.
142. Language Typology (4)

The systematic ways languages differ. Cross-linguistic studies of specified topics (e.g., word order, agreement, case, switch reference, phonological systems and rule types, etc.) in an effort to develop models of language variation. Prerequisite: L/GN 101 or consent of instructor.
143. The Structure of Spanish (4)

Surveys aspects of Spanish phonetics, phonology, morphology, and syntax. Topics include dialect differences between Latin American and Peninsular Spanish (both from a historical and contemporary viewpoint), gender classes, verbal morphology, and clause structure. Prerequisite: LIGN 101 or consent of instructor.
145. Pidgins and Creoles (4)

Pidgin and creole languages provide important insights into the processes arising from natural language contact. Origins of pidgins and creoles; detailed description of salient aspects of their structure; relevance of pidgins and creoles for theories of syntax, morphology, language acquisition. Prerequisite: LIGN 101 or consent of instructor.

150. Historical Linguistics (4)

Language is constantly changing. This course investigates the nature of language change, how to determine a language's history, its relationship to other languages, and the search for common ancestors or 'proto-language'. Prerequisite: LIGN 101 or consent of instructor.
160. Mathematical Analysis of Language (4)

The techniques and major results of computational, logical, and statistical approaches to the analysis of human and computer languages.

163. Computers and Language (4)

Computers are just getting to the point where they can understand spoken and written language. What makes this task so hard? How do computers manage to do it at all? Hands-on study of real software systems.
165. Computational Linguistics (4)

An introduction to the fundamental concepts of computational linguistics, in which we study natural language syntax and semantics from an interpretation perspective, describe methods for programming computer systems to perform such interpretation, and survey applications of computational linguistics technology.

170. Psycholinguistics (4)

The study of modets of language and of language acquisition from the point of view of modern linguistics and psychology. Basic experimental method as applied to language. Prerequisite: L/GN 101 or consent of instructor.

171. Child Language Acquisition (4)

A central cognitive, developmental mystery is how children learn their first language. Overview of research in the learning of sound systems, word forms and word meanings, and word combinations. Exploration of the relation between cognitive and language development. Prerequisite: LIGN 101 or consent of instructor.
172. Language and the Brain (4)

The mind/body problem, basic neuroanatomy and neurophysiology, cerebral lateralization, origins and evolution of language, aphasia, magnetic resonance imaging (MRI), and event-related potentials (ERPs). Prerequisite: LIGN 101 or consent of instructor.
174. Gender and Language in Society (4)
(Same as SOC/B 118A) This course examines how language contributes to the social construction of gender identities, and how gender impacts language use and ideologies. Topics include the ways language and gender interact across the life span (especially childhood and adolescence); within ethnolinguistic minority communities; and across cultures. Prerequisite: upper-division standing.
175. Sociolinguistics (4)

The study of language in its social context, with emphasis on the different types of linguistic variation and the principles underlying them. Dialects; registers; sexbased linguistic differences; factors influencing linguistic choice; formal models of variation; variation and change. Prerequisite: LIGN 101 or consent of instructor.
176. Language of Politics and Advertising (4)

How can we explain the difference between what is literally said versus what is actually conveyed in the language of law, politics, and advertising? How people's ordinary command of language and their reasoning skills are used to manipulate them.
177. Multilingualism (4)

Official and minority languages, pidgins and Creoles, language planning, bilingual education and literacy, code switching, and langage attrition. Prerequisite:LIGN 101 or consent of instructor.
179. Second Language Acquisition Research (4)

Topics in second language acquisition including the critical period, the processing and neural representation of language in bilinguals, theories of second language acquisition and creolization, exceptional language learners, and parallels with first language acquisition. Prerequisite: LIGN 101 or consent of instructor.

195. Apprentice Teaching (0-4)

Students lead a class section of a lower-division linguistics course. They also attend a weekly meeting on teaching methods. (This course does not count toward minor or major.) May be repeated for credit, up to a maximum
of four units. (P/NP grades only.) Prerequisites: consent of instructor, advanced standing.
199. Independent Study in Linguistics (2 or 4)

The student undertakes a program of research or advanced reading in linguistics under the supervision of a faculty member of the Department of Linguistics. (P/NP grades only.) Prerequisite: consent of instructor. May be repeated for credit.

199H. Honors Independent Study in Linguistics
The student undertakes a program of research and advanced reading in linguistics under the supervision of a faculty member in the Department of Linguistics. (P/NP grades only.) Prerequisite: admission to Honors Program.

GRADUATE

200. Research Forum (2)

A forum for discussion of current issues. (S / U grades only.) May be repeated for credit.
210. Laboratory Phonetics (4)

Readings and laboratory work in acoustic and articulatory phonetics and speech perception. Experimental design and methodology. Phonetic explanation in phonology. Students will gain hands-on experience with laboratory equipment. Prerequisite: L/GN 110 or equivalent.

211A. Introductory Phonology (4)

introduction to the study of the sound patterns of language. Rules and representations, lexical phonology, segmental processes, autosegmental phonology.

211B. Nonlinear Phonology (4)

This course will introduce topics in prosodic phonology and morphology, (including syllable structure, stress, and reduplication). These topics will be investigated within constraint-based phonology. Prerequisite: L/GN 211A or equivalent.

213. Issues in Phonology (4)

Current theoretical issues. May be repeated for credit when topics vary.

214. Topics in Phonetics (4)

Advanced topics in phonetic sciences. Subjects will vary, and may include speech perception, acoustic phonetics, articulatory phonetics. May be repeated for credit when topics vary. Prerequisite: L/GN 210, or consent of instructor.

215. Topics in Phonology (4)

Descriptive and theoretical problems in phonology. Discussion of work in progress and/or theoretical consequences of alternative analyses. May be repeated for credit when topics vary.

221A. Introduction to Grammatical Theory (4)

This course introduces basic syntactic phenomena and argumentation via the Government and Binding Theory of the 1980s. The phenomena, including NPMovement, Binding, and Wh-Movement, have been important in the development of Generative Grammar and remain central to current generative frameworks.

221B. Introduction to Grammatical Theory (4)

This course continues to develop Principles and Parameters Theory, as introduced in 221A. It concentrates on A-bar dependencies and the Binding Theory. Focus will be on testing theoretical proposals and
understanding the role of theoretical alternatives, underlying assumptions, and the empirical results upon which these theoretical proposals are based.

221C. Introduction to Grammatical Theory (4)

A basic introduction to the theory of Cognitive Grammar, which claims that lexicon, morphology, and syntax form a continuum of symbolic structures. Among the topics examined are semantic structure, grammatical classes, constructions, rules, clause structure, and reference-point phenomena.
222. Theories of Grammar (4)

Introduction to a particular grammatical theory. May be repeated for credit when topics vary.

223. Current Issues in Principles and Parameters

Theory (4)
This course examines recent developments in Principles and Parameters Theory. Topics include fundamental work that led to the Minimalist Program and more recent developments in this tradition. May be repeated for credit when topics vary.
224. Lexicalist Theories of Grammar (4)

Introduction to conceptual issues and representational apparatus of lexicalist theories of grammar. Focus on empirical argumentation from numerous languages for lexicalist assumptions. Particular attention to lexical semantics, morphology, and syntax.

225. Topics in Syntax (4)

Descriptive and theoretical problems in syntactic analysis. Theoretical consequences of alternative analyses. May be repeated for credit when topics vary.
230. Formal Semantics (4)

Theories of semantic structure. The relation of meaning to grammar, and how it is to be accommodated in an overall model of linguistic organization. The application of formal semantics to the description of natural language.
231. Cognitive Semantics (4)

Introduction to conceptualist accounts of semantic structure. Survey of basic phenomena, including frames, metaphor, metonymy, construal, categorization, image schemas, and mental space organization. Examination of selected descriptive and theoretical proposals.

235. Topics in Semantics (4)

Advanced material in special areas of the study of meaning and its relation to formal aspects of human language. As subject matter varies, the course may be repeated for credit.
236. Language Universals and Linguistic Typology (4) Introduction to the typological study of language, contrasting alternative approaches to research in language universals. Main topics covered: cross-linguistic approach to language study (sampling: universal generalizations, hierarchies); explanations for language universals; the role of cross-linguistic analyses in linguistic theory.

237. Functional Linguistics (4)

A sequel to LIGN 221A-C presenting fundamental assumptions of functional linguistics and comparing functionalism with other major theories of syntax. Goals: to expand students' knowledge of theoretical approaches to fundamental grammatical phenomena; to practice constructing arguments based on empirical evidence.
238. Topics in Cognitive Linguistics (0-4)
(Same as Cognitive Science 238) Basic concepts, empirical findings, and recent developments in cognitive and functional linguistics. Language viewed dynamically in relation to conceptualization, discourse, meaning construction, and cognitive processing. As topics vary, may be repeated for credit.

239. Information Structure and Discourse (4)

This course will examine major information-structural categories (topic, focus, etc.) and the relationships between these categories, semantic roles, and grammatical functions. The course will also examine the status of information structure within the architecture of a linguistic theory. Prerequisite: L/GN 221A, 221B, 221C, 221D, or consent of instructor.
240. Field Methods (4)

Techniques of discovering the structure of a language through elicitation of data from native speaker consultants. Phonemic, morphemic, and syntactic analysis. Prerequisite: L/GN 110 or equivalent.

241. Fieldwork (4)

Fieldwork continuing the research of the previous quarter; student-directed elicitations on topics of interest. Prerequisite: LIGN 240.
242. Discourse Interpretation (4)

A graduate course examining discourse interpretation from a computational perspective. Theoretically principled algorithms for resolving pronominal and other types of reference. The interpretation of ellipsis. Methods for recovering the structure of a discourse and determining its coherence.
244. Tense and Aspect (4)

Tense and aspect in natural languages, with an emphasis on the temporal information they predicate over eventualities in discourse. Theories of event structure and their intereaction with tense and aspect. Computational models.
248. Morphology (4)

Theories of word structure are examined and confronted with data from a variety of languages. Topics may include: the distinction between derivational and inflectional morphology, the morphology/phonology interface, and the morphology/syntax interface. May be repeated for credit as topics vary.
250. Historical Linguistics (4)

Introduction to the concepts and methodology of historical linguistics. Topics covered include the nature of language change, genetic and areal relationships, the comparative method, and internal reconstruction.
270. Psycholinguistics (4)

Issues of natural language processing in relation to one or more of the following levels of linguistic analysis: phonetics, phonology, the lexicon, morphology, syntax, semantics, information structure, or discourse. May be repeated for credit when topics vary.

272. Topics in Neurolinguistics (4)

Issues of language representation and neural instantiation that arise in studies of neural imaging, language disorders, multilingualism and second language acquisition, animal communication, and the origins and evolution of language. May be repeated for credit when topics vary.

278. Research in Second Language Acquisition (4)

This course will investigate topics in second language acquisition including the critical period, the processing
and neural representation of language in bilinguals, theories of second language acquisition and creolization, exceptional language learners, and parallels with first language acquisition.
292. Topics in Research in Progress (0-4)

Presentation and discussion of research in progress. May be repeated.
293. Research Practicum (0-4)

Gathering and interpreting data, formulating research questions and hypotheses, making the predictions of hypotheses explicit, finding relevant evidence, and organizing research results into suitable form for presentation in abstracts, talks, and research papers. (S / U grades only.) May be repeated for credit.

295. Professional Development in Methodology of Language Teaching (0-2)

Skills, techniques, issues, and principles relevant to the methods and pedagogy involved in the teaching and learning of a foreign language and the successful transition to a professional career. Readings, discussions, and demonstrations of techniques. (S / U grades only.) May be repeated for credit. Prerequisite: permission of instructor.
296. Directed Research (1-8)

Individual research. May be repeated for credit.
299. Doctoral Research (1-12)

Directed research on dissertation topic for students who have been admitted to candidacy for the Ph.D. degree. May be repeated for credit. Prerequisite: admission to candidacy.
502. Apprentice Teaching of Linguistics (1-4)

The course, designed for graduate students serving as teaching assistants in the department's linguistics courses, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. The student must be serving as a teaching assistant in a LIGN course to receive credit.

503. Apprentice Teaching of American Sign
 Language (1-4)

The course, designed for graduate students serving as teaching assistants in American Sign Language, includes discussion of teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S / U grades only.) May be repeated for credit.

504. Apprentice Teaching of French (1-4)

The course, designed for graduate students serving as teaching assistants in French, includes discussion of teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.

505. Apprentice Teaching of German (1-4)

The course, designed for graduate students serving as teaching assistants in German, includes discussion of teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.

506. Apprentice Teaching of Italian (1-4)

The course, designed for graduate students serving as teaching assistants in Italian, includes discussion of
teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.
507. Apprentice Teaching of Spanish (1-4)

The course, designed for graduate students serving as teaching assistants in Spanish, includes discussion of teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S / U grades only.) May be repeated for credit.

508. Apprentice Teaching of Language/Directed

Study (1-4)
The course, designed for graduate students serving as teaching assistants in language directed study, includes discussion of teaching theories, techniques and materials, directing study of various uncommonly taught languages, sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.

509. Apprentice Teaching, Head Teaching Assistant

 (1-4)This course, designed for a graduate student serving as Head Teaching Assistant in the Linguistics Language Program, includes discussion of teaching methods and materials, and classroom observation, directing study of various uncommonly taught languages, sessions, and participation in examinations, under the supervision of the instructor in charge of the course.

COURSES

LANGUAGE

OFFICE: Linguistics Language Program Office, 2125 McGill Hall, Muir College

Students are placed in foreign language courses based on prior preparation and on the results of a placement test administered prior to or during orientation. Students who miss the placement exam should contact the Linguistics Language Program Office (McGill 2125) for instructions.

Conversation sections (Linguistics 1A-1B-1C1D) consist of small tutorial meetings with a native speaker, plus reading and assigned laboratory work. Analysis sections (Linguistics 1AX-1BX-1(X-1DX) consist of presentation and practice of grammatical structures, discussion sections, assigned laboratory work, and outside reading. Each course in the 1A-1B-1C-1D series must be taken concurrently with the corresponding course in the 1AX-1BX-1CX-1DX series.

Linguistics 11 courses are self-instructional: intended for reading the language for scholarly purposes. They are particularly aimed at graduate students preparing to fulfill French or German reading requirements.

Linguistics 19 courses, offered in more than sixty languages, are designed for self-instructional study at an introductory level. Students may enroll for two or four units of credit. For some languages, depending on the availability of suitable materials, the course may be repeated for credit.

AMERICAN SIGN LANGUAGE

Linguistics/American Sign Language (LISL) 1A. American Sign Language Conversation (2.5)
Small tutorial meetings with a signer of American Sign Language (ASL). Conversational practice organized around common everyday communicative situations. Must be taken with LISL IAX. Prerequisite: no prior study of ASL.

Linguistics/American Sign Language (LISL) 1AX. Analysis of American Sign Language (2.5)
Study of American Sign Language (ASL) and analysis of its syntactic, morphological, and phonological features. Readings and discussions of cultural information. The course is taught entirely in ASL. Must be taken with LISL 1A. Prerequisite: no prior study of ASL.

Linguistics/American Sign Language (LISL) 1B. American Sign Language Conversation (2.5)
Small tutorial meetings with a signer of American Sign Language (ASL). Conversational practice organized around common everyday communicative situations. Must be taken with LISL 1BX. Prerequisites: LISL IA with a grade of C - or better, or equivalent and LISL IAX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL) 1BX. Analysis

 of American Sign Language (2.5)Study of American Sign Language (ASL) and analysis of its syntactic, morphological, and phonological features. Readings and discussions of cultural information. The course is taught entirely in ASL. Must be taken with LISL 1B. Prerequisites: LISL IA with a grade of C - or better, or equivalent and LISL IAX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL) 1C. American Sign Language Conversation (2.5)

Small tutorial meetings with a signer of American Sign Language (ASL). Conversational practice organized around common everyday communicative situations. Must be taken with LISL 1CX. Prerequisites: LISL $1 B$ with a grade of C - or better, or equivalent and LISL IBX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL) 1CX. Analysis of American Sign Language (2.5)
Study of American Sign Language (ASL) and analysis of its syntactic, morphological, and phonological features. Readings and discussions of cultural information. The course is taught entirely in ASL. Must be taken with LISL 1C. Prerequisites: LISL $1 B$ with a grade of C - or better, or equivalent and LISL 1BX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL) 1D. American Sign Language Conversation (2.5)
Small conversation sections taught entirely in American Sign Language. Emphasis on developing signing fluency and greater cultural awareness. Practice of the principal language functions needed for successful communication. Must be taken in conjunction with LISL. 1DX. Successful completion of LISL 1D and LISL 1DX
satisfies the requirement for language proficiency in Revelle College. Prerequisites: LISL IC with a grade of Cor better, or equivalent and LISL ICX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL) 1DX. Analysis of American Sign Language (2.5)
Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in American Sign Language. Must be taken in conjunction with LISL 1D. Successful completion of LISL 1D and LISL 1DX satisfies the requirement for language proficiency in Revelle College. Prerequisites:LISL 1C with a grade of C- or better, or equivalent and LISL ICX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL) 1 E .
Intermediate American Sign Language Conversation (4) Course aims to improve language skills through discussion of topics relevant to the Deaf community. Central topics will include education and American Sign Language (ASL) literature. Conducted entirely in American Sign Language. Prerequisites: LISL 1D and LISL 1DX with a grade of C - or better, or equivalent.

CHINESE

See: Chinese Studies
See also: Linguistics Directed Study

FRENCH

Linguistics/French (LIFR) 1A. French Conversation (2.5) Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1AX. Prerequisite: no prior study of French.

Linguistics/French (LIFR) 1AX. Analysis of French (2.5) Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in French. Must be taken in conjunction with LIFR 1A. Prerequisite: no prior study of French.

Linguistics/French (LIFR) 1B. French Conversation (2.5) Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1BX. Prerequisites: LIFR 1A with a grade of C - or better, or equivalent and LIFR 1AX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1BX. Analysis of French (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in French. Must be taken in conjunction with LIFR 1B. Prerequisites: LIFR $1 A$ with a grade of C - or better, or equivalent and LIFR 1AX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1C. French Conversation (2.5) Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1CX. Prerequisites: LIFR 1B with a grade of C-or better, or equivalent and LIFR $1 B X$ with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1CX. Analysis of French (2.5) Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in French. Must be taken in conjunction with LIFR 1C. Prerequisites: LIFR $1 B$ with a grade of C - or better, or equivalent and LIFR $1 B X$ with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1D. French Conversation (2.5) Small conversation sections taught entirely in French. Emphasis on speaking, reading, writing, and culture. Practice of the language functions needed for successful communication. Must be taken in conjunction with LIFR 1DX. Successful completion of LIFR 1D and LIFR 1DX satisfies the requirement for language proficiency in Revelle College. Prerequisites: LIFR IC with a grade of Cor better, or equivalent and LIFR ICX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1DX. Analysis of French (2.5) Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in French. Must be taken in conjunction with LIFR 1D. Successful completion of LIFR 1D and LIFR 1DX satisfies the requirement for language proficiency in Revelle College. Prerequisites: LIFR IC with a grade of C- or better, or equivalent and LIFR ICX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 11. Elementary French

Reading (2-4)
A self-instructional program designed to prepare graduate students to meet reading requirements in French. After a one-week introduction to French orthography/ sound correspondence, students work with a selfinstructional textbook. Mid-term and final examinations. (F,W,S)

Linguistics/French (LIFR) 15, 16, and 17. Intermediate French for the Social Sciences (2)
Conducted entirely in French. Course aims to improve oral language skills through discussions of social science topics, with emphasis on political events and current affairs. Course materials encompass televised news broadcasts, newspapers and periodicals. LIFR 15 is offered fall quarter only, LIFR 16 is offered winter quarter only and LIFR 17 is offered spring quarter only. Each course may be taken one time and need not be taken in sequence. Prerequisite: LIFR 1D/DX or at least three semesters/four quarters of college French or by permission of the instructor. (Not offered in 2001-2002)

Linguistics/French (LIFR) 25. French on the World Wide Web (2)
Conducted entirely in French. Course aims to improve language skills through reading and discussion of contemporary cultural issues: press, politics, arts, and cultural events. Students will access course materials directly from France through the Internet. It is particularly recommended for students preparing for EAP or OAP. Prerequisite: LIFR ID/DX or at least three semesters/four quarters of college French or by permission of the instructor. (Not offered in 2001-2002)

See also: Department of Literature

GERMAN

Linguistics/German (LIGM) 1A. German

Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIGM IAX. Prerequisite: no prior study of German.

Linguistics/German (LIGM) 1AX. Analysis of

 German (2.5)Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in German. Must be taken with LIGM 1A. Prerequisite: no prior study of German.

Linguistics/German (LIGM) 1B. German

Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIGM 1BX. Prerequisites: LIGM 1A with a grade of C- or better, or equivalent and LIGM IAX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1BX. Analysis of

German (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in German. Must be taken with LIGM 1B. Prerequisites: LIGM 1A with a grade of C- or better, or equivalent and LIGM 1AX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1C. German
Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIGM 1CX. Prerequisites: LIGM $1 B$ with a grade of C - or better, or equivalent and LIGM IBX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1CX. Analysis of

German (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in German. Must be taken with LIGM 1C. Prerequisites: LIGM IB with a grade of C - or better, or equivalent and LIGM 1BX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1D. German

Conversation (2.5)
Small conversation sections taught entirely in German. Emphasis on speaking, reading, writing, and culture. Practice of the language functions needed for successful communication. Must be taken in conjunction with LIGM 1DX. Successful completion of LIGM 1D and LIGM 1DX satisfies the requirement for language proficiency in Revelle College. Prerequisites: L/GM TC with a grade of Cor better, or equivalent and LIGM ICX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1DX. Analysis of

 German (2.5)Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in German. Must be taken in conjunction with LIGM 1D. Successful completion of LIGM 1D and LIGM 1DX satisfies the requirement for language proficiency in Revelle College. Prerequisites: LIGM 1C with a grade of C - or better, or equivalent and LIGM ICX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 11. Elementary German

 Reading (2-4)A self-instructional program designed to prepare graduate students to meet reading requirements in

German. After a one-week introduction to German orthography/sound correspondences, students work with a self-instructional textbook. Mid-term and final examinations. (F,W,S)

Linguistics/German (LIGM) 15, 16, and 17. Intermediate German for the Social Sciences (2)
Conducted entirely in German. Course aims to improve oral language skills through discussions of social science topics, with emphasis on political events and current affairs. Course materials encompass televised news broadcasts, newspapers and periodicals. LIGM 15 is offered fall quarter only, LIGM 16 is offered winter quarter only and LIGM 17 is offered spring quarter only. Each course may be taken one time and need not be taken in sequence. Prerequisites: L/GM 1D/DX or at least three semesters/four quarters of college German or by permission of the instructor. (Not offered in 2001-2002)

See also: Department of Literature

GREEK

See: Department of Literature
See also:Linguistics Directed Study

HEBREW

See: Judaic Studies
See also: Linguistics Directed Study

ITALIAN

Linguistics/talian (LIIT) 1A. Italian Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIIT 1 AX. Prerequisite: no prior study of Italian.

Linguistics/Italian (LIIT) 1AX. Analysis of Italian (2.5) Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Italian. Must be taken with LIIT 1A. Prerequisite:no prior study of Italian.

Linguistics/Italian (LIIT) 1B. Italian Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIIT 1BX. Prerequisites: LIIT 1A with a grade of C - or better, or equivalent and LIIT 1AX with a grade of D or better, or equivalent.

Linguistics/Italian (LIIT) 1BX. Analysis of Italian (2.5) Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Italian. Must be taken with LIIT 1B. Prerequisites: LIIT 1A with a grade of C - or better, or equivalent and LIIT TAX with a grade of D or better, or equivalent.

Linguistics/Italian (LIIT) 1C. Italian Conversation (2.5) Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIIT 1CX. Prerequisites: LIIT IB with a grade of C - or better, or equivalent and LIIT $1 B X$ with a grade of D or better, or equivalent.

Linguistics/Italian (LIIT) 1CX. Analysis of Italian (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication
and for reading. The course is taught entirely in Italian. Must be taken with LIIT 1C. Prerequisites: LIIT IB with a grade of C- or better, or equivalent and LIIT IBX with a grade of D or better, or equivalent.
See also: Department of Literature

JAPANESE

See: Japanese Studies
See also: Linguistics Directed Study

LATIN

See: Department of Literature

RUSSIAN

See: Department of Literature
See also: Linguistics Directed Study

SPANISH

Linguistics/Spanish (LISP) 1A. Spanish Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LISP IAX. Prerequisite: no prior study of Spanish.

Linguistics/Spanish (LISP) 1AX. Analysis of Spanish (2.5) Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Spanish. Must be taken with LISP 1A. Prerequisite: no prior study of Spanish.

Linguistics/Spanish (LISP) 1B. Spanish
Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speak ing, vocabulary building, reading, and culture. Must be taken in conjunction with LISP 1BX. Prerequisites: LISP 1A with a grade of C - or better, or equivalent and LISP 1AX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1BX. Analysis of Spanish (2.5) Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Spanish. Must be taken with LISP 1B. Prerequisites: LISP 1A with a grade of C - or better, or equivalent and LISP IAX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1C. Spanish

Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LISP ICX. Prerequisites: LISP IB with a grade of C- or better, or equivalent and LISP 1BX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1CX. Analysis of Spanish (2.5) Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Spanish. Must be taken with LISP 1C. Prerequisites: LISP 1B with a grade of C- or better, or equivalent and LISP $1 B X$ with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1D. Spanish
Conversation (2.5)
Small conversation sections taught entirely in Spanish. Emphasis on speaking, reading, writing, and culture. Practice of the language functions needed for successful communication. Must be taken in conjunction with LISP 1DX. Successful completion of LISP 1D and LISP 1DX satisfies the requirement for language proficiency in Revelle College. Prerequisites: LISP 1C with a grade of Cor better, or equivalent and LISP 1CX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1DX. Analysis of

Spanish (2.5)
Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in Spanish. Must be taken in conjunction with LISP 1D. Successful completion of LISP 1D and LISP 1DX satisfies the requirement for language proficiency in Revelle College. Prerequisites: LISP IC with a grade of C - or better, or equivalent and LISP 1CX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 15, 16, 17. Intermediate
Spanish for the Social Sciences (2)
Conducted entirely in Spanish. Course aims to improve oral language skills through discussions of social science topics, with emphasis on political events and current affairs. Course materials encompass televised news broadcasts, newspapers and periodicals. LISP 15 is offered fall quarter only, LISP 16 is offered winter quarter only, and L.ISP 17 is offered spring quarter only. Each course may be taken one time and need not be taken in sequence. Prerequisite: LISP ID/DX or at least three semesters/four quarters of college Spanish or by permission of the instructor.

See also: Department of Literature

DIRECTED STUDY

Linguistics (LIDS) 19. Directed Study-Language (2-4) Introductory-level study of a language in the language laboratory on a self-instructional basis. Depending on the availability of appropriate study materials, the course may be taken in blocks of two or four units of credit and may be repeated up to the total number of units available for that language.

Albanian Fula
American Sign Language German
Amharic
Arabic, Eastern
Arabic, Egyptian
Arabic, Iraqi
Arabic, Moroccan
Arabic, Saudi
Armenian, Eastern
Bengali
Bulgarian
Burmese
Cambodian
Catalan
Chinese, Cantonese
Chinese, Mandarin
Chinyanja
Cree
Czech
Danish
Dutch
Esperanto
Finnish
French

Greek, Modern
Haitian Creole
Hausa
Hawaiian
Hebrew, Modern
Hindi-Urdu
Hungarian Igbo
Indonesian
Italian
Japanese
Kannada
Kituba
Korean
Latvian
Lithuanian
Malay
Mongolian
Navajo
New Guinea Pidgin
Norwegian
Persian

Polish	Tagalog
Portuguese	Telugu
Romanian	Thai
Russian	Tibetan
Serbo-Croatian	Turkish
Slovenian	Twi
Spanish	Vietnamese
Swahili	Welsh
Swedish	Yoruba

Literature

ADMINISTRATIVE OFFICE:

3134 Literature Building
(858) 534-3214

GRADUATE OFFICE:
3139/3140 Literature Building
(858) 534-3217

UNDERGRADUATE OFFICE:
3110 Literature Building
(858) 534-3210

Professors

Ronald S. Berman, Ph.D., English and American Literature
Linda Brodkey, Ph.D., Writing; Director, Warren College Writing Program
Steven Cassedy, Ph.D., Slavic and Comparative Literature
Alain J.-J. Cohen, Ph.D., Comparative Literature
Jaime Concha, Ph.D., Spanish and Latin American Literature
Stephen D. Cox, Ph.D., English Literature; Director, Revelle Humanities Writing Program; Academic Senate Distinguished Teaching Award
R. Michael Davidson, Ph.D., American Literature, Writing
Arthur Droge, Ph.D., New Testament and Early Christian Literature; Director, Program for the Study of Religion
Page duBois, Ph.D., Classics and Comparative Literature
Richard Elliott Friedman, Th.D., Hebrew and Comparative Literature; Katzin Professor of Jewish Civilization
Judith M. Halberstam, Ph.D., English and American Literature
Marcel Hénaff, Ph.D., French Literature
Fanny Q. Howe, Writing
Susan Kirkpatrick, Ph.D., Spanish and Comparative Literature

Todd C. Kontje, Ph.D., German and Comparative Literature
Lisa M. Lowe, Ph.D., Comparative Literature, Chair
Masao Miyoshi, Ph.D., English, Japanese and Comparative Literature; Hajime Mori Endowed Chair
Louis Adrian Montrose, Ph.D., English and American Literature
Rosaura A. Sánchez, Ph.D., Spanish, Latin American, and Chicano Literature
Quincy Troupe, B.A., Writing; African American Literature
Donald T.Wesling, Ph.D., English and American Literature, Writing
Wai-lim Yip, Ph.D., Chinese and Comparative Literature
Oumelbanine Zhiri, Ph.D., French Literature

Associate Professors

Robert Cancel, Ph.D., African and Comparative Literature
Anthony Edwards, Ph.D., Classics and Comparative Literature
Rosemary M. George, Ph.D., English Literature
Stephanie H. Jed, Ph.D., Italian and Comparative Literature
Nicole R. King, Ph.D., Twentieth-Century African American Literature and Culture
George Mariscal, Ph.D., Spanish Literature
William A. O'Brien, Ph.D., German and Comparative Literature
Max Parra, Ph.D., Mexican and Latin American Literature
Fred V. Randel, Ph.D., English Literature
Roddey Reid, Ph.D., French Literature
Marta E. Sánchez, Ph.D., Latin American and Chicano Literature
Kathryn Shevelow, Ph.D., English Literature
Barbara Tomlinson, Ph.D., Writing; Director, Muir College Writing Program
Nicole Tonkovich, Ph.D., American Literature
Pasquale Verdicchio, Ph.D., Italian and Comparative Literature
Cynthia Walk, Ph.D., German Literature
Don Edward Wayne, Ph.D., English Literature
Winifred Woodhull, Ph.D., French Literature
Lisa Yoneyama, Ph.D., Japanese Studies and Cultural Studies

Assistant Professors

Daphne A. Brooks, Ph.D., African American Literature
Richard S. Cohen, Ph.D., South Asian Literature

Milos Kokotovic, Ph.D., Latin American Literature
Susan Larsen, Ph.D., Russian Literature
Jin-Kyung Lee, Ph.D., Comparative Asian Literature and Culture
Shelley Streeby, Ph.D., American Literature

Professors Emeriti

Carlos Blanco-Aguinaga, Ph.D.
Diego Catalán, Ph.D.
Charles R. Cooper, Ph.D.
Abraham J. Dijkstra, Ph.D.
Margit Frenk, Ph.D.
Edwin S. Fussell, Ph.D.
James K. Lyon, Ph.D.
Roy Harvey Pearce, Ph.D.
Jerome D. Rothenberg, M.A.
John L. Stewart, Ph.D.
William S.Tay, Ph.D.
Andrew Wright, Ph.D., F.R.S.L.

Associate Professors Emeriti

Jack Bejar, Ph.D.
David K. Crowne, Ph.D.
Thomas K. Dunseath, Ph.D.

Lecturers

Rae Armantrout, M.A., Writing
Marleen Brasefield, Ph.D., Dimensions of Culture
Charles Chamberlain, Ph.D., Classical
Languages and Literature, Writing
Adriana deMarchi-Gherini, Ph.D., Italian Language and Literature
Robert Dorn, M.A., Writing
Leslie Collins Edwards, Ph.D., Classical Languages and Literature
Melvyn Freilicher, C.Phil., Writing
Jeffrey Geoghegan, Ph.D., Revelle Humanities Program/History
John Granger, Ph.D., Writing
David M. Kuchta, Ph.D., Revelle Humanities Program
Beatrice Pita, Ph.D., Spanish Language and Latin American Literature
Catherine Ploye, Ph.D., French Language and Literature
Stephen Potts, Ph.D., American and Popular Literature
Robert Ruffin, M.A., Muir Writing Program
William E.Weeks, Ph.D., Warren College Writing Program
Rebecca Wells, C.Phil., Russian Language and Literature
Eliot Wirshbo, Ph.D., Classical Languages and Literature

Visiting Professor

Fredric Jameson, Ph.D.
All literature courses at UCSD are offered by a single Department of Literature. The department brings together writers, teachers, scholars, and students of several different languages and literatures. Here, they are united by the nature of the studies they pursue. This lends a comparative aspect to both undergraduate and graduate programs, which lead to the bachelor of arts, master of arts, the candidate in philosophy, and doctor of philosophy degrees. All students must show knowledge of a foreign literature by doing upperdivision or graduate work in that literature in the original language. Courses are offered not only in the literatures themselves but in the theoretical aspects of literature and-often in cooperation with other departments-in the relationship of literary study to other disciplines such as philosophy, visual arts, music, sociology, history, psychology, linguistics, and communication. With special permission, undergraduates may take graduate courses for credit, and graduate students may also take undergraduate courses for credit.

The UCSD Library's Mandeville Department of Special Collections offers the undergraduate and graduate literature student an excellent range of resources, including single-author collections, rare and out-of-print books, tapes, maps, and historical archives. Of special interest are the Southworth Collection of Spanish Civil War materials, the Hill Collection of South Pacific Voyages, the Don Cameron Allen Renaissance collection, and the Archive for New Poetry. Within the latter collection are an extensive series of single-author archives, including the papers of Paul Blackburn, Donald Allen, Lew Welch, Charles Reznikoff, Joanne Kyger, Jerome Rothenberg, and others. The Archive for New Poetry is one of the largest collections of contemporary poetry in the United States. Graduate students also have access, facilitated by travel grants, to all other University of California research collections.

Careers for Literature Majors

A major in literature opens many career possibilities. Education is a primary option, but specializations in literature (English, Spanish, etc.) and writing also serve as excellent preparation for graduate and professional programs. A degree in literature provides a strong background for the LSAT and law school. Medical schools seek out
students who are prepared not only in the sciences, but also in the humanities and writing. The business world seeks college-trained English majors, and international corporations actively recruit students with a specialty in French, German, Italian, Russian, or Spanish. Literature majors find careers in advertising, book editing and publishing, journalism, communications, mass media, and other professions where writiers and editors are in demand. The knowledge of a second language and culture provides literature majors with a decided career advantage.

Secondary School English Teaching

The literature department offers an excellent preparation for teaching English/ESL in secondary schools. Suggested majors include Literatures of the World (with a TEP focus), Literatures in English, and Literature/Writing. If you are interested in receiving a California teaching credential from UCSD, contact the Teacher Education Program for information about prerequisites and professional preparation requirements. Please consult the TEP and the literature department early in your academic career to plan an appropriate literature curriculum.

The Undergraduate Program

Lower-Division Preparation

Lower-division requirements vary, depending on the literature program in which the student elects to concentrate. However, the department strongly recommends that, as part of the freshman/sophomore course work, students who have chosen or are considering a major in literature begin an appropriate lower-division language sequence in the Department of Linguistics or Literature as preparation for upper-division course work in a foreign language and literature. All literature majors require knowledge of a second language.

Writing Component in Literature Courses

It is the departmental expectation that students in lower-division courses should write a minimum of 2,500 words per course. In upperdivision courses the minimum requirement is 4,000 words per course.

The Major in Literature

There are nine majors available to students within the Department of Literature: Literatures in English, French, German, Italian, Russian, Spanish, Literatures of the World, Writing, and the composite major in two literatures. Requirements vary from program to program as described below. Once a student has decided upon a major in literature, he or she is required to meet regularly with an adviser in the Department of Literature. Worksheets defining major requirements are available in the literature undergraduate office to help students organize their course work.

All students majoring in literature must study a secondary literature, that is, a literature written in a language different from that of their primary literature. The range of secondary literatures includes Classical Greek, Hebrew, and Latin, as well as the previously mentioned French, German, Italian, Russian, Spanish, and for those concentrating in a foreign literature, English. Students will satisfy this requirement by taking three courses in the secondary literature, given substantially in the native language. At least one of these courses must be upper-division. Students should see an adviser to confirm the selection of the specific courses that will be taken to satisfy both the lower-division and the upper-division components of the secondary literature requirement.
The lower-division component within the sec ondary literatures may be satisfied by: French $2 B$ and either 2 C or 50 ; German 2 B and 2 C ; Hebrew 2 and 3 (see "Judaic Studies"); Italian 2B and 50; Greek 2 and 3; Latin 2 and 3; Russian 2B and 2C; two courses from Spanish 50A-50B-50C. For majors other than Literatures in English, two courses from English 17-18-19 and 60, 21-22-2324 , and 50 are applicable. (Literatures of the World and writing courses may not be applied toward the English secondary literature requirement.) Note: World Literature courses taught in English do not apply unless there is a foreign-language discussion section and materials are available in the foreign language. World Literature (LTWL) courses whose primary focus is U.S. literature may apply toward secondary literature requirements in Literatures in English.

Upper-division courses in the secondary literature are counted as part of the total number of upper-division courses required for the major. Students are free to choose from any of the regularly scheduled upper-division offerings in their
secondary foreign literature. Special Studies courses (198s and 199s) cannot be used to satisfy upper-division secondary literature requirements.

All regularly-scheduled departmental courses taken to satisfy the requirements of the literature major, including courses in the secondary literature, must be taken for a letter grade. No grade below C - is acceptable for a course taken in the major.

At least six of the upper-division courses for the major, including a minimum of four in the primary literature and one in the secondary literature, must be taken at UCSD.

Dual Major in Literature

The dual major in literature permits a student to develop a solid foundation in two literatures while remaining within one department. Because the UCSD Literature Department houses literatures that are divided among different departments at most universities, our dual major allows students to coordinate their studies with a single, closely-knit group of faculty, and to arrange their program without repeating two different sets of major requirements. (For example, since a dual major necessarily combines literatures written in two different languages, it automatically fulfills the foreign-language requirement for the literature major.)

Students pursuing a dual major work closely with a faculty adviser to plan a program of study that meets the following requirements:

1. Students will select two literatures of concentration (Literature 1 and Literature 2)
a. one of the literatures must be in a language other than English;
b. both concentrations, however, can be in non-English literatures; thus a student can choose English and French, for example, or Russian and Spanish, French and Italian, German and Latin, Spanish and English, etc., but not Literatures of the World or Literature/Writing.
2. Students will meet all lower-division major requirements for each of the two literatures of concentration. See specific "Primary Concentration" listings above; English, Spanish, and Russian, for example, all have lower-division requirements for the major.
3. Students will take eight upper-division courses in each of the two selected literatures of con-
centration for a total of sixteen upper-division courses.
a. these must satisfy the upper-division course requirements for each of the two majors. Thus, for example, if one of the concentrations is English, the student must include courses from each of the five stipulated categories; if one of the concentrations is Spanish, upper-division courses must include LTSP 119A, B, or C, 130A, and 130B.
b. beyond the upper-division requirements for each literature of concentration (Literature 1 and Literature 2), students will take a sufficient number of elective courses in each of the two literatures of concentration to make a total of eight upper-division courses in each chosen concentration.

Honors Program

The department offers a special program of advanced study for outstanding undergraduates majoring in literature. Admission to this program ordinarily requires an overall GPA of 3.5 and a literature major GPA of 3.7 at the beginning of the senior year. Students meeting these requirements will be sent, during the latter part of fall quarter, an invitation to participate in the program. Interested students who anticipate that they will not meet the established criteria may petition to participate in the program by submitting a personal statement and three letters of support from members of the literature faculty by the end of the third week of fall quarter. During the winter quarter of their senior year, all honors students together take an honors seminar (LTWL 191), which aims to deepen their understanding of the issues of theory and method implied in the study of literature. This seminar lays the groundwork for an honors thesis, written in spring quarter (LT 196), each under the supervision of a faculty member who specializes in the literature of the student's primary concentration. The Honors Program concludes with an oral examination of each honors candidate by a faculty committee, which is charged with recommending whether departmental honors are warranted and, if so, which degree of honors will appear on the student's transcript and diploma. A student from this program will also be recommended for the Burckhardt Prize, which is awarded at graduation for outstanding achievement in the literature major. The honors seminar and thesis course may be applied toward the primary concentration in
the literature major. For Literature/Writing majors, the honors seminar is considered to be equivalent to a writing workshop.

Special Studies

These upper-division independent studies opportunities are intended for advanced students, able to work on their own, and interested in a topic not normally covered by departmental offerings.

Students with upper-division standing, a departmental GPA of at least 3.0, an overall GPA of at least 2.5 , and completion of lower-division prerequisites in the subject, are eligible to take Special Studies courses (198s and 199s). Those not satisfying these criteria may, with justification supported by the proposed Special Studies instructor, petition for an exception to the regulation. 198s and 199s require at least 4,000 words of writing or an equivalent project as determined by the instructor. Information and Special Studies Enrollment forms are availabie in the literature undergraduate office. Enrollment requires departmental approval. These courses may not be used to satisfy upper-division secondary literature requirements for majors.

Study Abroad

Study abroad can significantly enhance a student's major, particularly in ways in which it relates to international issues. Literature students are encouraged to study abroad before their senior year. Students who take Education Abroad Program or Opportunities Abroad Program (EAP/OAP) courses in a country appropriate to their major may use up to five upper-division courses to satisfy major requirements or a total of three toward a minor. These must be approved by the department after they have been entered on the student's official record at UCSD. The approval process is described in a hand-out on receiving transfer credit, available in the Literature Undergraduate Office.

Individual Program Requirements

Primary Concentration in Literatures in English

1. Four lower-division courses, two from each of the following two groups:
a. LTEN 21, 22, 23, and TWS 21.
b. LTEN $17,18,19$, and 60 .

Even if some or all of these courses are used toward meeting a college's humanities or gen-eral-education requirements, they will still count toward satisfying the requirements for the major in literatures in English.
2. Nine upper-division courses in literatures orginally written in English, including courses from each of the following five categories:
a. British literature before 1660: at least two courses
b. British literature from 1660 to 1832 : at least one course
c. British literature from 1832 to the present: at least one course
d. United States literature before 1860: at least one course
e. United States literature after 1860: at least one course
3. One course in literature/theory.
4. Three courses in a secondary literature, that is, a literature written and taught in a language other than English. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in English translation do not apply to the secondary literature requirement.
5. Upper-division electives chosen from Department of Literature offerings to make a total of twelve upper-division courses.

Primary Concentration in a Foreign Literature

Literatures in French

1. Nine upper-division courses as follows:
a. LTFR 115-116, Themes in French Intellectual and Literary History
b. Seven additional upper-division courses in French literature, including at least one course in each of the following periods: seventeenth or eighteenth century; nineteenth century; and twentieth century.
2. Three courses in a secondary literature, that is, a literature written and taught in a language other than French. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign
literatures which are taught in French do not apply to the secondary literature requirement.
3. Upper-division electives chosen from

Department of Literature offerings to make a total of twelve upper-division courses.

Literatures in German

1. Nine upper-division courses in German literature. Three of these should be in literature written before the year 1850 .
2. Three courses in a secondary literature, that is, a literature written and taught in a language other than German. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in German do not apply to the secondary literature requirement. See The Major in Literature, above, for applicable lower-division courses.
3. Upper-division electives chosen from

Department of Literature offerings to make a total of twelve upper-division courses.

Literatures in Italian

1. Nine upper-division courses in Italian literature as follows:
a. LTIT 100, Introduction to Italian Literature
b. LTIT 115, Medieval Studies
c. LTIT 161, Advanced Stylistics and Conversation
d. LTCS 140, Subaltern Studies in Context or LTIT 150, Italian North American Culture
e. Five additional upper-division courses in Italian literature taught in Italian
2. Three courses in a secondary literature, that is, a literature written and taught in a language other than Italian. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in Italian do not apply to the secondary literature requirement. See The Major in Literature, above, for applicable lower-division courses.
3. Upper-division electives chosen from Department of Literature offerings to make a total of twelve upper-division courses.

Russian Literature

1. Russian $1 A-B-C$ and $2 A-B-C$ or their equivalent
2. Twelve upper-division courses in Russian:
a. LTRU 101A-B-C or 104A-B-C
b. LTRU 110A-B-C
c. Six additional upper-division courses in Russian literature
3. Three courses in a secondary literature, that is, a literature written and taught in a language other than Russian. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in Russian do not apply to the secondary literature requirement. See The Major in Literature, above, for applicable lowerdivision courses.

Students in the Russian literature major are encouraged to participate in the Education Abroad Program (EAP) in Moscow and to investigate other options for foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill UCSD degree and major requirments.

Literatures in Spanish

1. Two lower-division Spanish literature courses, as indicated:
a. LTSP 50A, Peninsular Literature
b. Either LTSP 50B or LTSP 50C, Latin American Literature
2. Nine upper-division courses as follows:
a. LTSP 130A, Development of Spanish Literature
b. LTSP 130B, Development of Latin American Literature
c. LTSP 119A, 119B, or 119 C (Cervantes)
d. Six additional upper-division courses in Spanish, Latin American and/or Chicano literature (taught in Spanish)
3. Three courses in a secondary literature, that is, a literature written and taught in a language other than Spanish. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in Spanish do not apply to the secondary literature requirement. See The Major in Literature, above, for applicable lowerdivision courses.
4. Upper-division electives from Department of Literature offerings, whether in Spanish or in another literature, to make a total of twelve upper-division courses.

Students majoring in Spanish can choose to concentrate on either Spanish or Latin American literature. All students, however, are encouraged to take courses in the various national literatures as well as in Chicano literature for a broad background in Spanish language literatures.

Students not having a solid linguistic base in Spanish are advised to take intermediate language courses from the LTSP 2 and 50 sequences for additional review of Spanish grammar, development of writing skills, and introduction to literary analysis. Only 50A and either 50B or 50 C , however, can count towards the major.

It is strongly recommended that students take LTSP 130A before any other upper-division Spanish (peninsular) literature course and LTSP 130B before any other upper-division Latin American literature course.

Primary Concentration in Literatures of the World

The major in Literatures of the World allows students to expand the focus of their work beyond a single-language literature. They plan an individual program with options in regional studies (Europe, the Americas, East Asia, Africa, Near East) and topical studies (genre, period, gender, ethnic literature, teacher education, literature and the visual arts, cultural studies, literature and science, writing, Third World Studies, The Western Tradition) as well as the single-language literatures.

1. Lower-division (three courses):

A three-course sequence in literature chosen from any section in literature.
Note: Students can combine courses in an original national language/literature with courses in translation to satisfy this requirement, such as LTFR 2A and 2B plus LTWL 4A (Fiction and Film in the 20th Century: France)
2. Upper-division (twelve courses):
a. six courses in a regional or single-language literature, to be taken in the original language(s) or in translation
b. four courses focused on a topic or another regional or single-language literature
c. two courses in non-European and non-U.S. literature; if satisfied under group (a) or group (b), any other two literature courses may be substituted.
3. Three courses in a secondary literature, that is, a literature written and taught in a language dif-
ferent from that of the primary literature. At least one of these courses must be upperdivision. Upper-division courses taken to satisfy the secondary literature requirement may be counted as part of the twelve upper-division courses for the major and may, where appropriate, be applied to requirements in Group 2. Students should see an adviser when selecting specific courses that will be taken to satisfy this requirement. Special studies courses (198s and 199s) and courses in foreign literatures taught in translation do not apply to the secondary literature requirement. See The Major in Literature, above, for applicable lower-division courses.

At least two of the required twelve upperdivision courses must be in literature written before 1850. No more than four courses in Lit/Writing may be taken as part of the world literatures major, and these will generally apply to Group 2.b.

Courses formerly listed under General Literature were renumbered effective fall 1998 under the following subject headings:

LTAF-African Literatures
LTAM-Literature of the Americas
LTEA-East Asian Literatures
LTEU-European and Eurasian Literatures
LTNE-Near Eastern Literatures
LTWL-World Literatures (courses or sequences which do not belong to a single linguistic or regional grouping)

The Pre-Writing Major

Until they are admitted to the writing major, students may indicate their interest in writing by declaring a pre-writing major using the pre-writing major code (LT01). Admission to the writing major will be determined by evaluation of each student's performance in the LTWR 8A/8B/8C sequence.

Normally, students are expected to achieve a grade of B or better in each of these courses to ensure their eligibility for declaring the major.

Primary Concentration in Writing

The writing major is designed to provide directed experience in writing prose fiction and nonfiction, media workshops, and poetry, as well as intensive work in practical criticism. An indispensable feature of the program is that it involves
students with the work of their peers. Those who think of themselves as writers will find courses regularly offered in the various genres to develop their own style and breadth of experience in composing and criticism. Students who are primarily interested in the teaching of writing will find the major a context both for writing extensively and for dealing critically with the act of written composition. Students must complete the sequence LTWR 8A-B-C prior to declaring a major in Literature/Writing. The major requirements are as follows:

1. Any of the following literature sequences:
a. LTWL 4A-B-D-E-M-any three courses in the sequence (Fiction and Film in Twentieth Century Societies)
b. LTWL 19A-B-C (The Graeco-Roman World)
c. LTEN 21,22, and one course chosen from LTEN $17,18,19,23$, or 24.
d. TWS 21,22, 23, 24, 25, 26 (Third World Literatures)
2. Twelve upper-division courses:
a. Six upper-division courses in Lit/Writing from the writing workshop sequence (LTWR 100-135). These workshops may be repeated for credit (see course listing for number of times workshops may be repeated), but the requirement should show a range of writing experience in at least two major writing types. No other courses may be substituted for this basic requirement of six upper-division workshops.
b. One course from the group numbered Lit/Writing 140-146.
c. Five upper-division electives chosen from Department of Literature offerings.
3. Three courses in a secondary literature, that is, a literature written and taught in a language other than English. At least one of these courses must be upper-division. Students should see an adviser when selecting specific courses that will be taken to satisfy this requirement. Special studies courses (198s and 1995) and courses in foreign literatures which are taught in English translation do not apply to the secondary literature requirement. See The Major in Literature, above, for applicable lower-division courses.

Double Major in Literature/Writing and a Subject outside Literature

Students who wish to major both in Literature/Writing and in a department other than the Department of Literature must fulfill all requirements for the writing major as described above. Students must submit a double major petition for approval by the participating departments and the student's provost office.

Double Major within the
 Department of Literature in Literature/Writing and Another Literature

Students who wish to major both in literature/writing and in literature (any section) should see the department for information regarding appropriate double major requirements. Generally, all requirements for each major must be completed, though the secondary literature and two upper-division courses, where appropriate, may overlap from one major to the other.

The Minor in Literature

The department offers a wide range of possibilities for noncontiguous minors. The options include courses in a single regional or national literature, courses in more than one literature, and a combination of language and literature courses. in all instances, the minors require six or seven courses depending upon a student's first quarter of attendance at UCSD. All courses taken to complete a literature minor must be taken for a letter grade. No grade below $C-$ is acceptable.

Please see the department undergraduate office for specific minor requirements.

For students entering winter quarter 1998 and thereafter, a minor in literature will consist of seven courses as described below.

French, German, Greek, Italian, Latin, Russian, or Spanish Literature: seven courses, at least four of which must be upper-division in the same literature.
Literatures in English, Literatures of the World, and Literature/Writing: seven courses, at least five of which must be upper-division.
Lower-division courses applicable toward minors:

English-LTEN 17, 18, 19, 21,22, 23, 24, 50, 60

French-LTFR 2A-B-C, 50
German-LTGM 2A-B-C
Greek-LTGK 1, 2, 3
Hebrew—JUDA 1,2,3 (see Judaic Studies)
Italian-LTIT 2A-B, 50
Latin-LTLA 1, 2, 3
Russian-LTRU 2A-B-C
Spanish-LTSP 2A-B-C-D,50A-B-C
Writing-LTWR 8A-B-C
General Minor—For students entering fall 1997 and earlier: six Literature courses, at least three of which must be upper-division: usually 1) a three-
course lower-division sequence such as LTEN 17/18/19, LTEN 21/22/23, LTFR 2A/2B/50, LTGN 19A/9B/19C, LTLA 1/2/3, LTSP 2A/2B/2C; and 2) three or more upper-division courses, at least two of which must be in a single national literature, taught either in the original language or in translation. No more than one upper-division course in Literature/Writing may be applied toward the general literature minor. Students should see the general literature faculty adviser or the undergraduate staff when planning a minor or program of concentration in general literature.

Literatures of the World-For students entering Winter 1998 and thereafter: seven literature courses, at least five of which must be upper-division-usually 1) a two- or three-course lowerdivision sequence and 2) five upper-division courses with a single unifying theme.

Writing Minor-Seven courses, at least five of which must be upper-division. The minimum of five upper-division courses must cover at least two major writing genres, with course work chosen from writing courses numbered 100 through 146.

Please see the department for further information and specifics regarding minors in literature.

The Graduate Program

Doctoral Degree Program

The department offers a single Ph.D. in literature with concentrations in any of the fields in which members of the department do research (see below). The C.Phil. (candidate in philosophy) is conferred upon all students who pass the qualifying examination and are advanced to candidacy for the Ph.D. Students in the doctoral program may also qualify for the M.A. upon completion of their qualifying examinations.

Preparation

The following are requirements for admission to graduate study in literature:

1. A baccalaureate or a master's degree with a major in one of the literatures offered by the department, or in another field approved by the departmental committee on graduate studies.
2. Satisfactory scores on the Graduate Record Examination achieved within the past three calendar years. The Subject Test is not required.
3. A complementary working knowledge of a second language.

Completed applications and supporting materials must be received by January 18, 2002, for admission to the following fall quarter. Those planning to apply should take the Graduate Record Examination far enough in advance so that the scores will be available to the admissions committee in January.

Course of Study

Formal study begins with a first-year, threequarter introductory sequence (Literature/Theory 200A-B-C) having an interdisciplinary and theoretical emphasis. During the first three years, the course of study will include at least four seminars in one literature and two in another (students in comparative literature must take at least one seminar or upper-division undergraduate course in a third literature); at least four seminars drawn from offerings in literary theory, the second or a third literature, cultural studies, comparative literature, or composition studies; and five additional seminars open entirely to the student's choice (four for students in comparative literature). Such "open" seminars should generally be related to the intended dissertation field. Seminars in other disciplines may be substituted for any of the latter group, with the adviser's permission. Students must also fulfill a historical breadth requirement by completing two seminars dealing with texts or cultural practices prior to 1800 . For students with approved M.A. degrees the initial three-year sequence can be reduced to two.

Students in comparative literature must take four of the above-described seminars in comparative literature. Comparative literature seminars taken for Literature 1,2 , or 3 must be substantially focused upon the relevant language and deal with materials in the original. Students who wish to take these courses in a literature for which
seminars are not regularly offered in the Department of Literature may substitute 298s or undergraduate courses enhanced by additional assignments. To do so, however, students must demonstrate through prior course work that they have already attained graduate-level competency in the literature and language in question and they must obtain approval from the comparative literature graduate adviser.

In the sixth quarter, students may register for one four-unit independent study course to prepare reading lists for the subject-area qualifying examinations. The third year is spent in taking seminars and in preparing for the qualifying examinations. During this year, students may register for one four-unit independent study course in which they work on the long paper required for the qualifying examinations.

The qualifying examination is usually taken during the ninth quarter of enrollment. It must be completed by the end of the tenth quarter. The fourth and fifth years will be devoted to preparation of the dissertation

Students may write dissertations in any of the fields in which members of the department do research. These fields include English, American, French, German, biblical Hebrew, Italian, Greek, Latin, Spanish, Chinese, Japanese, Russian, Chicano, Asian-American, and African-American literature, comparative literature, literary theory, women's studies, cultural studies, early modern studies, and composition studies.

Specialty in Composition Theory, Research, and Practice

The Department of Literature offers special studies to graduate students who wish to concentrate on composition theory, research, and practice. The composition subspecialty is an interdisciplinary course of study that requires students to work with faculty both in the department and across the university. The department regularly offers graduate seminars taught by faculty in composition, along with a variety of seminars on history, theory, cultural studies, and literatures in English of special interest to students in composition. Students in special studies in composition take two research methods courses outside the department on topics such as field work, historiography, or research design in the human sciences to qualify them to conduct the research for their dissertations. Students are also encouraged to apply to teach in one of the five college undergraduate writing
programs on campus, to see for themselves how classroom and administrative practice intersect with theory and research.

Language Requirements

Graduate students in literature are required to develop the ability to read literary and secondary texts and-when appropriate--to follow seminar discussions or lectures in a second language, a language other than the one in which the literature of their intended specialization is written. To satisfy this requirement students must demonstrate language proficiency and completion of two seminars in the literature of the second language or, in exceptional cases, by completing with the grade of A two upper-division undergraduate courses given in the language. Students must pass an examination in reading, interpretation, and translation in each of the two courses taken to satisfy the second language requirement. The language requirements must be satisfied by the end of the third year of study.

Doctoral students specializing in comparative literature require knowledge in depth of two foreign languages."Knowledge in depth" means the ability to attend graduate seminars given in the original language (or seminars where the texts are read in the original language). Students must demonstrate this ability by enrolling in such seminars or, where this is not possible, by taking guided independent study in the language in question.

The M.A. program in comparative literature requires knowledge in depth of one foreign language.

Advancement to Candidacy

No later than the first quarter of the third year, the student should choose a Ph.D. adviser, who will, in consultation with the student, form a qualifying examination committee. The student and the qualifying examination committee will jointly determine the nature of the long research paper, (approximately 30 pages) and the two areas of specialization upon which the student will be examined in writing. After satisfactory completion of the paper and the written examinations, the student will take a two-hour oral doctoral examination. On passing the oral examination, the student is declared eligible for advancement to candidacy for the Ph.D. The C. Phil. degree is conferred on those so advanced. Thereupon, a doc-
toral dissertation is written. This work is defended in a traditional final examination.

Teaching

The department requires that each Ph.D. student do some apprentice teaching before the completion of the degree; the minimum amount required is equivalent to the duties expected of a half-time teaching assistant for three academic quarters. This teaching involves conducting, with the guidance and support of a supervising professor, discussion sections and related activities in a variety of freshman and sophomore courses. Academic credit is granted for the training given under the apprentice teaching program.

Grading

The only grading option for literature graduate courses is Satisfactory/Unsatisfactory (S/U). Students receive written evaluations of their performance in seminars.

Departmental Ph.D.Time Limit Policies

Students must be advanced to candidacy by the tenth quarter of study. Departmental normative time is five years. Total registered time at UCSD cannot exceed eight years.

Financial Support

Ph.D. students entering the program with a B.A. may be supported (either by employment or fellowships) for five years. Students who have an M.A. and have been given transfer credit may be supported for four years. Such support depends upon the funds available, the number of students eligible, and the rate of progress.

Master's Degree Program

The master's degree program is intended to meet the needs of several groups: (1) persons interested in possibly applying later, at UCSD or elsewhere, for admission to a Ph.D. program and wishing to strengthen their preparation for such a program; (2) persons seeking a master's degree only, for reasons of professional development or cultural enrichment; and (3) graduate students who have been admitted to the Ph.D. program
and who decide to qualify also for a master's degree. The M.A. degree is currently available in five fields: literatures in English, French, German, Spanish, and Comparative literature. It is possible to take an M.A. with specific emphasis; for example, students may take an M.A. in Spanish with a special emphasis on bilingual discourse, or an M.A. in English with a special emphasis on composition theory. A special emphasis in cultural studies may be declared in combination with any M.A. degree. Note: The department does not offer financial support for M.A. candidates. It is possible, in cases of full-time employment or other compelling reasons, to apply for permission to enroll on a part-time basis.

Completed applications and supporting materials must be received by January 18, 2002 for admission to the following fall quarter. Those planning to apply should take the Graduate Record Examination far enough in advance so that the scores will be available to the admissions committee in January.

The requirements for the M.A. degree are a total of thirty-six units. Included must be the following:

1. Twenty units of graduate seminars, including Literature/Theory 201, which is normally taken during a student's first quarter in the program.
2. Eight additional units of graduate seminars, upper-division courses, and/or guided independent study. Up to four units of supervised teaching at UCSD may be applied toward this eight-unit requirement.
3. For the M.A. in French, German, Spanish, and Literatures in English, students will be required to complete a minimum of sixteen units of course work-including graduate seminars, upper-division classes, and Literature 298-in the specific literature, read in its original language, in which they will receive their degree. For the M.A. in comparative literature students will be required to complete a minimum of twelve units of course work in one literature of concentration. Comparative literature seminars are recommended when their focus is substantially upon the literature in question and they deal with materials in the original language.
4. Four units of literature in a language other than that of the student's principal concentration. For students in French, German, Spanish and literatures in English, this course may be taken either in the original language or in
translation, and it may be used toward fulfilling the requirements listed under items 1 and 2 above. An upper-division or graduate course in English or American literature may be used to fulfill this requirement by students working toward an M.A. degree in French, German, or Spanish. An upper-division course in general literature may be taken to satisfy this requirement as long as its principal readings were originally written in a language other than that of their principal concentration. For the M.A. in comparative literature students must take either eight units of seminar work in the second literature (other than the literature of concentration) or four units of seminar work in a second and four units of seminar or upperdivision course in a third literature. Texts or other materials must be dealt with in the original languages. Comparative literature seminars are recommended when their focus is substantially upon the literature in question and they deal with materials in the original language.
5. For the M.A. in comparative literature students must take at least one seminar in comparative literature. This requirement can be satisfied by a course taken for item 3 or item 4 above. Students wishing to take courses for requirements 3 or 4 above in a literature for which seminars are not regularly offered in the Department of Literature may substitute 2985 or upper-division undergraduate courses enhanced by additional assignments. To do so, however, students must demonstrate through prior course work that they have already attained graduate-level competency in the literature and language in question and they must obtain approval from the comparative literature graduate adviser. Such 298 s and upperdivision courses should not exceed a total of two courses within a student's program unless demonstrably necessary.
6. Eight units of guided research, culminating in an acceptable master's thesis or master's examination.
The only grading option for literature graduate courses is Satisfactory/Unsatisfactory (S/U). Students receive written evaluations of their performance.

COURSES

Note: A list of specific course offerings (with names of instructors for the following academic
year) is available in the undergraduate office of the Department of Literature, LIT 3110. A list of graduate course offerings is available in the graduate office, LIT 3140.

Undergraduate students may enroll in graduate seminars with the consent of instructor and will receive a P/NP grade unless they petition for a letter-grade option within the first four weeks of the quarter in which the course is taken.

CHINESE LITERATURE

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTCH 101. Readings in Contemporary Chinese

Literature (4)
Intended for students who have the competence to read contemporary Chinese texts, poetry, short stories, and criticism in vernacular Chinese. May be repeated for credit as topics vary.

COMPARATIVE LITERATURE

GRADUATE

LTCO 202B-C. History of European Criticism

 and Aesthetics (4-4-4)A core course for comparative literature, strongly recommended for all graduate students in the comparative literature program. A historical survey of criticism and aesthetics divided as follows: 202B, Renaissance to Enlightenment; 202C, Romanticism to late nineteenth century.

LTCO 210. Classical Studies (4)

Analysis of significant works of the Greek and Roman traditions, with attention to their interest for later European literature. May be repeated for credit as topics vary.

LTCO 212. Studies in the Hebrew Bible (4)
Analysis of books of the Hebrew Bible from literary, historical, archaeological, theological, and psychological perspectives; text-critical and source-critical study of the Hebrew text. Repeatable for credit when topics vary.

LTCO 231.Eighteenth-Century Studies (4)
One or more major writers, texts, or trends of eigh-teenth-century European literature. May be repeated for credit when topics vary.

LTCO 242. Nineteenth-Century Studies (4)
Consideration of one or more major figures, texts, trends, or problems in the nineteenth century. May be repeated for credit as topics vary.

LTCO 252. Modernism (4)

A sample investigation into the concept of period. The course will deal also with the question of the existence of modernism, the description of the phenomenon, and the causes to which it is to be attributed. May be repeated for credit as topics vary.

LTCO 264. Oral Literature (4)

An introduction, through the study of recordings of actual oral performance as well as of the written record, to research in oral literature and the theoretical and methodological problems entailed.

LTCO 270. Historical Thinking (4)

This seminar will address the ways in which concepts of history inform interpretive projects in comparative literature. Topics will include: hermeneutics, historicism, philology, the "new" historicism, historiographic theory, "Third World" historiography, the history of books, and experimental historiography. Repeatable for credit when topics vary.

LTCO 274. Genre Studies (4)

A consideration of a representative selection of works relating to a theme, form, or literary genre. May be repeated for credit as topics vary.

LTCO 281. Literature and Film (4)
A study of literature and film in relation to one another, to critical and aesthetic theories, and to historical contexts.

LTCO 282. Literature and Philosophy (4)

Questions and problems from the history of philosophy or from the various fields of philosophy (e.g., epistemology, ethics, logic) in their interaction with intellectual issues and questions addressed by literary criticism and theory. Repeatable for credit when topics vary.

LTCO 295. M.A.Thesis (1-8)
Research for the master's thesis. Opened for repeated registration up to eight units. (Satisfactory/Unsatisfactory grades only.) Prerequisite: enrolled in M.A. program.

LTCO 296. Research Practicum (1-12)

Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTCO 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student's needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTCO 298. Special Projects: Writing Course (1-12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTCO 299. Dissertation (1-12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURE/CULTURAL STUDIES

LOWER-DIVISION

LTCS 50. Introduction to Cultural Studies (4)
An introduction to cultural studies with a focus on the following areas: literary and historical studies, popular culture, women's studies, ethnic studies, science studies, and gay/lesbian studies. Particular emphasis on the question of "cultural practices" and their social and political conditions and effects.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor.

LTCS 100. Theories and Methods in Cultural Studies (4) Reading in some of the major theoretical texts that have framed work in cultural studies, with particular emphasis on those drawn from critical theory, studies in colonialism, cultural anthropology, feminism, semiotics, gay/lesbian studies, historicism, and psychoanalytic theory. Prerequisite: upper-division standing.

LTCS 110. Popular Culture (4)

A reading of recent theory on popular culture and a study of particular texts dealing with popular cultural practices, both contemporary and noncontemporary, as sites of conflict and struggle. Repeatable for credit when topics vary.

LTCS 120. Historical Perspectives on Culture (4)
The course will explore the relation among cultural production, institutions, history, and ideology during selected historical periods. In considering different kinds of texts, relations of power and knowledge at different historical moments will be discussed. Repeatable for credit when topics vary.

LTCS 130. Gender, Race/Ethnicity, Class, and Culture (4) The course will focus on the representation of gender, ethnicity, and class in cultural production in view of various contemporary theories of race, sex, and class. Repeatable for credit when topics vary.

LTCS 135. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgender Studies (4)
Introduction to interdisciplinary examination of human sexuality and, especially, lesbian, gay, bisexual, and transgender identities and desires. Juxtaposes perspectives from humanities, social sciences, and natural sciences. Introduces queer theory to understand sexuality in relation to phenomena such as government, family, culture, medicine, race, gender, and class.

LTCS 140. Subaltern Studies in Context (4)

This course will explore some basic texts related to subaltern studies and the variations in the field as related to national and historical situations. Repeatable for credit when readings and focus vary.

LTCS 150. Topics in Cultural Studies (4)
The course will examine one or more forms of cultural production or cultural practice from a variety of theoretical and historical perspectives. Topics may include: contemporary debates on culture, genres of popular music/fiction/film, AIDS and culture, the history of sexuality, subcuitural styles, etc. Repeatable for credit when topics vary.

LTCS 155. The Cultural Politics of Science and

 Technology (4)The course will examine interventions by the technosciences in the lives of citizens in the domains of biology, genetics, and medicine, including technologies of reproduction, drug testing, the Human Genome Project, scientific/medical responses to AIDS, etc. Repeatable for credit.

LTCS 170. Visual Culture (4)

The course will focus on visual practices and discourses in their intersection and overlap, from traditional media, print, and photography to film, video, TV, computers, medical scanners, and the Internet.

LTCS 198. Directed Group Study (4)
Directed group research, under the guidance of a member of the faculty, in an area not covered in courses currently offered by the department. (P/NP only.) Prerequisite: permission of the department.

LTCS 199. Special Studies (2 or 4)
Individual reading in an area not covered in courses currently offered by the department. (P/NP only.) Prerequisite: permission of the department.

GRADUATE

LTCS 201. Theories and Methods of Analysis in Cultural

 Studies (4)Contemporary theories of cultural studies. The seminar will concentrate on major interpretive approaches drawn from several areas of cultural and political analysis, including historicism, Marxist theory, feminism, structuralism, psychoanalytic theory, semiotics, postmodernist studies, gay and lesbian studies, and others. The particular focus and approach may vary. Repeatable for credit. Prerequisite: graduate standing or consent of instructor.

LTCS 202. Cultural Texts (4)
This seminar will examine a wide-ranging variety of cultural texts and use them to explore methods of reading and interpreting culture. Cultural texts may include: popular music, popular literature, film/V/video, comics, photography, performance art.

LTCS 210. History and Culture (4)

This seminar will focus on the cultural practices of a particular historical period as a means of analyzing the relation between culture/ideology and economic and political modes of production and domination. Topic, historical period, and theoretical approach may vary. Repeatable for credit. Prerequisite: graduate standing or consent of instructor.

LTCS 220. Film/TV/Video Studies (4)
The seminar will concentrate on genres or subgenres within film/TV/video studies or on a stand of film/ TV/video theory. Possible topics may include: horror film, melodrama, sitcoms/soaps/talk shows, music videos, black or queer cinema, etc. Repeatable for credit.

LTCS 222. Theory and History of Film (4)
This course will consider various theoretical approaches to film texts (historical-materialist, feminist, psychoanalytic, semiotic) as well as the history of film, the political economy of film production and distribution, exhibition practices, and spectatorship in national and transnational contexts. Repeatable for credit.

LTCS 225. Interdisciplinary and Historical Analysis of Cultural Texts (4)
The seminar will focus on a particular historical period and examine a variety of cultural texts vis-a-vis related historical, economic, political, and sociological discourses. The conjunction and disjunction of approaches will be explored in relation to specific texts. Repeatable for credit.

LTCS 250. Topics in Cultural Studies (4)
This seminar will be organized around any of various topic areas relating to cultural studies. These might include studies in colonialism, historicism, gender, sexuality, social institutions, popular culture, subaltern practices, etc. May be repeated for credit as topics vary. Prerequisite: graduate standing or consent of instructor.

LTCS 255. Cultural Studies, Colonialism, and Decolonialization (4)
This course considers different approaches to the study of colonialism in a variety of national contexts. Educational, legal, religious, military, and cultural apparatuses of colonialism, theories of decolonialization, the "postcolonial" and feminist critiques of "modernity"/ modernization will also be studied.

LTCS 256. Cultural Studies of Technoscience (4)
The course will explore work in cultural studies, feminist studies, and queer theory of scientific practices altering social relations, cultural identities, and conceptions of "nature." Issues may include the AIDS pandemic, genetic research, electronic communities, reproductive technologies, and other topics. Repeatable for credit.

LTCS 260. National Cultures (4)

Selected topics on the construction of national cultural identities. Investigation of the dynamics of canon formation and nation building in specific historical contexts. Repeatable for credit.

LTCS 295. M.A. Thesis (1-8)
Research for master's thesis. May be repeated for a cumulative total of up to eight units.

LTCS 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTCS 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student's needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTCS 298. Special Projects: Writing Course (1-12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTCS 299. Dissertation (1-12)
Research toward the dissertation. Open only to Ph.D. students who have advanced to candidacy. Repeatable for credit.

LITERATURES IN ENGLISH

LOWER-DIVISION

LTEN 17. Introduction to African American Literature (4) A lecture discussion course that examines a major topic or theme in African American literature as it is developed over time and across the literary genres of fiction, poetry, and belles lettres. A particular emphasis of the course is how African American writers have adhered to or departed from conventional definitions of genre.

LTEN 18. Introduction to Asian-American Literature (4) This course provides an introduction to the study of the history, communities, and cultures of different AsianAmerican people in the United States. Students will examine different articulations, genres, conflicts, narrative forms, and characterizations of the varied Asian experience.

LTEN 19. Introduction to Chicano Literature (4) This course provides an introduction to the literary production of the population of Mexican origin in the United States. Students will examine a variety of texts dealing with the historical (social, economic, and political) experiences of this heterogeneous population

LTEN 21. Introduction to the Literature of the British

 Isles: Pre-1660 (4)An introduction to the literatures written in English in Britain before 1660 , with a focus on the interaction of text and history.

LTEN 22. Introduction to the Literature of the British Isles: 1660-1832 (4)
An introduction to the literatures written in English in Britain and Ireland between 1660 and 1832, with a focus on the interaction of text and history

LTEN 23. Introduction to the Literature of the British

 Isles: 1832-Present (4)An introduction to the literatures written in English in Britain, ireland, and the British Empire (and the former British Empire) from 1832 to the present, with a focus on the interaction of text and history.

LTEN 24. Introduction to the Literature of the United

 States (4)An introduction to the literatures written in English in the United States, with a focus on the interaction of text and history.

LTEN 50. Introduction to Shakespeare: The Theatre and the World (4)
An introduction to Shakespeare's dramatic achieve ment through the study of several major plays-representative comedies, histories, and tragedies-in their literary, intellectual, and social contexts.

LTEN 60. Topics in Ethnic American Literature (4)
A lecture and discussion course that critically examines the literary and cultural production emerging out of racialized, ethnic, and immigrant communities in the United States. Course may include fiction, poetry, novels, plays, popular culture, and film.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTEN 106. The Medieval Period (4)
Studies in medieval English literature. Topics such as medieval allegory in English, Chaucer's contemporaries Middle English lyrics, and Middle English romances as well as surveys of Middle English literature will be pre sented.

LTEN 107. Chaucer (4)

A study of Chaucer's poetic development, beginning with The Book of the Duchess and The Parliament of Fowls, including Troilus and Criseyde, and concluding with substantial selections from The Canterbury Tales.

LTEN 110. The Renaissance:Themes and Issues (4) Major literary works of the Renaissance, an exciting period of social and cultural transformation in England as elsewhere in Europe. Topics may include a central theme (e.g., humanism, reformation, revolution), a genre (e.g., pastoral), or comparison with other arts and sciences.

LTEN 112.Shakespeare I: The Elizabethan Period (4) A lecture/discussion course exploring the development of Shakespeare's dramatic powers in comedy, history, and tragedy, from the early plays to the middle of his career. Dramatic forms, themes, characters, and styles will be studied in the contexts of Shakespeare's theatre and his society. Enrollment limited to upper-division students.

LTEN 113. Shakespeare II: The Jacobean Period (4)
A lecture/discussion course exploring the rich and varied achievements of Shakespeare's later plays, including the major tragedies and late romances. Dramatic forms, themes, characters, and styles will be studied in the contexts of Shakespeare's theatre and his society. Enrollment limited to upper-division students.

LTEN 114. Shakespeare III: Stage, Film, and Television (4)
A lecture/discussion/laboratory course involving the close study of six to eight plays representative of Shakespeare's artistic career with particular emphasis upon the interrelation of Elizabethan plays and the stage and the critical implications of transposing plays to film and television. (Generally offered in summer session only.)

LTEN 115A. The Sixteenth Century: Themes and

Issues (4)
Selected topics concerned with sixteenth-century English literature as a whole.

LTEN 115D. The Golden Age of Elizabethan

Literature (4)
An introduction to the literary achievement of Elizabethan England during the last two decades of the sixteenth century. Works by major writers in a variety of literary forms (e.g., sonnet, mythological poem, romantic epic, pastoral, satire, prose fiction, heroic and tragic drama) are studied in relation to relevant social contexts.

LTEN 116. Elizabethan and Jacobean Drama (4)
The study of representative plays from one of the great moments in the history of dramatic literature. Tragedies and comedies, primarily by Shakespeare's contemporaries and successors, are read in the context of the historical, social, and intellectual background of the period.

LTEN 117A. The Seventeenth Century: Themes and Issues (4)
Selected topics in English literature during a period when writers felt deeply the impact of social change, religious controversy, the emergence of the "New Science," and the English Civil War. Readings chosen from among the works of a diverse group of writers, including Jonson, Donne, Bacon, Milton, Marvell, and Dryden.

LTEN 118. Milton (4)
A critical examination of the major works, including Paradise Lost, by an author who was both a central figure in English political life in a revolutionary age and, in the view of most critics, the greatest non-dramatic poet in the English language. The course will study his poetic development in a variety of historical contexts.

LTEN 119. Restoration Literature (4)

The literature of a period following twenty years of civil war and revolution which saw the reopening of theatres and the rise of the professional writer. Topics may include Restoration comedy and tragedy; satire; neoclassical literary theory.

LTEN 120A. The Eighteenth Century: Themes and

 Issues (4)Selected topics in English literature during an age of satiric writing, the shift from neoclassicism to romanticism, the emergence of the novel, and the expansion of the reading and writing public among the middle class and women. Writers such as Defoe, Pope, Swift, Richardson, Johnson, Burney, Wollstonecraft. May be repeated for credit when topics vary.

LTEN 120D. William Blake and the Age of Sensibility (4) A study of the great visionary poet and artist, William Blake, in the context of several of his eighteenth-century contemporaries, such as Gray, Collins, Chatterton, and Cowper.

LTEN 120E. Women in the Eighteenth Century (4)
Selected topics concerning British women writers and readers in an age of increasing female participation in print culture. Topics include women writers; representations of women, domesticity, and the family in the novel, in drama, in satire; early feminist writing; literary constructions of gender. May be repeated for credit when topics vary.

LTEN 125A. Romanticism: Themes and Issues (4)
Selected topics concerned with the romantic period as a whole.

LTEN 125B. First Generation Romantic Poets (4)
The poets who came of age during the French Revolution and who inaugurated literary modes that continue in our own time: Wordsworth, Coleridge, Blake, and their contemporaries.

LTEN 125C. Second Generation Romantic Poets (4)
Byron, Keats, Shelley, and their contemporaries.
LTEN 125F. Byron and Byronism (4)
Lord Byron's life, works, and cultural impact, including an examination of some later authors, such as Carlyle and the Brontes, who responded to Byron through their own writings.

LTEN 125G. Keats and His Poetical Heirs (4)
The major poetry of John Keats considered together with selected works influenced by him, including poems by such authors as Tennyson, Christina Rossetti, Hopkins, Hardy, Yeats, and Stevens.

LTEN 127A. The Victorian Period: Themes and Issues (4)
Selected topics concerned with Victorian literature as a whole.

LTEN 127B. Victorian Poetry (4)
Tennyson, Browning, Arnold, Clough, Hopkins, and their contemporaries.

LTEN 127G. The Nineties: Decade of Decadence (4)
Selected topics concerning literature and culture from the 1890s. Themes and metaphors of the fin de siecle might include imperial decline, sexual anarchy, crises of transition, the emergence of modern sexual identity, censorship issues, boundary violations.

LTEN 130A. Modern British Literature:Themes and
Issues (4)
Selected topics concerned with modern British literature as a whole.

LTEN 132. Modern Irish Literature (4)
The lrish Revival and its aftermath: Yeats, Synge, O'Casey, Joyce, Beckett, and their contemporaries.

LTEN 133. Modern Scottish Literature (4)
This course takes Scottish writing from the Kailyard School of the late nineteenth century through the $1920 s^{\prime}$ revival of Scottish nationalism, to the 1980s' emergence of Glasgow as a literary center.

LTEN 135. Twentieth-Century Literature from the Indian Subcontinent (4)

An examination of the changes in a literature produced from a specific geographic location during a specific historical period-literature in English from British India (between 1900-1947) and from independent Pakistan and India (after 1947).

LTEN 140. The Early Nineteenth-Century British

Novel (4)
Includes the work of Jane Austen, Charlotte Bronte, Emily Bronte, Mary Shelley, and Charles Dickens.

LTEN 141. The High Victorian Novel (4)
Dickens, Thackeray, Trollope, Charlotte Bronte, Emily Bronte.

LTEN 142. The End of Victorianism (4)
The work of Robert Louis Stevenson, H.G. Wells, Thomas Hardy, Rudyard Kipling, and Joseph Conrad.

LTEN 143. The English Novel in the Eighteenth

Century (4)

This course studies the writing of the novel in English during the eighteenth century. The focus of the course may be an introduction to selected major writers and texts, or a particular issue or problem in the literary and social history of the novel. May be repeated for credit when topics vary.

LTEN 144. The English Novel in the Nineteenth

Century (4)

This course studies the writing of the novel in English during the nineteenth century. The focus of the course may be an introduction to selected major writers and texts, or a particular issue or problem in the literary and social history of the novel. May be repeated for credit when topics vary.

LTEN 145. The English Novel in the Twentieth

Century (4)

This course studies the writing of the novel in English during the twentieth century. The focus of the course may be an introduction to selected major writers and texts, or a particular issue or problem in the literary and social history of the novel. May be repeated for credit when topics vary.

LTEN 146. Women and English/American Literature (4) Selected topics concerning women and anglophone literature. Topics include women writers, the literary representation of women, and women as readers. May be repeated for credit when topics vary.

LTEN 147. Metamorphoses of the Symbol (4)
An investigation of a single symbol-such as the cave or the mountain-as it functions within the literature and other expressions of widely different historical moments, with an emphasis upon English and American literature. May be repeated for credit as topics vary.

LTEN 148. Genres in English and American Literature (4) An examination of one or more genres in English and/or American literature, for example, satire, utopian fiction, autobiography, landscape poetry, the familiar essay. May be repeated for credit as topics vary.

LTEN 149. Themes in English and American
Literature (4)
A consideration of one of the themes that recur in many periods of English or American literature, for instance, love, politics, the role of women in society. May be repeated for credit as topics vary.

LTEN 150. Gender, Text, and Culture (4)

This course studies representations of the sexes and of their interrelationship in various forms of writing produced during different phases of English history. Emphasis will be placed upon connections of gender and of literature to other modes of social belief, experience, and practice. Repeatable for credit when topics vary.

LTEN 152. The Origins of American Literature (4)
Studies in American writing from the Puritans to the early national period (1620-1830), with emphasis on the thrust and continuity of American culture, social and intellectual, through the beginnings of major American writing in the first quarter of the nineteenth century.

LTEN 153. The Revolutionary War and the Early National Period in U.S. Literature (4)
A critical examination of how writing of various kinds-political, philosophical, and literary-functioned in the construction of the political body of the new American republic and the self-conception of its citizens.

LTEN 154. The American Renaissance (4)
A study of some of the chief works, and the linguistic, philosophical, and historical attitudes informing them, produced by such authors as Emerson, Hawthorne, Melville, Dickinson, and Whitman during the period 1836-1865, when the role of American writing in the national culture becomes an overriding concern.

LTEN 155. Interactions Between American Literature and the Visual Arts (4)
An exploration of the parallels between the work of individual writers, or movements, in American literature and the style and content of the work of certain visual artists. The writers studied are always American; the artists or art movements may represent non-American influences on these American writers. May be repeated for credit as topics vary.

LTEN 156. American Literature from the Civil War to

 World War I (4)A critical examination of works by such authors as Mark Twain, Henry James, Kate Chopin and Edith Wharton, who were writing in an age when the frontier was conquered and American society began to experience massive industrialization and urbanization.

LTEN 158. Modern American Literature (4)

A critical examination of American literature in several genres produced between the turn of the century and World War II. Attention will be given to historical and cultural contexts for defining American modernism. Prerequisite: upper-division standing. Repeatable for credit when topics vary.

LTEN 159. Contemporary American Literature (4)

A critical examination of American literature in several genres produced since World War II. Attention will be given to historical and cultural contexts for defining American postmodernism. Prerequisite: upper-division standing. Repeatable for credit when topics vary.

LTEN 160. Ideas and Photographic Images in American

Culture (4)

Relate the history of photography in America to the history of ideas in American culture. It assumes that photographers think in images and through their images participate in cultural discourse. Repeatable for credit when topics vary.

LTEN 172. American Poetry II-Whitman through the

Modernists (4)

Reading and interpretation of American poets from Whitman through the principal modernists-Pound, H.D., Eliot, Moore, Stevens, and others. Lectures will set the appropriate context in sociocultural and literary history.

LTEN 174. American Fiction II-Since Middle James (4) Reading and interpretation of American fiction from Henry James through the principal modernistsFitzgerald, Stein, Welty, Faulkner, and others. Lectures will set the appropriate context.

LTEN 175A. New American Fiction-Post-World War II to

 the Present (4)Reading and interpretation of American fiction from the mid-1940s to the present. Lectures will set the appropriate context in sociocultural and literary history. May be repeated for credit when topics vary.

LTEN 175B. New American Poetry-Post-World War II to

 the Present (4)Reading and interpretation of American poets whose work has made its major impact since the last war, for instance Charles Olson, Robert Creeley, Denise Levertov, Adrienne Rich, Allen Ginsberg, Frank O'Hara, and John Ashbery. Lectures will set the appropriate context in sociocultural and literary history. May be repeated for credit as topics vary.

LTEN 176. Major American Writers (4)
A study in depth of the works of major American writers. May be repeated for credit as topics vary.

LTEN 177. California Literature (4)
Reading and interpretation of such novelists as London, Norris, Steinbeck, West, and Didion and such poets as Jeffers, Rexroth, Everson, Duncan, and Snyder. May be repeated for credit as topics vary.

LTEN 178. Comparative Ethnic Literature (4)
A lecture-discussion course that juxtaposes the experience of two or more U.S. ethnic groups and examines their relationship with the dominant culture. Students will analyze a variety of texts representing the history of ethnicity in this country. Topics will vary.

LTEN 179. Italian North American Culture (4)
This course will consider the phenomenon of Italian emigration as a product of sociopolitical trends in nine-teenth-century Italy and Europe that led to Italian unification in 1861. Within that context, an analysis of the cultural products of Italian North Americans will be used to read contemporary trends in multiculturalism and ethnic culture in North America.

LTEN 180. Chicano Literature in English (4)
Introduction to the literature in English by the Chicano population, the men and women of Mexican descent who live and write in the United States. Primary focus on the contemporary period.

LTEN 181. Asian American Literature (4)
Selected topics in the literature by men and women of Asian descent who live and write in the United States. Repeatable for credit when topics vary.

LTEN 183. African American Prose (4)
Analysis and discussion of the novel, the personal narrative, and other prose genres, with particular emphasis on the developing characteristics of African American narrative and the cultural and social circumstances that influence their development.

LTEN 184. African American Poetry (4)
Close reading and analysis of selected works of African American poetry as they reflect styles and themes that recur in the literature.

LTEN 185. Themes in African American Literature (4)
An intensive examination of a characteristic theme, special issue, or period in African American literature. May be repeated for credit when topics vary

LTEN 186. Literature of the Harlem Renaissance (4)
The Harlem Renaissance (1917-39) focuses on the emergence of the "New Negro" and the impact of this concept on black literature, art, and music. Writers studied include Claude McKay, Zora N. Hurston, and Langston Hughes. Special emphasis on new themes and forms.

LTEN 187. Black Music/Black Texts: Communication and Cultural Expression (4)
Explores roles of music as a traditional form of communication among Africans, Afro-Americans, and WestIndians. Special attention given to poetry of black music, including blues and other forms of vocal music expressive of contestatory political attitudes. Prere quisite: upper-division standing.

LTEN 188. Contemporary Caribbean Literature (4)
This course will focus on contemporary literature of the English-speaking Caribbean. The parallels and contrasts of this Third World literature with those of the Spanishand French-speaking Caribbean will also be explored.

LTEN 189. Twentieth-Century Postcolonia

Literatures (4)
The impact of British colonialism, national independence movements, postcolonial cultural trends, and women's movements on the global production of literary texts in English. Course is organized by topic or geographical/historical location. May be repeated for credit when topics vary.

LTEN 190. Seminars (4)

These seminars are devoted to a variety of special topics, including the works of single authors, genre studies, problems in literary history, relations between literature and the history of ideas, literary criticism, literature and society, and the like. The student may enroll in more than one section in a single quarter.

LTEN 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTGN 191. Oral exam.

LTEN 198. Directed Group Study (4)
Research seminars and research, under the direction of a member of the staff. May be repeated for credit three times.(P/NP grades only.) Prerequisite: permission of department.

LTEN 199. Special Studies (2 or 4)
Tutorial; individual guided reading in an area not normally covered in courses. May be repeated for credit three times.(P/NP grades only.) Prerequisite: permission of department.

GRADUATE

Prerequisite: graduate standing or consent of instructor.

LTEN 222. Elizabethan Studies (4)
Selected topics in the study of literary, dramatic, and other Elizabethan cultural texts. Emphasis will be upon articulations among a range of discourses, practices, and institutions. May be repeated for credit when topics vary.

LTEN 224. Seventeenth-Century English Literature (4)
Consideration of one or more figures, texts, or trends in seventeenth-century English literature, including the metaphysical poets and Jacobean drama. May be repeated for credit as topics vary.

LTEN 226. Shakespeare (4)
Shakespeare's plays in relation to the Elizabethan background; selected major texts. May be repeated for credit as topics vary.

LTEN 231. Restoration and Eighteenth-Century English

 Literature (4)Consideration of one or more figures, texts, or trends in Restoration and eighteenth-century English literature, including Dryden, Pope, Swift, the early novel, satire. May be repeated for credit as topics vary.

LTEN 241. English Literature of the Romantic Period (4) A study of the major poetry and related prose of early nineteenth-century literature. May be repeated for credit as topics vary.

LTEN 243. Early American Literature and Culture (4)
Consideration of one or more major figures, texts, or trends in Colonial and/or Revolutionary period American Literature, in particular, the relationship between literature and culture. Prerequisite: graduate standing.

LTEN 245. Nineteenth-Century American Studies (4)
Consideration of some of the principal writers and movements in nineteenth-century American literature. May be repeated for credit as topics vary.

LTEN 246. Victorian Literature (4)
Consideration of one or more major figures, texts, or trends in the Victorian period. May be repeated for credit as topics vary.

LTEN 252. Studies in Modern American Literature and Culture (4)
Consideration of one or more major figures, texts, or trends in American literature, in particular the relationship between literature and culture. May be repeated for credit as topics vary.

LTEN 256. Postcolonial Discourses (4)
A survey of selected responses to imperialism and colonialism as presented in cultural texts produced by colonized or once-colonized peoples. Related issues to be examined: gender dynamics, class, representing others, mimicry, language, cultural theory, and the politics of literary genres. May be repeated for credit when topics vary.

LTEN 271. Genres in English (4)

Consideration of one or more genres present in English and/or American literature, for instance, the ballad, landscape poetry, comedy, satire, the familiar essay. May be repeated for credit as topics vary.

TEN 272. Cultural Traditions in English (4)
The study of writing produced over an extended period of time by members of an identifiable cultural formation as defined, e.g., by political/social ideology, class, religion, ethnicity, or sexual preference. May be repeated for credit when topics vary.

LTEN 279. Methodology Studies in Literatures in

 English (4)Topics that relate new developments and internal debates in the field to the practice of teaching. Multiculturalism, cultural studies in relation to traditional English studies, revision of the canon; practical teaching issues including construction of syllabi, lecturing on topics that are under contestation, sensitivity to the traditions of the field and to recent debates and the needs of students in the 1990s. Repeatable when topics vary.

LTEN 281. Practicum in Literary Research and

Criticism (4)
This course will focus on strategies for framing, organizing, and drafting projects in literary research. Students will study and apply various forms of literary methodology and will learn about recent developments in bibliography, textual editing, and research. May be repeated twice for credit as topics vary.

LTEN 295. M.A. Thesis (1-8)
Research for the master's thesis. Opened for repeated registration.

LTEN 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTEN 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student's needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTEN 298. Special Projects: Writing Course (1-12)
Similar to a 297, but a paper is required. Papers are usually on subject not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTEN 299. Dissertation (1-12)

Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURES IN FRENCH

LOWER-DIVISION

Language and Literature Courses

Ordinarily, students entering the French literature program elect one of the following sequences: LTFR $2 A, 2 B$, and $2 C$; or $2 A, 2 B$, and 50 .

LTFR 2A, 2B, 50. Readings and Interpretations/Advanced Readings and Interpretations (5-5-4)
A three-quarter sequence designed to prepare students for upper-division French courses. The course is taught entirely in French and emphasizes the develop-
ment of reading ability, listening comprehension, and conversational and writing skills. It also introduces the student to basic techniques of literary analysis. It is expected that this sequence will be completed in the course of one academic year. These courses may not be repeated for credit. Prerequisites: LTFR 2A-LTFR 33/53, 1C/1CX or its equivalent; LTFR 2B-LTFR $2 A$ or its equivalent, LTFR 50-LTFR $2 B$ or its equivalent.

LTFR 2C. Intermediate French III: Composition and

 Cultural Topics (4)Designed to improve writing and conversational skills. Aims to develop written expression in terms of organization of ideas, structure, vocabulary. Grammar review. Discussions of a contemporary novel and film. May be taken in lieu of LTFR 50 as a prerequisite for upperdivision courses. Prerequisites: LTFR 2B or its equivalent, score of 5 on French language or 4 French literature AP exams or consent of instructor.

LTFR 21. Debating Literature and Culture I (1)

Designed to allow students to practice and develop their oral skills by expanding the vocabulary necessary to discuss abstract ideas and by building up the confidence necessary to participate in literature classes. Prerequisite: LIFR 1C/1CX or 1D/1DX or LTFR 2A or LTFR 2B or LTFR 2C or LTFR 50 or consent of instructor.

LTFR 31. Debating Literature and Culture II (1)
A one-credit, one-class-a-week course. Designed to develop and maintain oral skills at an advanced level by discussing current cultural issues of the francophone world. Repeatable for credit when topics vary. Prerequisite: LTFR 2B or consent of instructor.

LTFR 60A. French for Reading Knowledge I (2)

A course designed for undergraduate and graduate students interested in developing reading skills only. No previous knowledge of French required. Texts are taken primarily from the Humanities and Social Sciences.

LTFR 60B. French for Reading Knowledge II (2)

A continuation of the course for undergraduate and graduate students interested in developing reading skills only. No previous course work in French required, though recommended. Texts are taken primarily from the Humanities and Social Sciences.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. All upper-division courses are taught in French. Additional prerequisites may be specified below.

Students are strongly encouraged to take LTFR 115 and 116 before enrolling in other upperdivision French literature courses.

LTFR 115. Themes in Intellectual and Literary History (4) This is the first course in a two-quarter sequence designed as an introduction to French literature and literary history. Each quarter will center on a specific theme or problem. It is recommended that majors whose primary literature is French take this sequence as early as possible. Prerequisite: LTFR 50.

LTFR 116. Themes in Intellectual and Literary History (4) This is the second course in a two-quarter sequence designed as an introduction to French literature and lit-
erary history. Each quarter will center on a specific theme or problem. It is recommended that majors whose primary literature is French take this sequence as early as possible. Prerequisite: LTFR 50.

LTFR 121.The Middle Ages and the Renaissance (4)
Major literary works of the Middle Ages and Renaissance as seen against the historical and intellectual background of the period. Medieval texts in modern French translation. May be repeated for credit as topics vary. Prerequisite: LTFR 115.

LTFR 122. Seventeenth Century (4)
Major literary works of the seventeenth century. May be repeated for credit as topics vary. Prerequisite: LTFR 115.

LTFR 123. Eighteenth Century (4)
Major literary works and problems of the eighteenth century. May be repeated for credit as topics vary. Prerequisite: LTFR 115.

LTFR 124. Nineteenth Century (4)
Major literary works of the nineteenth century. May be repeated for credit as topics vary. Prerequisite: LTFR 116.

LTFR 125. Twentieth Century (4)
Major literary works and problems of the twentieth century. May be repeated for credit as topics vary. Prerequisite: LTFR 116.

LTFR 141. Literatures in French (4)
One or more periods or authors in French literature. Texts will be read in the original language. May be repeated for credit as topics vary.

LTFR 142. Literary Genres (4)
An examination of one or more major or minor genres of French literature: for example, drama, novel, poetry, satire, prose poem, essay.

LTFR 143. Major Authors (4)
A study in depth of the works of a major French writer. Recommended for students whose primary literature is French. May be repeated for credit as topics vary.

LTFR 144. Literature and Ideas (4)
This course will center on writers or movements of international literary, cultural, or ideological significance. May be repeated for credit when topics vary.

LTFR 145. Contemporary Thought (4)
Presentation of major currents and debates in contemporary philosophy, linguistics, psychoanalysis, anthropology, and social and feminist theory that have led to major changes in. French cultural and literary studies.

LTFR 160. Advanced Grammar and Stylistics (4)
A course for students who wish to perfect their knowledge of evolving French grammar and to increase their sensitivity to style while improving their written and spoken French

LTFR 164. Cultural Topics (4)

A course on changing topics such as France during the 60s, contemporary social and cultural structures (the school system, economy, political parties), myths of America in France, etc. Prerequisite: LTFR 116.

LTFR 170.Film (4)
May include close analysis of films made in the Frenchspeaking world from 1895 to the present; study of film theory, history, criticism; social contexts of films' emergence and changing contexts of reception; particular movement, styles, or individual directors' work.

LTFR 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTGN 191. Oral exam.

LTFR 198. Directed Group Study (4)
Research seminars and research, under the direction of a member of the staff. (P/NP grades only.) Prerequisites: upper-division standing and special permission of department.

LTFR 199. Special Studies (2 or 4)

Tutorial; individual guided reading in areas of French literature not normally covered in courses. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

LTFR 221. Renaissance (4)

Critical study of one or more major figures, texts, or lit erary trends of the French Renaissance. May be repeated for credit as topics vary.

LTFR 225. Twentieth-Century French Literature (4)
Selected topics in modern French literature and thought. May be repeated for credit as topics vary.

LTFR 240. Topics in French Literature (4)
An examination of one or more major topics in French literature

LTFR 245. Literature and Cultural Issues (4)

Cultural issues related to literature, theory, and philosophy in the French tradition and Francophonic countries. Repeatable for credit.

LTFR 295. M.A. Thesis (1-8)
Research for the master's thesis. Opened for repeated registration up to eight units.

LTFR 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit. Prerequisite: consent of the instructor.

LTFR 297. Directed Studies: Reading Course (1-12)
This course may be desinged according to an individual student's needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit. Prerequisite: consent of the instructor.

LTFR 298. Special Projects: Writing Course (1-12)
Similar to a 297 , but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit. Prerequisite: consent of the instructor.

LTFR 299. Dissertation (1-12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURES IN GERMAN

LOWER-DIVISION

Language and Literature Courses

LTGM 2A. Readings and Interpretations (5)
LTGM 2A follows the basic language sequence of the Department of Linguistics and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. Prerequisite: LIGM 1C/1CX or the equivalent or consent of instructor. The course is designed to prepare students for LTGM 2B and LTGM 2C. Successful completion of LTGM 2A satisfies the requirement for language proficiency in Revelle College.

LTGM 2B. Advanced Readings and Interpretations (5) LTGM 2B is a continuation of LTGM 2A for those students who intend to practice their skills in reading, listening comprehension, and writing on a more advanced level. The literary texts are supplemented by readings from other disciplines as well as audio-visual materials. Prerequisite: LTGM 2A or consent of instructor.

LTGM 2C. Composition and Conversation (4)
A course designed for students who wish to improve their ability to speak and write German. Prerequisite: LTGM 2B or equivalent or consent of instructor.

LTGM 31. Debating German Literature and Culture (1)
The discussion format of this course enhances intermediate/advanced students' command of spoken German. Students will debate literary and cultural issues, exercising oral skills and practicing expression of ideas. May be taken as an adjunct to courses in German literature.

LTGM 60A. German for Reading Knowledge I (2)
A program for graduate and undergraduate students interested in developing reading skills only. No previous knowledge of German required. Texts are taken primarily from the humanities and social sciences, and include selections from publishers' catalogs, scholarly articles, and books.

LTGM 60B. German for Reading Knowledge II (2)
A continuation of the program for graduate and undergraduate students interested in developing reading skills only. No previous knowledge of German required, though recommended. Texts are taken primarily from the humanities and sociat sciences and include selections from publishers' catalogs, scholarly articles, and books.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTGM 100. German Studies I: Aesthetic Cultures (4)
This course offers an overview of German aesthetic culture in its various forms (literature, film, art, music, and architecture) and methods of analysis. Materials will explore the diversity of aesthetic production from the eighteenth century to the present.

LTGM 101. German Studies II: National Identities (4)
This course offers an overview of issues in contemporary and historical German cultures. How has national identity been constructed in the past? What does it
mean to be a German in the new Europe? Materials include fiction, historical documents, films, and the Internet.

LTGM 123. Eighteenth-Century German Literature (4)
Major literary works as seen against the historical and intellectual background of the period. May be repeated for credit as topics vary.

LTGM 124. Goethe (4)
Study of some major works in the context of Goethe's life and milieu. Recommended for literature majors whose primary literature is German. May be repeated for credit as topics vary.

LTGM 125. Nineteenth-Century German Literature (4)
Major literary works, authors, or movements of the nineteenth century. May be repeated for credit as topics vary.

LTGM 126. Twentieth-Century German Literature (4)
Major literary works, authors, or movements of the twentieth century. May be repeated for credit as topics vary.

LTGM 130. German Literary Prose (4)
The development of major forms and modes of German literary prose. May be repeated for credit as topics vary.

LTGM 131. German Dramatic Literature (4)
The development of the drama in Germany. May be repeated for credit as topics vary.

LTGM 132. German Poetry (4)
The development of major forms and modes of German verse. May be repeated for credit as topics vary.

LTGM 160. Composition and Stylistics (4)
Analysis of classical and modern German literary texts to increase the student's sensitivity to style and improve his or her ability to write and speak German. Stylistic variations and potentialities will be explored, various classical and modern texts will be analyzed to establish stylistic criteria and guiding principles. One composition per week on various subjects.

LTGM 170.Literature and Ideas (4)

This course will center on German writers or movements of international literary, cultural, or ideological significance. May be repeated for credit as topics vary.

LTGM 190. Seminars (4)

These seminars are devoted to a variety of special topics, including the works of single authors, genre studies, problems in literary history, relations between literature and the history of ideas, literary criticism, literature and society, and the like.

LTGM 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTGN 191. Oral exam.

LTGM 198. Directed Group Study (4)
Research seminars and research, under the direction of a member of the staff. May be repeated for credit. (P/NP grades only.) Prerequisite: permission of department.

LTGM 199. Special Studies (2 or 4)

Tutorial; individual guided reading in areas of German literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

LTGM 231. Eighteenth-Century German Literature (4)
Consideration of one or more major figures, texts, or trends in eighteenth-century German literature. May be repeated for credit as topics vary.

LTGM 242. Nineteenth-Century German Literature (4)
Consideration of one or more major figures, texts, or trends in nineteenth-century German literature. Topic varies. May be repeated for credit.

LTGM 251. The Twentieth Century (4)
A study of the structural, philosophical, and social aspects of twentieth-century German literature. May be repeated for credit as topics vary.

LTGM 272. Genres, Trends, and Forms (4)
Seminars on literary genres, trends, movements, schools, and on aspects of literary forms and structures in any given era or over a certain period of time. May be repeated for credit as topics vary.

LTGM 295. M.A. Thesis (1)
Research for the master's thesis. Opened for repeated registration up to eight units.

LTGM 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTGM 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student's needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTGM 298. Special Projects: Writing Course (1-12)
Similar to a 297 , but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTGM 299. Dissertation (1-12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

GREEK LITERATURE

(See also listings under Classical Studies)

LOWER-DIVISION

LTGK 1. Beginning Greek (4)
Study of ancient Greek, including grammar and reading.
LTGK 2. Intermediate Greek (I) (4)
Continuation of study of ancient Greek, including grammar and reading. Prerequisite: LTGK 1 or equivalent.

LTGK 3. Intermediate Greek (II) (4)
Continuation of study of ancient Greek, including grammar and reading of texts. Prerequisites: LTGK 1 and 2 or equivalent.

LTGK 4. Intensive Elementary Greek (12)
Equivalent of LTGK 1, 2, and 3. Given in summer session only.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTGK 110. Archaic Period (4)
Readings, in Greek, of texts from the archaic period. May be repeated for credit as topics vary.

LTGK 112. Homer (4)
Readings from the works of Homer. Repeatable for credit when texts and material vary.

LTGK 113. Classical Period (4)
Readings, in Greek, of texts from the fifth and fourth centuries B.C. May be repeated for credit as topics vary.

LTGK 120. New Testament Greek (4)
Readings, in Greek, in the Greek New Testament. May be repeated for credit as topics vary.

LTGK 130.Tragedy (4)
Readings, in Greek, of one or more of the works of the classical tragedians Aeschylus, Sophocles, and Euripides. May be repeated for credit as topics vary.

LTGK 131. Comedy (4)
Readings, in Greek, of one or more of the works of Aristophanes. Prerequisite: LTGK 1, 2, and 3, or equivalent.

LTGK 132. History (4)
Readings, in Greek, in the works of the ancient historians, including Herodotus, Thucydides, Xenophon, and others. May be repeated for credit as topics vary.

LTGK 133. Prose (4)
Readings, in Greek, in the works of ancient prose writers. May be repeated for credit as topics vary.

LTGK 134. Epic Poetry (4)
Readings, in Greek, in the works of Homer, Hesiod, and/or Apollonius Rhodius. May be repeated for credit as topics vary.

LTGK 135. Lyric Poetry (4)
Readings, in Greek, of the works of the ancient lyric poets. May be repeated for credit as topics vary.

LTGK 198. Directed Group Study (4)
Directed group study in areas of Greek literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upperdivision standing and permission of department.

LTGK 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of Greek literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

LTGK 297. Directed Studies (1-12)
Guided and supervised reading in a broad area of Greek literature. Offered for repeated registration.

LTGK 298. Special Projects (4)
Treatment of a special topic in Greek literature. Offered for repeated registration.

HEBREW LITERATURE

Please see Near Eastern Literatures under Literatures of the World.

LITERATURES IN ITALIAN

LOWER-DIVISION

(See Department of Linguistics for other course offerings in first-year Italian.)

LTIT 1A. The Language of the Italian Theater (4) An introduction to the study of the italian language. Exercises in grammar, syntax, conversation, and writing are generated from the texts of Italian plays (Goldoni, Pirandello, Campanile, Fo). No prior study of Italian required.

LTIT 1B. The Language of the Italian Opera (4)

A continuation of the study of Italian language Exercises in grammar, syntax, conversation, and writing are generated from the texts of opera libretti. Prerequisite: LTIT 1A or consent of instructor.

LTIT 1C. The Language of the Italian Film and

 Literature (4)Further study of Italian language. Exercises in grammar, syntax, conversation, and writing are generated from the texts of Italian screenplays and novels. Prepares students for enrollment in LTIT 2A. Prerequisite: LTIT $1 B$ or consent of instructor.

LTIT 2A. Advanced Italian I (5)

A second-year course in Italian language and literature. Conversation, composition, grammar review, and an introduction to literary and nonliterary texts. Prerequisite: LIIT 1C/1CX or equivalent or consent of instructor.

LTIT 2B. Advanced Italian II (5)
Emphasis on composition discussion of literary texts in Italian. Prerequisite: LTIT 2A or equivalent or consent of instructor.

LTIT 50. Advanced Italian (III) (4)
This course constitutes the sixth and final quarter of the Italian language sequence. It offers an intensive study of Italian grammar, drills in conversation and composition, and readings in modern Italian literature. Prerequisite: LTIT 2A and 2B, or consent of instructor.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTIT 100. Introduction to Literatures in Italian (4)
Reading and discussion of selections from representative authors. Review of grammar as needed. Prerequisite: LTIT 50 or equivalent or consent of instructor.

LTIT 110. Italian Literature (4)
One or more periods of authors in Italian literature. May be repeated for credit as topics vary.

LTIT 113. Love, War, and Conquest in the Italian

 Renaissance (4)A critical reading of Italian Renaissance texts with special attention to those themes, forms, and ideo-
logical conflicts still operative in today's culture. May be repeated for credit when topics vary.

LTIT 115. Medieval Studies (4)

Studies in medieval culture and thought with focus on one of the "three crowns" of Italian literature: Dante, Boccaccio, or Petrarca. May be repeated for credit when course content varies. Prerequisite: upperdivision standing or consent of instructor.

LTIT 116. Sixteenth-Century Prose (4)
Reading and discussion of sixteenth-century Italian novelle, philosophy, history, and scientific texts. May be repeated for credit when topics vary. Prerequisite: LTIT 100 or permission of instructor.

LTIT 118. Italian Romanticism (4)
This course will consider the rise of romanticism in Italy and its relationship to European romanticism. Particular attention will most likely be paid to the works of Foscolo and Leopardi. Credit will not be given for both LTIT 118 and LTGN 124, Italian Romanticism in Translation.

LTIT 122. Studies in Modern Italian Culture (4)
Politics, literature, and cultural issues of twentiethcentury Italy.

LTIT 136. Studies in Modern Poetry

A study of the chief modern Italian poets, including Montale, Ungaretti, and Quasimodo, with attention to long poetic form and contemporary Italian culture.

LTIT 137. Studies in Modern Italian Prose (4)

A study of the chief modern Italian prosatori, including D'Annunzio, Calvino, Pavese, Pasolini, etc.

LTIT 138. Contemporary Italian Thought (4)
Presentation of major currents and debates in contemporary philosophy, anthropology, political theory, sociology, and feminism that have had an impact on Italian cultural studies. May be repeated for credit when topics vary. Prerequisite: LTIT 100 or permission of instructor.

LTIT 140. Women in Italy (4)
A study of historical, political, and literary texts regarding women and feminism in Italian society.

LTIT 143. Major Italian Authors (4)
A study in depth of the works of a major Italian author. May be repeated for credit when topics vary. Prerequisite: LTIT 100 or permission of instructor.

LTIT 150. Italian North American Culture (4)
This course will consider the phenomenon of Italian emigration as a product of sociopolitical trends in 19 th century Italy and Europe that led to Italian unification in 1861. Within that context, and analysis of the cultural products of Italian North Americans will be used to read contemporary trends in multiculturalism and ethnic culture in North America.

LTIT 161. Advanced Stylistics and Conversation (4)
Analysis of Italian essays, journalism, literature. Intensive practice in writing and Italian conversation. Prerequisite: LTIT 100 or consent of instructor.

LTIT 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the literature honors program and who have completed General Literature 191. Oral examination. Prerequisite: departmental approval.

LTIT 198. Directed Group Study (4)

Directed group study in areas of Italian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upperdivision standing and permission of department.

LTIT 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of Italian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

LTIT 297. Directed Studies (1-12)
Guided and supervised reading in a broad area of Italian literature. Offered for repeated registration.

LTIT 298. Special Projects (4)

Treatment of a special topic in Italian literature. Offered for repeated registration.

The following summer session courses may be of interest:

LTIT 7A-B-C. Introductory Intensive Italian (4-4-4)
The equivalent of a full year of Italian language is covered. Through a total immersion approach, students will be able to develop proficiency in grammar, essential reading and writing skills, basic comprehension and production of spoken Italian and language functions. Given in summer session only.

LTIT 40. Conversational Intermediate Italian (4)
Students improve their verbal skills through group conversations about issues relevant to modern life in Italy and their own life in America. Italian current events and society are discussed; students contribute oral presentations on Italian topics. Given in summer session only. Prerequisite: Linguistics//talian 1C/1CX or consent of instructor.

KOREAN LITERATURE

LTKO 1A-B-C. First-Year Korean (5-5-5)
First-year Korean, with attention to reading, writing, and speaking. Prerequisite: LTKO IA is prerequisite to $1 B ; 1 B$ is prerequisite to $1 C$.

LTKO 2A-B. Intermediate Korean: Second Year (5-5)
Second-year Korean in two quarters. Students continue learning all four skills-speaking, listening, reading, and writing-and cultural understanding in beyond-survival level. Short essays; conversational exercises using more complex vocabularies, expressions, and sentence structures with good command of Korean. Prerequisite: LTKO 1C or the equivalent or consent of instructor.

LATIN LITERATURE

(See also listings under Classical Studies)

LOWER-DIVISION

LTLA 1. Beginning Latin (4)
Study of Latin, including grammar and reading.
LTLA 2. Intermediate Latin (I) (4)
Study of Latin, including grammar and reading. Prerequisite: LTLA 1 or its equivalent.

LTLA 3. Intermediate Latin (II) (4)
Study of Latin, including grammar and reading. Prerequisite: LTLA 2 or its equivalent.

LTLA 4. Intensive Elementary Latin (12)

Equivalent of LTLA 1, 2, and 3. Given in summer session only.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTLA 100. Introduction to Latin Literature (4)
Reading and discussion of selections from representative authors of the Augustan age. Review of grammar as needed. Prerequisite: LTLA 3 or equivalent.

LTLA 111. Pre-Augustan (4)
Readings, in Latin, in the works of Roman writers of the pre-Augustan period. May be repeated for credit as topics vary.

LTLA 113. Augustan (4)
Readings, in Latin, in the works of Roman writers of the Augustan period. May be repeated for credit as topics vary.

LTLA 114. Vergil (4)
Readings from the works of Vergil. Repeatable for credit when texts and material vary.

LTLA 116. Silver Latin (4)
Readings, in Latin, in the works of Roman writers of the Silver Age. May be repeated for credit as topics vary.

LTLA 131. Prose (4)
Readings, in Latin, of the work of Roman prose writers. May be repeated for credit as topics vary.

LTLA 132. Lyric and Elegiac Poetry (4)
Readings, in Latin, in the works of lyric and elegiac poets. May be repeated for credit as topics vary.

LTLA 134. History (4)
Readings, in Latin, in the works of Roman historians. May be repeated for credit as topics vary.

LTLA 135. Drama (4)

Readings, in Latin, in the works of Roman dramatists. Prerequisite: LTLA 3 or equivalent; LTLA 100 recommended. Repeatable for credit when topics vary.

LTLA 198. Directed Group Study (4)
Directed group study in areas of Latin literature not normally covered in courses. May be repeated three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

LTLA 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of Latin literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

LTLA 297. Directed Studies (1-12)
Guided and supervised reading in a broad area of Latin literature. Offered for repeated registration.

LTLA 298. Special Projects (4)
Treatment of a special topic in Latin literature. Offered for repeated registration.

LITERATURES IN PORTUGUESE

LTPR 50. Brazilian Literature in Portuguese for Spanish Speakers (4)
Introductory Portuguese language and literature course designed especially for speakers of Spanish. Will build on students' knowledge of Spanish, enabling them to acquire competence in language structures of Portuguese and introducing them to Brazilian texts in Portuguese.

LTPR 130. Brazilian Literature (4)

Reading of representative works in Brazilian literature with a view to literary analysis (form, theme, meaning), the developmental processes of the literature, and the many contexts: historical, social, cultural. Texts will be read in Portuguese. Repeatable for credit when topics vary. Prerequisites: upper-division standing, knowledge of Portuguese, or consent of instructor.

RUSSIAN LITERATURE
 LOWER-DIVISION

LTRU 1A-B-C. First-Year Russian (5-5-5)
First-year Russian, with attention to reading, writing, and speaking.

LTRU 1AB and 1BC. Intensive Beginning Russian

(7.5-7.5)

Intensive study of beginning Russian. Covers material of first-year Russian in two quarters. Development of all facets of language proficiency-speaking, listening, reading, writing. Attention given to cultural materials as well.

LTRU 2A-B-C. Second-Year Russian (5-5-5)

Second-year Russian grammar, with attention to reading, writing, and speaking.Prerequisite:URU33/53,LIRU $1 A-B$-Cor equivalent.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor.Additional prerequisites may be specified below.

Note: Many Russian literature courses are crosslisted as courses in European and Eurasian Literatures (LTEU). Lectures and discussions are conducted in English, and students may choose whether to do the reading and writing assignments in translation, in which case they should enroll for the course under its LTEU rubric, or in Russian, in which case they should enroll under the LTRU rubric. Other courses are offered in English translation with one-unit Foreign Language Discussion Sections (XL course number suffix) for students who wish to read and discuss some or all of assignments in Russian.

LTRU 101A-B-C. Advanced Russian (4-4-4)
Third-year Russian. Advanced grammar and stylistics, introduction to analysis of Russian literary texts.

LTRU 104A-B-C. Advanced Practicum in Russian (4-4-4)
Development of advanced skills in reading, writing, and conversation. Course based on written and oral texts of various genres and styles. Individualized program to meet specific student needs. May be substituted for LTRU 101A-B-C as requirement for major. Prerequisite for 104A: LTRU 2C or equivalent.

LTRU 110A-B-C. Survey of Russian and Soviet Literature

 in Translation, 1800-Present (4-4-4)A study of literary works from Pushkin to the present. LTRU 110A is not a prerequisite for LTRU 110 B , and LTRU $110 B$ is not a prerequisite for LTRU 110C.

110A. 1800-1860
110B. 1860-1917
110C. 1917-present
LTRU 123. Single Author in Russian Literature (4)
Study of the works of a single Russian author. May be repeated for credit two times. Prerequisite: LTRU 101C, its equivalent, or permission of instructor.

LTRU 128. Single Author in Soviet Literature (4)
Study of the works of a single author from the Soviet period. May be repeated for credit two times. Prerequisite: LTRU 101C, its equivalent, or permission of instructor.

LTRU 129. Twentieth-Century Russian or Soviet

Literature (4)
A study of literary works from the twentieth century. May be repeated for credit as topics vary. Prerequisite: upper-division standing or consent of instructor.

LTRU 130. Genres in Russian Literature (4) An examination of one or more genres in Russian liter-ature-for example, the novel, the short story, autobiography, drama, poetry. May be repeated for credit as topics vary. Prerequisite: LTRU 101C, its equivalent, or consent of instructor.

LTRU 132. Russian Poetry (4)

Survey of Russian poetry from the late eighteenth century to the Revolution. Prerequisite: LTRU 101C, its equivalent, or permission of instructor.

LTRU 150. Russian Culture: The Modern Period (4)
An introduction to Russia's past and present through the cross-disciplinary study of literature, the visual and performing arts, social and political thought, civic rituals, popular entertainments, values and practices from 1825 to the present.

LTRU 150XL. Russian Culture: The Modern Period-

 Foreign Language Discussion Section (1)Students will exercise advanced Russian language skills to read and discuss materials in LTRU 150. This section is taught by the course professor, has no final examination, and does not affect the student's grade in the parent course. Prerequisites: co-registration in LTRU 150; four quarters of Russian language study or the equivalent.

LTRU 160. Russian Stylistics and Grammar (4)
Study of style in various textual and spoken genres of Russian. Review of grammar, geared toward individual student needs, and encouraging independent study of the language beyond this course. Prerequisites: LTRU 101A-B-C or the equivalent.

LTRU 192. Research Practicum in Russian Literature (4) Students create research projects on topics of their own choosing. Course develops research skills in Russian. Attention given to vocabulary, grammar, bibli-
ographical references, and understanding of the cultural context. Students at all levels of Russian are encouraged to enroll. Repeatable for credit as projects vary.

LTRU 198. Directed Group Study (4)
Directed group study in areas of Russian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upperdivision standing and permission of department.

LTRU 199. Special Studies (2 or 4)

Tutorial; individual guided reading in areas of Russian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

LITERATURES IN SPANISH

LOWER-DIVISION

Language and Literature Courses

Students entering the Spanish language/literature program must have completed one year of college-level Spanish (Linguistics/Spanish 1C/1CX) or its equivalent at another institution or have the consent of the instructor. Ordinarily, students take LTSP 2A, 2B, 2C, and one or more courses from the 50 sequence. Native speakers are encouraged to take LTSP 2D.

LTSP 2A. Intermediate Spanish I: Foundations (5)
This course is taught entirely in Spanish and emphasizes the development of reading ability, listening comprehension, and writing skills. It includes grammar review, weekly compositions, and class discussions. Prerequisite: completion of LISP $1 C / 1 C X, 1 D / 1 D X$, or the equivalent or score of 3 on AP Spanish language exam.

LTSP 2B. Inermediate Spanish II: Readings and

Composition (5)
This course further reviews major points of grammar and emphasizes critical reading and interpretation of Spanish texts through class discussion, vocabulary development, and written compositions. It is a continuation of LTSP 2A. Prerequisite: LTSP 2A or score of 4 on Spanish language or 3 on Spanish literature AP exam or consent of instructor.

LTSP 2C. Inermediate Spanish III: Cultural Topics and

 Conversation (4)This course is a continuation of LTSP 2B, with special emphasis on problems in writing and translation. It includes class discussion of cultural topics as well as grammar review and composition. The course will further develop the ability to read articles, essays, and longer pieces of fictional/nonfictional texts. Prerequisite: LTSP $2 B$ or equivalent or score of 5 on Spanish language or 4 on Spanish literature AP exam or consent of instructor.

LTSP 2D. Intermediate/Advanced Spanish: Spanish for

 Bilingual Speakers (4)Spanish for native speakers. Designed for bilingual students seeking to become biliterate. Reading and writing skills stressed with special emphasis on improvement of written expression and problems of
grammar and orthography. Prepares native speakers with little or no formal training in Spanish for more advanced courses. Prerequisite: native speaking ability and/or recommendation of instructor.

LTSP 21. Conversation Workshop I (1)
Allows students with a basic grounding in Spanish to discuss a variety of topics related to literary and cultural issues. Vocabulary development, use of idiomatic expression, and advancement of oral proficiency in Spanish. May be taken as an adjunct to lower-division LTSP courses. Recommended for students planning to sutdy abroad. Prerequisite: LISP IC/ICX or LTSP ID/IDX or LTSP $2 A$ or $2 B$ or $2 C$ or $2 D$ or $50 A$ or $50 B$ or $50 C$.

LTSP 31. Conversation Workshop II (1)
Enhances intermediate/advanced students' command of spoken Spanish through debates on literary and cultural issues and the formulation and expression of thoughts in Spanish. May be taken as an adjunct to lower- and upper-division LTSP courses. Recommended for students planning to study abroad. Prerequisite: LISP IC/ICX or LISPID/IDX or LTSP 2A or 2B or 2C or 2D or 50A or $50 B$ or $50 C$.

LTSP 41. Conversation and Orthography Workshop (1) The workshop format of this course allows students to attain a stronger command of skills in matters of Spanish orthography, spelling, punctuation, and accent rules. May be taken as an adjunct to lower- or upperdivision LTSP courses. Recommended for students planning to study abroad. Prerequisite: LISP IC/ICX or LISP ID/IDX or LTSP $2 A$ or $2 B$ or $2 C$ or $2 D$ or $50 A$ or $50 B$ or 50 C .

LTSP 50A. Readings in Peninsular Literature (4)
An introduction to Peninsular literature, this course offers a selection of major works and introduces students to literary analysis through reading extensive texts in Spanish. Two or more quarters of courses in the 50 series are suggested before students proceed to upper-division courses. Prerequisite: two years of college Spanish or the equivalent.

LTSP 50B. Readings in Latin American Literature (4) An introduction to Latin American literature, this course offers a selection of major works and introduces students to literary analysis through reading extensive texts in Spanish. Two or more quarters of courses in the 50 series are suggested before students proceed to upper-division courses. Prerequisite: two years of college Spanish or the equivalent.

LTSP 50C. Readings in Latin American Topics (4) An introduction to major topics in Latin American literature, this course focuses on the literature of a particular region, period, or movement. Works vary from those in 50B and introduce students to literary analysis through reading extensive texts in Spanish. Prerequisite: two years of college Spanish or the equivalent.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Note: As of fall 1992, students must have taken at least one (but preferably two) course(s) in the LTSP 50A-B-C sequence with a grade of C - or better before enrolling in upper-division courses.

Without fulfillment of this prerequisite, students must obtain the consent of the instructor of the requested course.

LTSP 107. Literature of the Fifteenth Century (4) Survey of cultural texts including courtly romances, political poetry, Columbus's letters, and the tragicomedia La Celestina. Issues of gender, blood purity, social estates, and colonialism will be discussed. Repeatable for credit when topics vary.

LTSP 111. Topics in Golden Age Poetry (4)
Overview of Castilian lyric production from early sixteenth century to late seventeenth century. Close readings of major texts and study of the relationship between poetic forms and social-cultural context. Repeatable for credit when topics vary.

LTSP 115. Topics in Golden Age Prose (Except

Cervantes) (4)
Selected readings in the narrative production of the early modern period. Thematic focus and historical period may vary, but major forms such as the picaresque, morisca, and pastoral novel will be covered. Repeatable for credit when topics vary.

LTSP 117. Golden Age Drama (4)
Study of representative examples of early modern Castilian theater. Emphasis on textual analysis of individual plays and the social-cultural meanings of spectacle, especially the comedia and auto sacramental. Repeatable for credit when topics vary.

LTSP 119A. Cervantes: Teatro (4)
Selected readings from Cervantes's dramatic works (entremeses and comedias), with special attention to generic innovations in structure and content. This course fulfills the requirement for Spanish literature majors. Prerequisites: LTSP 50A and either 50B or 50C.

LTSP 119B. Cervantes: Novelas Ejemplares (4)
Study of Cervantes's short narrative pieces and their relationship to the development of prose fiction in the early modern period. Special attention to structural and ideological elements. This course fulfills the requirement for Spanish literature majors. Prerequisites: LTSP 50A and either 50B or 50C.

LTSP 119C. Cervantes: Don Quijote (4)
Close reading of the 1605 and 1615 texts with special attention to the social and cultural background of the early 17 th century in Spain. This course fulfills the requirement for Spanish literature majors. Prerequisites: LTSP 50A and either 50B or 50C.

LTSP 122. The Romantic Movement (4)
This course will explore the historical context of the emergence of a Romantic movement in Spain, particularly the links between Romanticism and liberalism. Major Romantic works in several genres will be studied in depth. Prerequisite: upper-division standing.

LTSP 124. The Nineteenth-Century Novel (4)
Study of major novelists of the realist tradition. Selection of works and thematic focus may vary.

LTSP 125. The Generation of '98 (4)
The course will explore the significant literary tendencies that arose during the crisis of Spanish society at the end of the nineteenth century and the beginning of the twentieth.

LTSP 127. Modern Drama (4)
Study of significant developments in Spanish theatre of the nineteenth and twentieth century. Selection of
works to be studied will vary at the discretion of the instructor.

LTSP 128. Modern Poetry (4)
The course will consider major trends and figures in the development of Spanish poetry throughout the last two centuries. Topics may vary significantly in selection of poets and periods to be studied; thus, course may be repeated for credit when topics vary.

LTSP 129. Twentieth-Century Prose (4)

The course will explore significant aspects of Spanish prose literature in this century. Specific topics will vary by genre (novel, short story, essay) and by period. May be repeated for credit when topics vary.

LTSP 130A. Development of Spanish Literature (4)
An introduction to the major movements and periods of Spanish literary history, centered on close reading of representative texts, but aimed at providing a sense of the scope of Spanish literature and its relation to the course of Spain's cultural and social history. This course is required of all Spanish literature majors. It is strongly recommended that this course be taken before any other upper-division Spanish (peninsular) literature course. Prerequsites: LTSP 50A and either 50B or 50C.

LTSP 130B. Development of Latin American

Literature (4)
An introduction to major movements and periods in Latin American literature, centered on a study of key works from pre-Columbian to the present time. Texts will be seen within their sociohistorical context and in relation to main artistic trends of the period. This course is required of all Spanish literature majors. It is strongly recommended that this course be taken before any other upper-division Latin American literature course. Prerequisites: LTSP 50A and either 50B or 50C.

LTSP 131. Spanish American Literature: The Colonial

Period (4)

A study of the major literary works of the Latin American colonial period as seen against the historical context of that period.

LTSP 132. Spanish American Literature: The Nineteenth

 Century (4)A study of the major literary works and problems of the nineteenth century in Latin America as seen against the historical context of that period.

LTSP 133. Spanish American Literature: The Twentieth Century (4)
A study of the major literary works and problems of the twentieth century in Latin America as seen against the historical context of that period.

LTSP 134. Argentine Literature (4)

Study of movements, traditions, key authors, or major trends in Argentine literature, such as gaucho poetry, the realist novel, modern urban narrative, the school of Jorge Louis Borges. May be repeated for credit as topics vary.

LTSP 135. Mexican Literature (4)
Study of popular novels, movements, traditions, key authors, or major trends in modern Mexican literature. May be repeated for credit as topics vary.

LTSP 136. Peruvian Literature (4)
Study of movements, traditions, key authors, or major trends in Peruvian literature, such as the romantic movement, the essay tradition, the rural narrative, the novel of national definition, postmodernist poetry
authors such as Vallejo, Arquedas, Vargas Llosa. May be repeated for credit as topics vary.

LTSP 137. Caribbean Literature (4)

Study of movements, traditions, key authors, or major trends in Caribbean literature in Spanish, such as the romantic movement, the literature of independence, the essay tradition, Afro-Antillean literature, the historical novel. May be repeated for credit as topics vary.

LTSP 140. Spanish American Novel (4)
A study in depth of selected novelists of Spanish America. May be organized around a specific theme or idea which is traced in its development through the narratives. Course may be repeated for credit when topics vary.

LTSP 141.Spanish American Poetry (4)

A critical study of some of the major poets of Spanish America, focusing on the poet's central themes, the evolution of poetic style, and the significance of the poetry to the historical context. May be repeated as topics vary.

LTSP 142. Spanish American Short Story (4)
Readings and interpretation of short story form in Latin America. Focus is primarily nineteenth or twentieth century. May be repeated for credit as topics vary.

LTSP 143. Spanish American Essay (4)
A study of the essay in Spanish American literature from either an historical or a topical point of view. May be repeated for credit as topics vary.

LTSP 144. Spanish American Theatre (4)
This course studies the representative plays of the major dramatists of Latin America. Discusses and analyzes the dramatic works in light of their historical, social, and cultural background. Considers their contribution to the development of a theatrical tradition in Latin America. May be repeated for credit as topics vary.

LTSP 150. The Development of Chicano Literature (4)
A cross-genre survey of the major works in Chicano literature from its beginnings to the present, with primary emphasis on contemporary works. Speaking, writing, and reading knowledge of Spanish is required.

LTSP 151. Themes and Motifs in Chicano Literature (4)
This course is organized around some of the significant themes and ideas expressed in specific Chicano writings. The importance of these themes to particular Chicano experience is considered. Speaking, writing, and reading knowledge of Spanish is required.

LTSP 152. Chicano Prose (4)
Study of the different genres of Chicano prose: novel, short story, poetry, autobiography. Attention is given to Chicano prose styles and the historical and cultural movement in which they develop. Speaking, writing, and reading knowledge of Spanish is required.

LTSP 153. Chicano Poetry (4)

The analysis and discussion of the major forms and modes of Chicano poetry, with primary emphasis on the developing styles of the poets and on the study of the texts' and the authors' historical moment. Speaking, writing, and reading knowledge of Spanish is required.

LTSP 162. Spanish Language in the United States (4)
A sociolinguistic study of the popular dialects in the U.S.A. and their relation to other Latin American dialects. The course will cover phonological and syntac-
tic differences between the dialects as well as the influence of English on the Southwest dialects.

LTSP 163. Spanish Language in America (4)

A study of the history, structure, and peculiarities of the Spanish language in Latin America with selected readings from Latin American authors utilizing these dialects within their works.

LTSP 166. Creative Writing (4)

A workshop designed to foster and encourage writing in Spanish of students working on short forms of fic tion. The workshop will include discussion of techniques and intensive writing.

LTSP 170. Literary Criticism (4)
The course will discuss major contemporary critical approaches and the question of their applicability to the analysis of contemporary Latin American, Peninsular, and Chicano literature. Open to literature majors only.

LTSP 171. Studies in Literature and Society (4)

Focus on interaction between literary expression and the study of society, covering issues such as the sociology of literature, the historical novel, literature and social change, the writer as intellectual. May be repeated for credit as topics vary.

LTSP 172. Indigenista Themes in Spanish American

 Literature (4)Study of the varying literary modes by which nine-teenth- and twentieth-century poets and narrators have interpreted the themes of Andean survival in Latin America, primarily in Mexico and the Andean Highlands. May be repeated for credit as topics vary.

LTSP 173. Problems in Spanish and Spanish American

 Literary History (4)Study of the issues involved in understanding the development process of literary expression; the problem of genre; the relation of literature to social institutions; the function of literary influence and tradition; the relation of popular and print cultures. May be repeated for credit as topics vary.

LTSP 190. Seminars (4)
These seminars are devoted to a variety of special topics, including the works of single authors, genre studies, problems of literary history, relations between literature and the history of ideas, literary criticism, literature and society, and the like. The student may enroll in more than one seminar in a single quarter.

LTSP 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTGN 191. Oral Exam.

LTSP 198. Directed Group Study in Spanish

Literature (4)
Research seminars and research, under the direction of a member of the staff. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

LTSP 199. Special Studies (2 or 4)
Tutorial: individual guided reading in areas of Spanish literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

LTSP 224. Golden Age Studies (4)
Consideration of one or more major figures, texts, trends, or problems in Spanish Golden Age studies. May be repeated for credit as topics vary.

LTSP 252. Studies in Modern Hispanic Literature and

Culture (4)
Major trends and figures considered in the context of late nineteenth-and twentieth-century Hispanic culture. May be repeated for credit as topics vary.

LTSP 253. Chicano Literature (4)
Study of the particular life experience of the Chicano and the unique expression given that experience by Chicano authors, whether in novels, short stories, poetry, or dramatic works. May be repeated for credit as topics vary.

LTSP 254. Modern Spanish Poetry (4)
An historical approach to modern Spanish poetry. May be repeated for credit as topics vary.

LTSP 255. The Modern Spanish Novel (4)
An historical approach to the modern Spanish novel. May be repeated for credit as topics vary.

LTSP 258. Spanish American Prose (4)
Consideration of one or more major figures, texts, trends, or problems in Spanish American prose. May be repeated for credit as topics vary.

LTSP 259. Spanish American Poetry (4)

Consideration of one or more major figures, texts, trends, or problems in Spanish American poetry. May be repeated for credit as topics vary.

LTSP 272. Literature and Society Studies (4)
Special topics in practical criticism involving social and economic historical perspectives. May be repeated for credit as topics vary.

LTSP 275. Latin American(ist) Literary and Cultural

Theories Since the 1960s (4)

A historical survey of late twentieth-century literary and cultural criticism in and about Latin America, focusing on questions of political economy and periodization, cultural heterogeneity and transculturation, gender and sexuality, and the relationships between literary, popular, and mass cultures. Prerequisite: graduate standing.

LTSP 295. M.A. Thesis (1-8)
Research for the master's thesis. Open for repeated registration up to eight units. (S/U grades only.)

LTSP 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTSP 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student's needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTSP 298. Special Projects: Writing Course (1-12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar
requirement of the doctoral program. Repeatable for credit.

LTSP 299. Dissertation (1-12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURE/THEORY

Courses in theory may apply to various literature majors. Please consult your adviser.

Additional theory courses are offered in the various department sections. See quarterly course descriptions in the Department of Literature office, first floor LIT building.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTTH 101. Issues in Feminist Theory (4)

The study of selected issues in feminist theory, feminist approaches to literature; and the function of feminist critics in society. May be repeated for credit when topics vary.

LTTH 110. History of Criticism (4)
A critical and interpretive review of some of the major documents in criticism from the classical period to the present time.

LTTH 115. Introduction to Critical Theory (4)

(Formerly LTTH 100) A critical review of major contemporary theories of the nature of literature, its sociocultural function, and appropriate modes of evaluation.

LTTH 130. Introduction to Linguistic and Discourse

 Theories (4)An introduction to linguistic and discourse theories, analyses of linguistic structures, elements of sociolinguistics, language use, language acquisition, and bilingualism.

LTTH 150. Topics in Critical Theory (4)

Selected topics in critical theory such as: a particular mode of literary theory; comparative study of theories of text and image; a problem or theme in the history of theory; issues involved in the relationship between fiction and other discourses (science, law, history, philosophy, music). Repeatable for credit when topics vary. Prerequisite: upper-division standing or consent of instructor.

LTTH 198. Directed Group Study (4)
Directed group study, under the guidance of a member of the faculty, in an area not covered in courses currently offered by the department (P/NP only)

LTTH 199. Special Studies (2 or 4)
Individual reading in an area not covered in courses currently offered by the department. (P/NP only).

GRADUATE

LTTH 200A. Text/Culture/Critical Practice (4)
An introduction to theories and practices of literary and cultural criticism. Topics may vary, but emphasis will be
on terminology, methods of readings, modes of interdisciplinary analysis and argumentation, recent debates on questions of theory, history, textual scholarships, etc. Prerequisite: registered doctoral student in literature.

LTTH 200B. Problems in Contemporary Literary

Theory (4)
The focus is feminist literary/cultural theories and their relations with major contemporary theoretical discourses (e.g., psychoanalysis, poststructuralism, and various forms of historicism). Prerequisite: registered doctoral student in literature.

LTTH 200C. Cultural Perspectives and Cultural

Criticism (4)
Literary and cultural relations between the First and Third Worlds, colonialism and neo-colonialism, orality and literacy, construction of ethnicity, formation of canon, and popular culture and the market. Prerequisite: registered doctoral student in literature.

LTTH 201. Contemporary Theoretical Debates and Critical Discourses (4)
An introduction to a wide range of theoretical and methodological issues, schools of thought, and interpretative styles in contemporary literary studies. Required of all M.A. students in the Department of Literature, normally in their first quarter in the program. Prerequisites: admission to the M.A. program in the Department of Literature or consent of instructor; graduate standing.

LTTH 210. Major Periods and Movements (4)
Historically oriented study of past criticism and critical theory as they pertain to contemporary interests and concerns. May be repeated for credit when topics vary.

LTTH 220. Theories of Literary Criticism (4)
Close study of any of the several bodies of literary theory currently applied to literary criticism: psychoanalytic, Marxist, historicist, semiotic, feminist, hermeneutic, reader-response, among others. May be repeated for credit when topics vary.

LTTH 230. Comparative Literary Theory (4)
Comparison of theoretical approaches across cultures (e.g., East/West studies), across modes of discourse (e.g., oral/written), or across media (e.g., literature/art or literature/music). May be repeated for credit when topics vary.

LTTH 240 . Forms and Genres (4)
Theory as it focuses on the various literary modes-e.g., narratology, poetics, formalism. May be repeated for credit when topics vary.

LTTH 270. Psychoanalytic Approaches to Literature (4) A systematic study of basic psychoanalytic theory as it applies to literary criticism, with practical psychoanalytical exploration of works from various periods and literatures.

LTTH 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTTH 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student's needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper
required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTTH 298. Special Projects: Writing Course (1-12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LITERATURES OF THE WORLD

AFRICAN LITERATURES

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTAF 110. African Oral Literature (4)
Survey of various genres of African and oral literary traditions. Oral narrative genres, investigation of proverb, riddle, praise poetry, and epic. Development and use of a methodology to analyze aspects of performance, composition, and education in oral traditional systems.

LTAF 120. Literature and Film of Modern Africa (4)
This course traces the rise of modern literature in traditional African societies disrupted by the colonial and neocolonial experience. Contemporary films by African and Western artists will provide an additional insight into the complex social self-images of the continent.

LITERATURES OF THE AMERICAS

Prerequisite: upper-division standing or consent of

 instructor. Additional prerequisites may be specified below.Foreign language discussion sections (XLs) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTAM 110. Latin American Literature in Translation (4) Reading of representative works in Latin American lit erature with a view to literary analysis (form, theme, meaning), the developmental processes of the literature, and the many contexts: historical, social, cultural. Texts may be read in English. May be repeated for credit as topics vary.

LTAM 120. Mexican Literature in Translation (4)
Study of popular novels, movements, traditions, key authors, or major trends in modern Mexican literature. Texts may be read in English. May be repeated for credit as topics vary.

EAST ASIAN LITERATURES

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLs) may be offered in conjunction with courses taught in translation. Students enrolled in these
joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTEA 100A. Classical Chinese Poetry in Translation (4) A survey of different genres of traditional Chinese poetry from various periods.

LTEA 100B. Modern Chinese Poetry in Translation (4) A survey of Chinese poetry written in the vernacular from 1918 to 1949.

LTEA 100C. Contemporary Chinese Poetry in

Translation (4)

A survey of Chinese poetry development from 1949 to the present.

LTEA 110A. Classical Chinese Fiction in Translation (4)
The course will focus on a few representative masterpieces of Chinese literature in its classical age, with emphasis on the formal conventions and the social or intellectual presuppositions that are indispensable to their understanding. May be repeated for credit when topics vary.

LTEA 110B. Modern Chinese Fiction in Translation (4) A survey of representative works of the modern period from 1919 to 1949. May be repeated for credit when topics vary.

LTEA 110C. Contemporary Chinese Fiction in

Translation (4)

An introductory survey of representative texts produced after 1949, with particular emphasis on the social, cultural, and political changes. May be repeated for credit when topics vary.

LTEA 120A. Chinese Films (4)

A survey of representative films from different periods of Chinese cinematic development. Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LTEA 120B. Taiwan Films (4)
A survey of "New Taiwan Cinema" of the Eighties and Nineties. Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LTEA 120C. Hong Kong Films (4)

An examination of representative works of different film genres from Hong Kong. Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LTEA 120D. Filming Chinese Literature (4)
An investigation of various adaptations of both traditional and modern literary texts from the three main Chinese communities (China, Taiwan, and Hong Kong). Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LTEA 130. Earlier Japanese Literature in Translation (4) An introduction to earlier Japanese (bungo) literature in translation. Will focus on several works, placing their forms in the historical context. No knowledge of Japanese required. Repeatable for credit when topics vary.

LTEA 132. Later Japanese Literature in Translation (4)
An introduction to later Japanese (kogo) literature in translation. Will focus on several "modern" works, placing their form in the historical context. No knowledge
of Japanese required. Repeatable for credit when topics vary.

LTEA 134. A Single Japanese Author (In Translation) (4) A good number of Japanese authors are by now well represented in English translation. The course will focus on one writer and his or her relationships to the social context. May be repeated for credit as topics vary.

LTEA 136. Special Topics in Japanese Literature (4)
The course will focus on important problematics of literary studies as they relate to Japan (e.g., "feminism," "modernity,""literary mode of production," "Orientalism and nativism"). No knowledge of Japanese required. May be repeated for credit as topics vary.

LTEA 198. Directed Group Study (4)
Research seminars and research, under the direction of a faculty member.

LTEA 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas not normally covered in courses. (P/NP grades only.)

EUROPEAN AND EURASIAN LITERATURES

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XL.s) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTEU 100. The Classical Tradition (4)
Greek and Roman literature in translation. May be repeated for credit as topics vary.

LTEU 102. Women in Antiquity (4)
Selected topics in classical culture, including women and myth, women in Greek and Roman society, and the representation of women in classical literature. May be repeated for credit when topics vary.

LTEU 105. Medieval Studies (4)
Studies in medieval culture and thought with focus on one of the "three crowns" of Italian literature: Dante, Boccaccio, or Petrarca. May be repeated for credit when course content varies.

LTEU 109. Studies in Eighteenth-Century European

 Literature (4)Topics to be considered include the age of sensibility, enlightenment, neo-classicism. Attention given to historical and cultural contexts.

LTEU 110. European Romanticism (4)
Attention given to historical and cultural contexts. Topics to be considered include the concept of nature, the reaction to science, the role of the imagination. May be repeated for credit as topics vary.

LTEU 120. Literatures in French (4)
One or more periods or authors in French literature. Texts read in English. May be repeated for credit as topics vary.

LTEU 130. German Literature in Translation (4)
One or more aspects of German literature, such as major authors, the contemporary novel, nineteenthcentury poetry, German expressionism. Texts may be read in English or the original language. May be repeated for credit as topics vary.

LTEU 139. Marx/Nietzsche/Freud (4)

Intensive examination of the major ideas of all three writers, with special attention to the literary styles and problematic aspects of their work. Often offered with an optional LTEU 139XL section, for students who are prepared to work and prefer to work in the original German.

LTEU 140. Italian Literature in Translation (4)
One or more periods or authors in Italian literature. Texts may be read in English. May be repeated for credit as topics vary.

LTEU 144. Italian Romanticism in Translation (4)
This course will consider the rise of romanticism in Italy and its relationship to European romanticism. Particular attention will most likely be paid to the works of Foscolo and Leopardi. Credit will not be given for both LTEU 144 and LTIT 118, Italian Romanticism.

LTEU 145. Studies in Modern Italian Poetry (4)
Study of the chief modern Italian poets, including Montale, Ungaretti, and Quasimndo, with attention to long, poetic form and contemporary Italian culture. Prerequisite: upper-division standing.

LTEU 146. Studies in Modern Italian Prose (4)

A study of the chief modern Italian prosatori including D'Annunzio, Calvino, Pavese, Pasolini, etc. Repeatable for credit. (Conjoined with LTIT 137.)

LTEU 147. Women in Italy (4)

A study of historical, political, and literary texts regarding women and feminism in Italian society.

LTEU 150A-B-C. Survey of Russian and Soviet Literature

 in Translation, 1800 to the PresentA study of literary works from Pushkin to the present.

$$
\begin{aligned}
& \text { 150A. 1800-1860 } \\
& \text { 150B. 1860-1917 } \\
& \text { 150C. 1917-present }
\end{aligned}
$$

LTEU 153. Twentieth-Century Russian or Soviet Literature in Translation (4)
A study of literary work from the twentieth century. May be repeated for credit as topics vary.

LTEU 154. Russian Culture: The Modern Period (4)
An introduction to Russia's past and present through the cross-disciplinary study of literature, the visual and performing arts, social and political thought, civic rituals, popular entertainments, values and practices from 1825 to the present.

LTEU 156. Genres in Russian Literature in

Translation (4)

An examination of one or more genres in Russian liter-ature-for example, the novel, the short story, autobiography, drama, poetry. All readings will be in English. May be repeated for credit as topics vary.

LTEU 158. Single Author in Russian Literature in

 Translation (4)A study of literary works by a single Russian author. All readings will be in English. May be repeated for credit when authors vary.

LTEU 159. Russian and Soviet Film (4)
An examination of pivotal films, filmmakers, and film theories from Russia and the former Soviet Union in their cultural and historical contexts. May be repeated for credit when topics vary.

NEAR EASTERN LITERATURES

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLs) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTNE 100. The Bible and Western Literature (4)
Biblical and related texts that influenced the great writers of the Middle Ages and the Renaissance, including selections from the Jewish and Christian scriptures.

LTNE 101. The Bible: The Narrative Books (4)
Examination of the Biblical accounts in their ancient Near Eastern context. Emphasis will be placed on literary- and form-criticism and textual analysis. Attention to related literature and to archaeological data; consideration of theological issues. Repeatable for credit as topics vary.

LTNE 102. The Bible: The Prophetic Books (4)
The prophetic books of the Bible in their historical contexts. The relationship between the prophetic and narrative books. Literary/critical analyis, theological issues, reference to archaeological data. Repeatable for credit as topics vary.

LTNE 103. The Bible:The Poetic Books (4)
Study of biblical peotry, its settings, genres, and themes. Analysis of metre and structure with particular attention to the use of parallel. Comparison with Canaanite and Mesopotamian examples. May be repeated for credit. Prerequisite: upper-division standing.

LTNE 112. Medieval Hebrew Literature (4)

Major literary works of the Middle Ages and Renaissance as seen against the historical and intellectual background of the period.

LTNE 150. Arabic Literature in Translation (4)
Analysis and discussion of major modern works of fiction in translation with an emphasis on social and literary background. Study of the principal authors of the Arab world, their literary works, techniques, and themes. Authors chosen from various Arab countries.

LITERATURES OF THE WORLD

In both lower- and upper-division world literature courses, texts may be read in English translation when necessary, and lectures and discussions are conducted in English.

Foreign language discussion sections (XLs) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor,
and secondary literature requirements. Please see the undergraduate office for further information.

LOWER-DIVISION

LTWL 4A-B-C-D-E-M. Fiction and Film in

Twentieth-Century Societies (4-4-4-4-4-4)
A study of modern culture and of the way it is expressed and understood in novels, stories, and films. The sequence aims at an understanding of relationships between the narrative arts and society in the twentieth century, with the individual quarters treating fiction and film of the following language groups:

$$
\begin{aligned}
& \text { 4A. French } \\
& \text { 4B. German } \\
& \text { 4C. Asian } \\
& 4 D . \text { Italian } \\
& 4 E . \text { Russian } \\
& 4 M . \text { Multiple national literatures and film }
\end{aligned}
$$

LTWL 19A-B-C. Introduction to the Ancient Greeks and Romans (4-4-4)
An introductory study of the Graeco-Roman world, its literature, myth, philosophy, history, and art.

LTWL 90. Undergraduate Seminar (1)
Readings and discussions focused on a writer, period, or literary topic. The aim of the course is to acquaint the student with literature as a field of university-level study. Repeatable for credit.

LTWL 99. Lower-Division Independent Study (4)
Independent study at the lower-division level, in an area not covered by the department's regular course offerings, under the direction of a member of the Literature Department faculty. Prerequisites: lowerdivision standing; cumulative 3.0 GPA.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTWL 100. Mythology (4)
A study of various bodies of myth: their content, form and meaning. May be repeated for credit as topics vary.

LTWL 101. What Socrates Knew (4)
Socratic perspectives on the nature of life and death, virtue and happiness, love and the gods.

LTWL 103. Words into Images (4)
With the proliferation of comic books, photonovels, films, and television, the visualization of the verbal abstractions of literature has become a central concern of the entertainment industry. This course explores the cultural implications of the transformation of words into images.

LTWL 104. Epic Poetry (4)
A study of major epics, in translation if their original language is not English. May be repeated for credit as topics vary.

LTWL 105. Lyric Poetry (4)
Studies in lyric poetry. Not confined to a single national literature. Texts may be read in English.

LTWL 107. Prose Fiction (4)
Aspects of prose fiction. Not confined to a single national literature. Texts may be read in English. May be repeated for credit as topics vary.

LTWL 110A. The Forms of Folklore (4)
A survey of the range of folkloristic phenomena as exemplified by major and minor forms-narrative, legend, myth, superstition, speech, custom, games, and music. Examples will be considered both as artistic entities and as social documents.

LTWL 110B. Folk and Fairy Tales (4)
A study of folk and fairy tales from various cultures, from the point of view of literary form, psychological meaning, and cultural function. May be repeated for credit as topics vary

LTWL 112.Travel Literature (4)
A critical examination of accounts of travel, initial encounters, and cultural interactions, structured by date/period, location, authorship, or another unifying concept. Lectures will position the readings in sociocultural and literary history. May be repeated for credit when topics vary.

LTWL 114. Children's Literature (4)
A study of literature written for children in various cultures and periods. May be repeated for credit as topics vary.

LTWL 115. Contemporary Literature (4)
A study of novels and authors of the present and recent times. May be repeated for credit as topics vary

LTWL 116. Adolescent Literature (4)
A study of fiction written for the young adult in various cultures and periods. Consideration will be given to the young adult hero in fiction. May be repeated for credit as topics vary.

LTWL 120. Popular Literature and Culture (4)

A study of various popular forms-such as pop music, cult books, film, fashion, magazines, graphic artswithin a broader cultural context. Focus may be on a particular genre (e.g., best sellers) or era (e.g., the sixties). May be repeated for credit when topics vary.

LTWL 122. Fantasy (4)
Reading and analysis of various works that fall into sev eral categories of the fantastic-e.g., heroic, gothic, irrealist, postmodern-with particular attention to the cultural uses of myth, folklore, and fantasy, and to the psychological and structuralist theories of same. May be repeated for credit when topics vary.

LTWL 124. Science Fiction (4)
An exploration of the genre-past and present, in literature and the visual media-as a cultural response to scientific and technological change, as modern mythmaking, and as an enterprise serving a substantial fan subculture. May be repeated for credit when topics vary.

LTWL 128. Introduction to Semiotics and

Applications (4)

Semiotics, basically a theory of signification, describes the models and conceptual constructs through which meaning is grasped and produced. The course provides a background in the history of semiotics and its dominant modes. May be repeated for credit when topics vary.

LTWL 130. Culture, Ideology, and Collective Memory (4) How do societies remember (and forget) the past and through this process of collective memory, conceive their present? What stories are stored, who constructs them, and what purposes do they serve? Readings in the theory of ideology and close study of empirical cases.

LTWL 131A. Topics in Early Christian Literature: The New

 Testament (4)An introduction to the writings of the New Testament, their creation, collection, and critical study.

LTWL 131B. Topics in Early Christian Literature: Paul and

 the Invention of Christianity (4)An evaluation of ancient and modern accounts of Christian origins set against a careful reading of early Jewish and Christian texts (canonical and noncanonical).

LTWL 131C. Topics in Early Christian Literature

 Reinventing Jesus (4)A survey of the "gospels" of the first three centuries for light they may (or may not) shed on the historical figure of Jesus, set within the context of religious biography in late antiquity

LTWL 131D. Topics in Early Christian Literature: The

 Fourth Gospel (4)A solution to the riddle of the Fourth Gospel.
LTWL 131E. Topics in Early Christian Literature: The History of Heresy (4)
Study of "heretical" movements within the first three centuries of Christianity's history (e.g., gnosticism).

LTWL 131F. Topics in Early Christian Literature: Christianity and the Roman Empire (4)
An evaluation of significant attempts (from Edward Gibbon to Peter Brown) to explain the "rise" of Christianity and the "decline and fall" of the Roman Empire.

LTWL 131G. Topics in Early Christian Literature: Against the Christians (4)
From Celsus to Julian the Apostate, the pagan assault on Christianity in the intellectual, political, and religious context of late antiquity.

LTWL 132. The Jewish Experience in Literature (4)
Literary works from various periods dealing with Jewish themes, with an emphasis on modern Jewish writing in America, Russia, etc. May be repeated for credit as topics vary

LTWL 133. Religion: Inside Out and Upside Down (4)
A study of the nature and importance of place in Western religious imagination, through a comparative reading of the ancient Mesopotamian "Epic of Gilgamesh", the early Christian "Gospel of John", and Ridley Scott's futuristic film noir,"Blade Runner".

LTWL 134. A Cultural History of American Jewry (4)
A cultural history of Jewish immigrants in the United States, beginning in the seventeenth century. Emphasis will be on the period of mass immigration, beginning in the 1880 s, and on the Russian and European origins of Jewish immigrants.

LTWL 135. A The Buddhist Imaginary (4)
An introduction to the imaginative universe of Indian Buddhism, with a focus on the connection between cosmological models and liberative practices. In this class we read Buddhist narrative and doctrinal litera tures, supplemented by archaeological and art histori-
cal artifacts. Prerequisite: upper-division standing or consent of instructor.

LTWL 136. Goddesses and Women in India (4)
This course uses Hindu texts, along with art and film, to explore the intersection of literary representation and real life. How does Hindu literature, which fully supports the belief in powerful goddesses, both empower women and constrain them? Prerequisite: upper-division standing or consent of instructor.

LTWL 140. Novel and History in the Third World (4) This course sets out to explore the relation between the novel and the "dependent" history of the Third World, contrasting and comparing the uses of history in the European novel as defined in the theoretical analysis of Lukacs with uses of history in the Third World novel. An analysis of major themes and movements common to selected ethnic literature in the United States and national literatures in the Third World.

LTWL 142. Islam: The Origins and Spread of a Worid Religion (4)
An investigation of the historical and textual beginnings of Islam; the development of the religion in the early middle ages; and an examination of the formalization of schools of Islamic law and the confrontation between Sunni and Shii versions of praxis. Concludes with the rise of Islamic modernism and the roots of islamic fundamentalism. Prerequisite: upper-division standing.

LTWL 143. Fundamentalism in Comparative

Perspective (4)

Exploration of the common areas in the revivalist movements affecting different religious traditions, including Hinduism, Judaism, Christianity, and Islam with reference to their political, social, and cultural dimensions. The problematic term "fundamentalism" will be subjected to critical scrutiny, while emphasis will be placed on distinguishing the specifically religious features of these movements from their wider socio-political dimensions. Prerequisite: upper-division standing.

LTWL 144. American Indian Literature (4)
An investigation of traditional native poetry and performance art of the Americas in relation to contemporary practices in the non-Indian world. Topics will vary and may include shamanism, ritual performance, mythopoesis, and oral narration. Repeatable for credit when topics vary.

LTWL 145. South Asian Religious Literatures:

Selected Topics (4)

One or two topics in the religious literature of South Asia will be examined in depth. Repeatable for credit when topics vary. Prerequisite: upper-division standing or consent of instructor.

LTWL 146. Ethnopoetics: Living Poetry (4)
An investigation of a series of events that originally compose the full sentient being of poetry's body. This course seeks to recreate the living tangents of the lyrical moment (chanting, modulating, miming, dancing, meditating, improvising, etc.) for direct experience and expression. May be repeated for credit when topics vary.

LTWL 148. Yiddish Literature in Translation (4)
Representative works of fiction, drama, poetry, parable, film, and song from Eastern European Jewish culture. Topics include Chasidism, Zionism, the life of the shtetl, relations with the biblical and rabbinic traditions, and a
study of literary forms and styles. May be repeated for credit as topics vary.

LTWL 149. The Last Turn of the Century in the West (4) A multi-media examination of the momentous cultural and intellectual changes that accompanied the last turn of the century (nineteenth-twentieth) in the West. Areas covered include literature, philosophy, visual arts, music, religion, social movements, and scientific thought.

LTWL 150. Modernity and Literature (4)

Explores the various cross-cultural historical, philosophical, and aesthetic ideas which formed the basis of most twentieth-century literature. Literature from the Americas, Europe, Asia, and Africa will be studied through lectures and the reading of texts in English translation. Repeatable for credit when topics vary.

LTWL 155. Gender Studies (4)
The study of the construction of sexual differences in literature and culture. May be repeated for credit when topics vary.

LTWL 160. Women and Literature (4)
This course will explore the relationship between women and literature, i.e., women as producers of literature, as objects of literary discourse, and as readers. Foreign language texts will be read in translation. May be repeated for credit as topics vary.

LTWL 170. Specialized Genres in Literature (4)
The study of literary genres that do not fall into the ordinary categories of lyric, drama, fiction, and prose. Topics vary from year to year. May be repeated for credit as topics vary.

LTWL 172. Special Topics in Literature (4)
Studies in specialized literary, philosophic, and artistic movements, approaches to literature, literary ideas, historical moments, etc.

LTWL 176. Literature and Ideas (4)

The course will center on writers or movements of international literary, cultural, or ideological significance. The texts studied, if foreign, may be read either in the original language or in English. May be repeated for credit as topics vary.

LTWL 180. Film Studies and Literature: Film History (4)
The study of film history and its effects upon methods of styles in literary history. Repeatable for credit when topics vary.

LTWL 181. Film Studies and Literature: Film

Movement (4)
Study of analogies between literary movements and film movements. Repeatable for credit when topics vary.

LTWL 182. Film Studies and Literature: Film Genre (4)
Methods of literary study of genre applied to the study of filmic genre. Repeatable for credit when topics vary.

LTWL 183. Film Studies and Literature: Director's

Work (4)
Methods of criticism of author's work applied to the study and analysis of film director's style and work. Repeatable for credit when topics vary.

LTWL 184. Film Studies and Literature: Close Analysis of Filmic Text (4)
Methods of literary analysis applied to the study of shots, sequences, poetics, and deep structure in filmic discourse. Repeatable for credit when topics vary.

LTWL 185. Film Studies and Literature: Interdisciplinary Issues (4)
Inquiry into interrelated and interdisciplinary issues concerning the diverse field of film studies and literature.

LTWL 186. The Psychology of the Filmic Text (4) Methods of psychology, psychoanalysis, and the cognitive sciences applied to the study of film and film grammar (Ch. Metz, et al.). The course also features studies in cultural interaction with the film medium. Repeatable for credit when topics vary.

TWS 21-22-23-24-25-26. Third Worid Literatures
 (4-4-4-4-4-4)

(See entry under "Third World Studies" heading.)
The courses in this sequence are equivalent to general literature courses. The sequence satisfies Marshall College general-education requirements.

Seminars/Independent Studies

LTWL 191. Honors Seminar (4)
Explorations in critical theory and method. This course, designed to prepare students to write an honors thesis, is open only to literature majors invited into the department's Honors Program.

LTWL 195. Apprentice Teaching (0 or 4)
Undergraduate instructional assistance. Student must (1) prepare reading materials assigned by the professor; (2) lead student discussions; (3) assist professor in grading; and (4) prepare report to professor at conclusion of quarter concerning his/her work.

LTWL 196. Honors Thesis (4)

Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTGN 191. Oral exam. Prerequisite: permission of department.

LTWL 198. Directed Group Study (4)
Research seminars and research, under the direction of faculty member. Prerequisite: permission of department.

LTWL 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of literature (in translation) not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

LTWL 500. Apprentice Teaching in Literature (2 or 4)
Consideration of pedagogical methods appropriate to undergraduate teaching in literature courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 501. Apprentice Teaching in Humanities (2 or 4) Consideration of pedagogical methods appropriate to undergraduate teaching in humanities sequences under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 502. Apprentice Teaching in Muir College (2 or 4) Consideration of pedagogical methods appropriate to undergraduate teaching in Muir College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 503. Apprentice Teaching in Marshall College

 (2 or 4)Consideration of pedagogical methods appropriate to undergraduate teaching in Marshall College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 504. Apprentice Teaching in Warren College

 (2 or 4)Consideration of pedagogical methods appropriate to undergraduate teaching in Warren College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 506. Apprentice Teaching in Roosevelt College

 (2 or 4)Consideration of pedagogical methods appropriate to undergraduate teaching in Eleanor Roosevelt College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

WRITING/LITERATURE

LOWER-DIVISION

LTWR 8A. Craft of Writing: Fiction (4)
Study of fiction in terms of structure and content. Plot, description, character, theme, genre, dialogue, and revision studied through readings from throughout the history of the short story. Practical exercises accompany reading assignments. Prerequisite to upper-division fiction workshops. Students are required to attend at least three Wednesday afternoon readings in the New Writing Series during the quarter. Prerequisite: students must have completed their college writing requirements prior to enrollment in LTWR 8A.

LTWR 8B. Craft of Writing: Poetry (4)
Study of poetry in terms of its formal structure and its individual and social function. Techniques of composition (prosody, narrative, personification, performance, metaphor, and image) studied through written and oral examples of this genre. Practical imitations and exercises accompany reading assignments. Students are required to attend at least three Wednesday afternoon readings in the New Writing Series during the quarter. Prerequisite: students must have completed their college writing requirements prior to enrollment in LTWR $8 B$.

LTWR 8C. Craft of Writing: Nonfiction (4)
Study of nonfictional prose in terms of genre and craft. Techniques of composition (journalism, essay, letters, reviews) studied through written examples of the genre. Practical imitations and exercises accompany reading assignments. Prerequisite to upper-division
nonfiction prose workshops. Prerequisite: students must have completed their college writing requirements prior to enrollment in LTWR 8C.

UPPER-DIVISION

Departmental approval is required for enrollment in all upper-division Lit/Writing courses.
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.
(See Department of Theatre for course offerings in dramatic writing.)

Prose Fiction, Poetry, Media Workshops

LTWR 100. Short Fiction (4)
A workshop for students with some experience and special interest in writing fiction. This workshop is designed to encourage regular writing in the short forms of prose fiction and to permit students to experiment with various forms. There will be discussion of student work, together with analysis and discussion of representative examples of short fiction from the present and previous ages. May be taken for credit three times. Prerequisite: LTWR $8 A$.

LTWR 101. Beginning Poetry Workshop (4)
A workshop for beginning students of poetry. This course has weekly writing assignments in basic poetic forms; readings from ancient through contemporary poetry. Prepares students for LTWR 102 and other more advanced poetry workshops. May be taken only once. Prerequisite: LTWR 88.

LTWR 102. Poetry (4)

A workshop for students with some experience and special interest in writing poetry. This workshop is designed to encourage regular writing of poetry. There will be discussion of student work, together with analysis and discussion of representative examples of poetry from the present and previous ages. May be taken for credit three times. Prerequisite: LTWR $8 B$.

LTWR 104. The Novel (4)
A workshop designed to encourage writing of longer narrative forms. There will be discussion of student work, together with analysis and discussion of novels from the present and previous ages. May be taken for credit three times. Prerequisite: LTWR 8A.

LTWR 107. Writing for Children (4)
A workshop in writing for young children ($5-8$ years). The stories will be directed towards the act of reading aloud, either at bedtime or in a group situation. There will be many weekly readings assigned in, and about, the genre. Prerequisites: LTWR $8 A$; department approval.

LTWR 108. Writing for Young Adults (4)
A workshop in writing for 9-12 year-olds. Students will be asked to write one long chapter story or a series of short stories for young adults to read to themselves. The stories will generally involve young teens. Weekly readings will be assigned. Prerequisites: LTWR 8A; department approval.

LTWR 109. Writing and Publishing Children's
Literature (4)
A workshop in writing for children, with the additional focus of exploring successful approaches to publication
of children's stories. There will be regular weekly reading and writing assignments.. Prerequisites: LTWR 8A; LTWR 107 recommended; department approval via stamp or pre-authorization.

LTWR 110. Screen Writing (4)
A workshop designed to encourage writing of original screen plays and adaptations. There will be discussion of student work, together with analysis of discussion of representative examples of screen writing. May be taken for credit three times.

LTWR 111. Prose Poem (4)
Although prose poems have been written by writers all over the world, the question of what constitutes a prose poem has never been adequately answered. Through practice, we will explore the inner dynamics central to this mixed genre. Prerequisite: LTWR $8 B$.

LTWR 113. Intercultural Writing (4)

This course is an introduction to modes of writing from other cultural systems vastly different from the culturalaesthetic assumptions of Anglo-American writing. While disclosing the limitations of the English language, this course attempts to provide new language strategies for students.

LTWR 115. Experimental Writing (4)

This workshop explores writing for which the traditional generic distinctions of prose/poetry, fiction/documentary, narrative/discourse do not apply. Students taking this course will be asked to challenge the boundaries of literature to discover new forms and modes of expression. May be taken for credit three times.

LTWR 119. Writing for Performance (4)
A workshop and survey of experimental approaches to the writing and production of performance works in a range of literary genres. Emphasis will be placed on the integration of written texts with non-verbal elements from the visual arts, theater, and music. Prerequisite: LTWR $8 A$ or $8 B$, to be determined by quarterly offerings of LTWR 119.

Nonfiction Prose Workshops

LTWR 120.Personal Narrative (4)
A workshop designed to encourage regular writing of all forms of personal experience narrative, including journals, autobiography, firsthand biography, and firsthand chronicle. Instructor and students will discuss student work as well as published personal narratives. May be taken for credit three times. Prerequisite: LTWR 8C.

LTWR 121.Reportage (4)
A workshop designed to encourage the full range of reportage writing: observations, interviews, case studies, profiles, reporter-at-large. Instructor and students will discuss student work and published reportage. May be taken for credit three times. Prerequisite: LTWR 8C.

LTWR 122. Writing for the Sciences (4)

A workshop in writing about science for the public. Students will study and then construct metaphors or analogues which introduce readers to scientific perplexities. May be repeated for credit when topics vary.

LTWR 125. Persuasion (4)
A workshop in the writing of argument or persuasion, with particular attention to strategies of persuasion for different kinds of audiences. Instructor and students will discuss student work as well as published work.

May be taken for credit three times. Prerequisite: LTWR 8C.

LTWR 127. General Nonfiction Prose Workshop (4)
A workshop designed to encourage the writing of all forms of nonfiction prose. This workshop is usually limited to advanced students in the writing major. May be taken for credit three times. Prerequisite: LTWR 8C.

LTWR 128. Editing Workshop (4)
A workshop to acquaint students with the fundamentals of bringing written works from concept to publication. Genres covered will vary with instructor

LTWR 135. The Art of the Manifesto (4)
Introduction to the work of modern and avant-garde writers and artists who have developed the manifesto laying out radical propositions and proposals about the nature of literature and art and their functions in the contemporary worid. Historical survey within a workshop approach. Prerequisites: completion of $L T W R ~ B A B / C$; department approval.

Writing Process, Written Discourse, and Writing Pedagogy

These courses are not writing workshop courses like those listed above. Rather, they examine various aspects of writing as a field of study and writing pedagogy.Writing majors who plan to teach writing may be particularly interested in these courses. See the department for applicability of these courses to the writing major requirements.

Note: As of fall 1991, all writing majors are required to take one course chosen from offerings numbered LTWR 140-144 to fulfill one of their upper-division requirements.

LTWR 140. History of Writing (4)

A review of the history of the development of alphabets and writing systems. Survey of the rise of literacy since the fifteenth century and analysis of continuing literacy problems in developed and developing countries.

LTWR 141. The Process of Writing (4)

A study of writing as a creative process. Review of research on creativity and on the writing process and analysis of writers' introspective accounts of their work. Delineation of the stages in writing process and exploration of implications for learning to write.

LTWR 142. Forms of Written Discourse (4)
A review of current rhetorical theory and discourse the ory. Some attention to recent developments in text linguistics. Students will write several discourse types and explore differences among the types, with special attention to differences for the writing process and for the structure of the written discourse itself.

LTWR 143. Stylistics and Grammar (4)
A close look at sentence-level features of written dis course-stylistics and sentence grammars. Students will review recent research on these topics and experiment in their own writing with various stylistic and syntactic options.

LTWR 144. The Teaching of Writing (4)
Wide reading in current theory and practice of teaching writing in schools and colleges. Careful attention to var-
ious models of classroom writing instruction and to different approaches in the individual conference. Students in this course may observe instruction in the UCSD college writing programs or tutor freshmani students in those programs.

LTWR 146. The Writing of Oral Histories (4)
A methodological and theoretical introduction to the compilation, transcription, and editing of spoken personal and historical narratives. Along with discussions of the relation of orality to writing, students will engage in a number of fieldwork interviews and in their development and completion as publishable written works. Repeatable for credit when topics vary. Prerequisites: LTWR 8A, 8B, and 8C, or consent of intstructor.

Directed Study and Special Study

LTWR 195. Apprentice Teaching (4)
Undergraduate instruction assistance. Students will 1) assist TA in editing students' writing for LTWR 8 A and 8 C during class and outside of class; and 2) prepare a paper and report for the professor at the end of the quarter. Prerequisite: LTWR 144, The Teaching of Writing.

LTWR 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTGN 191. Oral exam.

LTWR 198. Directed Group Study (2 or 4)

Directed group study in areas of writing not normally covered in courses. (P/NP grades only.) Repeatable for credit when areas of study vary.

LTWR 199. Special Studies (2 or 4)
Tutorial; individual guidance in areas of writing not normally covered in courses. (P/NP grades only.) Prerequisites: upper-division standing and permission of department. May be taken for credit three times.

GRADUATE

LTWR 260. Autoethnographies of Literacy (4)

 Designed for public school teachers, this writing seminar concerns ethnographic and autoethnographic studies of "literates" and "illiterates" in the United States. Prerequisite: graduate standing or consent of instructor.
LTWR 271.Theory and Practice of College Writing

 Instruction (4)In this course we will explore the implications for writing instruction of current discourse theory and of linguistics (sentence-level and text-level). We will also review research on writing instruction and look carefully at several models of classroom instruction and individual conferencing.

LTWR 272. Research in Composing and Writing

 Discourse (4)This course will survey current research on composing and written discourse. It will also explore various problems and issues in designing research studies.

LTWR 276. Theory and Research on Literacy (4)
This seminar surveys literature on literacy from perspectives such as education, anthropology, and English studies.

LTWR 278. Topics in Rhetoric (4)

This course examines the influence of modern philosophy on modern rhetorical theory, with emphasis on the twentieth century. Prerequisite: graduate standing.

LTWR 280. Graduate Workshop in Imaginative Writing (4)
This course will be a workshop where students will produce work every week to share with the class. Their work will be critiqued in class and in conference with the instructor. They will be expected to complete a substantial body of work, one which is publishable as is Weekly reading assignments will be required, in order to provide a common basis for discussion of poetics, politics, and process. The purpose of the class is to give those graduate students in literature, who have written poetry and fiction already, a chance to develop their abilities in those genres. Repeatable for credit when material/instructors vary.

The Making of The Modern World

OFFICE: Eleanor Roosevelt College, Bldg. 412
University Center
http://provost.ucsd.edu/roosevelt/mmw/

The Making of the Modern World is a sixcourse sequence required of all Eleanor Roosevelt College students. It is designed to encourage them to think historically, comparatively, and in an interdisciplinary manner about world cultures. Disciplinary perspectives include literature, history, philosophy, anthropology, sociology, political science, and fine arts. Students will examine and interpret primary documents and artifacts from diverse eras and cultures, as well as learn about them from secondary sources. All six quarters of the sequence will include lectures, discussions, and writing assignments. Courses in the sequence may be taken for a letter grade only.

Students in the Making of the Modern World 2 and 3 (offered in winter and spring quarters respectively) fulfill their University of California composition requirement by receiving intensive instruction in university-level writing. Subject matter for writing instruction is drawn from or related to course material. Instruction in writing is provided in discussion sessions, which meet twice each week. Each of these two writing-intensive quarters carries six units of credit. Students must have satisfied the university's Subject A requirement in English composition before enrolling in the Making of the Modern World 2 or 3.

For further details on Eleanor Roosevelt College requirements, see "Eleanor Roosevelt College, General-Education Requirements."

COURSES

TRADITIONS

1. Prehistory and the Birth of Civilization (4)

This quarter introduces students to what is known about early humans, including the evolution of the human body and the reconstruction of Paleolithic and Neolithic cultures. It examines contemporary hunting-and-gathering and tribal societies and illuminates the complexity of such cultures with respect to mythology and oral tradition, interpersonal relations, and ecological practices. The course will conclude with an analysis of the emergence of large agrarian societies and the earliest great settled communities and civilizations. Three hours of lecture, one hour of discussion. Open to Eleanor Roosevelt College students only. (Letter grade only.) (F)
2. The Great Classical Traditions (6)

An introduction to five major classical civilizations of the ancient world. Equal attention will be given to the ancient Near East, Greece, India, China and the Roman Republic, all of which have left legacies to the present. The course covers the great early systems of religious and social thought, using an approach that combines history and social science. This course includes intensive instruction in writing expository prose. Three hours of lecture, two hours of writing and discussion sections. Prerequisite: satisfaction of the Subject A requirement. Open to Eleanor Roosevelt College students only (Letter grade only.) (W)

3. The Medieval Heritage (6)

A survey of the period from about 29 B.C.E. to 1200 C.E., this quarter concentrates on the development of China from the Han to the Sung Dynasties, the growth and eventual dissolution of the Roman Empire, the development of Christianity, and the rise of islam. This course includes intensive instruction in university-level writing. Three hours of lecture, two hours of writing and discussion sections. Prerequisite: satisfaction of the Subject A requirement. Open to Eleanor Roosevelt College students only. (Letter grade only.) (S)

TRANSFORMATIONS

4. New Ideas and the Clash of Cultures (4)

An examination of the world from 1200 to 1750 , the course focuses on the transition from medieval to mod ern by addressing philosophical, social, political, economic, and technological changes in Asia, Europe, and Islamic territories. Topics may include the Mongol invasions and their impact; the European Renaissance, Reformation, and Scientific Revolution; Islamic and Chinese empires; exploration and trade; and European expansion into the Americas. Three hours of lecture, one hour of discussion. Prerequisites: satisfaction of the Subject A requirement; successful completion of MMW 2 and/or MMW 3. Open to Eleanor Roosevelt College students only. (Letter grade only.) (F)
5. Revolution, Industry, and Empire (4)

A consideration of the great changes in European society from the late eighteenth century to the Russian Revolution, and their impact on the non-Western world. Topics include industrialization, the rise of nationalism and the nation-state, Western imperialism, and the colonial experience. Developments in non-Western countries during this period will be examined from their own internal perspective. Three hours of lecture,
one hour of discussion. Prerequisites: satisfaction of the Subject A requirement; successful completion of MMW 2, MMW 3, and/or MMW 4. Open to Eleanor Roosevelt College students only. (Letter grade only.) (W)
6. Twentieth Century and Beyond (4)

The course begins with a consideration of the causes and consequences of World Warl and then looks at the post-war crisis of liberal values and institutions. It addresses the deepening of crisis in the thirties, especially evident in the emergence of ideological politics and extreme nationalism in the context of world-wide depression. This period of crisis provides the background for understanding World War II. Attention is then devoted to the Cold War, the competition between capitalism and communism, and the process of decolonization. The course ends with a discussion of the collapse of communism and the emerging world order (or disorder). Three hours of lecture, one hour of discussion. Prerequisites: satisfaction of the Subject A requirement; successful completion of MMW 2, MMW 3,MMW 4, and/or MMW 5. Open to Eleanor Roosevelt College students only. (Letter grade only.) (S)

Materials Science and Engineering Program

Student Affairs: Engineering Building 2,
Room 170, Warren College
World Wide Web: http://matsci.ucsd.edu

Professors

Vitali F. Nesterenko, Ph.D., MAE, Program Director
Gustaf Arrhenius, Ph.D., S/O
Robert J. Asaro, Ph.D., SE
Ami Berkowitz, Ph.D., Emeritus, Physics
Robert Dynes, Ph.D., Physics, Chancellor
Sadik Esener, Ph.D., ECE
Yeshaiahu Fainman, Ph.D., ECE
Yuan-Cheng Fung, Ph.D., Emeritus, Bioengineering
David Gough, Ph.D., Bioengineering
Gilbert A. Hegemier, Ph.D., SE
Frances Hellman, Ph.D., Physics
Vistasp Karbhari, Ph.D., SE
John B. Kosmatka, Ph.D., SE
Sergi Krasheninnikov, Ph.D., MAE
Clifford Kubiak, Ph.D., Chemistry and Biochemistry
S.S.Lau, Ph.D., ECE

Huey-Lin Luo, Ph.D., ECE
M. Brian Maple, Ph.D., Physics

Xanthippi Markenscoff, Ph.D., MAE
Joanna McKittrick, Ph.D., MAE
Marc A. Meyers, Ph.D., MAE, Associate
Director, Institute for Mechanics and Materials
David R. Miller, Ph.D., MAE, Associate Vice
Chancellor, Academic Affairs

Hidenori Murakami, Ph.D., MAE
Siavouche Nemat-Nasser, Ph.D., MAE,
Director, Institute for Mechanics and Materials
Johann K. Oesterreicher, Ph.D., Chemistry and
Biochemistry
M. Lea Rudee, Ph.D., Emeritus, ECE

Michael J. Sailor, Ph.D., Chemistry and Biochemistry
Geert W. Schmid-Schoenbein, Ph.D.,
Bioengineering
Ivan K. Schuller, Ph.D., Physics
Lu Jeu Sham, Ph.D., Physics
Jan Talbot, Ph.D., MAE
Frank E. Talke, Ph.D., MAE, CMRR Endowed Chair
Charles W.Tu, Ph.D., ECE
Kenneth S.Vecchio, Ph.D., MAE
Harry H.Wieder, D.Sc.,In-Residence, ECE
Edward T. Yu, Ph.D., ECE
Paul Yu, Ph.D., ECE

Associate Professors

John E. Crowell, Ph.D., Chemistry and Biochemistry Richard K. Herz, Ph.D., MAE
Yitzhak Tor, Ph.D., Chemistry and Biochemistry

Assistant Professors

Sangeeta Bhatia, Ph.D., In-Residence, Bioengineering
George Tynan, Ph.D., MAE
Materials Science and Engineering Program is concerned with the study of the structure and properties of materials. The Materials Science and Engineering Program at UCSD aims to provide fundamental knowledge for quantitative understanding of materials with the objective of predicting, modifying, and tailoring the properties of materials to yield, at the technology level, enhanced material performance. The foundations of materials science are the basic sciences of physics, chemistry, and mathematics. The great variety of materials response, at the optical, magnetic, electrical, mechanical, and chemical levels, requires a solid scientific foundation and breadth of basic knowledge from the materials scientists. The interdisciplinary nature of the program at UCSD is ideally suited to address this requirement. The graduate of the Materials Science and Engineering Program benefits from unique research facilities existing at UCSD. These include the resources in the Departments of MAE, SE, ECE, Physics, Chemistry/Biochemistry, Bioengineering, and SIO , as well as in the Center of Excellence for Advanced Materials and the Center for Magnetic Recording Research. Of particular emphasis within
the program is the experimental investigation and theoretical modeling of the mechanical response and failure models of advanced materials at ultrahigh strain rates; electronic, superconducting, magnetic, and optical properties of materials for advanced applications; biomaterials; and advanced composite materials for civil structures.

The Graduate Program

The Materials Science and Engineering Program is interdisciplinary, with participation of faculty members from several departments. Faculty from the following departments participate in the Materials Science and Engineering Graduate Program: the Departments of Mechanical and Aerospace Engineering (MAE), Structural Engineering (SE), Bioengineering, Physics, Scripps Institution of Oceanography (SIO), Electrical and Computer Engineering (ECE), and Chemistry. The governance of the program is carried out by the executive committee of the program. The executive committee coordinates all affairs of the Materials Science and Engineering Program, including student admissions, degree requirements, graduate courses in materials science given by various participating departments, maintenance of laboratory instructional facilities, seminars, special courses, part-time instructors, and related matters.

Undergraduate preparation for the materials science and engineering M.S. and Ph.D. normally would include a degree in materials science and in engineering or physical sciences, such as physics, chemistry, geology, and related disciplines. Students are expected to have an adequate mathematics, physics, chemistry, and related basic sciences background.

Master's Degree Program

The program offers the M.S. degree in materials science and engineering under both the Thesis Plan I and the Comprehensive Examination Plan II; see "Graduate Studies: Master's Degree." The requirements for the M.S. degree are as follows:

1. All students must complete a total of thirty-six units.
2. All students must complete a core of the following six courses:
(1)MS 227; (2)MS 201A; (3)MS 201B;
(4)MS 201C; (5)MS 205A; (6)Physics 152A.
(Physics 211A can replace 152A with adviser's permission.) See "Courses" for descriptions.
3. Students may include up to twelve units of undergraduate courses. These include the one undergraduate core course, Physics 152A.
4. Enroll in MATS200, as required. See "Courses" for descriptions.
5. Remaining courses to complete the thirty-six unit requirement for the M.S. degree may be selected from an approved list of graduate courses with the consent of a faculty adviser.
6. Students either complete a thesis (Plan I) or pass a comprehensive examination (Plan II) as described in the "Graduate Studies" section of this catalog.
7. Students must meet all other requirements established by the university.
Students who transfer with some graduate credit or an M.S. from another institution will have their records reviewed by a faculty adviser, and an appropriate individual course oi study may be approved.

The Ph.D. Program

After completing the M.S. degree (or meeting equivalent requirements) and meeting the minimum standard on the comprehensive examination to be admitted to or continue in the Ph.D. program, a student must:

1. Meet all the university's residency and other requirements.
2. Successfully complete three advanced graduate courses (in addition to those required for the M.S. degree) which have been approved by the student's potential dissertation adviser.
3. Enroll in MATS200, as required. See "Courses" for descriptions.
4. Pass the Literature Review Examination. This requirement must be successfully completed within one year after passing the Comprehensive Examination.
5. Pass the Ph.D. Qualifying Examination (Senate Exam) to be advanced to Ph.D. candidacy.
6. Successfully complete and defend a dissertation which, in the opinion of the dissertation committee, contains original work that should lead to publication of at least one significant article in an appropriate refereed journal.

In principle, it should be possible to finish the M.S. degree in three quarters, and a Ph.D. in an additional three years. Ph.D. time limits are as follows: Pre-candidacy—four years; Support limitsix years; Total time limit--seven years; Normative time limit for a properly prepared B.S. studentfive years. (See "Graduate Studies-Ph.D.Time Limits" for further explanation.)

Departmental Examination

THE COMPREHENSIVE EXAMINATION

The examination will consist of twelve questions, two from each of the six core courses. A passing grade is 60 percent for the Master's degree, and 70 percent for the Ph.D. The examination will not exceed six hours in duration. The examination is usually administered the second week in January, and a week after spring quarter finals week in June. Typically, students take the exam after one year of full-time enrollment. This exam may only be retaken once before the end of the second year of study.

THE LITERATURE REVIEW EXAMINATION

The Literature Review Examination tests the student's ability to prepare and present a comprehensive overview of a topic based on existing journal literature. It should be a comprehensive discussion of the literature, scientific theory, problems or theoretical deficiencies, and possible areas of research in some area of materials science and engineering. The topic may be in the general area in which the student plans to pursue his or her thesis research, or it may be in an unrelated field. The topic must be approved by the three faculty member committee in advance of the seminar. The Literature Review Examination is not to be a discussion of the student's research project or their research proposal. A presentation which includes the student's own work which has not been published will constitute a no pass grade. This exam must occur within one year of the student having passed the Comprehensive Examination.

COURSES

GRADUATE

200. Graduate Seminar (0)

Each graduate student in the Materials Science and Engineering Program is expected to attend a weekly
seminar in materials science or related areas. M.S. students must enroll for three quarters, Ph.D. students for six quarters, as of fall 1995. (S/U grades only.) (F,W,S)

201A. Thermodynamics of Solids (4)
The thermodynamics and statistical mechanics of solids. Basic concepts; equilibrium properties of alloy systems; thermodynamic information from phase diagrams, surfaces, and interfaces; crystalline defects. Prerequisite: consent of instructor.
2018. Solid State Diffusion and Reaction Kinetics (4) Thermally activated processes, Boltzmann factor, homogeneous and heterogeneous reactions, solid state diffusion, Fick's laws, diffusion mechanisms, Kirkendall effect, Boltzman-Matano analysis, high diffusivity paths. Prerequisite: consent of instructor.

201C. Phase Transformations (4)
Classification of phase transformations: displacive and reconstructive transformations: classical and nonclassical theories of nucleation: Becker-Doering, VolmerWeber, lattice instabilities, spinodal decomposition. Growth theories: interface migration, stress effects, ter-race-ledge mechanisms, epitaxial growth, kinetics, and mechanics. Precipitation. Order-disorder transformations. Solidification. Amorphization. Prerequisite: consent of instructor.

205A. Imperfections in Solids (4)
Point, line, and planar defects in crystalline solids, including vacancies, self-interstitials, solute atoms, dislocations, stacking faults, and grain boundaries; effects of imperfections on mechanical properties; interactions of dislocations with point defects; strain hardening by micro-obstacles, precipitation, and alloying elements. Prerequisite: consent of instructor.

205B. Advanced Study of Defects in Solids (4)
Advanced topics in dislocation theory and dislocation dynamics. Defects and defects interactions. Atomistic and subatomistic effects. Physical models based on microscopic considerations. Prerequisite: MS 205A or consent of instructor.
207. Surface Reactions, Corrosion, and Oxidation (4)

The nature of surfaces; nucleation and growth of surface films. Techniques for studies of surface structures and of surface films. Types of corrosion phenomena and mechanisms of corrosion. Methods of corrosion control and prevention. Mechanisms of oxidation. Control of oxidation by alloying and surface coatings. Prerequisite: MS 201A or consent of instructor.

211A. Mechanical Properties (4)
Review of basic concepts in mechanics of deformation; elasticity, plasticity, viscoelasticity, and creep; effects of temperature and strain-rate on inelastic flow; microstructure and mechanical properties; application of basic concepts to selected advanced materials. Prerequisite: consent of instructor.

211B. Advanced Mechanical Behavior (4)
Rate mechamisms in crystalline solids. Kinetics and dynamics of plastic flow by slip at low and high strain rates. Mechanisms of inelasticity in nonmetals, metals, and polymeric materials. Mechanisms of failure and effects of strain rates. Prerequisite: MS 211A or consent of instructor.

213A. Dynamic Behavior of Materials I (4)
Elastic waves in continuum; longitudinal and shear waves. Surface waves. Plastic waves; shock waves; Rankine-Hugoniot relations. Method of characteristics,
differential and difference form of conservation equations; dynamic plasticity and dynamic fracture. Shock wave reflection and interaction. Prerequisite: consent of instructor. (F)

213B. Dynamic Behavior of Materials II (4)
Shock induced phase transformations and reactions. Wave propagation through distended materials. Impact;Mie-Gruneisen and other equations of state, the Gurney equation. Detonation theory. Dislocation behavior at high strain rates. Shear instabilities. Spalling and fragmentation. Prerequisite: consent of instructor. (W)

218. Fatigue, Fracture, and Failure Analysis in

 Engineering Materials (4)The course will cover the engineering and scientific aspects of fatigue crack initiation, stable crack growth, fatigue life predictions, selection of materials for fatigue applications, fractography, and failure analysis, including case studies. Prerequisites: MAE 160 or equivalent and consent of instructor.

225. Materials for Magnetic Recording (4)

Properties of magnetic materials utilized as magnetic recording media and heads: magnetic structure of oxides and metals; fine particle magnetism; micromagnetic analysis; hysteresis and reversal mechanisms of hard materials; dynamic processes and domain patterns of soft materials; thermal fluctuations; multilayer phenomena; giant magnetoresistance. Prerequisites: undergraduate electromagnetism and solid state physics or consent of instructor.
227. Structure and Bonding of Solids (4)

Key concepts in the atomic structure and bonding of solids such as metals, ceramics, and semiconductors. Symmetry operations, point groups, lattice types, space groups, simple and complex inorganic compounds, structure/property comparisons, structure determination with X-ray diffraction. lonic, covalent, metallic bonding compared with physical properties. Atomic and molecular orbitals, bands verses bonds, free electron theory. Prerequisite: graduate student or consent of instructor.

230. Electrochemistry (4)

Application of electrochemical techniques to chemistry research. Basic electrochemical theory and instrumentation: the diffusion equations, controlled potential, and current methods. Electro-chemical kinetics, ButlerVolmer, Marcus-Hush theories, preparative electro-chemistry, analytical electrochemistry, solid and polymer electrolytes, semiconductor photo-electrochemistry.

233A-B. Processing and Synthesis of Advanced Materials

 (4-4)Background information on conventional techniques: forging, rolling, drawing, casting. Rapid solidification processing of metals and ceramics. Production of composites. Directionally solidified eutectics. Combustion synthesis. Sol-gel synthesis of ceramics. Mechanical alloying. Shockwave synthesis and processing. Thin film techniques. Laser glazing. Electron beam mixing. Molecular beam epitaxy. Superplastic processing. Prerequisite: consent of instructor.

236. Ceramic and Glass Materials (4)

Powder synthesis, powder compaction and densification via different processing routes. Phase equilibria and crystallography in ceramic materials. Sintering, liquid and vapor phase processing and single crystal growth. Control of the microstructural development and interfacial properties to optimize properties for structural, thermal, electrical, or magnetic use. Topics in processing and
use of advanced ceramic materials. Glass formation and structure, phase separation, viscous flow and relaxation. Prerequisite: consent of instructor.

240A. Scanning Electron Microscopy and X-Ray

Microanalysis (4)
Electron optics, electron-beam-specimen interactions. Image formation in the SEM. The role of specimen and detector in contrast formation. Imaging strategies. X-ray spectral measurements. Qualitative and quantitative X-ray microanalysis. Materials specimen preparation. Prerequisite: consent of instructor. The laboratory section will teach the operation of the microscope to conduct material analysis via SEM.

240B. Transmission Electron Microscopy (4)
Operation and calibration of the TEM, lens defects and resolution, formation of images and diffraction patterns, electron diffraction theory (kinematic dynamical), indexing diffraction patterns, diffraction contrast. Quantitative analysis of crystal defects, phase contrast, and specimen preparation. Prerequisite: MS 240A or consent of instructor. The laboratory section will teach the operation of the microscope to conduct material analysis via TEM.

240C. Analytical Electron Microscopy (4)

Concepts of AEM and AEM capabilities, alignment in the AEM. Imaging modes in the AEM (TEM and STEM). Quantitative X-ray microanalysis. Limits of microanalysis. Electron energy loss spectroscopy (EELS). Microdiffraction. Convergent beam electron diffraction (CBED), and high-resolution transmission electron microscopy (HRTEM). Prerequisite: MS 240B or consent of instructor. The laboratory section will teach the operation of the microscope to conduct material analysis via AEM.

242. X-Ray Diffraction Analysis of Materials (4)

This class will cover the physics of x-ray diffraction and its application to the analysis of crystal structure, grain size, grain orientation, surface roughness, epitaxy, film thickness, etc. Experimental techniques to be discussed and will include theta- 2 theta diffractometry, high resolution x-ray rocking curves, Laue patterns, pole figures, reflectivity, small engle scattering, laboratory experiments, and computer simulation. Prerequisite:consent of instructor.
243. Modern Materials Analysis (4)

Analysis of the near surface of materials via ion, electron, and x-ray spectroscopes. Topics to be covered include particle solid interactions. Rutherford Backscattering, secondary ion mass spectroscopy, electron energy loss spectroscopy, particle induced x-ray emission, Auger electron spectroscopy, extended x-ray absorption fine structure and channeling. Prerequisite: consent of instructor.
250. Display Technologies (4)

This class will introduce various types of information displays such as CRTs, plasma panels, field emission devices, and liquid crystals. The fundamentals of luminescence in solids will be covered. The performance parameters which need to be evaluated for display performance will be described. Prerequisite: B.S. in a science or engineering field.

290. Topics in Materials Science (4)

A course to be given at the discretion of the faculty on topics of current interest in materials science.
295. Research Conference (2)

Group discussion of research activities and progress of group members. Prerequisite: consent of instructor.
296. Independent Study (4)

Prerequisite: consent of instructor.

299. Graduate Research (1-12)

(S/U grades only.)
Subject to the approval of a faculty adviser, students may also choose from the following courses offered by departments participating in the Materials Science and Engineering Program (see the relevant pages of this catalog for descriptions):

Mechanical and Aerospace Engineering (MAE)
MAE 229A. Mechanical Properties (4)
MAE 229B. Advanced Mechanical Behavior (4)
MAE 231A. Foundations of Solid Mechanics (4)
MAE 231B. Elasticity (4)
MAE 232A-B-C. Finite Element Methods in Solid Mechanics (4-4-4)

MAE 233A. Fracture Mechanics
MAE 233B. Micromechanics (4)
MAE 233C. Advanced Mechanics of Composite Materials (4)

MAE 238. Stress Waves in Solids (4)
MAE 251. Thermodynamics (4)
MAE 256. Rheology of Fluids (4)
MAE 257A. Polymer Processing (4)

Chemistry

Chem 240. Electrochemistry (4
Electrical and Computer Engineering (ECE)
ECE 230A. Solid State Electronics (4)
ECE 230B. Solid State Electronics (4)
ECE 230C. Solid State Electronics (4)
ECE 231. Thin Film Phenomena (4)
ECE 233. Structure of Solids (4)
ECE 234B. Advanced Study of Defect in Solids (4)
ECE 237. Modern Materials Analysis (4)
ECE 239. Nanometer-Scale Probes and Devices (4)
ECE 246A. Physics/Magnetic Recording Materials (4)

Physics

Phys. 133/219. Condensed Matter/Materials Science Laboratory (2)

Phys. 152B/232. Electronic Materials (4
Phys. 211A. Solid State Physics (5)
Phys. 211B. Solid State Physics (4)
Structural Engineering (SE)
SE. 254.Anelasticity (4)

Mathematics

OFFICE: 7018 Applied Physics and Mathematics Building, Muir College
http://math.ucsd.edu

Professors

Ian S. Abramson, Ph.D.
Jim Agler, Ph.D.
Randolph E. Bank, Ph.D.
M. Salah Baouendi, Ph.D.

Edward A. Bender, Ph.D.
James R. Bunch, Ph.D., Vice-Chair
Samuel R. Buss, Ph.D.
Bennett Chow, Ph.D.
Bruce K. Driver, Ph.D.
Thomas J.Enright, Ph.D.
John W. Evans, M.D., Ph.D., Emeritus
Ronald J. Evans, Ph.D.
Jay P. Fillmore, Ph.D.
Carl H. FitzGerald, Ph.D., Vice-Chair
Patrick J. Fitzsimmons, Ph.D.
Theodore T. Frankel, Ph.D., Emeritus
Michael H. Freedman, Ph.D.
Adriano M. Garsia, Ph.D.
Ronald K. Getoor, Ph.D., Emeritus
Philip E. Gill, Ph.D.
Fan Chung Graham, Ph.D.
Leonard R. Haff, Ph.D.
Mark D. Haiman, Ph.D.
Hubert Halkin, Ph.D., Emeritus
Guershon Harel, Ph.D.
Zheng-Xu He, Ph.D.
J. William Helton, Ph.D.

James P.Lin, Ph.D.
Alfred B. Manaster, Ph.D.
John O'Quigley, Ph.D.
Jeffrey M. Rabin, Ph.D., Academic Senate
Distinguished Teaching Award
Jeffrey B. Remmel, Ph.D., Chair
Yosef Rinott, Ph.D., Emeritus
Burton Rodin, Ph.D., Emeritus
Helmut Rohrl, Ph.D., Emeritus
Murray Rosenblatt, Ph.D., Emeritus
Linda P. Rothschild, Ph.D., Vice-Chair
Michael J. Sharpe, Ph.D.
Lance W. Small, Ph.D.
Donald R. Smith, Ph.D.
Harold M. Stark, Ph.D.
Peter Teichner, Ph.D.
Audrey A. Terras, Ph.D.
Adrian R. Wadsworth, Ph.D.

Nolan R.Wallach, Ph.D.
Hans G. Wenzl, Ph.D.
Ruth J.Williams, Ph.D.
Daniel E.Wulbert, Ph.D.

Associate Professors

Peter Ebenfelt, Ph.D.
Michael Holst, Ph.D.
Hans Lindblad, Ph.D.
Kate Okikiolu, Ph.D.
Dimitris Politis, Ph.D.
Justin Roberts, Ph.D.
John J. Wavrik, Ph.D.
Assistant Professor
Li-Tien Cheng, Ph.D.
Senior Lecturers with Security of Employment
Patrick J.Ledden, Ph.D., Provost, Muir College
Frank B.Thiess, Ph.D., Emeritus
Lecturer with Security of Employment
Norman A. Shenk, Ph.D., Emeritus
Research Scientist
David Meyer, Ph.D.

The Undergraduate Program

The mathematics department offers a wide range of courses in pure and applied mathematics for its majors and for students in other disciplines. The department offers seven majors leading to the B.A. degree: mathematics, applied mathematics, applied mathematics-scientific programming, mathematics-computer science, math-ematics-secondary education, and a joint major in mathematics and economics. In addition, students can minor in mathematics. The department also has an Honors Program for exceptional students in any of the seven majors. See the sections on major programs and the other areas mentioned above as well as the course descriptions at the end of this section for more specific information about program requirements and the courses that are offered by the department. You may visit our Web site, math.ucsd.edu for more information including course Web pages, career advising, and research interests of our faculty.

First-Year Courses

Entering students must take the Mathematics Placement Exam prior to orientation unless they
have, or will have, either a passing score (3 or better) on a Calculus AP exam, or transferable credit in calculus. The purpose of the placement exam is to assess the student's readiness to enter the department's calculus courses. Some students will be required to take precalculus courses before beginning a calculus sequence.

Math. 3 C is the department's preparatory course for the Math. 10 sequence, providing a review of algebraic skills, facility in graphing, and working with exponential and logarithmic functions.

Math. 4C is the department's preparatory course for the Math. 20 sequence, providing a brief review of college algebra followed by an introduction to trigonometry and a more advanced treatment of graphing and functions.

Math. 10A-B-C-D (formerly numbered 1A-B-C) is one of two calculus sequences. The students in this sequence have completed a minimum of two years of high school mathematics. This sequence is intended for majors in liberal arts and the social and life sciences. It fulfills the mathematics requirements of Revelle College and the option of the general-education requirements of Muir College. Completion of two quarters fulfills the requirement of Marshall College and the option of Warren College and Eleanor Roosevelt College.

The other first-year calculus sequence, Math. $20 A-B / 21 C$, is taken mainly by students who have completed four years of high school mathematics or have taken a college level precalculus course such as Math. 4C. This sequence fulfills all college level requirements met by Math. 10A-B-C-D and is required of many majors, including chemistry and biochemistry, bioengineering, cognitive science, economics, mathematics, molecular biology, psychology, MAE, CSE, ECE, and physics. Students with adequate backgrounds in mathematics are strongly encouraged to take Math. 20 since it provides the foundation for Math. $21 \mathrm{D} / 20 \mathrm{E}-\mathrm{F}$ which is required for some science and engineering majors. Note: As of winter 2000, Math. 20C and 20 D are no longer offered and have been replaced with Math. 21C and 21D.

Certain transfers between the Math. 10 and Math. 20 sequences are possible, but such transfers should be carefully discussed with an adviser. Able students who begin the Math. 10 sequence and who wish to transfer to the Math. 20 sequence, may follow one of three paths:

1. Follow Math. 10A with Math. 20A, with two units of credit given for Math. 20A. This option is not available if the student has credit for

Math. 10B or Math. 10C. This option is available only if the student obtains a grade of A in Math. 10A or by consent of the Math. 20A instructor.
2. Follow Math. 10 B with Math. 20B, receiving two units of credit for Math. 20B.
3. Follow Math. 10C with Math. 20B, receiving two units of credit for Math. 20B and two units of credit for Math. 21 C .

Credit will not be given for courses taken simultaneously from the Math. 10 and the Math. 20 sequence.

Major Programs

The department offers seven different majors leading to the Bachelor of Arts degree:(1) mathematics, (2) applied mathematics, (3) applied mathematics (scientific programming), (4) mathe-matics-computer science, (5) mathematicsapplied science, (6) mathematics-secondary education and (7) joint major in mathematics and economics. The specific emphases and course requirements for these majors are described in the following sections. All majors must obtain a minimum 2.0 grade-point average in the upperdivision courses used to satisfy the major requirements. Further, the student must receive a grade of C - or better in any course to be counted toward fulfillment of the major requirements. Any mathematics course numbered 100-194 may be used as an upper-division elective. (Note: 195, 196, 198, and 199 cannot be used towards any mathematics major.) All courses used to fulfill the major must be taken for a letter grade.

It is strongly recommended that all mathematics majors review their programs at least annually with a departmental adviser, and that they consult with the Advising Office in AP\&M 2313 before making any changes to their programs. The department holds a quarterly meeting for majors where general information is discussed. Current course offering information for the entire year is maintained on the department's web page at http://math.ucsd.edu. Special announcements are also emailed to all majors.

Students who plan to go on to graduate school in mathematics should be advised that only the best and most motivated students are admitted. Many graduate schools expect that students will have completed a full year of abstract algebra as well as a full year of analysis. The advanced Graduate Record Exam (GRE) often has questions
that pertain to material covered in the last quarter of analysis or algebra. In addition, it is advisable that students consider Summer Research Experiences for Undergraduates. This is a program funded by the National Science Foundation to introduce students to math research while they are still undergraduates. In their senior year or earlier, students should consider taking some graduate courses so that they are exposed to material taught at a higher level. In their junior year, students should begin to think of obtaining letters of recommendation from professors who are familiar with their abilities.

Education Abroad

Students may be able to participate in the UC Education Abroad Program (EAP) and UCSD's Opportunities Abroad Program (OAP) while still making progress towards the major. Students interested in this option should contact the Programs Abroad Office in the International Center and discuss their plans with the mathematics advising officer before going abroad.

The department must approve courses taken abroad. Information on EAP/OAP can be found in the Education Abroad Program section of the UCSD General Catalog and the Web site http://orpheus.ucsd.edu/icenter/pao.

Major in Mathematics

The upper-division curriculum provides programs for mathematics majors as well as courses for students who will use mathematics as a tool in the biological, physical and behavioral sciences, and the humanities.

All students majoring in mathematics must complete the basic 20 sequence. Math. 109 should be taken in the spring quarter of the sophomore year. All mathematics majors must complete at least twelve upper-division courses including:

1. 109
2. $140 \mathrm{~A}-\mathrm{B}$

3. $100 \mathrm{~A}-\mathrm{B}$ or $103 \mathrm{~A}-\mathrm{B}$

Upper-division electives to complete the twelve courses required may be chosen from any mathematics course numbered 100-194.

As with all departmental requirements, more advanced courses on the same material may be substituted with written approval from the departmental adviser.

To be prepared for a strong major curriculum, students should complete the last three quarters of the 20 sequence and Math. 109 before the end of their sophomore year. Either Math. 140A-B or $100 \mathrm{~A}-\mathrm{B}(103 \mathrm{~A}-\mathrm{B})$ should be taken during the junior year.

Major in Applied Mathematics

A major in applied mathematics is also offered. The program is intended for students planning to work on the interface between mathematics and other fields.

All students majoring in applied mathematics are required to complete the following courses:

1. Calculus: 20A-B, 21C-D, 20E-F
2. Mathematical Reasoning: 109 (should be taken in sophomore year)
3. Programming:

MAE 9 (C++) or MAE 10 (Fortran) or CSE 8AB (Java) or CSE 11 (Java)
4. Linear Algebra: Math. 102 or 170A.
5. Statistics: 183 or 181A. See section on duplication of credit.
6. Advanced Calculus: Math. 142A-B (or 140A-B). (Math. 142A-B should be taken during the junior year).
7. One of the following sequences: 180A-B-C (probability), 180A-181A-B* (probability and statistics), or any three courses from 170A-B-C, 172, and 173 (numerical analysis). ${ }^{*}$ Math. 181C, D or E may be substituted for 181B.] See section on duplication of credit.
8. One additional sequence which may be chosen from the list (\#7) above or the following list: 110-120A-130A, 120A-B, 130A-132A, 155AB, 171A-B, 184A-B, 193A-B.

At least thirteen upper-division courses must be completed in mathematics, except:
a. Up to twelve units may be outside the department in an approved applied mathematical area. A petition specifying the courses to be used must be approved by an applied mathematics adviser. No such units may also be used for a minor or program of concentration.
b. MAE 154, Econ. 120A-B-C, cannot be counted toward the fifty-two units.
To be prepared for a strong major curriculum, students should complete the last three quarters of the 20 sequence (Math. 21D, 20E-F) and Math. 109 before the end of their sophomore year.

Major in Applied Mathematics (Scientific Programming)

This is a specialized applied mathematics program with a concentration in scientific programming, i.e., computer solution of scientific problems. The requirements are those of the applied mathematics major, except for the following additions and substitutions:

1. Physics $1 \mathrm{~A}-\mathrm{B}-\mathrm{C}$, or $2 \mathrm{~A}-\mathrm{B}-\mathrm{C}$, or $4 \mathrm{~A}-\mathrm{B}-\mathrm{C}$
2. Instead of items 7 and 8 in the applied mathematics major, the following courses are required:
(7) any three from 170A-B-C, 172,173
(8) $171 \mathrm{~A}-\mathrm{B}$

Major in Mathematics-Applied Science

This major is designed for students with a substantial interest in mathematics and its applications to a particular field such as physics, biology, chemistry, biochemistry, cognitive science, computer science, economics, management science, or engineering.

Required Courses:

1. Math. $20 \mathrm{~A}-\mathrm{B}, 21 \mathrm{C}-\mathrm{D}, 20 \mathrm{E}-\mathrm{F}$

One of the following is recommended
CSE 8A-B Intro to Computer Sci: Java
CSE 11 Intro to Computer Sci: Java (Accelerated Pace)

MAE $9 \quad$ C/C ++ Programming
MAE 10 FORTRAN for Engineers
2. Seven upper-division mathematics courses that include:
a) Math. 109
and
b) Math. 102 or Math. 170 A and
c) Any two-quarter upper-division math sequence.

Applied Science Requirement:

1. Seven upper-division courses selected from one or two other departments
2. At least three of these seven upper-division courses must require at least Math. 21C as a prerequisite
Students must submit an individual plan for approval in advance by a mathematics department adviser, and all subsequent changes in the
plan must be approved by a mathematics department adviser.

Major in MathematicsComputer Science

The program provides for a major in computer science within the Department of Mathematics. Graduates of this program will be mathematically oriented computer scientists who have specialized in the mathematical aspects and foundations of computer science or in the computer applications of mathematics.

The curriculum for the B.A. in mathematicscomputer science requires thirty-six units of lower-division courses and fifty-six units of upperdivision courses.

As of fall 2000, a mathematics-computer science major is not allowed to also minor in computer science in the Computer Science and Engineering department.
The detailed curriculum is given in the following list.

Lower-Division Requirements:

1. Calculus: Math. 20A-B, $21 \mathrm{C}-\mathrm{D}, 20 \mathrm{E}-\mathrm{F}$
2. Intro to Computer Science-CSE 8A-B Introduction to Computer Science: Java, or CSE 11 Introduction to Computer Science: Java (Accelerated)
3. Basic Data Structures and Object-oriented Programming: CSE 12
4. Computer Organization and Systems Programming: CSE 30

Upper-Division Requirements:

5. Mathematical Reasoning: Math. 109
6. Modern Applied Algebra:Math. 103AB
(or Modern Algebra: Math. 100AB)
7. Theory of Computability: Math. 166
8. Intro to Probability:Math. 180A
9. Mathematical Foundations of Computer Science: Math. 184A
10. Computer Implementations of Data Structures: Math. 176 or Data Structures: CSE 100
11. Design \& Analysis of Algorithms: CSE 101
12. Eight units from: Math. 170A, B, C, 172, 173, 174
13. Eight units from: Math. 107A-B, 155A-B, 160AB, 166B, 168A-B, 179A-B, 184B, 187, CSE 120121, 130, 131A-B, 140-140L, 141-141L
14. Eight additional units from: any course in list 12 or 13 above or Math. 102, 110,111A-B, 130A-B, 131, 132A-B, 140A-B, 181A-B-C
In order to graduate by the end of their senior year, students must complete Math. 103A-B by the end of their junior year.

Joint Major in Mathematics and Economics

Majors in mathematics and the natural sciences often feel the need for a more formal introduction to issues involving business applications of science and mathematics. Extending their studies into economics provides this application and can provide a bridge to successful careers or advanced study. Majors in economics generally recognize the importance of mathematics to their discipline. Undergraduate students who plan to pursue doctoral study in economics or business need the more advanced mathematics training prescribed in this major.
This major is considered to be excellent preparation for Ph.D. study in economics and business administration, as well as for graduate studies for professional management degrees, including the MBA. The major provides a formal framework making it easier to combine study in the two fields.

Course requirements of the Joint Major in Mathematics and Economics consist principally of the required courses of the mathematics major and the economics/management science majors.

Lower-Division Requirements:

1. Calculus: Math. 20A-B, 21C-D, 20F
2. Intro to Economics: Econ. 1 A or 2 A , and 1 B or 2 B

Upper-Division Requirements:

Fifteen upper-division courses in mathematics and economics, with a minimum of seven courses in each department, chosen from the courses listed below (prerequisites are strictly enforced):

1. Mathematical Reasoning: Math. 109
2. One of the following:

Applied Linear Algebra: Math. 102
Numerical Linear Algebra: Math. 170A
Modern Algebra: Math. 100AB
3. One of the following: Foundations of Analysis: Math. 140A Advanced Calculus: Math. 142A
4. One of the following:

Ordinary Differential Equations: Math. 130A,
Foundations of Analysis: Math. 140B
Advanced Calculus: Math. 142B
5. One of the following:

Microeconomics: Econ. 100A-B
Management Science Microeconomics: Econ. 170AB
6. Econometrics: Econ. 120A-B-C or Math. 180A and Econ. 120B-C
or
Probability:Math. 180A, 181A and Econ. 120C
7. One of the following:

Macroeconomics: Econ. 110AB
Mathematical Programming: Numerical
Optimization: Math.171AB
or
Two courses from the following:
Decisions Under Uncertainty: Econ. 171
Introduction to Operations Research:
Econ. 172A-B-C, (Note: 172A is a
prerequisite for 172 BC)
Other courses which are strongly recommended are: Math. 130B, 131, 181B, 190 and 193AB and Econ. 109, 113, 155, 175, and 178.

Major in MathematicsSecondary Education

This major offers excellent preparation for teaching mathematics in secondary schools. Students interested in earning a California teaching credential from UCSD should contact the Teacher Education Program (TEP) for information regarding prerequisites and requirements. It is recommended you contact TEP as early as possible.

Lower-Division Requirements

1. Calculus 20A-B, 21C-D, 20E-F Recommended:
2. One of the following:

Introduction to Computer Science: Java: CSE 8A-B,
Fortran:MAE 10
C/C++ Programming:MAE 9
Upper-Division Requirements:

1. Mathematical Reasoning: Math. 109
2. Number Theory: Math 104A
3. History of Mathematics: Math. 163
4. Practicum in Learning:TEP 129A-B-C
5. One of the following:

Computer Algebra: Math. 107A
Computer Graphics: Math. 155A
Numerical Linear Algebra: Math. 170A
Intro. to Cryptography:Math. 187
Mathematical Computing: Math. 161
6. One of the following:

Intro. to Probability:Math. 180A
Statistical Methods: Math. 183
7. One of the following:

Differential Geometry: Math. 150A
Topics in Geometry: Math 151
Intro. to Topology:Math. 190
8. One of the Following:

Modern Algebra: Math. 100A
Applied Linear Algebra: Math. 102
Modern Applied Algebra: Math. 103A
9. One of the following:

Foundations of Analysis: Math. 140A
Advanced Calculus: Math. 142A
10. Upper-division courses must total twelve upper-division courses chosen from items 2-10. Upper-division courses must include at least one two-quarter sequence from the following list:

100A-B; 103A-B, 103A-102; 104A-B; 110-120A; 110-130A-B;110-132A; 110-131; 117-190; 120A-B; 130A-132A; 130A-B; 140A-B; 141-190; 142A-B; 150A-B; 155A-B; 160A-B; 170A-B; 170A-172; 170A-173; 170A-171A;171A-B; 180A-B; 180A-181A; 184A-B; 193A-B.

Minor in Mathematics

The minor in mathematics consists of seven or more courses. At least four of these courses must be upper-division courses taken from the UCSD Department of Mathematics. Acceptable lowerdivision courses are Math. 21D, 20E, and 20 F .

Math. 195, 196, 198, and 199 are not acceptable courses for the mathematics minor. A grade of $\mathrm{C}-$ or better (or P if the Pass/No Pass option is used) is required for all courses used to satisfy the requirements for a minor. There is no restriction on the number of classes taken with the P/NP option.

Mathematics Honors Program

The Department of Mathematics offers an honors program for those students who have demonstrated excellence in the major. Successful completion of the honors program entitles the
student to graduate with departmental honors (see Department Honors in the Academic Regulations section). Application to the program should be made the spring quarter before the student is at senior standing.

Requirements for admission to the program

 are:1. Junior standing
2. An overall GPA of 3.0 or higher
3. A GPA in the major of 3.5 or higher
4. Completion of Math. 109 (Mathematical Reasoning) and at least one of Math. 100A, $103 \mathrm{~A}, 140 \mathrm{~A}$, or 142A. (Completion of additional major courses is strongly recommended.)

Completion of the honors program requires the following:

1. At least one quarter of the student colloquium, Math. 196 (Note: Math. 196 is only offered in the fall quarter.)
2. The minimum 3.5 GPA in the major must be maintained
3. An Honors Thesis. The research and writing of the thesis will be conducted over at least two quarters of the junior/senior years under the seupervision of a faculty adviser. This research will be credited as eight to twelve units of Math. 199H. The completed thesis must be approved by the department's Honors Committee, and presented orally at the Undergraduate Research Conference or another appropriate occasion.

The department's Honors Committee will determine the level of honors to be awarded, based on the student's GPA in the major and the quality of the honors work. Applications for the mathematics department's Honors Program can be obtained at the mathematics department Undergraduate Affairs Office (AP\&M 7018) or the Mathematics Advising Office (AP\&M 2313). Completed applications can be returned to the Mathematics Advising Office.

Duplication of Credit

In the circumstances listed below, a student will not receive full credit for a Department of Mathematics course. The notation "Math. 20A [2 if Math. 10A previously/0 if Math. 10A concurrently/0 if Math. 10B or 10C]" means that a student already having credit for Math. 10A will receive only two units of credit for Math. 20A, but
will receive no units if he or she has credit for Math. 10 B or 10 C , and no credit will be awarded for Math. 20 A if Math. 10A is being taken concurrently. Math. 4C cannot be taken for credit after Math. 10 or Math. 20.

1. Math. 15 A [0 if CSE20] Math. 15 B [0 if CSE21]
2. Math. 20A [2 if Math. 10A previously/0 if Math. 10A concurrently/0 if Math. 10B or 10C]
3. Math. 20 B [2 if Math. 10 B or 10 C previous ly/0 if Math. 10B concurrently]
4. Math. 21 C [2 if Math. 10 C previously/0 if Math. 10C concurrently]
5. Math. 21 D [2 if Math. 20 D previously/0 if Math. 2DA previously]
6. Math. 20 E [0 if Math. 2 F previously]
7. Math. 20F [0 if Math. 2EA previously]
8. Both Math. 100 and Math. 103 cannot be taken for credit
9. Math. 142A-B [0 if Math. 140A-B]
10. Math. 155A [0 if CSE 167]
11. Math. 166 [0 if CSE 105]
12. Math. 174 [0 if 170 A or B or C previously]
13. Math. 180A [2 if Econ. 120A or Math. 183 previously/0 if Econ. 120A or Math. 183 concurrently]
14. Math. 181A [2 if Econ. 120B/0 if Econ. 120B concurrently]
15. Math. 183 [0 if Econ. 120A, 2 if Math. 180A previously and 0 if Math. 180A or Econ. 120A concurrently]
For duplication or repeat of credit guidelines between the Math. 20 sequence and the Math. 10 sequence, refer to the section titled "First-Year Courses."

Advisers

Advisers change yearly. Contact the undergraduate office at (858) 534-3590 for the current list.

The Graduate Program

The Department of Mathematics offers graduate programs leading to the M.A. (pure or applied mathematics), M.S. (statistics), and Ph.D. degrees. The application deadline for fall admission is January 15. Candidates should have a bachelor's or master's degree in mathematics or a related
field from an accredited institution of higher education or the equivalent. A minimum scholastic average of B or better is required for course work completed in upper-division or prior graduate study. In addition, the department requires all applicants to submit scores no older than twelve months from both the GRE General Test and Advanced Subject Test in Mathematics. Completed files are judged on the candidate's mathematical background, qualifications, and goals.

Departmental support is typically in the form of teaching assistantships, research assistantships, and fellowships. These are currently only awarded to students in the Ph.D. program.

General Requirements

All student course programs must be approved by a faculty adviser prior to registering for classes each quarter, as well as any changes throughout the quarter.

Full-time students are required to register for a minimum of twelve (12) units every quarter, eight (8) of which must be graduate-level mathematics courses taken for a letter grade only. The remaining four (4) units can be approved upper-division or graduate-level courses in mathematics-related subjects (Math. 500 may not be used to satisfy any part of this requirement). After advancing to candidacy, Ph.D. candidates may take all course work on a Satisfactory/Unsatisfactory basis. Typically, students should not enroll in Math. 299 until they have satisfactorily passed both qualifying examinations (see Ph.D. in Mathematics) or obtained approval of their faculty adviser.

Master of Arts in Pure Mathematics

[Offered only under the Comprehensive
Examination Plan.] The degree may be terminal or obtained on the way to the Ph.D.A total of forty-eight units of credit is required. Twenty-four of these units must be graduate-level mathematics courses approved in consultation with a faculty adviser.

In the selection of course work to fulfill the remaining twenty-four units, the following restrictions must be followed:
a. No more than eight units of upper-division mathematics courses.
b. No more than twelve units of graduate courses in a related field outside the department (approved by the Department of Mathematics).
c. No more than four units of Math. 295 (Special Topics) or Math. 500 (Apprentice Teaching).
d. No units of Math. 299 (Reading and Research) may be used in satisfying the requirements for the master's degree.

COMPREHENSIVE EXAMINATIONS

Seven written departmental examinations are offered in three areas (refer to "Ph.D. in Mathematics," Areas 1,2 , and 3 , for list of exams). A student must complete two examinations, one from Area 1 and one from Area 2, both with an M.A. pass or better.

FOREIGN LANGUAGE REQUIREMENT

A reading knowledge of one foreign language (French, German, or Russian) is required. In exceptional cases other languages may be substituted. Testing is administered by faculty in the department who select published mathematical material in one of these languages for a student to translate.

TIME LIMITS

Full-time students are permitted seven quarters in which to complete all degree requirements. While there are no written time limits for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Master of Arts in Applied Mathematics

[Offered only under the Comprehensive Examination Plan] The degree may be terminal or obtained on the way to the Ph.D. Out of the total forty-eight units of required credit, two applied mathematics sequences comprising twenty-four units must be chosen from the following list (not every course is offered each year):

202A-B-C.	(Applied Algebra)
210A-B-C.	(Mathematical Methods in
	Physics and Engineering)
261A-B-C.	(Combinatorial Algorithms)
264A-B-C.	(Combinatorics)
270A-B-C.	(Numerical Mathematics)
271A-B-C.	(Numerical Optimization)
272A-B-C.	(Numerical Partial Differential
	Equations)
273A-B-C.	(Scientific Computation)

In certain cases, a petition may be approved to substitute one of these requirements from the following list of sequences:

220A-B-C.	(Complex Analysis)
231A-B-C.	(Partial Differential Equations)
$240 \mathrm{~A}-\mathrm{B}-\mathrm{C}$.	(Real Analysis)
280A-B-C.	(Probability Theory)
281A-B-C.	(Mathematical Statistics)
282A-B.	(Applied Statistics)

In choosing course work to fulfill the remaining twenty-four units, the following restrictions must be followed:
a. At least eight units must be approved graduate courses in mathematics or other departments [a one-year sequence in a related area outside the department such as computer science, engineering, physics, or economics is strongly recommended];
b. A maximum of eight units can be approved upper-division courses in mathematics; and
c. A maximum of eight units can be approved upper-division courses in other departments.
d. A maximum of four units of Math. 500 (Apprentice Teaching).
e. NO UNITS of Math. 295 (Special Topics) or Math. 299 (Reading and Research) may be used.

Students are strongly encouraged to consult with a faculty adviser in their first quarter to prepare their course of study.

COMPREHENSIVE EXAMINATIONS

Two written comprehensive examinations must be passed at the master's level in any of the required applied mathematics sequences listed above. The instructors of each course should be contacted for exam details.

FOREIGN LANGUAGE REQUIREMENT

There is no foreign language requirement for the M.A. in applied mathematics.

TIME LIMITS

Full-time M.A. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for parttime students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Master of Science in Statistics

[Offered only under the Comprehensive Examination Plan] The M.S. in statistics is designed to provide recipients with a strong mathematical background and experience in statistical comput-
ing with various applications. Out of the fortyeight units of credit needed, required core courses comprise twenty-four units, including:

Math. 281A-B. (Mathematical Statistics) Math. 282A-B. Applied Statistics)
and any two topics comprising eight units chosen at will from Math. 287A-B-C-D and 289A-B-C (see course descriptions for topics).

The following guidelines should be followed when selecting courses to complete the remaining twenty-four units:
a. For a theoretical emphasis, Math. 280A-B-C (Probability Theory) is required.
b. For an applied orientation, Math. 270A-B-C (Numerical Mathematics) is recommended.
c. A maximum of eight units of approved upperdivision applied mathematics courses (see faculty adviser) and Math. 500 (Apprentice Teaching).
Upon the approval of the faculty adviser, all twenty-four units can be graduate-levei courses in other departments.

COMPREHENSIVE EXAMINATIONS

Two written comprehensive examinations must be passed at the master's level in related course work (approved by a faculty adviser). Instructors of the relevant courses should be consulted for exam dates as they vary on a yearly basis.

FOREIGN LANGUAGE REQUIREMENT

There is no foreign language requirement for the M.S. in statistics.

TIME LIMITS

Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for parttime students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Ph.D. in Mathematics

WRITTEN QUALIFYING EXAMINATIONS

The department offers written qualifying examinations in seven subjects. These are grouped into three areas as follows:

Area \#1

Complex Analysis (Math. 220A-B-C)
Real Analysis (Math. 240A-B-C)

Area \#2

Algebra (Math. 200A-B-C)
Applied Algebra (Math. 202A-B-C)
Topology (Math. 290A-B-C)

Area \#3

Numerical Analysis (Math. 270A-B-C)
Statistics (Math. 281A-B-C)
i) Three qualifying exams must be passed. At least one must be passed at the Ph.D. level, and a second must be passed at either the Ph.D. or Provisional Ph.D. level. The third exam must be passed at least at the master's level.
ii) Of the three qualifying exams, there must be at least one from each of Areas \#1 and \#2. Algebra and Applied Algebra do not count as distinct exams in Area \#2.
iii) Students must pass a least two exams from distinct areas with a minimum grade of Provisional Ph.D. (For example, a Ph.D. pass in Real Analysis, Provisional Ph.D. pass in Complex Analysis, M.A. pass in Algebra would NOT satisfy this requirement, but a Ph.D. pass in Real Analysis, M.A. pass in Complex Analysis, Provisional Ph.D. pass in Algebra would, as would a Ph.D. pass in Numerical Analysis, Provisional Ph.D. pass in Applied Algebra, and M.A. pass in Real Analysis.)
iv) All exams must be passed by the September exam session prior to the beginning of the third year of graduate studies. (Thus, there would be no limit on the number of attempts, encouraging new students to take exams when they arrive, without penalty.)

Department policy stipulates that a least one of the exams must be completed with a Provisional Ph.D. pass or better by September following the end of the first year. Anyone unable to comply with this schedule will be terminated from the doctoral program and transferred to one of our Master's programs.

Any Master's student can submit for consideration a written request to transfer into the Ph.D. program when the qualifying exam requirements for the Ph.D. program have been met and a dissertation adviser is found. Approval by the Qualifying Exam and Appeals Committee (QEAC) is not automatic, however.

Exams are typically offered twice a year, one scheduled late in the spring quarter and again in early September (prior to the start of fall quarter). Copies of past exams are made available for purchase in the Graduate Office.

In choosing a program with an eye to future employment, students should seek the assistance of a faculty adviser and take a broad selection of courses including applied mathematics, such as those in Area \#3.

FOREIGN LANGUAGE REQUIREMENT

A reading knowledge of two foreign languages (French, German, or Russian) is required prior to advancing to candidacy. In exceptional cases other languages may be substituted. Testing is administered within the department by faculty who select published mathematical material in one of these languages for a student to translate.

ADVANCEMENT TO CANDIDACY

It is expected that by the end of the third year (nine quarters), students should have a field of research chosen and a faculty member willing to direct and guide them. A student will advance to candidacy after successfully passing the oral qualifying examination, which deals primarily with the area of research proposed but may include the project itself. This examination is conducted by the student's appointed doctoral committee. Based on their recommendation, a student advances to candidacy and is awarded the C.Phil. degree.

DISSERTATION AND FINAL DEFENSE

Submission of a written dissertation and a final examination in which the thesis is publicly defended are the last steps before the Ph.D. degree is awarded. When the dissertation is substantially completed, copies must be provided to all committee members at least four weeks in advance of the proposed defense date. Two weeks before the scheduled final defense, a copy of the dissertation must be made available in the department for public inspection.

TIME LIMITS

The normative time for the Ph.D. in mathematics is five years. Students must be advanced to candidacy by the end of eleven quarters. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

COURSES

All prerequisites listed below may be replaced by an equivalent or higher-level course. The list-
ings of quarters in which courses will be offered are only tentative. Please consult the Department of Mathematics to determine the actual course offerings each year.

LOWER-DIVISION

3C. Pre-Calculus (4)
Functions and their graphs. Linear and polynomial functions, zeroes, inverse functions, exponential and logarithm, trigonometric functions and their inverses. Emphasis on understanding algebraic, numerical and graphical approaches making use of graphing calculators. (No credit given if taken after Math. C, 1A/10A, or 2A/20A.) Prerequisite: two or more years of high school mathematics or equivalent.

4C. Pre-Calculus for Science and Engineering (4)

Review of polynomials. Graphing functions and relations: graphing rational functions, effects of linear changes of coordinates. Circular functions and right triangle trigonometry. Reinforcement of function concept: exponential, logarithmic, and trigonometric functions. Vectors. Conic sections. Polar coordinates. Three lectures, one recitation. (No credit given if taken after Math. $1 \mathrm{~A} / 10 \mathrm{~A}$ or $2 \mathrm{~A} / 20 \mathrm{~A}$. Two units of credit given if taken after Math. 3C.) Prerequisite: qualifying score on placement examination. With a superior performance in Math. $3 C$, the placement examination requirement may be waived.

10A. Calculus (4)
Differentiation and integration of algebraic functions. Fundamental theorem of calculus. Applications. (No credit given if taken after Math. 2A/20A. Formerly numbered Math. 1A.) Prerequisite: qualifying score on placement examination. With a passing grade in Math. $3 C$, the placement examination requirement may be waived.

10B.Calculus (4)

Further applications of the definite integral. Calculus of trigonometric, logarithmic, and exponential functions. Complex numbers. (No credit given if taken after Math. 2B/20B. Formerly numbered Math. 1B.) Prerequisite: Math. 1A or 10A.

10C. Calculus (4)
Vector geometry, velocity, and acceleration vectors. (No credit given if taken after Math. $2 \mathrm{C} / 20 \mathrm{C}$. Formerly numbered Math. 1C.) Prerequisite: Math. 1 B or 10B.

10D. Elementary Probability and Statistics (4)

Events and probabilities, combinatorics, conditional probability, Bayes formula. Discrete random variables: mean, variance; binomial, multinomial, Poisson distributions. Continuous random variables: densities, mean, variance; normal, uniform, exponential distributions. Sample statistics, confidence intervals, regression. Applications. Intended for biology and social science majors. Prerequisites: Math. 10A-B or Math. 20A-B.

15A. Discrete Mathematics (4)
Basic discrete mathematical structures: sets, relations, functions, sequences, equivalence relations, partial orders, number systems. Methods of reasoning and proofs: propositional logic, predicate logic, induction, recursion, pigeonhole principle. Infinite sets and diagonalization. Basic counting techniques; permutations and combinations. Applications will be given to digital logic design, elementary number theory, design of programs, and proofs of program correctness. Equivalent to CSE 20. Prerequisites: CSE $8 A \& 9 B$ or 10 or $8 A \& 8 B$ or 11.

Mathematics

15B. Mathematics for Algorithm and Systems (4)
This course introduces mathematical tools for the qualitative and quantitative analysis of algorithms and computer systems. Topics to be covered include basic enumeration and counting techniques; recurrence relations; graph theory; asymptotic notation; elementary applied discrete probability. Equivalent to CSE 21. Prerequisite: Math. 15 A or CSE 20 or 160A; CSE 12 is strongly recommended for CSE 21.
17. Geometry and the Imagination (4)

Down-to-earth approach to deep mathematical ideas emphasizing the richness, diversity, connectedness, and pleasure of mathematics. Assignments emphasize thinking and writing. Discussions and projects replace traditional lectures and exams. Accessible to enthusiastic students of widely varying backgrounds. Topics: see Math. 117. Prerequisite: calculus occasionally helpful but not necessary.

18. Computer Animated Statistics (4)

Students will acquire the basics of statistical analysis by working with computer-simulated models rather than abstract mathematical language. Topics include hypothesis testing, maximum likelihood estimation, sampling, chi-square tests and construction of confidence intervals. Prerequisite: Math. 1 B or 10 B or 20 B .

20A. Calculus for Science and Engineering (4)

Foundations of differential and integral calculus of one variable. Functions, graphs, continuity, limits, derivative, tangent line. Applications with algebraic, exponential logarithmic, and trigonometric functions. Introduction to the integral. (Two credits given if taken after Math $1 \mathrm{~A} / 10 \mathrm{~A}$ and no credit given if taken after Math. 1B/10B or Math. 1C/10C. Formerly numbered Math. 2A.) Prerequisite: qualifying score on placement examination or completion of Math. $4 C$ with a grade of B or better.

20B. Calculus for Science and Engineering (4)

Integral calculus of one variable and its applications, with exponential, logarithmic, hyperbolic, and trigonometric functions. Methods of integration. Polar coordinates in the plane. (Two units of credits given if taken after Math. 1B/10B or Math. 1C/10C.) Prerequisite: Math $20 A$ or equivalent / Score of 4 or better on $A B$ calculus AP test.

20BL. Honors Mathematics Laboratory (2)
Symbolic, numerical, and graphical explorations of the material of Math. 20B. Student should have received a grade of A- or better in Math. 20A (or equivalent course). Prerequisite: Math. 20A with corequisite of Math. 20B or consent of instructor. (W)

20CL. Honors Mathematics Laboratory (2)
Symbolic, numerical, and graphical explorations of the material of Math. $20 \mathrm{C} / 21 \mathrm{C}$. Student should have received a grade of A - or better in Math. 20 B (or equivalent course). Prerequisite: Math. 20 B with corequisite of Math. 20C/21C or consent of instructor. (S)

20E. Vector Calculus (4)

Change of variable in multiple integrals, Jacobian Line integrals, Green's theorem. Vector fields, gradient fields, divergence, curl. Spherical and cylindrical coordinates Taylor series in several variables. Surface integrals, Stoke's theorem. Gauss' theorem and its applications Conservative fields. (Zero units given if Math. 2F previously. Formerly numbered Math. 2F) Prerequisite: Math 21C (or 20C) or equivalent, or consent of instructor.

20F. Linear Algebra (4)
Matrix algebra, solution of systems of linear equations by Gaussian elimination, determinants. Linear and affine subspaces, bases of Euclidean spaces. Eigenvalues and eigenvectors, quadratic forms, orthogonal matrices, diagonalization of symmetric matrices Applications. Computing symbolic and graphical solutions using Matlab. (Zero units given if Math. 2EA previously. Formerly numbered 2EA.) Prerequisite: Math. 21C (or 20C) or equivalent or consent of instructor.

21C. Calculus and Analytic Geometry for Science and Engineering (4)

Vector geometry, vector functions and their derivatives. Partial differentiation. Maxima and minima. Double integration. (Two units of credits given if taken after Math 1C/10C. Formerly numbered Math. 2C.) Prerequisite: Math. 2B/20B or equivalent or consent of instructor.

21D. Introduction to Differential Equations (4)
Infinite series. Ordinary differential equations: exact, separable, and linear; constant coefficients, undetermined coefficients, variation of parameters. Series solutions Systems, Laplace transforms. Techniques for engineering sciences. Computing symbolic and graphical solu tions using Matlab. (Two units if Math. 200 previously, zero if Math. 2DA previously. Formerly numbered Math 2DA.) Prerequisite: Math. 21 C or equivalent.
69. Chance (4)

Explores role chance plays in our world; introduces basic tools of probability theory that are used to build, analyze, and interpret mathematical models of chance phenomena. Math. 169 is the enhanced version of Math. 69 for math majors, requiring one additional lec ture per week, more advanced topics, and more difficult assignments. Four lectures, one recitation. Prerequisite Math. 20C or 21C, or a grade of A- or better in Math. 20B or consent of instructor.
93. Theory of Interest (4)

Interest, annuities, amortization, sinking funds, bonds, and other securities. Preparation for actuarial exam 140. Prerequisite: Math. 10 C or Math. 20B.

UPPER-DIVISION

100A-B-C. Modern Algebra (4-4-4)

An introduction to the methods and basic structures of higher algebra: sets and mappings, the integers, rational, real and complex numbers, groups, rings (especially polynomial rings) and ideals, fields, real and complex vector spaces, linear transformations, inner product spaces, matrices, triangular form, diagonaliza tion. Both 100 and 103 cannot be taken for credit. Three lectures, one recitation. Prerequisites: Math. 20F, and Math. 109 or consent of instructor. (F,W,S)

102. Applied Linear Algebra (4)

A second course in linear algebra from a computationa yet geometric point of view. Elementary Hermitian matrices, Schur's theorem, normal matrices, and quadratic forms. Moore-Penrose generalized inverse and least square problems. Vector and matrix norms. Characteristic and singular values. Canonical forms Determinants and multilinear algebra. Three lectures, one recitation. Prerequisite: Math. 20F. (W)

103A-B. Modern Applied Algebra (4-4)
Abstract algebra with applications to computation. Set algebra and graph theory. Finite state machines. Boolean algebras and switching theory. Lattices

Groups, rings and fields: applications to coding theory Recurrent sequences. Three lectures, one recitation Both 100 and 103 cannot be taken for credit. Prerequisites:Math. 20 F and Math. 109 (may be taken concurrently). (F,W)

104A-B-C. Number Theory (4-4-4)

Topics from number theory with applications and computing. Possible topics are: congruences, reciprocity laws, quadratic forms, prime number theorem, Riemann zeta function, Fermat's conjecture, diophantine equations, Gaussian sums, algebraic integers, unique factorization into prime ideals in algebraic number fields, class number, units, splitting of prime ideals in extensions, quadratic and cyclotomic fields, partitions. Possible applications are Fast Fourier Transform, signal processing, coding, cryptography. Three lectures Prerequisite: consent of instructor.

107A-B. Computer Algebra (4)
An introduction to algebraic computation. Computational aspects of groups, rings, fields, etc. Data representation and algorithms for symbolic computation. Polynomials and their arithmetic. The use of a computer algebra system as an experimental tool in mathematics. Programming using algebra systems. Prere-quisite: prior or concurrent enrollment in the Math. 100 or 103 sequence.

109. Mathematical Reasoning (4)

This course uses a variety of topics in mathematics to introduce the students to rigorous mathematical proof, emphasizing quantifiers, induction, negation, proof by contradiction, naive set theory, equivalence relations and epsilon-delta proofs. Required of all departmental majors. Prerequisite: Math. 20F.
110. Introduction to Partial Differential Equations (4) Fourier series, orthogonal expansions, and eigenvalue problems. Sturm-Liouville theory. Separation of variables for partial differential equations of mathematical physics, including topics on Bessel functions and Legendre polynomials. Prerequisites: Math. 20D (or 21D) and 20F, or consent of instructor. (F,S)

111A-B. Mathematical Model Building (4-4)
Analytic techniques and simulation methods will be used to study a variety of models. Students will work on independent projects. Three lectures. Prerequisites: Math. 20D (21D) and 20F.
117. Geometry and the Imagination for Math Majors (4) Enhanced Math. 17 for advanced mathematics students. Topics: Geometry and topology in dimensions 2, 3, and higher; polyhedra;Euler characteristic; hyperbolic geometry; knots; symmetry; orbifolds; the 17 kinds of wall paper; curvature; soap films; telling cabbage from kale; Gauss-Bonnet theorem. Prerequisite: Math. 20C/21C or equivalent

120A. Elements of Complex Analysis (4)
Complex numbers and functions. Analytic functions, harmonic functions, elementary conformal mappings. Complex integration. Power series. Cauchy's theorem Cauchy's formula. Residue theorem. Three lectures, one recitation. Prerequisite or co-registration: Math. 20E, or consent of instructor. (F,W)

120B. Applied Complex Analysis (4)
Applications of the Residue theorem. Conformal mapping and applications to potential theory, flows, and temperature distributions. Fourier transformations. Laplace transformations, and applications to integral and differential equations. Selected topics such as

Poisson's formula. Dirichlet problem. Neumann's problem, or special functions. Three lectures, one recitation. Prerequisite: Math. 120A. (W,S)

130A. Ordinary Differential Equations (4)
Linear and nonlinear systems of differential equations. Stability theory, perturbation theory. Applications and introduction to numerical solutions. Three lectures. Prerequisites: Math. 20D/21D and 20F. (F)

130B. Ordinary Differential Equations (4)
Existence and uniqueness of solutions to differential equations. Local and global theorems of continuity and differentiabillity. Three lectures. Prerequisites: Math. 20D/21D and 20F, and Math. 130A. (W)
131.Variational Methods in Optimization (4)

Maximum-minimum problems. Normed vector spaces, functionals, Gateaux variations. Euler-Lagrange multiplier theorem for an extremum with constraints. Calculus of variations via the multiplier theorem. Applications may be taken from a variety of areas such as the following: applied mechanics, elasticity, economics, production planning and resource allocation, astronautics, rocket control, physics, Fermat's principle and Hamilton's principle, geometry, geodesic curves, control theory, elementary bang-bang problems. Three lectures, one recitation. Prerequisites: Math. 200/21D and 20F or consent of instructor. (S)

132A. Elements of Partial Differential Equations and

 Integral Equations (4)Basic concepts and classification of partial differential equations. First order equations, characteristics. Hamilton-Jacobi theory, Laplace's equation, wave equation, heat equation. Separation of variables, eigenfunction expansions, existence and uniqueness of solutions. Three lectures. Prerequisite: Math. 110 or consent of instructor. (W)

132B. Elements of Partial Differential Equations and Integral Equations (4)

Relation between differential and integral equations, some classical integral equations, Volterra integral equations, integral equations of the second kind, degenerate kernels, Fredholm alternative, NeumannLiouville series, the resolvent kernel. Three lectures. Prerequisite: Math. 132A. (S)

140A-B-C. Foundations of Analysis (4-4-4)
Axioms, the real number system, topology of the real line, metric spaces, continuous functions, sequences of functions, differentiation, Riemann-Stieltjes integration, partial differentiation, multiple integration, Jacobians. Additional topics at the discretion of the instructor: power series, Fourier series, successive approximations of other infinite processes. Three lectures, one recitation. Prerequisites: Math. 20E and Math. 109 or consent of instructor. Credit cannot be obtained for both Math. 140A-B and 142A-B. (F,W,S)
141. Introduction to Abstract Analysis (4)

General topological spaces, compactness, separation, locally compact Hausdorff spaces, metrization, completeness, Baire category, Stone-Weierstrass theorem, function spaces. Three lectures. Prerequisites: Math. 140A-B or equivalent. (F)

142A-B. Advanced Calculus (4-4)

The number system. Functions, sequences, and limits. Continuity and differentiability. The Riemann integral. Transcendental functions. Limits and continuity. Infinite series. Sequences and series of functions. Uniform convergence. Taylor series. Improper integrals. Gamma and

Beta functions. Fourier series. Three lectures. Prerequisite: Math. 20E. Credit cannot be obtained for both Math. 140A-B and 142A-B.

150A. Differential Geometry (4)
Differential geometry of curves and surfaces. Gauss and mean curvatures, geodesics, parallel displacement, Gauss-Bonnet theorem. Three lectures. Prerequisite: Math. 20E or consent of instructor. (F)

150B-C. Calculus on Manifolds (4-4)
Calculus of functions of several variables, inverse function theorem. Further topics, selected by instructor, such as exterior differential forms, Stokes' theorem, manifolds, Sard's theorem, elements of differential topology, singularities of maps, catastrophes, further topics in differential geometry, topics in geometry of physics. Three lectures. Prerequisite: Math. 150A. (W)
151. Topics in Geometry (4)

A topic, selected by the instructor, from Euclidean geometry, non-Euclidean geometry, projective geometry, algebraic geometry, or other geometries. May be repeated for credit with a different topic. Three lectures. Prerequisite: consent of instructor. (S)

152. Applicable Mathematics and Computing (4)

This course will give students experience in applying theory to real world applications such as Internet and wireless communication problems. The course will incorporate talks by experts from industry and students will be helped to carry out independent projects. Topics include graph visuatization, labelling, and embeddings, random graphs and randomized algorithms. May be taken 3 times for credit. Prerequisites: Math. 20D or 21D, and 20F or consent of instructor.

155A. Computer Graphics (4)
Bezier curves and control lines, de Casteljau construction for subdivision, elevation of degree, control points of Hermite curves, barycentric coordinates, rational curves. Three lectures, one recitation, and approximately eight laboratory hours per week. Prerequisites: Math. 20F and programming experience. [Warning:There are duplicate credit restrictions on this course. See section on Duplication of Credit.] (F)

155B. Topics in Computer Graphics (4)
Spline curves, spline interpolation, affine and affine cross ratios, polar forms (blossoming), the Oslo algorithm for knot insertion, NURBS and geometric continuity. Three lectures, one recitation, and approximately eight laboratory hours per week. Prerequisite: Math. 155A or consent of instructor. (W)

155C. Topics in Computer Graphics (4)

Tensor product and Bezier patch surfaces, perspective transformations, projective cross ratios, elevation of degree, derivatives across edges, calculation of illumination intensity. Three lectures, one recitation, and approximately eight laboratory hours per week. Prerequisite: Math. 155B or consent of instructor. (S)

160A-B. Elementary Mathematical Logic (4-4)

An introduction to recursion theory, set theory, proof theory, and model theory. Turing machines. Undecidability of arithmetic and predicate logic. Proof by induction and definition by recursion. Cardinal and ordinal numbers. Completeness and compactness theorems for propositional and predicate calculi. Three lectures. Prerequisite: Math. 100A, 103A, 140A, or consent of instructor.

161. Mathematical Computing (2 or 4)

Programming in higher level mathematical language such as Mathematica: Lists, Functions, Expressions, Recursion, Iteration, graphics, packages. Application to diverse areas of mathematics such as differential equations, dynamical systems, fractals, chaos, probability, financial models. Prerequisite: Math. 20A-B, 21C-D, 20E-F or equivalent.
163. History of Mathematics (4)

Topics will vary from year to year in areas of mathematics and their development. Topics may include the evolution of mathematics from the Babylonian period to the eighteenth century using original sources, a history of the foundations of mathematics and the development of modern mathematics. Prerequisite: Math. 20B or consent of instructor. (S)
165. Introduction to Set Theory (4)

Sets, relations, and functions. Partial, linear, and wellorders. The axiom of choice, proof by induction and definition by recursion. Cardinal and ordinal numbers and their arithmetic. Prerequisite: Math. 100A or 140A or 103, or consent of instructor.
166. Intro to the Theory of Computation (4)
introduction to formal languages; regular languages; regular expressions, finite automata, minimization, closure properties, decision algorithms, and non-regular languages; context-free languages, context-free grammars, push-down automata, parsing theory, closure properties, and noncontext-free languages; computable languages; turing machines, recursive functions, Church's thesis, undecidability and the halting problem. Equivalent to CSE 105. Prerequisites: CSE 8 B or $9 B$ or 10 or 65 or 62 B AND CSE 20 or 160A or Math. 15A or 109 or 100A or 103A

168A-B. Topics in Applied Mathematics-Computer Science (4-4)
Topics to be chosen in areas of applied mathematics and mathematical aspects of computer science. May be repeated once for credit with different topics. Three lectures, one recitation. Prerequisite: consent of instructor. (W,S)
169. Chance (4)

Math 69 explores role chance plays in our world; introduces basic tools of probability theory that are used to build, analyze, and interpret mathematical models of chance phenomena. Math 169 is the enhanced version of Math 69 for math majors, requiring one additional lecture per week, more advanced topics and more difficult assignments. Four lectures, one recitation. Prerequisite: Math $20 F$.

170A. Numerical Linear Algebra (4)
Analysis of numerical methods for linear algebraic systems and least squares problems. Orthogonalization methods. Ill conditioned problems. Eigenvalue and singular value computations. Three lectures, one recitation. Prerequisites: Math. $20 F$ and knowledge of programming. (F, S)

170B. Numerical Analysis (4)
Rounding and discretization errors. Calculation of roots of polynomials and nonlinear equations. Interpolation. Approximation of functions. Three lectures, one recitation. Prerequisites: Math. 20F and knowledge of programming. (W)

170C. Numerical Ordinary Differential Equations (4)
Numerical differentiation and integration. Ordinary differential equations and their numerical solution. Basic

Mathematics

existence and stability theory. Difference equations Boundary value problems. Three lectures, one recitation. Prerequisite: Math. 170 B or consent of instructor. (S)

171A-B. Mathematical Programming-Numerical Optimization (4-4)

Mathematical optimization and applications. Linear programming, the simplex method, duality. Nonlinear programming, Kuhn-Tucker theorem. Selected topics from integer programming, network flows, transportation problems, inventory problems, and other applications. Three lectures, one recitation. Prerequisites: Math. 20F and knowledge of programming.
172. Numerical Partial Differential Equations (4)

Finite difference methods for the numerical solution of hyperbolic and parabolic partial differential equations; finite difference and finite element methods for elliptic partial differential equations. Three lectures. Prerequisites: Math. 170A or Math. 110 and programming experience. (F)

173. Mathematical Software-Scientific

Programming (4)
Development of high quality mathematical software for the computer solution of mathematical problems. Three lectures, one recitation. Prerequisites: Math. 170A or Math. 174 and knowledge of FORTRAN. (W)
174. Numerical Methods in Science and Engineering (4) Floating point arithmetic, linear equations, interpolation, integration, differential equations, nonlinear equa tions, optimization, least squares. Students may not receive credit for both Math. 174 and Physics 105 or MAE 153 or 154 . Students may not receive credit for Math. 174 if Math. $170 \mathrm{~A}, \mathrm{~B}$, or C has already been taken. Prerequisites: Math. 210 (2DA) and Math. 20F (2EA).
176. Advanced Data Structures (4)

Descriptive and analytical presentation of data struc tures and algorithms. Lists, tables, priority queues, disjoint subsets, and dictionaries data types. Data structuring techniques include linked lists, arrays, hashing, and trees. Performance evaluation involving worst case, average and expected case, and amortized analysis. Crecit not offered for both Math. 176 and CSE 100 Equivalent to CSE 100. Prerequisites: CSE 12, CSE 21, or Math. 15B, and CSE 30, or consent of instructor.

179A-B. Introduction to Artificial Intelligence (4-4)

An introduction to artificial intelligence through its mathematics. The course will develop various areas of mathematics, including logic, probability and optimization. These tools will be applied to various areas of arti ficial intelligence, including deductive reasoning, uncertain reasoning, neural networks and search. One of the programming languages Prolog and Lisp will be introduced and used for course work. Prerequisite: Math. 109, 100A or 103A (100A or 103A may be taken concurrently). (W,S)

180A. Introduction to Probability (4)

Probability spaces, random variables, independence conditional probability, distribution, expectation, joint distributions, central-limit theorem. Three lectures. Prerequisites: Math. 20D/21D. [Warning: There are duplicate credit restrictions on this course. See section on Duplication of Credit.] (F)

180B. Introduction to Probability (4)

Random vectors, multivariate densities, covariance matrix, multivariate normal distribution. Random walk, Poisson process. Other topics if time permits. Three lectures. Prerequisites: Math. 180A and Math. 20E. (W)

180C. Introduction to Probability (4)
Markov chains in discrete and continuous time, random walk, recurrent events. If time permits, topics chosen from stationary normal processes, branching processes, queuing theory. Three lectures. Prerequisite: Math. 180B. (S)

181A. Introduction to Mathematical Statistics (4)
Random samples, linear regression, least squares, testing hypotheses, and estimation. Neyman-Pearson lemma, likelihood ratios. Three lectures, one recitation. Prerequisites: Math. 180A and 20F. [Warning: There are duplicate credit restrictions on this course. See section on Duplication of Credit.] (W)

181B. Introduction to Mathematical Statistics (4)
Goodness of fit, special small sample distribution and use, nonparametric methods. Kolmogorov-Smirnov statistics, sequential analysis. Three lectures. Prerequisite: Math. 181A. (S)

181C. Mathematical Statistics (4)
Nonparametric Statistics. Topics covered may include the following: Classical rank test, rank correlations, permutation tests, distribution free testing, efficiency, confidence intervals, nonparametric regression and density estimation, resampling techniques (bootstrap, jackknife, etc.) and cross validations. Prerequisites: Math. 181A, 181B previously or concurrently.

181D. Mathematical Statistics (4)
Sampling Theory. Basic notions of estimation: bias, variance, and sampling errors. Sampling from finite populations: simple random, stratified, cluster, sampling with unequal probabilities. Ratio and regression estimaters, multistage sampling. Prerequisites: Math. 181A, 181B previously or concurrently.

181E. Mathematical Statistics (4)
Time Series. Analysis of trends and seasonal effects, autoregressive and moving averages models, forecasting, informal introduction to spectral analysis Prerequisites: Math. 181A, 181B previously or concurrently.
182. Introduction to Combinatorics (4)

Combinatorial methods and their computer implementation. Permutations and combinations, generating functions, partitions, principle of inclusion and exclusion. Polya's theory of counting. Hall's theorem, assignment problem, backtrack technique, error-correcting codes, combinatorial optimization problems. Three lectures, one recitation. Prerequisites: Math. 20F and programming experience. (W)
183. Statistical Methods (4)
introduction to probability. Discrete and continuous random variables-binomial, Poisson and Gaussian distributions. Central limit theorem. Data analysis and inferential statistics: graphical techniques, confidence intervals, hypothesis tests, curve fitting. (Credit not offered for both Math. 183 and Econ. 120A.) Prerequisite: Math. 21C. (F,S)

184A-B. Mathematical Foundations of Computer

Science (4-4)
Enumeration of combinatorial structures. Ranking and unranking. Graph theory with applications and algorithms. Recursive algorithms. Circuit design. Inclusionexclusion. Generating functions. Polya theory. Three lectures, one recitation. Prerequisite: Math. 100A or Math 103A. (W,S)
187. Introduction to Cryptography (4)

An introduction to the basic concepts and techniques of modern cryptography. Classical cryptanalysis. Probabilistic models of plaintext. Monalphabetic and polyalphabetic substitution. The one-time system. Caesar-Vigenere-Playfair-Hill substitutions. The Enigma. Modern-day developments. The Data Encryption Standard. Public key systems. Security aspects of computer networks. Data protection. Electronic mail. Three lectures, one recitation. Prerequisite: programming experience. (S)
188. Design and Analysis of Algorithms (4)

Introduction to the design and analysis of efficient algorithms. Basic techniques for analyzing the time requirements of algorithms. Algorithms for sorting, searching, and pattern matching, algorithms for graphs and networks. NP-complete problems. Equivalent to CSE 101. Prerequisites: CSE 100 or Math. 176A for Math. 188; CSE 12, CSE 21, and CSE 100 for CSE 101.

189A-B. Compilers (4-4)

Compilers for high-level programming languages. Project to develop a working compiler. Part A: regular expressions and finite automata, context free grammars, parsing techniques. Part B: syntax directed translation, semantic actions (for declarations, statement structures, assignments, array references, expression evaluation, procedure and function calls), symbol tables, run-time storage management. Part C: error recovery, optimization, code generation. Three lectures. Prerequisites: Math. 166A, 176A, and 103A or consent of instructor. (F,W,S)
190. Introduction to Topology (4)

Topological spaces, subspaces, products, sums and quotient spaces. Compactness, connectedness, separation axioms. Selected further topics such as fundamental group, classification of surfaces, Morse theory, topological groups. May be repeated for credit once when topics vary, with consent of instructor. Three lectures. Prerequisite: Math. 109 or consent of instructor. (W)

191. Topics in Topology (4)

Topics to be chosen by the instructor from the fields of differential algebraic, geometric, and general topology. Three lectures. Prerequisite: Math. 190 or consent of instructor. (S)

193A. Actuarial Mathematics (4)

Probabilistic Foundations of Insurance. Short-term risk models. Survival distributions and life tables. Introduction to life insurance. Prerequisite: Math. 180A or 183, or consent of instructor.

193B. Actuarial Mathematics (4)
Life Insurance and Annuities. Analysis of premiums and premium reserves. Introduction to multiple life functions and decrement models as time permits. Prerequisite: Math. 193A.

193C. Actuarial Mathematics (4)
Topics to be selected from pension plans, collective risk models, advanced topics in insurance. Prerequisite: Math. 193B.

194. The Mathematics of Finance (4)

Introduction to the mathematics of financial models. Basic probabilistic models and associated mathematical machinery will be discussed, with emphasis on discrete time models. Concepts covered will include
conditional expectation, martingales, optimal stopping, arbitrage pricing, hedging, European and American options. Prerequisites: Math. 20D, Math. 20F, and Math. 180A or 183.
195. Introduction to Teaching in Mathematics (4)

Students will be responsible for and teach a class section of a lower-division mathematics course. They will also attend a weekly meeting on teaching methods. (Does not count towards a minor or major.) Five lectures, one recitation. Prerequisite: consent of instructor. (F,W,S)

196. Student Colloquium (1-2)

A variety of topics and current research results in mathematics will be presented by guest lecturers and students under faculty direction. Prerequisites: upperdivision status or consent of instructor (for one unit) and consent of instructor (for two units).
198. Directed Group Studies in Mathematics (1 to 4) Group study course in some topic not covered in the undergraduate curriculum. (P/NP grades only.) Prerequisite: consent of instructor. (F,W,S)
199. Independent Study for Undergraduates (2 or 4) Independent reading in advanced mathematics by individual students. Three periods. (P/NP grades only.) Prerequisite: permission of department. (F,W,S)

199H. Honors Thesis Research for Undergraduates (2-4) Honors thesis research for seniors participating in the Honors Program. Research is conducted under the supervision of a mathematics faculty member. Prerequisites: admission to the Honors Program in mathematics, department stamp.

GRADUATE

200A-B-C. Algebra (4-4-4)
Group actions, factor groups, polynomial rings, linear algebra, rational and Jordan canonical forms, unitary and Hermitian matrices, Sylow theorems, finitely generated abelian groups, unique factorization, Galois theory, solvability by radicals, Hilbert Basis Theorem, Hilbert Nullstellensatz, Jacobson radical, semisimple Artinian rings. Prerequisite: consent of instructor.

201A-B-C. Basic Topics in Algebra (4-4-4)

Recommended for all students specializing in algebra. Basic topics include categorical algebra, commutative algebra, group representations, homological algebra, nonassociative algebra, ring theory. Prerequisites: Math. 200A-B-C or consent of instructor. (F,W,S)

202A-B-C. Applied Algebra (4-4-4)

Algebra from a computational perspective using Maple, Mathematica and Matlab. Groups, rings, linear algebra, rational and Jordan forms, unitary and Hermitian matrices, matrix decompositions, perturbation of eigenvalues, group representations, symmetric functions, fast Fourier transform, commutative algebra, Grobner basis, finite fields. Prerequisite: consent of instructor.

203A-B-C. Algebraic Geometry (4-4-4)

Places, Hilbert Nullstellensatz, varieties, product of varieties: correspondences, normal varieties. Divisors and linear systems; Riemann-Roch theorem; resolution of singularities of curves. Grothendieck schemes; cohomology, Hilbert schemes; Picard schemes. Prerequisites: Math. 200A-B-C. (F,W,S)

204. Topics in Number Theory (4)

Topics in analytic number theory, such as zeta functions and L-functions and the distribution of prime numbers, zeros of zeta functions and Siegel's theorem, transcendence theory, modular forms, finite and infinite symmetric spaces. Prerequisite: consent of instructor.

205. Topics in Algebraic Number Theory (4)

Topics in algebraic number theory, such as cyclotomic and Kummer extensions, class number, units, splitting of primes in extensions, zeta functions of number fields and the Brauer-Siegel Theorem, class field theory, elliptic curves and curves of higher genus, complex multiplication. Prerequisite: consent of instructor.

207A-B. Topics in Algebra (4-4)
In recent years, topics have included number theory, commutative algebra, noncommutative rings, homological algebra, and Lie groups. May be repeated for credit with consent of adviser. Prerequisite: consent of instructor
208. Seminar in Algebra (1-4)

Prerequisite: consent of instructor. (S/U grades permitted.)
209. Seminar in Number Theory (1 to 4)

Prerequisite: consent of instructor. (S/U grades permitted.)

210A. Mathematical Methods in Physics and

 Engineering (4)Complex variables with applications. Analytic functions, Cauchy's theorem, Taylor and Laurent series, residue theorem and contour integration techniques, analytic continuation, argument principle, conformal mapping potential theory, asymptotic expansions, method of steepest descent. Prerequisites: Math. 20DEF, 140A/142A or consent of instructor.

210B. Mathematical Methods in Physics and

Engineering (4)

Linear algebra and functional analysis. Vector spaces, orthonormal bases, linear operators and matrices, eigenvalues and diagonalization, least squares approximation, infinite-dimensional spaces, completeness, integral equations, spectral theory, Green's functions, distributions, Fourier transform. Prerequisite: Math. 210A or consent of instructor. (W)

210C. Mathematical Methods in Physics and

Engineering (4)
Calculus of variations: Euler-Lagrange equations Noether's theorem. Fourier analysis of functions and distributions in several variables. Partial differential equations: Laplace, wave, and heat equations; fundamental solutions (Green's functions); well-posed problems. Prerequisite: Math. 210 B or consent of instructor. (S)

211. Fourier Analysis on Finite Groups (4)

Applied group representations. Emphasis on the integers, $\bmod n$, finite matrix groups. Applications may include: the fast Fourier tranform, digital signal processing, finite difference equations, spectral graph theory, error-correcting codes, vibrating systems, finite wavelet tranforms. Prerequisite: none.

217A. Topics in Applied Mathematics (4)

In recent years, topics have included applied complex analysis, special functions, and asymptotic methods. May be repeated for credit with consent of adviser. Prerequisite: consent of instructor.
218. Seminar in Applied Mathematics (1 to 4)

Prerequisite: consent of instructor. (S/U grades permitted.)

220A-B-C. Complex Analysis (4-4-4)

Complex numbers and functions. Cauchy theorem and its applications, calculus of residues, exparisions of analytic functions, analytic continuation, conformal mapping and Riemann mapping theorem, harmonic functions. Dirichlet principle, Riemann surfaces. Prerequisites: Math. 140A-B or consent of instructor. (F,W,S)

221A-B-C. Topics in Several Complex Variables (4-4-4)
Formal and convergent power series, Weierstrass preparation theorem; Cartan-Ruckert theorem, analytic sets; mapping theorems; domains of holomorphy; proper holomorphic mappings; complex manifolds; modifications. Prerequisites: Math. 200A and 220A-B-C or consent of instructor.

227A-B-C. Topics in Complex Analysis (4-4-4)
In recent years, topics have included conformal mapping, Riemann surfaces, value distribution theory, external length. May be repeated for credit with consent of adviser. Prerequisite: consent of instructor.
229. Computing Technology for Mathematics (2)

Preparation for making effective use of computer technology in research and teaching of mathematics. UNIX basics, document preparation using TEX, Internet resources, HTML, computer technology in teaching. Prerequisite: graduate status in mathematics.

231A-B-C. Partial Differential Equations (4-4-4)
Existence and uniqueness theorems. CauchyKowalewski theorem, first order systems. HamiltonJacobi theory, initial value problems for hyperbolic and parabolic systems, boundary value problems for elliptic systems. Green's function, eigenvalue problems, perturbation theory. Prerequisites: Math. 210A-B or 240A-B-C or consent of instructor.

233. Singular Perturbation Theory for Differential

Equations (4)
Multivariable techniques, matching techniques and averaging techniques, including various approaches to proofs of asymptotic correctness, for singular perturbation problems including initial value problems with nonuniformities at infinity, initial value problems with initial nonuniformities, two point boundary value problems, and problems for partial differential equations. Applications taken from celestial mechanics, oscillation problems, fluid dynamics, elasticity, and applied mechanics. Prerequisites: Math. 130A-B or 132A-B or consent of instructor. (S / U grades permitted.) (S)

237A-B. Topics in Differential Equations (4-4)
May be repeated for credit with consent of adviser. Prerequisite: consent of instructor.

240A-B-C. Real Analysis (4-4-4)
Lebesgue integral and Lebesgue measure, Fubini theorems, functions of bounded variations, Stieltjes integral, derivatives and indefinite integrals, the spaces L and C, equi-continuous families, continuous linear functionals general measures and integrations. Prerequisites: Math. 140A-B-C. (F,W,S)

241A-B-C. Functional Analysis (4-4-4)

Metric spaces and contraction mapping theorem; closed graph theorem; uniform boundedness principle; Hahn-Banach theorem; representation of continuous linear functionals; conjugate space, weak topologies; extreme points; Krein-Milman theorem; fixed-point theorems; Riesz convexity theorem; Banach algebras. Prerequisites: Math.240A-B-C or consent of instructor.

242. Topics in Fourier Analysis (4)

A course on Fourier analysis in Euclidean spaces, groups, symmetric spaces. Prerequisites: Math. 240A-B-C or consent of instructor. ($\mathrm{F}, \mathrm{W}, \mathrm{S}$)

247A-B-C. Topics in Real Analysis (4-4)
In recent years, topics have included Fourier analysis, distribution theory, martingale theory, operator theory. May be repeated for credit with consent of adviser. Prerequisite: consent of instructor.
248. Seminar in Real Analysis (1 to 4)

Prerequisite: consent of instructor. (S/U grades permitted.)

250A-B-C. Differential Geometry (4-4-4)

Differential manifolds, Sard theorem, tensor bundles, Lie derivatives, DeRham theorem, connections, geodesics, Riemannian metrics, curvature tensor and sectional curvature, completeness, characteristic classes. Differential manifolds immersed in Euclidean space. Prerequisite: consent of instructor. (F,W,S)

251A-B-C. Lie Groups (4-4-4)

Lie groups, Lie algebras, exponential map, subgroup subalgebra correspondence, adjoint group, universal enveloping algebra. Structure theory of semi-simple Lie groups, global decompositions, Weyl group. Geometry and analysis on symmetric spaces. Prerequisites: Math. 200 and 250 or consent of instructor. (F,W,S)
256. Seminar in Lie Groups and Lie Algebras (2 to 4)

Various topics in Lie groups and Lie algebras, including structure theory, representation theory, and applications. Prerequisite: consent of instructor. (F,W,S)

257A-B-C. Topics in Differential Geometry (4-4-4)
In recent years, topics have included Morse theory and general relativity. May be repeated for credit with consent of adviser. Prerequisite: consent of instructor.

259A-B-C. Geometrical Physics (4-4-4)

Manifolds, differential forms, homology, deRham's theorem. Riemannian geometry, harmonic forms. Lie groups and algebras, connections in bundles, homotopy sequence of a bundle, Chern classes. Applications selected from Hamiltonian and continuum mechanics, electromagnetism, thermodynamics, special and general relativity, Yang-Mills fields. Prerequisite: graduate standing in mathematics, physics, or engineering, or consent of instructor.

260A-B-C. Mathematical Logic (4-4-4)
Propositional calculus and quantification theory. Completeness theorem, theory of equality, compactness theorem, Skolem-Lowenheim theorems. Vaught's test: Craig's lemma. Elementary number theory and recursive function theory. Undecidability of true arithmetic and of Peano's axioms. Church's thesis; set theory; Zermelo-Frankel axiomatic formulation. Cardinal and ordinal numbers. The axiom of choice and the generalized continuum hypothesis. Incompleteness and undecidability of set theory. Relative consistency proofs. Prerequisites: Math. 100A-B-C or consent of instructor.

261 A-B. Combinatorial Algorithms (4-4)
Lexicographic order, backtracking, ranking algorithms, isomorph rejection, sorting, orderly algorithms, network flows and related topics, constructive Polya theory, inclusion-exclusion and seiving methods, Mobius inversion, generating functions, algorithmic graph theory, trees, recursion, depth firstsearch and applications, matroids. Prerequisites: CSE 160A-B or Math.184A-B or consent of instructor. (F,W,S)

262A-B-C. Topics in Combinatorial Mathematics (4-4-4) Development of a topic in combinatorial mathematics starting from basic principles. Problems of enumeration, existence, construction, and optimization with regard to finite sets. Some familiarity with computer programming desirable but not required. Prerequisites: Math. 100A-B-C.
263. History of Mathematics (4)

Mathematics in the nineteenth century from the original sources. Foundations of analysis and commutative algebra. For algebra the authors studied will be Lagrange, Ruffini, Gauss, Abel, Galois, Dirichlet, Kummer, Kronecker, Dedekind, Weber, M. Noether, Hilbert, Steinitz, Artin, E. Noether. For analysis they will be Cauchy, Fourier, Bolzano, Dirichlet, Riemann, Weierstrass, Heine, Cantor, Peano, Hilbert. Prerequisites: Math. 100A-B, Math. 140A-B.(S)

264A-B-C. Combinatorics (4-4-4)

Topics from partially ordered sets, Mobius functions, simplicial complexes and shell ability. Enumeration, formal power series and formal languages, generating functions, partitions. Lagrange inversion, exponential structures, combinatorial species. Finite operator methods, q-analogues, Polya theory, Ramsey theory. Representation theory of the symmetric group, symmetric functions and operations with Schur functions. (F,W,S)

267A-B-C. Topics in Mathematical Logic (4-4-4)
Topics chosen from recursion theory, model theory, and set theory. May be repeated with consent of adviser. Prerequisite: consent of instructor. (S / U grades permitted.)
268. Seminar in Logic (1 to 4)

Prerequisite: consent of instructor. (S/U grades permitted.)
269. Seminar in Combinatorics (1 to 4)

Prerequisite: consent of instructor. (S / U grades permitted.)
270A-B-C. Numerical Mathematics (4-4-4)
Error analysis of the numerical solution of linear equations and least squares problems for the full rank and rank deficient cases. Error analysis of numerical methods for eigenvalue problems and singular value problems. Error analysis of numerical quadrature and of the numerical solution of ordinary differential equations. Prerequisites: Math. 20F and knowledge of programming.

271A-B-C. Numerical Optimization (4-4-4)
Formulation and analysis of algorithms for constrained optimization. Optimality conditions; linear and quadratic programming; interior methods; penalty and barrier function methods; sequential quadratic programming methods. Prerequisite: consent of instructor (F,W,S)

272A-B-C. Numerical Partial Differential Equations (4-4-4)

The numerical solution of elliptic, parabolic, and hyperbolic partial differential equations; discretization and solution techniques. Prerequisite: consent of instructor. (F,W,S)

273A-B-C. Scientific Computation (4-4-4)

Continuum mechanics models of physical and biological systems, finite element methods and approximation theory, complexity of iterative methods for linear and nonlinear equations, continuation methods, adaptive methods, parallel computing, and scientific visualization. Project-oriented; theoretical and software development projects designed around problems of current interest in science and engineering. Prerequisite: experi-
ence with Matlab and C, some background in numerical analysis, or consent of instructor. (F,W,S)

277A-B-C. Topics in Numerical Mathematics (4-4-4)

Topics vary from year to year. May be repeated for credit with consent of adviser. Prerequisite: consent of instructor.
278. Seminar in Numerical Mathematics (1 to 4)

Prerequisite: consent of instructor. (S / U grades permitted.)
280A-B-C. Probability Theory (4-4-4)
Probability measures; Borel fields; conditional probabilities, sums of independent random variables; limit theorems; zero-one laws; stochastic processes. Prere-quisites: advanced calculus and consent of instructor. (F,W,S)

281A-B. Mathematical Statistics (4-4)
Testing and estimation, sufficiency; regression analysis; sequential analysis; statistical decision theory;nonparametric inference. Prerequisites: advanced calculus and consent of instructor.

282A-B. Applied Statistics (4-4)
Sequence in applied statistics. First quarter: general theory of linear models with applications to regression analysis. Second quarter: analysis of variance and covariance and experimental design. Third quarter: further topics to be selected by instructor. Emphasis throughout is on the analysis of actual data. Prerequisite: Math. 181 B or equivalent or consent of instructor. (S / U grades permitted.)
283. Statistical Methods in Bioinformatics (4)

This course will cover material related to the analysis of modern genomic data; sequence analysis, gene expression/functional genomics analysis, and gene mapping/applied population genetics. The course will focus on statistical modeling and inference issues and not on database mining techniques. Prerequisites: one year of calculus, one statistics course or consent of instructor.
286. Stochastic Differential Equations (4)

Review of continuous martingale theory. Stochastic integration for continuous semimartingales. Existence and uniqueness theory for stochastic differential equations. Strong Markov property. Selected applications. Prerequisite: Math. 280A-B or consent of instructor.

287A. Time Series Analysis (4)
Discussion of finite parameter schemes in the Gaussian and non-Gaussian context. Estimation for finite parameter schemes. Stationary processes and their spectral representation. Spectral estimation. Prerequisite: Math. $181 B$ or equivalent or consent of instructor.

287B. Multivariate Analysis (4)
Bivariate and more general multivariate normal distribution. Study of tests based on Hotelling's T2. Principal components, canonical correlations, and factor analysis will be discussed as well as some competing nonparametric methods, such as cluster analysis. Prerequisite: Math. 181B or equivalent or consent of instructor.

287C. Nonparametric Analysis (4)

Topics covered will include the Mann-Whitney and Wilcoxon, sign, median, and Kruskal-Wallis tests; permutation methods in general; tests for goodness of fit, especially those based on chi-square and KolmogorovSmirnov statistics. Prerequisite: Math. 181 B or equivalent or consent of instructor.
288. Seminar in Probability and Statistics (1 to 4) Prerequisite: consent of instructor. (S/ U grades permitted.)

289A-B-C. Topics in Probability and Statistics (4-4-4) In recent years, topics have included Markov processes, martingale theory, stochastic processes, stationary and Gaussian processes, ergodic theory. May be repeated for credit with consent of adviser.

290A-B-C. Topology (4-4-4)

Point set topology, including separation axioms, compactness, connectedness. Algebraic topology, including the fundamental group, covering spaces, homology and cohomology. Homotopy or applications to manifolds as time permits. Prerequisites: Math. 100A-B-C and Math. 140A-B-C. (F,W,S)
294. The Mathematics of Finance (4)

Introduction to the mathematics of financial models. Hedging, pricing by arbitrage. Discrete and continuous stochastic models. Martingales. Brownian motion, stochastic calculus. Black-Scholes model, adaptations to dividend paying equities, currencies and coupon-paying bonds, interest rate market, foreign exchange models. Prerequisite: none.
295. Special Topics in Mathematics (1 to 4)

A variety of topics and current research results in mathematics will be presented by staff members and students under faculty direction.
296. Student Colloquium (1 to 2)

A variety of topics and current research in mathematics will be presented by guest lecturers and students under faculty direction. Prerequisites: for one unit-upper-division status or consent of instructor (may only be taken P/NP), or graduate status (may only be taken S/U); for two units-consent of instructor, standard grading option allowed.

297A-B-C. Topics in Topology (4-4-4)
In recent years, topics have included generalized cohomology theory, spectral sequences, K-theory, homotopy theory. May be repeated for credit with consent of adviser. Prerequisite: consent of instructor. (F,W,S)

298. Seminar in Topology (1 to 4)

Prerequisite: consent of instructor. (S/U grades permitted.)
299. Reading and Research (1 to 12)

Independent study and research for the doctoral dissertation. One to three credits will be given for independent study (reading) and one to nine for research. Prerequisite: consent of instructor. (S / U grades permitted.)
400. Computing Technology for Mathematicians (2) Preparation for making effective use of computer technology in research and teaching of mathematics. UNIX basics, document preparation using TeX , Internet resources, HTML, computer technology in teaching. Prerequisite: graduate status.

Teaching of Mathematics

500.Apprentice Teaching (1 to 4)

Supervised teaching as part of the mathematics instructional program on campus (or, in special cases such as the CTF program, off campus). Prerequisite: consent of adviser. (S/U grades only.)

Mathematics and Science Education

OFFICE: 3060 Urey Hall Addition http://public.sdsu.edu/CRMSE/jdpmain.html

Professors

Mark I. Appelbaum, Psychology
Ted J. Case, Biology
Paul M. Churchland, Philosophy
Michael Cole, Communication
Guershon Harel, Mathematics
Barbara Jones, Physics
Douglas Magde, Chemistry and Biochemistry
Alfred B. Manaster, Mathematics
Hugh B. Mehan, Sociology
Jeffrey Rabin, Mathematics
Douglas W. Smith, Biology

Senior Lecturers (SOE)

Barbara A. Sawrey, Chemistry and Biochemistry Gabriele Wienhausen, Biology

Associate Professor

John Batali, Cognitive Science

Lecturer (SOE)

Norman A. Shenk, Mathematics (Emeritus)

The Joint Doctoral Program

UCSD and San Diego State University have created this innovative program for students who already have a master's degree in biology, chemistry, mathematics, or physics. In this program, students will complement their discipline knowledge with studies of how people learn mathematics and science. The UCSD Joint Doctoral Group in Mathematics and Science Education currently consists of faculty from the Division of Biology and the Departments of Chemistry and Biochemistry, Cognitive Science, Communication, Mathematics, Philosophy, Physics, Psychology, and Sociology. The SDSU Program faculty is drawn from the Departments of Biology, Mathematica! Sciences, Natural Sciences, Physics, Psychology, and Teacher Education.

The program includes research, practical applications, and formal coursework. Students must commit four years to the program, and most students will complete the program in four to five years. An individualized course of study will be
designed for each student, depending on the student's background and interests.

The graduates of this program will be able to contribute to the developing body of knowledge about human cognitive processes in mathematics and science. They will be expected to maintain a strong connection to educational practice through teaching and application of research results on learning to instructional situations.

Information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University.

Ph.D. Time Limit Policies

All time limits for this program start when a student first registers in this program. Students must be advanced to candidacy by the end of four years. Total university support to students in this program cannot exceed five years. Total registered time in this program cannot exceed six years. The normative time in this program is five years.

COURSES

MSED 295. Orientation Practicum (2-6)
This course should be taken the first year. Each practicum lasts five weeks and is designed to inform students about a faculty member's research program.

MSED 296A-B-C. Mathematics and Science Education/

Seminar (4)
Issues concerning the learning of mathematics and science, with particular emphasis on lower-division coursework, will be addressed from the perspectives of how students learn, what students learn, and how students are taught.

MSED 298. Research Project (2-12)
Students will work on an independent research project under the supervision of MSED faculty.

MSED 299. Reading and Research (1-12)
Students will do independent study and research in preparation of their doctoral dissertation under the supervision of MSED faculty.

Mechanical and Aerospace Engineering (MAE)

See Engineering, School of

Middle East Studies

OFFICE: 3024 Humanities and Social Sciences Building, Muir College
Web site:http://orpheus.ucsd.edu/history/ MiddleEastStud.html

Faculty

Guillermo Algaze, Professor, Anthropology Suzanne Brenner, Associate Professor, Anthropology Arthur Droge, Professor, Literature David Noel Freedman, Professor, History Richard Friedman, Professor, Literature David Goodblatt, Professor, History Hasan Kayali, Associate Professor, History Thomas Levy, Professor, Anthropology Timothy McDaniel, Professor, Sociology Michael E. Meeker, Professor, Anthropology William H. Propp, Professor, History Gershon Shafir, Professor, Sociology Melford E. Spiro, Professor Emeritus, Anthropology Winifred Woodhull, Associate Professor, Literature Oumelbanine Zhiri, Professor, Literature

The Minor

The minor in Middle East studies is an interdisciplinary program aimed at a comparative study of the Middle East (including North Africa).

The program consists of seven courses, of which at least five must be upper-division courses. Three courses have to deal with the Middle East since the emergence of Islam, as listed here under "Core Courses." The remaining courses may be chosen from either the Core Courses or the Supporting Courses; and they may be courses dealing with the ancient, medieval, or modern Middle East or a three-quarter sequence of a Middle Eastern language (in which case only four of the seven courses need to be upper-division). Ordinarily all seven courses must be taken for a letter grade.

The courses which make up the minor must be approved by the student's college and by the Middle East Studies Program.

Approved courses taken at other universities or through participation in the Education Abroad Program can be included as part of the minor by petition.

COURSES

CORE COURSES

ANRG 162. Peoples of the Middle East
ANRG 271. Muslims and Modernity
ANPR 199. Independent Study (Middle East Anthropology)

HINE 108. The Middle East before Islam
HINE 114. History of the Islamic Middle East
HINE 116. The Middle East in the Age of European Empires
HINE 118. The Middle East in the Twentieth Century
HINE 166. Nationalism in the Middle East
HINE 186. Special Topics in Middle Eastern History
HINE 199. Independent Study (Middle East History)
LTNE 150. Arabic Literature in Translation
LTWL 142. Islam: The Origins and Spread of a World Religion
LTWL 160. Women in Literature: Arabic Women in Literature \& Society

Poli. Sci. 121. Middle East Politics
Soc./D 188F. Modern Jewish Societies and Israeli Society Soc./E 199. Independent Study (Middle East Sociology) TWS 25. Third-World Literatures

SUPPORTING COURSES

ANGN 102. Early Urbanism
ANGN 105. Ethnoarchaeology
ANLD 3. World Prehistory
ANRG 101. Near Eastern Pre-History
ANRG 115. Foundations/Social Complex/Near East
ANRG 116. Archaeology of Society in Syro-Palestine
ANRG 182. Ethnography of Island Southeast Asia
Judaic Studies 1. Beginning Hebrew
Judaic Studies 2. Intermediate Hebrew
Judaic Studies 3. Intermediate Hebrew Continued Judaic Studies 101. Introduction to Hebrew Texts Judaic Studies 102. Intermediate Hebrew Texts Judaic Studies 103. Advanced Hebrew Texts HIEU 112. Modern Balkan History HINE 100. The Ancient Near East and Israel HINE 101. Hebrew Prophetic Literature HINE 102. The Jews in Their Homeland in Antiquity HINE 103. The Jewish Diaspora in Antiquity
HINE 104. The Bible and the Ancient Near East
HINE 160. Special Topics in the Bible and Ancient Near East

HINE 170. Special Topics in Jewish History
HINE 181. Problems in the Study of Hebrew Manuscripts
HINE 199. Independent Study (Judaic Studies)
HITO 100. Ancient Religions

HITO 101. Western Religions (Judaism, Christianity, Islam) LTNE 102A. Bible: The Prophetic Books
LTNE 102B. Bible: The Narrative Books
LTNE 106. Bible: Topics in Biblical Narrative
RELI 112. The Holy Book in Judaism, Christianity, Islam
Soc./D 182. Revolutions
Soc./D 189. Special Topics in Comparative-Historical Sociology (Middle East Topics)

Molecular Pathology

OFFICE: 1012 Basic Science Building, School of Medicine

Professors

Stephen Baird, M.D., Pathology (Academic Senate Distinguished Teaching Award)
Roland C. Blantz, M.D., Medicine
Colin M. Bloor, M.D., Pathology, Director
Laurence L. Brunton, Ph.D., Pharmacology/ Medicine
Kenneth R. Chien, M.D., Medicine
Lynette B. Corbeil, D.V.M., Ph.D., Pathology
Daniel James Donoghue, Ph.D., Chemistry and Biochemistry
Marilyn G. Farquhar, M.D., Cellular and Molecular Medicine
James Feramisco, Ph.D., Medicine/Pharmacology
Joshua Fierer, M.D., Medicine/Pathology (In-Residence)
Frances D. Gillin, Ph.D., Pathology
Martin F. Kagnoff, M.D., Medicine
Michael Karin, Ph.D., Pharmacology
Michael J. Kelner, M.D., Pathology
Thomas J. Kipps, M.D., Ph.D., Medicine
Theo N. Kirkland, M.D., Pathology/Medicine
Thomas A. Lane, M.D., Pathology
Eliezer Masliah, M.D., Neurosciences/Pathology
Katsumi Miyai, M.D., Ph.D., Pathology
(Academic Senate Distinguished Teaching Award)
Michael N. Oxman, M.D., Medicine/Pathology
Henry C. Powell, M.D., Pathology
C. Ann Rearden, M.D., Pathology

Douglas Richman, M.D., Pathology/Medicine (In-Residence)
Michael G. Rosenfeld, Ph.D., Medicine
Deborah H. Spector, Ph.D., Biology
David Tarin, M.D., Ph.D., Pathology
Ajit P.Varki, M.D., Medicine
Gernot Walter, Ph.D., Pathology

Associate Professors

Mark P. Kamps, Ph.D., Pathology
Andrew Mizisin, Ph.D., Pathology

Associate Clinical Professor

H. Elizabeth Broome, M.D., Pathology

Assistant Professors

Nigel Calcutt, Ph.D, Pathology
Steffan Ho, Ph.D., Pathology

Associate Adjunct Professors

Steven Frisch, Ph.D., Pathology
Guy Salvesen, Ph.D., Pathology
Jeff Smith, Ph.D., Pathology

Adjunct Professors

Floyd Bloom, M.D., Neurosciences
Jane Burns, Ph.D., Pediatrics
Kathryn Ely, Ph.D., Pathology
Eva Engvall, Ph.D., Pathology
Gen-Sheng Feng, Ph.D., Pathology
Minoru Fukuda, Ph.D., Pathology
Martin Haas, Ph.D., Biology
Mike Kalichman, Ph.D., Pathology
Stuart Lipton, M.D., Neurosciences
Rich Maki, Ph.D., Pathology
Robert Oshima, Ph.D., Pathology
Elena Pasquale, Ph.D., Pathology
Manuel Perucho, Ph.D., Medicine and Pathology
John Reed, M.D., Ph.D., Pathology
Erkki Ruoslahti, M.D., Pathology
lan Wilson, Ph.D., Pathology

The Graduate Program

The goal of the molecular pathology Ph.D. program is to provide research training in the pathobiology of disease for physicians, health scientists, and biologists. The program is interdepartmental in nature. It is centered in the Department of Pathology, but faculty members are also drawn from other departments and institutions. The program provides a comprehensive knowledge of normal and abnormal biological processes, with particular emphasis on the molecular mechanisms of human diseases.

Course Work

The course requirements are designed to ensure that all students acquire competence in cellular and molecular pathology. The requirements are flexible in order to allow students from
various backgrounds to join the program. Students holding a bachelor's degree in one of the biological sciences are required to take the introductory course in pathology taught for medical students. This requirement may be waived for students holding medical graduate degrees (M.D. or D.V.M.). All students must take five of seven core courses offered by faculty members from the Department of Pathology. These courses cover topics in molecular pathology, cancer, infectious disease, human genetic disease, nervous system disease, and developmental disorders.

Examinations

First Qualifying Examination (Minor Proposition)

The purpose of this examination is to test the student's ability to choose a research problem in molecular pathology and to propose an experimental approach to its solution. The problem should be unrelated to the student's thesis project. The student is expected to demonstrate knowledge in molecular biology and basic pathology. The first qualifying examination will be taken by the end of the fall quarter of the second year.

Second Qualifying Examination (Major Proposition)

The second qualifying examination, a university requirement, consists of an oral report by the student about research accomplished and the goals to be achieved for completion of the thesis. Upon successful completion of the examination, the student will advance to candidacy. The second qualifying examination has to be taken by the end of the fourth year.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

COURSES

PATH 208G. Human Disease (8)

An integrated consideration of the general principles of pathology and microbiology, epidemiology, and medical therapeutics of the important diseases. An example of their application to a specific organ system will be included.

PATH 220. Molecular Pathology of Disease (4)
This course will explore the molecular pathology associated with various diseases other than cancer. Emphasis will be placed on understanding the abberant ceilular processes, caused by mutation or environmental factors, that are associated with the disease state. Cardiovascular, neurological, immunological, and other diseases will be investigated.

PATH 221. Molecular Pathology of Cancer (4)
The purpose of this course is to present exciting new develop-ments in molecular carcinogenesis, with particular emphasis on oncogene expression and functions of oncogenic proteins. The relevance of molecular mechanisms for understanding human cancer will be discussed.

PATH 225. Molecular Pathology Research Seminar (2) Group and individual discussion of current literature and ongoing research activities. The format of SOM 225 will encourage student participation. Students are to present on their rotation work or current research project.

PATH 230G. Molecular Biology of the Cell (6)
An integrated consideration of the general principles of molecular pathology. This course will provide the basic foundation of the molecular biology of the cell for graduate students as a prerequi-site for Pathology 208G. This course is for graduate students only.

PATH 231. Modern Methods in Cellular and Molecular

 Pathology (4)This course presents key concepts and methodologies used in cellular and molecular pathology research. Topics will include cell membrane transport, protein purification, recombinant DNA techniques, DNA sequencing, and $P C R$ technology. The relevance of these methods for investigating human disease will be discussed.

PATH 232. Statistical Methods and Experimental Design
This course will emphasize the relationships between experimental design, statistical methods, and biomedical research. The content of the course will include basic issues in experimental design and commonly used statistical methods. The assumptions behind the statistical tests, their appropriate use, and examples of misuse will be discussed.

PATH 296. Directed Reading (1-4)
Reading and laboratory study of special topics under the direction of a faculty member. Exact subject matter to be arranged in individual cases.

PATH 299. Independent Study or Research
(1-12)
Independent study or research.
SOM 213. Histology (2)
This course teaches the structural basis of normal and abnormal function at the cellular and tissue levels. Emphasis is based on microscopic study conducted in small laboratory groups under close faculty supervision.

Muir College

OFFICE: Provost, Muir College, 2126 Humanities and Social Sciences Building

COURSES

199. Muir Special Project (4-16)

A course of independent work on a research or creative project to satisfy a Muir graduation requirement. (Only Muir students who have had Muir Special Project proposals approved may enroll in this course.) Students wishing to enroll must submit a written request with a description of the project. (Muir students must submit the Muir Special Project 199 form to the major adviser and to the Office of the Provost by the seventh week of the quarter prior to the quarter in which the 199 is to be undertaken. For information on other requirements, consult the provost's office.) Prerequisites:upper-division status, approval by project adviser and by provost. (Letter grades only.)

The Writing Program

OFFICE: 2346 Humanities and Social Sciences Building, Muir College (858) 534-2522.
DIRECTOR: Barbara Tomlinson, Ph.D., Professor of Literature

The Muir College Writing Program is a sequence of courses in critical thinking and the writing of expository prose. During these courses, students must advance beyond the basic competency expected at entrance to understand and write discourse acceptable at the university level. Even when faced with challenging topics, students must demonstrate the ability to comprehend texts at more than a superficial level; their writing must exhibit focused theses, systematic methods of analysis and argumentation, awareness of the needs of their audience, strong organization and development, clear presentation of ideas, appropriate syntax and diction, andneedless to say-correct grammar and usage.

To achieve these ends, the courses focus on principles of analysis and reasoned argumentation. Through close reading of texts, students learn both to identify underlying issues, assumptions, and values, and to identify rhetorical strategies by which these are conveyed or revealed. Students also learn to monitor and adapt their own writing processes. Since the ability to evaluate one's own writing and carry out appropriate revision strategies is particularly crucial to effec-
tive writing, all students are required to revise their papers several times. Attention is devoted to developing skill in evaluation and revision in discussion sections and in individual conferences with instructors. Sections of MCWP 50 vary in theme and content, giving students the opportunity to write in areas that interest them or that may be relevant to their major fields.
(Descriptions of the MCWP 50 sections are available each quarter in the Muir Writing Program office during preregistration.)

Students are required to take both MCWP 40 and MCWP 50 for a letter grade in their first year of residence at the college. All transfer students, upon satisfaction of Subject A, must take MCWP 40 and MCWP 50 in their first year of residence. In cases where more than one quarter of practice is needed to prepare a student for MCWP 50, an IP grade is given in MCWP 40, and the student takes MCWP 41. Completion of the sequence allows students to meet the Muir College writing requirement.

Certain exceptionally well-prepared students, particularly transfer students, may satisfy MCWP 40 or MCWP 50 by examination. The Muir challenge examinations are given at the beginning of fall and winter quarters only. Students may not take the challenge in the same quarter in which they expect to graduate.

40. Critical Writing (4)

First course of sequence in university reading and writing which satisfies the Muir College graduation requirement in writing. Required of all Muir College first-year students and of transfer students who have not completed a comparable course elsewhere. MCWP 40 introduces students to the basic elements of argument and analysis. Students engage in close reading of texts, weekly writing and revision, and individual conferences. Course must be taken for a letter grade. Those who need additional work to prepare for MCWP 50 will be given a grade of IP and will be required to take MCWP 41. Prerequisite: satisfaction of the Subject A requirement.

41. Special Study in Writing (4)

An individualized writing class including both class discussion and tutorials. Students confer individually with instructors on a regular weekly basis to talk about writing problems. The course is designed for students who have taken MCWP 40 or its equivalent but need additional writing practice to prepare for MCWP 50. MCWP 41 does not satisfy the first part of the Muir Writing requirement. MCWP 41 must be taken for a letter grade and must be taken within two quarters of MCWP 40. Prerequisite: MCWP 40 or its equivalent.

50. Critical Writing (4)

Second course of sequence in reading and writing which satisfies the Muir College graduation requirement in writing. Required of all Muir College first-year students and of transfer students. MCWP 50 focuses on
advanced skills of argument and analysis. Students engage in close reading of texts, weekly writing and revision, and individual conferences. Course must be taken for a letter grade. Prerequisite: satisfaction of MCWP 40 requirement or completion of TAG or IGETC agreement.

Music

OFFICE: 110 Mandeville Center for the Arts Web page:http://www.ucsd.edu/music

Professors

Anthony C. Davis, B.A.
John W. Fonville, D.M.A., Chair
Edwin L. Harkins, Ph.D.
Aleck Karis, M.M.
Philip C.Larson, M.M.
George Lewis, B.A.
Cecil W. Lytle, B.A., Provost, Thurgood Marshall
College
F. Richard Moore, Ph.D.

János Négyesy, Dip. Mus.
Jann C. Pasler, Ph.D.
Carol Plantamura, M.F.A.
Miller S. Puckette, Ph.D.
Roger L. Reynoids, M.M.
Steven E. Schick, M.M.
Harvey Sollberger, M.A.
Rand Steiger, M.F.A.
Bertram J. Turetzky, M.A.
Chinary Ung, Ph.D.

Professors Emeritus

Peter Farrell, M.M
Thomas B. Nee, M.A.
Wilbur L. Ogdon, Ph.D.
John J. Silber, Ph.D.
Joji Yuasa

Associate Professors

Gerald J. Balzano, Ph.D.
Charles R. Curtis, M.M. (acting)
Jane R. Stevens, Ph.D.

Assistant Professors

Chaya Czernowin, Ph.D. Nancy Guy, Ph.D.

Senior Lecturer with Security of Employement

James R. Cheatham, Dip. Mus., Emeritus

UCSD Regents' Professor

Ravi Shankar

Lecturers

Kenneth Anderson
Susan Barrett, M.A.
Edgar Billups, M.M.
David Chase, D.M.A.
Craig Dawson
Terry Glaser, M.A.
Warren Gref
Kemau Kenyatta, B.A.
Päivikki Nykter, Dip. Mus.
Robert Ramsey, B.A.
Sylvia Ré, B.A.
Celin Romero, B.A.
Anne Seshadri, Ph.D.
Kartik Seshadri, M.B.A.
Erik Ulman, Ph.D.
Stefani Walens, M.M.
Robert Zelickman, M.F.A.

Music Technology Director

Peter Otto, M.F.A.

Ensembles In Residence

Improvisation Ensemble
La Jolla Symphony and Chorus
redfishbluefish (Percussion Ensemble)
SONOR (Contemporary Faculty Ensemble)
Concert Choir
Chamber Singers
Gospel Choir
Jazz Ensemble
Wind Ensemble
This department is dedicated to the development of musical intelligence and capacity, centering its quest on the music of our own time. The undergraduate programs intend to enhance the exercise and comprehension of the music-making process. The graduate programs aim to educate practitioners and researchers who can nourish the entire domain of music as well as extend its boundaries.

Resources

Production/Performance Facilities

During the academic year a diverse slate of more than 150 public concerts are presented in well-equipped venues: Mandeville Center

Auditorium (792 seats), Mandeville Recital Hall (150 seats), Erickson Hall (150 seats), and Studio A (100 seats). These concerts provide both performance experience and a forum for examining the music of diverse eras and cultures. Substantial resources and staffing are dedicated to producing the music of our time, including faculty and student works, by new music ensembles SONOR (faculty) and Twentieth-Century Ensemble (graduate students), experimental and improvisation ensembles, and student performance collectives (New Music Forum, Performers' Forum, et al.).

Practice facilities include a complement of grand pianos, disclaviers and uprights, an electronic keyboard lab, several harpsichords, a wide array of percussion, a percussion studio, and a limited collection of musical instruments.

Concert and Recording Technology

Students can check out recording and concert production tools on a daily basis. All faculty and most student concerts are recorded by professional staff or their assistants, and qualified students can utilize the department's extensive high-tech resources for experimental projects resulting in public performance of new works.

Music Technology Facilities

The Department of Music maintains highly sophisticated, continuously refurbished facilities for the support of graduate and undergraduate instruction. Please visit our Web site: http:// orpheus.ucsd.edu/dept.music/musictech. These facilities consist of the following:

Media Networking-B-104, B-108, B-206 and all of UCSD Music's performance spaces are being upgraded for fast ethernet and ATM media networking as part of the CRCAnet project. CRCAnet will allow advanced students and researchers to "stream" digital video and audio among diverse on-campus facilities. The project is underwritten by grants from Intel, 3Com and the office of the Vice Chancellor for Academic Affairs. For more information on CRCAnet, see http:// www.crca.ucsd.edu.

Computer Music Instructional Laboratory (B-104)-Mandeville Center, room B-104 was originally established in 1987 to support undergraduate and graduate studies in computer music. B-104 is a 900 square foot facility with recessed storage and printing areas, machine isolation, acoustical treatments, presentation console, ergonomic workstation components, high-resolu-
tion data projection system, and integrated digital and analogue audio equipment for student access to audio processing, duplicating, mixing, and high-quality quadraphonic audio monitoring.

A server is maintained with network connections, mass storage and archiving systems. New for 2000 are Intel workstations running PD and CARL software. With the development of the CARL package by Professor F.R. Moore and Gareth Loy, UCSD earned an international reputation for computer music. The CARL software was adopted for use in computer music facilities around the world. PD is a new real-time, interactive musical and graphics programming environment written and under continuing development by UCSD Professor Miller Puckette. Other audio and graphics editing and processing software is also supported. One Intel system optimized for live performance applications is maintained in B-104.

B-104 also features SGI and Mac workstations. The facility is configured to support direct connection of musical instruments to computers for prototyping of real-time interactive performance and compositional routines using MAX and PD computer music software.

Recording and MIDI Project Studio (B-108)-The Mandeville Center room B-108 Recording and MIDI Project Studio is a 900 square foot facility, including an isolation booth, absorption and diffusion treatments, data connections and audio tie-lines to B-104 and Erickson Hall. This studio houses Macintosh and SGI workstations and many dedicated devices for music production and recording. ProTools 24 digital audio production package with eight channels of digital and analogue i/o for precise digital recording and editing is supported. Other upgrades include improved microphone preamps and an array of new software packages including ProTools plugins and spatialization tools. The studio features a Tascam DA88 digital multitrack recorder with synchronization and digital i/o, a Yamaha 02R digital mixer with all upgrades, Zsys digital patchers, surround sound, and sound-for-picture capabilities. The studio supports MIDI for synthesis, processing, and control in music composition and performance. Using these facilities it is possible for advanced students to "master" musical works on CDR with sufficient quality for later release as a music CD.

Macintosh Laboratory (B-206)-This facility occupies 1950 square feet, with audio and printer connections to B-104, and LAN connections. B-206
was established in 1990 to support many facets of the Music Department Curriculum, and has been upgraded incrementally nearly every year thereafter. It now comprises fourteen Macintosh computer workstations, (ten Macs, three desktop G4s and an Intel) each with a MIDI interface and Yamaha SY22/33 synthesizer. Coda Finale, Max/MSP, Soundhack, Metasynth, Deck II, and IRCAM Forum are some of the packages supported in the lab. Large format music and text printing are supported. For instructional presentation the room features L.C.D. projection and a classroom sound system. The presentation station also features a newly installed NT workstation with Sonic Foundry software, a G3 Mac with stereo ProTools editing, DAT, Bias Peak editor, and SpectraFoo signal display software and a CD burner. The principal current uses of B-206 are:

- Undergraduate Music Theory—Professor Gerald Balzano developed an innovative program that uses this facility to educate all entry level undergraduate music majors, and many minors. Subjects covered include music theory, ear training, and introductory composition.
- Acoustics-Undergraduate courses in basic acoustics and psychoacoustics use this facility as a laboratory, primarily to teach audio perception, digital recording, and editing techniques.
- Computer Music-Undergraduate courses, and Graduate Seminars in Computer Music Production and Composition use this facility as a laboratory. Many students continue to use this facility for composition after they complete course sequences.
- Music Notation-Students use dedicated software applications and the laser printer for notating and printing music..

Music Library

The Music Library (located in Geisel Library) houses an extensive collection of holdings in all areas of Western music, and possesses one of the most exhaustive collections of twentieth-century music in this country. In addition, materials in non-Western music are being very aggressively expanded. The Music Library has a remote playback facility to support the course work and research of UCSD faculty and students. The listener can directly control any of the cassette decks, reel-to-reel tape decks, turntables, CD play-
ers, laser disc players, VHS HiFi VCRs, and BETA HiFi VCRs. Ten of the remote control listening stations are equipped with video monitors. An auxiliary studio and seminar room are equipped with full remote control of any of the audio or video equipment. The Music Library's innovative Digital/ Audio Reserve Project (DARP) uses networked audio streaming to maximize student access to listening assignments. The Music Library has a homepage on the World Wide Web-[http:// orpheus.ucsd.edu/music/index.html].

Warren Studios

The Warren Studios are state-of-the-art musical recording and faculty research facilities. The studios were designed to meet the following objectives:

- to serve as an unsurpassed facility for recording and mastering musical works;
- to serve as a reference-critical listening space for the evaluation of audio production;
- to support faculty research in psychoacoustics, computer music, audio signal processing, and musical performance.
These fully-professional studios support most formats of analog and digital audio, all phases of tracking, mixing, and CD mastering, and feature sufficient infrastructure to enable large video and film shoots with full synchronization. For more information visit [http://orpheus.ucsd.edu/ dept.music/musictech] on the World Wide Web.

Center for Research in Computing and the Arts (CRCA)

The Center for Research in Computing and the Arts (CRCA) is an organized research unit of the University of California, San Diego. CRCA exists to foster collaborative working relationships among artists, scientists, and technologists by identifying and promoting projects in which common research interests may be advanced through the application of computer-mediated strategies. Visit the CRCA homepage on the World Wide Web for more information [http://www-crca.ucsd.edu].

The Undergraduate Program

Undergraduate courses offered in the Department of Music satisfy a wide range of interests for non-music majors as well as for students majoring in music.

Students wishing to acquire a musical back ground to support further study should take Music 1A-B-C, which develops skills musicians use in the analysis and performance of music. Students interested in "music appreciation" should choose from the following courses, which introduce aspects of the rich heritage of music: Music $4-15$. None of the aforementioned courses have prerequisites. For students with prior musical background who wish to continue in upper-division theory courses, Music 2A-B-C (in lieu of $1 A-B-C)$ is essential.

Music Major Programs

The undergraduate program at UCSD offers a bachelor of arts degree in music and in music humanities. The curriculum emphasizes the development of musical listening and performance skills as applied to both contemporary and traditional music.

The music major is intended for students who may choose to engage in music as a profession. This major thus requires extensive development of musical skills. A student without the appropriate level of those skills upon entrance to UCSD must devote considerable time to attaining them, either in lower-division courses or independent study. Students can concentrate in composition, performance, literature, or technology.

The Department of Music is committed to creative music making; thus all music majors are required to enroll in Music $95,130,131$, or 134 ensemble performance for at least six quarters, with three quarters of participation in a choral ensemble chosen from Music 95C, 95D, or 95K.

The music/humanities major is intended for students who wish to pursue a broad liberal arts program that includes music as a central element. This program emphasizes music history and literature, and allows the individual student to select an area of interest for the major within the broad field of the humanities.

Music Major Requirements

The lower-division prerequisites for the music major are Music $2 \mathrm{~A}-\mathrm{B}-\mathrm{C}$, and Music 2 AK -BK-CK. To continue within the major, all students must pass Music 2C or an equivalent proficiency exam. Composition emphasis students must take Music 33 , Introduction to Composition, or take a proficiency exam for the course. All required music major courses must be taken for a letter grade, with the exception of Music 143 , which is taken
on a Pass/No Pass basis. All courses to be counted toward satisfying the major requirements must be passed with a grade of C or better.

To complete the music major the following courses are required:

1. Music 101A-B-C.
2. Music 102A-B-C.
3. Music 120A-B-C.
4. Two quarters of Music 133 (normally taken in the winter quarters of the junior and senior years).
5. Music 111 or Music 114.
6. One of the following sequences: Music 103A-BC (composition), three courses (in addition to Music 111 or 114) from the series Music 111 127 (literature), Music 170/171/175 (technology), or three quarters of Music 132 (performance).
7. Six quarters of Music $95,130,131$, or 134. (three from 95C, 95D, or 95K).
8. Music 143 every quarter.

Music/Humanities Major
 Requirements

The prerequisite for the music/humanities major is Music 1A-B-C (or 2A-B-C, if qualified). To complete the major the following courses are required:

1. Music 120A-B-C.
2. Three courses chosen from Music 111-127.
3. Six upper-division courses, selected from the humanities or the fine arts, that form a coherent program of study relevant to the chosen upper-division music courses.
4. Six quarters of Music $95,130,131$, or 134.
5. Music 143 every quarter.

Students interested in this major should confer with the music/humanities faculty adviser to work out a course of study, which must be submitted at the beginning of the junior year for the adviser's written approval.

Interdisciplinary Computing and the Arts (ICAM) Major

Major Requirements

Twenty courses are required in the computing and the arts major for the attainment of the

Bachelor of Arts degree. A minimum of twelve of these courses must be upper division.

All courses taken to satisfy major requirements must be taken for a letter grade, and only grades of C - or better will be accepted in the major.

The Undergraduate Program

The Interdisciplinary Computing and the Arts program in the Music and Visual Arts departments draws upon, and aims to bring together, ideas and paradigms from computer science, art, and cultural theory. It also takes for granted that the computer has become a metamedium and that artists working with computers are expected to combine different media forms in their works. All of this makes the program unique among other currently existing computer art or design programs which, on the one hand, usually focus on the use of computers for a particular media (for instance, specializing in computer animation, or computer music, or computer design for print) and, on the other hand, does not enter into a serious dialog with the current research in computer science, only teaching the students off-the-shelf software.

The program also recognizes that creating sophisticated artistic works with computers requires a new model of the creative process, one that combines traditional artistic procedures with the experimental research characteristic of the sciences. All in all, it aims to train a new type of cultural producer, who is familiar with music technology, who is equally proficient with computer programming and artistic skills, who is always ready to learn new technologies, and who is comfortable interacting with scientists and computer industry resources.

The goals of the program are:

- to prepare the next generation of artists who will be functioning in a computer-mediated culture
- to give students necessary technical, theoretical, and historical backgrounds so they can contribute to the development of new aesthetics for computer media
- to prepare students to mediate between the worlds of computer science and technology, the arts, and the culture at large by being equally proficient with computing and cultural concepts
- to give students sufficient understanding of the trajectories of development in computing so they can anticipate and work with the
emerging trends, rather than being locked in particular software currently available on the market.

Admission to the ICAM Major

Student interest in the Interdisciplinary Computing and the Arts Major (ICAM) has been strong. Because the department has limited resources to accommodate student demand, it is necessary to limit admission to these majors to the most highly qualified students. Any student admitted to UCSD beginning in fall 2002 who wishes to declare an ICAM major will be admitted to the pre-major rather than being directly admitted to the major.

ICAM Pre-Major

Students designated as pre-majors in ICAM must complete the following eight required lower-division courses within six quarters (by the end of their sophomore years):

MUS 4, Introduction to Western Music
VIS 1, Introduction to Art-Making
MUS 14, Contemporary Music
and one from
MUS 1A, Musical Literacy
MUS 2A, Basic Musicianship
MUS 5, Introduction to Music Making
ICAM 40/VIS 40, Introduction to Computing in the Arts
MATH 20A Calculus
MATH 20B Calculus
CSE 11^{*}, Introduction to Computer Science: JAVA

* CSE 11 is an accelerated course in the JAVA programming language. CSE 8A and CSE 8B, which cover the same material in a non-accelerated format, may be substituted.

Applying to the Major

Upon completion of all required lower-division courses, pre-majors who seek entrance to the ICAM major must formally apply at the Music Department Undergraduate Program Office. Admission will be based on the following criteria:

1. Performance in the lower-division courses as measured by a GPA of 3.0 or higher, determined by the department on an annual basis.
2. Submission to the department of a portfolio of work demonstrating superior progress as a pre-major. The portfolio will consist of at least two projects that the student has produced in ICAM 40/VIS 40, in another digital arts class, or
independently, that in the faculty's judgment demonstrate that the student possesses the artistic ability and technical skills to perform at a high level in upper-division courses in the majors. Pre-majors should consult the undergraduate adviser in music as to the form in which projects should be submitted (disk, slides, tapes, etc.).

Transfer Students

Beginning in fall 2002, transfer students who wish to declare an ICAM major are subject to the major's admissions policies: that is, they will be admitted initially as pre-majors, apply to the major on the same basis as other students, and be subject to the same requirements with respect to lower-division courses, grade-point average, and portfolio evaluation. Transfers entering with 36 or more quarter units must apply for admission to the major no later than their third quarter of study at UCSD. At the time of admission to the pre-major, transfer students' transcripts will be evaluated by the departments to determine what courses completed elsewhere, if any, may be petitioned as equivalent to required courses. Students should be prepared to provide course descriptions and other materials that may be required to determine the content of such courses.

Continuing Students (Students admitted prior to fall 2002)

Any student admitted to UCSD before fall 2002 may declare an ICAM major by completing a Change of Major form at the undergraduate adviser's office.

Policies Relating to the ICAM Major

Satisfactory Progress

Any ICAM major whose GPA in courses required for the major drops below 2.0 will be placed on probationary status the following quarter. If, during that probationary quarter, the GPA does not move back to up 2.0 or better, he or she will be dropped from the major.

Prerequisites

Students are required to complete all prerequisites prior to enrolling in any course required for the major. Exceptions must be negotiated with the instructor of the course in question, in consultation with the department undergraduate adviser.

Limitations to Enrollment by Non-Majors

A department stamp is required for all upperdivision courses in computing in the arts. Because ICAM is an impacted major, first preference in enrollment in upper-division computing in the arts will be given to ICAM majors and to music majors with a technology concentration. Second preference will be given to other visual arts and music majors. Other students will be admitted to these courses only if space is available.

Lower-Division

(Eight courses required.)

MUS 4	Introduction to Western Music
VIS 1	Introduction to Art-Making
or	
MUS 14	Contemporary Music
and one from:	
MUS 1A	Music Literacy
MUS 2A	Basic Musicianship
MUS 5	Introduction to Music Making
ICAM 40/	Introduction to Computing in the
VIS 40	Arts
MATH 20A	Calculus for Science and
MATH 208	Engineering
Calculus for Science and	
Engineering	

Upper-Division

(twelve courses required)
Survey (one course required)
ICAM 110. Computing in the Arts: Current Practice

Foundation (three courses required)
ICAM 101/NIS 140. Digital Imaging:Image and Interactivity
ICAM 102NIS 145A. Digital Media I:Time, Movement, Sound
ICAM 103/MUS 170. Musical Acoustics
Advanced (four courses required)
ICAM 120.Virtual Environments
ICAM 130/VIS 149 Seminar in Contemporary Computer Topics
MUS 171. Computer Music I
MUS 172. Computer Music II
MUS 173. Audio Production: Mixing and Editing
MUS 175. Musical Psychoacoustics
MUS 176. Music Technology Seminar
VIS 109. Advanced Projects in Media
VIS 131. Special Projects in Media

VIS 132. Installation Production and Studio
VIS 141A. Computer Programming for the Arts I
VIS 141B. Computer Programming for the Arts II
VIS 145B. Digital Media II
VIS 147A. Electronic Technologies for Art
VIS 147B. Electronic Technologies for Art II VIS 174. Media Sketchbook

Theory and History (two courses required)
ICAM 150/VIS 159. History of Art and
Technology
and one of:
MUS 111. World Music Traditions
MUS 114. Music of the Twentieth Century
VIS 123CN. Early Print Culture:The First Media Revolution
VIS 125E. History of Performance
VIS 150 . History and Art of the Silent Cinema
VIS 151. History of the Experimental Film
VIS 152. Film in Social Context
VIS 153. The Genre Series
VIS 154. Hard Look at the Movies
VIS 155.The Director Series
VIS 157 .Video History and Criticism
VIS 158. Histories of Photography
Senior Project (two courses required)
ICAM 160A/B. Senior Project in Computer Arts
All Computing and the Arts (ICAM) course descriptions are listed at the end of the lowerand upper-division sections under "Courses." Not all courses are offered each year.

Honors

1. To be admitted into the honors program a student must have the following:

- Excellence in a specific subject matter (performance, composition, literature, technology, or music/humanities) and faculty support.
- Performers must have previously performed on Performers Forum and enrolled in Chamber Music, Music 130. (Vocalists can seek an exception.) Other students must have completed all Music 95 requirements prior to entering the honors program.
- A GPA in the Department of Music of 3.6; an overall GPA of 3.0

All of the requirements below must be completed before the last day of instruction in the spring quarter prior to the academic year in
which the student proposes to pursue an honors curriculum.

- Performance students must present a piece before the performance faculty that demonstrates their technical and musical abilities. In addition, students must provide a proposed program for an honors recital.
- Composition students must have a composition performed on the New Music Forum series. Either the student's principal instructor must attend this performance or a tape of this performance must be provided for faculty review. In addition, students must provide a proposed portfolio of original scores for an honors recital.
- Literature students who have (1) presented historically-or musicologically-oriented research papers at campus venues featuring undergraduate research, or (2) been involved in the faculty mentor program, or (3) participated in the presentation of the winter opera with the accompanying symposium, may submit a portfolio of papers to the Critical Studies/Experimental Practices (CSEP) faculty. In addition, students must propose a fifty minute lecture for the Department Seminar (Music 143).
- Music science and technology students must present a portfolio of projects to the music technology faculty and propose a fifty-minute lecture/demonstration for the Department Seminar (Music 143).

2. Once admitted to the honors program:

- Students must be supervised by a faculty adviser throughout the honors program.
- Composition students admitted to the honors program will enroll in twelve units of the Composition Honors course (Music 103D-E-F). Performance students will enroll in twelve units of Music 132R (after at least three quarters of Music 132). Technology students will enroll in twelve units of Music 176 or 199; Music literature and music humanities students will enroll in twelve units of Music 199, 150, or 107.

3. To receive honors:

- A student must publicly demonstrate an appropriate level of excellence, an acceptable GPA, and suitable participation in department presentations and seminars,
as determined by the student's honors committee.

Please Note: Being admitted to the honors curriculum does not guarantee that a student will receive honors. In accordance with university policy, no more than 20 percent of graduating students may be granted honors.

For further information on the Department of Music Honors Program and to obtain an application form, students should make an appointment with the undergraduate staff adviser.

Transfer Students

Students who plan to transfer into the music major should have strong skills in basic musicianship. For those planning to emphasize performance, solid proficiency on the instrument is required. A general course in the history of music is recommended. All transfer students must pass a proficiency examination in Music 2C (Basic Musicianship) and Music 2CK (Basic Keyboard). To verify the acceptability of transfer music courses, students must make an appointment with the undergraduate staff adviser.

Minor Programs

Please obtain a Department of Music brochure of approved minors from the undergraduate office. Students must seek advice and obtain approval from a music faculty adviser prior to embarking upon a minor program.

The music minor for students entering UCSD in and after winter quarter 1998 consists of:

- two lower-division music courses except performance ensembles (Music 95AMusic 95W) and lessons (Music 32)
- five upper-division music courses

Students who entered UCSD before winter 1998 may select either the new minor or one of the music minors offered at the time of their entry into the university.

A minor with an emphasis in ICAM consists of seven specific courses, of which at least five must be upper division. Prospective minors should consult with the respective departmental adviser for a complete list of appropriate classes acceptable for the minor.

Advising Office

Undergraduate Staff Adviser

```
Eileen Voreades, Room 124
Mandeville Center, (858) 534-8226
evoreades@ucsd.edu
```


The Graduate Program

UCSD offers the master of arts and doctor of philosophy in music as well as a doctor of musical arts. Areas of emphasis for the M.A. include Composition, Computer Music, Critical Studies/Experimental Practices (CS/EP), and Performance. For the Ph.D., areas of emphasis offered are Composition, Computer Music, and Critical Studies/Experimental Practices. The doctoral of musical arts has an emphasis in Contempo-rary Music Performance.

Composition

The Composition Program is committed to encouraging the individual gifts and capacities of student composers in a diverse and active environment. This is done in a variety of ways, but primarily through intensive personal interaction between faculty and student.

An incoming member of the M.A. or Ph.D. program begins with a year-long seminar (taught by a different faculty composer each quarter) and continues with individual studies thereafter. At the close of the first fall and again after the spring quarter, the entire composition community gathers for what is typically a day-long "jury." Each seminar member is allotted a block of time during which the composition that he or she has just completed is performed and recorded in a carefully rehearsed presentation. There is a detailed discussion of each work by the faculty present, and the student has opportunity to comment, explain, and question. Following the performance and discussions of this day, the composition faculty meets to assess the students' work. These events constitute the uniqueness of the UCSD program, and manifest the range, seriousness, and vitality with which compositional issues are explored here.

After completing three quarters of seminar and two juries, students have come to know something about the ideas and attitudes of each faculty composer; the faculty is, in turn, aware of each student's aims and needs. At this point, then, an individual mentor is agreed upon and this relationship becomes the center of the student's continuing work as he or she completes the degree. There is also a biweekly Focus on Composition Seminar at
which faculty, students and selected visitors present work of interest (compositional, analytical, technological, even, perhaps, whimsical).

The seminars serve to foster mutual awareness on the part of the student composer group. Collegial relationships develop which lead to creative outlets in cooperative projects. (These include the student-run Composers' Forums, performance collectives and recital projects.) UCSD performers-faculty and student-are all committed to the playing of new music, and frequent composer/performer collaborations are a vital aspect of life in the Department of Music.

Computer Music

The Computer Music Program emphasizes research in new techniques for electronic music composition and performance, catalyzed through an active concert program of new works by students, faculty, and visitors. Areas of research include:
new audio synthesis techniques,
audio signal processing,
psychoacoustics,
live improvisation with and by computers, integrating audio and video, electronic spatialization of sounds, and synchronization and control in live computer music performance.
Computers today are ubiquitous in all aspects of music theory and music-making. The Computer Music Program encourages work which overlaps with the other programs of study: composition, performance, and critical studies/experimental practices. Analyzing and performing electronic music repertoire as well as writing new music involving electronics are encouraged.

Like the music department's other Ph.D. areas (composition and CSEP), the computer music area's first year is centered on a year-long "backbone" course covering the essentials of the compuer music field. This material divides naturally into three portions (audio signal processing, compositional algorithms, and musical cognition).

In their second year, students work individually with faculty members to deepen their mastery of their subject areas of concentration. For example, a student wishing to focus on signal processing aspects might study techniques for digital audio analysis and resynthesis, about which research has been published continually over the last three decades.

Also during these first two years Ph.D. students take seminars on music analysis, composition, and performance practice along with composition and CSEP doctoral students. After having taken a critical mass of such subjects students enter a qualifying examination preparation period in the same model as for the two existing music Ph.D. areas, and, once successful, they start their dissertation research.

UCSD's Center for Research in Computing and the Arts (http://crca.ucsd.edu) offers an ideal research environment for graduate students in this area.

Critical Studies/Experimental Practices

The Program in Critical Studies/Experimental Practices (CS/EP) explores what music is about over the widest possible range of traditions and possibilities. An exploration of experimental, Western, and non-Western music-making is combined with the critical examination of music and musical ideas within human societies.

This interactive environment encourages a cross-fertilization between diverse musical forms and the theoretical and critical discourses that surround them, often drawing in those who may not fit conventional categories of "composer" or "performer," or those whose work is not constrained by traditional disciplinary boundaries.

Thinking about music requires both analytic engagement with real music and the creative investigation of ideas relevant to its nature, creation, production, and reception. Core seminars explore multiple ways of thinking about music, including critical, cognitive, and intercultural approaches as well as traditional syntactical analysis. Recent seminars have included crossculturalism in music, psychoacoustics, film and popular music, multimedia aesthetics, methodologies for improvisation, representations of sexuality and gender in music and contemporary theories of narrativity in music. In conjunction with the seminar, each student not yet advanced to candidacy will meet with a faculty adviser to plan and prepare a presentation of his or her own work as part of a one-day CS/EP student symposium during the spring quarter.

Music-making in CS/EP encompasses both compositional and performance activities. Experimental performance workshops incorporate improvisation and such diverse elements as new technologies, video, dance, visual, and theatrical
components to make music in a multiplicity of ways.

Student-generated projects and workshops are also an important component of the UCSD Graduate Program in CS/EP. Individual student interests and initiatives are welcomed by the faculty, who are expert in such diverse fields as cognitive psychology, computer-aided improvisation, ethnomusicology, historical development of Western music, and contemporary critical thought.

Performance

Fostering the creative, intelligent, and passionate performance of contemporary music is the mission of the Performance Program of the Department of Music. As once stated by founding faculty composer Robert Erickson, we at UCSD are a "community of musicians."

The performance of contemporary music is viewed as a creative act which balances expertise and exploration. Within this context, performers act and interact in a communal environment, working with faculty and student composers, collaborating in music technology, researching instrument design, improvising, and experimenting in performance practice, among many other pursuits.

Graduate performance students pursue either a master of arts or a doctor of musical arts degree in contemporary performance. The course of study for both programs involves the completion of required graduate seminars and intensive study with a mentoring faculty member. Students are encouraged to adopt a vigorous, exploratory orientation in their private study. Final degree requirements include a recital, or in the case of the DMA, two recitals and the presentation of personal performance research.

The work of graduate performance students forms an integral component of a rich musical environment which produces an astonishing quantity and variety of performances. Students may perform in SONOR (the university's contemporary music ensemble) or in SIRIUS, (the graduate student contemporary music group). The Performance Forum, a student-initiated concert series, provides an opportunity for students to present a wide variety of concerts of improvised music, world music, and music with technology. A strong, collaborative spirit between the Performance and Composition Programs also yields many new works each year performed on New Music Forum concerts series.

Graduate Admissions

Normally students will be admitted to begin graduate studies in the fall quarter only.

1. Formal UCSD Applications for Graduate Admission should be submitted by January 15th of the admission year; failure to meet that deadline will jeopardize the applicant's opportunity for admission and financial support.
2. Supporting documents for all applicants must include:
a. statement of purpose
b. three letters of recommendation
c. official transcripts
d. Graduate Record Examination (GRE) scores from the General Test
e. foreign applicants must submit TOEFL scores and a Foreign Applicant Financial Statement
3. In addition, applicants to graduate studies in music must submit a portfolio consisting of the following:
a. for ALL applicants, a repertory list of works (solo and chamber) performed during the past few years and a sample of printed concert programs in which they have participated, either as performer or composer
b. for ALL applicants, a minimum of two papers illustrating writing ability in any of the following areas: analysis, criticism, aesthetics, music theory, or music technology
—in addition -
c. for Composition applicants, a minimum of three scores of instrumental works with taped examples of the works being performed. (These may include, but should not be exclusively electroacoustic.)
d. for CS/EP and Computer Music, prospective students should submit appropriate documentation (e.g., papers, performances, intermedia works, computer programs, etc.) of their prior work
e. for Performance applicants, tapes and/or personal audition demonstrating their level of vocal and/or instrumental performance

Advisory Examinations

After completion of an advisory examination during Welcome Week, each new student will
meet with the departmental M.A. or Ph.D. adviser. Students found to be deficient in any areas covered on the advisory examination (dictation, sight reading, keyboard proficiency, history, and literature) will be advised to remedy deficiencies during their first year.

Core Graduate Curriculum

All graduate students are required to take Music 201 (Projects in New Music Performance), Music 210 (Musical Analysis), Music 228 (Conduc-ting)-optional for CS/EP students, and Music 291 (Problems and Methods of Music Research and Performance). Students who completed Music 210,228 , and 291 during their master's degree program at UCSD, do not need to retake those courses for their doctoral curriculum.

To assure that all requirements are being adequately met, all graduate students must make an appointment with the graduate staff adviser for a degree check no later than the winter quarter of the second year.

Master's Degree Program

The master of arts in music degree includes areas of emphasis in Composition, Computer Music, Critical Studies/Experimental Practices (CS/EP), and Performance. The degree requires completion of at least thirty-six quarter units of graduate courses (courses numbered 201-299), including six units of Music 500 (Apprentice Teaching in Music) and six units of Music 299 (Advanced Research Projects and Independent Study) bearing directly on completion of the master's thesis. Master's students are expected to complete all requirements for the degree in six quarters of residence.

Course Requirements

In addition to the core graduate curriculum, all master's degree students are required to complete requirements in their area of emphasis:

COMPOSITION

1. Music 201 (A, B or C)-must take at least two times.
2. Music 203ABC (M.A. level)-successful completion of the jury process is necessary to get a passing grade in the corresponding seminar.
3. Music 203D-after successful completion of 203C, students must enroll in Music 203D (with
their committee chair) every quarter until graduation.
4. Music 204-every quarter until graduation.
5. Music 206 or 207-a combination of at least two courses.

COMPUTER MUSIC

1. Music 201 (A, B or C)-must take at least two times.
2. Music 203A-B-C or Music 232 (3 times)-must take within the first year of the program.
3. Music 206 or 207 -required at least one time.
4. Music 267-must take at least four times.

CRITICAL STUDIES/EXPERIMENTAL PRACTICES

1. Music 201 (A, B or C)-must take at least two times.
2. Music 205-every quarter until graduation.
3. Music 206 or 207-a combination of at least two courses.
4. Music 208A-B-C-must take within the first year of the program.
5. Music 208D--one time during the second year.

PERFORMANCE

1. Music 201 (A, B, or C) or 202-every quarter until graduation.
2. Music 206 or 207-a combination of at least two courses.
3. Music 232-every quarter until graduation.
4. Music 245-every quarter in residence.

Master's Degree Completion Requirements

A folio of three research papers in professional format (normally to be written in connection with the courses the student will be taking) must be accepted by the student's committee prior to approval of the thesis.
M.A. candidates will present a thesis consisting of the following under the supervision of the student's committee chair in Music 299:

1. Candidates emphasizing Composition will prepare a folio of three chamber compositions together with tape recordings of at least two of them.
2. Candidates emphasizing Computer Music will write a research paper (thesis) and present a lecture-performance in which the scientific,
technological, and musical aspects of an original computer music composition are documented, played, and discussed.
3. Candidates emphasizing Critical Studies/Experimental Practices will write an extended research paper (thesis) on a topic chosen with their committee chair.
4. Candidates emphasizing Performance will present a recital supported by lecture-quality notes. The program must be approved by the student's committee chair.
All of the above master's requirements must have final approval from the student's individual committee upon completion.

Doctoral Degree Program

Students of superior musical competence may pursue a program with emphasis in Composition, Computer Music, or Critical Studies/Experimental Practices (CS/EP) leading to the Ph.D. or doctor of musical arts (D.M.A.) degree in Contemporary Music Performance.

All doctoral students within the Department of Music must complete the Core Graduate Curriculum (outlined in the section above the Master's Degree Program) plus additional core requirements for the Ph.D. or D.M.A. program. These additional core requirements are:

1. Successful completion of an M.A. degree, including requirements equivalent to those described above for the M.A. in music. UCSD M.A. students who apply to the Ph.D./D.M.A. program must complete all departmental requirements, obtain OGSR approval, and file the M.A. degree at Geisel Library before enrolling in any Ph.D./D.M.A. level courses.
2. The Department of Music strongly recommends that entering students have acquired a reading ability in at least one of the standard reference foreign languages (French, German, Italian, or Spanish) in addition to their native language.
3. All Ph.D./D.M.A. students are required to complete six units of credit in Music 500 (Apprentice Teaching) unless the student has completed this requirement in UCSD's master's degree program.
4. After completing the qualifying examination, all students must remain in residence for at least three quarters, during which time they must enroll in twelve units of Music 299
(Advanced Research Projects and Independent Study) with their committee chair or members every quarter.

Course Requirements

In addition to the core graduate and Ph.D./ D.M.A. curriculum, doctoral students (according to their area of emphasis) must complete the following courses prior to the qualifying examination:

COMPOSITION

1. Music $201(A, B$, or $C)$-must take at least two times.
2. Music 203A-B-C (Ph.D. level)-successful completion of the jury process is necessary to get a passing grade in the corresponding seminar. Continuing students from the UCSD Composition M.A. program may be excused from Music 203B-C by successfully completing Music 203A at the Ph.D. level.
3. Music 203D-after successful completion of 203C, students must enroll in Music 203D (with their committee chair) every quarter in residence.
4. Music 204-every quarter in residence.
5. Music 206 or 207-a combination of three courses from Music 206/207.
6. Music 209-must be taken at least three times.
7. Music 298-must complete at least six units.

COMPUTER MUSIC

1. Music 201 (A-B-C)-must take at least two times.
2. Music 270A-B-C.Ph.D. students who have already completed 270A-B-C as part of their masters may substitute 12 units taken from Music 201, 206, 207, 209, 210, and/or 267.
3. Music 270D-after successful completion of 270C, students must enroll in Music 270D (with their committee chair) every quarter in residence.
4. Music 206, 207, 209, 210, and/or 267, for a total of at least 24 units.

CRITICAL STUDIES/EXPERIMENTAL PRACTICES

1. Music 201 (A, B or C)-must take at least two times.
2. Music 205-every quarter in residence.
3. Music 206 or 207-a combination of three courses from Music 206/207. Ph.D. students in
the CS/EP program emphasizing computer music may replace two 206/207 requirements with two 267 seminars.
4. Music 208A-B-C—must take within the first year of the program unless previously taken as a UCSD M.A. student.
5. Music 208D-required at least three times during the Ph.D. program.
6. Music 209-must be taken at least three times.
7. Music 298-must complete at least six units.

PERFORMANCE

1. Music $201(A, B$, or $C)$ or 202 -every quarter until completion of qualifying examination.
2. Music 206/207/209—as approved by D.M.A. adviser, students must take at least six seminars related to the primary and secondary area of specialization. Music 296 may be substituted for up to four seminars with permission of D.M.A. adviser.
3. Music 232 -every quarter until completion of qualifying examination.
4. Music 245-every quarter in residence.
5. Music 250-must be taken at least three times.
6. Music 298-must complete at least six units.

Qualifying Examination/ Advancement to Candidacy

Requirements prior to taking the qualifying examination:

1. Completion of all Ph.D./D.M.A. required course work.
2. For Ph.D. students, one research paper judged to be of publishable quality must be completed prior to qualifying examinations. The subject of the publishable paper will be developed during the student's first two years and must be approved by the student's Ph.D. committee chair.
3. For Composition students, in addition to the publishable paper, a folio of not fewer than three compositions (not previously accepted for an M.A. degree) must be completed prior to qualifying examinations.
4. For D.M.A. students, one major recital; plus either (a) an abstract of the thesis or research project which will be given to the Doctoral Committee at the qualifying examination; or (b) a substantial portion of the works from the
student's first two "major recitals" will be presented at the qualifying examination.
The qualifying examination for all doctoral students will consist of the following:

- A written and oral defense of three questions provided by the Doctoral Committee pertaining to appropriate areas of specialization.

Ph.D./D.M.A. Degree Completion Requirements

1. For Composition students, completion of a major composition project.
2. For CS/EP and Computer Music students, completion of an acceptable dissertation.
3. For D.M.A. students, completion of a second major recital plus one of the following: (a) thesis or research project; or (b) a concert that is innovative in design and/or content, and which is supported by a document containing extensive stylistic or analytical discussion of the program; or (c) a lecture/concert pertaining to innovative and/or original material, with appropriate documentation as determined by the committee, or (d) two approved chamber music concerts with appropriate documentation as determined by the committee.
4. A final public defense of the composition/dissertation/recitals.

Materials previously submitted for other degrees are not acceptable for submission for the Ph.D./D.M.A. degree.

Time Limit Policy for the Doctoral Degree

NORMATIVE TIME LIMITS

4 years: Students entering the Ph.D./D.M.A. program with a master's degree from another institution.

6 years: Students continuing into the Ph.D./D.M.A. program with a master's degree from UCSD. Time limit is calculated from the beginning of the M.A. program (i.e., 2 years for M.A. program plus 4 years normative time for Ph.D./D.M.A.).

Educational fee grants are provided to students within normative time after advancement to Ph.D./D.M.A. candidacy and until accrued time in graduate status exceeds the normative time.

SUPPORT TIME LIMITS

6 years: Students entering the Ph.D./D.M.A. program with a master's degree from another institution.

7 years: Students continuing into the Ph.D./D.M.A. program with a master's degree from UCSD. Time limit is calculated from the beginning of the M.A. program

TOTAL REGISTERED TIME LIMITS

σ years: Students entering the Ph.D./D.M.A. program with a master's degree from another institution.

8 years: Students continuing into the Ph.D./ D.M.A. program with a master's degree from UCSD. Time limit is calculated from the beginning of the M.A. program

Students who have not completed all Ph.D. requirements within the maximum total registered time will no longer be permitted to register for classes.

Advising Office

Graduate Staff Adviser
Lori Bantz, Room 109
Mandeville Center, (858) 534-3279
lbantz@ucsd.edu

COURSES

NOTE:The following course offerings outline the general scope of our program. Not all courses are offered every year. It is essential that students work closely with departmental advisers when planning their degree programs.

LOWER-DIVISION

1A-B-C. Musical Literacy (4-4-4)

Primarily intended for students whose major is other than music, this course develops musical abilities through a conceptual understanding of the structure of music together with listening exercises and techniques. Topics include musical notation, melodic transcription, scales, chords, intervals, keys, rhythm, meter, and rudiments of musical form. Prerequisite: none.

2A-B-C. Basic Musicianship (4-4-4)

Primarily intended for music majors. Development of basic skills: perception and notation of pitch and temporal relationships. Introduction to functional harmony. Studies in melodic writing. Drills in sight singing, rhythmic reading, and dictation. Prerequisites: passing score on placement exam. Must be taken in sequence. Music
majors must be concurrently enrolled in Music 2AK, 2BK, and 2CK (Basic Keyboard).

2AK-BK-CK. Basic Keyboard (2-2-2)

Scales, chords, harmonic progressions, transposition, and simple pieces. Prerequisites: concurrent enrollment in Music 2A, B, C.
4. Introduction to Western Music (4)

A brief survey of the history of Western Music from the Middle Ages to the present. Much attention will be paid to the direct experience of listening to music and attendance of concerts. Class consists of lectures, listening labs, and live performances. Prerequisite: none.
5. Introduction to Music Making (4)

A one-quarter course designed to discover musical potential and expand musical experience. No knowledge of music, notation, or instrumental skill is necessary. Small lab sessions present music through composing, improvising, and performing. Results take the form of works for tape, theatre, voices, or instruments. Prerequisite: none.

6. Electronic Music (4)

Lectures and listening sessions devoted to the most significant works of music realized through the use of computers and other electronic devices from the middle of this century through the present. Prerequisite: none.
7. Music, Science, and Computers (4)

An exploration of the interactions among music, science, and technology, including the development and history of science and technology from the perspective of music, and the modern resynthesis of these disciplines occurring around computers. Prerequisite: none.

8. American Music (4)

A course designed to study the development of music in America. The focus will be on both the vernacular traditions including hymn singing, country music, jazz, big band, rock, etc., as well as the cultivated traditions of various composers from William Billings to John Cage. Prerequisite: none. (Offered in selected years.)

9. Symphony (4)

The symphonic masterworks course will consist of lectures and listening sessions devoted to a detailed discussion of a small number of recognized masterworks (e.g., Mozart, Beethoven, Berlioz, Stravinsky, Ligeti, etc.). Prerequisite: none. (Offered in selected years.)
10. Chamber Music (4)

Chamber Music will consist of lectures and listening sessions devoted to a detailed discussion of recognized chamber masterworks (e.g., Haydn, Mozart, Beethoven, Bartok, etc.). Prerequisite: none. (Offered in selected years.)
11. Folk Music (4)

A course on folk musics of the world, covered through lectures, films, and listening sessions devoted to detailed discussion of music indigenous to varying countries/areas of the world. Topics vary from year to year. May be repeated once for credit. Prerequisite: none.
12. Opera (4)

A study of opera masterworks that often coincide with operas presented in the San Diego Opera season. Class consists of lectures, listening labs, live performances, and opera on video. Prerequisite: none.

13AF. World Music/Africa (4)

A course that focuses on the music of Africa and on African ways of music making in the Diaspora to the Caribbean and South America. No prior technical knowledge of music is necessary. Prerequisite: none.

13AM. World Music/Multicultural America (4)
A study of music cultures in the United States, particularly Native American, Hispanic American, European American, Asian American, and Pacific Islanders from the perspective of ethnicity, origin, interaction, and the contribution of various ethnic groups to American musical life. No prior technical knowledge of music is necessary. Prerequisite:none.

13AS. World Music/Asia and Oceania (4)
Introduction to selected performance traditions of Asia and Oceania with links to local and visiting musicians from these cultures. No prior technical knowledge of music is necessary. Prerequisite: none.

14. Contemporary Music (4)

This course offers opportunities to prepare oneself for experiences with new music (through preview lectures), hear performances (by visiting or faculty artists), to discuss each event informally with a faculty panel: an effort to foster informed listening to the new in music. Prerequisite: none.
15. Popular Music (4)

A course on popular music from different time periods, covered through lectures, films, and listening sessions. Topics vary from year to year. May be repeated once for credit. Prerequisite: none.

32. Instrumental/Vocal Instruction (2)

Individual instruction in instrumental or vocal technique and repertory. Intermediate level. For declared music majors: students must be enrolled in courses in the music major curriculum. Students must audition for performance faculty on first Monday of fall quarter. Prerequisites: department stamp required. Enrollment by consent of instructor after audition. May be taken for credit six times.

32G. Group Instrumental Instruction (2)

Group instruction in instrumental or vocal technique and repertory. Intermediate level. Intended for students who make an important contribution to Department of Music ensembles. Prerequisites: Written recommendation of ensemble director and audition for performance faculty on first day of classes required. Department stamp required. May be taken for credit six times. (Offered in selected years)
33. Introduction to Composition (4)

This course is intended to provide the prerequisite knowledge necessary to pursue an emphasis in composition. Topics covered will include notation, calligraphy, instrumentation, orchestration, and twentiethcentury music literature. Prerequisite: Music 2A and 2B or consent of instructor.
95. Ensemble Performance (2)

Performance in an ensemble appropriate to student abilities and interests. Normally each section requires student participation for the whole academic year, with credit for participation each quarter. Music majors should enroll in at least one section each quarter. Sections of Music 95W have included: African drumming, Korean percussion, Indian sitar and tabla, koto, and Indonesian flute. Not all sections will be offered every year. May be repeated for credit. Grading on participation level, individual testing, comparative papers
on repertoire covered, etc. Prerequisites: audition and consent of instructor for each section.
Note: Students in the Music 95 series courses may enroll with a letter grade option a total of twelve units for registered music majors and a total of six units for all other students; after which students may continue to enroll in Music 95 courses, but only with a P/NP grade option. There is one exception to the above grading policy. Music 95G, Gospel Choir, can only be taken for a P/NP grading option.
Section A. Symphony Orchestra
Section B. Instrument Choir
Section C. Concert Choir
Section D. Symphonic Chorus
Section F. Collegium Musicum (Not offered every year.)
Section G. Gospel Choir
Section H. Chamber Opera (Not offered every year.)
Section I. Music Theater (Not offered every year.)
Section J. Jazz Ensemble
Section K. Chamber Singers
Section L. Wind Ensemble
Section W. World Music Ensembles

ICAM 40. Introduction to Computing in the Arts (4)
(Cross-listed with VIS 40.) An introduction to the conceptual uses and historical precedents for the use of computers in art making. Preparation for further study in the computer arts area by providing overview of theoretical issues related to the use of computers by artists. Introduces the students to the program's computer facilities and teaches them basic computer skills. Prerequisite: none. NOTE: Materials Fee required.

UPPER-DIVISION

101A-B-C. Music Theory and Practice I (4-4-4)
Study of the materials and structures of music through hearing, analysis, writing, and performance. Writing in two voices (101A) and four voices (101B-C). Continues sight singing, dictation, and keyboard. Prerequisites: Music 2C and 2CK, and passing grade on proficiency exam.

102A-B-C. Music Theory and Practice II (4-4-4)

Advanced study of the materials and structures of music. Chromatic harmony and twentieth-century techniques. Aural discrimination, analysis, exercises, and short compositions. Continues sight singing, dictation, and keyboard. Prerequisites: Music 101A-B-C.Department stamp required.

103A-B-C. Seminar in Composition (4-4-4)
Individual projects in composition critically reviewed in seminar with fellow student and faculty composers. Prerequisites: Music 2A-B-C.

103D-E-F. Honors Seminar in Composition (4-4-4)

Advanced individual projects for senior music majors pursuing honors in composition. Projects will be critically reviewed in seminar with fellow students and faculty composers. Prerequisites: Music 103A-B-C and admission into the Department of Music Honors Program in compostion. Department stamp required.

107. Critical Studies Seminar (4)

Explore music in relation to various traditions of critical thought and their methodologies, such as in literature, cultural studies, sociology, and philosophy. Readings
and scores to be determined by the professor. Prerequisite: upper-division standing or consent of instructor.

110. Doing Ethnomusicology (4)

A how-to course in the practice and theory of studying the music of contemporary cultures. Students will record, document, analyze, and present music from their local environment. Designed for students in music, ethnic studies, anthropology, and the social sciences. Prerequisite: none. (Offered in selected years.)
111. Topics/World Music Traditions (4)

A study of particular regional musics in their repertory, cultural context, and interaction with other traditions. Topics vary. Prerequisite: none.
112. Topics in European Music Before 1750 (4)

This course will address topics in medieval, Renaissance, and Baroque music; topics will vary from year to year. May be repeated five times for credit. Prerequisites: knowledge of music notation or consent of instructor; Music 4, 8-10 or 120 recommended.
113. Topics in Classic, Romantic, and Modern Music (4)

This course will focus on Western music between 1750 and the early 20 th century; topics will vary from year to year. May be repeated five times for credit. Prerequisites: knowledge of music notation or consent of instructor; Music 4, 8-10 or 120 recommended.

114. Music of the Twentieth Century (4)

An exploration of materials and methods used in the music of our time. There will be an extra discussion group for music majors. May be repeated once for credit. Prerequisites: none.

115. Women in Music (4)

A survey of the biographical, historical, sociological, and political issues affecting woman musicians, their creativity, their opportunities, and their perception by others. It compares and contrasts the work of women composers, performers, patrons, teachers, and writers on music from the Middle Ages through the present. Prerequisite: consent of instructor.

120A-B-C. Survey of Music History and Literature

(4-4-4)
Intensive historical, analytical, and cultural-esthetic examination of music from Gregorian chant through the twentieth century. Prerequisites: knowledge of music notation; Music 1C or 2C strongly recommended.

121. Experimental Writing (4)

This workshop explores writing for which the traditional generic distinctions of pre/poetry, fiction/documentary, narrative/discourse do not apply. How music, prose, and poetry relate. Students taking this course will be asked to challenge the boundaries of these relations to discover new forms and modes of expression. Prerequisite: consent of instructor.
126. Blues: An Oral Tradition (4)

This course will examine the development of the Blues from its roots in work-songs and the minstrel show to its flowering in the Mississippi Delta to the development of Urban Blues and the close relationship of the Blues with Jazz, Rhythm and Blues, and Rock and Roll. (Cross-listed with Ethnic Studies 178.) Prerequisite: none.

127A. Jazz Roots and Early Development

(1900-1943) (4)
This course will trace the early development of Jazz and the diverse traditions which helped create this uniquely

American art form. We will witness the emergence of Louis Armstrong in New Orleans and examine the composer's role in Jazz with Jelly Roll Morton and Duke Ellington. (Cross-listed with Ethnic Studies 179A.) Prerequisite: none.

127B. Jazz Since 1946: Freedom and Form (4)

This course will examine the evolution of Jazz from 1943 to the present. The course will survey the contrasting and competing styles in Jazz from BEBOP to COOL to the avant garde and fusion. (Cross-listed with Ethnic Studies 179B.) Prerequisite: none.

128. Principles and Practice of Conducting (4)

The theory and practice of instrumental and/or choral conducting as they have to do with basic baton techniques, score reading, interpretation, orchestration, program building, and functional analysis. Members of the class will be expected to demonstrate their knowledge in the conducting of a small ensemble performing literature from the eighteenth, nineteenth, and twentieth centuries. Prerequisites: Music $2 A-B-C$ and 101A-B-C. Department stamp required.

129.Orchestration (4)

This course will give practical experience in orchestration. Students will study works from various eras of instrumental music and will demonstrate their knowiedge by orchestrating works in the styles of these various eras, learning the capabilities, timbre, and articulation of all the instruments in the orchestra. Prerequisite: Music 101B.
130. Chamber Music Performance (2-4/0)

Instruction in the preparation of small group performances of representative instrumental and vocal chamber music literature. May be taken for credit six times, after which students must enroll for zero units. Prerequisite: consent of instructor through audition.

131. Jazz Improvisation (4/0)

An extensive study of jazz improvisation, including performance techniques, concepts, and styles. Students' theoretical knowledge will be applied to their instruments, and a repertory of melodic and harmonic devices will be mastered. Also covered will be jazz soloing, demands of melodic/harmonic innovations, and modes of chord changes or progressions. May be taken for credit six times, after which students must enroll for zero units. Prerequisites: basic knowledge of major-minor scales and major, minor, and dominant seventh chords on respective instruments. Basic functional keyboard techniques.
132. Pro-Seminar in Music Performance (4)

Individual or master class instruction in advanced instrumental/vocal performance. May be repeated for credit, but only twenty-four units will be counted within the 180 -unit requirement for graduation. Prerequisite: consent of instructor through audition. Preference given to music majors and some approved music minors.

132C. Vocal Coaching (4)

Individual and masterclass instruction in advanced vocal coaching. Emphasis placed on diction and musical issues. Prerequisites: at least one quarter of Music 132 and consent of instructor. Preference given to majors and qualifying music minors. Department stamp required.

132R. Recital Preparation (4)
Advanced instrumental/vocal preparation for senior music majors pursuing honors in performance. Repertoire for a solo recital will be developed under the
direction of the appropriate instrumental/vocal faculty member. Special audition required during Welcome Week preceding fall quarter. Prerequisites: by audition only; Music 132. Department stamp required.

133. Projects in New Music Performance (2)

Performance of new music of the twentieth century. Normally offered winter quarter only. Required a minimum of two times for all music majors and music humanities majors. May be taken four times for credit. Prerequisite: consent of instructor through audition. (Winter quarter only.)

134. Symphonic Orchestra (4)

Repertoire is drawn from the classic symphonic literature of the eigtheenth, nineteenth, and twentieth centuries with a strong emphasis on recently composed and new music. Distinguished soloists, as well as The La Jolla Symphony Chorus, frequently appear with the orchestra. The La Jolla Symphony Orchestra performs two full-length programs each quarter, each program being performed twice. May be repeated six times for credit. Prerequisites: audition and department stamp required.

143. Department Seminar (1)

The department seminar serves both as a general department meeting and as a forum for the presentation of research and performances by visitors, faculty, and students. Required of all undergraduate music majors every quarter.
150. Senior Seminar (4)

Independent research with faculty guidance to afford the opportunity to pursue a creative project or substantial paper in a seminar context. Prerequisites: Music 120B and declared music major or music humanities major.
170. Musical Acoustics (4)
(Formerly Music 160A) An introduction to the acoustics of music with particular emphasis on contemporary digital techniques for understanding and manipulating sound. Prerequisites: Music 1A, 2A, or 4. Cross-listed with ICAM 103.
171. Computer Musicl (4)
(Formerly Music 160C) A hands-on introduction to computer techniques for desktop audio, including audio editing, MIDI control, and real-time music algorithms. Prerequisite: Music 170 (formerly Music 160A).

172. Computer Music II (4)

(Formerly Music 161) Computer synthesis techniques including wavetable and additive synthesis, waveshaping, and sampling. Transformation of musical sounds using filters, modulation, and delay effects. Fourier analysis of sounds. Prerequisite: Music 171 (formerly Music 160C).

173. Audio Production: Mixing and Editing (4)

(Formerly Music 162) Theoretical and practical aspects of recording, mixing, and editing sound for both musical and multimedia applications. Covers audio montage, equalization, effects processing, spatialization, mastering, and diffusion. Prerequisite: Music 170 (formerly Music 160A).

174. Recording/MIDI Studio Lab (2)

(Formerly Music 164) This course surveys hardware and software resources in an advanced recording and MIDI studio. It is a required course for anyone who wishes to use the B-108 Studio. Topics include: electronic and computer music, digital audio, and composition, per-
formance and studio techniques. These topics will vary from quarter to quarter. Prerequisites: Music 172 (formerly Music 161) or consent of instructor. May be repeated three times for credit.

175. Musical Psychoacoustics (4)

(Formerly Music 160B) Survey of psychoacoustical phenomena, theories of hearing, and their relation to musical perception and cognition. Techniques of psychoacoustical experimentation. Prerequisite: Music 170 (formerly Music 160A) recommended.
176. Music Technology Seminar (4)
(Formerly Music 163) Selected topics in music technology and its application to composition and/or performance. Offerings vary according to faculty availability and interest. May be repeated for credit. Prerequisites: Music 172 (formerly Music 161) and consent of instructor.

195. Instructional Assistance (2)

Assisting in the instruction of an undergraduate music class under the direct and constant supervision of a faculty member. May be taken for credit three times. Prerequisites: consent of instructor and departmental approval.
198. Directed Group Study (1-4)

Concentrated inquiry into various problems not covered in the usual undergraduate courses. Prerequisites: consent of instructor and department chair approval. Pass/No Pass grade only.

199. Independent Study (1-4)

Independent reading, research, or creative work under the direction of a faculty member, provided no course covering the material to be studied already exists, and the study area derives from previous course work. Prerequisites: consent of instructor and department chair approval. Department stamp required. Pass/No Pass grade only. May be taken for credit two times.

ICAM 101. Digital Imaging: Image and Interactivity (4) (Cross-listed with VIS 140). An introduction to the digital image. Students will produce works involving images, texts, and interactive display. A project will be developed by each student that will exist both within a computer mediated space (i.e., Web site) and in physical space (i.e., artist book). Techniques for constructing an interactive narrative will be explored. The use of computer programming as a tool and conceptual framework for art making is introduced. Prerequisites: VIS 40/ICAM 40. NOTE: Materials fee required.

ICAM 102. Digital Media I:Time, Movement, Sound (4) (Cross-listed with VIS 145A). As an exploration of time dependent media components, this course will deal with the creation and manipulation of digital sound as well as moving images and their integration in multimedia works. Use of computer programming to control time in computer arts is emphasized. Non-linear structures, branching narratives, and procedurally driven temporal structures are examined. Prerequisites: VIS 40/ICAM 40 and VIS 140/ICAM 101. NOTE: Materials fee required.

ICAM 103. Musical Acoustics (4)
(Cross-listed with MUS 170). An introduction to the acoustics of music with particular emphasis on contemporary digital techniques for understanding and manipulating sound. Prerequisites: MUS $1 A, 2 \mathrm{~A}$, or 4 .

ICAM 110. Computing in the Arts: Current Practice (4)
Designed around the presentations by visiting artists, critics, and scientists involved with contemporary
issues related to computer arts. Lectures by the instructor and contextual readings provide background material for the visitor presentations. Prerequisites: none. NOTE: Materials fee required.

ICAM 120.Virtual Environments (4)
Students will create virtual reality artworks in this course. Projects may be done individually or in groups. An exploration of the theoretical issues involved will underlie the acquisition of techniques utilized in the construction of virtual realities. Prerequisites: VIS 145A/ICAM 102; CSE 11 recommended. NOTE: Materials fee required.

ICAM 130. Seminar in Contemporary Computer
 Topics (4)

(Cross-listed with VIS 149). This seminar treats selected topics drawn from a broad variety of subjects relevant to computer-based art- and music-making, such as computer methods for making art and music, the design of interactive systems, spatialization of visual and musical elements, and critical studies. Topics will vary each time the course is offered. May be repeated five times for credit. Prerequisites: VIS 140/ICAM 101 and ICAM 110;VIS 145A/ICAM 102 and MUS 170/ICAM 103 recommended. NOTE: Materials fee required.

ICAM 150. History of Art and Technology (4)
(Cross-listed with VIS 159). This course aims to provide historical context for computer arts by examining the interaction between the arts, media technologies, and sciences in different historical periods. Topics vary. Examples of topics which may be considered are: Renaissance perspective, the introduction of the printing press, the history of visual illusion in Western art, new physics and the avant-garde in the early twentieth century, futurism and technology, early electronic and computer art of the 1950s and 1960s. Prerequisite: none. NOTE: Materials fee required.

ICAM 160 A-B. Senior Project in Computer Arts (4-4)

Students will pursue projects of their own design over two quarters with support from faculty in a seminar environment. Project proposals are developed and presented, informed by project development guidelines from real world examples. Projects are then developed with presentation of the project along with complete documentation as the final goal of the course sequence. Collaborations are possible. Portfolio required for admission. Prerequisites: VIS 140/ICAM 101,VIS 145A/ICAM 102, MUS 170/ICAM 103, ICAM 110, and senior standing.

GRADUATE

All courses numbered 200 and above are

intended for students admitted to the graduate program in music.

201A-B-C. Projects in New Music Performance

(1-4, 1-4, 1-4)

Performance of new music of the twentieth century. All performance emphasis graduate students must take every quarter. (Please note that Lab. 1 is intended for students participating in the Twentieth-Century Ensemble.) Non-performance students must take 201B or C twice.
202. Advanced Projects in Performance (1-4)

Advanced performance of new music with members of the performance faculty (SONOR). Students taking this course do not need to take Music 201 that quarter. Enrollment by consent of instructor/director of SONOR.

203A-B-C. Advanced Projects in Composition (4-4-4)
Seminar consisting of meetings and laboratory sessions devoted to the study of composition.

203D. Advanced Projects in Composition (1-4)
Meetings on group basis with faculty composer in sessions devoted to the study of composition. Prerequisites: 203A-B-C and consent of instructor.

204. Focus on Composition (2)

The purpose of this seminar is to bring together the entire population of the graduate composition program (all students and faculty) for in-depth discussion of critical issues in music theory and composition. Each meeting will feature a formal presentation by either a student, faculty member, or visitor, followed by lively and challenging debate on relevant issues. Prerequisite: consent of instructor.

205. Focus on Critical Studies/Experimental Issues in

 Music (2)The purpose of this seminar is to bring together CS/EP students and faculty for in-depth discussion(s) of theoretical, critical, and cultural issues in music. In conjunction with the seminar, each student not yet advanced to candidacy will meet with a faculty adviser to plan and prepare a presentation of his or her own work as part of a one-day CS/EP student symposium during the spring quarter.
206. Experimental Studies Seminar (4)

Seminars growing out of current faculty interests. The approach tends to be speculative and includes individual projects or papers as well as assigned readings. In the past, such areas as new instrumental and vocal resources, mixed media, and compositional linguistics have been offered.

207. Theoretical Studies Seminar (4)

Seminars on subject areas relating to the established dimensions of music and in which theoreticians have produced a substantial body of work. These include studies in analysis, timbre, rhythm, notation, and psychoacoustics. Offerings vary depending on faculty availability and interest. Analytical paper required.

208A. Critical Methods and Creative Identities (4)
The goal of this course is to develop critical thinking and self-reflexive inquiry through study of a diverse range of critical and scholarly traditions as they relate to music. Students are encouraged to investigate their own sense of identity and voice, as embodied in their creative work. Prerequisite: consent of instructor.

208B. Experimental Musical Practices (4)
This course examines, from social, cultural, historical and technological perspectives the current state of experimental musical practice. Meetings and laboratory sessions will explore alternative systems of musical organization, such as improvisation, computer-based multimedia, and interdisciplinary performance collaboration. Prerequisite: consent of instructor.

208C. World Musical Perception (4)
This seminar attempts to develop alternative procedures for the analysis of intercultural musicality. Methods and practices to be explored will involve computer technology, musical cognition and perception, and world music practices, as these relate to the elucidation and interrogation of notions of self and other, and tradition and innovation. Prerequisite: consent of instructor.

208D. Advanced Projects in CS/EP (4)
On a group or individual basis, this course provides an opportunity for students to create projects under the guidance of different faculty members each term Enrollment in this course culminates in the development by the student of a portfolio of original work, or in a master's thesis. Prerequisite: consent of instructor.

209. Advanced Music Theory and Practice (4)

Advanced integrated studies in music theory; composition and styles study through analysis and performance. This course is intended primarily for doctoral students and may be taken by M.A. students only with special approval of M.A.adviser and course instructor.A major research or analytical publishable paper required.

210. Musical Analysis (4)

The analysis of complex music. The course will assume that the student has a background in traditional music analysis. The goal of the course is to investigate and develop analytical procedures that yield significant information about specific works of music, old and new. Reading, projects, and analytical papers. Normally offered fall quarter only.

211. Seminar in World Music Traditions (4)

Study of the theory, repertory, and cultural features of particular tradition musics. Related to lectures of Music 111. Designed for graduate students in music as a forum for independent projects in research, analysis, performance, composition, and experimental derivatives related to the topic. Open to qualified graduate students in related fields.

212. Seminar in Vocal and Choral Literature (4)

A critical and historical study of selected works and repertory. (Offered in selected years.)
214. Seminar in Twentieth-Century Music (4)

Detailed study of selected literature through the study of scores and writings, supplemented when possible by performance participation. (Offered in selected years.)

215. Seminar on Women in Music (4)

Seminar dealing with a historical survey of women musicians from the Middle Ages to the present. A view of women's place as creative and representative artists, societal, and political influences that governed their existence and their music, and their impact upon their society and ours will be dealt with in-depth. Prerequisite: consent of instructor. (Offered in selected years.)
216. Medieval Music (4)

Readings, studies, and performance problems of medieval music from antiquity to the beginning of the Renaissance. Problems of tuning, language, source materials, and media esthetics are incorporated. (Offered in selected years.)

217. Seminar Studies in Late Renaissance and Early

Baroque Music (4)

The study of early music as it has to do with theoretical systems, critical analyses, music and documentary source materials. (Offered in selected years.)

218. Seminar in Music of the Classic Era (4)

A critical, analytical study of selected literature of the eighteenth century through the study of scores and writings, supplemented when possible by performance participation. (Offered in selected years.)
228. Conducting (4)

This course will give practical experience in conducting a variety of works from various eras of instrumental and/or vocal music. Students will study problems of instrumental or vocal techniques, formal and expressive analysis of the music, and manners of rehearsal. Required of all graduate students. Prerequisite: consent of instructor. (Offered in selected years.)
229. Seminar in Orchestration (4)

A seminar to give practical experience in orchestration. Students will study works from various eras of instrumental music and will demonstrate their knowledge by orchestrating works in the styles of these various eras, learning the capabilities, timbre, and articulation of all the instruments in the orchestra. Prerequisite: graduate standing. (Offered in selected years.)
230. Chamber Music Performance (4)

Performance of representative chamber music literature, instrumental and/or vocal, through coached rehearsal and seminar studies. Course may be repeated for credit since the literature studied varies from quarter to quarter. Prerequisite: consent of instructor.
232. Pro-Seminar in Music Performance (4)

Individual or master class instruction in advanced instrumental/vocal performance. Prerequisite:consent of instructor through audition.
234. Symphonic Orchestra (4)

Repertoire is drawn from the classic symphonic literature of the eigtheenth, nineteenth, and twentieth centuries with a strong emphasis on recently composed and new music. Distinguished sotoists, as well as The La Jolla Symphony Chorus, frequently appear with the orchestra. The La Jolla Symphony Orchestra performs two full-length programs each quarter, each program being performed twice. May be repeated six times for credit. Prerequisites: audition and department stamp required.
245. Focus on Performance (2)

The purpose of this seminar is to bring together performance students, faculty, and guests for discussion, presentation of student and faculty projects, performances by guest artists, and master classes with different members of the performance faculty. Prerequisite: consent of instructor.
250. Special Projects (1-12)

An umbrella course offered to music graduate students in lieu of normal seminar offerings. Topics will be generated by faculty and graduate students and submitted in December each year for review by faculty. Students may register for up to four units of a specialized research topic with given faculty. May be taken for up to twelve units a quarter.
267. Advanced Music Technology Seminar (4-4-4)

Advanced topics in music technology and its application to composition and/or performance. Offerings vary according to facuity availability and interest. May be repeated for credit. Prerequisites: Music 173 or equivalent and consent of instructor.

270A. Digital Audio Processing (4)
Digital techniques for analysis, synthesis, and processing of musical sounds. Sampling theory. Software synthesis techniques. Digital filter design. The short-time Fourier transform. Numerical accuracy considerations. Prerequisite: consent of instructor.

270B. Musical Cognitive Science (4)
Theoretical bases for analyzing musical sound. Approaches to perception and cognition, including psychoacoustics and information processing, both ecological and computational. Models of audition including Helmholtz's consonance/dissonance theory and Bregman's streaming model. Musical cognition theories of Lerdahl and Narmour. Neural network models of music perception and cognition. Models of rhythm. The problem of timbre and timbre perception. Prerequisite: consent of instructor.

270C. Compositional Algorithms (4)
Transformations in musical composition; series and intervalic structures; serial approaches to rhythm and dynamic. The stochastic music of Xenakis and Cage. Hiller's automatic composition. Improvisational models. Computer analysis of musical style. Neurally inspired and other quasiparallel algorithms. Prerequisite: consent of instructor.

270D. Advanced Projects in Computer Music (4)
Meetings on group basis with computer music faculty in support of individual student research projects. Prerequisites: consent of instructor and completion of Music 270A-B-C.
271. Survey of Electronic Music Techniques

A hands-on encounter with several important works from the classic electronic repertory, showing a representative subset of the electronic techniques available to musicians. Intended primarily for students in areas other than computer music. Prerequisite: none.

291. Problems and Methods of Music Research and

 Performance (2)The course will give practical experience in historical research, including use of important source materials, evaluation of editions, and examination of performance practice problems. (S / U grade option only.)

292. Academic Writing (1-4)

Individual and/or group work on particular academic writing projects in music. Prerequisite: consent of instructor.
296. Directed Group Research in Performance (4)

This group research seminar involves the investigation and exploration of new and experimental performance concerns. Areas could include: improvisation, graphic notation, performance electronics, and working with combined media (such as dance, poetry, and theater). (S/U grade option only.)
298. Directed Research (1-4)

Individual research. (S / \cup grades permitted.) May be repeated for credit. Enrollment by consent of instructor only.

299. Advanced Research Projects and Independent Study

 (1-12)Individual research projects relevant to the student's selected area of graduate interest conducted in continuing relationship with a faculty adviser in preparation of the master's thesis or doctoral dissertation. (S/U grades permitted.)

500. Apprentice Teaching (1-4)

Participation in the undergraduate teaching program is required of all graduate students at the equivalent of 25 percent time for three quarters (six units is required for all graduate students).

Neurosciences

OFFICE: Building \#1, School of Medicine, Mail code 0662
http://medicine.ucsd.edu/neurosci

Professors

Henry Abarbanel, Ph.D., Physics
Thomas Albright, Ph.D., Adjunct/Psychology and Neurosciences
Ursula Bellugi, Ed.D., Adjunct/Psychology
Darwin K. Berg, Ph.D., Biology-Neurobiology Section
Floyd E. Bloom, M.D., Adjunct/Neurosciences and
Psychiatry
Karen Britton, M.D., Ph.D., In-Residence/Psychiatry
Joan Heller Brown, Ph.D., Pharmacology
Laurence L. Brunton, Ph.D., Pharmacology and Medicine
Theodore H. Bullock, Ph.D., Emeritus/ Neurosciences
Don Cleveland, Ph.D., Medicine/Neurosciences
Jody Corey-Bloom, M.D./Ph.D., Clinical/
Neurosciences
Eric Courchesne, Ph.D., Neurosciences
J. Anthony Deutsch, Ph.D., Emeritus/Psychology

Mark H.Ellisman, Ph.D., Neurosciences
Edmund J. Fantino, Ph.D., Psychology
Fred H. Gage, Ph.D., Adjunct/Neurosciences and Biology
Robert Galambos, M.D., Ph.D., Emeritus/
Neurosciences
Douglas R. Galasko, M.D., In-Residence/ Neurosciences
Mark A. Geyer, Ph.D., In-Residence/Psychiatry and Adjunct/Neurosciences
J. Christian Gillin, M.D., Psychiatry

Lawrence S.B. Goldstein, Ph.D., Cellular and Molecular Medicine
Murray Goodman, Ph.D., Chemistry and Biochemistry
Philip M. Groves, Ph.D., Psychiatry and Neuroscience
Richard H. Haas, M.D., Neurosciences and Pediatrics
Lawrence A. Hansen, M.D., Pathology and Neurosciences
Richard L. Hauger, M.D., Psychiatry
Stephen F. Heinemann, Ph.D., Adjunct/ Neurosciences
Steven A. Hillyard, Ph.D., Neurosciences and Adjunct/Psychology
Paul A. Insel, M.D., Pharmacology and Medicine

Vicente J.Iragui-Madoz, M.D., Ph.D., Clinical Neurosciences
Dilip J. Jeste, M.D., In-Residence and Psychiatry and Adjunct/Neurosciences
Michael W. Kalichman, Ph.D., Adjunct/Pathology
Harvey J. Karten, M.D., Neurosciences and Psychiatry
Robert Katzman, M.D., Emeritus/Neurosciences
David Kleinfeld, Ph.D., Physics
Edward Koo, M.D., Neurosciences
George F.Koob, Ph.D., Adjunct/Psychology and Psychiatry
Daniel F. Kripke, M.D., In-Residence/PsychiatryNeurobiology Section
William B. Kristan, Ph.D., Biology and Adjunct/ Neurosciences
Mark Kritchevsky, M.D., Clinical Professor, Neurosciences
Ronald Kuczenski, Ph.D., In-Residence/ Psychiatry and Adjunct/Neurosciences
Marta Kutas, Ph.D., Cognitive Science and Adjunct/Neurosciences
Greg Lemke, Ph.D., Adjunct/Neurosciences
Stuart A.Lipton, M.D., Ph.D., Adjunct/Neurosciences
John Liu, Ph.D., Adjunct/Ophthalmology
Robert B. Livingston, M.D., Emeritus/Neurosciences
Patrick D.Lyden, M.D., In-Residence/Neurosciences
Eliezer Masliah, M.D., Neurosciences and Pathology
Pamela Mellon, Ph.D., Neurosciences and Reproductive Medicine
Arnold L.Miller, Ph.D., Neurosciences-Neurobiology Section
S. Maurice Montal, M.D./Ph.D., Biology and Adjunct/Psychiatry
Cornelis Murre, Ph.D., Biology-Molecular Biology Section
Robert R. Myers, Ph.D., Anesthesiology and Pathology
R. Glenn Northcutt, Ph.D., Neurosciences

John S. O'Brien, M.D., Neurosciences
Daniel T. O'Connor, M.D., In-Residence/Medicine
Dennis O'Leary, Ph.D., Adjunct/Neurosciences and Biology
James W. Posakony, Ph.D., Biology-Cellular and Developmental Biology Section
Henry C. Powell, M.D., D.Sc., Pathology
Morton Printz, Ph.D., Pharmacology
Vilayanur S. Ramachandran, M.D., Psychology
Barbara Ranscht, Ph.D., Adjunct/Neurosciences
Michael G. Rosenfeld, M.D., Medicine
Allen F. Ryan, Ph.D., Surgery and Adjunct/ Neurosciences
David P. Salmon, Ph.D., In-Residence/Neurosciences

David S. Segal, Ph.D., Psychiatry and Adjunct/ Neurosciences-Neurobiology Section
Terrence J. Sejnowski, Ph.D., Biology-Neurobiology Section and Adjunct/Neurosciences, Cognitive Sciences, Computer Science and Engineering, and Physics
Martin I. Sereno, Ph.D., Cognitive Sciences
Marjorie Seybold, M.D., Adjunct/Neurosciences
Clifford Shults, M.D., Neurosciences
Nicholas C. Spitzer, Ph.D., Biology-Neurobiology Section
Larry R. Squire, Ph.D., In-Residence/Psychiatry, Psychology, Neurosciences
Charles Stevens, M.D./Ph.D., Adjunct/ Pharmacology
Neal Swerdlow, M.D./Ph.D., Psychiatry
David A. Swinney, Ph.D., Psychology
Palmer W. Taylor, Ph.D., Pharmacology
Robert D. Terry, M.D., Emeritus/Neurosciences and Pathology
Leon J.Thal, M.D., Chair, Neurosciences
Ronald G. Thomas, Ph.D., Adjunct/Family and Preventive Medicine and Neurosciences
Doris A. Trauner, M.D., Neurosciences and Pediatrics
Roger Tsien, Ph.D., Pharmacology and Chemistry \& Biochemistry
Hoi-Sang U., M.D., Surgery
Wylie Vale, Ph.D., Adjunct/Biology and Medicine
Ajit Varki, M.D., Medicine
Matthew B. Weinger, M.D., Anesthesiology
Flossie Wong-Staal, Ph.D., Biology-Molecular Biology Section and Medicine
Tony Yaksh, Ph.D., Anesthesiology and Pharmacology
Samuel S.C. Yen, M.D., Emeritus/Reproductive Medicine
Justin Zivin, M.D./Ph.D., Neurosciences
Stuart Zola, Ph.D.,In-Residence/Psychiatry
Charles Zuker, Ph.D., Biology-Neurobiology Section and Neurosciences

Associate Professors

Jerold J.M. Chun, M.D./Ph.D., Pharmacology Lisa Gold, Ph.D., Adjunct/Neurosciences Michael Grundman, M.D., Adjunct/Neurosciences Donna Gruol, Ph.D., Adjunct/Neurosciences John Kelsoe, M.D., Psychiatry Christopher Kintner, Ph.D., Adjunct/Biology Leah Levi, M.D., Clinical Neurosciences/ Ophthalmology
John Olichney, M.D., Adjunct/Neurosciences
Jaime Piñeda, Ph.D., Cognitive Sciences
David H. Rapaport, Ph.D., Surgery
Geoffrey Sheean, M.D., Clinical/Neurosciences

Linda Sorkin, Ph.D., Anesthesiology
Evelyn Tecoma, M.D./Ph.D., Clinical/ Neurosciences
John Thomas, Ph.D., Adjunct/Neurosciences and Biology
Eric Turner, M.D./Ph.D., In-Residence/Psychiatry
Mark Tuszynski, M.D./Ph.D., Neurosciences
Friedbert Weiss, Ph.D., Adjunct/Psychiatry
Mark C. Whitehead, Ph.D., Surgery
David Williams, Ph.D., Adjunct/Pharmacology and Neurosciences

Assistant Professors

Carrolee Barlow, M.D., Ph.D., Adjunct/Biology Edward M. Callaway, Ph.D., Adjunct/Neurosciences and Biology
Andrea Chiba, Ph.D., Cognitive Science
E. J.Chichilnisky, Ph.D., Adjunct/Neurosciences

Karen R. Dobkins, Ph.D., Psychology
Sascha du Lac, Ph.D., Adjunct/Neurosciences
Ronald J.Ellis, M.D., Adjunct/Neurosciences
Dan Feldman, Ph.D., Biology-Neurobiology Section
Marla Feller, Ph.D., Biology-Neurobiology Section
Joseph G. Gleeson, M.D., Neurosciences
Yukiko Goda, Ph.D., Biology-Neurobiology Section
James Goodson, Ph.D., Psychology
Bruce A. Hamilton, Ph.D., Medicine
Jeffreys S. Isaacson, Ph.D., Neurosciences
Christy Jackson, M.D., Clinical/Neurosciences
S. V. Penelope Jones, Ph.D., Psychology

Rich Krauzlis, Ph.D., Adjunct/Neurosciences
Kuo-Fen Lee, Ph.D., Adjunct/Biology
Athina Markou, Ph.D., Adjunct/Psychiatry
Paul Martin, Ph.D., Neurosciences
Mark Mayford, Ph.D., Neurosciences
Sharon L. Nichols, Ph.D., Adjunct/Neurosciences
Samuel L. Pfaff, Ph.D., Adjunct/Biology
William R. Schafer, Ph.D., Biology-Neurobiology Section
Gery Schulteis, Ph.D., Adjunct/Anesthesiology
Paul Slesinger, Ph.D., Adjunct/Neurosciences
Jane Sullivan, Ph.D., Adjunct/Neurosciences
Anthony Wynshaw-Boris, M.D./Ph.D., Pediatrics and Medicine

The Graduate Program

The group in neurosciences accepts candidates for the Ph.D. degree who have undergraduate majors in such disciplines as biology, chemistry, engineering, microbiology, mathematics, physics, psychology, and zoology. A desire and competence to understand how the nervous system functions is more important than previous background and training.

Doctoral Degree Program

Students in this program receive guidance and instruction from a campuswide group of faculty interested in nervous system mechanisms. Each student, in consultation with an advisory committee, selects courses relevant to his or her research interests and goals. The selection will include formal courses listed in this catalog and informal seminars offered by the department. A regular schedule of rotation through the laboratories of faculty members is a feature of the first year; the student is exposed in this way to the various approaches, techniques, and disciplines represented on the campus.

Course Work

By the time of the minor proposition (see below), students are expected to demonstrate competence in the basics of neuroscience by taking five quarters of mandatory course workthree quarters of Basic Neuroscience (Neurosci. $200 \mathrm{~A}-\mathrm{B}-\mathrm{C})$, and one quarter each of Neuroanatomy Lab (Neurosci. 257) and Statistical Methods and Experimental Design (Neurosci. 225). In addition, students choose among three of six remaining courses: Molecular and Cellular Neuroendocrinology (Neurosci. 222), Molecular and Cellular Neurochemistry (Neurosci. 234), Neuropsychopharmacology (Neurosci. 277), Molecular and Cellular Neurobiology (Neurosci. 268), Behavioral Neuroscience (Neurosci. 264), and Developmental Neuroscience (Neurosci. 263). Students are also permitted to substitute previous courses that are similar to the Neurosciences core courses. Such a substitution would require approval of the graduate advisor in consultation with the Core Curriculum Committee and course instructor(s).

Minor Proposition

The purpose of this examination is to test the student's ability to choose a problem in the neurosciences and propose an experimental approach to its solution. The problem should be broad, requiring experimental approaches from more than one discipline. The problem should be outside the area of the student's anticipated dissertation research. Students will be required to demonstrate a working knowledge of the disciplines involved in the minor proposition.

Oral defense of the minor proposition will be required at the end of the spring quarter of the second year of study. Exemptions may be granted
to entering students already holding a master's degree.

Dissertation

During the second year, students are expected to propose and initiate work on a dissertation problem under the guidance of a faculty preceptor. The neurosciences group at UCSD currently conducts animal research and clinical studies in the fields of neuroanatomy, neurochemistry, neuropharmacology, neurophysiology, comparative neurology, physiology of excitable membranes, synaptic transmission, neuronal integration and coding, nervous system tissue culture, neuroimmunology, brain function, sensory physiology, motor mechanism, and systems analysis as applied to neurological problems.

Qualifying Examination

This examination, a university requirement, focuses on the proposed research that the student will undertake for his or her dissertation. This examination is conducted by the approved doctoral committee.

Dissertation Examination

The required formalities listed in the Instruction for Preparation and Submission of Doctoral Dissertations issued by the Office of Graduate Studies and Research to students should be followed closely. The final examination includes both a public presentation followed by a closed defense of the dissertation with members of the Committee.

Teaching

Students are required to teach and to develop their talents as teachers. To this end, opportunities to lecture and to assist in laboratory exercises and demonstrations are provided.

Ph.D. Time Limit Policies

Students must advance to candidacy by the end of four years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

COURSES

UNDERGRADUATE

199. Independent Research (2 or 4)

Laboratory research under the supervision of individual members of the faculty of the neurosciences depart-
ment in one or a combination of neurosciences disciplines, e.g., neuroanatomy, neurophysiology, neurochemistry, neuropharmacology. (P/NP grades only.) Prerequisite: consent of department chair. (F,W,S)

GRADUATE

200A-B-C. Basic Neuroscience (4-4-4)

These courses are designed for graduate students in the neurosciences and other departments that are part of the interdisciplinary program (i.e., Biology, Cog. Sci.). These courses have been designed to cover as much basic neuroscience as possible in three quarters of study. It will combine two three-hour meetings each week with a 1.5 hour lecture and a 1.5 hour discussion of papers. These will be required courses for all first-year neurosciences graduate students. Biology will cross-list courses under Biology headings, making it a requirement of first year Biology graduate students. Prerequisite: graduate student or consent of instructor. ($\mathrm{F}, \mathrm{W}, \mathrm{S}$)
221. Advanced Topics in Neurosciences (2)

Specialized advanced topic areas in neurosciences will be addressed in an interactive seminar course format. A different specific topic will be considered each quarter as announced in advance. Students will each present an aspect of the topic area and participate in discussions. Prerequisite: graduate student or consent of instructor. ($\mathrm{F}, \mathrm{W}, \mathrm{S}$)
222. Molecular and Cellular Neuroendocrinology (4)

This course will examine the role of the CNS in controlling reproductive functions, stress, growth and behavior, with emphasis on the cellular and molecular mechanisms of neuroendocrine function. The lectures will be given by experts on each of the topic subjects. Lectures will include a basic introduction on the topic followed by a description of the current research in the area.
225. Statistical Methods and Experimental Design (2) This course is designed for graduate students in the neurosciences, but will address issues of statistical methods and experiment design for investigators working in any field of biological research. The course will combine lectures, discussion, and practical examples drawn from the experience of the participant Prerequisite: graduate student in the neuroscience graduate program or consent of the instructor. (F)
233. Comparative Vertebrate Neurobiology (4)

Survey of the organization and evolution of vertebrate nervous systems. Prerequisite: consent of instructor. (S/U grades only.) (W)
234. Molecular and Cellular Neurochemistry (4)

Topics include membrane and nerve function in nervous system, structure and function of receptors for neurotransmitters, role of cAMP as a second messenger in the nervous system, synthesis and processing of neuropeptides.
235. Neurobiology of the Chemical Senses (1)

This lecture and seminar course surveys the neuroanatomy and neurophysiology of the central and peripheral taste and olfactory systems. Plasticity of the mature and developing chemosensory systems will also be covered. Behavioral studies of sensory function will be related to psychophysical studies in humans including those directed at evaluating clinical chemosensory disorders. Students are expected to discuss readings of journal articles. (S)
241. Ethics and Survival Skills in Academia (2-4)

This course will cover "ethical" issues in academia, including dishonesty, plagiarism, attribution, sexual misconduct, etc. We will also discuss "survival" issues, including job hunting, grant preparation, journal reviews, writing letters of recommendation, mentoring, etc. (W)
243. Physiological Basis of Human Information (2)

Psychological processes including attention, perception, and memory will be studied in connection with event-related potentials of the human brain. The interrelations among psychological and physiological events will be explored in order to arrive at unified concepts of human information processing. Prerequisites. Neurosci. 238 or Psych.231, and consent of instructor. (S/U grades only.) (F)
251. Scientific Communication (2)
(Same as SIO 292) Forms of scientific communication, practical exercise in scientific writing and short oral communication, and in criticism and editing, preparation of illustrations, preparation of proposals; scientific societies and the history of scientific communication. Examples from any field of science, most commonly biology, marine biology, ecology, and neuroscience. Prerequisite: graduate status in science. (S/U grades only.) (S)
253. Clinical Neuroanatomy (1)

Review of neuroanatomy, with emphasis on clinical correlations. Pertinent physiological, chemical, and clinical information will be included and functional organization will be stressed. It is essential that students be familiar with neuroanatomical nomenclature. Prerequisite: medical student, graduate student, intern, resident, or consent of instructor. (S/U grades only.)

256. Mammalian Neuroanatomy (4)

Lectures presenting the basic features of the anatomy of the mammalian nervous system. This will include consideration of cellular components, development, topographic anatomy, and a detailed presentation of the organization of functional systems. Prerequisite: graduate status or consent of instructor. (S/U grades only.) (F) (not offered in 2000-2001)
257. Mammalian Neuroanatomy Laboratory (4) Neuroanatomy laboratory course taught in conjunction with Mammalian Neuroanatomy (256). Laboratories deal with gross and microscopic neuroanatomy of brain systems Sessions include microscopic analysis of histological sections and observations and dissections of human brain material. Prerequisite: Neuroanatomy 256 or concurrent enrollment. (S/U grades permitted.) (W)

259. Workshop in Electron Microscopy (4)

This course is to introduce graduate students in the neurosciences to research methods used in electron microscopy (EM) through one hour of formal lecture one hour of seminar, three hours of demonstration, and three hours of supervised laboratory work per week. Students will become familiar with sectioning EM, scanning EM, and freeze-fracture EM. Prerequisites: graduate student standing in neurosciences doctoral program and consent of instructor. Enrollment limited. (S / \cup grades only.) (S)

263. Developmental Neurobiology (3)

(Same as Biology 258.) Cellular and developmental aspects of the nervous system. Methods of investigation and culture approaches. Basic neuroembryology and selected examples of regional developments. Neuroglial cells and neuron-glia interactions. Extrinsic controls of survival growth and maturation of neural
cells. Neurite growth and synapse formation. Potential for plasticity and regeneration in the nervous system. Prerequisite: graduate students or consent of instructor. (S)
264. Behavioral Neuroscience (5)

The course is to cover different areas of behavioral biology, such as ethology, behavioral biology, learning and memory, perception psychophysics. Some outside reading will be required. Prerequisite: medical student, graduate student, or consent of instructor. (W)

268. Molecular and Cellular Neurobiology (4)

This course focuses on cellular anatomy of the nervous system at the molecular level. The lectures will communicate current molecular genetic and cell biological approaches used to study the specialized structures and cell types of nervous tissue. Topics will include cell organelles; chromatin structure/function; gene expression/regulation; cytoskeleton and membrane interactions; signal transduction/receptors, channels and pumps; cellular junctions/synapses; node of Ranvier; and neuroplasmic transport. Prerequisites: neurochemistry, neuroanatomy, biochemistry. (F)

269. Electroencephalography and Clinical

Neurophysiology (1)
Using the Journal of Electroencephalography and Clinical Neurophysiology as a core text, subjects chosen from the journal will be discussed and critically evaluated by the participants, and the literature pertinent to each topic reviewed. Prerequisites: Neurosci. 238, Basic Neurology (205), neurology resident, or consent of instructor. (F,W,S)

274. Neurobiology of Cognitive Developmental

Disorders (2)

Neurobiological foundation of developmental disorders in information processing including infantile autism, developmental dysphasia, attention deficit disorder, and childhood schizophrenia. Neurophysiological, neuroanatomical, and psychological evidence will be explored. Prerequisite: undergraduate or graduate course in neurobiology. (S / U grades permitted.)

276. Neuroscience Research Rounds (2)

Neurosciences group faculty members and graduate students will present and discuss ongoing research. Attendance will be mandatory for first- and secondyear graduate students. Faculty, advanced graduate students, medical students, postdoctoral trainees, and other interested parties are encouraged to attend. ($\mathrm{F}, \mathrm{W}, \mathrm{S}$)

277. Neuropsychopharmacology (4)

An examination of the molecular and biochemical bases of drug and transmitter action. The course is devoted to receptor mechanisms, neuropharmacology, and drug action on excitable tissues. (S)
296. Neurosciences Research Rotation (1-12)

Independent study. (S / U grades only.) (F, W, S)
298. Neurosciences Independent Study

Project (ISP) (1-12)
Prerequisite: approved ISP proposal. (F,W,S)
299. Neurosciences Research (1-12)

Independent study. (S/U grades only.) (F,W,S)
401. Neurology General Clinical Selective Clerkship (7) Provides opportunities for practical application of neurological skills to the understanding and treatment of a variety of clinical disorders of the nervous system

Prerequisite: successful completion of first two years of medical school. (F,W,S)
426. Subintern Pediatric Neurology (7)

Subinterns are responsible for the primary care of hos pitilized pediatric neurology patients under the direct resident and attending physician supervision. They will perform procedures such as lumbar puncture and participate in night call, daily teaching round, neurology Grand Rounds, and Journal Clubs. Prerequisite Neurology 401 or consent of instructor. (F,W,S)
427. Neurology Outpatient Clerkship (7)

The student will rotate through the general and subspecialty (stroke, epilepsy, headache, nerve, and muscle) neurology clinics based at UCSD Medical Center Lectures and clinical conferences will be attended as well. Prerequisite: Neurosciences 401 or equivalent. (F,W,S)
496. Clinical Independent Study (1-12)

Independent clinical study for medical students (S/U grades only.) (F,W,S)

500. Apprenticeship Teaching (1-4)

Participation in the department teaching program is required of all students working toward a Ph.D. degree. In general, students are not expected to teach in the first year, but are required to serve as teaching assistants or tutors for one quarter at any time during their subsequent years of training. The amount of teaching required is equivalent to the duties expected of a 50 percent assistant for one quarter. Prerequisite: neuro sciences graduate students. (S/U grades only.) (F,W,S)

Philosophy

OFFICE: 7002 H\&SS, Muir College

Web site:http://www.ucsd.edu/philosophy

Professors

Georgios H. Anagnostopoulos, Ph.D., Chair
Richard J. Arneson, Ph.D., Graduate Adviser
David O.Brink, Ph.D.
Nancy D. Cartwright, Ph.D.
Patricia Smith Churchland, B.Phil., Presidential
Professor of Philosophy
Paul M. Churchland, Ph.D.
Gerald D. Doppelt, Ph.D., Academic Senate
Distinguished Teaching Award
Clark N. Glymour, Ph.D., Valtz Family Professor of Philosophy
Gila Sher, Ph.D.

Associate Professors

Michael O. Hardimon, Ph.D.
Wayne M. Martin, Ph.D., Undergraduate Adviser
Donald Rutherford, Ph.D.

Assistant Professors

Craig Callender, Ph.D.
Rick Grush, Ph.D.

Emeriti Professors

Henry E. Allison, Ph.D., Research Professor (not in-residence)
Edward N. Lee, Ph.D., Professor Emeritus
Frederick A. Olafson, Ph.D., Professor Emeritus Avrum Stroll, Ph.D., Research Professor Zeno Vendler, Ph.D., Professor Emeritus (not in-residence)

Introduction to the Department

Philosophy is the study of conceptual problems that pertain to the nature of knowledge, reality, and human conduct. Among the chief areas of the subject are logic, metaphysics, theory of knowledge, ethics, political philosophy, and the philosophy of science. The academic study of philosophy at UCSD emphasizes a sound understanding of the history of the discipline and the development of analytical skills, and an undergraduate major in philosophy may be regarded as an excellent preparation for many careers in which such skills are emphasized.

The Department of Philosophy also offers a graduate program leading to the M.A. and Ph.D. degrees. It is the intention of the graduate program to enable the student to obtain an understanding of divergent philosophical traditions and to develop as a philosopher in his or her own right. To this end, the department offers courses and seminars in the history of philosophy, philosophy of language, philosophy of mind, philosophy of science, ethics, social philosophy, contemporary Anglo-American and European philosophy, etc.

Undergraduate ProgramMajor

The Department of Philosophy offers the degree of bachelor of arts (B.A.) in philosophy for the undergraduate major. A major in philosophy requires a total of fifteen philosophy courses, at least twelve of which must be upper-division (courses numbered 100 and above). Up to two upper-division courses outside of philosophy can count among the twelve required for the major if they are drawn from a related field and contribute to the major's philosophical program; such credit
must be approved by the undergraduate adviser. Honors and directed study courses (Philosophy 191-199) may not be used to satisfy the major requirement of fifteen philosophy courses. Major requirements may be met by examination.

There is no standard or required introduction to philosophy or the major. The department offers a variety of lower-division courses and sequences (numbered 1-99), any of which could be a suitable introduction to philosophy. Though many upper-division courses have no prerequisite, any combination of three lower-division courses would provide a good foundation for taking most upper-division courses.

Area Requirements for the Major

1. History of Philosophy. Majors must complete three courses in the history of philosophy. At least one course must be in ancient philosophy (courses 31,100-103) and one course must be in modern philosophy (courses 32-33 and 104-107). This requirement can be met by taking the lower-division sequence $31,32,33$ or by taking any suitable combination of courses from the sequences $31-33$ and 100-110.
2. Logic. Philosophy 120 (formerly Philosophy 110) is required of all majors. Note that Philosophy 120 has as a prerequisite Philosophy 10 (or an equivalent course from another department or institution). Because Philosophy 120 is a prerequisite for a variety of upper-division courses, prospective majors are strongly encouraged to take it and Philosophy 10 (or its equivalent) as early as possible.
3. Moral and Political Philosophy. Majors must take at least one upper-division course in moral or political philosophy from among Philosophy $160,161,166$, or 167.
4. Metaphysics and Epistemology. Majors must take at least one upper-division course in traditional areas of analytic philosophymetaphysics, epistemology, philosophy of language, and philosophy of mind-from among Philosophy 130,132,134, or 136.

Grade Rules for Majors/Minors

All courses applied toward the major or minor must be completed with a grade of C - or higher. Further, a GPA of 2.0 must be maintained in courses applied toward the major or minor. It should be noted that courses taken under the

Pass/Not-Pass (P/NP) grading option cannot be applied toward the major or minor.

Honors Program

The philosophy department offers an honors program for outstanding students in the major. Majors who have a 3.7 GPA in philosophy (3.25 overall) at the end of their junior year and who have taken at least four upper-division philosophy courses are eligible to apply. Interested students must consult with a faculty sponsor by the last day of classes during the spring term of their junior year. Admission to the honors program requires nomination by a faculty sponsor and approval of the undergraduate adviser. Nominating Petitions can be obtained from the undergraduate coordinator.

In addition to the usual major requirements, an honors student is required to complete a senior honors thesis by the end of winter quarter. During the fall and winter quarters, the student will be registered for Philosophy 191 and 192 and will be engaged in thesis research that will be supervised and evaluated by the student's faculty sponsor. A departmental committee will read and assess the completed thesis and determine if philosophy honors are to be awarded. Honors students are expected to maintain an average of 3.7 or better for all work taken in the program. (Qualified students wishing to participate in the honors program according to a different timetable than the one described above can apply to do so by petitioning the undergraduate adviser.)

Transfer Credit

Courses taken at other institutions may be applied toward the major by petition only. Petitions should be submitted to the undergraduate coordinator, and must be accompanied by supporting materials (transcripts, syllabi, course work, etc.). Students are required to submit one petition per transfer course.

For specific regulations regarding transfer credit for Philosophy 10 (Introduction to Logic), please see the information on the department Web site: http://www.ucsd.edu/philosophy.

It is important to note that eight of the twelve upper-division courses in the major must be taken in the Department of Philosophy at UCSD.

Note: All courses applied towards major must be taken for a letter grade.

Undergraduate Program Minor

The Department of Philosophy offers a minor in philosophy. A minor requires a total of seven philosophy courses, at least five of which must be upperdivision. All courses must be taken for a letter grade.

Advising Office

Students who desire additional information concerning our course offerings or program may contact individual faculty or the undergraduate adviser through the department office at 7030 H\&SS, (858) 534-3077.

Graduate Program Requirements

The department offers programs leading to the M.A. and Ph.D. It is the intention of the graduate program to enable the student to obtain an understanding of divergent philosophical traditions and to develop as a philosopher in his or her own right. To this end, the department offers courses and seminars in the history of philosophy and in traditional and contemporary philosophical issues, from a variety of perspectives.

Master's Degree Program

To qualify for a master's degree in philosophy, a student must pass eight of the distribution requirement seminars as described below, under the subheading "Distribution Requirements." At least one of the seminars must be from the ethic/social-political category, and no more than four from either of the other two areas may count toward the master's degree. The student must also complete a master's research paper, under the direction of a faculty member of his or her choice, and have it approved by two members of the department faculty.

Although Ph.D. students sometimes elect to complete their studies with a master's degree, we do not admit students to a master's degree program.

Doctoral Degree program

Course Work

During the first two years of residence the student's course work will normally total thirty-six
units (nine courses) per year. At least twelve of these units in each year must be graduate philosophy seminars (those numbered 201-285). The balance may be made up from additional graduate courses in philosophy, upper-division courses in philosophy (those numbered 100-199), approved upper-division or graduate courses in related departments, and, if the student is a teaching assistant, Philosophy 500 (Apprentice Teaching).

Before the beginning of each term, and especially before the fall term, students are required to have their course choices approved by an assigned adviser. Courses should be chosen with an eye toward meeting the program's distribution requirements, as outlined below.

Logic Requirement

During the first term of residence, all entering graduate students will taken an examination designed to demonstrate their level of proficiency in formal logic. The examination covers the predicate calculus, up to and including functions, relations, and identity. Students who pass the examination with a grade of $B+$ or better have satisfied the first component of the logic requirement. Students who do not score a B+or better must take Philosophy 120 (Symbolic Logic I) during the first year of study and achieve a grade of $B+$ or better. By the end of the sixth term of residence, all students must also pass an advanced logic course (Philosophy 121,122,211, or another logic class approved by the graduate adviser) with at least a grade of $B+$.

Distribution Requirements

By the end of the seventh quarter of residence, a student must have completed ten graduate seminars in philosophy. The seminars must be distributed across the following areas:

1. Four seminars in the history of philosophy. At least one of these courses must be in ancient philosophy; at least one must be in modern philosophy.
2. Two seminars chosen from the fields of ethics, social philosophy, political philosophy.
3. Four seminars chosen (in any combination) from the fields of metaphysics, epistemology, philosophy of mind, philosophy of science, philosophy of language, philosophy of mathematics, philosophy of logic.

Courses used to satisfy a requirement in one category cannot be used to satisfy a requirement in another category.

At the end of the fifth quarter of residence, a student must have completed eight of the required seminars. In order to remain in the program, a student must have attained an average of B+ or better in all philosophy seminars completed by this point.

Before the beginning of each quarter, and especially before the fall quarter, a student is required to have all course choices approved by a faculty adviser.

Independent Study Courses

Philosophy 290 (Directed Independent Study) is appropriate for a graduate student still in the process of fulfilling course requirements for the degree.

Philosophy 295 (Research Topics) is an appropriate course for a student in the process of coming up with a dissertation prospectus.

Philosophy 299 (Thesis Research) is appropriate for a student working on his or her dissertation.

Language Requirement

Before advancing to candidacy, all students must demonstrate reading proficiency in one of the following languages:

German
French
Latin
Classical Greek
If a student's chosen dissertation topic requires competence in a second language from the above list, then the student's dissertation adviser can require suitable demonstration of competence. In special circumstances students may be permitted to substitute a different language or a special competency (such as a specialized computer language) if educationally compelling reasons can be given for doing so. These exceptions will be decided on a case-by-case basis by the department as a whole or by a committee it delegates.

Third Year

In the third year of residence, the student must complete with a passing grade at least one regular graduate seminar in each quarter until the end of that year or admission to candidacy, whichever comes first.

Dissertation Prospectus and Oral Candidacy Exam

Some time after completing the distribution requirements, the student must submit a dissertation prospectus to his or her doctoral committee. The committee will then orally examine the student on the intended subject and plan of the research. The examination will seek to establish that the thesis proposed is a satisfactory subject of research and that the student has the preparation and the abilities necessary to complete that research. This oral qualifying examination must be passed before the end of the twelfth quarter of residence. Students who are passed and have met the other requirements will be advanced to candidacy for the Ph.D.

Teaching Requirements

Participation in undergraduate teaching is one of the requirements for a Ph.D. in philosophy. The student is required to serve as a teaching assistant for the equivalent of one-quarter time for three academic quarters. The duties of a teaching assistant normally entail grading papers and examinations, conducting discussion sections, and related activities, including attendance at lectures in the course for which he or she is assisting.

Doctoral Dissertation

Under the supervision of a doctoral committee, each candidate will write a dissertation demonstrating a capacity to engage in original and independent research. The candidate will defend the thesis in an oral examination by the doctoral committee. (See "Graduate Studies:The Doctor of Philosophy Degree.")

Application Request

For information regarding the graduate program call (858) 534-6809 or write to: University of California, San Diego; Graduate Adviser; Philosophy, 0119; 9500 Gilman Drive; La Jolla, CA 92093-0119.

Email address: casmann@ucsd.edu.

Joing Degree Program

The philosophy department at UCSD participates in two interdisciplinary programs, the requirements for which are outlined below. For
each program, students are expected to satisfy roughly two-thirds of the distribution requirements in the philosophy program. This means that instead of ten philosophy seminars at the end of the seventh quarter, students must have completed six (properly distributed), and that instead of eight philosophy seminars by the end of the fifth quarter, students in those programs must have completed five, with a cumulative average of $B+$ or better.

Joint Degree Program with the UCSD Cognitive Science Faculty

The UCSD cognitive science faculty is an interdisciplinary group of twenty-seven scholars drawn from the Departments of Psychology, Neuroscience, Biology, Computer Science and Engineering, Electrical and Computer Engineering, Linguistics, Philosophy, Sociology, Anthropology, and Psychiatry. This group includes many of the outstanding figures in contemporary cognitive science.

Students wishing to pursue a Ph.D.in "Cognitive Science and Philosophy" register in the philosophy program in the normal fashion, but pursue a significant portion of their studies within an interdisciplinary group of departments affiliated with the Department of Cognitive Science. These departments include Anthropology, Computer Science and Engineering, Linguistics, Neurosciences, Psychology, and Sociology. Students may apply for admission to the interdisciplinary program at the same time they apply to the Department of Philosophy, or at some point after entering UCSD. (All students wishing to transfer into any interdisciplinary program must do so prior to the end of the fifth quarter of residency.)

Students in philosophy/cognitive science studies are required to take:

1. A total of nine seminars in philosophy, including four courses from either history or epistemology and metaphysics, and two courses from one of the other groups listed above under the subheading "Distribution Requirements." By the end of the fifth quarter of residence, a student must have taken at least five of these seminars (distributed across at least two areas), and must have achieved an average of $B+$ or better in all philosophy seminars taken up to that point. Failure to take a sufficient number of seminars or to achieve a B+
average means that the student may not continue in the program after the fifth quarter.
2. The equivalent of one year's course work (usually six courses) in one or more of the other departments affiliated with the Department of Cognitive Science.

3. Six quarters of Cognitive Science 200.

A plan detailing the course of study must be approved by the Cognitive Science Program Committee The dissertation should be interdisciplinary, reflecting the two areas of specialization.

Science Studies Program

The Science Studies Program at UCSD is committed to interdisciplinary investigations. Understanding, interpreting, and explaining the scientific enterprise demand a systematic integration of the perspectives developed within the history, sociology, and philosophy of science. The program offers students an opportunity to work towards such integration, while receiving a thorough training at the professional level in one of the component disciplines.

Students enrolled in the program choose one of the three disciplines for their major field of specialist studies, and are required to complete minor field requirements in the other two. The core of the program, however, is a year-long seminar in science studies, led by faculty from all three participating departments.

Students pursuing a"Philosophy and Science Studies" degree are required to take a total of eighteen courses. At least nine of these must be in philosophy, with the remainder drawn from history of science, sociology of science, or the sciences. The courses must satisfy distribution requirements: six seminars must be taken in philosophy by the end of the seventh quarter of residence, distributed across the three required areas listed above. No more than four and no fewer than two courses in any one area may be used to satisfy the requirements. Two courses must be taken in history of science; and two must be in sociology of science. All science studies students are required to take the science studies year-long core seminar. This seminar contributes toward the distribution requirements, counting as one seminar in history of science, one seminar in sociology of science, and one seminar in philosophy (the epistemology-metaphysics group). By the end of the fifth quarter of residence, a student must have taken at least five of these philosophy seminars
(distributed across at least two areas), and must have achieved an average of $\mathrm{B}+$ or better in all philosophy seminars taken up to that point. Failure to take a sufficient number of seminars or to achieve a $B+$ average means that the student may not continue in the program after the fifth quarter.

Students may apply for admission to the interdisciplinary program at the same time they apply to the Department of Philosophy, or at some point after entering UCSD. (All students wishing to transfer into any interdisciplinary program must do so prior to the end of the fifth quarter of residency.)

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

COURSES

LOWER-DIVISION

1. The Nature of Philosophy (4)

What is philosophy? A study of major philosophical questions, making use of both classical and contemporary sources. An introduction to the basic methods and strategies of philosophical inquiry.
10. Introduction to Logic (4)

Basic concepts and techniques in both informal and format logic and reasoning, including a discussion of argument, inference, proof, and common fallacies, and an introduction to the syntax, semantics, and proof method in sentential (propositional) logic. (May be used to fulfill general-education requirements for Warren and Eleanor Roosevelt Colleges.)
12. Logic and Decision Making (4)

An introduction to the study of probability, inductive logic, scientific reasoning, and rational choice among competing hypotheses and alternative courses of action when the evidence is incomplete or uncertain. (May be used to fulfill general-education requirements for Marshall, Warren, and Eleanor Roosevelt Colleges.)

13. Introduction to Philosophy: Ethics (4)

An inquiry into the nature of morality and its role in personal or social life by way of classical and/or contemporary works in ethics. (May be used to fulfill gen-eral-education requirements for Muir and Marshall Colleges.)

14. Introduction to Philosophy: Metaphysics (4)

A survey of central issues and figures in the Western metaphysical tradition. Topics include the mind-body problem, freedom and determinism, personal identity, appearance and reality, and the existence of God. (May be used to fulfill general-education requirements for Muir and Marshall Colleges.)

15. Introduction to Philosophy: Theory of

 Knowledge (4)A study of the grounds and scope of human knowledge, both commonsense and scientific, as portrayed in the competing traditions of Continental rationalism, British empiricism, and contemporary cognitive science. (May be used to fulfill general-education requirements for Muir and Marshall Colleges.)
27. Ethics and Society (4)
(Same as Political Science 27) An inquiry into the principles of ethical conduct and their applications. The course examines some of the major theories (including natural law, individual rights, utilitarianism) and the general issue of rights and obligations with respect to adherence to law (as in civil disobedience abortion and the refusal to obey an unjust law or order). Case studies will be employed to consider the relevance of these principles to various occupations such as business, engineering, law and government, in order to enable students to anticipate some of the difficulties that will arise for them in real-life situations whenever hard moral choices must be made. Satisfies the Warren College ethics and society requirement. This course is required for all Warren students entering the college in fall 1985 and thereafter.
31. History of Philosophy: Ancient Philosophy (4)

A survey of classical Greek philosophy with an emphasis on Socrates, Plato and Aristotle, though some consideration may be given to Presocratic and/or Hellenistic philosophers. (May be used in fulfilling the Muir College breadth requirement.)

32. History of Philosophy: The Origins of Modern Philosophy (4)

A survey of early modern philosophy. Beginning with the contrast between medieval and modern thought, the course focuses on modern philosophy and its relation to the scientific revolution of the sixteenth and seventeenth centuries. Philosophers to be studied include Descartes, Hobbes, Spinoza, and Leibniz. (May be used in fulfilling the Muir College breadth requirement.)
33. History of Philosophy: Philosophy in the Age of Enlightenment (4)
A survey of the major philosophers of the late seventeenth and eighteenth centuries with a focus on the British empiricists-Locke, Berkeley, and Hume-and the critical philosophy of Kant. (May be used in fulfilling the Muir College Breadth requirement.)

UPPER-DIVISION

100. Plato (4)

A study of Socrates and/or Plato through major dialogues of Plato. Possible topics include the virtues and happiness; weakness of the will; political authority and democracy; the theory of Forms and sensible flux; immortality; relativism, skepticism, and knowledge. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

101. Aristotle (4)

A study of major issues in Aristotle's works, such as the categories; form and matter; substance, essence, and accident; the soul; virtue, happiness, and politics. Prerequisite: upper-division standing or consent of instructor.

102. Hellenistic Philosophy (4)

A study of selected texts from the main schools of Hellenistic philosophy-Stoicism, Epicureanism, and

Skepticism. Prerequisite: upper-division standing or consent of instructor.

104. The Rationalists (4)

The major writings of one or more of the seventeenth century rationalists-Descartes, Spinoza, and Leibniz. Topics include the existence of God, the mind-body problem, free will, the nature of knowledge, belief, and error. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.
105. The Empiricists (4)

The major writings of one or more of the British empiri-cists-Locke, Berkeley, Hume, and Reid. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

106.Kant (4)

A study of selected portions of the Critique of Pure Reason and other theoretical writings and/or his major works in moral theory. Prerequisite: Philosophy 33 or 105 or consent of instructor. May be repeated for credit with change in content and approval of the instructor.

107. Hegel (4)

A study of one or more of Hegel's major works, in particular, The Phenomenology of Spirit and The Philosophy of Right. Readings and discussion may also include other figures in the Idealist tradition-such as Fichte, Holderlin, and Schelling-and critics of the Idealist tra-dition-such as Marx and Kierkegaard. Prerequisite: upper-division standing or consent of instructor.
108. Nineteenth Century Philosophy (4)

A study of one or more figures in nineteenth-century philosophy, such as Schopenhauer, Nietzsche, Kierkegaard, Marx, Emerson, Thoreau, James, and Mill.The focus may be on particular figures or intellectual themes and traditions. May be repeated for credit with change of content and approval of instructor. Prerequisite: upperdivision standing or consent of instructor.
109. History of Analytic Philosophy (4)

Central texts, figures, and traditions in analytic philosophy. Figures may include Frege, Russell, Wittgenstein, Carnap, Moore, Austin, Tarski, Quine, Davidson, Kripke, and Putnam. May be repeated for credit with change of content and approval of instructor. Prerequisite: Philosophy 120 or consent of instructor.
110.Wittgenstein (4)

Central themes and writings in the philosophy of Ludwig Wittgenstein. Topics include the nature of logic and philosophy, solipsism, the private language argument, certainty, meaning, and rule-following. Readings include Tractatus Logico-Philosophicus, Philosophical Investigations, and On Certainty. Prerequisite: upperdivision standing or consent of instructor.

111. Contemporary Work in Epistemology and

Metaphysics (4)
A study of a prominent figure or central issue in contemporary epistemology and/or metaphysics. Examples of figures: Quine, Putnam, Sellars; examples of issues: the problem of universals, the nature of selfknowledge, freedom, ontological relativity. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.
115. Philosophical Methods Seminar (4)

This course provides an introduction to the techniques of philosophical inquiry through detailed study of
selected philosophical texts and through extensive training in philosophical writing based on those texts. Enrollment limited and restricted to majors; must be taken for letter grade. May not be repeated for credit. Prerequisite: open to philosophy majors only.
120. Symbolic Logic I (4)

The syntax, semantics, and proof-theory of first-order predicate logic with identity, emphasizing both conceptual issues and practical skills (e.g. criteria for logical truth, consistency, and validity, the application of logical methods to everyday as well as scientific reasoning). Prerequisite: Philosophy 10 or consent of instructor.

121. Symbolic Logic II (4)

The meta-theory of first-order predicate logic: expressive power, the notions of a model, truth-in-a-model, effective procedure, proof and decidability, the completeness of first-order logic (co-extensionality of the semantic and proof-theoretic methods), etc. The course is fairly formal. Prerequisite: Philosophy 120 or consent of instructor.

122. Topics in Logic (4)

A study of new, extended, or alternative logics and/or special issues in meta-logic. Topics include the nature of logic, modal logic, higher-order logic, generalized logic, free logic, the Skolem-L.twenheim theorem, the incompleteness of arithmetic, undecidability. May be repeated for credit with change in content and approval of instructor. Prerequisite: Philosophy 120 (and for advanced topics: Philosophy 121) or consent of instructor.

123. Philosophy of Logic (4)

Philosophical issues underlying standard and non-standard logics, the nature of logical knowledge, the relation between logic and mathematics, the revisability of logic, truth and logic, ontological commitment and ontological relativity, logical consequence, etc. May be repeated for credit with change in content and approval of instructor. Prerequisite: Philosophy 120 or consent of instructor.
125. Games and Decisions (4)

Formal and philosophical issues in the theory of games and the theory of rational decision. Prerequisite: Philosophy 12 or consent of instructor.
130. Metaphysics (4)

Central problems in metaphysics, such as free will and determinism, the mind-body problem, personal identity, causation, primary and secondary qualities, the nature of universals, necessity, and identity. Prerequisite: upper-division standing or consent of instructor.

131. Topics in Metaphysics (4)

An in-depth study of some central problem, figure, or tradition in metaphysics. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.
132. Epistemology (4)

Central problems in epistemology such as skepticism; a priori knowledge; knowledge of other minds; selfknowledge; the problem of induction; foundationalist, coherence, and causal theories of knowledge. Prerequisite: upper-division standing or consent of instructor.
134. Philosophy of Language (4)

Examination of contemporary debates about meaning, reference, truth, and thought. Topics include descriptional theories of reference, sense and reference, com-
positionality, truth, theories of meaning, vagueness, metaphor, and natural and formal languages. Prerequisite: upper-division standing or consent of instructor.

136. Philosophy of Mind (4)

Different conceptions of the nature of mind and its relation to the physical world. Topics include identity theories, functionalism, eliminative materialism, internalism and externalism, subjectivity, other minds, consciousness, self-knowledge, perception, memory, and imagination. Prerequisite: upper-division standing or consent of instructor.

138. Consciousness (4)

Philosophical issues about consciousness, such as multiple or split consciousness, altered consciousness, perspectives and points of view, neuroscientific and cognitive theories, animal, machine, and social consciousness, the evolution of consciousness, zombies. Prere-quisite: upper-division standing or consent of instructor.

139. The Nature of Representation (4)

A philosophical grounding in concepts and distinctions that govern the use of representations in various media, such as analog/digital, implicit/explicit, imagistic/propositional, indexical/descriptive, medium/message, distributed/local, symbolic/associative, situated/ context-independent, and opaque/transparent. Prerequisite: upper-division standing or consent of instructor.

145. Philosophy of Science (4)

Central problems in philosophy of science, such as the nature of confirmation and explanation, the nature of scientific revolutions and progress, the unity of science, and realism and anti-realism. Prerequisite: upper-division standing or consent of instructor.

146. Philosophy of Physics (4)

Philosophical problems in the development of modern physics, such as the philosophy of space and time, the epistemology of geometry, the philosophical significance of Einstein's theory of relativity, the interpretation of quantum mechanics, and the significance of modern cosmology. Prerequisite: upper-division standing or consent of instructor.

147. Philosophy of Biology (4)

Philosophical problems in the biological sciences, such as the relation between biology and the physical sciences, the status and structure of evolutionary theory, and the role of biology in the social sciences. Prerequisite: upper-division standing or consent of instructor.

148. Philosophy and the Environment (4)

Investigation of ethical and epistemological questions concerning our relationship to the environment. Topics may include the value of nature, biodiversity, policy and science, and responsibility to future generations. Prerequisite: upper-division standing or consent of instructor.
149. Philosophy of Psychology (4)

Philosophical issues raised by psychology, including the nature of psychological explanation, the role of nature versus nurture, free will and determinism, and the unity of the person. Prerequisite: upper-division standing or consent of instructor.
150. Philosophy of the Cognitive Sciences (4)

Theoretical, empirical, methodological, and philosophical issues at work in the cognitive sciences (e.g.,

Psychology, Linguistics, Neuroscience, Artificial Intelligence, and Computer Science), concerning things such as mental representation, consciousness, rationality, explanation, and nativism. Prerequisite: upper-division standing or consent of instructor.

151. Philosophy of Neuroscience (4)

An introduction to elementary neuroanatomy and neurophysiology and an examination of theoretical issues in cognitive neuroscience and their implications for traditional philosophical conceptions of the relation between mind and body, perception, consciousness, understanding, emotion, and the self. Prerequisite: upper-division standing or consent of instructor.
152. Philosophy of Social Science (4)

Philosophical issues of method and substance in the social sciences, such as causal and interpretive models of explanation, structuralism and methodological individualism, value neutrality, and relativism. Prerequisite: upper-division standing or consent of instructor.
153. Philosophy of History (4)

A study of classical and/or contemporary conceptions of history and historical knowledge. Topics may include the structure of historical explanation, historical progress, objectivity in historiography, hermeneutics and the human sciences. Prerequisite: upper-division standing or consent of instructor.

160. Ethical Theory (4)

Systematic and/or historical perspectives on central issues in ethical theory such as deontic, contractualist, and consequentialist conceptions of morality; rights and special obligations; the role of happiness and virtue in morality; moral conflict; ethical objectivity and relativism; and the rational authority of morality. Prerequisite: upper-division standing or consent of instructor.
161. Topics in the History of Ethics (4)

Central issues and texts in the history of ethics. Subject matter can vary, ranging from one philosopher (e.g., Aristotle, Hobbes, Kant, or Mill) to a historical tradition (e.g., Greek ethics or the British moralists). May be repeated for credit with change in content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.
162. Contemporary Moral Issues (4)

An examination of contemporary moral issues, such as abortion, euthanasia, war, affirmative action, and freedom of speech. Prerequisite: upper-division standing or consent of instructor.
163. Bio-Medical Ethics (4)

Moral issues in medicine and the biological sciences, such as patient's rights and physician's responsibilities, abortion and euthanasia, the distribution of health care, experimentation, and genetic intervention. Prerequisite: upper-division standing or consent of instructor.

164. Technology and Human Values (4)

Philosophical issues involved in the development of modern science, the growth of technology, and control of the natural environment. The interaction of science and technology with human nature and political and moral ideals. Prerequisite: upper-division standing or consent of instructor.

166. Classics in Political Philosophy (4)

Central issues about the justification, proper functions, and limits of the state through classic texts in the his-
tory of political philosophy by figures such as Plato, Aristotle, Hobbes, Locke, Rousseau, Mill, and Marx. Prerequisite: upper-division standing or consent of instructor.

167. Contemporary Political Philosophy (4

Different perspectives on central issues in contemporary political philosophy, such as the nature of state authority and political obligation, the limits of government and individual liberty, liberatism and its critics, equality and distributive justice. Prerequisite: upper-division standing or consent of instructor.

168. Philosophy of Law (4)

A study of issues in analytical jurisprudence such as the nature of law, the relation between law and morality, and the nature of legal interpretation and issues in normative jurisprudence such as the justification of punishment, paternalism and privacy, freedom of expression, and affirmative action. Prerequisite: upperdivision standing or consent of instructor.
169. Feminism and Philosophy (4)

Examination of feminist critiques of, and alternatives to, traditional philosophical conceptions of such things as morality, politics, knowledge, and science. Prerequisite: upper-division standing or consent of instructor.
170. Philosophy and Race (4)

A philosophical investigation of the topics of race and racism. The role of "race" in ordinary speech. The ethics of racial discourse. Anthropological and biological conceptions of race. The social and political significance of racial categories. Post-racialist conceptions of race.
175. Aesthetics (4)

Central issues in philosophical aesthetics such as the nature of art and aesthetic experience, the grounds of artistic interpretation and evaluation, artistic representation, and the role of the arts in education, culture, and politics. Prerequisite: upper-division standing or consent of instructor.

177. Philosophy and Literature (4)

A study of philosophical themes contained in selected fiction, drama, or poetry, and the philosophical issues that arise in the interpretation, appreciation, and criticism of literature. Prerequisite: upper-division standing or consent of instructor.

180. Phenomenology (4)

An examination of the phenomenological tradition through the works of its major classical and/or contemporary representatives. Authors studied will vary and may include Brentano, Husserl, Heidegger, MerleauPonty, Levinas, Bourdieu. Prerequisite: upper-division standing or consent of instructor.

181. Existentialism (4)

Classical texts and issues of existentialism. Authors studied will vary and may include Nietzsche, Kierkegaard, Sartre, and Heidegger. Prerequisite: upperdivision standing or consent of instructor.

182. Marx and Marxism (4)

Central issues in the writings of the early and late Marx, such as alienation, false consciousness, exploitation, historical materialism, the critique of capitalism, and communism. Attention may be given to Marx's philosophical predecessors (e.g.,, Smith, Rousseau, Hegel, Feuerbach) and/or to subsequent developments in Marxism (e.g. the Frankfurt school and analytical Marxism). Prerequisite: upper-division standing or consent of instructor.

183. Topics in Continental Philosophy (4)

The focus will be on a leading movement in continental philosophy (e.g., the critical theory of the Frankfurt school, structuralism and deconstruction, post-modernism) or some particular issue that has figured in these traditions (e.g., freedom, subjectivity, historicity, authenticity). May be repeated for credit with change in content and approval of instructor. Prerequisite: upperdivision standing or consent of instructor.

185. Philosophy of Religion (4)

A general introduction to the philosophy of religion through the study of classical and/or contemporary texts. Among the issues to be discussed are the existence and nature of God, the problem of evil, the existence of miracles, the relation between reason and revelation, and the nature of religious language. Prerequisite: upper-division standing or consent of instructor.
190. Special Topics (4)

A special philosophical topic. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.
191. Philosophy Honors (4)

Independent study by special arrangement with and under the supervision of a faculty member, including a proposal for the honors essay. An IP grade will be awarded at the end of this quarter; a final grade will be given for both quarters at the end of 192. Prerequisites: department stamp; consent of instructor.
192. The Honors Essay (4)

Continuation of 191: independent study by special arrangement with and under the supervision of a faculty member, leading to the completion of the honors essay. A letter grade for both 191 and 192 will be given at the end of this quarter. Prerequisite: consent of instructor.
199. Directed Individual Study (4)

Directed individual study by special arrangement with and under the supervision of a faculty member. (P/NP grades only.) Prerequisite: consent of instructor.

GRADUATE COURSES

201. Greek Philosophy (4)

A Study of selected authors and texts from the history of ancient Greek philosophy. May be repeated for credit with change of content.
204. Early Modern Philosophy (4)

A study of selected philosophers of the sixteenth and seventeenth centuries; for example, Descartes, Spinoza, Leibniz, and Locke. May be repeated for credit with change of content.

205. Eighteenth-Century Philosophy (4)

A study of major philosophical texts for the period, such as Kant's Critique of Pure Reason and Hume's Treatise of Human Nature. May be repeated for credit with change of content.
206. Nineteenth-Century Philosophy (4)

A selective study of major philosophical texts for the period, with emphasis on such figures as Hegel, Marx, Nietzsche, Mill, and others. May be repeated for credit with change of content.
207.Twentieth-Century European Philosophy (4)

A study of selected topics in twentieth-century European philosophy as reflected in the major writings
of Husserl, Heidegger, Sartre, Merleau-Ponty, and others.

208. Contemporary Analytical Philosophy (4)

A study of the historical development of the analytical movement, with emphasis on major texts. May be repeated for credit with change of content.

209A-B-C. Seminar in Science Studies (4-4-4)
A three-quarter sequence of readings and discussions, taught each quarter by a member of one of the departments (history, communication, sociology, philosophy) participating in the graduate science studies program. Required of all students in the program in their first year; those in later years are expected to audit this course, the content of which will change from year to year. IP grade to be awarded the first and second quarters; the final grade will not be given until the end of the third quarter.
211. Advanced Symbolic Logic (4)

Topics in mathematical logic and set theory, metatheory, nonstandard logics, and other contemporary developments in logical theory. Prerequisite: Philosophy 111 or equivalent.

212. Contemporary Topics in the Philosophy of Science (4)

This seminar will cover current books and theoretical issues in the philosophy of science. Topics will vary from year to year. Prerequisite: Philosophy 180 or equivalent or consent of instructor.

223.Ethics (4)

An examination of the nature of moral problems, judgments, and principles, with emphasis on recent devel opments in moral philosophy and classic formulations of ethical theories.

224. Social and Political Philosophy (4)

An analysis of social philosophies and ideologies in their relationship to basic types of social structure. May be repeated for credit with change of content.

235. Philosophy of Language (4)

(Same as Linguistics 286.) Examination of some current philosophical and scientific views on the nature, use and acquisition of natural languages. May be repeated for credit as course content may vary.

250. Aesthetics (4)

An exploration of problems in the philosophy of art, aesthetic experience, and aesthetic judgment within the context of a critical survey of some current aesthetic theories, and their illustrative application in various fields of art.
270. Contemporary Epistemology and Metaphysics (4) A detailed examination of some fundamental issues in contemporary philosophy, especially those centering about the theories of meaning and reference.
274. Philosophy of Mind (4)

Contemporary work on the relation of mind and body, subjectivity, and the problem of other minds. May be repeated for credit with change of content.
285. Seminar on Special Topics (4)

A seminar for examination of specific philosophical problems (S / \cup grades permitted.)
290. Direct Independent Study (4)

Supervised study of individually selected philosophical topics. May be repeated for credit. Prerequisite: consent of instructor. (S / U grades permitted.)

295. Research Topics (1-12)

Advanced, individual research studies under the direction of a member of the staff. May be repeated for credit. Prerequisite: consent of graduate adviser. (S/U grades permitted.)
299. Thesis Research (1-12)
(S / \cup grades permitted.)
500. Apprentice Teaching (1-4)

A course designed to satisfy the requirement that graduate students should serve as teaching assistants, either in the Department of Philosophy or in the Humanities Program in Revelle College, or in the writings programs offered by the various colleges. Each Ph.D. candidate must teach the equivalent of quartertime for three academic quarters. (S/U grades only.)

Physics

OFFICES:

General Administration: 1110-113 Urey Hall Addition, Revelle College
Graduate Student Affairs:
1110-121 Urey Hall Addition
Undergraduate Student Affairs:
1110-115 Urey Hall Addition
Chair's Office: 1110-113 Urey Hall Addition
Web site: http://physics.ucsd.edu

Professors

Henry D.I. Abarbanel, Ph.D., Director, Institute for Nonlinear Science
Daniel P. Arovas, Ph.D.
Dimitri Bassov, Ph.D.
Ami E. Berkowitz, Ph.D., Research Professor James G. Branson, Ph.D.
Keith A. Brueckner, Ph.D., Emeritus
E. Margaret Burbidge, Ph.D., Research Professor

Geoffrey R. Burbidge, Ph.D.
Joseph C. Y. Chen, Ph.D.
Patrick H. Diamond, Ph.D.
C. Fred Driscoll, Ph.D.

Daniel H.E.Dubin, Ph.D.
Robert C. Dynes, Ph.D., Chancellor
George Feher, Ph.D., Research Professor
Zachary Fisk, Ph.D., Emeritus
Donald R. Fredkin, Ph.D.
George M. Fuller, Ph.D.
Marvin L. Goldberger, Ph.D., Emeritus
John M. Goodkind, Ph.D.
Robert J. Gould, Ph.D., Research Professor Kim Griest, Ph.D., Vice Chair for Education

Benjamin Grinstein, Ph.D.
Frances Hellman, Ph.D.
Jorge E. Hirsch, Ph.D.
Terence T-L. Hwa, Ph.D.
Barbara Jones, Ph.D., Academic Senate Distinguished Teaching Award
David Kleinfeld, Ph.D.
Norman M. Kroll, Ph.D., Research Professor Julius Kuti, Ph.D.
Herbert Levine, Ph.D.
Leonard N. Liebermann, Ph.D., Emeritus
Ralph H. Lovberg, Ph.D., Emeritus
David B. MacFarlane, Ph.D.
Aneesh V. Manohar, Ph.D.
M. Brian Maple, Ph.D., Bernd T.Matthias Endowed Chair, Director, Institute for Pure and Applied Physical Sciences; Director, Center for Interface and Materials Science
George E. Masek, Ph.D., Research Professor
Carl E. Mcllwain, Ph.D., Research Professor
Xuong Nguyen-Huu, Ph.D.
Michael L. Norman, Ph.D.
Melvin Y. Okamura, Ph.D.
Thomas M. O'Neil, Ph.D., Chair
José N. Onuchic, Ph.D.
Hans P. Paar, Ph.D.
Laurence E. Peterson, Ph.D., Research Professor
Oreste Piccioni, Ph.D., Emeritus
Andreas Quirrenbach, Ph.D.
Sally K. Ride, Ph.D., Ingrid and Joseph W. Hibben Endowed Chair
Marshall N. Rosenbluth, Ph.D., Research Professor
Ivan K. Schuller, Ph.D.
Sheldon Schultz, Ph.D., Research Professor
Lu J. Sham, Ph.D.
Vitali D. Shapiro, Ph.D.
Sunil K. Sinha, Ph.D.
Harding E. Smith, Ph.D.
Harry Suhl, Ph.D., Research Professor
Clifford M. Surko, Ph.D.
Robert A. Swanson, Ph.D., Emeritus
Harold Ticho, Ph.D., Emeritus
David R. Tytler, Ph.D.
Wayne Vernon, Ph.D., Research Professor
Arthur M. Wolfe, Ph.D., Director, Center for
Astrophysics and Space Sciences, Endowed
Chancellor's Associates Chair
David Y.Wong, Ph.D., Emeritus
Herbert F. York, Ph.D., Emeritus

Associate Professors

Kenneth A. Intriligator, Ph.D.
Elizabeth E. Jenkins, Ph.D.

Vivek A. Sharma, Ph.D.

Assistant Professor

Douglas E. Smith, Ph.D.

Adjunct Professors

Hans Kobrak, Ph.D., Emeritus
Tihiro Ohkawa, Ph.D.
Raj K. Pathria, Ph.D.
Philip M. Platzman, Ph.D.
Terrence J. Sejnowski, Ph.D.
Shmuel Shtrikman, Ph.D.
Ronald E.Waltz, Ph.D.

Senior Lecturers

Roger Judge, Ph.D., Emeritus
Richard E. Rothschild, Ph.D., Research Scientist, Center for Astrophysics and Space Science
The Department of Physics was established in 1960 as the first new department of the UCSD campus. Since then it has developed a strong faculty and student body with unusually diversified interests which lie primarily in the following areas:

1. Physics of elementary particles
2. Quantum liquids and superconductivity
3. Solid state and statistical physics
4. Plasma physics
5. Astrophysics and space physics
6. Atomic and molecular collision and structure
7. Biophysics
8. Geophysics
9. Nonlinear dynamics
10. Computational physics

In addition to on-campus research facilities, the high energy program uses accelerators at SLAC, CERN, Cornell, and Fermi Laboratory. The astrophysics program uses facilities at Keck, Lick, Mt. Lemmon, and Kitt Peak Observatories.

The Undergraduate Program

The Department of Physics offers undergraduate programs leading to the following degrees:
B.S., Physics
B.S., Physics with Specialization in Astrophysics
B.S., Physics with Specialization in Biophysics
B.S., Physics with Specialization in

Computational Physics
B.S., Physics with Specialization in Earth Sciences
B.S., Physics with Specialization in Materials Physics
B.A., General Physics
B.A., General Physics/Secondary Education

A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. Students must receive a grade of C or better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the major of 2.5 or greater may petition to have one grade of D accepted. All courses (lower- and upper-division) required for the major must be taken for a letter grade.

Shang-keng Ma Award

The Department of Physics presents the Shang-keng Ma Memorial Award at commencement each year to a graduating physics student who has shown exceptional ability and promise during the UCSD undergraduate years. The award was established in 1984 to commemorate the contributions of Professor Ma to the UCSD Department of Physics and to the field of theoretical condensed matter physics.

John Holmes Malmberg Prize

The John Holmes Malmberg Prize is presented annually at commencement to a graduating physics student who is recognized for potential for a career in physics and a measure of experimental inquisitiveness. This prize was established in 1993 in memory of Professor Malmberg who pioneered the use of non-neutral plasmas for sophisticated tests of plasma equilibrium, wave, and transport effects. He was an involved teacher of undergraduate and graduate students and was active in departmental and campus affairs.

Physics Major (B.S. Degree)

The physics major provides a core of basic education in several principle areas of physics, with sufficient flexibility to allow students to prepare either for graduate school or a career in industry. Since in preparing for either goal, more than the required core courses are necessary, it is important for students to meet with a physics department adviser in deciding a schedule.

In the junior year, the emphasis is on macroscopic physics; the two principal physics subjects are electromagnetism and mechanics. The mathematics and computer background required for the physics program is completed in this year.

In the senior year, a sequence of courses in quantum physics provides the student the modern view of atomic and some aspects of subatomic physics and the principal analytical methods appropriate in this domain. The relation of the microscopic to the macroscopic world is the subject of courses in thermodynamics and statistical physics, with illustrations drawn from gas dynamics and solid-state physics. Upper-division laboratories teach students the essentials of physical measurement and building advanced equipment, as well as other aspects of experimental science.
The following courses are required for the physics major:

Lower-Division

1. Physics 4A-B-C-D-E or Physics 2A-B-C-D
2. Physics $2 C L$ and $2 D L$
3. Chemistry 6 A or ${ }^{2}$ a programming course such as MAE 9 or MAE 10
4. Mathematics 21 C -D, 20E-F
${ }^{1}$ The Physics 4 series is recommended, but the Physics 2 sequence is acceptable by petition, in which case both
${ }^{2}$ Chemistry 6A and a programming course are required

Upper-Division

1. Physics $100 \mathrm{~A}-\mathrm{B}, 105 \mathrm{~A}, 110 \mathrm{~A}, 120 \mathrm{~A}, 130 \mathrm{~A}-\mathrm{B}$, 140A, and an additional laboratory course from the lab group: 120B, 121, 131, 133, 173
2. Two courses from either the theoretical or experimental pre-grad-school sequence
Theoretical pre-grad-school sequence: Phys. 100C, 105B, 110B, 130C, 140B

Experimental pre-grad-school sequence: Phys. 100C, 110B, 120B, 130C, 140B
3. Restricted electives:Three upper-division (fourunit) or graduate courses in physics or mathematics (only one). Courses in other science disciplines may be substituted by petition.
For students wishing to prepare for graduate school it is important that all courses in either the theorist or experimentalist pre-grad-school sequence be taken. Mathematics 120A is also recommended.

Suggested Schedule (pre-graduate-school)

FALL	WINTER	SPRING
JUNIOR YEAR		
Phys. 100A	Phys.100B	Phys.100C
Phys.105A	Phys.105B	Phys.120A
Phys.110A	Phys.110B	Phys.130A
SENIOR YEAR		
Phys.140A	Phys.140B	Phys.elective 3
Phys.lab	Phys.elective ${ }^{3}$	Phys.elective 3
Phys.130B $^{\text {Phys.130C }}$		

${ }^{1}$ Experimentalists may replace 105 B with an additional lab
${ }^{2}$ Any course from lab group listed above
${ }^{3}$ Any restricted elective as described above
Suggested Schedule (career in industry)

FALL	WINTER	SPRING
JUNIOR YEAR		
Phys. 100A	Phys. 100B	[pre-grad] ${ }^{4}$
Phys. 105A	Phys. elective ${ }^{3}$	Phys. 120A
Phys. 110A	[other] ${ }^{5}$	Phys. 130A
SENIOR YEAR		
Phys. 140A	[pre-grad] ${ }^{4}$	Phys. elective ${ }^{3}$
Phys. $1 \mathrm{lab}^{2}$	Phys. elective ${ }^{3}$	[other] ${ }^{5}$
Phys. 130B	[other] ${ }^{5}$	

${ }^{2}$ Any course from lab group listed above
${ }^{3}$ Any restricted elective as described above
${ }^{4}$ any course from either pre-grad-school sequence listed above
${ }^{5}$ any other course as approved by adviser

Physics Major with Specialization in Astrophysics (B.S. Degree)

The astrophysics specialization is appropriate for students who would like to gain an in-depth understanding of modern astronomy and astrophysics, and/or who wish to prepare for graduate school in astronomy or astrophysics. It is similar to the standard physics major with electives being chosen from astronomically oriented courses. A wide variety of technical, academic, and professional careers are possible for students who choose this specialization.

The following courses are required for the physics major with specialization in astrophysics:

Lower-Division

1. Physics $4 \mathrm{~A}-\mathrm{B}-\mathrm{C}-\mathrm{D}-\mathrm{E}$ or Physics $2 \mathrm{~A}-\mathrm{B}-\mathrm{C}-\mathrm{D}^{\prime}$
2. Physics 2CL and 2DL
3. Chemistry $6 \mathrm{~A} \circ \mathrm{r}^{2}$ a programming course such as MAE 9 or MAE 10
4. Mathematics $21 \mathrm{C}, 21 \mathrm{D}, 20 \mathrm{E}, 20 \mathrm{~F}$
${ }^{1}$ The Physics 4 series is recommended, but the Physics 2 sequence is acceptable, in which case both
${ }^{2}$ Chemistry 6 A and a programming course are required.

Upper-Division

1. Physics $100 \mathrm{~A}-\mathrm{B}, 105 \mathrm{~A}, 110 \mathrm{~A}, 120 \mathrm{~A}, 130 \mathrm{~A}-\mathrm{B}, 140 \mathrm{~A}$ and an additional laboratory course from the lab group: 120B, 121, 131, 133.
2. Two courses from either the theoretical or experimental pre-grad-school sequence.
3. It is recommended that students take the three quarter astrophysics sequence-Physics 160, 161,162—but any three courses selected from the following list are acceptable:
Physics 160 . Stellar Astrophysics
Physics 161. Compact Objects and the Milky Way
Physics 162, Galaxies and Cosmology
Physics 163, Solar System
ECE 120, Solar System Physics
Chem. 170, Cosmochemistry
MAE 180A, Space Science and Engineering
Physics 223, Stellar Structure and Evolution; with consent of Instructor

Physics 224, Interstellar Medium; with consent of Instructor

Physics 226, Galaxies \& Galactic Dynamics; with consent of Instructor

Physics 227, Cosmology; with consent of Instructor

Physics 228, High Energy and Compact Objects; with consent of Instructor
Theoretical pre-grad-school sequence: Phys. 100C, 105B, 110B, 130C, 140B

Experimental pre-grad-school sequence: Phys. 100C, 110B, 120B, 130C, 140B

Example Schedule

FALL	WINTER	SPRING
JUNIOR YEAR		
Phys 100A	Phys 100B	Phys 100C
Phys 105A	Phys 105B	Phys 120A
Phys 110A	Phys 110B	Phys 130A
SENIOR YEAR		
Phys 140A	Phys 140B	Physics Lab ${ }^{2}$
Phys 160	Phys 161	Phys 162
Phys 130B	Phys 130C	

[^5]
Physics Major with Specialization in Biophysics (B.S. Degree)

The Department of Physics offers an undergraduate program that prepares students for careers in biophysics. This program leads to a degree in "B.S., Physics with Specialization in Biophysics." As a terminal degree, it is an excellent education for students who wish to work in the biotechnology industry, and provides an ideal background for students who plan to attend graduate or professional school in biological or biomedical fields.

This program is intended for students with a strong interest in bringing the concepts and technical advances from the physical sciences to bear on issues in biology. The curriculum is chosen to prepare students as rigorously trained but broadminded generalists, so that they may attack problems in the biological, biochemical, and biomedical sciences with the tools and confidence that come from rigorous training in the physical sciences.

The curriculum for Physics Major with Specialization in Biophysics is designed to allow premedical students to complete all necessary courses for admission to medical schools.

The lower-division program for physics majors with specialization in biophysics includes basic courses in biology and chemistry as well as physics. Although the sequence Physics 4 A through 4 E is strongly recommended, students have the choice of petitioning the department to substitute the sequence Physics $2 A$ through 2 D .

The following courses are required for the physics major with specialization in biophysics:

Lower-Division

1. Physics 4A-B-C-D-E and 2CL-DL; or Physics $2 \mathrm{~A}-\mathrm{B}-\mathrm{C}-\mathrm{D}$ and 2CL-DL (Physics 4 sequence is strongly recommended)
2. Chemistry 6A-B-C and 6BL
3. Biology, BILD 1 and BILD 2
4. Mathematics 20A-B, 21C-D, 20E-F

The upper-division program includes advanced courses in physics, including two core lecture courses and one core laboratory course in biophysics, as well as organic chemistry.

Upper-Division

1. Physics 100A, 105A, 110A, 120A, 130A, 140A, 171,172,173
2. Chemistry 140A

Additional electives, to achieve a count of twelve upper-division courses in the major, may be selected from biology, chemistry and physics. Three additional upper-division courses, in any subject, are required in order to satisfy UCSD requirements.

Premedical students will need to take two additional quarters of organic chemistry (Chemistry 140 B and 140 C), one quarter of organic chemistry laboratory (Chemistry 143A), and one quarter of an upper level biology course. In addition, some medical schools also require a quarter of biochemistry (Biology BIBC 100 or Chemistry 114A). The premedical requirements may be used to satisfy elective requirements for upper-division courses.

As a guide to prospective students, we consider a schedule of required classes for a Muir College student.

Suggested Schedule

FALL	WINTER	SPRING
FRESHMAN YEAR		
Math. 20A	Chem. 6A	Chem. 6B
	Math. 20B	Chem.6BL
	Phys. 4A	Math. 21 C
		Phys.4B
SOPHOMORE YEAR		
Chem. 6C	Math. 20E	Math. 20F
Math. 21D	Phys. 4D	Phys.4E
Phys. 4C	Phys. 2CL	Phys. 2DL
JUNIOR YEAR		
Phys.100A	BILD 1	BILD 2
Phys. 105A	Chem. 140A	Phys.120A
Phys. 110A		Phys. 130A
SENIOR YEAR		
	Phys. 171	
Phys. 140A	Elec.	Phys. 173
Phys. 172	Elec.	

B.S. in Physics with Specialization in Computational Physics

The computational physics specialization is designed to support a broad range of career development tracks, so students may pursue (1) a terminal B.S. degree for gainful employment in information technology and high-tech industry, (2) preparation for graduate studies in computational science with an M.S. degree, and (3) graduate work in physics with strong interest in computational physics. This flexibility is afforded by a wide array of restricted electives which allows students to design much of their own program (subject to adviser's approval) while simultaneously maintaining the essential physics-based
curriculum. Academic advising will be provided by physics faculty in the Compu-tational Physics Specialization Program to assist students in designing their optimal career development track in the flexible curriculum.

The following courses are required for Physics Major with Specialization in Computational Physics:

Lower-Division

1. Physics 4A-B-C-D-E or Physics 2A-B-C-D', Physics 2CL-DL
2. Mathematics 20E-F, Mathematics 21 C-D
3. Chemistry 6A
4. MAE 9 , or MAE 10 , or CSE 11^{2}

1 The 2A-B-C-D sequence is an allowed substitute by petition.
${ }^{2}$ Electing CSE 11, student is still required to have C or Fortran based programming skills equivalent to MAE 9, or MAE 10.

Upper-Division

1. Physics $100 \mathrm{~A}-\mathrm{B}, 105 \mathrm{~A}-\mathrm{B}, 110 \mathrm{~A}, 120 \mathrm{~A}, 121$, 130A-B, 140A, 141, 142
2. Six restricted electives from following groups:

Physics 100C, 110B, 120B, 130C, 131, 140B, other upper division Physics courses, Mathematics 132A-B, 170A-C, 172, 173, 183 CSE 12, 30, 80
Substitute Upper-Division courses ${ }^{3}$
Suggested Schedule (restricted electives not shown)

FALL	WINTER	SPRING
JUNIOR YEAR		
Phys. 100A	Phys. 100B	Phys. 120A
Phys. 105A	Phys. 105B	Phys. 130A
Phys.110A		
SENIOR YEAR		
Phys. 140A	Phys. 141	Phys. 142
Phys. 130B	Phys. 121	

${ }^{2}$ Students will choose two required courses from the group Phys. 121, Phys. 141, Phys. 142, and either will drop the third, or take it as one of the six restricted electives
${ }^{3}$ Substitute elective courses (upper-division science, mathematics, engineering, or other) require adviser's approval

Career Track Examples with Restricted Electives

The program of electives is intended to be flexible, and can be tailored to the student's needs
and interests in consultation with the academic adviser.

Grad. School Theorist with Computational Interest Track for student with interest in theoretical physics based computational science:

Physics 100C, 110B, 130C, 140B
Mathematics 132A-B
Grad. School Experimentalist with Computational Interest Track for students with interest in experimental physics based computational science:

Physics 100C, 120B, 131, 142
Mathematics 183
CSE 80
Information Technology Track for student with interest in physics based software oriented applications:

Physics 100C, 140B
CSE 12,30, 80
Mathematics 173
Numerical Science/Engineering Application Developer Track for students with interest in physics and engineering applications of numerical algorithms:

Physics 100C, 140B
Mathematics 170A-C, 172
High Tech Instrumentation Track for students with interest in physics based instrumentation:

Physics 100C, 120B, 140B
Mathematics 183
CSE 12, 80

Physics Major with Specialization in Earth Sciences (B.S. Degree)

The upper-division program for physics majors with specialization in earth sciences is essentially the same as the standard physics major augmented by courses in earth sciences.

Students may wish to incorporate a small portion of the major program into their lowerdivision studies, for example, Earth Sciences 101.

The following courses are required for the physics major with specialization in earth sciences:

Lower-Division

1. Physics 4A-B-C-D-E and $2 C L-D L$; or Physics 2A-B-C-D and 2CL-DL (Physics 4 sequence is strongly recommended)
2. Chemistry $6 \mathrm{~A}-\mathrm{B}$ and 6 BL
3. Mathematics 21C-D, 20E-F

Upper-Division

1. Physics $100 A-B-C, 105 A-B, 110 A-B, 120 A-B$, 130A, 140A-B
2. Earth Sciences $101,102,103,120$
3. Restricted Electives: three upper-division earth science (four-unit) or graduate courses to be chosen with the approval of the SIO earth sciences adviser

Suggested Schedule

FALL	WINTER	SPRING
JUNIOR YEAR		
Phys. 100A	Phys. 100B	Phys. 100C
Phys. 105A	Phys. 105B	Phys. 120A
Phys. 110A	Phys.110B	Phys. 130A
Earth Sci.101	Earth Sci.102	Earth Sci. 103
SENIOR YEAR		
Phys. 120B	Phys. 140B	Restr. Elec
Phys. 140A	Earth Sci. 120	Restr. Elec.
Restr. Elec.		

Physics Major with Specialization in Materials Physics (B.S. Degree)

The materials physics specialization is designed to support a broad range of options, so students may pursue (1) a terminal B.S. degree, or preparation for (2) graduate work in materials science, or (3) graduate work in physics. This flexibility is afforded by a wide range of restricted electives which allows students to design much of their own program while simultaneously maintaining the essential physics-based curriculum. Academic advising will be provided by the department to assist the student in navigating through the many options. The B.S. program also serves as the entry to the integrated five-year B.S./M.S. program.

Lower-Division

1. Physics 4A-B-C-D-E or Physics 2A-B-C-D, Physics 2CL-DL
2. Chemistry $6 A-B^{*}$
3. Mathematics $21 \mathrm{C}-\mathrm{D}, 20 \mathrm{E}-\mathrm{F}$
4. MAE 9 or MAE 10 (or equivalent programming experience)

Upper-Division

1. Physics $100 \mathrm{~A}-\mathrm{B}, 105 \mathrm{~A}-\mathrm{B}, 110 \mathrm{~A}, 120 \mathrm{~A}-\mathrm{B}$, 130A-B, 140A, 133, 152A-B
2. Four restricted electives, to be chosen from Chemistry 120A- B^{*}; Mathematics 120A; ECE 103, 134, 135A-B, 136, 136L, 137; MAE 160, 110 ; or any upper division physics course

* Students who anticipate taking Chemistry 120A-B as an upper-division elective are strongly advised to take Chemistry 6C.

Suggested Schedule
(restricted electives not shown)

FALL	WINTER	SPRING
JUNIOR YEAR		
Phys. 100A	Phys. 100B	Phys.120A
Phys. 105A	Phys.105B	Phys.130A
Phys.110A		
SENIOR YEAR		
Phys.140A	Phys.152A	Phys.152B
Phys. 120B		Phys.133
Phys.130B		

Restricted Electives: Example

As examples of restricted electives, a student opting for a terminal B.S. degree (Option 1) might choose to take MAE 160, ECE 103, 136, and Physics 121. Students preparing for graduate work in materials science (Option 2) might consider MAE 160, ECE 103, 134, and a fourth elective. Students preparing for graduate work in materials science (Option 3) might consider Physics 100C, 110B, 140B, and a fourth elective. The program of electives is intended to be flexible, and can be tailored to the student's needs and interests in consultation with the academic adviser.

See entry for Integrated Bachelor's/Master's Degree Program in Materials Physics.

General Physics Major (B.A. Degree)

This program covers the essential topics in physics and provides a broadly based education in the natural sciences. Starting with lower-division courses in mathematics, physics, computing, biology and/or chemistry, students proceed to upper-division mechanics, electricity and magnetism, thermal physics, quantum physics, and a physical measurements laboratory course. In addition, students take sixteen units of upper-division elective courses in the natural sciences or mathematics.

While the B.A. program is suitable for students who pursue a terminal degree in physics or use it as a preparation for other professional careers, it is not intended for those who wish to proceed to the Ph.D. in physics. The latter should enroll in the B.S. program.

The following courses are required for the general physics major:

Lower-Division

1. Physics $2 A-B-C-D$ and $2 C L-D L$
2. Mathematics $21 \mathrm{C}-\mathrm{D}, 20 \mathrm{E}-\mathrm{F}$
3. Three restrictive elective courses in science and engineering (a list of acceptable courses is given below)

Upper-Division

1. Physics $100 \mathrm{~A}-\mathrm{B}, 105 \mathrm{~A}, 110 \mathrm{~A}-\mathrm{B}, 120 \mathrm{~A}, 130 \mathrm{~A}, 140 \mathrm{~A}$ or Chemistry 127 or 131
2. Restricted Electives: Sixteen units of upperdivision courses in science and engineering (excluding mathematics)

Suggested Schedule

FALL	WINTER	SPRING
JUNIOR YEAR		
Phys.100A	Phys. 100B	Phys. 120A
Phys.105A	Phys.110B	Phys.130A
Phys.110A		
SENIOR YEAR		
Phys. 140A or	Restr. Elec	Restr. Elec.
Chem. 127 or 131 Restr. Elec.		

Approved Lower-Division Elective Courses

One course in computing chosen from the following list:

MAE 10, FORTRAN for Engineers

MAE 03, Introduction to Engineering Graphics and Design
CSE 10, Introduction to Programming Techniques
CSE 30, Introduction to Systems Programming Physics 105B, Mathematical and Computational Physics

Plus two of the following courses:
BILD 1, The Cell
BILD 2, Multicellular Life
BILD 3, Organismic and Evolutionary Biology
Chem. 6A, General Chemistry
Chem. 6B, General Chemistry
Chem. 6C, General Chemistry
Chem. 6BL plus 6CL, General Chemistry Lab plus Intro. Analytical Chemistry

General Physics/Secondary Education Major (B.A. Degree)

This program is intended for students preparing for a career as a physics teacher in secondary schools. It covers the essential topics in physics and provides a broadly based education in the natural sciences. The program includes three courses in general chemistry plus a lab, one course in organic chemistry plus a lab, and a course in earth science as required by the Single Subject Credential Program of the state of California. It also includes three courses in Practicum in Learning offered by the Teacher Education Program. This degree is particularly suitable for students pursuing a Single Subject (Physics) credential for high schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program (TEP) for information about the prerequisite and professional preparation requirements. It is recommended that you contact TEP as early as possible in your academic career.

The following courses are required for the general physics/secondary education major:

Lower-Division

1. Physics $2 \mathrm{~A}-\mathrm{B}-\mathrm{C}-\mathrm{D}$ and $2 \mathrm{CL}-\mathrm{DL}$
2. Chemistry 6A-B-C and 6BL
3. Earth Sciences $10,12,30$, or 40
4. Mathematics 20A-B, 21C-D, 20E-F

Upper-Division

1. Physics 100A-B, 105A, 110A-B, 120A, 130A
2. Chemistry 140A and 143A
3. Earth Sciences 101
4. TEP 129A-B-C

Suggested Schedule

FALL	WINTER	SPRING
JUNIOR YEAR		
Phys. 100A	Phys. 100B	Phys. 130A
Phys. 105A	Phys. 110B	Phys. 120A
Phys.110A	Chem. 140A	Chem. 143A
SENIOR YEAR		
Earth SCi. 101	TEP 129B	TEP 129C
TEP 129A		

Engineering Physics Program

The engineering physics program is offered jointly by the Departments of Physics, MAE, and $E C E$, and is administered by the Department of

ECE. (See "ECE, Engineering Physics Program.") Transfer students who have had prior course work in the major at other institutions must consult with the Department of Physics, Student Affairs Office, 1110-115 Urey Hall Addition to make an appointment to see a faculty adviser.

Minor in Physics

Students may arrange minor programs or programs of concentration in physics by consulting with the Department of Physics Student Affairs Office, 1110-115 Urey Hall Addition, and their college for specific requirements. The Department of Physics requires at least twenty-eight units, of which at least twenty units must be upper-division. All courses must be taken for a letter grade. Lower-division transfer courses are permitted.

Advising Office

All students are assigned an academic adviser. It is strongly recommended students see their adviser at least once a quarter.

Additional advising information may be obtained from the Department of Physics Student Affairs Office, 1110-115 Urey Hall Addition (858) 534-3290.

Honors Program

The Department of Physics offers an Honors Program for students who demonstrate excellence in the major. Students interested in the Honors Program should consult the Student Affairs Office. Eligibility for the Honors Program includes completion of all required lower-division physics courses, ten upper-division physics courses, and a GPA of a least 3.50 in the physics major.

The Honors Program consists of a minimum of eight units of Honors Thesis Research (Physics 199H), an Honors Thesis, and the presentation of the research to faculty and peers at UCSD's Undergraduate Research Conference or an Undergraduate Seminar. Admission to the Honors Program is contingent upon the prior approval of the Honors Thesis "research topic" by the Vice Chair for Education.

Integrated Bachelor's/Master's

Degree Program in Materials Physics
The program offers a M.S. in physics with specialization in materials physics. It is open only to UCSD undergraduates, and is a Plan I program
only (thesis). During the fourth quarter prior to receipt of the B.S. degree, students enrolled in the B.S. degree program with specialization in materials physics (see above) may apply for admission to the M.S. program. To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and have a GPA of at least 3.0 in both their major and overall undergraduate curriculum. It is strongly recommended that B.S. students who intend to apply to the M.S. program take MAE 160, ECE 103, and ECE 134 as restricted B.S. electives. It is the responsibility of the prospective B.S./M.S. student to select a faculty member (from the Department of Physics or, with physics department approval, from the MAE, ECE, or chemistry departments) who would be willing to serve as the student's adviser and with whom the student would complete at least twelve units of S / \cup graded research, which could commence as early as the undergraduate senior year. (Taken during the senior year, the units would count only toward the M.S. degree and not toward the B.S.) The student must confirm that the selected faculty adviser will not be on off-campus sabbatical leave during any quarter of the scheduled B.S./M.S. project. Students are expected to meet the requirements for the M.S. degree in one year (three consecutive, contiguous academic quarters) from the date of receipt of the B.S. degree. Any deviation from this plan, such as a break in enrollment for one or more quarters, may result in the student being dropped from the program.

The requirements for the M.S. degree are as follows:

1. Completion of at least twelve and no more than twenty-four units of research, which may begin as early as the first quarter of the senior undergraduate year.
2. Completion of three required courses during the fifth (graduate) year (MAT SCI 201A-B-C), and two restricted electives (see below).
3. Completion of restricted elective courses so that the total number of units (research plus required courses plus elective courses) totals no less than 36 units taken as a graduate student. Students accumulate units for their research by enrolling in Physics 295 (M.S. Thesis Research), which may be taken repeatedly.
4. Maintenance of a grade-point average of at least 3.0 for all course work, both cumulatively and for each quarter of enrollment in the B.S./M.S. program.
5. Completion of a thesis, with an oral presentation to, and approval of, a three-member committee from the Department of Physics including the faculty adviser. If the faculty adviser is from outside the physics department, the committee shall consist of the adviser and two members from the physics department faculty.
6. Three complete, separate, and consecutive quarters of full-time residency as a graduate student which will commence the quarter immediately following the quarter in which the B.S. degree is awarded (not counting summer session).
7. Although students may receive research or teaching assistantships if available from their adviser or through the Department of Physics, there is no guarantee of financial support associated with the M.S. program.
8. M.S. candidates will be permitted to serve as teaching assistants, although teaching will not be a requirement for the degree. Students who obtain a teaching assistantship should make sure that it does not interfere with completion of the M.S. degree requirements within the one year time frame allotted.

M.S. Program: Fifth Year Curriculum

1. MAT SCI 201A-B-C
2. Physics 295 (M.S. Thesis Research)
3. Two restricted electives, to be chosen from Physics 201,211A-B; MAT SCI 227, 240A-B-C; ECE 231, 233: other courses allowed by petition

The Graduate Program

The Department of Physics offers curricula leading to the following degrees:

```
M.S., Physics
C.Phil., Physics
Ph.D., Physics
Ph.D., Physics (Biophysics)
```

Biophysics students will receive their M.S. and C.Phil. degrees in physics. Only their Ph.D. will be in physics (biophysics).

Entering graduate students are required to have a sound knowledge of undergraduate mechanics, electricity and magnetism; to have had senior courses or their equivalent in atomic and quantum physics, nuclear physics, and ther-
modynamics; and to have taken upper-division laboratory work. An introductory course in solidstate physics is desirable.

Requirements for the master of science degree can be met according to Plan II (comprehensive examination). (See "Graduate Studies:The Master's Degree.") The comprehensive examination is identical to the first-year departmental examination for Ph.D. students. A list of acceptable courses is available in the Department of Physics Graduate Student Affairs office. There is no foreign language requirement.

Doctoral Degree Program

The department has developed a flexible Ph.D. program which provides a broad, advanced education in physics while at the same time giving students opportunity for emphasizing their special interests. This program consists of graduate courses, apprenticeship in research, teaching experience, and thesis research.

Entering students are assigned a faculty adviser to guide them in their program. Many students spend their first year as teaching assistants or fellows and begin apprentice research in their second year. When a student's association with a research area and research supervisor is well established, a faculty research progress committee is formed with the responsibility of conducting an annual review of progress and, at the appropriate time, initiating the formation of a doctoral committee. After three years of graduate study, or earlier, students complete the departmental examinations and begin thesis research. Students specializing in biophysics make up deficiencies in biology and chemistry during the first two years and complete the departmental examinations by the end of their third year of graduate study. There is no foreign language requirement.

Entrance Testing

An entrance test covering undergraduate physics is given to entering students during the first week of orientation to give better guidance to students in their graduate program. The results are not entered in the student's file. Entering students are encouraged, but not obliged, to bring the results to the first meeting with their academic adviser. Entering students may elect to take the departmental examination instead of taking the entrance test.

Requirements for the Ph.D.

Students are required to pass a departmental examination, advanced graduate courses, a qualifying examination, teaching requirement and a final defense of the thesis as described below.

1. DEPARTMENTAL EXAMINATION

Physics students are required to take the departmental examination after completing one year of graduate work at UCSD. The examination is on the level of material usually covered in upper-division courses and the graduate courses listed below:

Fall

Physics 200A (Theoretical Mechanics)
Physics 201 (Mathematical Physics)
Physics 212A (Quantum Mechanics)

Winter

Physics 200B (Theoretical Mechanics)
Physics 203A (Adv. Classical Electrodynamics)
Physics 212B (Quantum Mechanics)

Spring

Physics 203B (Adv. Classical Electrodynamics) Physics 210A (Equilibrium Statistical Mechanics) Physics 212C (Quantum Mechanics)

The examination is offered twice a year, at the beginning of the fall and spring quarters, and lasts two days, four hours per day. The examination may be repeated once, the next time it is offered.

Biophysics students take the departmental examination after completing two years of graduate work.

2. ADVANCED GRADUATE COURSES

Physics students are required to take five advanced graduate courses (with a grade of C or better) from at least three of the groups listed below no later than the end of the third year of graduate work. A 3.0 average in four of the five courses is required. (In lieu of the course requirement, students may petition to take an oral examination covering three areas of physics.)
Group 1:Physics 218A-B-C (Plasma); 234 (Nonneutral Plas.); 235 (Nonlin. Plas.Th.)

Group 2: Physics 210B (Nonequil. Stat. Mech.); 210C, 211A, 211B (Solid State); 219 (C.M./Matl. Sci. Lab), 230 (Adv. Solid State); 232 (Electronic Materials); 236 (Many-body Th.)

Group 3: Physics 214 (Elem. Part.); 215A-B-C (Part. \& Fields); 217 (Renorm. Field Th.); 222 (Exp. Tech. Part. Phys.)
Group 4: Physics 220 (Group Th.); 221A, 221B (Nonlinear Dyn.); Mathematics 210A-B, 210C (Mathematics Physics); Mathematics 259A-B-C (Geom. Physics)
Group 5: Physics 206 (BioPhysics); Physics 207
(X-ray Crystallography); 225A-B (Relativ.); 271
(Bio. Neurons/Net); 272 (Bio. Molecules)
Group 6: Physics 223 (Stel. Str); 224 (Intrstel. Med.); 226 (Gal. \& Gal. Dyn.); 227 (Cosmology), 228
(HE Astro. \& Comp. Obj.)
Biophysics students select five courses from biology, biochemistry, chemistry, or physics in consultation with their adviser. At least three courses must be graduate courses.

3. QUALIFYING EXAMINATION AND ADVANCEMENT TO CANDIDACY

In order to be advanced to candidacy, students must have met the departmental requirements and obtained a faculty research supervisor. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council. The committee conducts the Ph.D. qualifying examination during which students must demonstrate the ability to engage in thesis research. Usually this involves the presentation of a plan for the thesis research project. The committee may ask questions directly or indirectly related to the project and questions on general physics which it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the Candidate of Philosophy degree.

4. INSTRUCTION IN PHYSICS TEACHING

All graduate students are required to participate in "Instruction in Physics Teaching" under the supervision of a professor as part of their training for future careers. Students will participate in teaching recitation sections, problem sessions, or laboratory sections. Students are required to take a total of two units of Physics 500 .

5.THESIS DEFENSE

When students have completed their theses, they are asked to present and defend them before their doctoral committees.

TIME LIMITS FOR PROGRESS TO THE PH.D.

In accordance with university policy, the Department of Physics has established the following time limits for progress to the Ph.D. A student's research progress committee helps ensure that these time limits are met.

	Theorists	Experimentalists
Advancement to Candidacy	4 years	5 years
Total Registered Time and	7 years	8 years
Support		

Departmental Colloquium

The department offers a weekly colloquium on topics of current interest in physics and on departmental research programs. Students are expected to register and attend the colloquium.

Supplementary Course Work and Seminars

The department offers regular seminars in several areas of current interest. Students are strongly urged to enroll for credit in seminars related to their research interests and, when appropriate, to enroll in advanced graduate courses beyond the departmental requirement. To help beginning students choose a research area and a research supervisor, the department offers a special seminar (Physics 261) that surveys physics research at UCSD.

Course Credit by Examination

Students have an option of obtaining credit for a physics graduate course by taking the final examination without participating in any class exercises. They must, however, officially register for the course and notify the instructor and the Department of Physics graduate student affairs office of their intention no later than the first week of the course.

COURSES

LOWER-DIVISION

The Physics 1 sequence is primarily intended for biology.

The Physics 2 sequence is intended for physical science and engineering majors and those biological science majors with strong mathematical aptitude.

The Physics 4 sequence is intended for all physics majors and for students with an interest
in physics. This five-quarter sequence covers the same topics as the Physics 2 sequence, but it covers these topics more slowly and in more depth. The Physics 4 sequence provides a solid foundation for the upper-division courses required for the physics major.

Note: Since some of the material is duplicated in the Physics 1,2 and 4 sequences, credit cannot be obtained for both. Please check with the Physics Student Affairs Office when switching sequences. (Example: Physics 1A followed by Physics 2A, no credit for Physics 2A.)

Physics $5,6,7,8,9,10,11 A-B$, and 12 are intended for non-science majors. Physics $5,6,7,8$, 9,10 , and 12 do not use calculus while Physics $11 A-B$ use some calculus.

1A. Mechanics (Lecture and Laboratory) (5)

First quarter of a three-quarter calculus-based lecture and laboratory introductory physics course, geared toward life-science majors. Equilibrium and motion of particles in Newtonian mechanics, examples from astronomy, biology and sports, oscillations and waves, vibrating strings and sound. Prerequisites: Mathematics 10A and concurrent enrollment in Mathematics 10B; or concurrent enrollment in Mathematics 20A. (F,W,S)

1B. Electricity, Magnetism, and Thermodynamics (Lecture and Laboratory) (5)
Second quarter of a three-quarter calculus-based lecture and laboratory introductory physics course geared toward life-science majors. Electric fields, magnetic fields, DC and $A C$ circuitry, and thermal physics. Prerequisites: Physics $1 A$ and concurrent enrollment in Mathematics 10 C or Mathematics 20B. (F,W,S) Course materials fee is required.

1C. Diffusion, Radiation, and Modern Physics (Lecture

 and Laboratory) (5)Third quarter of a three-quarter calculus-based lecture and laboratory introductory physics course geared toward life-science majors. Behavior of systems under combined thermal and electric forces, the interaction of light with matter as illustrated through optics and quantum mechanics. Examples from biology and instrumentation. Prerequisites: Physics $1 B$ and Mathematics 10C or Mathematics 20B. (F,W,S) Course materials fee is required.

2A. Physics-Mechanics (4)

A calculus-based science-engineering general physics course covering vectors, motion in one and two dimensions, Newton's first and second laws, work and energy, conservation of energy, linear momentum, collisions, rotational kinematics, rotational dynamics, equilibrium of rigid bodies, oscillations, gravitation. Prerequisites: Mathematics 20A, and concurrent enrollment in Mathematics 20B. (F,W,S)

2AS. Physics-Mechanics (4)

Same as Physics 2A except that it is offered as a selfpaced (Keller plan) course. Prerequisites: Mathematics 20A and concurrent enrollment in Mathematics $20 B$. (summer session only)

2B. Physics-Electricity and Magnetism (4)

Continuation of Physics 2A covering charge and matter, the electric field, Gauss's law, electric potential, capacitors and dielectrics, current and resistance, electromo-
tive force and circuits, the magnetic field, Ampere's law, Faraday's law, inductance, electromagnetic oscillations, alternating currents and Maxwell's equations. Prerequisites: Physics 2A, Mathematics 20B, and concurrent enrollment in Mathematics 21C. (F,W,S)

2BL. Physics Laboratory-Mechanics and

 Electrostatics (2)One hour lecture and three hours' laboratory. Experiments include gravitational force, linear and rotational motion, conservation of energy and momentum, collisions, oscillations and springs, gyroscopes. Experiments on electrostatics involve charge, electric field, potential, and capacitance. Data reduction and error analysis are required for written laboratory reports. Prerequisite: concurrent enrollment in Physics 2B, $2 B S$, or $4 C$. (F, S) Course materials fee is required.

2BS. Physics-Electricity and Magnetism (4)

Same as Physics 2B, except that it is offered as a selfpaced (Keller plan) course. Prerequisites: Physics 2A, Mathematics 20B, and concurrent enrollment in Mathematics 21C. (summer session only)

2C. Physics-Fluids, Waves, Thermodynamics, and

 Optics (4)Continuation of Physics $2 B$ covering fluid mechanics, waves in elastic media, sound waves, temperature, heat and the first law of thermodynamics, kinetic theory of gases, entropy and the second law of thermodynamics, Maxwell's equations, electromagnetic waves, geometric optics, interference and diffraction. Prerequisites: Physics 2B, Mathematics 21C, and concurrent enrollment in Mathematics 21D. (F,W,S)

2CS. Physics-Fluids, Waves, Thermodynamics, and

 Optics (4)Same as Physics 2C, except that it is offered as a selfpaced (Keller plan) course. Prerequisites: Physics 2B, Mathematics 20 C or 21 C , and concurrent enrollment in Mathematics 21D. (summer session only)

2CL. Physics Laboratory-Electricity and Magnetism,

Waves, and Optics (2)
One hour lecture and three hours' laboratory. Experiments on refraction, interference/diffraction using lasers and microwaves; lenses and the eye; acoustics; oscilloscope and L-R-C circuits; oscillations, resonance and damping, measurement of magnetic fields; and the mechanical equivalence of heat. Prerequisites: prior or concurrent enrollment in Physics 1C, $2 C, 2 C S$, or $4 D$. (F,W) Course materials fee is required.

2D. Physics-Relativity and Quantum Physics (4)
A modern physics course covering atomic view of matter, electricity and radiation, atomic models of Rutherford and Bohr, relativity, X-rays, wave and particle duality, matter waves, Schradinger's equation, atomic view of solids, natural radioactivity. Prerequisites: Physics $2 B$ and Mathematics 21D. (F,W)

2DS. Physics-Relativity and Quantum Physics (4)
Same as Physics 2D except that it is offered as a selfpaced (Keller plan) course. Prerequisites: Physics 2B and Mathematics 21D. (summer session only)

2DL. Physics Laboratory-Modern Physics (2)
One hour of lecture and three hours of laboratory. Experiments to be chosen from refraction, diffraction and interference of microwaves, Hall effect, thermal band gap, optical spectra, coherence of light, photoelectric effect, e / m ratio of particles, radioactive decays, and plasma physics. Prerequisites: $2 B L$ or $2 C L$, prior or
concurrent enrollment in Physics 2D, 2DS, or 4E. (S) Course materials fee is required.

4A. Physics for Physics Majors-Mechanics (4)
The first quarter of a five-quarter calculus-based physics sequence for physics majors and students with a serious interest in physics. The topics covered are vectors, particle kinematics and dynamics, work and energy, conservation of energy, conservation of momentum, collisions, rotational kinematics and dynamics, equilibrium of rigid bodies. Prerequisites: Mathematics 20A and concurrent enrollment in Mathematics 20B. (W)

4B. Physics for Physics Majors-Mechanics, Fluids, Waves, and Heat (4)

Continuation of Physics 4A covering oscillations, gravity, fluid statics and dynamics, waves in elastic media, sound waves, heat and the first law of thermodynamics, kinetic theory of gases, second law of thermodynamics, gaseous mixtures and chemical reactions. Prerequisites: Physics 4A, Mathematics 20B and concurrent enrollment in Mathematics 21C. (S)

4C. Physics for Physics Majors-Electricity and
 \section*{Magnetism (4)}

Continuation of Physics 4B covering charge and Coulomb's law, electric field, Gauss's law, electric potential, capacitors and dielectrics, current and resistance, magnetic field, Ampere's law, Faraday's law, inductance, magnetic properties of matter, LRC circuits, Maxwell's equations. Prerequisites: Physics 4B, Mathematics 21C and concurrent enrollment in Mathematics 21D. (F)

4D. Physics for Physics Majors-Electromagnetic Waves, Optics, and Special Relativity (4)

Continuation of Physics 4C covering electromagnetic waves and the nature of light, cavities and wave guides, electromagnetic radiation, reflection and refraction with applications to geometrical optics, interference, diffraction, holography, special relativity. Prerequisites: Physics 4C, Mathematics 21D and concurrent enrollment in Mathematics 20E. (W)

4E. Physics for Physics Majors-Quantum Physics (4)

Continuation of Physics 4D covering experimental basis of quantum mechanics: Schradinger equation and simple applications; spin; structure of atoms and molecules; selected topics from solid state, nuclear, and elementary particle physics. Prerequisites: Physics 4D, Mathematics 20E, and concurrent enrollment in Mathematics 20F. (S)

5. The Universe (4)

Introduction to astronomy. Topics include the earth's place in the universe; the atom and light; the birth, life, and death of stars; the Milky Way galaxy; normal and active galaxies; and cosmology. Physics 5 or 7, and Earth Sciences 10 and 30 form a three-quarter sequence. Students may not receive credit for both Physics 5 and Physics 7. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (F,S)

6. Physics of Space Science and Exploration (4)

Descriptive introduction to basic physics concepts relevant to space science and exploration. Topics include gravity; orbits, weightlessness, and Kepler's laws; the Earth's physical environment (including its atmosphere, its magnetic field, and radiation from the sun); and light as an electromagnetic wave. These topics form the basis for an introduction to the space program and discussion of the scientific reasons for performing experiments or observations in space. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (W)
7. Introductory Astronomy (4)

Introduction to astronomy and astrophysics. Topics same as Physics 5. This course uses basic pre-calculus level mathematics (algebra, proportions, logs, similar triangles). Physics 5 or 7 and Earth Sciences 10 and 30 form a three-quarter sequence. Students may not receive credit for both Physics 5 and Physics 7. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (W)

8. Physics of Everyday Life (4)

Examines phenomena and technology encountered in daily life from a physics perspective. Topics include waves, musical instruments, telecommunication, sports, appliances, transportation, computers, and energy sources. Physics concepts will be introduced and discussed as needed employing some algebra. No prior physics knowledge is required. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (S)

9. The Solar System (4)

A non-mathematical exploration of our Solar System and other planetary systems for non-science majors. The sun, terrestrial and giant planets, satellites, asteroids, comets and meteors. The formation of planetary systems, space exploration, the development and search for life. (W)

10. Concepts in Physics (4)

This is a one-quarter general physics course for nonscience majors. Topics covered are motion, energy, heat, waves, electric current, radiation, light, atoms and molecules, nuclear fission and fusion. This course emphasizes concepts with minimal mathematical formulation. Prerequisite: college algebra or equivalent. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (W)

11A. Survey of Physics (4)

First quarter of a two-quarter survey of physics for nonscience majors with strong mathematical background, including calculus. Physics 11 A describes the laws of motion, gravity, energy, momentum, and relativity. A laboratory component consists of two experiments with gravity and conservation principles. Prerequisites: Mathematics 10A or 20A and concurrent enrollment in Math 10B or 20B. (F)

11B. Survey of Physics (4)

Second quarter of a two-quarter introductory physics course for non-science majors covering topics in classical and modern physics. Topics are taken from magnetism, electromagnetic radiation, relativity, quantum mechanics, atomic and nuclear physics, and cosmology. The laboratory requirement consists of two experiments of the student's choice. Prerequisites: Physics 11A and Mathematics 10B or 20B. (W) (Not offered in 2001-02.)

12. Energy and the Environment (4)

A course covering energy fundamentals, energy use in an industrial society and the impact of large-scale energy consumption. It addresses topics on fossil fuel, heat engines, solar energy, nuclear energy, energy conservation, transportation, air pollution and global effects. Concepts and quantitative analysis. (S)
90. Undergraduate Seminar-Physics Today (1)

Undergraduate seminars organized around the research interests of various faculty members. Prerequisite: none. (F,W,S)
91. Undergraduate Seminar on Physics (1)

Undergraduate seminars organized around the research interests of various faculty members. ($\mathrm{F}, \mathrm{W}, \mathrm{S}$)

UPPER-DIVISION

100A. Electromagnetism (4)

Coulomb's law, electric fields, electrostatics; conductors and dielectrics; steady currents, elements of circuit theory. Four hours lecture. Prerequisites: Physics 2C or 4D, Mathematics 21D; 20E, 20F. (Concurrent enrollment in Math. 20F permitted.) (F)

100B. Electromagnetism (4)

Magnetic fields and magnetostatics, magnetic materials, induction, $A C$ circuits, displacement currents; development of Maxwell's equations. Four hours lecture. Prerequisite: Physics 100A. (W)

100C. Electromagnetism (4)

Electromagnetic waves, radiation theory; application to optics; motion of charged particles in electromagnetic fields; relation of electromagnetism to relativistic concepts. Four hours lecture. Prerequisite: Physics 100B. (S)

105A. Mathematical and Computational Physics (4)

 A combined analytic and mathematica-based numerical approach to the solution of common applied mathematics problems in physics and engineering. Topics: Fourier series and integrals, special functions, initial and boundary value problems, Green's functions; heat, Laplace and wave equations. Prerequisites: Mathematics 20E and 20F and Physics 4E or 2D. (F)
105B. Mathematical and Computational Physics (4)

A continuation of Physics 105A covering selected advanced topics in applied mathematical and numerical methods. Topics include statistics, diffusion and Monte-Carlo simulations; Laplace equation and numerical methods for nonseparable geometries; waves in inhomogeneous media, WKB analysis; nonlinear systems and chaos. Prerequisite: Physics 105A. (W)

107/207. Macromolecule Structure Determination by X-

 ray Crystallography (4)This course will describe the different steps used in solving for a three dimensional structure of a macromolecule using X-ray crystallography. Topics covered: theory of X-ray diffraction by a crystal; X-ray sources \& detectors; crystallization of a protein; crystal symmetry; solution of phase problem by the isomorphous replacement method; anomalous scattering; molecular replacement method; model building and phase improvement; structure refinement. Prerequisites: Mathematics 210 and Physics 100A, or BIBC 100 or Chemistry 114A or consent of instructor. (F)

110A. Mechanics (4)

Coordinate transformations, review of Newtonian mechanics, linear oscillations, gravitation, calculus of variations, Hamilton's principle, Lagrangian dynamics, Hamilton's equations, central force motion. Four hours lecture. Prerequisites: Physics 2C or 4D, Mathematics 21D, 20E, 20F (concurrent enrollment in Mathematics 20F permitted). (F)

110B. Mechanics (4)

Noninertial reference systems, dynamics of rigid bodies, coupled oscillators, special relativity, continuous systems. Prerequisites: Physics 110A and Mathematics 20E. (W)

120A-B. Physical Measurements (4-4)
A laboratory-lecture course in physical measurements with an emphasis on electronic methods. Topics include circuit theory, special circuits. Fourier analysis, noise, transmission lines, transistor theory, amplifiers,
feedback, operational amplifiers, oscillators, puise circuits, digital electronics. Three hours lecture, four hours laboratory. Prerequisites: Physics $2 C L$ and 2DL, Physics 100A-B. (S,F) Course materials fee is required.

121. Experimental Techniques (4)

A laboratory-lecture course on the performance of scientific experiments with an emphasis on the use of microcomputers for control and data handling. Topics include microcomputer-architecture, interfacing, and programming, digital to analog and analog to digital conversion, asynchronous buses, interrupt and control techniques, transducers, actuators, digital signal pro-cessing-signal filtering, deconvolution, averaging and detection, construction techniques-soldering, parts selection, assembly methods, project managementplanning, funding, scheduling, and utilization of personnel. Three hours lecture, four hours laboratory. Prerequisite: Physics 120A-B or equivalent. (W) Course materials fee is required.

122/222. Experimental Foundation of Particle

Physics (4-4)
Modern experimental techniques in particle physics will be discussed. Experiments are selected which have provided (or will shortly provide) tests of the theory of elementary particles. Examples of topics for which experiments are discussed include neutral currents, discovery of the J/Psi and Upsilon particle, number of light neutrino species, neutrino mass, CP violation and Higgs Searches. Prerequisite: Physics 130B or Physics $215 B$.

130A. Quantum Physics (4)

Phenomena which led to the development of quantum mechanics. Wave mechanics; the Schrrdinger equation, interpretation of the wave function, the uncertainty principle, piece-wise constant potentials, simple harmonic oscillator, central field and the hydrogen atom. Observables and measurements. Four hours lecture. Prerequisites: Physics 2C or 2D, 4E, or equivalent. (S)

130B. Quantum Physics (4)

Matrix mechanics, angular momentum and spin, SternGerlach experiments, dynamics of two-state systems, approximation methods, the complete hydrogen spectrum, identical particles. Four hours lecture. Prerequisite: Physics 130A. (F)

130C. Quantum Physics (4)

Scattering theory, symmetry and conservation laws, systems of interacting particles, interaction of electromagnetic radiation with matter, Fermi golden rule, the relativistic electron. Prerequisites: Physics 100 C or equivalent, 130B. (W)

131. Modern Physics Laboratory (2)

Experiments in radioactivity, X-rays, atomic physics, resonance physics, solid-state physics, etc. Four hours laboratory. Prerequisites: Physics 2CL and 2DL, Physics 130A. (S) Course materials fee is required.

132. Modern Physics Laboratory (2)

Experiments in elementary particle physics utilizing cosmic rays and experimental techniques of high energy physics. Four hours laboratory per week. Prerequisites: Physics 2CL and 2DL, Physics 130A-B. (S) Course materials fee is required. (Not offered in 2001-02.)

133/219. Condensed Matter/Materials Science Laboratory (4)

A project-oriented laboratory course utilizing state-of-the-art experimental techniques in materials science.

The course prepares students for research in a modern condensed matter-materials science laboratory. Under supervision, the students develop their own experimental ideas after investigating current research literature. With the use of sophisticated state-of- the-art instrumentation students conduct research, write a research paper, and make verbal presentations. Prerequisites: Physics 2CL and 2DL for undergraduates; Physics 152A or Physics 211A for graduate students. (S) Course materials fee is required.

140A. Statistical and Thermal Physics (4)

Integrated treatment of thermodynamics and statistical mechanics; statistical treatment of entropy, review of elementary probability theory, canonical distribution, partition function, free energy, phase equilibrium, introduction to ideal quantum gases. Prerequisites: Physics 130A, or consent of instructor. (F)

140B. Statistical and Thermal Physics (4)

Applications of the theory of ideal quantum gases in condensed matter physics, nuclear physics and astrophysics; advanced thermodynamics, the third law, chemical equilibrium, low temperature physics; kinetic theory and transport in non-equilibrium systems; introduction to critical phenomena including mean field theory. Prerequisites: Physics 140A, or consent of instructor. (W)

141. Computational Physics I: Probabilistic Models and Simulations (4)

Project-based computational physics laboratory course with student's choice of Fortran90/95, or C/C++. Applications from materials science to the structure of the early universe are chosen from molecular dynamics, classical and quantum Monte Carlo methods, physical Langevin/Fokker-Planck processes, and other modern topics. Prerequisites: Phys 105 B and MAE 9 or 10, CSE 11, or consent of instructor. (W)
142. Computational Physics II: PDE and Matrix Models (4) Project-based computational physics laboratory course for modern physics and engineering problems with student's choice of Fortran90/95, or $\mathrm{C} / \mathrm{C}++$. Applications of finite element PDE models are chosen from quantum mechanics and nanodevices, fluid dynamics, electromagnetism, materials physics, and other modern topics. Prerequisites: Phys $105 B$ and MAE 9 or 10 or CSE 11, or consent of instructor. (S)

151. Elementary Plasma Physics (4)

Particle motions, plasmas as fluids, waves, diffusion, equilibrium and stability, nonlinear effects, controlled fusion. Three hours lecture. Prerequisites: Physics 100A-B and 110A. Cross listed with MAE 117A. (S)

152A. Condensed Matter Physics (4)

Physics of the solid state. Binding mechanisms, crystal structures and symmetries, diffraction, reciprocal space, phonons, free and nearly free electron models, energy bands, solid state thermodynamics, kinetic theory and transport, semiconductors. Prerequisites: Physics 130A or Chemistry 133, and Physics 140A. (W)

152B. Electronic Materials (4)

Physics of electronic materials. Semiconductors: bands, donors and acceptors, devices. Metals: Fermi surface, screening, optical properties. Insulators: dia-/ferroelectrics, displacive transitions. Magnets: dia-/para-/ferro-/antiferro-magnetism, phase transitions, low temperature properties. Superconductors: pairing, Meissner effect, flux quantization, BCS theory. Prerequisite: Physics 152A or consent of instructor. (S)

153. Topics in Biophysics/Photobiology (4)

(Course content varies yearly.) Basic principles of photobiology and photochemistry. Photochemical mechanisms in photosynthesis. Photoreceptor pigment systems and photobiological control mechanisms in living organisms. Three hours lecture. (Same as BIBC 153, Chemistry 153.) Prerequisite: upper-division standing in biology, chemistry, or physics, or consent of instructor. (S)

154. Nuclear and Particle Physics (4)

Elementary nuclear physics. Quantum mechanics of radiation. Elementary particles and scattering. Prerequisites: Physics 100C and 130B. (S)

155. Nonlinear Dynamics (4)

Qualitative aspects of Hamiltonian and dissipative dynamical systems: stability of orbits, integrability of Hamiltonian systems, chaos and nonperiodic motion, transition to chaos. Examples to be drawn from mechanics, fluid mechanics, and related physical systems. Numerical work and graphical display and interpretation will be emphasized. Three hours lecture. Prerequisites: Physics 100B and 110B. (S)

160. Stellar Astrophysics (4)

Introduction to stellar astrophysics:observational properties of stars, solar physics, radiation and energy transport in stars, stellar spectroscopy, nuclear processes in stars, stellar structure and evolution, degenerate matter and compact stellar objects, supernovae and nucleosynthesis. Physics 160,161 , and 162 may be taken as a three-quarter sequence for students interested in pursuing graduate study in astrophysics or individually as topics of interest. Prerequisite: Physics 2 or 4 sequence or equivalent. (F)

161. Black Holes and The Milky Way Galaxy (4)

The structure and content of the Milky Way galaxy and the physics of black holes. Topics will be selected from: general relativity, theory and observation of black holes, galactic x-ray sources, galactic structure, physical processes in the interstellar medium, star formation. Physics 160,161 , and 162 may be taken as a three-quarter sequence for students interested in pursuing graduate study in astrophysics or individually as topics of interest. Prerequisites: Physics 2 or 4 sequence or equivalent. (W)

162. Galaxies and Cosmology (4)

The structure and properties of galaxies, galaxy dynamics and dark matter, the expanding universe, plus some of the following topics: the big bang, early universe, galaxy formation and evolution, large scale structure, active galaxies and quasars. Physics 160,161, and 162 may be taken as a three-quarter sequence for students interested in pursuing graduate study in astrophysics or individually as topics of interest. Prerequisites: Physics 2 or 4 sequence or equivalent. (S)

163. Exploring the Solar System (4)

Topics will include: the early solar system, and planetary formation; an introduction to the Sun and planets; the solar wind and its interaction with planets; spacecraft instruments and observations; the search for life in the solar system; and the search for planets outside our solar system. Prerequisites: Physics 2A-B or Physics 4A-4C. (F)

170. Physics of Medical Instruments (4)

The physics principles of medical diagnostic instruments, including electrokinetic phenomena, chromatography, spectroscopy, microscopy; ultrasounds, X-ray, MRI, tomography, lasers in surgery, fiber optics in
diagnostics. Prerequisite: Physics 1C. (F) (Not offered in 2001-02.)

171/271. Biophysics of Neurons and Networks (4-4)

Fundamental limits to measurements on nervous systems, the biophysics of excitable membranes and neurons, and the fundamentals of recurrent neuronal networks. The emphasis is on information processing by the nervous system through physical reasoning and mathematical anaylsis. Three hours lecture. The graduate version, Physics 271, will include a report at the level of a research proposal. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 140A, for graduate students, consent of instructor. The graduate version, Physics 271, will include a report at the level of a research proposal. (W)

172/272. Biophysics of Molecules (4-4)

Physical concepts and techniques used to study the structure and function of biological molecules, the thermodynamics and kinetics of biological activity, and physical descriptions of biological processes. Examples from enzyme action, protein folding, photobiology, and molecular motors. Three hours lecture. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 130A; and graduate students, consent of instructor. The graduate version, Physics 272, will include a report at the level of a research proposal. (F)

173. Biophysical Measurements Laboratory (4)

Experiments that emphasize biophysical principles. Exercises include measurement of forces at the cellular level with optical tweezers, the characterization of sensorimotor control in the fly during visually guided flight, and the imaging of cell mobility and signaling by fluorescent microscopy. Prerequisites: Physics 120A, BILD 1 and Chemistry 6CL. (S)

195. Physics Instruction (2-4)

Students will be responsible for and teach a class section of a lower-division physics course. They will also attend a weekly meeting on teaching methods and materials conducted by the professor who supervises their teaching. (P/NP grades only.) Prerequisite: consent of instructor. (F,W,S)

198. Directed Group Study (2 or 4)

Directed group study on a topic or in a field not included in the regular departmental curriculum. (P/NP grades only.) Prerequisites: consent of instructor and departmental chair. (F,W,S)
199. Research for Undergraduates (2 or 4) Independent reading or research on a problem by special arrangement with a faculty member. (P/NP grades only.) Prerequisites: consent of instructor and departmental chair. (F,W,S)

199H. Honors Thesis Research for Undergraduates (2-4) Honors thesis research for seniors participating in the Honors Program. Research is conducted under the supervision of a physics faculty member. Prerequisite: admission to the Honors Program in physics. (F,W,S)

GRADUATE

200A. Theoretical Mechanics (4)

Lagrange's equations and Hamilton's principle; symmetry and constants of the motion. Applications to: charged particle motion; central forces and scattering theory; small oscillations; anharmonic oscillations; rigid body motion; continuum mechanics. Prerequisite: Physics 110 or equivalent. (F)

200B. Theoretical Mechanics (4)

Hamilton's equations, canonical transformations; Hamilton-Jacobi theory; action-angle variables and adiabatic invariants; introduction to canonical perturbation theory, nonintegrable systems and chaos; Liouville equation; ergodicity and mixing; entropy; statistical ensembles. Prerequisite: Physics 200A. (W)

201. Mathematical Physics (5)

An introduction to mathematical methods used in theoretical physics. Topics include: a review of complex variable theory, applications of the Cauchy residue theorem, asymptotic series, method of steepest descent, Fourier and Laplace transforms, series solutions for ODE's and related special functions, Sturm Liouville theory, variational principles, boundary value problems, and Green's function techniques. (F)

203A. Advanced Classical Electrodynamics (5)
Electrostatics, symmetries of Laplace's equation and methods for solution, boundary value problems, electrostatics in macroscopic media, magnetostatics, Maxwell's equations, Green functions for Maxwell's equations, plane wave solutions, plane waves in macroscopic media. Prerequisite: Physics 100C or equivalent. (W)

203B. Advanced Classical Electrodynamics (4)

Special theory of relativity, covariant formulation of electrodynamics, radiation from current distributions and accelerated charges, multipole radiation fields, waveguides and resonant cavities. Prerequisite: Physics 203A. (S)
206. Topics in Biophysics and Physical Biochemistry (4)
(Same as BGGN 206, Chemistry 206.) Selection of topics of current interest. Examples: primary processes of photosynthesis; membrane biophysics; applications of physical methods to problems in biology and chemistry, e.g., magnetic resonance, X-ray diffraction, fluctuation spectroscopy, optical techniques (fluorescence, optical rotary dispersion, circular dichroism). Topics may vary from year to year. Prerequisite: consent of instructor. (W)

107/207. Macromolecule Structure Determination by

 X-ray Crystallography (4)This course will describe the different steps used in solving for a three-dimensional structure of a macromolecule using X-ray crystallography. Topics covered: theory of X-ray diffraction by a crystal; X-ray sources \& detectors; crystallization of a protein; crystal symnmetry; solution of phase problem by the isomorphous replacement method; anomalous scattering; molecular replacement method; model building and phase improvement; structure refinement. Prerequisites: Mathematics 20D, Physics 100A, or BIBC 100 or Chemistry 114A or consent of instructor. (F)

210A. Equilibrium Statistical Mechanics (4)
Approach to equilibrium: BBGKY hierarchy; Boltzmann equation; H -theorem. Ensemble theory; thermodynamic potentials. Quantum statistics; Bose condensation. Interacting systems: Cluster expansion; phase transition via mean-field theory; the Ginzburg criterion. Prere-quisites: Physics 140A-B, 152A, 200A-B, or equivalent; concurrent enrollment in Physics 212C. (S)

210B. Nonequilibrium Statistical Mechanics (4)
Transport phenomena; kinetic theory and the Chapman-Enskog method; hydrodynamic theory; nonlinear effects and the mode coupling method. Stochastic processes; Langevin and Focker-Planck equation; fluctuation-dissipation relation; multiplicative processes; dynamic field theory; Martin-Siggia-

Rose formalism; dynamical scaling theory. Prerequisite: Physics 210A. (F)

210C. Statistical Field Theory (4)

Phase transition and critical phenomena: LandauGinzburg model and statistical field theory; Goldstone modes; breakdown of mean-field theory. Universality; scaling theory; the renormalization group. Epsilon expansion; large-N expansion; the nonlinear-sigma model. Topological defects; duality; the KosterlitzThouless transition. Prerequisite: Physics 210A or consent of instructor. (W)

211A.Solid-State Physics (5)

The first of a two-quarter course in solid-state physics. Covers a range of solid-state phenomena that can be understood within an independent particle description. Topics include: chemical versus band-theoretical description of solids, electronic band structure calculation, lattice dynamics, transport phenomena and electrodynamics in metals, optical properties, semiconductor physics. Prerequisite: Physics 152A or equivalent. (F)

211B. Solid-State Physics (4)

Continuation of 211 A . Deals with collective effects in solids arising from interactions between constituents. Topics include electron-electron and electron-phonon interactions, screening, band structure effects, Landau Fermi liquid theory. Magnetism in metals and insulators, superconductivity; occurrence, phenomenology, and microscopic theory. Prerequisites: Physics 210A, 211A. (offered in alternate years) (W)

212A. Quantum Mechanics (4)

Hilbert space formulation of quantum mechanics and application to simple systems: states and observables, uncertainty relations and measurements, time evolution, and mixed states and density matrix. Symmetries: commuting observables and symmetries, rotation group representations, Clebsh-Gordon coefficients, Wigner-Eckhardt theorem, and discrete symmetries (parity, time reversal, etc.). Prerequisite: Physics 130 B or equivalent. (F)

212B. Quantum Mechanics (4)

Time independent perturbation theory: non-degenerate and degenerate cases, Zeeman effect, fine structure, exclusion principle, and many-electron atoms. Time dependent perturbation theory: interaction picture and Dyson series, transition rates. Radiation theory: quantization of EM field, calculation of atomic level transition rates, line width, and spontaneous decay. Prerequisite: Physics 212A. (W)

212C. Quantum Mechanics (4)

Scattering theory: Lippman-Schwinger formalism, Born approximation, partial waves, inelastic processes, and spin dependence. Path integrals:introductions and simple examples, rigid rotator, and Bohm-Aharonov effect. Dirac equation: single particle equation, hydrogen atom, and holes. Prerequisites: Physics 212A-B. (S)
214. Physics of Elementary Particles (4)

Classification of particles using symmetries and invariance principles, quarks and leptons, quantum electrodynamics, weak interactions, e.p interactions, deep-inelastic lepton-nucleon scattering, pp collisions, introduction to QCD. Prerequisite: Physics 215A. (W)

215A. Particles and Fields (4)
The first quarter of a three-quarter course on field theory and elementary particle physics. Topics covered include the relation between symmetries and conser-
vation laws, the calculation of cross sections and reaction rates, covariant perturbation theory, and quantum electrodynamics. (F)

215B. Particles and Fields (4)
Continuation of 215A. Gauge theory quantization by means of path integrals, $\mathrm{SU}(3)$ symmetry and the quark model, spontaneous symmetry breakdown, introduction to QCD and the Glashow-Weinberg-Salam model of weak interactions, basic issues of renormalization. Prerequisite: Physics 215A. (W)

215C. Particles and Fields (4)

Modern applications of the renormalization group in quantum chromodynamics and the weak interactions. Unified gauge theories, particle cosmology, and special topics in particle theory. Prerequisites: Physics 215A-B. (offered in alternate years) (S)
217. Field Theory and the Renormalization Group (4)

Application of field theory techniques and the renormalization group method to problems in condensed matter or particle physics. Topics will vary and may include: spin-glass and other systems dominated by quenched disorders; polymer statistics and liquid crystals; bosonization and many-body quantum systems in $1+1$ dimensions; quantum chromodynamics and the electroweak model. Prerequisites: Physics 210C, 212C, or consent of instructor. (offered in alternate years) (S)

218A. Plasma Physics (4)
The basic physics of plasmas is discussed for the simple case of an unmagnetized plasma. Topics include: thermal equilibrium statistical properties, fluid and Landau theory of electron and ion plasma waves, velocity space instabilities, quasi-linear theory, fluctuations, scattering or radiation, Fokker-Planck equation. (F)

218B. Plasma Physics (4)

This course deals with magnetized plasma. Topics include: Appleton-Hartree theory of waves in cold plasma, waves in warm plasma (Bernstein waves, cyclotron damping). MHD equations, MHD waves, low frequency modes, and the adiabatic theory of particle orbits. Prerequisite: Physics 218A. (W)

218C. Plasma Physics (4)

This course deals with the physics of confined plasmas with particular relevance to controlled fusion. Topics include: topology of magnetic fields, confined plasma equilibria, energy principles, ballooning and kink instabilities, resistive MHD modes (tearing, rippling and pres-sure-driven), gyrokinetic theory, microinstabilities and anomalous transport, and laser-plasma interactions relevant to inertial fusion. Prerequisite: Physics 218B. (S)

133/219. Condensed Matter/Materials Science

Laboratory (4)
A project-oriented laboratory course utilizing state-of-the-art experimental techniques in materials science. The course prepares students for research in a modern condensed matter-materials science laboratory. Under supervision, the students develop their own experimental ideas after investigating current research literature. With the use of sophisticated state- of-the-art instrumentation students conduct research, write a research paper, and make verbal presentations. Prerequisites: Physics 2CL and 2DL for undergraduates; Physics 152A or Physics 211A for graduate students. (S)

220. Group Theoretical Methods in Physics (4)

Study of the representations and applications of groups to problems in physics, with particular emphasis on the permutation of unitary groups. Prerequisite: Physics 212C. (S)

221A. Nonlinear and Nonequilibrium Dynamics of

 Physical Systems (4)An introduction to the modern theory of dynamical systems and applications thereof. Topics include maps and flows, bifurcation theory and normal form analysis, chaotic attractors in dissipative systems, Hamiltonian dynamics and the KAM theorem, and time series analysis. Examples from real physical systems will be stressed throughout. Prerequisite: Physics 200B. (offered in alternate years) (W)

221B. Nonlinear and Nonequilibrium Dynamics of

 Physical Systems (4)Nonlinear dynamics in spatially extended systems. Material to be covered includes fluid mechanical instabilities, the amplitude equation approach to pattern formation, reaction-diffusion dynamics, integrable systems and solitons, and an introduction to coherent structures and spatio-temporal chaos. Prerequisites: Physics 210B and 221A. (offered in alternate years) (S)

122/222. Experimental Foundation of Particle Physics

 (4-4)Modern experimental techniques in particle physics will be discussed. Experiments are selected which have provided (or will shortly provide) tests of the theory of elementary particles. Examples of topics for which experiments are discussed include neutral currents, discovery of the $J /$ Psi and Upsilon particle, number of light neutrino species, neutrino mass, CP violation and Higgs searches. Prerequisite: Physics 130B or Physics 215B.

223. Stellar Structure and Evolution (4)

Energy generation, flow, hydrostatic equilibrium, equation of state. Dependence of stellar parameters (central surface temperature, radius, luminosity, etc.) on stellar mass and relation to physical constants. Relationship of these parameters to the H -R diagram and stellar evolution. Stellar interiors, opacity sources, radiative and convective energy flow. Nuclear reactions, neutrino processes. Polytropic models. White dwarfs and neutron stars. Prerequisites: Physics 130 C or equivalent, Physics 140A-B or equivalent. (S/U grades permitted.) (offered in alternate years) (F)

224. Physics of the Interstellar Medium (4)

Gaseous nebulae, molecular clouds, ionized regions, and dust. Low energy processes in neutral and ionized gases. Interaction of matter with radiation, emission and absorption processes, formation of atomic lines. Energy balance, steady state temperatures, and the physics and properties of dust. Masers and molecular line emission. Dynamics and shocks in the interstellar medium. Prerequisites: Physics 130A-B or equivalent, Physics 140A-B or equivalent. (S/U grades permitted.) (offered in alternate years)

225A-B. General Relativity (4-4)

This is a two-quarter course on gravitation and the general theory of relativity. The first quarter is intended to be offered every year and may be taken independently of the second quarter. The second quarter will be offered in alternate years. Topics covered in the first quarter include special relativity, differential geometry, the equivalence principle, the Einstein field equations, and experimental and observational tests of gravitation theories. The second quarter will focus on more advanced topics, including gravitational collapse, Schwarzschild and Kerr geometries, black holes, gravitational radiation, cosmology, and quantum gravitation. (225B offered in alternate years) (F,W)
226. Galaxies and Galactic Dynamics (4)

The structure and dynamics of galaxies. Topics include potential theory, the theory of stellar orbits, self-consis-
tent equilibria of stellar systems, stability and dynamics of stellar systems including relaxation and approach to equilibrium. Collisions between galaxies, galactic evolution, dark matter, and galaxy formation. Prerequisite: consent of instructor. (offered in alternate years)

227. Cosmology (4)

An advanced survey of topics in physical cosmology. The Friedmann models and the large-scale structure of the universe, including the observational determination of H_{0} (the Hubble constant) and q_{0} (the deceleration parameter). Galaxy number counts. A systematic exposition of the physics of the early universe, including vacuum phase transitions; inflation; the generation of net baryon number, fluctuations, topological defects and textures. Primordial nucleosynthesis, both standard and nonstandard models. Growth and decay of adiabatic and isocurvature density fluctuations. Discussion of dark matter candidates and constraints from observation and experiment. Nucleocosmo-chronology and the determination of the age of the universe. Prerequisite: consent of instructor. (offered in alternate years)
228. High-Energy Astrophysics and Compact Objects (4) The physics of compact objects, including the equation of state of dense matter and stellar stability theory. Maximum mass of neutron stars, white dwarfs, and super-massive objects. Black holes and accretion disks. Compact x-ray sources and transient phenomena, including x-ray and γ-ray bursts. The fundamental physics of electromagnetic radiation mechanisms: synchrotron radiation, Compton scattering, thermal and nonthermal bremsstrahlung, pair production, pulsars. particle acceleration models, neutrino production and energy loss mechanisms, supernovae, and neutron star production. Prerequisites: Physics 130A-B-C or equivalent. (offered in alternate years)
230. Advanced Solid-State Physics (4)

Selection of advanced topics in solid-state physics; material covered may vary from year to year. Examples of topics covered: disordered systems, surface physics, strong-coupling superconductivity, quantum Hall effect, low-dimensional solids, heavy fermion systems, high-temperature superconductivity, solid and liquid helium. Prerequisite: Physics 211B. (offered in alternate years) (S)

$152 \mathrm{~B} / 232$. Electronic Materials (4)

Physics of electronic materials. Semiconductors: bands, donors and acceptors, devices. Metals: Fermi surface, screening, optical properties. Insulators: dia-/ferroelectrics, displacive transitions. Magnets: dia-/para-/ferro-/antiferro-magnetism, phase transitions, low temperature properties. Superconductors: pairing, Meissner effect, flux quantization, BCS theory. Prerequisite: Physics 152A, Phys 211 or consent of instructor. Graduate students in Phys 232 will complete a special topics paper. (S)

234. Nonneutral Plasmas (4)

This course treats the physics of nonneutral plasmas. Topics include equilibrium, stability, transport, linear modes and instabilities, and the effects of strong correlation and strong magnetization. Prerequisite: Physics 218C or consent of instructor. (offered in alternate years) (F)
235. Nonlinear Plasma Theory (4)

This course deals with nonlinear phenomena in plasmas. Topics include: orbit perturbation theory, stochasticity, Arnold diffusion, nonlinear wave-particle and wave-wave interaction, resonance broadening, basics of fluid and plasma turbulence, closure methods, mod-
els of coherent structures. Prerequisite: Physics 218C or consent of instructor. (offered in alternate years) (W)

236. Many-Body Theory (4)

Effects of interactions in large quantum mechanical systems at zero or finite temperature analyzed from a unified viewpoint. Symmetries, conservation laws, perturbation theory, sum rules, inequalities. Applications to Bose, Fermi, normal, superfluid, charged, neutral, degenerate, dilute, etc., systems. Prerequisites: Physics 210A-B, 212C. (offered in alternate years) (S)
239. Special Topics (1-3)

From time to time a member of the regular faculty or a resident visitor will find it possible to give a selfcontained short course on an advanced topic in his or her special area of research. This course is not offered on a regular basis, but it is estimated that it will be given once each academic year. ($\$ / \cup$ grades permitted.)

250. Condensed Matter Physics Seminar (0-1)

Discussion of current research in physics of the solid state and of other condensed matter. (S/U grades only.) (F,W,S)
251. High-Energy Physics Seminar (0-1)

Discussions of current research in nuclear physics, principally in the field of elementary particles. (S / U grades only.) (F,W,S)

252. Plasma Physics Seminar (0-1)

Discussions of recent research in plasma physics. (S/U grades only.) (F,W,S)
253. Astrophysics and Space Physics Seminar (0-1)

Discussions of recent research in astrophysics and space physics. (S/U grades only.) (F, W, S)

256. Biophysics Special Topics Seminar ($0-1$)

Discussions of current research in experimental solid state physics and biophysics. (S / U grades only.) (F,W,S)
257. High-Energy Physics Special Topics Seminar (0-1) Discussions of current research in high-energy physics. (S/U grades only.) (F,W,S)
258. Astrophysics and Space Physics Special Topics Seminar (0-1)
Discussions of current research in astrophysics and space physics. (S/U grades only.) (F,W,S)
260. Physics Colloquium (0-1)

Discussions of recent research in physics directed to the entire physics community. (S/U grades only.) (F,W,S)
261. Seminar on Physics Research at UCSD (0-1)

Discussions of current research conducted by faculty members in the Department of Physics. (S / U grades only.) (W,S)
262. Complex Dynamical Systems Seminar (0-1)

Discussions of recent research in nonlinear and nonequilibrium physics. (S / U grades only.) (F, W, S)

263. Physics and Physics-Related Topics of Current

Interest Seminar (0-1)

Discussion of "cutting edge" topics and current advances in physics and physics-related topics, directed to all physics graduate students. The seminars are designed to foster an interactive mode of information transfer with extensive discussion. Prerequisite: none.
265. Neuronal Networks Topics Seminar (1)

Discussion of current research on neuronal systems and dynamics. (F,W,S)
266. Recent Topics in Condensed Matter Physics (1-3) The course is dedicated to recent developments in the area of condensed matter physics through lectures given by graduate students and postdocs. The course teaches practical skills, delivering research lectures, and answering questions in front of a research audience. Prerequisite: physics graduate students in good standing. (F,W,S)

171/271. Biophysics of Neurons and Networks (4-4)
Fundamental limits to measurements on nervous systems, the biophysics of excitable membranes and neurons, and the fundamentals of recurrent neuronal networks. The emphasis is on information processing by the nervous system through physical reasoning and mathematical anaylsis. Three hours lecture. The graduate version, Physics 271, witl include a report at the level of a research proposal. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 140A, for graduate students, consent of instructor. The graduate version, Physics 271, will include a report at the level of a research proposal. (F)

172/272. Biophysics of Molecules (4-4)

Physical concepts and techniques used to study the structure and function of biological molecules, the thermodynamics and kinetics of biological activity, and physical descriptions of biological processes. Examples from enzyme action, protein folding, photobiology, and molecular motors. Three hours lecture. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 130A and graduate students consent of instructor. The graduate version, Physics 272, will include a report at the level of a research proposal. (S)
295. M.S. Thesis Research in Materials Physics (1-12)

Directed research on M.S. dissertation topic. (F,W,S)
297. Special Studies in Physics (1-4)

Studies of special topics in physics under the direction of a faculty member. Prerequisites: consent of instructor and departmental vice chair, education. (S/U grades permitted.) (F,W,S)
298. Directed Study in Physics (1-12)

Research studies under the direction of a faculty member. (S/U grades permitted.) (F,W,S)
299. Thesis Research in Physics (1-12)

Directed research on dissertation topic. (F,W,S)
500. Instruction in Physics Teaching (1-4)

This course, designed for graduate students, includes discussion of teaching, techniques and materials necessary to teach physics courses. One meeting per week with course instructors, one meeting per week in an assigned recitation section, problem session, or laboratory section. Students are required to take a total of two units of Physics 500. (F,W,S)

OFFICE: Social Science Building
http://dssadmin.ucsd.edu/PoliSci/index.htm

Professors

Nathaniel L. Beck, Ph.D. Amy Bridges, Ph.D.
Marsha A. Chandler, Ph.D., Senior Vice
Chancellor, Academic Affairs
William M. Chandler, Ph.D.
Ellen T. Comisso, Ph.D.
Wayne A. Cornelius, Ph.D.
Gary W. Cox, Ph.D.
Paul W. Drake, Ph.D.
Peter A. Gourevitch, Ph.D.
H. N. Hirsch, Ph.D.

Germaine A. Hoston, Ph.D.
Peter H. Irons, Ph.D., J.D.
Gary C. Jacobson, Ph.D.
Samuel H. Kernell, Ph.D.
David A. Lake, Ph.D., Chair
Sanford A. Lakoff, Ph.D., Emeritus
Arend Lijphart, Ph.D., Emeritus
Arthur W. Lupia, Ph.D.
David R.Mares, Ph.D.
Mathew D. McCubbins, Ph.D.
Samuel L. Popkin, Ph.D.
Susan L. Shirk, Ph.D.
Peter H. Smith, Ph.D.
Kaare Strom, Ph.D.
Tracy B. Strong, Ph.D.

Associate Professors

Ann L. Craig, Ph.D.
Steven P. Erie, Ph.D.
Elisabeth R. Gerber, Ph.D.
Clark Gibson, Ph.D.
Alan C. Houston, Ph.D.
Victor V. Magagna, Ph.D.
Philip G. Roeder, Ph.D.

Assistant Professors

Kristian Gleditsch, Ph.D.
Gary A. Shiffman, Ph.D.

Adjunct Professors

Peter F. Cowhey, Ph.D.
Harvey Goldman, Ph.D.
Stephan Haggard, Ph.D.
Daniel Hallin, Ph.D.
Miles Kahler, Ph.D.
Ellis Krauss, Ph.D.
Kevin Middlebrook, Ph.D.
Matthew Shugart, Ph.D.

Associate Adjunct Professor

Richard Kronick, Ph.D.
Andrew MacIntyre, Ph.D.

Assistant Adjunct Professor

Barbara Walter, Ph.D.

The Major Program

Political science addresses some of the fundamental problems facing human society. Questions concerning world peace, government policies aimed at achieving economic stability and growth, the management of environmental quality, control over political competition, the possibility of using law to affect social and political change, and the gap between the rich and poor in the U.S. and abroad are all on the research agenda of contemporary political scientists. The general purpose of the major is to address these and other issues systematically, and, simultaneously, to raise the broad theoretical questions which can help students relate today's political debates to those debates about politics which have kept a theoretical tradition alive for over 2,000 years.

Students may major in political science as a general program of study, or they may concentrate in one of six areas: (1) American politics, (2) comparative politics, (3) international relations, (4) political theory, (5) public law, and (6) public policy. All majors in political science must satisfy the following sixteen courses: PS 30 (Political Inquiry), three of the following four lower-division courses (Political Science 10, 11,12 and 13) and twelve upper-division courses. Moreover, as stated below, students concentrating in one of the fields must satisfy that field's particular lower- and upperdivision requirements.

Requirements for Major in Political Science without an Area of Concentration

1. Three of the four lower-division courses
2. Political Science 30
3. Any twelve upper-division political science courses

Requirements for Major in Political Science with an Area of Concentration

Major in Political Science/American Politics

1. Lower-division required: PS 10 (in addition to two other lower-division courses)
2. Political Science 30
3. Five upper-division American courses:
A. at least two of which must be from the 100 sequence: $100 \mathrm{~A}-\mathrm{B}-\mathrm{C}, 100 \mathrm{DA}, 100 \mathrm{E}-\mathrm{F}-\mathrm{G}-\mathrm{H}-1$
B. the additional courses for the American concentration must be chosen from: 102BC, 102E-F-G, 102J, 102L, 103A, 104A-B-C, 104F, 104I, 104L, 106A, 107A, 108

Major in Political Science/Comparative Politics

1. Lower-division required: PS 11 (in addition to two other lower-division courses)
2. Political Science 30
3. Five upper-division courses including:
A. at least one from the following thematic courses: 122A, 123A-B, 124A-B, 126AA, 126AC, 136B, 137A, 139A, 150A-B
B. and at least one each from two of the following three regional areas:

Asia: 121, 130B, 130H, 131C, 132B-C, 133A, 133E, 133F

Europe: 120A-B-C-D-E, 120H, 1201, 126AB, 130AA, 130AC
Latin America: 134AA, 134B-C-D, 134G, 134I, 134N, 134P-Q-R

Major in Political Science/International Relations

1. Lower-division required: $\operatorname{PS} 10,11,12$
2. Political Science 30
3. Five upper-division IR courses with at least one each from the following four groups:
A. Foreign Policy: 142A, 145A, 146A, 147A, 150A-B, 152
B. National and International Security: 1421-J-K, 146E
C. Political Economy: 126AA, 140A, 144AA, 144AB, 144D-E, 146A
D. Theory of International Relations: 141, 145B-C, 152

Major in Political Science/ Political Theory

1. Three of four lower-division courses
2. Political Science 30
3. $110 \mathrm{~A}-\mathrm{B}-\mathrm{C}$
4. And at least two additional courses from: 110DA, $110 \mathrm{EA}, 110 \mathrm{~EB}, 110 \mathrm{H}, 110 \mathrm{~J}, 110 \mathrm{~N}, 110 \mathrm{~T}$,

112A-B-C, 113B-C, 114B, 115A, 116A-B, 117, 118A-B, 119A

Major in Political Science/Public Law

1. Lower-division required: PS 10 (in addition to two other lower-division courses)
2. Political Science 30
3. Five of the following: $100 \mathrm{~A}-\mathrm{B}, 102 \mathrm{~L}$,

104A-B-C, 104F, 104I, 104L, 124B

Major in Political Science/Public Policy

1. Lower-division required: PS 10 (in addition to two other lower-division courses)
2. Political Science 30
3. 160AA
4. One of $160 \mathrm{AB}, 167 \mathrm{~A}-\mathrm{B}, 168,170 \mathrm{~A}$
5. Two of 100A-B-C, 100E-F-G, 100I
6. One of 102B-C, 102E, 102L, 103A, 106A, 123A, 126AC, 142A, 142J, 150A-B, 161, 162, 165, 166F
Two upper-division courses in a field may be substituted for that field's lower-division course. However, these courses cannot also be used to satisfy the upper-division course requirements for a concentration of that field.

Since course offerings may change from year to year, students are strongly advised to consult the department for the latest listing of courses before preregistration.

Agreements signed between UCSD and several community colleges allow students to apply some community college courses toward lowerdivision course requirements for the major. Transfer students must, however, take at least one of the lower-division courses in residence at UCSD. Courses taken elsewhere may be credited toward the major. Please check with the undergraduate student affairs adviser for more information on credit for courses taken elsewhere.

Students who pass the Advanced Placement (AP) Tests in American or Comparative Politics may petition to be exempted from taking PS 10 or 11 (respectively).

At least nine courses in political science must be taken in residence at UCSD. A total maximum of six courses may be taken elsewhere and applied toward the major. This applies to transfer students, students who pass the AP exam(s), as well as students who study abroad on the Education Abroad Program (EAP) or the Opportunities Abroad Program (OAP). Students planning to transfer course work completed else-
where are urged to consult the undergraduate student affairs adviser.

Double majors who include political science as one of their two majors must fulfill the requirements of both programs. Please consult the undergraduate student affairs adviser for more information.

Students must maintain an overall 2.0 GPA in the major. To be counted toward satisfying the requirements for the major, upper- and lowerdivision courses must be completed with a C - or better grade. Courses taken to satisfy requirements for the major may not be taken Pass/No Pass with the exception of a maximum of two independent study courses (PS 199).

Honors candidates for departmental honors are required to take PS 191A and B in which they write a senior thesis. (A 3.5 GPA in the major, senior standing, a significant writing project, and a recommendation from a political science faculty member are currently prerequisites for honors.) These courses may be counted toward the upperdivision requirement.

Career Guidance

The premise of our educational philosophy is that the best professional preparation for productive careers which we can provide is one which is broad, theoretical, and only indirectly related to the current job market. Our majors graduate into a wide range of career options.

Many political science majors at UCSD will seek admission to a law school. Although law schools make no recommendation concerning the usefulness of any undergraduate major, a B.A. in political science should be seen as a useful complement to a law degree. Students who take courses in American government, policy analysis, and law and politics find that they develop a keen understanding of the role of law in the general political process. This helps students understand the limits and possibilities of the legal process in fostering change or in preserving the status quo. This same curriculum provides a solid foundation for a career in journalism. Students with any specific questions regarding law are advised to consult with career services.

Increasingly, political science majors are preparing for careers in business or as policy analysts in both the public and private sectors. Many of these students pursue advanced degrees in public policy or study for a master's in business administration. Students interested
in this option should look into public policy, American, or comparative politics as an area of concentration. Students interested in public policy might wish to consider the public policy minor, which is described separately in the catalog. Some political science majors are interested in careers in international organization or diplomacy. These students should look into international relations as an area of concentration. In addition, a broad array of courses in comparative politics is essential for anyone interested in a career of international service.

A political science major offers excellent preparation for teaching in the elementary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program for information about the prerequisite and professional preparation requirements. It is recommended that you contact TEP as early as possible in your academic career.

Students interested in majoring or minoring in political science should stop by the Department of Political Science Office, SSB301, or visit our Web site: http://dssadmin.ucsd.edu/PoliSci/index.htm.

Study Abroad

Political science majors are encouraged to participate in the Education Abroad Program (EAP) and to investigate other options for foreign study through the Opportunities Abroad Program (OAP).By petition, credits earned through them can fulfill UCSD degree and major requirements.

Minor in Political Science

For students entering UCSD winter 1998 or later the following guidelines for a political science minor will apply: seven political science courses, with a minimum of five upper-division. Continuing students may follow the guidelines for a minor of a total of six political science courses, with a minimum of three upper-division. All courses taken for a political science minor must be taken for a letter grade.

Interdisciplinary Minors

The Department of Political Science takes part in two interdisciplinary minors offered at UCSD. The law and society minor offers students the opportunity to examine the role of the legal system in society. Students should note that Law and Society 101 (Contemporary Legal Issues) may be
used in fulfilling the twelve upper-division course requirement for the political science major. The minor in health care-social issues offers students a variety of perspectives that will enhance their ability to deal with complex social and ethical issues in modern health care. Additional information on these programs is available through the Warren Interdisciplinary Programs Office.

Research

The Department of Political Science is closely affiliated with several research centers/institutes/ projects currently on campus. Faculty members directly involved include: Steven Erie, director, Urban Studies Program; Michael Hiscox and Barbara Walter, co-coordinators, Project in International Security Affairs; Germaine Hoston, director, Center for TransPacific Studies in Values, Culture, and Politics; Mathew McCubbins, director, Public Policy Research Project; Samuel Kernell, coordinator, American Political Institutions Project; Stephan Haggard, acting director, Institute on Global Conflict and Cooperation; Peter Smith, director, Center for Iberian and Latin American Studies; Wayne Cornelius, director of Studies and Programs, Center for U.S.-Mexican Studies; Peter Irons, director, Earl Warren Bill of Rights Project; Wayne Cornelius, director, Center for Comparative Immigration Studies. For further information please refer to the General Catalog section on "Research at UCSD."

The Ph.D. Program

The Department of Political Science at the University of California, San Diego offers a program of graduate studies leading to the Ph.D. degree. Instruction is provided in the major fields of the discipline. For purposes of comprehensive examinations, the discipline is broken into four fields: American politics, comparative politics, international relations, and political theory. The department also offers a variety of courses that are of a methodological or epistemological nature, spanning the various fields.

Students take two years of course work in preparation for their comprehensive exams. Students also attend regularly scheduled colloquia which feature presentations by faculty, outside speakers, and dissertation students.

A student must complete one seminar paper in one of his or her examination fields. This paper
may be written as part of the requirements for a regularly scheduled seminar course or in an independent research course. The paper will involve original research or other creative effort.

By the end of the second year, a student must stand for the General Examination, which consists of written examinations in each of two fields and in a focus-area, and an oral examination.

The comprehensive exams are both written and oral. They test more than just mastery of course work and hence there is no single set of courses required for any field exam. To pass the exams a student is expected not only to master the relevant literature, but also to be able to synthesize and analyze the major issues in the field.

Each comprehensive exam tests both knowledge of the major theoretical approaches in the field and the ability to apply those theories to important questions in the field. For one of the two exam fields, the student also designates a specific area of interest (a "focus area"). The written focus area exam tests the student's in-depth knowledge and understanding. The focus area exam is taken the same week as the general field exam, and there is one oral covering both exams. Each field publishes a list of focus areas; students may, with approval, craft their own focus area. Each field, in addition, publishes a list of suggested ways to prepare for its exams; each field also determines the research tools required for scholars in that field.

Students are expected to complete their comprehensive exams no later than the beginning of the third year. Students who have done prior graduate work should be able to complete their exams by the end of their second year.

After passing both exams, students are expected to write a dissertation prospectus. This prospectus must be defended before a committee of five faculty, including two members outside the department. This committee also administers the final oral defense of the dissertation.

It is expected that students will complete their dissertations within six years of starting the program.

Students interested in the program should consult the department Web site for more detailed information.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support can-
not exceed seven years. Total registered time at UCSD cannot exceed eight years.

courses

LOWER-DIVISION

10. Introduction to Political Science: American

Politics (4)

This course surveys the processes and institutions of American politics. Among the topics discussed are individual political attitudes and values, political participation, voting, parties, interest groups, Congress, presidency, Supreme Court, the federal bureaucracy, and domestic and foreign policy making.

11. Introduction to Political Science: Comparative

Politics (4)
The nature of political authority, the experience of a social revolution, and the achievement of an economic transformation will be explored in the context of politics and government in a number of different countries.
12. Introduction to Political Science: International Relations (4)
The issues of war/peace, nationalism/internationalism, and economic growth/redistribution will be examined in both historical and theoretical perspectives.
13. Power and Justice (4)

An exploration of the relationship between power and justice in modern society. Materials include classic and contemporary texts, films and literature.

27. Ethics and Society (4)

An examination of ethical principles (e.g., utilitarianism, individual rights, etc.) and their social and political applications to contemporary issues such as abortion, environmental protection, and affirmative action). Ethical principles will also be applied to moral dilemmas familiar in government, law, business, and the professions. Satisfies the Warren College ethics and society requirement.

30. Political Inquiry (4)

Introduction to the logic of inference in social science and to quantitative analysis in political science and public policy including research design, data collection, data description and computer graphics, and the logic of statistical inference (including linear regression).
40. Introduction to Law and Society (4)

This course is designed as a broad introduction to the study of law as a social institution and its relations to other institutions in society. The focus will be less on the substance of law (legal doctrine and judicial opinions) than on the process of law-how legal rules both reflect and shape basic social values and their relation to social, political, and economic conflicts within society.

90. Undergraduate Seminar (1)

Selected topics to introduce students to current issues and trends in political science. May not be used to fulfill any major or minor requirements in political science.

UPPER-DIVISION

Minimum requirement for all upper-division courses is at least one quarter of lower-division political science, or upper-division standing.

American Politics

100A. The Presidency (4)
The role of the presidency in American politics. Topics will include nomination and election politics, relations with Congress, party leadership, presidential control of the bureaucracy, international political role, and presidential psychology.

100B. The U.S. Congress (4)
This course will examine the nomination and election of congressmen, constituent relationships, the development of the institution, formal and informal structures, leadership, comparisons of House with Senate, lobbying, and relationship with the executive branch.

100C. American Political Parties (4)
This course examines the development of the two major parties from 1789 to the present. Considers the nature of party coalitions, the role of leaders, activists, organizers, and voters, and the performance of parties in government.

100DA. Voting, Campaigning, and Elections (4)
A consideration of the nature of public opinion and voting in American government. Studies of voting behavior are examined from the viewpoints of both citizens and candidates, and attention is devoted to recent efforts to develop models of electoral behavior for the study of campaigns. The role of mass media and money also will be examined.

100E. Interest Group Politics (4)
The theory and practice of interest group politics in the United States. Theories of pluralism and collective action, the behavior and influence of lobbies, the role of political action committees, and other important aspects of group action in politics are examined. Prerequisite: sophomore standing.

100F. American State and Local Politics (4)
This course explores the changing role of state and local governments in modern American politics. We will discuss state and local political institutions, processes, and politics, and examine several current policy areas including tax reform, water and land use, education, health policy, and welfare reform.

100G. American Politics and Public Policy (4)
Surveys arguments about the determinants of public policy, pairing theoretical arguments with case studies. Does government choose policies to please the electorate because bureaucratic momentum overcomes political will and interest group bargaining? Or do the rules determine the outcomes?

100H. Race and Ethnicity in American Politics (4)
This course examines the processes by which racial and ethnic groups have/have not been incorporated into the American political system. The course focuses on the political experiences of European immigrant groups, blacks, Latinos, and Asians.

1001. The Washington Community (4)

For students who plan to intern in Washington. It examines the way Washington's elected officeholders, government officials, news media, and interest group representatives transact the public's business. History of Washington as a community will also be covered. Prerequisite: department stamp required. Application for internship must be submitted to AIP office or consent of instructor.

102B. Politics of American Economic Policy (4)
The impact of politics on American post-war economic policy making. Causes and solutions to America's current economic problems. Evaluation of the political dimensions of policy making in the Reagan and earlier administrations. Consideration of Marxian, liberal, and other interpretations of policy outcomes will be discussed.

102C. American Political Development (4)

Examines selected issues and moments in the political history of the United States, comparing competing explanations and analyses of U.S. politics. Likely topics include the founding, "American exceptionalism," change in the party system, race in U.S. politics, the "new institutionalism."

102E. Urban Politics (4)

(Same as USP107) This survey course focuses upon the following six topics: the evolution of urban politics since the mid-nineteenth century; the urban fiscal crisis; federal/urban relationships; the "new" ethnic politics; urban power structure and leadership; and selected contemporary policy issues such as downtown redevelopment, poverty, and race.

102F. Mass Media and Politics (4)
This course will explore both the role played by mass media in political institutions, processes and behaviors, and reciprocally, the roles played by political systems in guiding communication processes.

102G. Special Topics in American Politics (4)
An undergraduate course designed to cover various aspects of American politics.

102J. Advanced Topics in Urban Politics (4)
(Same as USP 110) Building upon the introductory urban politics course, the advanced topics course explores issues such as community power, minority empowerment, and the politics of growth. A research paper is required. Students wishing to fulfill the paper requirement with field research should enroll in the subsequent PS 102 JJ course (offered Summer Session 2). Prerequisite: consent of instructor.

102JJ. Field Research in Urban Politics (2)
(Same as USP 111) To be taken with the approval of the PS 102J instructor, this course allows students to do original field research on topics in urban politics. This course is offered in Summer Session 2 subsequent to a 102J course. Prerequisite: consent of instructor. May not be used to fulfill any major or minor requirements in Political Science.

102L. The Politics of Regulation (4)
Political and policy-making issues in regulation. Themes: regulation versus legislation; general versus specific grants of regulatory power; market versus command mechanisms; private property; and risk assessment. Emphasis on American regulatory policy, examples from current regulatory debates (e.g., health care and environment).

103A. California Government and Politics (4)

(Same as USP 109) This survey course explores six topics: 1) the state's political history; 2) campaigning, the mass media, and elections; 3) actors and institutions in the making of state policy; 4) local government; 5) contemporary policy issues; e.g., Proposition 13, school desegregation, crime, housing and land use, transportation, water; 6) California's role in national politics.

104A. The Supreme Court and the Constitution (4)
An introduction to the study of the Supreme Court and constitutional doctrine. Topics will include the nature of judicial review, federalism, race, and equal protection. The relation of judicial and legislative power will also be examined.

104B. Civil Liberties-Fundamental Rights (4)
This course will examine issues of civil liberties from both legal and political perspectives. Topics will include the First Amendment rights of speech, press, assembly, and religion; other "fundamental" rights, such as the right to privacy; and some issues in equal protection. Conflicts between governmental powers and individual rights will be examined.

104C. Civil Liberties-The Rights of Criminals and

 Minorities (4)Examines the legal issues surrounding the rights of "marginal" groups such as aliens, illegal immigrants, and the mentally ill. Also includes a discussion of the nature of discrimination in American society.

104F. Seminar in Constitutional Law (4)
This seminar will provide an intensive examination of a major issue in constitutional law, with topics varying from year to year. Recent topics have included equal protection law and the rights of civilians in wartime. Students will be required to do legal research on a topic, write a legal brief, and argue a case to the seminar. Prerequisites: PS 104A/B; department stamp.

104I. Law and Politics-Courts and Political

Controversy (4)
This course will examine the role of the courts in dealing with issues of great political controversy, with attention to the rights of speech and assembly during wartime, questions of internal security, and the expression of controversial views on race and religion. The conflict between opposing Supreme Court doctrines on these issues will be explored in the context of the case studies drawn from different historical periods.

104L. Positive Political Theory of Law (4)
We will discuss modern theories of the origins of law and legal behavior.

106A. Politics and Bureaucracy (4)
This course explores the problematic relationships between politics and bureaucracy. The theoretical perspectives of Weber, the marxists, and pluralists will be employed to understand the character of American bureaucratic development in the twentieth century. Prerequisite: upper-division standing.

107A. Gay and Lesbian Politics (4)
A consideration of the historical interrelationship between religious, psychological, and social constructs of homosexuality, the embodiment of these constructs in the law, and their use in the political arena.
108. Politics of Multiculturalism (4)

This course will examine central issues in debates about race, ethnicity, and multiculturalism in the United States. It will look at relations not only between whites and minorities, but also at those among racial and ethnic communities.

Political Theory

110A. Citizens and Saints: Political Thought from Plato to Augustine (4)
This course focuses on the development of politics and political thought in ancient Greece, its evolution
through Rome and the rise of Christianity. Readings from Plato, Aristotle, Augustine, Machiavelli, and others.

110B. Sovereigns, Subjects, and the Modern State:

Political Thought from Machiavelli to Rousseau (4)
The course deals with the period which marks the rise and triumph of the modern state. Central topics include the gradual emergence of human rights and the belief in individual autonomy. Readings from Machiavelli, Hobbes, Locke, Rousseau, and others.

110C. Revolution and Reaction: Political Thought from

 Kant to Nietzsche (4)The course deals with the period which marks the triumph and critique of the modern state. Central topics include the development of the idea of class, of the irrational, of the unconscious, and of rationalized authority as they affect politics. Readings drawn from Rousseau, Kant, Hegel, Marx, Nietzsche, and others.

110DA. Freedom and Discipline: Political Thought in

 the Twentieth Century (4)This course addresses certain problems which are characteristic of the political experience of the twentieth century. Topics considered are revolution, availability of tradition, and the problems of the rationalization of social and political relations. Readings from Nietzsche, Weber, Freud, Lenin, Gramsci, Dewey, Oakeshott, Arendt, Merleau-Ponty.

110EA. American Political Thought from Revolution to

 CivilWar (4)The first quarter examines the origins and development of American political thought from the revolutionary period to the end of the nineteenth century with special emphasis on the formative role of eigh-teenth-century liberalism and the tensions between "progressive" and "conservative" wings of the liberal consensus.

110EB. American Political Thought from Civil War to

 Civil Rights (4)The second quarter examines some of the major themes of American political thought in the twentieth century including controversies over the meaning of democracy, equality, and distributive justice, the nature of "neoconservatism," and America's role as a world power.

110 H . Democracy and Its Critics (4)

This course will examine the historical development of the ideal of democracy from Periclean Athens to the present in the light of criticism by such thinkers as Plato, Tocqueville, and Mosca and difficulties encountered in efforts to realize the ideal.

110J. Power in American Society (4)
This course examines how power has been conceived and contested during the course of American history. The course explores the changes which have occurred in political rhetoric and strategies as America has moved from a relatively isolated agrarian and commercial republic to a military and industrial empire.

110 N . Theories of Nationalism (4)
Nationalist ideologies. Examination of the rhetoric of nationalist mobilization. Theories about the relationship between nationalist movements and democracy, capitalism, warfare, and the state.

110T. Modern Political Ideologies (4)

An examination of some of the ideas and values associated with major social and political movements in Europe and the United States since the French Revolution. Topics will vary and may include liberalism,
populism, democarcy, communism, nationalism, fascism, and feminism.

112A. Economic Theories of Political Behavior (4)
An introduction to theories of political behavior developed with the assumptions and methods of economics. General emphasis will be upon theories linking individual behavior to institutional patterns. Specific topics to be covered will include collective action, leadership, voting, and bargaining.

112B. Politics, Philosophy, and Social Science

 Methodology (4)An introduction to philosophy and the political implications of social science. Topics considered will include the nature of theory and evidence, the formulation of research questions, special problems in the study of human behavior or action and the relation between social science and public policy, events, and ideologies.

112C. Political Theory and Artistic Vision (4)
The course explores the modes of political thinking found in arts, especially in drama and literature. It focuses on particular topics (e.g., ends and means, political leadership, political economy). Some attempt will be made to develop implications inherent in art for the writing of political theory as a genre.

113B. Chinese and Japanese Political Thought (I) (4)
An examination of the competing philosophical traditions of ancient and modern China and Japan, with an eye toward understanding how these have been reflected in Chinese and Japanese development. Readings and class sessions will be in English, although students with Chinese or Japanese language capability will be given the opportunity to use their special skills.

113C. Chinese and Japanese Political Thought (II) (4) A continuation of 113 B which follows political philosophical themes in China and Japan through the twentieth century. Important topics will include Buddhism and Confucianism as they changed in each context in response to internal and external stimuli. Prerequisite: PS $113 B$.

114B. Marxist Political Thought (4)
An introduction to Marxist thought from its roots in the western tradition through its development in nonwestern contexts. Emphasis is placed on how adaptations were made in Marxism to accommodate the specific challenges of each environment.

115A. Gender and Politics (4)

Our understanding of politics, power, conflict, and quality continue to be challenged and transformed by considering gender as it intersects with nationality, race, class, and ethnicity. We will consider the importance of gender in each of the subfields of political science.

116A. Feminist Theory (4)
Readings in historical and contemporary feminist theory; development of gender as a category of political analysis; alternative perspectives on core concepts and categories in feminist thought.

116B. Advanced Feminist Theory (4)
Advanced critical analysis of contemporary feminist theory; emphasis on the interrelationships among discourses of gender, race, ethnicity, class, and sexuality in the work of different feminist theorists; alternative perspectives on feminist political strategies and practices. Prerequisite: PS 115B or PS 116A.
117. Violence and Social Order (4)

This course explores the relationship between violence and the elements of social order, including social hierarchies, group boundaries, power, and authority. Topics include both classic and contemporary works in political theory, as well as some fiction and journalism.

118A. The "Political" in Systematic Theology (4)
An historical analysis of systematic theology in the Judeo-Christian tradition as political theory. Emphasis is placed on the politicization of the political dimensions of the early church, its encounter with positivism, and the emergence of Catholic social doctrine.

118B. The Political Theory of Liberation Theology (4)
A comparative study of liberation theologies, including Continental, Latin American, South African, and East Asian. Prerequisite: PS 118A.

119A. Special Topics in Political Theory (4)
An undergraduate course designed to cover various aspects of political theory.

Comparative Politics

120A. Political Development of Western Europe (4)

 An examination of various paths of European political development through consideration of the conflicts which shaped these political systems: the commercialization of agriculture; religion and the role of the church; the army and the state bureaucracy; and industrialization. Stress will be on alternative paradigms and on theorists.120B. The German Political System (4)
An analysis of the political system of the Federal Republic of Germany with an emphasis on the party system, elections, executive-legislative relations, and federalism. Comparisons will be made with other West European democracies and the Weimar Republic.

120C. Politics in France (4)
This course will examine the consequences of social and economic change in France. Specific topics will include institutional development under a semi-presidential system, parties, and elections.

120D. Germany: Before, During, and After Division (4) Consideration of political, economic, and security factors that have kept Germany at the center of European developments for more than a century.

120E. Scandinavian Politics (4)
Introduction to the politics and societies of the Scandinavian states (Denmark, Finland, Norway, and Sweden). Focuses on historical development, political culture, constitutional arrangements, political institutions, parties and interest groups, the Scandinavian welfare states, and foreign policy.

120G. British Politics (4)
Emphasis will be placed on the interaction between British political institutions and processes and contemporary policy problems; the economy, social policy, foreign affairs. The course assumes no prior knowledge of British politics and comparisons with the United States will be drawn.

120H. European Integration (4)
This course reviews the origins and development of the European Community/European Union and its institutions, theories of integration and the challenges inherent in the creation of a supranational political regime.
1201. Politics in Italy (4)

This course will provide a comparative perspective on the development and functioning of the Italian political system. It includes analysis of political institutions, ideological traditions, parties and elections, political elites in the policy process, and the evolving importance of Italy within European integration.

121. Government and Politics of the Middle East (4)

 This course examines general themes affecting the region (social structure and regime type, religion and modernization, bonds and tensions), the character of major states, and efforts to resolve the conflict between Israel and its Arab and Islamic neighbors. Prerequisite: upper-division standing.122A. Authoritarian Politics (4)
This lecture course explores alternative approaches to the analysis of authoritarian regimes. The readings draw from cases on all continents. Special attention will be given to the political institutions of these regimes.

123A-B. Comparative Parliamentary Studies (4-4)
This course surveys the academic literature on parliamentary studies, comparing the research on legislative elections, behavior, and organization in American, European, and Asian democracies. The course will also compare various approaches to studying legislative activity. Prerequisites: PS 11 for 123A; 123A for 1238 .

124A. Political Consequences of Electoral Systems (4) A comparative survey of the major dimensions of the electoral systems used in contemporary democracies (including plurality and majority systems, proportional representation, and districting methods) and of their effects on party competition.

124B. The Politics of Comparative Judicial Development (4)
Focusing on judicial systems in civil and common law traditions, and in authoritarian as well as democratic politics, this course explores the judicial branch's traditional weakness, even in some democracies. The course considers alternative theories of judicial development and applies them to evidence from judicial systems in several countries.

126AA. Fundamentals of Political Economy: Modern Capitalism (4)
This course explores how economic factors affect political institutions and how political action affects economic behavior in the United States and Western Europe. Particular attention is given to relations between business and labor, economic policy choices, and the impact of international trade. Prerequisite: PS 11 or consent of instructor.

126AB. Politics and Economics in Eastern Europe (4) This course explores the interrelationship of politics and economics in Eastern Europe, analyzing the historic evolution of the area, the socialist period, and contemporary political and economic change there.

126AC. Issues in Political Economy (4)
Seminar deals in-depth with one or some of the issues touched on in PS 126AA and/or 126AB. Potential topics may include:labor and politics, privatization and divestment, regulation and deregulation, the welfare state, politics of public and private bureaucracy, and other such issues. Prerequisites: PS 126AA and/or 126AB or consent of instructor.

130AA. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.

130AC. Seminar: Post-Soviet Politics (4) Undergraduate research seminar on the Post-Soviet Union. Issues and research areas will vary each time the course is offered. Prerequisite: consent of instructor.

130AD. The Politics of the Russian Revolution (4)
An examination of the dynamics of the Russian Revolution from 1905 through the Stalinist period and recent years in light of theories of revolutionary change. Emphasis is placed on the significance of political thought, socio-economic stratification, and culturohistorical conditions.

130B. Politics in the People's Republic of China (4)
This course analyzes the political system of China since 1949, including political institutions, the policy-making process, and the relationship between politics and economics. The main focus is on the post-Mao era of reform beginning in 1978.

130H. Vietnam: The Politics of Intervention (4)
This course will examine the interventions of foreign powers in Vietnam between 1945 and 1975 (including France, the United States, China, and the Soviet Union) and the effects of intervention.

131C. The Chinese Revolution (4)
An analysis of the dynamics of the Chinese Revolution from the fall of the Qing Dynasty (1644-1911) to the present. Emphasis is placed on the relationship between political thought and the dynamics of the revolutionary process.

132B. Politics and Revolution in China and Japan (4) An intensive examination of the quests for modernity undertaken by Chinese and Japanese leaders from the mid-nineteenth century to the present. Emphasis is placed upon the relationship among indigenous values, international pressures, and issues concerning national identity.

132C. Political Development and Modern China (4)
Political development has dominated the study of comparative politics among U.S. academicians since the revival of the Cold War in 1947. This course examines critically this paradigm and its Western philosophical roots in the context of the experience of modern China.

133A. Japanese Politics: A Developmental

Perspective (4)
This course will analyze the political systems of modern Japan in comparative-historical perspective.

133E. Public Policy in Japan (4)
This course combines an examination of general models of the way in which public policy is made in Japan, and a review of outcomes in several substantive policy areas, such as education, public works, health and welfare, and pollution.

133F. Governments and Politics of Southeast Asia (4)
This course looks at one of the world's most dynamic and complex regions. The course has three parts: a review of the history and politics of the region; a country-by-country study of several Southeast Asian states; and a look at major challenges facing the region. Prerequisite: upper-division standing.

134AA. Comparative Politics of Latin America (4)
Comparative analysis of contemporary political systems and developmental profiles of selected Latin American countries, with special reference to the ways in which revolutionary and counter-revolutionary movements have affected the political, economic, and social structures observable in these countries today. Analyzes the performance of "revolutionary" governments in dealing with problems of domestical political management, reducing external economic dependency, redistributing wealth, creating employment, and extending social services. Introduction to general theoretical works on Latin American politics and development. Prerequisite:PS 11 or consent of instructor.

134B. Politics in Mexico (4)
General survey of the Mexican political system as it operates today. Emphasis on factors promoting the breakdown of Mexico's authoritarian regime and the transition to a more democratic political system. Changing relationship between the state and various segments of Mexico society (economic elites, peasants, urban labor, and the Church). New patterns of civil-military relations.

134C. Politics in Mexico (4)
Continuation of PS 134B. Emphasis on government policies and performance affecting economic development, job creation, population growth, social inequality, poverty, rural-urban imbalances, and migration. Case studies of specific government programs and regional variations in policy outcomes.

134D. Selected Topics in Latin American Politics (4)
A comparative analysis of contemporary political issues in Latin America. Material to be drawn from two or three countries. Among the topics: development, nationalism, political change.

134G. Politics in the Andes (4)
A comparative examination of twentieth-century political conflicts and currents in the Andean countries of South America: Bolivia, Colombia, Ecuador, and Peru. Topics include economic underdevelopment, Indian relations, militarism, guerrilla warfare, and revolutionary movements.
1341. Politics in the Southern Cone of Latin America (4) This course is a comparative analysis of twentieth-century political developments and issues in the Southern Cone of Latin America: Argentina, Chile, and Uruguay. The course will also examine the social and economic content and results of contrasting political experiments.

134N. Politics in Central America (4)
Focused examination of political conflict in one or more countries of the region, emphasizing issues, ideology, and process in grassroots political organization. Limited coverage of international politics.

134P. Organizing Women in Latin America (4)
Survey of women's participation in formal political institutions in Latin America (public bureaucracies, political parties, trade unions, peasant organizations), the politics of gender in recent women's movements, and the impact on women of democratization and neoliberal economic policies.

134Q. Organization, Resistance, and Protest in Latin

 America (4)Comparative, case-based study of historical and contemporary political organizations and social movements in Latin America. Emphasis on local and regional
activism through politicized urban neighborhood and church groups, trade unions, and peasant organizations. Focus on group objectives, strategies, and identities.

134R. Political Parties in Latin America (4)
(Formerly PS 146D) Compares and contrasts different types of political parties in Latin America; conservative, liberal, populist, christian, democratic, socialist, and communist. Investigates their origins, ideologies, programs, leadership, followings, organizations, and successes or failures within varying political systems in different countries. Cannot also receive credit for PS 146D.

136B. Comparative Politics and Political Culture (4)
This course is designed to provide undergraduates with a sound introduction to cultural interpretations of power and politics. The course will also attempt to render an explicit account of the process of theory formation in social science. Special attention will be given to Africa and Asia.

137A. Comparative Political Parties and Interest

Groups (4)
This course serves as an introduction to the comparative study of political parties and interest groups. The course has three parts: 1) an analytical introduction to parties, interest groups, and their role in democratic representation; 2) parties and interest groups in Great Britain; and 3) parties and interest groups in Italy. Prerequisite: PS 11 or consent of instructor.

138D. Special Topics in Comparative Politics (4)
An undergraduate course designed to cover various aspects of comparative politics.

139A. Politics of the Ancient World Order (4)
An introduction to the domestic and international political orders of the ancient West. Primary focus will be on the strengths and limitations of comparative and international relations theories when applied to the ancient world of city-states, kingdoms, and empires.

International Relations

140A. International Law and Organizations (4)
International law and organizations are central to the efforts to create a world order to limit armed conflict, regulate world economy, and advance programs for economic redistribution among nations, and set minimum standards of human rights. This course explains the theory of international law and organizations that is accepted by diplomats and compares this viewpoint to the analysis of social scientists concerning the past record and likely future of world order concerning conflict, economic redistribution, and human rights.

140B. Concepts and Aspects of Revolution (4)
Introduction to the analytical and comparative study of revolutionary movements and related forms of political violence. Topics include: the classical paradigm; types of revolutionary episodes; psychological theories; ideology and belief systems; coups; insurgencies; civil wars; terrorism and revolutionary outcomes.

141. Seminar: Game Theory and International

Relations (4)
This course covers the rudiments of game theory and its use in the study of international relations to explore various substantive and theoretical issues. Prerequisite: PS 12 or consent of instructor.

142A. United States Foreign Policy (4)

United States foreign policy from the colonial period to the present era. Systematic analysis of competing explanations for U.S. policies-strategic interests, economic requirements, or the vicissitudes of domestic politics. Interaction between the U.S., foreign states (particularly allies), and transnational actors are examined. Prerequisite:PS 12 or consent of instructor.
1421. National and International Security (4)

A survey of theories of defense policies and international security.

142J. National Security Strategy (4)
A survey of American strategies for national defense. Topics may include deterrence, coercive diplomacy, limited war, and unconventional warfare.

142K. Politics and Warfare (4)
This course offers an exploration of general theories of the origins of warfare; the impact of the state on war in the modern world; and the micro-foundations of combat and compliance in the context of the costs of war and military mobilization. The course should be of special interest to students in international relations and comparative politics.

144AA. Politics and the International Economic Order

 (4)This course examines the interplay of politics and economics in international relations and entails a review of the history of the international economic order from the seventh century through the present. Stress is placed on the evolution of the bargaining about money, trade, and investment.

144AB. Selected Topics in International Political
Economy (4)
This course will consider major theories purporting to explain and predict the workings of the international order from the point of view of political economy. An extended discussion of one aspect of the economic order (e.g., the multinational corporation) will serve as the test case. PS 144AA and one quarter of economics recommended. Prerequisite: PS 12.

144D. Political Dimensions of International Finance (4)
(Conjoined with PS 262, IP/Gen 402, and IP 202.) Examination of effects of national policies and international collaboration of public and private international financial institutions, in particular management of international debt crisis, economic policy coordination, and the role of international lender of last resort. Prerequisite: upper-division standing or permission of instructor. Previous background in economics strongly recommended.

144E. The Politics of International Trade (4)
Examines theories of trade and protectionism, focusing both on relations among advanced industrial nations and on relations between developed and developing countries. Topics include standard and strategic trade theory, nontariff barriers to trade, export-led growth strategies, regional trade agreements, and the future of the WTO.

145A. International Politics and Drugs (4)
This course examines the domestic and international aspects of the drug trade. It will investigate the drug issues from the perspectives of consumers, producers, traffickers, money launderers, and law enforcement Course material covers the experience of the United

States, Latin America, Turkey, Southeast Asia, Western Europe, and Japan.

145B. Conflict and Cooperation in International

 Politics (4)Course on how countries overcome problems of conflict and cooperation in their dealings with one another. Focuses on theories of emergence of cooperation among states and applies these to various issue-areas. subjects examined include international monetary relations, military alliances, economic sanctions, human rights, arms control, international trade, and others. Prerequisite: PS 12.

145C. International Relations After the Cold War: Theory and Prospect (4)
The nature of international politics appears to have changed dramatically since the end of the Cold War in 1989. This course applies different theoretical approaches to enhance our understanding of the new international environment, the future prospects for peace and war, and current problems of foreign policy.

146A. The U.S. and Latin America: Political and Economic Relations (4)
An analytical survey of U.S. relations with Latin America from the 1820 s to the present, with particular emphasis on the post-Cold War environment. Topics include free trade and economic integration; drugs and drug trafficking; illegal migration and immigration control. Focus covers U.S policy, Latin American reactions, dynamics of cooperation, and options for the future.

146E.U.S.-Latin American Relations: Security Issues (4) This course will examine the history of security relations in the western hemisphere. They will be considered in global, regional, and rational contexts. International institutions, economic relations, domestic politics, and military issues will be examined for their contribution to explaining the evolution of the interAmerican security agenda from independence to the post-Cold War. Prerequisite: PS 12.

146XL. 146E U.S.-Latin American Relations: Security Issues Foreign Language Discussion Section (1)
Students will exercise advanced foreign language skilis to discuss materials in the PS 146E course. This section is taught by the course professor; has no final exam, and does not affect grade in PS 146E. Prerequisite: must be co-registered in PS $146 E$.

147A. Soviet Foreign Policy

This course analyzes Soviet international behavior over seven decades, with particular attention to the period of Soviet superpower status. Close attention will be given to competing explanations for Soviet behavior, to the diverging assessments of Soviet power, and to specific modes of Soviet behavior such as weapons procurement, military intervention, and arms control compliance.

150A. Politics of Immigration (4)
Comparative analysis of attempts by the United States, western Europe, and Japan to initiate, regulate and reduce immigration from Third World countries. Social and economic factors shaping outcomes of immigration policies, public opinion toward immigrants, antiimmigration movements, and immigration policy reform options in industrialized countries.

150B. Politics of Immigration (4)
Continuation of PS 150A. Impacts of U.S. immigration laws and policies on experiences of specific immigrant groups (Mexicans, Central Americans, Chinese,

Japanese, Southeast Asians, Europeans). Immigrants as political actors in United States, Europe, and Japan Interactions between local and national immigration policies.

152. Foreign Policy Analysis (4)

This upper-division course focuses on the comparative study of foreign policies in contemporary and historical world affairs. Competing theoretical approaches drawn from international, domestic, and individual levels of analyses will be examined. War, security, alliances, and international crises will be used to evaluate the utility of competing approaches. Prerequisite: PS 12.
154. Special Topics in International Relations (4) An undergraduate course designed to cover various aspects of international relations.

Policy Analysis

160AA. Introduction to Policy Analysis (4)
(Same as USP 101) This course will explore the process by which the preferences of individuals are converted into public policy. Also included will be an examination of the complexity of policy problems, methods for designing better policies, and a review of tools used by analysts and policy makers. Prerequisite: PS 10 or 11.

160AB. Introduction to Policy Analysis (4)
In this course, students will use their knowledge of the political and economic foundations of public policy making to conduct research in a wide variety of public policy problems. Prerequisite: PS 160AA.
161. Understanding Direct Legislation (4)

The purpose of the course is to examine how the referendum, initiative, and recall (direct legislation) are used to determine policy. The class will survey the historical and contemporary direct legislation literature in order to understand the popular and academic debate concerning direct legislation's use.

162. Environmental Policy (4)

This course will explore contemporary environmenta issues such as global warming, endangered species and land use. Students will be asked to analyze various policy options and to write case analyses. Policies may be debated in class.
165. Special Topic: Policy Analysis (4)

An undergraduate course designed to cover various aspects of policy analysis.

166F. The American Welfare State (4)

(Same as USP 112) This course examines the building of the welfare state in the twentieth century. Topics include the legacy of progressivism, the New Deal and Great Society; Reaganite retrenchment; social programs, party and electoral dynamics; and the welfare state's impact on groups and the class structure.

167A-B. Seminar: Public Policy Analysis (4-4)
Students are asked to analyze various policy options related to contemporary American policy issues. Students are also required to do directed research on policy issues, to write case analyses based on their findings, and to debate policy alternatives in class Prerequisite: PS 10 or 11.
168. Policy Assessment (4)

The use of real data to assess policy alternatives. introduction to benefit/cost analysis, decision theory and the valuation of public goods. Applications to
health, environmental, and regulatory economic policy making.

Research Methods

170A. Introductory Statistics for Political Science and Public Policy (4)
Introduction to the use of statistics in both political science and public policy, concentrating on regression based approaches. Students undertake a series of small quantitative analyses and one project. Prerequisites: PS 60, Soc. Sci. 60, PS 30, Psych. 60 or equivalent or consent of instructor.

181. Field Research Methods (4)

Introductory survey of methods used by political and other social scientists to gather primary research data, including sample surveys, "elite" interviewing, ethnographic observation, and archival research. Students will have opportunities for practical application of one or more of these methods. Prerequisites: PS 10, 11, or 12; permission of instructor; department stamp; student must be interviewed by instructor.

Special Studies

191A-B. Senior Honors Seminar: Frontiers of Political

 Science (4-4)This course is open only to seniors interested in qualifying for departmental honors. Admission to the course will be determined by the department. Each student will write an honors essay under the supervision of a member of the faculty. Prerequisites: department stamp; senior standing; PS major with 3.5 GPA or consent of instructor; significant writing project and recommendation by political science faculty member.
194. Research Seminar in Washington, D.C. (4)
(Same as Com/Gen 194; USP 194, HIST 193, SocE 194, ERTH 194, COGS 194) Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial research paper. Prerequisites: participating in UCDC program.

197I. Political Science Washington Internship (6)
This internship is attached to the UC in DC Program. Students participating in the UC in DC Program are placed in an internship in the Washington, DC, area for twenty-four hours per week. Prerequisites: must be enrolled in the UC in DC Program.
199. Independent Study for Undergraduates (2 or 4) Independent reading in advanced political science by individual students. (P/NP grades only.) Prerequisite: consent of instructor.

GRADUATE

All graduate courses are categorized as either seminars or independent study.

Seminars

200. Political Science: Scope and Methods (4)

This course examines a variety of approaches to the study of politics, focusing on their inteilectual history, canonical works that illustrate their major themes, and methodological critiques and defenses. The course seeks to clarify how interesting and important ques tions are discovered and how appropriate research is designed and executed.
201. Politics, Political Science, and Political Theory (4) An analysis of the intersections of political theory, political science, and politics. Readings will vary from year to year. Themes include liberalism and democracy, rights and interests, voting and representation, citizenship and equality. This course is required of all graduate students in political science. No prior work in political theory is presupposed. Prerequisite: graduate standing or consent of instructor.

203. Math for Political Science (4)

Mathematical skills necessary for doing graduate work in political science. Topics include optimization, linear algebra, probability, set theory, and formal logic.

210A. Systems of Political Thought (1): Thucydides to

 Hobbes (4)This course will review major texts and selected commentaries in the history of political thought as preparation for the field examination. Readings will include Thucydides, Plato, Aristotle, Augustine, Machiavelli, and Hobbes. Prerequisite: graduate standing or consent of instructor.

210B. Systems of Political Thought (II): Locke to

Nietzsche (4)

This course will review major texts and selected commentaries in the history of political thought as preparation for the field examination. Readings will include Locke, Rousseau, Kant, Marx, Mill, and Nietzsche. Prerequisite: graduate standing or consent of instructor.

211A. American Political Thought (4)

This course explores American debates over political ideals, institutions, and identity from the Puritans to the present. Themes will include freedom and slavery, sovereignty and representation, individual and community, diversity and equality. Readings will vary from year to year. Prerequisite: graduate standing or consent of instructor.

212A. The Political Uses of Antiquity (4)
This course explores debates in the history of political thought about classical antiquity and its relationship to the modern world. The meaning, motivation, and significance of gestures toward antiquity as a model for judging contemporary politics and culture will be discussed. Prerequisite: graduate standing or consent of instructor.

213A. Contemporary Political Theory (4)

This course focuses on theories and topics since the mid-nineteenth century. Among the themes to be discussed are authority, power, leadership, modernity, and post-modernity. Readings will include Nietzsche, Weber, Lenin, Freud, Oakeshott, Dewey, Focault, Walzer, and Rawls. Prerequisite: graduate standing or consent of instructor.

213B. Chinese and Japanese Political Thought (I) (4) An examination of the competing philosophical traditions of ancient and modern China and Japan, with an eye toward understanding how these have been reflected in Chinese and Japanese development. Readings and class sessions will be in English, although students with Chinese or Japanese language capability will be given the opportunity to use their special skills. Prerequisite: graduate standing or consent of instructor.

213C. Chinese and Japanese Political Thought (II) (4) A continuation of 213B which follows political philosophical themes in China and Japan through the twentieth century. Important topics will include Buddhism and Confucianism as they changed in each context in response to internal and external stimuli. Prerequisites: PS 213 B and preferable that students be able to read modern or classical Chinese or Japanese.
214. Marxist Political Philosophy (4)

An examination of selected texts in Marxist and postMarxist political philosophy, with a focus on the theme of individual and collective identity including issues concerning alienation, consciousness, and ideology. Prerequisite: graduate standing or consent of instructor.
215. The Self and the Political Order (4)

The course deals with the interrelationship of understandings of the political order and understandings of the self. The course will focus on the two great theorists of modernity, Rousseau and Nietzsche. Extensive readings from primary and secondary sources. Prerequisite: graduate standing or consent of instructor.
216. Radical Thought:Theologies of Liberation (4) An examination of theologies of liberation combining Marxist social critiques with Christian Theological perspectives. The course will compare Augustinian theology and mainstream Roman Catholic social teachings with alternative Latin American, African, and feminist theologies embracing radical change in social structures. Prerequisite: graduate standing or consent of instructor.

217. Feminist Political Theory (4)

This course focuses on contemporary feminist political thought. Topics: theories of gender construction; relationship between gender and traditional political concepts; and debates about the social and political subordination of women. Prerequisite: graduate standing or consent of instructor.

218A. The "Political" in Systematic Theology (4)
An historical analysis of systematic theology in the Judeo-Christian tradition as political theory. Emphasis is placed on the politicization of the political dimensions of the early Church, its encounter with positivism, and the emergence of Catholic social doctrine. Prerequisite: upper-division standing or consent of instructor. Two courses in philosophy, or political or social theory are recommended, or graduate standing.

218B. The Political Theory of Liberation Theology (4) A comparative study of liberation theologies, including Continental, Latin American, South African, and East Asian. Prerequisite: graduate standing or consent of instructor.
219. Special Topics in Political Theory (4)

This seminar is an examination of the different approaches to the study of political theory. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

220. Comparative Politics: State and Society (4)

This course will provide a general literature review in comparative politics to serve as preparation for the field examination. Prerequisite: graduate standing in any discipline in the social sciences or humanities, or consent of instructor.

221. Comparative Politics: Institutions (4)

This is a second course in comparative politics designed as a preparation for the field examination. It will focus on the comparative study of political institutions. Prerequisite: graduate standing in any discipline in the social sciences or humanities, or consent of instructor.

222. Measuring Democracy (4)

Research seminar that focuses on the problems of measurement, operationalization, and validity in the comparative study of types, causes, and consequences of democracy.

Political Science

222A. American Politics in Comparative Perspective (4) Research seminar that focuses on the systematic com parison of the American political system with about thirty other contemporary democracies, particularly the other large industrialized countries. A central aim will be to assess the claims about American "exceptionalism." Prerequisite: graduate standing or consent of instructor.

223A-B. Comparative Parliamentary Studies (4-4)
This course surveys the academic literature on parliamentary studies comparing the research on legislative elections. Behavior and organization in American European, and Asian democracies. The course will also compare various approaches to studying legislative activity. Prerequisite: graduate standing.

224. The Politics of Democratization (4)

This course will examine the following questions: Why do some countries fail and others succeed in establishing democracies? How do leaders "institutionalize" uncertainty? Should economic or political liberalization come first? Why are there periodic "waves" of democratic breakthrough and breakdown? Prerequisite: graduate standing.

225. The Politics of Divided Societies (4)

Research seminar that surveys the theoretical literature on divided societies in Africa, Asia, Europe, North America, and South America, particularly conflict and peacemaking in multiethnic countries. Cases to be studied in depth will be selected in accordance with students' area and country interests. Prerequisite: graduate standing or consent of instructor.

226. Authoritarian Politics (4)

Research seminar that surveys the theoretical literature on non-democratic political systems. Readings draw from cases in Africa, Asia, Europe, and Latin America. Prerequisite: graduate standing or consent of instructor.
227. Marxism and National Development in East Asia (4) A systematic consideration of the significance-positive and negative-of Marxism in the recent history of East Asia. Emphasis is placed on the role of Marxism as a conception of "modernity" and as a model of "development." Prerequisite: graduate standing.

228. Bureaucracy and Public Policy (4)

(Conjoined with IRGN 407 and IRGN 207) What determines the degree of influence bureaucrats exert over public policy outcomes, versus the influence of politicians? Overview of themes such as developmental state, state autonomy, legislative oversight, clientelism, corruption. Applications to Japan, East Asia, United States, and Latin America. Prerequisite: graduate standing or consent of instructor.
229. Special Topics in Comparative Politics (4)

This seminar is an examination of the different approaches to the study of comparative politics. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

230A-B. The Mexican Political System (4-4)

An interdisciplinary graduate seminar covering selected aspects of Mexican politics, economic development, and social change. Attention to both domestic and international factors affecting Mexico's transition to a more democratic system. Materials to be drawn from literatures in anthropology, economics, history (twentieth century), political science, sociology, urban studies, and communication. Topics vary from year to
year partly reflecting research interests of participating students. Students are expected to write substantial research papers or thesis proposals. Prerequisite: graduate standing or consent of instructor.

231A. Political and Economic Development in Eastern

 Europe: Historical Perspective (4)This course deals with issues in economic and political development in Eastern Europe prior to World War II. Prerequisite: graduate standing or consent of instructor.

2318. Socialism in Eastern Europe (4)

This course focuses on the economics and politics of the socialist regimes in Eastern Europe. It will deal both with Marxist theory as well as its practical ramifications as institutionalized in the economies and political orders in Eastern Europe. Prerequisite: graduate standing or consent of instructor.

231C. The Post-Socialist Evolution of Eastern Europe (4)
This course focuses on the contemporary political and economic order that is emerging in various states of Eastern Europe. Prerequisite: graduate standing or consent of instructor

231D. Politics of the Soviet Successor States (4)
A colloquium surveying major controversies in the analyses of Soviet and post-Soviet politics. Prerequisite: graduate standing or consent of instructor. Cannot also receive credit for PS 231.

232. The Chinese Political System (4)

The evolution of political institutions and processes in the People's Republic of China. The course will examine the changing roles of the leader, the Communist Party, the government, the army; the shifting authority relations between central and local governments; and changing patterns of citizen behavior. Prerequisite: graduate standing or consent of instructor.

232B. Politics and Revolution in China and Japan (4)
An intensive examination of the quests for modernity undertaken by Chinese and Japanese leaders from the mid-nineteenth century to the present. Emphasis is placed upon the relationship among indigenous values, international pressures, and issues concerning national identity. Prerequisite: graduate standing or consent of instructor

232C. Political Development and Modern China (4)
Political development has dominated the study of comparative politics among U.S. academicians since the revival of the Cold War in 1947. This course examines critically this paradigm and its Western philosophical roots in the context of the experience of modern China. Prerequisite: graduate standing or consent of instructor.

235A. Latin American Politics (4)
(Conjoined with $\mathbb{P} / \mathrm{Gen} 477$ and $\mathbb{I P}$ 277.) Introductory reading seminar on Latin American politics to acquaint students with leading schools of thought, provide critical perspective on premises and methodology, and identify themes for further inquiry. Themes include authoritarianism, revolution, democratization, regional conflict, and the emergence of middle-level powers. Prerequisite: graduate standing or consent of instructor.

235B. Regime Transformation in Latin America (4) This seminar will focus on processes of regime transformation in Latin America, with particular emphasis on recent patterns of democratization. The goals will be to explore the current literature, to examine its theoretical foundations, to identify unresolved questions, and to
frame topics for further research. Prerequisite: graduate standing or consent of instructor.
236. Immigration Policy and Politics (4)

An interdisciplinary seminar covering origins, consequences, and characteristics of worker migration from Third World countries (especially Mexico, Central America, and the Caribbean basin) to the United States, from the nineteenth century to the present.
240. International Relations Theory (4)

A survey of the principal theories and approaches to the study of international relations. Prerequisite: graduate standing or consent of instructor.

243. International Security (4)

A colloquium surveying the major theoretical controversies in the study of international and national security. Prerequisite: graduate standing or consent of instructor.

244. Models of International Change (4)

The seminar will explore models that account for international change by linking international (systemic or structural) and domestic variables. Particular attention will be given to evolutionary and learning models as they have been employed in a number of disciplines. Prerequisites: MPIA students-IP/Core 410; Ph.D. students-no prerequisites.

244A. European Integration (4)

This seminar provides perspectives on the theories and politics of European integration. Analysis will focus on the development of the European Union, the functioning of core institutions, and the challenges of creating a supranational political regime.

245. International Political Economy (4)

A seminar surveying the major theoretical controversies in the study of international political economy. Prerequisite: graduate standing or consent of instructor.
246. Formal Theory in International Relations (4)

This course covers the rudiments of game theory and its use in the study of international relations to explore various substantive and theoretical issues. Prerequisite: graduate standing or consent of instructor.
248. Special Topics in International Relations (4)
(Same as IRGN 290) This seminar is an examination of the different approaches to the study of international relations. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor
250. American Politics (4)

This course will provide a general literature review in American politics to serve as preparation for the field examination. Prerequisite: graduate standing in any discipline in the social sciences or humanities, or consent of the instructor.

251. American Political Institutions (4)

A critical examination of major contributions to the theoretical and empirical literature on the U.S. Congress, presidency, and federal bureaucracy Prerequisite: graduate standing or consent of instructor.

252. American Politics: Behavior

Theoretical and empirical perspectives on voting and other forms of political participation, parties, interest groups, and public opinion in the United States Prerequisite: graduate standing or consent of instructor.
254. American Political Development (4)

This course examines the historical evolution of the American state with particular attention to theories of political development. Special topics include the development of the party system, electoral and policy realignments, and the evolution of national political institutions. Prerequisite: graduate standing in any discipline of the social sciences or humanities or consent of instructor.
255. Urban Politics (4)

Examines central works on the development of political institutions in U.S. cities; analyses of community power structures; who governs, why, and to what ends; processes and prospects for minority empowerment; the prominence of "growth machines"; the political economy of contemporary cities. Prerequisite: graduate standing or consent of instructor.

256. Jurisprudence and Public Law (4)

An introduction to the field, including discussion of major jurisprudential theories (Dworkin, Ely, etc.) and constitutional controversies (e.g., abortion, the First Amendment). Prerequisite: graduate standing.
257. Voting and Elections (4)

This course is designed to acquaint graduate students with the central themes and issues in the study of voting in national elections. Prerequisite: graduate standing or consent of instructor.

258. Advanced Topics in Jurisprudence and Public

 Law (4)This seminar will explore a single broad topic in depth, using both case material and discussions of the topic in empirical and theoretical literature. Examples of topics include race and the law; and sexuality, gender, and the law. Intended for graduate students preparing general exams in jurisprudence and public law, American politics, and political theory.
259. Special Topics in American Politics (4)

This seminar is an examination of the different approaches to the study of American politics. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

260. Political Economy: Institutional Change (4)

This advanced seminar will focus on attempts to use economic theory in comparative and American politics. The micro foundations of macro models will be stressed. Prerequisite: graduate standing or consent of instructor.

262. International Political Economy: Money and

Finance (4)
Examination of effects of national policies and international collaboration of public and private international financial institutions, in particular management of international debt crises, economic policy coordination, and the role of international lender of last resort. Prerequisite: graduate standing.

270A. Introductory Statistics for Political Science and

 Public Policy (4)Introduction to the use of statistics in both political science and public policy, concentrating on regression based approaches. Students undertake a series of small quantitative analyses, one project, and a literature review. Prerequisite:graduate standing in any discipline in the social sciences or humanities or consent of instructor.

271A-B. Advanced Statistical Applications (4-4)
Use of advanced quantitative techniques in political science. Students will use political science data to com-
plete small exercises and a major project. Prerequisites: PS 270A for 271A, 271A for $271 B$.

273A. Basic Game Theory (4)
The first of a two part sequence, this course introduces students to the rudiments of decision theory and game theory. Emphasis wili be placed on modeling and solving games. Prerequisite: graduate standing or consent of instructor.

273B. Game Theory and Political Applications (4)
This course builds on the concepts and methods in 273A, exploring the use of formal models in political science. Prerequisite: PS 273A or consent of instructor.
274. Axiomatic Social Choice Theory (4)

An introduction to some of the central issues in the axiomatic approach to social choice initiated by Arrow's Social Choice and Individual Values. Because of the many complexities that underly an analysis of social choice, the course will be quite technical in nature. Prerequisite:PS 250 or consent of instructor.

281A-B-C. Workshop on Political Institutions (4-4-4) Examination of recent research in American politics and comparative politics concerning political institutions; development and presentation of research projects by graduate students; presentations of research projects by faculty. Second year students present seminar paper; third year students present dissertation prospectus; candidates make yearly presentations of dissertation research. Prerequisite: PS 202.

282A-B-C. Workshop on State and Society (4-4-4)
Examination of recent research in American politics, comparative politics, and political theory concerning the relationship of politics to society; development and presentation of research projects by graduate students; presentations of research projects by faculty. Secondyear students present seminar paper; third-year students present dissertation prospectus; candidates make yearly presentations of dissertation research. Prerequisite: PS 202 or consent of instructor.

283A-B-C. Workshop in International Relations (4-4-4) Examination of recent research in international politics; development and presentation of research projects by graduate students; presentations of research projects by faculty. Second year students present seminar paper; third year students present dissertation prospectus; candidates make yearly presentation of dissertation research. Prerequisite: PS 202 or permission of instructor.
284. Workshop on Scientific Communication (4)

Forms of scientific communication, practical exercise in scientific writing and short oral communication, and in criticism and editing; preparation of illustrations, preparation of proposals; scientific societies, and the history of scientific communication. Examples from any field of science, most commonly political science, economics, and law. Prerequisite: PS 202 or consent of instructor.
285. Workshop: Law and Social Science Colloquium (4) A weekly, multi-disciplinary colloquium for presentations from scholars in psychology, political science, cognitive science, and other areas (UCSD and other campuses). Presented by the Public Policy Research Project, research and approaches to studying law and the courts will be the focus. Short review papers due weekly. Prerequisite: graduate standing or consent of instructor.

286A-B-C Workshop in Political Analysis (4-4-4)
Students will read and critique new research articles in political analysis. Students will present these critiques
to the workshop. Students will also present their own methodological analyses to the workshop. Prerequisite: graduate standing or consent of instructor.

Independent Study

291A. Research Tutorial in American Politics (4)
Tutorial in a selected area of American politics leading to a research paper. The content of each tutorial will be determined by the professor. Prerequisite: graduate standing in political science.

291B. Research Tutorial in Comparative Politics (4)
Tutorial in a selected area of comparative politics leading to a research paper. The content of each tutorial will be determined by the professor. Prerequisite: graduate standing in political science.

291C. Research Tutorial in International Relations (4) Tutorial in a selected area of international relations leading to a research paper. The content of each tutorial will be determined by the professor. Prerequisite: graduate standing in political science.

291D. Research Tutorial in Political Theory (4)
Tutorial in a selected area of political theory leading to a research paper. The content of each tutorial will be determined by the professor. Prerequisite: graduate standing in political science.

298. Directed Reading (1-12)

Guided and supervised reading in the literature of the several fields of political science.
299. Dissertation Research (1-12)

Independent work by graduate students engaged in research and writing of second-year paper and doctoral dissertation, under direct supervision of adviser.
500. Apprentice Teaching (1-4)

A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation, and grading of examinations and other written exercises, and student relations. Twenty-four units of teaching apprenticeship meets the department teaching requirement for the Ph.D. degree.

501. Seminar on Teaching Development-American

Politics (1-4)
A seminar designed for graduate students serving as teaching assistants in American politics, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.
502. Seminar on Teaching Development-Comparative Politics (1-4)
A seminar designed for graduate students serving as teaching assistants in comparative politics, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

503. Seminar on Teaching Development-International

 Relations (1-4)A seminar designed for graduate students serving as teaching assistants in international relations, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.
504. Seminar on Teaching Development-Political

Theory (1-4)
A seminar designed for graduate students serving as teaching assistants in political theory, includes discus sion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

Psychology

STUDENT SERVICES OFFICE:

1533 McGill Hall Annex

Professors

Thomas D. Albright, Ph.D., Adjunct
Norman H. Anderson, Ph.D., Emeritus
Stuart M. Anstis, Ph.D.
Mark I. Appelbaum, Ph.D.
Richard C. Atkinson, Ph.D., UC President
Elizabeth A. Bates, Ph.D.
Ursula Bellugi, Ph.D., Adjunct
Robert M. Boynton, Ph.D., Emeritus
Sandra A. Brown, Ph.D.
Brett A. Clementz, Ph.D.
Michael Cole, Ph.D., University Professor
Francis H. C. Crick, Ph.D., Adjunct
Diana Deutsch, Ph.D.
J. Anthony Deutsch, D. Phil, Emeritus

Ebbe B. Ebbesen, Ph.D.
Edmund J. Fantino, Ph.D.
Steven A. Hillyard, Ph.D., Adjunct
Vladimir J. Konečni, Ph.D.
George F. Koob, Ph.D., Adjunct
James A. Kulik, Ph.D., Chair
Donald I. A. MacLeod, Ph.D.
George Mandler, Ph.D., Emeritus
Harold E. Pashler, Ph.D.
John M. Polich, Ph.D., Adjunct
Vilayanur S. Ramachandran, Ph.D., M.B.B.S.
Laura E. Schreibman, Ph.D., Associate Chancellor
Larry R. Squire, Ph.D., In-Residence
Joan Stiles, Ph.D., Adjunct
David A. Swinney, Ph.D.
Paul E.Touchette, Ph.D., Adjunct
Ben A. Williams, Ph.D.
John T. Wixted, Ph.D.

Associate Professors

Nicholas Christenfeld, Ph.D.
Karen R. Dobkins, Ph.D.

Karen Emmorey, Ph.D., Adjunct
Craig R.M. McKenzie, Ph.D.

Assistant Professors

Karen R. Dobkins, Ph.D.
Victor S. Ferreira, Ph.D.
James L. Goodson, Ph.D.
Michael R. Gorman, Ph.D.
Gail D. Heyman, Ph.D.
Kimberly A. Jameson, Ph.D.
Timothy C. Rickard, Ph.D.

Affiliated Faculty

Philip M. Groves, Ph.D., Professor, Psychiatry and Neurosciences
Jean M. Mandler, Ph.D., Professor Emeritus, Cognitive Science
Pamela A. Sample, Ph.D., Professor-in-Residence, Ophthalmology
David S. Segal, Ph.D., Professor, Psychiatry/Adjunct Professor, Neurosciences
Terrence J. Sejnowski, Ph.D., Professor, Biology/ Adjunct Professor, Physics, Neurosciences, Cognitive Science, and Computer Science and Engineering

The Undergraduate Program

The Psychology Major Program

The department offers three degree programs: Bachelor of Arts (B.A.), Bachelor of Science (B.S.), and the Integrated Bachelor of Science (B.S.)/ Master of Arts (M.A.). We offer courses in all major areas of experimental psychology, with emphasis in the areas of behavior analysis, biopsychology, clinical psychology, cognitive psychology and cognitive neuropsychology, developmental psychology, human information processing, physiological psychology, psychopathology, sensation and perception, and social psychology. The department emphasizes research in the experimental and theoretical analysis of human and animal behavior, and the study of the mind. Students who major in psychology can expect to develop a knowledge of a broad range of content areas, as well as basic skills in experimental and analytic procedures.

Prerequisites for the B.A. in Psychology

Experimental psychology uses the tools and knowledge of science: calculus, probability theory,
computer science, chemistry, biology, statistics, and physics. Accordingly, students in upper-division courses must have an adequate background in these topics. Prerequisites for individual courses are specified in the catalog.

A Bachelor of Arts (B.A.) degree in psychology will be granted if the following requirements have been met:

1. Three lower-division, general-introductory natural science courses from the listing of the approved UCSD courses below or their equivalent. (The three courses can be distributed in any manner.)

Biology: 1,2,3,10,12 (or Cognitive Science 17), 20, 24, 26, 30

Chemistry: $4,6 \mathrm{~A}, 6 \mathrm{~B}, 6 \mathrm{C}, 11,12,13$
Physics: Any of the 1 and 2 series, 10,11
2. Three formal skills courses, at least one of which must be calculus. The other two courses may consist of any combination of courses in calculus or logic. Acceptable calculus courses at UCSD include Mathematics 10A-B-C, 20A-B21C. Acceptable logic courses at UCSD include Philosophy 10 and 12.
3. One introduction to computer programming course. Acceptable courses at UCSD are CSE 5A, CSE 5B, CSE 8A, CSE 8B, CSE 11, MAE 5, MAE 9, MAE 10, or CogSci 18. Other courses will be accepted only if they are primarily concerned with programming in a high-level computer language.
All courses listed under 1-3 may be taken Pass/No Pass.
4. One quarter of statistics. Acceptable courses at UCSD are Psychology 60, Economics 120A, Sociology 60, Mathematics 181, BIEB 100, Cognitive Science 14 , or equivalent. Statistics MUST be taken for a letter grade.

Students should complete these prerequisite requirements by the end of the sophomore year.

Major Requirements for the B.A. in Psychology

A minimum of twelve upper-division courses in psychology are required. Five must be taken from the core courses (Psychology 101-106), and at least seven from the upper-division elective courses. A minimum of six upper-division psychology courses must be taken at UCSD. These courses must be taken for a letter grade; courses
taken on a Pass/No Pass prior to declaring psychology as a major cannot be used to satisfy the major requirement. Excluded from credit toward the major is Psychology 199 (Special Studies); however, Psychology 195 (Instructional Assistant) can be credited once. A grade-point average of at least 2.0 in the upper-division courses of the major is required for graduation.

Honors Program for the B.A.

 Program in PsychologyStudents are encouraged to participate in the department's honors program. An overall GPA of 3.3 is a prerequisite. Admission is granted by application in the fall of the junior year (deadline October 31). This program is composed of the following courses.

1. Junior year:

Winter: Junior Honors Research Seminar 110. Advanced Statistics and Research Methods 111A

Spring: Advanced Statistics and Research Methods 111B
2. Senior Year: A year-long independent research project (Psychology 194-A-B-C) under the sponsorship of a faculty adviser. This research culminates in an honors thesis.
3. At least one laboratory course (Psychology 107, $108,109,112,115,116,117,118 \mathrm{~A}, 118 \mathrm{~B}, 119$, 120/121, 120/140, 127) or, upon petitioning, two Psychology 199 independent Study courses culminating in a research paper accepted by the adviser (199s, however, do not count as upper-division credit toward the major).
Successful completion of the Honors Program requires a grade of A-in Psychology 194 and a minimum GPA of 3.5 in the upper-division courses taken for the major.
The Honors Program is strongly recommended for all students interested in graduate schools.

Students who major in the B.A. program and wish to change to the B.S. track must submit a petition through the Student Affairs Office, 1533 McGill Annex.

2XX. Graduate Seminar

We encourage juniors with an overall 3.0 GPA or better to enroll in Graduate Seminars. Check the schedule of classes and contact the Student Affairs Office for enrollment procedures.

Prerequisites for the B.S. in Psychology

In general, the prerequisites for the B.S. degree in psychology overlap with the B.A. prerequisites. To fulfill the formal skills, however, we require the mathematics sequence 20A-B, 21 C .

Major Requirements for the

 B.S. in PsychologyA minimum of twelve upper-division courses are required. Five of these courses must come from the core courses: Psychology 101-106. The seven elective courses may be chosen from any of the upper-division courses listed for the Psychology program at UCSD. Students must choose an area of specialization (behavior analysis, biopsychology, clinical psychology, cognitive and cognitive neuropsychology, developmental psychology, sensation and perception, or social psychology), and three courses of the seven electives must be in the chosen area of concentration.

In addition to the twelve upper-division courses, all B.S. degree students must complete two research experience courses in the chosen area. Research experience courses will be comprised of a combination of laboratory courses and Psychology 199 (Independent Study). The Psychology 199 courses taken to fulfill the area of specialization research experience requirement must be directed by the faculty within the chosen area of specialization and culminate in a research paper approved by the adviser and submitted to the Undergraduate Student Services Office in due time for graduation.

2XX. Graduate Seminar

We encourage juniors with an overall 3.0 GPA or better to enroll in Graduate Seminars. Check the schedule of classes and contact the Student Affairs Office for enrollment procedures.

Honors Program for the

B.S. in Psychology:

Qualified students are encouraged to participate in the department's honors program An overall GPA of 3.3 is a prerequisite. Admission is granted by application in the fall of the junior year (deadline October 31). This program is composed of the following courses.

1. Junior year:

Winter: Junior Honors Research Seminar 110, Advanced Statistics and Research Methods 111A.
Spring: Advanced Statistics and Research Methods 1118
2. Senior year: A year-long independent research project (Psychology 194A-B-C) under sponsorship of a faculty adviser. This research culminates in an honors thesis.
3. At least one laboratory course (Psychology 107, 108, 109, 112, 115, 116, 117, 118A, 118B, 119, 120/121, 120/140, 127) or, one Psychology 199 Independent Study courses culminating in a research paper accepted by the advisor (199's, however, do not count as upper-division credit toward the major).
Note: The senior honors thesis, if done with a faculty member affiliated with the chosen area of concentration, will satisfy one laboratory experience requirement.
Successful completion of the honors program requires a grade of A-in Psychology 194 and a minimum GPA of 3.5 in the upper-division courses taken for the major.

The honors program is strongly recommended for all students interested in graduate schools.

Majors must have departmental approval for electives taken outside the department. Of the required courses in the area of specialization (three regular upper-division courses and two research experiences), no more than two may be taken outside the department. We recommend consulting the department before enrolling in courses offered by other departments.

Students who major in the B.A. program and wish to change to the B.S. track must submit a petition through the Student Affairs Office, 1533 McGill Annex.

Upper-Division Course

Requirements for the B.S. in Psychology

Core courses of which five have to be taken for any area of concentration
Psych 101 Intro to Developmental Psychology Psych 102 Intro to Sensation and Perception Psych 103 Intro to Principles of Behavior Psych 104 Intro to Social Psychology Psych 105 Intro to Cognitive Psychology Psych 106 Intro to Physiological Psychology

Areas of concentration and their associated courses are listed in alphabetical order below.
(Subject to change-for additional qualifying courses, see the department's Student Affairs Office, 1533 McGill Annex).

Concentration in Behavior Analysis

Behavior analysis is based on the principles of Pavlovian and operant conditioning, and other aspects of contemporary associative learning theory. It also includes the application of reinforcement principles and other behavior modification techniques in applied settings (applied behavior analysis).

Courses:

Psych 109 Lab / Applied Behavior Analysis
Psych 120* Learning and Motivation
Psych 121* Lab / Operant Psychology

* to be taken concurrently

Psych 132 Hormones and Behavior
Psych 134 Eating Disorders
Psych 135 Evolutionary Principles/Animal Social Behavior
Psych 140 Lab/Human Behavior
Psych 143 Control and Analysis of Human Behavior
Psych 146 Theory of Conditioning and Learning
Psych 154 Behavior Modification
Psych 168 Psychological Disorders of Childhood
Psych 184 Choice and Self Control
Psych 188 Impulse Disorders
Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upperdivision psychology courses towards the major).
(For additional qualifying courses, see the department's Student Affairs Office, 1533 McGill Annex.)

Concentration in Biopsychology

This area studies how the nervous system mediates behavioral effects in the realms of motivation, perception, learning and memory, and attention. It also includes human neurophysiology and aphasia.

Courses:

Psych 107	Lab / Substance Abuse Research
Psych 125	Clinical Neuropsychology and
	Assessment

Psych 125 Clinical Neuropsychology and Assessment

Psych 129 Logic of Perception
Psych 132 Hormones and Behavior
Psych 134 Eating Disorders
Psych 135 Evolutionary Principles/Animal Social Behavior
Psych 159 Physiological Basis of Perception
Psych 169 Brain Damage and Mental Function
Psych 176 Functional Neuroanatomy
Psych 179 Drugs, Addiction, and Mental Disorders
Psych 181 Drugs and Behavior
Psych 188 Impulse Control Disorders
Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upperdivision psychology courses towards the major).
(For additional qualifying courses, see the department's Student Affairs Office, 1533 McGill Annex.)

Concentration in Clinical Psychology

This area studies psychological and physiological causes of and treatments for mental illness in children and adults.

Courses:

Psych 107 Lab / Substance Abuse Research Psych 109 Lab / Applied Behavior Analysis Psych 124 Intro to Clinical Psychology
Psych 125 Clinical Neuropsychology and Assessment
Psych 131 Personality:Theory and Research
Psych 132 Hormones and Behavior
Psych 134 Eating Disorders
Psych 150 Advanced Abnormal Psychology
Psych 151 Test and Measurement
Psych 154 Behavior Modification
Psych 163 Abnormal Psychology
Psych 168 Psychological Disorders in Children
Psych 172 Human Sexuality
Psych 188 Impulse Control Disorders
Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upperdivision psychology courses towards the major).
(For additional qualifying courses, see the department's Student Affairs Office, 1533 McGill Annex.)

Concentration in Cognitive Psychology and Cognitive Neuropsychology

a. The cognitive area studies reasoning, thinking, language, judgment, and decision-making in adults and children (including attention, memory, and visual and auditory information processing).
b. The cognitive neuropsychology area studies cognitive processes and their implementation in the brain. Cognitive neuroscientists use methods drawn from brain damage, neuropsychology, cognitive psychology, functional neuroimaging, and computer modeling.

Courses:

Psych 112 Lab / Applied Cognitive Research
Psych 113 Seminar in Applied Cognitive Research
Psych 115 Lab / Cognitive Psychology
Psych 116 Lab / Experimental Analysis of Attention and Cognitive Processes
Psych 118 Lab 118A-B / Language Processing
Psych 119 Lab / Psycholinguistics
Psych 123 Cognition: Aspects/Methodology
Psych 126 Language Acquisition
Psych 129 Logic of Perception
Psych 136 Cognitive Development
Psych 142 Psychology of Consciousness
Psych 144 Memory and Amnesia
Psych 145 Psychology of Language
Psych 148 Psychology of Judgment and Decision
Psych 156 Cognitive Development in Infancy
Psych 161 Introduction to Engineering Psychology
Psych 174 Communication Disorders in Children and Adults
Psych 187 Development of Social Cognition Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).
(For additional qualifying courses, see the department's Student Affairs Office, 1533 McGill Annex.)

Concentration in Developmental Psychology

This area studies all aspects of human development with emphasis on social and personality development, perceptual development, and language acquisition. Also includes the study of developmental psychopathology.

Courses:

Psych 108 Lab / Social and Personality Development
Psych 109 Lab / Applied Behavior Analysis
Psych 114 Lab/Developmental
Psycholinguistics
Psych 117 Lab / Developmental Psychology
Psych 122 Aging
Psych 128 Practicum in Child Development
Psych 133 Brain and Cognitive Development
Psych 135 Evolutionary Principles/Animal
Social Behavior
Psych 136 Cognitive Development
Psych 145 Psychology of Language
Psych 156 Cognitive Development in Infancy
Psych 167 Social and Emotional Development
Psych 168 Psychological Disorder of Childhood
Psych 172 Human Sexuality
Psych 174 Communication Disorders in Children and Adults
Psych 180 Adolescence
Psych 187 The Development of Social Cognition
Psych 189 Advanced Topics in Developmental Psychology
Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).
(For additional qualifying courses, see the department's Student Affairs Office, 1533 McGill Annex.)

Concentration in Sensation and Perception

This area studies how our sense organs and brain make it possible for us to construct our consciously experienced representation of the environment. Experiments using stimuli and computer control are used to test models of sensory or perceptual processes. Processes of particular interest include color vision, motion perception, and auditory illusions and paradox.

Courses:

Psych 125 Clinical Neuropsychology and Assessment
Psych 129 Logic of Perception
Psych 138 Sound and Music Perception
Psych 146 Persuasive Techniques
Psych 159 Physiological Basis of Perception
Psych 169 Brain Damage and Mental Functions

Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).
(For additional qualifying courses, see the department's Student Affairs Office, 1533 McGill Annex.)

Concentration in Social Psychology

This area studyies human behavior in social situations, with specialization in such topics as emotion, aggression, social cognition, and aesthetics. It also encompasses applied social psychology, including psychology and the law and behavioral medicine.

Courses:

Psych 127 Applied Social Psychology
Psych 130 Delay of Gratification
Psych 135 Evolutionary Principles/Animal Social Behavioi
Psych 139 Social Psychology of Sports
Psych 149 Social Psychology of Theater
Psych 155 Social Psychology and Medicine
Psych 160 Groups
Psych 162 Psychology and the Law
Psych 167 Social and Emotional Development
Psych 175 Psychology and the Arts
Psych 186 Psychology and Social Policy
Psych 187 Development of Social Cognition
Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).
(For additional qualifying courses, see the department's Student Affairs Office, 1533 McGill Annex.)

Major Requirements for the Integrated B.S./M.A. in Psychology

An integrated program leading to a Bachelor of Science degree and a Master of Arts degree in psychology is offered to those undergraduate students who are enrolled in any of the major programs offered in the Department of Psychology at UCSD. Qualified students are able to obtain the M.A. degree within one year following receipt of the B.S. degree. Students interested in applying to this program must meet with the B.S./M.A. adviser in the Psychology Student Affairs Office BEFORE the end of their junior year. The program is open
only to UCSD undergraduates. The psychology department does not have financial aid available for students enrolled in this program.

ELIGIBILITY AND ENROLLMENT

To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and must have an overall UCSD GPA of at least 3.3 It is the responsibility of the prospective student to select a faculty member who would be willing to serve as the student's adviser and in whose laboratory the student would complete at least twenty-four units of research over a two-year period. Twelve of the twenty-four units of research must be completed as an undergraduate in Psychology 194 ABC or 196 ABC during the student's senior undergraduate year and must be taken IN ADDITION to the requirements for the Bachelor of Science degree. The remaining 12 units of research will be taken in their year of graduate study as part of their M.A.

There are two applications:

1. In spring of the junior year, students apply to the Integrated B.S./M.A. track if they fulfill above requirements.
2. In the spring of their senior year, they should apply to the M.A. GREs are not required.

REQUIREMENTS FOR THE M.A.

Students who have been approved (by both psychology and UCSD Office of Graduate Studies) for the program must enroll in their graduate year in

Psychology 201A-B Quantitative Methods,
Psychology 270 A-B-C Introduction to Laboratory Experimentation,
Four psychology seminars, at least two of which fall in the area of concentration;
Psychology 296 (1-12 units),
one Psychology 500 Teaching Instruction
which amounts to 40 units of graduate work. All courses must be completed with the grade of $B+$ or better. All course work is to be approved by the advisers (forms available from the Undergraduate Students Affairs Office). Students are expected to meet the graduate requirements for the M.A. in one year (three consecutive, contiguous, academic quarters, beginning in the fall after graduation). Any deviation from this plan, such as a break in enrollment for one or more quarters, will cause the student to be dropped from the program.

All forms required for the program must be submitted and approved by the psychology undergraduate coordinator prior to each quarter of the graduate year. This includes the Application for Candidacy. Students must pay fees and be officially enrolled at UCSD during the quarter that the master's degree is awarded. The thesis draft should be submitted to the Office of Graduate Studies and Research for review before the final copy is officially submitted.

See the Undergraduate Students Affairs Office for further details.

Advising

Students are strongly encouraged to choose an adviser among the faculty. The Undergraduate Student Services Office will assist with the choice, office hours, or appointments. The student then plans her or his major program with the aid of the adviser. Such planning should take place in the student's sophomore year or as soon as possible thereafter.

Preparation for Graduate School

Regardless of the area of specialization that a student chooses to pursue, it is strongly advised that she or he obtain a strong general background in statistics and experimental methods through research with a faculty member. A recommended program of study to accomplish these goals is the following:

1. At least five courses from the group numbered Psychology 101-106 (Core Courses)
2. At least one laboratory course (Psychology 112, $115,116,117,118 \mathrm{~A}, 118 \mathrm{~B}, 119,120 / 121$, 120/140,127)
3. Introduction to Statistics and Advanced Statistics (Psychology 60 and 111A-B)
4. The Senior Independent Research Project, Psychology 194A-B-C, as part of the Honors Program
5. Strongly recommended:Independent Studies (Psychology 199).
(Quarterly, the Associated Students' U.S. Grants Program awards funds to undergraduate students' research independent of in-class projects. We encourage students to apply.)

Preparation for Graduate School in Clinical Psychology

The above program is recommended for all students planning to go on to graduate school,
including those interested in a clinical graduate program. Experience in research methodology and a general knowledge of psychology are considered the most important features and are preferred over a large number of courses in one particular area. Students are strongly advised not to take a large number of clinical courses in lieu of the recommended program of study listed above.

The Minors Program

The minor in psychology consists of at least twenty-eight units (seven four-unit courses), of which at least twenty units (five four-unit courses) must be upper-division. At least four courses have to be taken at UCSD.

The department requires that at least five upper-division courses be taken for a letter grade. If Psychology 60 (Statistics) is chosen as one of the lower-division courses, it, too, has to be taken for a letter grade. The application for a minor can be obtained from your college.

Education Abroad

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD's Opportunities Abroad Program (OAP) while still making progress toward the major. Students considering this option should discuss their plans with the director of Undergraduate Studies before going abroad, and courses taken abroad must be approved by the department. Information on EAP/OAP is detailed in the Education Abroad Program of the UCSD General Catalog. Interested students should contact the Program Abroad Office in the International Center.

Transfer Credit

In general, all introductory courses in experimental psychology are accepted for lower-division credit toward a psychology minor. Lowerdivision courses covering special topics in psychology (e.g., personal adjustment, human sexuality) will be accepted only if: 1) the student had a general introductory course as a prerequisite, and 2) the student had satisfied this prerequisite before taking the special topics course. Upperdivision psychology courses will be evaluated for transfer credit on a course by course basis.

Elementary School Teaching

Majoring in psychology offers excellent preparation for teaching in the elementary schools. If you
are interested in earning a California teaching credential from UCSD, contact the Teacher Educa-tion Program (TEP) as early as possible in your academic career for information about the prerequisite and professional preparation requirements.

The Graduate Program

The Department of Psychology provides broad training in experimental psychology.Increased specialization and the general burgeoning of knowledge make it impossible to provide training in depth in every aspect of experimental psychology, but most aspects are represented in departmental research.

Preparation

Apart from the general university requirements, the department generally expects adequate undergraduate preparation in psychology. A major in the subject, or at least a strong minor, is normally a prerequisite, but applicants with good backgrounds in such fields as biology and mathematics are also acceptable.

Language Requirements

There is no foreign language requirement.

Graduate Curriculum

All students must fulfill all course requirements (stated below) while registered as graduate students in psychology at UCSD. There may occasionally be exceptions granted to this rule.
Requests for exception should be in the form of petitions from students and their advisers to the Committee on Graduate Affairs. It is in the best interest of the student if these petitions are forthcoming at the time of admission to the graduate program. In this way, the committee, the students, and their advisers will all be aware of the course requirements before any of them are taken.

Program of Study

Courses are divided into six areas: behavior analysis (including basic and applied), biopsychology (including neuropychology and neurophysiology), cognitive (including attention, language, and perception), developmental (including language acquisition), sensation and perception (including vision and audition), and social (including health and law). The Graduate Affairs

Committee provides an approved list of courses from these areas. In the first year of study, each student must fulfill the following four requirements:

1. Each student must fulfill a quantitative methods requirement, either by taking two quantitative methods courses approved by the Graduate Affairs Committee (currently 201A and 201B), or by showing a satisfactory knowledge of these courses through an examination.
2. In addition to the quantitative methods requirement, each student is expected to take four proseminars and four approved courses from the list prepared by the Graduate Affairs Committee. All course work must be completed by the end of the third year.
3. Each first-year graduate student is required to submit a research paper on the research project (Psychology 270ABC). The paper should be comparable in style, length, and quality to papers published in the normal, refereed journals of the student's research area. (The publication manual of the American Psychological Association, third edition, 1983, gives an acceptable format.)

The research paper will be read and evaluated by the student's research adviser and by at least two other readers appointed by the graduate adviser.
The research paper is presented orally at a research meeting held at the end of the spring quarter. Attendance at this meeting is a requirement for the department's graduate students and faculty. Typically, each student is allowed ten minutes to present the paper, with a five-minute question period following the presentation.
4. A teaching requirement must be met. (see below)

All students are evaluated by the entire faculty at the end of the academic year. The normal minimum standards for allowing a student to continue beyond the first year are:
a. satisfactory completion of the firstyear research project (including oral presentation),
b. at least a $B+$ in the quantitative methods courses,
c. $a B+$ average in the courses which fulfill the area requirements, and
d. having a faculty adviser in the psychology department.
Any student whose needs cannot be reasonably met with courses conforming to these guidelines is encouraged to petition the Graduate Affairs Committee. The petition should contain a specific list of courses and a statement of justification and must be approved by the student's adviser.

Advancing to Candidacy

In order to advance to Ph.D. candidacy a student must:

1. Complete all first year requirements,
2. Complete an additional four elective courses from the list prepared by the Graduate Affairs Committee, and
3. Complete the qualifying examination for the Ph.D.
The qualifying examination is divided into two sections to be taken separately by all students. Part / of the qualifying exam consists of a paper written by the student that is modeled after those published in Psychological Bulletin or Psychological Review. Ideally, the paper would consist of a detailed review and theoretical synthesis of a coherent body of research. The paper should demonstrate independent and original thinking on the part of the student, and should either take a theoretical stance or recommend experiments designed to resolve theoretical ambiguities (i.e., the paper should not merely review published research).

Students form a qualifying committee in much the same way that they form a dissertation committee. The same rules apply, except that members from outside the department need not be included (although up to two may be). Once the committee is formed, the student should prepare a brief (e.g., three pages) proposal defining the area of research and the theoretical issues that will be addressed in the paper. A proposal meeting is then arranged (usually in spring quarter of the student's second year), and committee members may at that time recommend changes in the scope of the paper and define their expectations.

The paper does not have a prescribed length, although low-end and high-end limits of thirty and fifty pages, respectively, seem reasonable. An oral defense of the paper is required (and should be completed by the end of the student's third year).

Part /l of the qualifying examination is the defense of the dissertation proposal. This will normally follow Part I of the qualifying examination and will be an oral examination including outside examiners.

Teaching

In order to acquire adequate teaching experience, all student are required to participate in the teaching activities of the department for at least four years (one quarter for the first year and two quarters the second through the fourth year).

Residency

Each student must complete the requirements for qualification for candidacy for the Ph.D. degree by the end of the third year of residence. Any student failing to qualify by this time will be placed on probation. A student who fails to qualify by the end of the spring quarter of the fourth year of residence will automatically be terminated from the department.

No students may allow more than eight calendar years to elapse between starting the graduate program and completing the requirements for the Ph.D. degree. Students will automatically be terminated from the program at the end of the spring quarter of their eighth calendar year in the department.

Research

In each year of graduate study all students are enrolled in a research practicum (Psychology 270 in the first year; Psychology 296 in subsequent years). Students are assigned to current research projects in the department and recieve the personal supervision of a member of the staff.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed eight years. Total registered time at UCSD cannot exceed eight years.

COURSES

LOWER-DIVISION

Experimental Requirements

Psychology at UCSD is a laboratory science. We are concerned with the scientific development of
knowledge about human and animal behavior and thought. Accordingly, experience with experimental procedures plays an important role in the undergraduate and graduate training of students.

All psychology majors must learn experimental methods, including basic statistical techniques. Students in the Honors Program must take laboratory courses and also do a year-long undergraduate thesis.

ATTENTION lower-division students:

Students enrolled in the lower-division psychology courses must serve as experimental subjects for three hours per course. The requirement is intended to be a positive educational supplement to the course work. Part of each experimental session will be devoted to explanation and discussion of the purpose and nature of the experiment. This usually will be done at the end of the experimental session. Students always have the right to discontinue participation at any point in any study. Students who are unable to participate or who choose not to participate will be provided alternate service assignments which are designed to serve similar educational goals.

1. Psychology (4)

A comprehensive series of lectures covering the basic concepts of modern psychology in the areas of human information processing, learning and memory, motivation, developmental processes, language acquisition, social psychology, and personality.

2. General Psychology: Biological Foundations (4)

A survey of physiological and psychological mechanisms underlying selected areas of human behavior. Emphasis will be upon sensory processes, especially vision, with emphasis also given to the neuropsychology of motivation, memory, and attention.
3. General Psychology: Cognitive Foundations (4)

This course is an introduction to the basic concepts of cognitive psychology. The course surveys areas such as perception, attention, memory, language, and thought. The relation of cognitive psychology to cognitive science and to neuropsychology is also covered.

4. General Psychology: Behavioral Foundations (4)

This course will provide a basic introduction to behavioral psychology, covering such topics as classical conditioning, operant conditioning, animal learning and motivation, and behavior modification.

6. General Psychology: Social Foundations (4)

This course will provide a basic introduction to social psychology, covering such topics as emotion, aesthetics, behavioral medicine, person perception, attitudes and attitude change, and behavior in social organizations.

10. Cognition and Perception: Applied Aspects (4)

An introduction to cognitive and perceptual psychology as applied to real-world concerns, and the research issues that are important for the ultimate applicability of psychological findings. Topics covered will include gender differences in cognitive processing, sensory
processing, memory and its distortions, pragmatic use of language and information processing, and cross-cultural universals.
60. Introduction to Statistics (4)

Introduction to the experimental method in psychology and to mathematical techniques necessary for experimental research. Prerequisite: one year mathematics or consent of instructor.

UPPER-DIVISION

101. Introduction to Developmental Psychology (4)

A lecture course on a variety of topics in the development of the child, including the development of perception, cognition, language, and sex differences.
102. Introduction to Sensation and Perception (4)

An introduction to problems and methods in the study of perception and cognitive processes. Prerequisite: Psychology 60 or one year of college-level mathematics.
103. Introduction to Principles of Behavior (4)

An example of the principles of conditioning and their application to the control and modification of human behavior.
104. Introduction to Social Psychology (4)

An intensive introduction and survey of current knowledge in social psychology. Prerequisite: Psychology 60
105. Introduction to Cognitive Psychology (4)
introduction to experimental study of higher mental processes. Topics to be covered include pattern recognition, perception, and comprehension of language, memory, and problem solving. Prerequisites: junior standing.

106. Introduction to Physiological Psychology (4)

Intensive introduction to current knowledge of physiological factors in learning, motivation, perception, and memory.
107. Lab/Substance Abuse Research (4)

This lab course examines theory and research design and methods for substance abuse is adolescent adult populations. This course serves as preparation for individual research topics culminating in a paper.
108. Lab/Social and Personality Development (4)

This lab examines children's social and personality development during middle childhood and adolescence. Topics include the use of behavioral genetic designs and different research methods. Prerequisites: Psychology 199 and approval by the instructor.
109. Lab/Applied Behavior Analysis (4)

This course will provide students with hands-on training in the application of behavioral research technology to a clinical population. Students will meet weekly for lecture, discussion, research article reviews, and specific technique training. In addition, students will work on a research project. Prerequisite: Psychology 199 in the Schreibman autism laboratory recommended.
110. Juniors Honors Research Seminars (4)

Meetings consist of research seminars by a range of departmental faculty, exposing students to contemporary research problems in all branches of experimental psychology. Class discussions will follow faculty presentations. Evaluation is based on assigned papers. Prerequisite: admission by application in the fall of the Junior year*, with a minimum UCSD GPA of 3.3. Course is offered winter quarter.
*Application forms are available from the Student Services Office and due by the end of October of each fall quarter.

111A. Research Methods I (6)
Designed to provide training in the applications of advanced statistical methods in the context of initial instruction in experimental design. Emphasis will be placed on the development of statistical problem-solving skills, practical computer applications, and scientific report writing. Prerequisites: minimum grade of B in Psychology 60 or equivalent and junior standing. Open to honors students or consent of instructor. Department stamp required.

1118 Research Methods II (6)

Designed to extend the material of Psychology 111A. Focusing on the techniques developed previously. Participate in data collection, data organization, statistical analysis, and graphic displays, emphasis placed on developing scientific report writing, presentations, and critical thinking about experimental methods. Prerequisite: Psychology 111A or consent of instructor.

112. Applied Cognitive Research Lab (4)

This laboratory course involves empirical study of basic research issues in applied cognitive psychology, emphasizing both psychological theory and research applications, Students will be instructed in experimental design and method, data handling and analysis, and will actively participate in the implementation and completion of experimental studies. Prerequisite: upperdivision standing and consent of instructor.
113. Seminar in Applied Cognitive Research (4)

This seminar involves instruction on basic research issues in applied cognitive psychology. Psychological theory and interdisciplinary methods will be illustrated through seminar readings and discussions of recent research publications. The emphasis will be on exploring interesting applied problems in psychology that are in need of empirical study. Students will be directed in developing research projects in a content domain of their interest. Prerequisite: upper-division standing and consent of instructor.

115. Laboratory in Cognitive Psychology (4)

Lecture and laboratory work in human information processing. Prerequisite: Psychology 105 and 111A-B or consent of instructor.

116. Experimental Analysis of Attention and Cognitive

 Processes (4)This lab course examines the design and methods for the experimental study of attentional mechanisms; top ics will include preattentive processes and the role of attentional limitation in planning of action, short-term memory, and other aspects of cognition. Prerequisite: departmental stamp required.
117. Laboratory in Developmental Psychology (4)

This laboratory course in developmental psychology is designed around a series of intensive observational assignments, and one experimental project. Each observational assignment will include a lecture provid ing background on a major area in child development, a supervised structured observation, and a written laboratory report. Prerequisite: Psychology 101.

118A. Real-Time Examination of Language Processing (4)
This lab course examines the design and methods for the real-time examination of language processing in normal and disordered (aphasic, dyslexic, child lan-
guage impaired, etc.) language populations. This course serves as preparation for individual research topics in Psychology 118B. Prerequisite: a course in language or cognition (see professor for exceptions).

118B. Real-Time Examination of Language

Processing (4)

This lab is a continuation of Psychology 118A. The instruction to laboratory methods is now applied to individual research projects culminating in a lab presentation and paper. Prerequisite: Psychology 118A or consent of instructor.

119. Psycholinguistics/Cognition Laboratory (4)

Methods and practicum in experimental study of lan guage, reading, and related cognitive processes (reasoning, problem solving) in young adult populations Prerequisites: A course in language or cognition, or Psych
118A-B (see professor for exceptions). Permission of instructor required. Department stamp required.

120. Learning and Motivation (4)

Survey of research and theory in learning and motivation. Includes instincts, reinforcement, stimulus control choice, aversive control, and human application. Prerequisites: upper-division standing. Must be taken concurrently with Psychology 121.
121.Laboratory in Operant Psychology (4)

Lecture and laboratory in operant psychology Prerequisite: must be taken concurrently with Psychology 120.

122. Aging (4)

An introduction to the psychology of aging (from age 20 on). This course is designed to extend the developmental course (101) which focuses primarily on early development. Lectures cover a variety of topics including behavioral (functional changes), physiological changes (mainly associated with the central nervous system), and neuropathological disorders associated with aging. Prerequisites: Psychology 60 and 101.

123. Cognition: Aspects of Methodology (4)

An introduction to methodological issues and basic research issues important to the empirical study of cognition. Both psychological theory and research applications will be covered. Prerequisite: department stamp required.

124. Introduction to Clinical Psychology (4)

Introduction to major concepts and models used in psychological assessment and psychotherapeutic intervention. Several modalities of psychotherapy (individual, group, and family) will be reviewed along with research on their efficacy. Prerequisite: Psychology 163.

25. Clinical Neuropsychology and Assessment (4)

A fundamental grounding in basic neuropsychological principles and assessment methods, neuroanatomical and cognitive relationships, with special emphasis on imaging technologies in diagnosis and prognosis. Neuropsychological testing methods is discussed in terms of statistical reliability, validity, and applications to neurologic/psychiatric populations. Prerequisite: Psychology 60.
126. Language Development (4)

A comprehensive survey of theory, method, and research findings on language development in children ranging from the earliest stages of speech perception and communication at birth to refinements in narrative discourse and conversational fluency through middle childhood and adolescence. Cross-listed with CogSci 156. Prere-
quisites: upper-division standing and background in developmental and/or linguistics is recommended.

127. Methods in Applied Social Psychology (4)

Emphasizes learning of experimental and quasi-experi mental methodology applicable to social problems. Students carry out field research in areas such as the psychology of law (judicial decision-making), trafficrelated behavior (risk taking), environmental psychology, and other areas of student interest. Prerequisites: Psychology 104 and 60.

128. Practicum in Child Development (6)

[Same as COHI 116 and HDP 135] A combined lecture/laboratory course for students in psychology, communication, and human development. Student backgrounds should include a background in general psychology or communication. Students will be expected to spend four hours a week in a supervised practical after school setting at one of the community field sites involving children. Additional time will be devoted to readings and class prep, as well as six hours a week transcribing field notes and writing a paper on some aspect of the field work experience as it relates to class lectures and readings. Prerequisites: Psychology 101 or COGN 20 or HDP1 or consent of instructor.

129. Logic of Perception (4)

Lectures will cover three topics: 1) tradition of experimental work on perception that dates back to Hemholtz; 2) discussion and criticisms of theories of perception; 3) recent physiological work on the visual pathways that may give us insights into neural mechanisms underlying perception. Prerequisite: upper-division standing.

130. Delay of Gratification (4)

This course will review the research on delay of gratification. It will cover what makes it in general so tough, what situations make it possible, who can do it, and what the implications of this ability are. Prerequisite upper-division standing.

131. Personality: Theory and Research (4)

Introduction to major theoretical approaches to the study of personality constructs and processes. Disturbances in personality development and functioning will be discussed and illustrated. The social learning theory perspective will be emphasized relative to other theoretical frameworks. Prerequisite: upper-division standing.

132. Hormones and Behavior (4)

A survey of the effects of chmical signals (hormones neurohormones and pheromones) on behavior as wel as reciprocal effects of behavior on these chemical systems. Specific topics covered include aggression, sex and sexuality, feeding, learning, memory and mood Animal studies will be emhaized. Prerequisite: Psychology 106 or consent of insturctor..

133. Brain and Cognitive Development (4)

This course will review human brain development from early gestation through adolescence, and consider relations between neurological development and behavioral milestones. The effects of early brain injury on the development of both the neural and cognitive systems is considered. Prerequisite: upper-division standing, Psychology 176 strongly recommended.

134. Eating Disorders (4)

This course will cover the biology and psychology of eating disorders such as anorexia nervosa, bulimia ner vosa, and binge eating disorder. Abnormal, as well as
normal eating will be discussed from various perspec tives including endocrinological, neurobiological, psychological, sociological, and evolutionary. Prerequisite: upper-division standing.

135. Evolutionary Principles of Animal Social Behavior (4)

This course will examine evolutionary, environmental and mechanistic forces that shape the behavior of humans and other animals. Topics include the evolution of sex, neural and endocrine bases of social behav ior, animal communication, and sociobiology Prere-quisite: Psychology 106.

136. Cognitive Development (4)

Examination of the foundations and growth of mind, discussing the development of perception, imagery, concept formation, memory, and thinking, with emphasis on the presentation of knowledge in infancy and childhood. Prerequisite: Cognitive Science 110B, Psychology 105 or 101.

138. Sound and Music Perception (4)

Topics include the physiology of the auditory system perception and pitch, loudness and timbre, localization of sound in space, perception of melodic and tempora patterns, handedness correlates, and musical illusions and paradoxes. There will be a substantial number of sound demonstrations. Prerequisite: upper-division standing.
139. Social Psychology of Sports (4)

This course focuses on the applications of social psychological principles and finding to the understanding of sports. Topics include the role of motivation, level of aspiration, competition, cooperation, social comparison, and optimal arousal, spectators' perspective, motivation and perceptions of success, streaks, etc Prere-quisite: upper-division standing or consent of instructor
140. Lab/Human Behavior (4)

Laboratory on the principles of human behavior, including choice behavior, self-control, and reasoning Prerequisites: 120 (may be taken concurrently); upper-division standing.

141. Evolution and Human Nature (4)

Can important aspects of human behavior be explained as a result of natural selection? Focus on sex differences, selfishness and altruism, homicide and violence, and context effects in human reasoning. Prerequisite: upper-division standing and consent of instructor.
142. Psychology of Consciousness (4)

This course will survey research on consciousness from an experimental psychology perspective. Special emphasis will be placed on cognitive, neuro-imaging, and clinical/psychiatric investigative techniques, and on the scientific assessment of the mind-body problem. Prerequisites: Recommended Psychology 1 (or equivalent) and 60. Psychology 105 and/or 106 are useful but not necessary.
143. Control and Analysis of Human Behavior (4)

An overview of the behavioral approach including basic principles, self-control, clinical applications, and the design of cultures. Prerequisite: upper-division standing.

144. Memory and Amnesia (4)

This course will review basic research into the nature of memory. It begins with an examination of historical milestones in the study of memory and then considers
research concerned with contemporary models of memory and amnesia. Prerequisite: upper-division standing.

145. Psychology of Language (4)

Introduction to research on language comprehension and production. Focus on brain basis of language, language origin and universal structure, language disorders (aphasia, dyslexia), animal language, linguistic community differences, and the mental processes underlying normal language processing. Prerequisite: a course in language, cognition, or philosophy of mind recommended.
146. Persuasive Techniques (4)

Why does persuasion work? This course will apply concepts from cognitive and social psychology to the understanding of persuasion. Persuasive techniques in the media will be discussed, and historical instances when persuasion was extremely effective will be examined. Prerequisite: upper-division standing
148. Psychology of Judgment and Decision (4)

Broadly defined, the field of judgment and decision making examines preferences and subjective probability, and how they are combined to arrive at decisions. The course will cover history and current topics. Prerequisite: upper-division standing

149. Social Psychology of Theater (4)

Exploration of the relationship between social psychology and drama, focusing on the use of psychological principles in plays (by playwrights) and their performance (by directors, actors, and choreographers). Prerequisite: upper-division standing, major in psychology or theater, or permission of instructor.

150. Advanced Abnormal Psychology (4)

Psychopathological disorders (e.g., schizophrenia, affective disorders, personality disorders). Topics for discussion will change yearly. Development of an independent research project required. Prerequisite: grade A or B in Psychology 163 or consent of instructor.
151. Test and Measurement (4)

This course provides an introduction to psychological testing presented in three components: 1) psychometrics and statistical methods of test construction; 2) application of psychological tests in industry, clinical practice, and other applied settings; and 3) controversies in the application of psychological tests. Prerequisite: Psychology 60.

154. Behavior Modification (4)

Extension of learning principles to human behavior, methods of applied behavior analysis, and applications of behavioral principles to clinical disorders and to normal behavior in various settings. Prerequisite: upperdivision standing.

155. Social Psychology and Medicine (4)

Explores areas of health, illness, treatment, and delivery of treatment, and social psychological perspectives in the medical area. Prerequisite: Psychology 60 or equivalent and 104.

156. Cognitive Development in Infancy (4)

Examines perception and cognition in the first year of life. The focus is a critical evaluation of different theories of cognitive change in infancy and methodological issues. Prerequisite: Psychology 60 and 101.
159. Physiological Basis of Perception (4)

A survey of sensory and perceptual phenomena and the physiological mechanisms underlying them. Prerequisite: Psychology 102 or consent of instructor.
160. Groups (4)

Causes and consequences of gregariousness, stress, validating attitudes, improving efficiency, consolidating power, permitting loafing, rejecting deviates, and insulating group members from unpleasant outside influence. Prerequisite: upper-division standing.
161. Introduction to Engineering Psychology (4)

Surveys human perceptual and cogntive limitaitons and abilities important in designing "user-friendly" computers and devices, improving aviation and traffic safety, and other engineering challenges. Topics include human vision as it bears on display design (including virtual-reality), short-term memory limitations, learning and practice, effects of noise and stress, causes of human error and their minimization. Acceptable as elective for ECE and ESE students. Prerequisite: upperdivision standing.
162. Psychology and the Law (4)

Studies the psychological factors in the legal system, applying psychological theory and methods to the criminal justice system, identifying crime and criminals, eyewitness reliability, bail setting, plea bargaining, sentencing, and parole. An original research project will be required as part of the course. Prerequisite: Psychology 60 and 104.

163. Abnormal Psychology (4)

Surveys origins, characteristics and causes of abnormal behavior and the biological and environmental causes of abnormality. Prerequisite: upper-division standing.

164. Mathematical Ideas in Psychology (4)

This course will survey how mathematical ideas have been applied in modeling psychological processes and in analyzing psychological data. Topics include signal detection theory, perceptual encoding, scaling techniques, and neural models of perceptual and cognitive processes. Prerequisite: Calculus: one quarter, linear algebra desirable

165. Cultural Perspectives on Cognition and

Perception (4)
This course examines issues relevant to everyday psychology and pan-human universals in cognitive and perceptual processing. Topics will include the appropriate and non-biased use of cultural considerations in empirical psychology, influences cultural variation imposes upon theory and methods of investigation, culture and the development of cognitive abilities, and responsible use and interpretation of cross-cultural research findings.

166. History of Psychology (4)

Surveys major trend and personalities in development of psychological thoughts. Emphasis given to such topics as mind-body problem, nativism vs. empiricism, and genesis of behaviorism. Prerequisite: three previous upper-division courses in psychology.

167. Social and Emotional Development (4)

Focuses on topics like attachment, moral development, sex roles, self-definition, and peer interaction. Prerequisite: Psychology 60 and 101.

168. Psychological Disorders of Childhood (4)

Explores different forms of psychological deviance in children (psychosis, neurosis, mental retardation, language disorders and other behavior problems). Emphasis on symptomatology, assessment, etiological factors, and various treatment modalities. (Offered every other year.) Prerequisite: upper-division standing.
169. Brain Damage and Mental Functions (4)

Studies neural mechanisms underlying perception, memory, language, and other mental capacities. What happens to these capacities when different parts of the brain are damaged? What can we learn about the normal brain by studying patients? Prerequisite: upper-division standing.

172. The Psychology of Human Sexuality (4)

Important issues in human sexuality including sex and gender, sexual orientation, reproductive technology, and sexual dysfunction. Prerequisite: upper-division standing.

174. Communication Disorders in Children and

 Adults (4)Neural basis of language use in normal adults and communication development in normal children. Review of recent evidence on the nature of language and communication deficits in several clinical populations of adults (specially aphasia and dementia) and children (including special language impairment, focal brain injury, retardation, and autism). Prerequisite: Cognitive Science 10A-B or Psychology 101 or Cognitive Science 101 A-B or Psychology 2 and 3.

175. Psychology and the Arts (4)

An interdisciplinary course focusing on theoretical ideas and empirical research that relate contemporary psychology (social and cognitive, psychophysiology, motivation and emotion) to issues in various aesthetic and artistic domains, as visual arts, music, literature, criticism, and the performance arts. Prerequisite: upper-division standing; major in Psychology, Music, Visual Arts, Communications, or Literature, or permission of instructor.

176. Functional Neuroanatomy (4)

Introduction to structure of the nervous system, focus on anatomy of the human brain and function of different brain regions, and alteration of normal brain produced by injury or disease. Prerequisite: upper-division standing.

178. Organizational Psychology (4)

Examines human behavior in industrial and organizational settings. Psychological principles are applied to selection, placement, and training. The effectiveness of individuals and groups within organizations, including leadership and control, conflict and cooperation, motivation, and organizational structure and design, is examined. Prerequisite: upper-division standing.

179. Drugs, Addiction, and Mental Disorders (4)

Considers the use, abuse, liability, and psycho-therapeutic effects of drugs in humans. Lectures are supplemented by guest lecturers from clinical experts in psychology and psychiatry. Prerequisite: one lower-division psychology course (1, 2, 3, or 4) or upper-division standing.

180. Adolescence (4)

This course will adopt a multidisciplinary approach toward understanding the period of human adolescence. A strong focus on the neurobiological aspects of adolescence will be combined with psychological, anthropological, and sociological considerations. Prerequisite: upper-division standing.
181. Drugs and Behavior (4)

Psychological effects, brain mode of action, patterns of use of psychoactive agents, including stimulants, sedative/hypnotic, hallucinogens, marijuana, alcohol, over-the-counter drugs, cognitive enhancers, antianxiety agents, antidepressants, antipsychotics, and basic prin-
ciples in psychopharmacology. Prerequisite: upper-division standing.

184. Choice and Self-Control (4)

Experimental analysis of choice behavior, with an emphasis on the types of choice involved in self-control. Focus on conditions under which decision-making is optimal. Prerequisite: upper-division students in psychology, biology, economics, or consent of instructor.

186. Psychology and Social Policy (4)

This course will examine social policy issues from the psychological point of view. Each social policy issue will be discussed in a descriptive manner and will include (with student input) an array of both pro and con arguments. The psychological (behavioral) assumptions in the pro and con arguments will then be identified and the empirical evidence for these assumptions will be analyzed. Prerequisite: Psychology 60 and 104.

187. Development of Social Cognition (4)

This course will examine reasoning about people from a developmental perspective. Topics will include emotional understanding, achievement motivation, peer relations, social categories, and culture. Prerequisite: upper-division standing. Department stamp required.

188. Impulse Control Disorders (4)

Problems of impulse control are important features of major psychiatric disorders but also of atypical impulse control disorder such as: pathological gambling, compulsive sex, eating, exercise, shopping. Focus: development, major common features, treatment, and neurobiological basis of impulse control disorders. Prerequisite: upper-division standing.
189. Advanced Topics in Developmental Psychology (4) Focus on a specific area of developmental psychology. Possible topics include developmental psychopathology, social and personality development, social cognition, cognitive development, and developmental behavioral genetics. Prerequisite: Either Psychology 101 or HDP 1.

194A-B-C. Honors Thesis (4-4-4)

Students will take part in a weekly research seminar. In addition, they will plan and carry out a three-quarter research project under the guidance of a faculty member. The project will form the basis of the senior honors thesis. Prerequisite: acceptance to the Honors Program in the junior year (110A-B) (GPA 3.3), in addition one laboratory course (114-127) or two 199s which culminate in a research paper (by petition only) and Psychology 110 , 111A-B and consent of instructor.

195. Instruction in Psychology (4)

Introduction to teaching a class section in a lower-division psychology course, hold office hours, assist with examinations and grading (P/NP grades only). This course counts only once towards the major. Prerequisite: junior or senior psychology major with GPA of 3.0 or an A in the course and consent of instructor.

196 A-B-C Research Seminar (4-4-4)
Weekly research seminar, three quarter research project under faculty guidance which culminates in a thesis. Prerequisite: one laboratory course, 3.3. GPA, and/or consent of instructor.
198. Directed Group Study in Psychology (2)

Under the direction of a faculty member in the department. Prerequisite: Psychology 101, 102, 103, or 105. Not counted for credit towards the major. (P/NP grades only.)

199. Independent Study (2 or 4)

Independent study or research under direction of a member of the faculty. Prerequisite: GPA 2.5 and 90 units completed. (P/NP grades only.) Not cournied for credit towards the major. See Section on 199 information.

GRADUATE

201A-B-C. Quantitative Methods in Psychology (4-4-4)
An intensive course in statistical methods and the mathematical treatment of data, with special reference to research in psychology. Prerequisite: restricted to graduate students in psychology.

206. Mathematical Modeling (4)

This course is designed to teach the basics of mathematical modeling. Topics include when, why, and how to use signal detection theory (an essential theory for anyone interested in attention, perception, memory, or decision making), how to analyze reaction time distributions (instead of simply measuring mean RT), how to engage in the fine art of model comparison, and how to avoid creating models that are more complex than the data they seek to explain.

208. Seminar on Hormones and Behavior (4)

A survey of the affects of chemical signals (hormones, neurohormones, and pheromones) on behavior as well as reciprocal effects of behavior on these chemical systems. Specific topics covered include aggression, sex and sexuality, feeding, learning, memory and mood. Animal studies will be emphasized.

209. Topics in Judgment and Decision Making (3)

This seminar examines issues in the psychology of judgment and decision making. Topics include the heuristics and biases approach, over confidence, framing effects, intertemporal choice, and rationality.
210. Skill Acquisition and Development of Expertise (4) The course examines the transition from novice to highly skilled performance and the transfer of that skill to novel problems and contexts. Emphasis will be on information processing accounts of learning and performance for relatively simple cognitive tasks.

211.The Development of Social Cognition (3)

This seminar will cover the development of concepts about people. Topics include emotional understanding, "theory of mind," trait thinking, social categories, psychological essentialism, achievement motivation, and social and cultural influences on person perception.

212. Current Topics in Visual Science (3)

Each year a different topic in visual science is selected for in-depth review and discussion based on current readings. Prerequisite: consent of instructor.

215. Language Acquisition (4)

Discussion of the acquisition of language by young children, including such topics as its stages, mechanisms, and relation to nonlinguistic development.

216. Basic Seminar in Comparative Cognitive

Research (3)

This seminar will review current research and theory in cognitive psychology, in order to characterize group differences in cognitive functioning. Groups chosen are assumed to be not equivalent in theoretically important ways that affect their performance on standard laboratory tasks.

217A. Proseminar in Developmental Psychology 1 (3)
The course examines cognitive development through the school-age period. It begins with an examination of
early neurological, sensory, motor, and perceptual functions and then focuses on issues in linguistic and cognitive development.

217B. Proseminar in Developmental Psychology II (3)
The course examines social and personality development from infancy through early adolescence. The class will first discuss general developmental theory and methods and then topics such as attachment, temperament, self-concept, aggression, family relations, play, and peers.

218A-B. Cognitive Psychology (3-3)
A two-quarter survey of basic principles and concepts of cognitive psychology. This course is intended to serve as the basic introduction for first-year students. Basic areas include knowledge, memory, thought, perception, and performance. The areas are taught by faculty members who work within the specialty. Prerequisite: graduate status in psychology or consent of instructor.

219. Proseminar in Learning and Motivation (3)

An overview of the experimental and applied analysis of behavior including topics such as the principles of operant and classical conditioning, stimulus control, choice, conditioned reinforcement, aversive control, biological and economic contexts, verbal behavior, and the modification of human behavior in a variety of applied settings.

220. Proseminar in Social Psychology (3)

An introduction to social psychology. Psychology and the law, health psychology, attitudes, emotions, person perception and aggression are some of the topics to be covered.

221. Proseminar in Sensation and Perception (3)

Fundamentals of vision, audition, and other senses. Emphasis will be upon psychophysical approaches to the study of these sensory modalities, as well as some essential aspects of their neurophysiological bases.

222. Biological Psychology (3)

A survey of the functional neuroanatomical, neurode-velo-pmental, neurophysiological, and pharmacological correlates of psychological phenomena.

223. Advanced Topics in Vision (4)

An in-depth analysis of empirical and theoretical issues in a specialized area of vision or visual perception. Emphasis most likely will be on a topic of ongoing vision research at UCSD. Prerequisite: Psychology 212 or special consent of instructor.
224. Parental Behavior: Evolution and Mechanisms (4)

This course will broadly address evolutionary, endocrine, psychological, and neurobiological aspects of parental behavior. Topics will include the social/environmental factors which promote parental care, the role of steroid and peptide hormones in parental care, and the evolutionary forces that promote different patterns of paternal and maternal investment in young. Prerequisite: a basic understanding of brain function.

226. Color Appearance Models: Cognition and

 Perception (3)This course covers color appearance models (e.g., CIE models, OSA, etc.) and their use in perception and cognition research. Emphasis will be given to the theories underlying color appearance spaces; the derivation and interpretation of corresponding "metrics"; color-difference tolerances; plausible linking propositions for color models and neurophysiology; and the ways these models are used in psychological and psychophysical experimentation.
227. Cognitive Development (4)

Selected topics with emphasis on current experimental work. Prerequisite: consent of instructor.
228. Conceptions of Intelligence (3)

This course surveys major issues in the study of intelligence. Issues to be considered are the structure of intelligence, its heritability, and significance for real-world behavior. Special emphasis will be given to accounts of intelligence based on elementary processes.
230. Brain, Cognition, and Development (3)

This course focuses on issues related to early brain and cognitive development, with emphasis on early plasticity and lateralization of function. The course is designed for students in cognitive development with interest in cross-disciplinary issues.

231. Auditory Perception (3)

This course will give a comprehensive overview of auditory perception. Topics will include the nature of sound, the ear, auditory pathways in the brain, perceptual images of sound, grouping mechanisms in sound perception, perception of music, and developmental studies of sound perception.
232. Human Memory Systems (3)

This seminar will survey the literature on dissociable human memory systems. Evidence from cognitive, neuropsychological, and neuroimaging approaches will be considered in evaluating explicit-implicit, declarativeprocedural, and alternative theoretical frameworks.

233A-B. Topics in Learning and Motivation (3-3)
Advanced topics in learning and motivation, with special emphasis on current research. Prerequisite: Psychology 210.

234. Animal and Human Memory (3)

This course traces the history of research into animal and human short-term memory. Classic models, current viewpoints, and their attendant epistemological presuppositions will be considered. The relationship between empirical analyses of memory in animals and humans will also be reviewed.

235. Cognitive Psychophysiology (3)

This seminar will survey the literature on psychophysiological studies of cognitive processes. The emphasis will be on work using event-related brain potentials to study psychological processes underlying perception, thought, or action. Prerequisite: consent of instructor.
236. Substance Abuse (3)

Theory and research on the development, progression, and resolution of substance use and abuse will be reviewed and evaluated. Normal and abnormal patterns of substance involvement will be contrasted across the life span.
239. Psychology of Sport (3)

This seminar will focus on the applications of social psychological principles and findings to the understanding of sports.
240. Seminar on Human Memory (3)

The seminar will deal with current theory and experimental research on basic processes in human memory.
241. Groups (4)

This course examines the role of groups in buffering stress, validating attitudes, improving efficiency, consolidating power, permitting loafing, rejecting deviates, and insulating its members from unpleasant outside influence. Prerequisite: consent of instuctor.

242A-B-C. Research Topics in Developmental Psychology

 (4-4-4)Advanced seminar concentrating on methods of research and current experimental literature. May be taken by undergraduate senior majors concurrently enrolled in Psychology 194. Prerequisite: consent of instructor. (S / U grades permitted.)

243. Sound and Music Perception (3)

This course will deal with anatomy and physiology of the ear, central auditory pathways, and neurological disorders of sound and music perception.
244. Special Topics in Psycholinguistics (4) Discussion of the psychological reality of grammatical models, competence versus performance, learnability and innateness in theories of language acquisition, and questions of autonomy of "modularity" of grammatical versus semantic processing. Studies of lexical accessing, sentence comprehension, sentence production, and acquisition will all be considered, as well as some recent work in aphasia.

245. Aphasia (4)

Research and theory on language breakdown in braindamaged adults is surveyed. Topics include an historical overview from linguistics, psycholinguistics, and neuroscience (especially brain imaging techniques). Credit may not be received for both Psychology 245 and Cognitive Science 251.

246. Learning Theory (3)

Material will include modern developments in learning theory, based primarily on research with animal subjects. Prerequisite: consent of instructor.
248. Psychology and the Law (3)

This seminar surveys topics in psychology and the law. Emphasis will be on both applied and basic issues.

249A-B-C. Advanced Topics in Applied Behavior Analysis (3-3-3)
Research and discussion on selected topics in applied behavior analysis.

250. Selected Topics in Psychopathology (3)

Discussion of research on the major forms of psychopathology (e.g., schizophrenia, affective disorders, personality disorders). Topics will change yearly. The major emphasis will be (1) understanding theories of etiology and symptom manifestation; and (2) evaluating research which bears on those theories. Prerequisite: consent of instructor.
251. Advanced Topics in Learning and Motivation (3) Weekly meetings for graduate students actively engaged in research on conditioning. Prerequisite: consent of instructor.

252. Seminar on Cognitive Neuroscience (3)

This is a series of weekly seminars on current trends in neuropsychology. The seminars will deal with the concept of "localization" of function in different parts of the brain and the effects of damage to these parts on cognitive functions such as perception, memory and language. Active student participation will be encouraged in preparing these seminars

254. Functional Brain Imaging (3)

Principles of magnetic resonance imaging (MRI) of the human brain, focusing on recently developed techniques for brain activation on mapping. Includes principles of NMR and imaging, anatomic MRI, and a detailed survey of functional imaging techniques and data analysis.

255A-B-C. Advanced Topics in Biological

Psychology (3-3-3)

Research and discussion on selected topics in biological psychology.
256. Advanced Topics in Developmental Psychology (3)

Research and discussion on selected topics in developmental psychology. Prerequisite: consent of instructor.

258. Delay of Gratification (3)

This course will review the research on delay of gratification. We will cover what makes it in general so tough, what situations make it possible, who can do it, and what the implications of this ability are. We will draw from research in social, personality, and animal psychology as well as economics.

259. Social Psychology/Psycho-aesthetics (3)

This course will be an intensive examination of social psychology (legal decision-making, emotion, aggressive behavior) and the psychology of visual art and music (psycho-aesthetics).

260. Cognitive 'Subcultures': Methodologies and

 Analysis (3)Several methods of systematic data collection (e.g., judged similarity, paired comparisons, direct scaling) and analysis (e.g., consensus modeling, principal components analysis, multidimensional scaling) are explored in a hands-on computer lab and reading seminar. The ways in which these methodologies and data handling techniques bear upon basic research issues in psychology will be illustrated, and differences in data structures arising from qualitative variation in subjects will be explored.

261. Proseminar in History of Psychology (3)

This course will consider the intellectual context in the nineteenth century from which psychology developed as an independent discipline. Emphasis will be on early German psychology and evolutionary theory. The second part of the course will consider the histories of different areas of psychology (e.g., behavioral, cognitive).

263. Psychopharmacology (3)

This course will explore the basic neuropharmacological mechanism of action of the major classes of drugs, including neuroleptics, stimulants, anti-depressants, minor and major tranquilizers, and sedative hypnotics. It will focus on the use of behavioral techniques for evaluating the neural mechanisms by which these drugs act.

264A-B-C. Advanced Topics in Language Processes

 (4-4-4)Research and discussion on selected topics in language processes.

265. Social Psychology and Medicine (3)

Concentrates on what psychology has to contribute to the understanding of illness, its treatment and the social context in which these processes occur. Topics: Psychological factors in the etiology and treatment of illness, doctor-patient roles, and communication. Prerequisite: open to undergraduates with Psych 127 and instructor's permission.
266. Advanced Topics in Psycholinguistics (3)

This course will include evaluation and discussion of current research on selected topics in language processing and in aphasia.

267A-B-C. Advanced Topics in Behavior Medicine (3-3-3) Research and discussion on selected topics in behavior medicine.

268A-B-C. Advanced Topics in Experimental

Psychopathology (3-3-3)

Research and discussion on selected topics in experimental psychopathology.

269A-B-C. Advanced Topics in Sound \& Music Perception

 (3-3-3)Research and discussion on selected topics in sound and music perception.

270A-B-C. Introduction to Laboratory

Experimentatoin (1-4)
A basic laboratory course, designed to introduce firstyear graduate students to experimental methods in psychology. The student will select a research topic, do a thorough literature review of the area, design and carry out new, original studies of problems in the selected area, and prepare a final formal report of the study at the end of the spring quarter. This course is required of all first-year graduate students in the department. Prerequisite: first-year psychology graduate students only.
272. Selected Topics in Cognitive Psychology (3)

An in-depth analysis of selected empirical and theoret ical topics in cognitive psychology. The course will focus on areas where notable progress appears to be taking place in contemporary research.
280. Seminar in Communication and Information

Processing (1)
(S/U grades only.)
296. Research Practicum (1-12)

Research in psychology under supervision of individual staff members. (S/U grades only.) (F,W,S)
298. Library Research (1-12)

Reports and surveys of the literature on selected topics. Prerequisite: graduate students in psychology. (S/U grades only.) (F,W,S)
299. Independent Research (1-12)

Independent research and thesis research. (S / U grades only.) (F,W,S)

500. Apprentice Teaching (4)

Required teaching practicum for students enrolled in graduate program in psychology. One four-unit course per year for four years. (S/U grades only.)

Public Policy Analysis Minor

OFFICE: Galbraith Hall, Room 180, Revelle College

Affiliated Faculty

ANTHROPOLOGY

Shirley C. Strum, Ph.D.
Kathryn A. Woolard, Ph.D.

BIOLOGY

Michael E. Gilpin, Ph.D.
David S.Woodruff, Ph.D.

CHEMISTRY AND BIOCHEMISTRY

Mark H.Thiemens, Ph.D.

COMMUNICATION

Daniel C. Hallin, Ph.D.
Robert B. Horwitz, Ph.D.

ECONOMICS

Julian Betts, Ph.D.
Richard T. Carson, Ph.D.
Marjorie Flavin, Ph.D.
Theodore Groves, Ph.D.
Valerie A. Ramey, Ph.D.
James E. Rauch, Ph.D.
Ross M. Starr, Ph.D.

FAMILY AND PREVENTIVE MEDICINE

Harold J. Simon, M.D., Ph.D.
MAE
Massoud T. Simnad, Ph.D.

MATHEMATICS

lan S. Abramson, Ph.D.

POLITICAL SCIENCE

Nathaniel L. Beck, Ph.D.
Amy Bridges, Ph.D.
Gary W. Cox, Ph.D.
Steven P. Erie, Ph.D.
Gary C. Jacobson, Ph.D.
Samuel H. Kernell, Ph.D.
Arthur Lupia, Ph.D.
Mathew D. McCubbins, Ph.D.
Samuel L. Popkin, Ph.D.

PSYCHOLOGY

Ebbe Ebbesen, Ph.D.

SIO

Duncan Agnew, Ph.D.
David M. Checkley, Ph.D.
Paul K. Dayton, Ph.D.
Richard B.Deriso, Ph.D.
Lisa A. Levin, Ph.D.
Jean-Bernard H. Minster, Ph.D.
V. Ramanathan, Ph.D.

George Sugihara, Ph.D.
Martin Wahlen, Ph.D.

SOCIOLOGY

Lisa Catanzarite, Ph.D.
Hugh B. Mehan, Ph.D.
David P. Phillips, Ph.D.
Akos Rona-Tas, Ph.D.
Carlos Waisman, Ph.D.
There is a great need for policy analysis of social, scientific, and technological issues. The value of such analysis is greater than ever at a time of significant budget cuts in social programs
as well as those supporting basic research. Are these budget cuts justifiable? If not, how large are economic, scientific, and political damages to the nation, to California, and to San Diego? How can one best determine which social and scientific research programs have the highest priority?

An important and novel element in the minor is the emphasis on science and technology policy as the unifying theme. In this respect, the policy minor is unique in the United States, in that it is designed to appeal to not only students interested in the social sciences, but also those interested in the natural sciences. Thus, students who are interested in policy problems of the atmosphere, ecology, energy, the environment, or the ocean would find a useful and appealing sequence of courses in the minor.

Of course, the minor is also appealing and valuable for students in the social sciences who want an analytically-based concentration in areas of public policy. In addition to those above, examples include communications policy and population policy. Political science students with an interest in economic policy and economics students with an interest in political economy would also find a home here.

The public policy minor provides students with many of the necessary analytical skills and the institutional background for the understanding of how public policy is made and how it should be made. Research and teaching in the ways of government and the methods of policy evaluation enriches our understanding of national, state, and local policy issue. It also leads to more effective government, as students and professors go on to provide governments with greater expertise.

The Minor Program

The following are minor requirements for students admitted to UCSD January 1, 1998. Students admitted to UCSD prior to the above date must see the program adviser to confirm minor requirements.

There are numerous policy courses taught in a variety of departments, and these are now drawn together. Accordingly, faculty from biology, chemistry, communication, economics, engineering, IR/PS, political science, SIO, sociology, and others teach in the program.

The program consists of statistics prerequisites, core courses, and policy-oriented elective courses.

These courses are offered in the departments listed above. The primary goal of the prerequisite courses is to develop a solid analytical base for the minor. These courses consist of one or two quarters of statistics. The upper-division core sequence is a two-quarter course in policy analysis, with one course in economics and the other in political science. The four additional electives required for a minor are upper-division policyrelated courses in the social and natural sciences. Except by petition to the coordinator, two of the courses must be from the policy tools section below, and two must be from the applied policy section listed below. Students may also petition the coordinator to allow courses not listed below to count toward the minor requirements. These courses must be policy-related.

Statistics Courses

Statistics courses are necessary to provide a solid analytical foundation to policy analysis by allowing students to confront the data in a careful and systematic fashion.

A statistics course covering multiple regression techniques is required. This requirement should typically be met by Political Science 168 or Economics 120A-120B or Math. 180A-181A, BIEB 100 and 179 , or by petition to the coordinator.

Economics 120A-120B:

Econometrics

(ECON 120A-B conjoined with ECON 120AHBH.) Probability and statistics used in economics. ECON 120A covers basic data analysis using spreadsheets, probability and sampling theory, and introduction to UNIX and MS-DOS operating systems. 120B covers statistical inference and basic regression including special topics. Prerequisites: ECON $1 A-B$ or $2 A-B$ and MATH 10A-$B-C$ or 20A-B-C. The ECON 120A-B-C sequence must be taken in that order (A before B before C). Credit not allowed for both ECON 120A and MATH 183. Also, see the "Note on overlaps" at the end of the undergraduate course descriptions.

Or

Mathematics Statistics:

MATH 180A: Introduction to Probability. Probability spaces, random variables, independence, conditional probability, distribution,
expectation, joint distributions, central-limit theorem. Three lectures. Prerequisite: MATH 20D/21D. (Warning:There are duplicate credit restrictions on this course. See section on Duplication of Credit.)

MATH 181A: Introduction to Mathematical Statistics. Random samples, linear regression, least squares, testing hypotheses, and estimation. Neyman-Pearson lemma, likelihood ratios. Three lectures, one recitation. Prerequisites: MATH 180A and 20F. (Warning:There are duplicate credit restrictions on this course. See section on Duplication of Credit.)

Or

BIEB 100 and BIEB 179: Biometry and Conservation Biology Laboratory

BIEB 100. Biometry. This course provides an introduction to the use of statistics in biological problems. Topics: parametric statistics (t-tests, correlation, regression, ANOVA), non-parametric statistics, resampling methods, experimental design. Mandatory homework to apply theory using statistical Macintosh-based programs. Instructor conducts mandatory two-hour discussion session in computer lab. Three hours of lecture and two hours of laboratory section. Prerequisite: BILD 3.
BIEB 179. Conservation Biology Laboratory. Students will utilize, modify, and create computer software to solve conservation biology management problems. Topics included are pedigree analysis, stochastic population dynamics, community structure, and island biogeography. Two hours of lecture and eight hours of lab each week. In addition to the formal lab hours, there will be at least seven hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisite: BIEB 178. (May be taken concurrently).

CORE COURSES

The core of policy analysis consists of a framework for identifying, analyzing, and solving social problems through government policy. A description of current institutions and current policy problems is essential. Next, empirical and theoretical analysis is necessary to find the causes of these problems' failures. Finally, students of public policy need to know the economic and political
tools that can help remedy societal problems and can promote social goals.
ECON 130. Public Policy: Role of economics in public policy. Topics such as funding health care, drug policy, incentives for high technology industries, mass transit versus highway construction, and agriculture subsidies. Term paper usually required. Prerequisites: ECON $1 A-B$ or $2 A-B$.
POLI 160AA. Introduction to Policy Analysis. This course will explore the process by which the preferences of individuals are converted into public policy. Also included will be an examination of the complexity of policy problems, methods for designing better policies, and a review of tools used by analysts and policy makers. Prerequisite: POLI 10 or 11.

ELECTIVES

A public policy minor requires four of the following electives and must include two courses in the policy tools sequence and two courses in the applied policy sequence. No more than two courses in any one department can be counted toward the electives requirement. The intent is to encourage students to acquire additional tools, along with the applications. At the same time, a student with a major in, say, economics is required to gain some breadth in other subjects. Students are reminded that a course counted toward the major cannot also count toward the minor.

POLICY TOOLS COURSES:

ECON 150. Economics of the Public Sector: Taxation
ECON 151. Economics of the Public Sector: Expenditures

ECON 155. Economics of Voting and Public Choice
ECON 171. Decisions under Uncertainty
MAE 110A. Thermodynamics
POLI 102B. Politics of American Economic Policy
POLI 160AB. Introduction to Policy Analysis
SIO 276. Quantitative Theory of Populations and Communities
SOC/A 107. Demographic Methods
SOC/A 108A. Survey Research Design
SOC/A 108B. Quantitative Analysis of Survey Data

APPLIED POLICY COURSES:

BIEB 121. Ecology Lab
BIEB 165. Sociobiology Lab

BIEB 176. Conservation and the Human Predicament

BIEB 178. Principles of Conservation Ecology
CHEM 149A. Environmental Chemistry
CHEM 149B. Environmental Chemistry
CHEM 173. Atmospheric Chemistry
CO/SF 121. National Policies in Global Communications

CO/SF 122. Multinational Policies in Global Communication

CO/SF 128. Information Technology: Culture, Society, Politics
ERTH 142. Atmospheric Chemistry and the Biochemical Cycles of Atmospheric Trace Gases

ECON 125. Economics of Population Growth
ECON 131. Economics of the Environment
ECON 132.Energy Economics
ECON 145. Economics of Ocean Resources
IRGN 258. International Environmental Policy
MAE 118A. Energy: Non-Nuclear Energy Technologies

MAE 118B. Energy: Nuclear Energy Technologies POLI 167A-B. Seminar: Public Policy Analysis

PSYC 162. Psycology and The Law
PSYC 186. Psychology and Social Policy
SIO 202. Introduction to Climate and Climate Change
SIO 236. Satellite Remote Sensing
SIO 275A. Benthic Ecology
SIO 275B. Natural History of Coastal Habitats
SOC/C 140. Sociology of Law
SOC/C 141. Crime and Society
SOC/C 144. Forms of Social Control
SOC/C 148. Political Sociology
SOC/C 152. Social Inequality and Public Policy (Same as USP 133.)
STPA 181. Elements of International Medicine

CONCENTRATIONS WITHIN THE MINOR

Below are some examples of elective course sequences that would allow concentration on particular subfields and would also fulfill the minor's requirements.
Example 1:General Natural Science Majors: MAE 110A, ECON 171, BIEB 178, and SIO 275A (or 275B)

Example 2: General Social Science Majors: ECON151, POLI 160AB, ECON 111, and POLI 167

Examples 3: Population Policy: SIO 276, SOC/A 107, BIEB 176, and ECON 125
Example 4: Energy Policy: MAE 110A, POLI 102B, ECON 132, SIO 202

Example 5: Ocean Policy:
POLI 160AB, SIO 276, ECON 145, SIO 275A (or 275B)

Example 6: Environmental Policy: ECON 151, SIO 276, BIEB 178, ECON 131

Example 7:Communication Policy: POLI 160AB, SOC/A 108A (or 108B); CO/SF 121, 122 , or 128 (two out of the three)

Religion, Study of

OFFICE: Literature Building, third floor, room 3323
(858) 534-8849

Email:religion@ucsd.edu
Program Web site: http://religion.ucsd.edu/
Program Director: Arthur J. Droge

Faculty

Nancy Caciola, Assistant Professor, History Suzanne Cahill, Associate Adjunct Professor, History Alain J.-J. Cohen, Professor, Literature
Richard S. Cohen, Assistant Professor Literature
Stephen Cox, Professor, Literature
Arthur J. Droge, Professor, Literature
Page A. duBois, Professor, Literature
David Noel Freedman, Professor, History
Richard E. Friedman, Professor, Literature
David Goodblatt, Professor, History Ramon Gutierrez, Professor, Ethnic Studies Alan Houston, Associate Professor, Political Science Fanny Q. Howe, Professor, Literature David K. Jordan, Professor, Anthropology Benetta W. Jules-Rosette, Professor, Sociology Hasan Kayali, Associate Professor, History Sanford A. Lakoff, Professor Emeritus, Political Science
Edward N. Lee, Professor Emeritus, Philosophy
Richard P. Madsen, Professor, Sociology John A. Marino, Associate Professor, History Timothy McDaniel, Professor, Sociology Michael E. Meeker, Professor, Anthropology Alden A. Mosshammer, Professor, History

Sheldon A. Nodelman, Professor, Visual Arts Steven M. Parish, Associate Professor, Anthropology William H. Propp, Professor, History Fred V. Randel, Associate Professor, Literature Edward Reynolds,Professor, History Joel Robbins, Assistant Professor, Anthropology Gershon Shafir, Professor, Sociology
Gary Shiffman, Assistant Professor, Political Science Melford E. Spiro, Professor Emeritus, Anthropology Tracy B. Strong, Professor, Political Science Christena Turner, Associate Professor, Sociology Donald F. Tuzin, Professor, Anthropology

Program Description

The program engages in the academic study of religious phenomena; and it studies literature, history, and society in relation to religion. Faculty and students associated with the program give primacy to humanistic and social scientific methods of study that have become established in the academic community during the nineteenth and twentieth centuries.

The location of the program in the Arts and Humanities Division and its use of courses from a variety of departments and divisions imply that neither the study of religion nor its data are the privileged possession of a single discipline. The hallmark of the program is its interdisciplinary and interdepartmental structure. At UCSD, faculty from the departments of Anthropology, History, Literature, Philosophy, Political Science, Sociology, and Visual Arts provide students with the opportunity to examine religious artifacts, texts, institutions, and communities within a particular cultural and historical context and in the context of comparable manifestations within the general history of religions.

A concentration in the Study of Religion aims at fostering a student's understanding of religion as one of the primary expressions of the human condition and as an historically powerful force in the shaping of human cultures. It also seeks to develop a student's appreciation of the difficulties and possibilities inherent in undertaking a critical, disciplined study of religion. The goal is not to fashion "experts" in religion, but rather to use the study of religion in order to develop critical thinking and a more adequate understanding of history and society.

Since the program endorses an interdisciplinary and comparative approach to the study of religion, lower-division preparation should be wide and varied. Lower-division courses in which religion figures prominently (e.g., Introduction to

Religion, The Making of the Modern World, or the Revelle College Humanities Program), as well as courses which focus on textual and contextual analysis and employ the analytical tools and conceptual categories of the human sciences, would all be useful in preparing the student for a major in the Study of Religion. The program strongly encourages foreign language study. The ability to read the languages of original sources and of modern scholarship is highly recommended, especially for students planning to attend graduate school in religion.

Major

The major in the Study of Religion consists of twelve upper-division courses, which should include the following:

- two required courses in the Study of Religion (RELI 110A or 110B; RELI 112 or 113),
- ten courses from the approved course list to be selected in consultation with the program director.

Double Major

Students may choose to pursue the Study of Religion as their second major. In such cases it may be possible for up to two courses to overlap with the other major. Students are encouraged to consult the program coordinator for further information.

Honors in the Study of Religion

The program for the Study of Religion offers an Honors Program for students who demonstrate excellence in the major. Eligibility for the Honors Program requires:

- completion of RELI 110A or 110B
- at least junior standing
- 3.5 GPA in the major and a 3.3 overall GPA
- eight units of RELI 196H
- research paper and presentation

Students interested in the Honors Program should consult with the program coordinator for a detailed list of requirements and an application. Participation in the Honors Program is contingent upon the prior approval of the Honors Thesis research topic by the director. This approval must take place before the first day of the quarter that the student plans to enroll in RELI 196H.

Minor

The minor in the Study of Religion consists of seven courses, of which five must be upper-division. These seven courses must include two required courses in the Study of Religion as delineated under the major.

STUDENT ADVISING

All students are assigned a faculty adviser and are encouraged to meet with their adviser at least once a quarter to develop their course of study. Additional advising information may be obtained from the program coordinator, Literature Building, third floor, room 3323.

STUDY ABROAD

Students are encouraged to investigate the University of California Education Abroad Program (EAP) and other options for foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill major and minor requirements. More information about studying abroad can be obtained in the Education Abroad section of the catalog.

CAREER OPPORTUNITIES AND PREPARATION FOR GRADUATE STUDY

A major in the Study of Religion is designed to develop fundamental skills in critical thinking, comparative analysis, research, and written expression. As such, the B.A. degree is appropriate for careers in education, government, business, and non-profit agencies, it is also an excellent preparation for graduate study in a variety of fields and disciplines.

Students interested in earning a California teaching credential from UCSD should contact the Teacher Education Program for further information.

Students are encouraged to consult the program director for further information about career opportunities and graduate study.

cOURSES

RELI 1. Introduction to Religion (4) An introduction to key topics in the study of religion through a comparative reading of religious texts and/or artifacts. The intent is to develop basic strategies of interpretation for undertaking a critical, disciplined study of religion.

RELI 110A. The Modern Study of Religion: Religion in Modernity (4)
This class examines the history of the term "religion," focusing upon the development of religion's contemporary significance within the Reformation and Enlightenment, and questioning what it means to be "modern." Topics change yearly. Special attention to contemporary culture and politics.

RELI 110B. The Modern Study of Religion: Social and Cultural Theories of Religion (4)
An introduction to basic srategies of interpretation in the study of religion, including issues of category formation, theory, and method. Special attention paid to prominent voices of the nineteenth and twentieth centuries, including Marx, Freud, Durkheim, Eliade, etc.

RELI 112. Texts and Contexts: The Holy Book in Judaism, Christianity, and Islam (4)
An introduction to the scriptures of Judaism, Christianity, and Islam, with the aim of providing a comparative perspective on the "bibles" of Western civilization.

RELI 113. Texts and Contexts: Textual Communities in

 South Asia (4)This class considers important texts belonging to one or more of the following South Asian Traditions: Hinduism, Buddhism, Jainism, or Sikhism. It introduces students to the ways in which religious identities are formed and contested within a pluralistic society.

RELI 196H. Honors Thesis Research (4)
Honors thesis research for students accepted into the Honors Program. Research is conducted under the supervision of a program faculty member.

RELI 199. Independent Study for Undergraduates

Conduct independent advanced reading or research in religion under the supervision of a faculty member who is affiliated with the Program for the Study of Religion.(P/NP grades only.) Prerequisites: upper-division standing, consent of instructor, and permission of the program director.

APPROVED ELECTIVE COURSES

The following lower- and upper-division courses are offered on a regular basis, although not every course is available every year. Please contact the program coordinator for approved courses in any given quarter. Students may petition other courses, including independent study and Education Abroad Program courses when appropriate.

LOWER-DIVISION

ANLD 1. Introduction to Culture

HUM 1. The Foundations of Western Civilization: Israel and Greece

HUM 2. Rome, Christianity, and the Middle Ages
MMW 2. The Great Classical Traditions
MMW 3. The Medieval Heritage
PHIL 14. Introduction to Philosophy: Metaphysics
PHIL 31. History of Philosophy: Ancient Philosophy
RELI 1. Introduction to Religion

SOC 1A, B. The Study of Society

UPPER-DIVISION

METHODOLOGICAL

ANGN 113. Theories of Modern Subjectivity ANGN 120. Anthropology of Religion

ANGN 147. Ritual and Symbolism
ANGN 167. Rituals and Celebrations
SOCA 100. Classical Sociological Theory
SOCC 156. Sociology of Religion

GENERAL COMPARATIVE

ANGN 104. Anthropology of Fantasy
ANGN 135. Bodies and Boundaries: Symbols in Ritual and Everyday Life
HISC 162. History of Science and Religion
LTWL 100. Mythology
LTWL 133. Religion, Inside Out and Upside Down
VIS 126F. Western and Non-Western Rituals and Ceremonies

RELIGION IN HISTORICAL CONTEXT

ANRG 108. Hinduism
ANRG 150. The Rise and Fall of Ancient Israel ANRG 173. Chinese Popular Religion
HIEA 168. Topics in Classical and Medieval Chinese History
HIEU 105. The Early Christian Church
HIEU 113. Rule, Conflict, and Dissent in the Middle Ages
HIEU 161. Topics in Roman History: Christianity in the Roman Empire
HINE 100. The Ancient Near East and Israel
HINE 102. The Jews in Their Homeland in Antiquity HINE 103. The Jewish Diaspora in Antiquity HINE 104. The Bible and the Near East: The Primary History
HINE 105. The Bible and the Near East: The Prophets HINE 106. The Bible and the Near East: The Writings HINE 108. The Middle East Before Islam HINE 114. The History of the Islamic Middle East HIRE 115. Women in Chinese Religions
HITO 104. Jews and Judaism in the Ancient and Medieval Worlds
HITO 105. Jews and Judaism in the Modern World JUDA 110. Introduction to Judiac Studies
LTWL 131A. The New Testament
LTWL 131B. Paul and the Invention of Christianity
LTWL 131C. Reinventing Jesus
LTWL 1310. The Fourth Gospel
LTWL 131E. The History of Heresy

LTWL 131F. Christianity and the Roman Empire LTWL 131G. Against the Christians

RELIGION AND SOCIETY

ANRG 170. Traditional Chinese Society
HIEA 120. Classical Chinese Philosophy and Culture
HIEU 110. The Rise of Europe
HIEU 111. Europe in the Middle Ages
HIEU 125. Reformation Europe
HIEU 163. Topics in Medieval History: Saints in Social Context

HINE 118. The Middle East in the Twentieth Century
HINE 166. Nationalism in the Middle East
LTWL 136. Goddesses and Women in India
POLI 110A. Citizens and Saints: Political Thought from Plato to Augustine

POLI 110B. Sovereign Subjects in the Modern State: Machiavelli to Rousseau

POLI 110C. Revolution and Reaction: Political Thought from Kant to Nietzsche
SOCB 160. Sociology of Culture
SOCB 162R. Religion and Populä: Culture in East Asia
SOCC 157. Religion in Contemporary Society
SOCD 158J. Religion and Ethics in China and Japan
SOCD 188A. Community and Social Change in Africa
SOCD 188B. Chinese Society

RELIGION AND LITERATURE

LTEN 106. Chaucer's Contemporaries LTEN 118. Milton

LTEN 147. Metamorphoses of the Symbol: Mountains From Moses to Muir
LTEN 149. Themes: New Testament and English and American Literature

LTEU 100. Classical Tradition: Myths of Ancient Greeks and Romans
LTEU 105. Medieval Studies: Dante
LTNE 100. The Bible and Western Literature
LTNE 101. The Bible: The Narrative Books
LTNE 102. The Bible: The Prophetic Books
LTNE 103. The Bible: The Poetic Books
LTNE 150. Arabic Literature in Translation
LTWL 101. What Socrates Knew
LTWL 135. The Buddhist Imaginary
LTWL 145. South Asian Religious Literatures: Selected Topics

RELIGION AND PHILOSOPHY

PHIL 104. The Rationalists
PHIL 130. Metaphysics
PHIL 185. Philosophy of Religion

RELIGION AND THE ARTS

THHS 103. Ancient Greek Drama in Modern Version
VIS 120A. Greek Art
VIS 120B. Roman Art
VIS 120C. Late Antique Art
VIS 121B. Castles, Cathedrals, and Cities
VIS 121D. The llluminated Manuscript in the Middle Ages
VIS 122AN. Renaissance Art
VIS 122E. The City in Italy
VIS 123AN. Between Spirit and Flesh: Northern Art of the Early Renaissance
VIS 124BN. Art and the Enlightenment
VIS 126BN. The Art and Civilization of the Ancient Maya

Revelle College

OFFICE: Office of the Provost, Revelle College http://revelle.ucsd.edu

Humanities/Writing Program

OFFICE: Galbraith Hall 180, Revelle College See Humanities Program for Revelle Writing.

Revelle Honors Program

OFFICE: Office of the Provost, Revelle College

Particularly well-prepared students are invited to join a freshman honors program, which includes weekly participation in small faculty seminars (Revelle 20). Acceptance into the Honors Program at admission is automatic for Regents and National Merit Scholars as well as those students entering with a high school GPA of 3.8 or higher and verbal and math SAT scores of 700 or higher. Admission to the program winter quarter is offered to those who achieve a 3.7 GPA in at least twelve graded units taken at UCSD during the fall quarter. A variety of other perquisites are also awarded. Outstanding students are individually advised to participate in small honors classes in chemistry, mathematics, physics, and social science.

Outstanding seniors are selected for participation in honors seminars, Revelle 100 and 110. At least five outstanding graduating seniors are honored at graduation each year with a monetary honorarium.

An honors banquet is given for the top 200 students (from all class levels) in Revelle each spring.

Revelle 20. Revelle Honors Seminar (0)

Weekly seminars with a faculty member (chosen each year by the provost to match the interests of participating students). This seminar will acquaint students with the scholarship and research being conducted by faculty and instill in students a sense of participation in the scholarly life at UCSD. Prerequisite: by invitation only. Pass/Not Pass grades only. (F,W,S)

Revelle 100. Senior Honors Seminar: Science and

Civilization (4)

Beginning with the distinction between science and technology, the course will trace their evolution from earliest times, culminating in an examination of their impact on modern society and of the social concerns about their future course. Prerequisites: senior standing, 3.5 overall GPA, science major, consent of instructor, Revelle students only. Pass/Not Pass grades only.

Revelle 110. Senior Honors Seminar: Thinking About Science (4)
A seminar for honors students concerning the nature of science and its place in our society. The course will consist of readings and discussions concerning a range of historical, philosophical, and sociological perspectives on science. Prerequisite: Revelle College senior honors students.

Revelle Seminars

OFFICE: Office of the Provost, Revelle College
Revelle Seminars 90 (1.0 unit credit) are sponsored by Revelle College to promote student/ faculty interaction in a small group setting.

Revelle 90. Undergraduate Seminar (1)
A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by the faculty. Prerequisite: none. Pass/Not Pass grades only. (F,W,S)

Russian and Soviet Studies

OFFICE: 7039 Humanities and Social Sciences Building, Muir College
Web site: http://orpheus.ucsd.edu/history/ RussianSovietStud.html

Faculty

Steven Cassedy, Ph.D., Professor in Literature Frantisek Deak, Ph.D., Professor in Theatre Robert Edelman, Ph.D., Professor in History Susan Larsen, Ph.D., Assistant Professor in Literature

Timothy McDaniel, Ph.D., Professor in Sociology Philip Roeder, Ph.D., Associate Professor in Political Science
Rebecca Wells, Lecturer in Literature
Russian and Soviet Studies is an interdisciplinary program that provides a broad range of courses in the history, language, literature, and social and political life of Russia (before, during, and after the Soviet period). It is designed for students who do not wish to restrict their Russian studies to literature.

The Minor

The minor consists of seven courses, at least four of which must be upper-division. In addition, there must be at least one course each from two of the three following areas: literature, history, and social science. No more than three of the seven courses may be language courses. Knowledge of the language is not a requirement for the minor, but it is strongly recommended.

The Major

The major requires a study of Russian language. It consists of LTRU 1A-B-C (First-Year Russian), LTRU 2A-B-C (Second-Year Russian), or their equivalent, and a minimum of twelve upperdivision courses. All students are required to take LTRU 101A-B-C (Advanced Russian) or LTRU 104A-B-C (Advanced Practicum in Russian), HIEU 134 (History of Russia, Ninth Century to 1855), HIEU 156 (History of Russia, 1855 to the Present), and LTRU 110A-B-C (Survey of Russian Literature in Translation). In addition, students will take four electives, of which at least two must be from the social sciences (sociology or political science).

Students in the major are encouraged to participate in the Education Abroad Program (EAP) in Russia and to investigate other options for foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/ OAP can fulfill UCSD degree and major requirements. Please visit the Web site at http:// orpheus.ucsd.edu/icenter/pao for further details.

[^6]LTRU 101A-B-C Advanced Russian (4-4-4)
LTRU 104A-B-C Advanced Practicum in Russian (4-4-4)
LTRU 110A-B-C Survey of Russian and Soviet Literature inTranslation (4-4-4)
110A 1800-1860
110B 1860-1917
110C 1917-present
LTRU 123 Single Author in Russian Literature (4)
LTRU 128 Single Author in Soviet Literature (4)
LTRU 129 Twentieth-Century Russian or Soviet Literaturein Translation (4)
LTRU 130 Genres in Russian Literature (4)
LTRU 131 Russian Short Fiction (4)
LTRU 132 Russian Poetry
LTRU 150 Russian Culture: The Modern Period(4)
LTRU 198 Directed Group Study (4)
LTRU 199 Special Studies (2 or 4)
HISTORY
HIEU 134 Russia: Ninth Century to 1855 (4)
HIEU 156 Russia: 1855 to the Present (
HIEU 157 Early Soviet Social History (4)
HIEU 178 Special Topics in Modern Russian History (4)
SOCIOLOGY
Soc/D 188 E Soviet Society
POLITICAL SCIENCE
POLI 130AA Soviet Politics and AfterPOLI 130B The Soviet State and SocietyPOLI 130C Seminar: Soviet Politics
Science Studies

OFFICE: 3008 Humanities and Social Sciences Building, Muir College http://sciencestudies.ucsd.edu/ Director, Chandra Mukerji

Professors

Michael Bernstein, Ph.D., History Geoffrey Bowker, Ph.D., Communication Nancy Cartwright, Ph.D., Philosophy Paul M. Churchland, Ph.D., Philosophy Gerald D. Doppelt, Ph.D., Philosophy
Chandra Mukerji, Ph.D., Communication and Sociology
Andrew Scull, Ph.D., Sociology

Steven Shapin, Ph.D., Sociology
Susan Leigh Star, Ph.D., Communication
Robert S. Westman, Ph.D., History

Professor Emeritus

Martin J.S. Rudwick, Ph.D., History

Associate Professors

Steven Epstein, Ph.D., Sociology
Martha Lampland, Ph.D., Sociology
Naomi Oreskes, Ph.D., History

Assistant Professor

Marta E. Hanson, Ph.D., History

Lecturer

Mark Hineline, Ph.D., History
The Science Studies Program at UCSD is a Ph.D. program committed to working toward a deeper understanding of scientific knowledge and technological change by means of studies-theoretically structured and empirially based-of the practice of the sciences and engineering, past and present. The program offers students an opportunity to integrate the perspectives developed in communication studies and the history, sociology, and philosophy of science, while receiving a thorough training at a professional level in one of the component disciplines. Students enrolled in the program choose one of the four disciplines for their major field of specialist studies and are required to complete minor field requirements in the others. The core of the program, however, is a sequence of two one-quarter seminars, led by faculty from all three participating departments. Science studies students are encouraged to select dissertation topics that offer scope for a cross-disciplinary approach. The Ph.D. will be awarded in "Communication (Science Studies)," "History (Science Studies)," "Sociology (Science Studies)," or "Philosophy (Science Studies)."In special circumstances, students may be permitted to work for the M.A. degree.

COURSES

GRADUATE

HIGR 236A-B. Seminar in History of Science (4-4)
A two-quarter research seminar, comprising intensive study of a specific topic in the history of science. The first quarter will be devoted to readings and discussions; the second chiefly to the writing of individual research papers. The topic varies from year to year, and
students may, therefore, repeat the course for credit. (IP grade to be awarded the first quarter; final grade will be given at the end of the second quarter.) Prerequisite: graduate standing.

HIGR 237. Topics in the History of Earth and Ocean

Sciences (4)
Intensive study of specific problems in the history of the ocean sciences and of related earth and atmospheric sciences in the modern period. Topics vary from year to year, and students may therefore repeat the course for credit. Prerequisite: graduate standing or consent of instructor.

HIGR 238, PHIL 209A, SOCG 255A. Introduction to

Science Studies (4)

Study and discussion of classic work in history of science, sociology of science, and philosophy of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

HIGR 239, PHIL 209B, SOCG 255B. Seminar in Science

 Studies (4)Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. The topic varies from year to year, and students may, therefore, repeat the course for credit. Prerequisite: enrollment in Science Studies Program.

HIGR 240, PHIL 209C, SOCG 255C. Colloquium in Science Studies (4)
A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required for all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program.

HISC 160/260. Historical Approaches to the Study of

 Science (4)This colloquium course will introduce students to the rich variety of ways in which the scientific enterprise is currently being studied historically.Major recent publications on specific topics in the history of science selected to illustrate this diversity will be discussed and analyzed; the topics will range in period from the seventeenth century to the late twentieth, and will deal with all major branches of natural science. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: consent of instructor; department stamp required.

HISC 162/262. Problems in the History of Science and

 Religion (4)Intensive study of specific problems in the relation between science and religion. The problems may range in period from the Renaissance to the twentieth century. Topics vary from year to year. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: upper-division standing; department stamp required.

HISC $163 / 263$. Topics in the History of Life and Earth

 Sciences (4)Intensive study of specific problems in the life sciences and earth sciences, ranging in period from the Renaissance to the twentieth century. Topics will vary from year to year, and students may therefore repeat the course for credit. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students
may be expected to submit a more substantial piece of work. Prerequisite: department stamp required.

HISC 164/264. Topics in the History of the Physical

Sciences (4)
Intensive study of specific problems in the physical (including chemical and mathematical) sciences, ranging in perioci from the Renaissance to the twentieth century. Topics vary from year to year, and students may therefore repeat the course for credit. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: consent of instructor; department stamp required.

HISC 166/266. Topics in the History of the Social

Sciences (4)
Intensive study of specific problems in the history of the social sciences in relation to the natural sciences and mathematics. Topics vary from year to year, and students may therefore repeat the course for credit. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: consent of instructor; department stamp required.

HISC 167/267. Topics in the History of Medicine (4) Intensive study of specific problems in the history of medicine. Topics will vary from year to year, and students may therefore repeat the course for credit. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisite: department stamp required.

Soc. 225. Madness and Society (4)
An examination of the historical and sociological literatures on the relationship between madness and society, focusing primarily on the United States and Great Britain but with some comparative reference to western Europe.

Soc. 236. Contemporary Topics in the Sociology of

 Science (4)This seminar will cover current books and theoretical issues in the sociology of science. Topics will vary from year to year. May be repeated three times for credit.

Soc. 237. Historical Sociology of Science (4) In recent years the sociology of science and the history of science have developed increasingly close links and shared projects. Those include the detailed naturalistic study of actual scientific practice, the analysis of the social construction of scientific knowledge in particular social settings, and the examination of relationships between the moral economy of scientific sites and the status of the knowledge produced there. Particular attention will be paid to the identity of peculiarly historical and sociological perspectives. Technical problems concerning the deployment of sociological frameworks in historical study will be addressed. Students will read and assess a range of recent work in which the connection between sociology and history of science is most evident.

Soc. 238. Relativism and the Sociology of Science (4) A critical survey of theoretical and empirical sociological work advocating a relativist perspective on scientific knowledge. Special attention is paid to the characterization of different relativist genres, to the debates between relativism, realism and rationalism, and to the empirical
grounding of relativism in studies of scientific contro versy and closure.

Soc. 277. The Sociology of Technology (4)
Social theory has been largely uninterested in technology. The major exceptions are to be found in the evolutionary stories concerning"man the tool maker."The aim of the seminar is to review the literature in paleontology, philosophy of technology, and technology on the link between tools and social theory. The idea of the seminar is to test ideas coming from sociology of technology, ethology, and evolutionary scenarios, and anthropology of tool use, in order to make room in social theory for artifacts.

Phil. 212. Contemporary Topics in the Philosophy of Science (4)
This seminar will cover current books and theoretical issues in the philosophy of science. Topics will vary from year to year. Prerequisite: Philosophy 180, or equivalent, or consent of instructor.

Science,
 Technology, and Public Affairs

OFFICE: Galbraith Hall, Room 180, Revelle College

The program offers an opportunity to study the important social policy issues that lie at the intersection of science, technology, and decision making and to develop awareness of the social and political factors that condition technology on the social order. The program will be attractive to students anticipating careers in law, administrative sciences, science, engineering, business, and international affairs. The program will serve as a meeting place for those interested in approaching policy questions from the perspective of the physical and biological sciences and for those in the social sciences having an interest in the scientific and technological component of present social, political, and environment problems.

COURSES

LOWER-DIVISION

35. Society and the Sea (4)

Introduction to the oceans and their relationship to humankind. Selected topics include ocean-related science, engineering, research, economics, and international relations (emphasizing countries of the Pacific Rim); living and non-living resources; coastal zone management; military and social aspects; and the sea in weather and climate. Prerequisite: none. (F)

UPPER-DIVISION

181. Elements of International Medicine (4)

The sociocultural, ecomomic, and geopolitical framework for the study and understanding of medical problems on a worldwide scale, and as basis for international health policy. Global patterns of disease, availability and needs for medical technology, and comparisons between diverse medical education and healch care delivery systems abroad with those in the U.S. Students should be able to acquire an understanding of diverse determinants of disease, and of relationships between socio-economic development and health. Prerequisite: senior or graduate standing. H.Simon (W)

199. Special Project (2 or 4)

Directed study on topics in science, technology and public affairs; especially for Warren College students. (P/NP grades only.) Prerequisite: senior standing.

RELATED COURSES

Courses in other departments (change somewhat from year to year):
Communication/SF 128
CSE 2
Economics 130
MAE 110B, 118A, 118B, 118C
Philosophy 164
Political Science 138D
Political Science 154
Political Science 160AA
Political Science 160AB
Political Science 161
Political Science 167A,B
Sociology 168E

Scripps Institution of Oceanography

OFFICE: 22 Old Scripps Bldg., Scripps Institution of Oceanography
http://www-siograddept.ucsd.edu/

Professors

Duncan C. Agnew, Ph.D., Geophysics Laurence Armi, Ph.D., Oceanography Gustaf Arrhenius, Ph.D., Oceanography Farooq Azam, Ph.D., Marine Biology Jeffrey L. Bada, Ph.D., Marine Chemistry Wolfgang H. Berger, Ph.D., Oceanography Michael J. Buckingham, Ph.D., Oceanography Ronald S.Burton, Ph.D., Marine Biology Steven C. Cande, Ph.D., Marine Geophysics Catherine G. Constable, Ph.D., Geophysics

Paul J. Crutzen, Ph.D., Atmospheric Chemistry
Paul K. Dayton, Ph.D., Oceanography
LeRoy M. Dorman, Ph.D., Geophysics
D. John Faulkner, Ph.D., Marine Chemistry

Horst Felbeck, Dr. rer. nat., Marine Biology
William H. Fenical, Ph.D., Chemistry
Carl H. Gibson, Ph.D., Engineering Physics and
Oceanography
Joris M.T.M. Gieskes, Ph.D., Oceanography
J. Freeman Gilbert, Ph.D., Geophysics

Robert T. Guza, Ph.D., Oceanography
James W. Hawkins, Ph.D., Geology
Myrl C. Hendershott, Ph.D., Oceanography
Robert R. Hessler, Ph.D., Biological Oceanography,
Academic Senate
Distinguished Teaching Award
John A. Hildebrand, Ph.D., Geophysics
William S. Hodgkiss, Ph.D., Electrical Engineering
Nicholas D. Holland, Ph.D., Marine Biology
Glenn R. lerley, Ph.D., Geophysics
Jeremy B.C. Jackson, Ph.D., Marine Biology and Geology
Miriam Kastner, Ph.D., Earth Sciences
Charles D. Keeling, Ph.D., Oceanography
Charles F. Kennel, Ph.D., Physics, Vice
Chancellor of Marine Sciences and Director of
Scripps Institution of Oceanography
Nancy Knowlton, Ph.D., Marine Biology
William A. Kuperman, Ph.D., Oceanography
Devendra Lal, Ph.D., Nuclear Geophysics
Lisa A. Levin, Ph.D., Oceanography
Peter F. Lonsdale, Ph.D., Oceanography
J. Douglas Macdougall, Ph.D., Earth Sciences
T. Guy Masters, Ph.D., Geophysics (Vice Chair of the Department)
W. Kendall Melville, Ph.D., Oceanography, and Chair of the Department
Jean-Bernard H. Minster, Ph.D., Geophysics
William A. Newman, Ph.D., Oceanography
Pearn P. Niiler, Ph.D., Oceanography
Mark D. Ohman, Ph.D., Biological Oceanography
John A. Orcutt, Ph.D., Geophysics
Robert L. Parker, Ph.D., Geophysics
Robert Pinkel, Ph.D., Oceanography
Veerabhadran Ramanathan, Ph.D., Climate and
Atmospheric Sciences
Dean H. Roemmich, Ph.D., Oceanography
Richard L. Salmon, Ph.D., Oceanography
David T. Sandwell, Ph.D., Geophysics
John G. Sclater, Ph.D., Marine Geophysics
Robert E. Shadwick, Ph.D., Marine Biology
Peter M. Shearer, Ph.D., Geophysics
Richard C.J. Somerville, Ph.D., Meteorology

George Sugihara, Ph.D., Mathematical Ecology Lynne D.Talley, Ph.D., Oceanography Lisa Tauxe, Ph.D., Geophysics Victor D. Vacquier, Ph.D., Marine Biology Martin Wahlen, Ph.D., Geochemistry Ray F.Weiss, Ph.D., Geochemistry Clinton D. Winant, Ph.D., Oceanography William R. Young, Ph.D., Oceanography

Professors-in-Residence

Steven C. Constable, Ph.D., Geophysics A. Aristides Yayanos, Ph.D., Biology

Professors Emeritus

George E. Backus, Ph.D., Geophysics Andrew A. Benson, Ph.D., Biology Charles S. Cox, Ph.D., Oceanography Harmon Craig, Ph.D., Geochemistry and Oceanography Joseph R. Curray, Ph.D., Geology James T. Enright, Ph.D., Behavioral Physiology Edward A. Frieman, Ph.D., Physics, Director Edward D. Goldberg, Ph.D., Chemistry Harold T. Hammel, Ph.D., Physiology Richard A. Haubrich, Ph.D., Geophysics Francis T. Haxo, Ph.D., Biology Douglas L. Inman, Ph.D., Oceanography Gerald L. Kooyman, Ph.D., Biology Ralph A. Lewin, Ph.D., Sc.D., Biology John A. McGowan, Ph.D., Oceanography Walter H. Munk, Ph.D., Oceanography Joseph L. Reid, M.S., Oceanography Richard H. Rosenblatt, Ph.D., Marine Biology George G. Shor, Jr., Ph.D., Marine Geophysics George N. Somero, Ph.D., Biology Fred N. Spiess, Ph.D., Oceanography Victor Vacquier, M.A., Geophysics Kenneth M. Watson, Ph.D. Physical Oceanography Edward L. Winterer, Ph.D., Geology

Associate Professors

Douglas H. Bartlett, Ph.D., Marine Microbiology Kevin M. Brown, Ph.D., Geology Paterno R. Castillo, Ph.D., Geology Paola Cessi, Ph.D., Oceanography Christopher D. Charles, Ph.D., Oceanography David M. Checkley, Ph.D., Oceanography Neal W. Driscoll, Ph.D., Geology Peter J. S. Franks, Ph.D., Oceanography Philip A. Hastings, Ph.D., Marine Biology Margo G. Haygood, Ph.D., Marine Biology Ralph F. Keeling, Ph.D., Geochemistry Brian Palenik, Ph.D., Marine Biology

Daniel L. Rudnick, Ph.D., Oceanography Jeffrey P. Severinghaus, Ph.D., Geochemistry Detlef Stammer, Ph.D., Oceanography Dariusz Stramski, Ph.D., Oceanography Bradley T. Werner, Ph.D., Oceanography

Associate Professor-in-Residence

Andrew G. Dickson, Ph.D., Marine Chemistry

Assistant Professors

Lihini I. Aluwihare, Ph.D., Marine Chemistry Yuri Fialko, Ph.D., Geophysics
Sarah T. Gille, Ph.D., Oceanography
David R. Hilton, Ph.D., Geochemistry
Joel R. Norris, Ph.D., Climate and Atmospheric Sciences
Paul E. Robbins, Ph.D., Oceanography
Enric Sala, Ph.D., Oceanography

Adjunct Professors

John R. Hunter, Ph.D., Marine Biology Michael S. Longuet-Higgins, Ph.D., Oceanography William F. Perrin, Ph.D., Marine Biology Paul E. Smith, Ph.D., Biological Oceanography

Associate Adjunct Professors

Jay P. Barlow, Ph.D., Biological Oceanography Richard B. Deriso, Ph.D., Biological Oceanography

Senior Lecturers

Yehuda Bock, Ph.D., Research Geodesist George F. Carnevale, Ph.D., Research Oceanographer
Daniel R. Cayan, Ph.D., Research Meteorologist
Teresa K. Chereskin, Ph.D., Research Oceanographer Bruce D. Cornuelle, Ph.D., Research Oceanographer Jeffrey B. Graham, Ph.D., Research Biologist Alistair J. Harding, Ph.D., Research Geophysicist Osmund Holm-Hansen, Ph.D., Research Biologist Jules S. Jaffe, Ph.D., Research Oceanographer Robert A. Knox, Ph.D., Research Oceanographer Michael I.Latz, Ph.D., Research Biologist Arthur J. Miller Ph.D., Research Oceanographer B. Gregory Mitchell, Ph.D., Research Oceanographer John O. Roads, Ph.D., Research Meteorologist Kenneth L. Smith, Jr., Ph.D., Research Biologist Hubert Staudigel, Ph.D., Research Geologist James H. Swift, Ph.D., Research Oceanographer Bradley M. Tebo, Ph.D., Research Biologist Elizabeth L.Venrick, Ph.D., Research Oceanographer Frank L.Vernon, Ph.D., Research Geophysicist Peter F.Worcester, Ph.D., Research Oceanographer Mark A. Zumberge, Ph.D., Research Geophysicist

Lecturers

Donna K. Blackman, Ph.D., Associate Research Geophysicist
Bianca M. Brahamsha, Ph.D., Assistant Research Biotechnologist
Christian P. deMoustier, Ph.D., Associate Research Oceanographer
Piotr J. Flatau, Ph.D., Associate Research Atmospheric Scientist
Jeffrey S. Gee, Ph.D., Associate Research Geophysicist
Graham M. Kent, Ph.D., Associate Research Geophysicist
Dan Lubin, Ph.D., Associate Research Physicist
Steven W. Taylor, Ph.D., Assistant Research Chemist

Affiliated Faculty

James R. Arnold, Ph.D., Professor Emeritus, Chemistry and Biochemistry
Hugh Bradner, Ph.D., Professor Emeritus, MAE
Theodore H. Bullock, Ph.D., Professor Emeritus, Neurosciences
Juan C. Lasheras, Ph.D., Professor, MAE
Paul A. Libby, Ph.D., Professor Emeritus, MAE
Paul F. Linden, Ph.D., Professor, MAE
John W. Miles, Ph.D., Professor Emeritus, MAE
R. Glenn Northcutt, Ph.D., Neurosciences

Sutanu Sarkar, Ph.D., Professor, MAE
The graduate department of Scripps Institution of Oceanography offers instruction leading to Ph.D. degrees in oceanography, marine biology, and earth sciences. Although students are not admitted specifically for an M.S. degree, it is possible to obtain an M.S. on the way to completing the Ph.D. program. A graduate student's work normally will be concentrated in one of the curricular programs within the department: applied ocean science, biological oceanography, climate sciences, geological sciences, geophysics, marine biology, marine chemistry and geochemistry, and physical oceanography.

No undergraduate major is offered in the department though most courses in the department are open to enrollment for qualified undergraduate students with the consent of the instructor. The UCSD Earth Sciences Undergraduate Program offers an earth sciences major leading to a B.S. or a combined B.S./M.S. degree. The interdisciplinary nature of research in marine and earth sciences is emphasized; students are encouraged to take courses from various UCSD departments, and to consider interdisciplinary research projects.

The Curricular Programs

Applied Ocean Science is an interdepartmental program bridging the related disciplines of ocean science and technology. The program combines the interests of faculty members of the Scripps Graduate Department, the UCSD Department of Mechanical and Aerospace Engineering, the Department of Structural Engineering, and the Department of Electrical and Computer Engineering to produce oceanographers knowledgeable about modern engineering and instrumentation, and marine-oriented engineering scientists familiar with the oceans. Instruction and research can include the structural, mechanical, material, electrical, and physiological problems of operating within the ocean, and the applied environmental science of the sea. Because many oceanographic and engineering disciplines can be involved, the curriculum is tailored to meet the needs of individual students.

Biological Oceanography is concerned with the interactions of populations of marine organisms with one another and with their physical and chemical environment. Because these interactions are frequently complex, and because the concepts and techniques used are drawn from many fields, biological oceanography is, of necessity, interdisciplinary. Therefore, studies in physical oceanography, marine chemistry, marine geology, and several biological areas are pertinent.

Research is conducted on space/time scales ranging from short-term interactions between individual organisms (mm., sec.) to interdecadal variation in widely-dispersed populations. The techniques used in these investigations are diverse, and can include field observation and manipulations, experimentation in the laboratory, and mathematical modeling.

Research topics include primary and secondary productivity and nutrient regeneration, fishery biology and management, community ecology of benthic and pelagic organisms, population dynamics, habitat changes and disruptions, systematics and biogeography, population genetics and evolution, and behavior as it affects distribution. Development and testing of new tools (molecular, optical, acoustic), design of sampling programs, and statistical/mathematical analyses of data also are significant activities.

Climate Sciences concerns the study of the climate system of the earth with emphasis on the physical, dynamical, and chemical interactions of the atmosphere, ocean, land, ice, and the terres-
trial and marine biospheres. The program encompasses changes on seasonal to interannual time scales and those induced by human activities, as well as paleoclimatic changes on time scales from centuries to millions of years. Examples of current research activities include: interannual climate variability; physics and dynamics of El Niño; studies of present and future changes in the chemical composition of the atmosphere in relation to global warming and ozone depletion; effects of cloud and cloud feedbacks in the climate system; paleoclimate reconstructions from ice cores, banded corals, tree-rings, and deep-sea sediments; the origin of ice ages; air-sea interactions; climate theory; terrestrial and marine ecosystem response to global change.

Geological Sciences emphasizes the application of general principles of geology, geochemistry, and geophysics to problems in the marine and terrestrial environments of the Earth. Graduate students routinely participate in expeditions at sea and on land and many doctoral theses evolve from these experiences.

Research areas in the geological sciences include: the origin and evolution of the oceanatmosphere system and global climate; geology, geochemistry, and geophysics of oceanic crustal rocks and near-shore environments; tectonic and structural evolution of the oceans, plate margins, and back-arc basins; the role of fluids in the crust; chemistry of rare gases in active volcanoes; the use of natural nuclear processes for understanding physical and chemical processes in the Earth; paleomagnetic applications in geology and geophysics.

Geophysics emphasizes the application of general principles of mathematics and experimental physics to fundamental problems of the oceans, oceanic and continental lithosphere, and crust and deep interior of the Earth. Research interests of the group include: observational and theoretical studies of electric and magnetic fields in the oceans and on the land; paleomagnetism; theoretical seismology with special emphasis on the structure of the Earth from free-oscillation and body wave studies; broadband observational seismology, including ocean bottom and multichannel seismology; earthquake source mechanisms; the measurements of slow crustal deformations using satellite and observatory methods on continents and in the oceans; marine geodynamics and tectonophysics; gravity measurements; geophysical inverse theory; magneto-
hydrodynamics of the core of the Earth; geophysical instrumentation for oceanic and continental geophysical measurements; acoustic propagation in the oceans.

Marine Biology is the study of marine organisms. It is concerned with evolutionary, organismic, genetic, physiological, and biochemical processes in these organisms, and the relationship between them and their biotic and physical environment. Marine biology encompasses several major areas of modern biology, and is interpreted by understanding the physical and chemical dynamics of the oceans. Faculty research focuses on microbiology, photobiology, high pressure biology, deep-sea biology, developmental biology, genetics, biomechanisms, comparative biochemistry and physiology, behavior, ecology, biogeography, and evolution of marine prokaryotes and eukaryotes. Processes ranging from the fertilization of sea urchin eggs to the role of bacteria in marine food web dynamics are under study in over twenty independent research laboratories.

Marine Chemistry and Geochemistry concerns chemical and geochemical processes operating in a broad range of study areas: the oceans, the solid earth, the atmosphere, marine organisms, polar ice sheets, lakes, meteorites, and the solar system.

Areas of advanced study and research include the physical and inorganic chemistry of seawater; ocean circulation and mixing based on chemical and isotopic tracers; marine organic and natural products chemistry; geochemical interactions of sediments with seawater and interstitial waters; geochemistries of volcanic and geothermal phenomena; chemical exchanges between the ocean and the atmosphere; geochemical cycles of carbon, oxygen, sulfur, nitrogen, and other elements; isotopic geochemistry of the solid earth and meteorites; atmospheric trace gas chemistry; paleoatmospheric composition recorded in polar ice cores, corals and sediments; and chemistry of lakes and other freshwater systems.

Studies are typically interdisciplinary and involve integration of chemical concepts with information about the physical, biological, or geological processes that influence natural systems. Students in the marine chemistry and geochemistry curricular group are encouraged to explore these links.

Physical Oceanography is the field of study that deals with mechanisms of energy transfer
through the sea and across its boundaries, and with the physical interactions of the sea with its surroundings, especially including the influence of the seas on the climate of the atmosphere. Research activities within this curricular group are both observational and theoretical and include: study of the general circulation of the oceans, including the relations of ocean currents to driving forces and constraints of the ocean basins; fluctuations of currents, and the transport of properties; the mechanisms of transport of energy, momentum, and physical substances within the sea and across its boundaries; properties of wind waves, internal waves, tsunami and planetary waves; the thermodynamic description of the sea as a system not in equilibrium; optical and acoustic properties of the sea; and the influence of surf on near-shore currents and the transport of sediments.

Requirements for Admission

Candidates for admission should have a bachelor's or master's degree in one of the physical, biological, or earth sciences; degrees in mathematics or engineering science are also accepted. A scholastic average of B or better in upper-division courses, or prior graduate study, is required. The student's preparation should include:
(1) mathematics through differential and integral calculus;
(2) physics, one year with laboratory (the course should stress the fundamentals of mechanics, electricity, magnetism, optics, and thermodynamics, and should use calculus in its exposition);
(3) chemistry, one year with laboratory;
(4) an additional year of physics, chemistry, or mathematics; and
(5) all applicants are required to submit scores from the general test of the Graduate Record Examinations (GRE) given by the Educational Testing Service of Princeton, New Jersey. Marine biology applicants must also submit scores of the GRE biology (or biochemistry, cell, and molecular biology) subject test.
All international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English must take the TOEFL and submit their test scores to the UCSD Office of Graduate Admissions.

Specific additional requirements for admission to the various curricular programs are as follows:

Applied Ocean Science---Students are admissible with a strong background in physical science, engineering science, or mathematics. Three years of physics or applicable engineering and three years of mathematics at college level are expected.

Biological Oceanography-Two years of chemistry, including general and organic chemistry, and a year of general biology are required. Physical chemistry requiring calculus may be substituted for physics requiring calculus where a more elementary physics course was taken. Zoology or botany may be substituted for general biology. Preparation should also include a course in general geology and at least one course in each of the following categories: systematics (e.g., invertebrate zoology), population biology (e.g., ecology), functional biology (e.g., physiology). In special cases, other advanced courses in mathematics or natural sciences may be substituted. Biological oceanography applicants are encouraged, but not required, to submit scores of the biology subject test of the GRE.

Climate Sciences-Students are admissible if they satisfy the requirements of the physical oceanography, geophysics, or marine chemistry and geochemistry curricular programs. Biology and geology majors may also be admissible if the Scripps faculty feel that they have a sufficiently strong background in mathematics and physical science.

Geological Sciences-A major in one of the earth sciences and undergraduate physical chemistry and calculus are required. Preparation beyond the minimum requirements in mathematics, physics, and chemistry is strongly recommended.

Geophysics-A major in physics or mathematics, or equivalent training, is required.

Marine Biology-A major in one of the biological sciences (or equivalent), with basic course work in botany, microbiology, or zoology; two years of chemistry, including organic chemistry, is required. Training in one or more of the following areas is strongly recommended: cellular biology, molecular biology, comparative physiology, genetics, developmental biology, ecology, evolutionary biology, vertebrate and invertebrate zoology, microbiology, and/or botany. Biochemistry and physical chemistry will be expected of students in experimental biology, although the stu-
dent may, if necessary, enroll in these courses at UCSD after admission.

Marine Chemistry and Geochemistry-A major in chemistry, geology, biochemistry, or related field, is required.

Physical Oceanography-A major in a physical science, including three years of physics and mathematics, is required.

Special consideration occasionally can be given to candidates with outstanding records who do not meet all required preadmission criteria.

Programs of Study

Programs of study vary widely among the curricular groups, but generally first-year students are expected to enroll in core courses that cover physical, geological, chemical, and biological oceanography and in other courses recommended by the student's faculty adviser. Then, by the end of the first year, students usually select a particular area of focus and choose a major professor. As students advance beyond the first year, they begin to function quite effectively as research assistants, high level technical personnel or, in some cases, as teaching assistants. Furthermore, during their third to fifth year they are working toward writing their dissertations.

The interdisciplinary nature of research in marine and earth sciences is emphasized; students are encouraged to take courses in several programs and departments, and to select research problems of interdisciplinary character. The curricular programs of study are as follows:

Applied Ocean Science--Students must:
(a) take or demonstrate their knowledge of the following basic courses: SIO 210,240,260, 270 or $270 \mathrm{~A}, 280$, and 203 A-B-C, or Math. 210 A-B-C, or MAE 294 A-B-C, and (b) attend the Applied Ocean Science Seminar (SIO 208) throughout the entire period of enrollment. Additional course requirements will be established to meet the needs and interests of individual students.

Biological Oceanography-The student will be expected to be familiar with the material presented in the following courses: SIO 210,240,260, 270 or $270 \mathrm{~A}, 275 \mathrm{~A}$ or 277,280 , and at least one of SIO 271,274, 282, 284, or 294. Other course work ordinarily will be recommended by the student's advisory committee, usually including 278 (or equivalent participatory seminar) one quarter of each year, a course in introductory parametric statistics, and at least one advanced-level course in physical, chemical, or geological oceanography.

Participation in an oceanographic cruise (minimum of two weeks' duration) and service as a teaching assistant (one quarter) are required. individual advisers and/or doctoral committees may require foreign languages or computer programming languages of individual candidates.

Climate Sciences-The emphasis of this curricular group is on education through interdisciplinary research. All students are responsible for the fundamental material in the following "core" courses: SIO 202, 210, 218, 260 . Students are also expected to supplement their backgrounds with additional fundamental courses, including, for most Climate Sciences students, at least one additional quarter of fluid dynamics. These additional course(s) will be chosen in consultation with the students' advisors. Students are also required to participate actively in at least two quarters of seminar courses designed to complement and stimulate individual research. Though the group stresses interactions across disciplines, students will specialize in a particular subdiscipline or track that will be chosen by the student following discussions with a 3 -person faculty advisory committee soon after arrival. Examples of current tracks include: (1) atmospheric/ocean/climate dynamics and physics; (2) atmospheric chemistry (emphasizing climatic interactions); and (3) paleoclimate studies. Additional course requirements for these tracks will be tailored to the needs of the individual student. It is possible that some of these tracks will be similar to those recommended by other curricular groups such as Physical Oceanography or Applied Ocean Science.

Geological Sciences-While no fixed menu of courses exist in the geological sciences curriculum, all students will be responsible for material offered in Essentials of Geology (SIO 248), and should participate in the Classics Seminar (SIO 258) during the first two years of graduate studies. For a degree in earth sciences, students will take a selection of courses, chosen in consultation with the adviser, offered by the geological sciences curricular group. Additional courses offered by other curricular programs (e.g., geophysics, marine chemistry and geochemistry) will be selected and scheduled depending on the student's background and interests. In some cases a student's program may include course work in selected subject areas given at other campuses. For the oceanography degree, students are also responsible for the material in $\mathrm{SIO} 210,240,260$, and 280 . Normally, students will take a compre-
hensive departmental examination near the end of their third quarter of residence. The qualifying examination will be given before the end of the third year.

Geophysics-There is no single course of study appropriate to the geophysics curriculum; instead, the individual interests of the student will permit, in consultation with the adviser, a choice of course work in seismology, geomagnetism, etc., although the content of certain core courses is usually taken during most of the first year. In the summer or early fall quarter following that year each student will be given written and oral departmental examinations, which are intended to cover the student's formal training. A brief presentation of possible research interests will also be expected at this exam.

Geological Sciences/Geophysics Track-For those students whose interests fall between the programs provided by the geological sciences and the geophysics curricular groups, these groups are jointly offering a separate program and departmental examination. Such students would be admitted either to the geological sciences or geophysics curricular group, but could declare their interest in a geological sciences/geophysics track early in their first year. If they did so, they would take a departmental exam (at the end of spring quarter of their first year) which would be conducted by a committee with members from both curricular groups, and focusing on the student's ability to integrate material relevant to the subject. The expected courses would include the SIO 248 sequence and those geophysics courses appropriate to this specialization.

Marine Biology-Entering graduate students will be expected to gain research experience in one or more laboratories during their first year. In the spring term of their first year at SIO, students will take the departmental examination, at which time they will be expected to demonstrate competence in general biology and in the material covered in the following courses: SIO 210,260, 280, as well as any other course work recommended by the advisory committee. The exam will also include a written paper and brief oral presentation describing the student's first-year research project. All students are expected to enroll and actively participate in a seminar course during two quarters of each year.

Marine Chemistry and Geochemistry-

Students in this curricular group are required to take SIO 210,260 , and either SIO 280 or a suitable
geological sciences course (e.g. SIO 248B) in their first year at SIO. Students in this curriculum are also expected to take additional SIO and UCSD courses; the exact choice of such courses will depend on the student's research interests and should be made in consultation with a faculty adviser.

Physical Oceanography-The physical oceanography curriculum combines a comprehensive program of coursework with individually tailored specialization to meet student needs. Students will demonstrate proficiency in foundation courses required for all subdisciplines of physical oceanography (SIO 203A-B, 214A, 212A), as well as additional courses appropriate to their specialization or interdisciplinary interest. Presently defined "tracks" in the curriculum are (i) Observational Physical Oceanography, (ii) Theoretical Physical Oceanography, and (iii) the Atmospheric/Ocean Climate System. All tracks are similar in the entry-year Fall Quarter, diverging as students become more familiar with the field and in their interests. A faculty Curriculum Advisory Committee meets with students to tailor tracks to individual needs, or to create new tracks as appropriate. In any track, the total body of required knowledge is equivalent to 16 four-unit courses, of which about 12 are covered during the first year. As part of the overall requirement, tracks include a breadth component of 2 or more fourunit courses in other oceanographic disciplines. These might come from the SIO core courses in other disciplines (SIO 240, 260, 280) or from related graduate level courses taught at UCSD.

Language Requirements

The department has no formal language requirements. Within the department, some curricular programs may require demonstration of ability to use certain foreign languages pertinent to a student's research. All students must be proficient in English.

Departmental and Qualifying Examinations

Doctoral candidates normally will be required to take a departmental examination not later than early in the second year of study. The examination will be oral and/or written depending on the curricular group. The student will be required to demonstrate, in a quantitative and analytical manner, comprehension of required subject
material and of the pertinent interactions of physical, chemical, biological, or geological factors.

When the student has passed the departmental examination, and has completed an appropriate period of additional study, the department will recommend appointment of a doctoral committee which will supervise the student's performance and reporting of his or her research. The doctoral committee must be formed before the student may proceed to the qualifying examination.

The doctoral committee will determine the student's qualifications for independent research by means of a qualifying examination, which will be administered no later than the end of the third year. The nature of the qualifying examination varies between curricular groups. In biological oceanography, marine biology, geological sciences, physical oceanography, applied ocean science, and climate sciences the student will be expected to describe his or her proposed thesis research and satisfy the committee, in an oral examination, as to mastery of this and related topics. In marine chemistry and geochemistry the student, in an oral examination, is required to present and defend a single research proposition in his or her specialized area. The student also is required to provide a written summary of the research proposition, with references, prior to the examination. In geophysics, the student presents an original research problem, in the form of a written proposition, to the doctoral committee. The student's oral presentation and defense of this proposition completes the examination.

Dissertation

A requirement for the Ph.D. degree is the submission of a dissertation and a final examination in which the thesis is publicly defended. We encourage students to publish appropriate parts of their theses in the scientific literature. Individual chapters may be published as research articles prior to completion of the dissertation.

Departmental Ph.D. Time Limit Policies

Students must complete a qualifying examination by the end of three years, and must be advanced to candidacy for the Ph.D. degree by the end of four years. Total university support may not exceed seven years and total registered time at UCSD may not exceed eight years.

Special Financial Assistance and Fellowships

In addition to teaching assistantships, and graduate student researcher positions, fellowships, traineeships, and other awards available on a campus-wide competitive basis, the department has available a certain number of fellowships and graduate student researcher positions supported from research grants and contracts, or from industrial contributions.

COURSES

UPPER-DIVISION

198. Directed Group Study (2-4)

Directed group study on a topic or in a field not included in the regular department curricula, by special arrangement with a faculty member. (P/NP grades only.) Prerequisite: consent of instructor. Staff (F,W,S)
199. Special Studies (2 or 4)

Independent reading or research on a problem by special arrangement with a facuity member. (P/NP grades only.) Prerequisite: consent of instructor.

GRADUATE

200A. Computational Ocean Acoustics and Signal Processing I (4)
Overview of ocean acoustics. Acoustics Wave Equation with some analytic solution techniques. Ray Methods. introduction to Spectral and Normal Modes methods. introduction to beamforming including matched field processing. Computer programs will be constructed on all subjects covered. Prerequisites: basic physics and familiarity with differential equations and some linear algebra. Kuperman (F)

200B. Computational Ocean Acoustics and Signal Processing II (4)
Continuation of SIO 200A. Range dependent propagation models including adiabatic and coupled mode models and parabolic equations. More advanced topics in matched field processing. Prerequisite: SIO 200A. Kuperman (W)

200C. Computational Ocean Acoustics and Signal Processing III (4)
Continuation of SiO 200B. Modeling interference such as ambient noise. Time domain methods. Matched field tomography, nonlinear optimization methods, and geophysical inversion. Prerequisite: S/O 200B. Kuperman (S)

201. Geological Record of Climate Change (4)

Introduction to geological archives; the tools for paleoclimate reconstruction and a sampling of important issues from the geological record, including the development of "greenhouse" and "icehouse" worlds, the origin and evolution of glacial cycles, and the origin of "millennial scale" climate variability. Prerequisite: chemistry and physics required for graduate admission to SIO, ERTH 101 or equivalent, or consent of instructor. Charles (W)
202. Introduction to Climate and Climate Change (4)

Physical, dynamical, and thermodynamic processes that govern climate with emphasis on the atmosphere
and the oceans. Topics will include energy budget of the oceans and the atmosphere, hydrological cycle, the meridional heat transport, and climate forcing and feedbacks that govern decadal to longer-term changes in climate. Prerequisites: introductory courses in atmospheric sciences and oceanography; familiarity with solutions of linear differential equations. Ramanathan (S)

203A-B-C. Methods of Applied Analysis (4-4-4)

Methods of analysis with emphasis on physical applications, including: complex analysis, Fourier methods, Sturm-Liousville theory, boundary value problems and Green's function techniques, Frobenius' method, special functions, steepest descents, multiple scales, WKB methods, asymptotic expansions, variational methods, Wiener-Hopf techniques, Galerkin methods. Prerequisites: Math. 110 and 120A, or consent of instructors. Cessi, lerley, Young (F,W,S)

204A. Advanced Acoustics I (4)
Boundary value problems in vibrating systems, wave propagation in strings, bars, and plates. Fundamentals of acoustical transducers. Prerequisite: concurrent registration in ECE 145AL recommended. Hildebrand (F)

204B. Advanced Acoustics II (4)

Theory of radiation, transmission and scattering of sound with special application to ocean acoustics. Prerequisite:s concurrent registration in ECE 145BL recommended; SIO 204A or consent of instructor. Buckingham (W)

204C. Advanced Acoustics III (4)

Signal processing in underwater acoustics. Theory and hardwave embodiments. Prerequisites: concurrent registration in ECE 145 CL recommended; SIO 204B or consent of instructor. Buckingham (S)

205. Applied Nonparametric Statistics (4)

Methods of nonparametric statistical analysis. sampling, and experimental design with emphasis on those procedures particularly useful in field studies. Designed to supplement an introductory parametric statistics course. Offered in alternate years. Prerequisites: elementary statistics or consent of instructor. Venrick (S)

206. Sediment Transport as a Complex System (4)

Sediment transport and its influence on landforms, geologic deposits, and organisms will be studied through a critical examination of the literature, consideration of the fundamental solid and fluid mechanics, and an appeal to new techniques from complex systems analysis. Examples will be drawn from coastal, flu-vial-dominated, and arid environments. Prerequisite: some background in basic solid and fluid mechanics. (S/U grades permitted.) Werner (S)

207A. Digital Signal Processing I (4)

Sampling: A/D and D/A conversion, discrete linear system theory, z-transforms; digital filters, recursive and nonrecursive designs, quantization effects; fast Fourier transforms, windowing, high speed correlation and convoluting; discrete random signals; finite word length effects. Prerequisite: ECE 109, 153, or consent of instructor. (S / U grades permitted.) Hodgkiss (F)

207B. Digital Signal Processing II (4)

Power spectrum estimation; homomorphic signal processing; applications to: speech, radar/sonar, picture, biomedical, and geophysical data processing. Prerequisite: SIO 207A or consent of instructor. (S/U grades permitted.) Hodgkiss (W)

207C. Digital Signal Processing III (4)

Single and multichannel data processing in a time varying environment; adaptive filters; high resolution spectral estimation; linear prediction; adaptive beamforming. Prerequisite: SIO 207A-B or consent of instructor. (S/U grades permitted.) Hodgkiss (S)

207D. Array Processing (4)

The coherent processing of data collected from sensors distributed in space for signal enhancement and noise rejection or wavefield directionality estimation. Conventional and adaptive beamforming. Sparse array design techniques. Applications to ocean acoustics and marine geophysics. Prerequisite: SIO 207A or equivalent. (S/U grades permitted.) Hodgkiss, Dorman (F)
208. Seminar in Applied Ocean Sciences (1)

Topics in applied ocean sciences. One hour seminar. (S/U grades only). Staff (F,W,S)

209. Special Topics (1-4)

Within the next few years, lectures on various special subjects will be offered by members of the staff. The emphasis will be on topics that reveal the interdependence of the biological, chemical, geological, and physical processes operating in the oceans. (S / U grades permitted.) Staff (F,W,S)

210. Physical Oceanography (4)

Physical description of the sea; physical properties of seawater, methods and measurements, boundary processes, regional oceanography. Prerequisites: the mathematics and physics required for admission to the graduate curriculum in the Scripps Institution of Oceanography (see text), or consent of instructor. Hendershott, Talley (F)

211A-8. Ocean Waves (4-4)

Propagation and dynamics of waves in the ocean including the effects of stratification, rotation, topography, wind, and nonlinearity. Prerequisites: for SIO 211B, SIO 211A and SIO 214A, or consent of instructor. Guza, Hendershott, Melville, Salmon, (W,S)

212A-B. Dynamical Oceanography (4-4)

The equations of motion for rotating stratified flow and their application to large-scale ocean dynamics; the wind-driven circulation, flow over topography, and the dynamics of two-layer models. Prerequisite: SIO 214A or consent of instructor. Salmon, Talley (F)

213. Ocean Turbulence and Mixing (4)

Mixing mechanisms, their identification, description, and modeling. Introduction to turbulence, semi-empirical theories, importance of coherent structures, effects of stratification and rotation on turbulent structure, entrainment and mixing. Cross-listed with MAE 214B. (S / U grades permitted.) Armi (S)

214A. Introduction to Fluid Mechanics (4)

A survey of classical problems in fluid mechanics and approximate techniques of analysis. Topics include conservation equations, straight laminar flows, low and high Reynolds number laminar flow, stability of laminar flows, turbulent flow. Prerequisite: partial differential equations. Winant, Melville, Young, Armi (F,W)

214B. Environmental Fluid Dynamics (4)

Single-layer flows with a free surface, two-layer flows including exchange flows in harbors, estuaries, seas, and buildings. Continuously stratified flows with meteorological and oceanographic applications. Topographic effects, plumes, jets, and thermals. Crosslisted with MAE 224. Prerequisite: introductory graduate
level course in fluid mechanics. (S/U grades permitted.) Armi (F)
215. Introduction to Atmospheric Radiative Transfer (4) Introduces elementary concepts in electromagnetism and quantum mechanics to explain scattering, absorption and emission by gases, aerosols, and clouds. Elegant analytical solutions to the transfer equation will be employed in conjunction with satellite and laboratory measurements to consider phenomena such as the CO_{2} greenhouse effect, albedo effect of clouds, color of the skies, and atmospheric radiative cooling. Prerequisites: undergraduate courses in physics and differential calculus. Ramanathan (S)
216. Introduction to the Physics of Complex Systems (4) Emergent complex behavior in nonlinear, dissipative, open dynamical systems will be investigated by studying fundamental properties and their manifestation in examples drawn from the physical and biological sciences. Topics to include fractals, chaos, self-organization, artificial life, and neural networks. Prerequisites: basic solid and fluid mechanics, mathematics through PDEs, and computer programming skills. (S/U grades permitted.) Werner (W)

218. Atmospheric Dynamics and Physics (4)

Thermodynamics and statics of dry and moist air; equations of motion, scale analysis, elementary applications and wave solutions; baroclinic instability theory; atmospheric general circulation and energetics; thermal convection and laboratory analogues to atmospheric motions; turbulence and predictability theory; numerical models for weather forecasting and climate simulation. (S / \cup grades permitted.) Somerville, Norris (F)
219. Special Topics in Physical Oceanography (1-4)

Example topics are case histories and methods in physical oceanography, theories of the ocean circulation, numerical methods in large-scale ocean and atmospheric models, and natural electromagnetic phenomena in the earth and the oceans. (S/U grades permitted.) Staff (F,W,S)
220. Observations of Large-Scale Ocean Circulation (4) General circulation of the oceans; tropical, subtropical, and high-latitude current systems of the Atlantic, Indian, and Pacific Oceans and marginal seas; ocean heat flux and thermohaline circulations; observational basis of large-scale dynamics. Prerequisite: SIO 210. (S/U grades permitted.) Roemmich (S)

221A. Analysis of Physical Oceanographic Data (A) (4) Fundamental elements of analysis of geophysical and oceanographic time series, including sampling problems, least squares techniques, spectral analysis, interpretation of series, design of experiments. Prerequisite: consent of instructor. Guza, Pinkel (F)

221B. Analysis of Physical Oceanographic Data (B) (4) Techniques for analysis of physical oceanographic data involving many simultaneous processes including probability densities, sampling errors, spectral analysis, empirical orthogonal functions, correlation, linear estimation, objective mapping. Prerequisite: SIO 221A or consent of instructor. (S / U grades permitted.) Davis, Rudnick (W)

222. Underwater Bioacoustics (4)

introductory course to familiarize a broad spectrum of participants to underwater sound and its relationship to underwater animals. Basic physics of sound propagation. use of sound to study underwater animals and, the sounds made by the animals themselves for echolocation and communication will be covered.

Prerequisite: consent of instructor, (S/U grades permitted Jaffe (W)

223. Geophysical Data Analysis (4)

Design of geophysical experiments and analysis of geophysical measurements, interpretation of geophysical time series; sampling, least squares, spectrum analysis. Staff (W)
224. Internal Constitution of the Earth (4)

An examination of current knowledge about the composition and state of the earth's interior revealed by geophysical observations. Seismic velocity and mass density distributions; equations of state; phase changes; energy balance and temperatures; constraints on composition from extraterrestrial samples and exposed rocks; spherical and aspherical variations of properties. Prerequisites: calculus and differential equations, basic chemistry and physics, or consent of instructor. Staff (S)

225. Physics of Earth Materials (4)

Mathematics and physics of continuous media, focusing on geophysical problems. Topics include deformation, stress, conservation laws, elasticity, attenuation, viscoelasticity, fracture mechanics, and porous media. Prerequisite: consent of instructor. Staff (F)
226. Introduction to Marine Geophysics (4)

Methods of exploration geophysics with emphasis on those useful at sea. Magnetic and gravitational potential field methods, multi-beam echo sounding reflection and refraction seismology will be covered. Recent papers from the literature will also be read and discussed. Prerequisites: differential equations; at least one geology course. (S / U grades permitted.) Dorman, Hildebrand (W)

227A. Introduction to Seismology (4)

Introduction to seismometers and seismograms; stress and strain; potentials and the wave equation; geometrical ray theory and travel times in layered media; representation of seismic sources; WKBJ and synthetic seismograms; seismic hazards and other applications of seismology. Prerequisite: consent of instructor. (S/U grades permitted.) Staff (F)

227B. Advanced Seismology I (4)
Introduction to low-frequency digital data; continuum mechanics and the equations of motion; free oscillation solutions; construction of Earth models; excitation of free-oscillations and source mechanism retrieval; array processing of long-period data; modelling aspherical structure; surface waves. Prerequisite: consent of instructor. (S/U grades permitted.) Staff (W)

227C. Advanced Seismology II (4)

High-frequency wave propagation; methods for computing synthetic seismograms including WKBJ, reflectivity and finite differences; body-wave spectra; attenuation of body waves; source physics; reflection and refraction seismology; seismic tomography. Prerequisite: consent of instructor. (S/U grades permitted.) Staff (S)
229. Gravity and Geomagnetism (4)

Introduction to potential theory, with applications to gravity and geomagnetism. Topics include the geoid, spherical harmonics, Laplace's equation, the Dirichlet problem on a sphere, and Fourier methods. Gravity anomalies and geomagnetic field modeling and sources are discussed; also paleomagnetic observations. Prerequisites: advanced calculus, differential equations, complex variables, and familiarity with Maxwell's
equations, or consent of instructor. (S / U grades permitted.) C. Constable, Parker (F)
230. Introduction to Inverse Theory (4)

Solution of linear and nonlinear inverse problems in geophysics by optimization techniques such as norm minimization and linear programming. Construction of models by regularization; inference by bounding functionals. Illustrations from gravity, geomagnetism, and seismology. Prerequisite: consent of instructor. (S/U grades permitted.) Parker (W)

232. Environmental Geophysics (4)

A field-based course on the geophysical techniques employed in modern environmental surveys for ground water studies, contaminant and hazard assessment, soil and foundation evaluation, and archaeology. Includes shallow seismic, electrical, and ground penetrating radar methods. Seminars describing equipment and procedures will be followed by field trips, and the resulting data reduced and interpreted under supervision. Prerequisite: consent of instructor. S. Constable, Harding (S)

234. Geodynamics (4)

A general course on the dynamics and kinematics of the solid earth based on the text of Turcotte and Schubert. Topics include plate tectonics, heat flow, lithospheric cooling, flexure, viscous flow, global gravity, crustal structure, and other related topics. Prerequisite: familiarity with partial differential equations and Fourier transforms. (S/U grades permitted.) Sandwell, Phipps Morgan (W)
235. Geodesy (4)

An introduction to the science and technology of determining the Earth's shape and gravity field with emphasis on applying this knowledge to geophysical problems. We will discuss both terrestrial measurement methods and the newer space-geodetic techniques. Additional topics include geometric and gravimetric geodesy, geodetic astronomy, and adjustment procedures, with special attention to the determination of crustal deformation. Prerequisite: consent of instructor. (S/U grades permitted.) Agnew, Bock (W)

236. Satellite Remote Sensing (4)

A general course on physical principles of remote sensing based on the text by Rees. Topics include: orbit geometries and platforms; propagation, reflection, and emission of electromagnetic waves; electro-optical systems; passive microwave systems, ranging systems; and scattering techniques such as SAR. Prerequisite: consent of instructor. (S/U grades permitted.) Sandwell (F)
239. Special Topics in Geophysics (1-4)

Special course offerings by staff and visiting scientists. Example topics are seismic source theory, geophysical prospecting methods, dislocation theory and seismic mechanisms, tectonic interpretation of geodetic data, and dynamo theory. (S/U grades permitted.) Staff (F,W,S)

240. Marine Geology (4)

Introduction to the geomorphology, sedimentation, stratigraphy, vulcanism, structural geology, tectonics, and geological history of the oceans. Prerequisites: the physics and chemistry required for admission to the graduate curriculum in SIO, and ES 101 or equivalent, or consent of instructor. Staff (W)
241. Seminar in Hydrogeology and Tectonics (2)

Introduction to the role that fluids play in the physical development of active tectonic systems. Discussions will focus on
the nature of the processes controlling fluid flow through the Earth's crust and the dynamic interaction of fluid migration and faulting. Prerequisite: ES 101 or equivalent. (S/U grades permitted.) Brown (S)

242. Controversies in Geomorphology (4)

Conflicting ideas regarding the relation between physical processes which shape the Earth's surface and the resulting landforms are studied (a) through a critical examination of the literature, (b) using visualization of computer simulations, and (c) in two weekend field trips. Prerequisite: consent of instructor. (S / U grades only.) Werner (S)

243. Marine Paleoecology (4)

Paleoecology of marine plankton, nekton, and benthos. Patterns and changes in marine communities and ecosystems over geological time in relation to changes in the physical, chemical, and geological environment and biotic interactions. The preservation filter and inference of ecological processes from fossils and biogeochemical proxies. Biotic interchanges, incumbency, escalation and trends, mass extinctions, and recovery. Lectures, seminar discussion, laboratory, and field trips. Prerequisites: bachelor's degree in science or consent of instructor; open to undergraduates with completion of ERTH 104 and either BIEB 130 or BIEB 140, or equivalent. Jackson, Staff (W)

246. Seminar in Marine Geology and Geophysics (2)

Student seminars on controversial topics relating to the formation and history of the oceanic crust. Will stress a dynamical approach. Prerequisite: completion of two quarters of S/O 248 or consent of instructor. (S/U grades permitted.) Cande, Phipps Morgan, Sandwell, Sclater (F,W)

247. Rock Magnetism and Paleomagnetism (4)

Rock magnetism and acquisition of magnetic remanence in geological materials as well as laboratory procedures and data analysis (isolating remanence components and statistical approaches). The paleomagnetic literature will be used to illustrate applications in geological and geophysical problems. Prerequisites: one year each of college-level physics and geology; mathematics through calculus. (S / U grades permitted.) Tauxe (W)

248A-B-C. Essentials of Geology (4-4-4)

A rigorous, synoptic sequence of courses for entering graduate students covering major aspects of geology with emphasis on marine problems. Tectonics: plate tectonics of the crust and upper mantle, spreading centers, plate interiors, and continental margins. Geochemistry and Crustal Evolution: formation of the earth and terrestrial planets, chemical differentiation of the earth, magmatic systems in different tectonic settings, isotope and trace element geochemistry of igneous and metamorphic rocks. Marine sedi-ments-distribution and processes: types of sediments present on the seafloor and processes responsible for the observed distributions in nearshore and shelf environments, continental slope and deep sea. Includes physical and geochemical processes, diagenesis, hydrothermal systems and principles of paleoclimatology. Prerequisite: bachelor's degree in geology/earth sciences or consent of instructor. (S/U grades permitted.) Staff (F,W,S)
249. Special Topics in Marine Geology (1-4)

Special course offerings by staff and visiting scientists. (S/U grades permitted.) Staff (F,W,S)

251. Nuclear Geophysics and Oceanography (4)

Nuclear methods in geophysics and oceanography with emphasis on applications of natural cosmic ray produced nuclides and U, Th series nuclides; their source functions, applications, and mathematical models will be discussed. These methods include trace element geochemistry; mixing and transfer of substances between the atmosphere, hydrosphere, and the lithosphere; secular variations in the carbon cycle, rates of erosion of natural rock and soil surfaces, and biodynamics of phosphorous in the upper layers of the oceans. Prerequisite: consent of instructor. Lal (S)

252. Isotope Geochemistry (4)

Radioactive and stable isotope studies in geology and geochemistry, including geochronology, isotopes as tracers of magmatic processes, cosmic ray produced isotopes as tracers in the crust and weathering cycle, isotopic evolution of the crust and mantle. Offered in alternate years. Conjoined with ES 144. Prerequisite: S/O entrance requirements or consent of instructor. (S/U grades permitted.) Macdougall, Lal (S)

253. Igneous and Metamorphic Petrology (4)

Physical, chemical, and mineralogic properties of igneous and metamorphic rocks. Emphasis is on the origin and genetic relationships as interpreted from field occurrences, theoretical studies, and experimental data. Offered in alternate years. Prerequisites: physical geology; geochemistry, mineralogy, physical chemistry (may be taken concurrently). Hawkins (S)

256A. Introduction to Field Geology (4)

Mapping and interpretation of geologic units and structures in the fieid. Field observations at the surface are related to theory and extrapolated to three dimensions. Field work is done on weekends in local areas; field data are discussed and evaluated through applicable geologic principles in the laboratory. Conjoined with ERTH 162A. Prerequisites: consent of instructor; to be taken concurrently with SIO 256L. Brown, Castillo (W)

256L. Structural Analysis for Field Geology (4)

Principles of stratigraphy and structural geology applicable to field geologic studies. Discussion and laboratory exercises. Conjoined with ERTH 162L. Prerequisites: consent of instructor; to be taken concurrently with SIO 256A. Brown, Castillo (W)

257. Seminar in Petrology (4)

Discussion of current research in petrology and mineralogy. (S/U grades permitted.) Hawkins (W)

258A-B-C. Classics Seminar (1-4)
A discussion class usually held in conjunction with SIO 248A-B-C. Classic and contemporary papers dealing with topics discussed in 248 will be read and discussed. Normally required of all first- and second-year students in geological sciences. (S / U grades only.) Staff (F, W, S)

259. Atmospheric Geochemistry (4)

Topics in this introductory course include:structure and composition of the atmosphere; chemistry and isotopes of natural and man-made carbon-, nitrogen-, and sulfur-bearing trace gases; ozone and hydroxyl radical; halogenated gases; air-sea exchange; aerosols; climatic effects. (S/U grades permitted.) Wahlen, Weiss (W)
260. Marine Chemistry (4)

Chemical description of the sea; the distribution of chemical species in the world oceans, and their relationships to physical, biological, and geological processes. Gieskes, R. Keeling (W)
261. Energetics and Kinetics in Marine Systems (4)

This course teaches the physical chemical principles that control chemistry in marine systems. After a basic introduction to thermodynamics and its application to an understanding of the marine environment, the emphasis will be on the study of a variety of kinetic processes. Prerequisites: undergraduate chemistry equivalent to UCSD Chemistry 6 sequence, SIO 260. Dickson (F)

262. Seminar in Marine Natural Products (1)

Students will give seminars on current research topics in marine natural products chemistry. Prerequisite: consent of instructors. (S / U grades only.) Faulkner, Fenical (F, W, S)

263. Aqueous Chemistry (4)

This course emphasizes the chemical principles that control basic aqueous chemistry in marine systems. The focus will be to show that the geochemistry of the various elements in sea water and biological systems can be understood as a consequence of basic general chemical concepts such as electron structure, chemical bonding, and group and periodic properties. Prerequisite: undergraduate chemistry equivalent to UCSD Chemistry 6 sequence. Dickson (F)
265. Chemical Ecology of Marine Organisms (4)

An outline of the organic chemicals from marine organisms with special reference to their function in the marine environment. The differences between terrestrial and marine natural products will be stressed. Prerequisite: basic organic chemistry. Faulkner, Fenical (W)
268. Seminar in Geochemistry and Marine Chemistry (1) Student seminars on topics related to geochemistry and the chemistry of the marine environment. (S/U grades only.) Staff (W)

269. Special Topics in Marine Chemistry (1-4)

Special course offerings by staff and visiting scientists. (S / U grades permitted.) Staff (F, W, S)

270. Pelagic Ecology (4)

An analysis of the concepts and theories used to explain the biological events observed in the water column. Alternate years. Prerequisites: SIO 210, 280, or consent of instructor. Checkley (F)

270A. Fisheries Oceanography (4)

Aspects of marine ecology relevant to the reproduction, survival, and distribution of commercially important marine species. Alternate years only. Prerequisites: SIO 210 and 280, or consent of instructor. (S/U grades only.) Staff

271. Marine Zooplankton (4)

Lectures and laboratories treating the morphological, behavioral, and life history variations of the principal phyla of planktonic invertebrates and heterotrophic protists. Constraints of life at low Reynolds numbers; principles of allometry; growth processes of heterotrophic organisms. Prerequisite: SIO 280 or consent of instructor. (S / U grades permitted.) Ohman (S)

272. Biogeography (3)

A lecture course concerning the origin, development, and perpetuation of distributional patterns with emphasis on benthic marine organisms. Newman (W)

273. Professional Ethics in Science (2)

A seminar on the ethics and ethos of scientific research, based on published cases of unethical behavior. Given in alternate years. (S/U grades only.) Dayton (W)

274. Marine Arthropods (5)

Lectures and laboratories on the natural history, mor phology, taxonomy and phylogeny of arthropods with emphasis on marine forms. Alternate years. Prerequisite: consent of instructor. Hessler, Newman (W)

275A. Benthic Ecology (4)

Evolution and maintenance of benthic communities from the terrestrial margins to the deep sea. Special emphasis will be placed on physical and biological scaling and processes determining patterns of distribution and abundance; interrelationships between community structure and population phenomena, including trophic relationships, reproductive and recruitment patterns, succession, and life history biology. Offered in alternate years with SIO 275B. Prerequisite: consent of instructor; open to undergraduates. (S/U grades permitted.) Dayton, Levin, Sala (S)

275B. Natural History of Coastal Habitats (4)

Two three-hour laboratories per week, three four-six day field trips to sites from Mexico to Monterey Bay. Several one-day field trips to local habitats including lagoons, sand and rock intertidal habitats, areas of marine fossils, and areas with migrating birds. Format of course variable depending on student interests. Alternate years with 275A. Prerequisites: open to undergraduates with consent of instructor and completion of BIEB 130, introductory Marine Ecology. (S/U grades permitted.) Dayton (W)

276. Quantitative Theory of Populations and

Communities (4)

An introduction to the quantitative tools and conceptual issues underlying the study of the dynamics and structure of ecological systems. Prerequisite: calculus (three quarters) or consent of instructor. (S/U grades permitted.) Sugihara (F)

277. Deep-Sea Biology (4)

The ecology, zoogeography, taxonomy, and evolution of deep-sea organisms, with emphasis on the benthos. Offered alternate years. Prerequisite: consent of instructor. (S / U grades only.) Hessler (S)

278. Problems in Biological Oceanography (2)

Presentation of reports, review of literature, and discussion of current research in biological oceanography. Seminar. (S / U grades permitted.) Staff ($\mathrm{F}, \mathrm{W}, \mathrm{S}$)
279. Special Topics in Biological Oceanography (1-4) (S/U grades permitted.) Staff (F,W,S)

280. Biological Oceanography (4)

The biology and ecology of marine plankton, nekton, and benthos. Emphasis will be on processes regulating species, community, and ecosystem patterns and changes, including productivity, trophic relationships and species interactions with the physical, chemical, and geological environment. One or more field trips. Prerequisite: bachelor's degree in science or consent of instructor. Franks or Checkley, Levin (F)

281. Environmental Physiology and Biochemistry of Marine Organisms (4)

Biochemical mechanisms of adaptation of organisms to the marine environment. Special emphasis is on the effects of pressure, temperature, salinity, oxygen, and light on the physiology and biochemistry. Conjoined with BIBC 130. Prerequisites: adequate training in biochemistry and biology and consent of instructor. Felbeck (W)

282. Phytoplankton Diversity (4)

Molecular, biochemical, ecological, and evolutionary perspectives on the diversity of eukaryotic and
prokaryotic phytoplankton. Prerequisite: consent of instructor. Palenik (W)
283. Marine Biodiversity (4)

The origins, maintenance, collapse and restoration of diversity in the sea, discussed from both ecological and evolutionary perspectives. Prerequisite: consent of instructor. (S / U grades permitted). Knowlton (S)

284. Invertebrate Zoology (5)

Invertebrate zoology covering all of the major and minor phyla: phylogeny, anatomy, physiology and natural history. Lecture and laboratory demonstrations. Prerequisite: consent of instructors; no audits. Holland, Hessler (W)

285. Physical-Biological Interactions (4)

Physical and biological processes affecting growth and patchiness of plankton. Concepts and equations from physical oceanography will be presented and explored in a biological context. Ideas will be treated both theoretically and with examples from the literature. Prerequisites: introductory calculus and SIO 210, or consent of instructor. Franks (S)

286. Critiques and Data Reanalyses (4)

A case-history approach to critical reading of scientific literature. Examples are drawn from reports on ecologically relevant behavior of marine animals; issues covered include tractability of the problem; design of the experiments; and re-examination of the evidence, with an emphasis on statistical analysis and alternative interpretations of the data. Offered alternate years. Prerequisites: sound preparation in statistics; consent of instructor. Enright (F)

287A. Marine Microbial Ecology (4)

Recent developments in the study of marine bacteria. Emphasis will be on biochemical and physiological adaptations of marine bacteria to the ocean environment. Bacterial metabolism, growth, and death will also be discussed in the context of trophic interactions and flows of material and energy in marine ecosystems. Molecular biology techniques used in the study of bacterial ecology will also be discussed. Prerequisite: consent of instructor. (S / U grades permitted.) Azam (F)

287B. Microbial Physiology (4)
Prokaryotic microbial physiology will be discussed primarily from a biochemical standpoint with emphasis on mechanism. Topics will vary from year to year but will include the following themes: Central Metabolism. Bioenergetics, Biosynthesis, Regulation, Differentiation. Prokaryotic Structure-Function and Relationships, Prerequisites: BiBC100 or BIBC 102 or equivalent. Haygood, Saier (S).

288. Environmental Microbiology Laboratory (4)

This course emphasizes advanced techniques and theory in environmental microbiology. Students will perform experiments concerning (a) enrichment of diverse microbes (b) microbial enumeration and identification (c) metabolic and physiochemical adaptations, and (d) biotechnology, along with an independent project. Prerequisite: consent of instructors, Bartlett, Brahamsha, Haygood, Tebo (S)

292. Scientific Communication (2)

Forms of scientific communication, practical exercise in scientific writing and short oral communication and in criticism and editing; preparation of illustrations, preparation of proposals; scientific societies and the history of scientific communication. Examples from any field of science, most commonly biology, marine biology, ecol-
ogy, and neuroscience. Prerequisite: graduate status in science. (S/U grades only.) Yayanos, Staff (S)
294. Biology of Fishes (5)

The comparative evolution, morphology, physiology, and ecology of fishes. Special emphasis on local and deep-sea and pelagic forms in laboratory. Prerequisite: graduate standing or consent of instructor. Hastings (S)
296. Special Topics in Marine Biology (1-5)

Example topics are reproduction in marine animals, adaptation to marine environments, larval biology, marine fisheries, macromolecular evolution, physical chemical topics in physiology, philosophy of science. (S / U grades permitted.) Staff ($F, \mathrm{~W}, \mathrm{~S}$)
297. Marine Biology Seminar (1)

Lectures given by visiting scientists and resident staff and students. (S / U grades only.) Staff (F, W, S)

298. Special Studies in Marine Sciences (1-4)

Reading and laboratory study of special topics under the direction of a faculty member. Exact subject matter to be arranged in individual cases. Prerequisite:graduate standing. (S/U grades permitted.) Staff (F,W,S)
299. Research (1-12)
(S/U grades permitted.) Staff (F,W,S)

Sociology

OFFICE: Social Sciences Building, Room 401
http://dssadmin.ucsd.edu/sociology

Professors

Harvey S. Goldman, Ph.D.
Jeffrey M. Haydu, Ph.D.
Bennetta W. Jules-Rosette, Ph.D.
Rebecca E. Klatch, Ph.D.
Richard P. Madsen, Ph.D.
Timothy L. McDaniel, Ph.D., Academic Senate
Distinguished Teaching Award
Hugh B. Mehan, Ph.D., Academic Senate
Distinguished Teaching Award
Chandra Mukerji, Ph.D.
David P. Phillips, Ph.D.
Andrew T. Scull, Ph.D.
Gershon Shafir, Ph.D.
Steven Shapin, Ph.D.
Carlos H. Waisman, Ph.D., Chair

Associate Professors

Richard G. Biernacki, Ph.D. Maria Charles, Ph.D. Juan Diez Medrano, Ph.D. Steven Epstein, Ph.D. Ivan T. Evans, Ph.D. Martha Lampland, Ph.D.

Akos Rona-Tas, Ph.D. John D. Skrentny, Ph.D. Christena Turner, Ph.D. Leon Zamosc, Ph.D.

Assistant Professor

Lisa M. Catanzarite, Ph.D.

Adjunct Professors

Yen Espiritu, Ph.D.
Adrian D. S. Johns, Ph.D.
Michael S. Schudson, Ph.D.
Susan Leigh Star, Ph.D.
Mary L.Walshok, Ph.D.

Emeritus

Bennett M. Berger, Ph.D. Rae Lesser Blumberg, Ph.D. Aaron V. Cicourel, Ph.D. Jack D. Douglas, Ph.D. Joseph R. Gusfield, Ph.D. Jacqueline P. Wiseman, Ph.D.

Sociology at UCSD

Sociology studies societies and human groups: their composition, organization, culture, and development. It combines scientific and humanistic methods to investigate a subject that is both relevant and broad-ranging from social interaction in everyday life to social changes taking place on a global scale. The Department of Sociology at UCSD offers an innovative program that covers the breadth of the discipline while giving students opportunities to specialize in areas of their choice, to conduct independent research, and to participate in an Honors Program. The department also encourages majors to study abroad and to take courses in other humanities and social science departments in order to expand their perspective on sociological topics.

Students at UCSD can explore a full range of sociological inquiry through courses in such established fields as Third World development, law, culture, social movements, religion, race and ethnic relations, gender roles, medicine, and mental illness. In addition, students have the opportunity to participate in courses found in few other sociology departments, such as the politics of language, ethnographic film, the Holocaust, comparative sex stratification, mass media, and revolutions. The faculty also teach an exceptional array of courses focusing on specific societies or world
regions, including Africa, Japan, China, Latin America, eastern Europe, the Soviet Union, and the United States.

Thus sociology is a valuable major for students who want to enter law, medicine, architecture, business, or politics. It also provides a solid liberal arts education for students who plan careers in such fields as criminal justice, public health, urban planning, social welfare, counseling, public administration, international relations, or market research. For students who wish to pursue graduate study in the social sciences for careers in teaching or scholarly research, an undergraduate degree from the Department of Sociology will provide a thorough grounding in recent theoretical and methodological advances in the discipline. A sociology major offers excellent preparation for teaching in the elementary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Holocaust, comparative sex stratification, mass media, and revolutions. The faculty also teach an exceptional array of courses focusing on specific societies or world regions, including Africa, Japan, China, Latin America, eastern Europe, the Soviet Union, and the United States.

Thus sociology is a valuable major for students who want to enter law, medicine, architecture, business, or politics. It also provides a solid liberal arts education for students who plan careers in such fields as criminal justice, public health, urban planning, social welfare, counseling, public administration, international relations, or market research. For students who wish to pursue graduate study in the social sciences for careers in teaching or scholarly research, an undergraduate degree from the Department of Sociology will provide a thorough grounding in recent theoretical and methodological advances in the discipline. A sociology major offers excellent preparation for teaching in the elementary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program for information about the prerequisite and professional preparation requirements. It is recommended that you contact TEP as early as possible in your academic career. Whatever the career choice, the study of sociology can help the student cultivate a critical awareness of social life.

Students interested in majoring or minoring in sociology should stop by the Department of Sociology office, SSB 401, for a brochure on the program and a student handbook. These clarify
specific procedures and guidelines, and provide recommendations for areas of specialization within the major, as well as for graduate studies and careers in sociology.

The Undergraduate Program

The Major

To receive a B.A. with a major in sociology, students must complete four lower-division and twelve upper-division courses in sociology, including the required courses listed below.

A 2.0 GPA is required in the major, and students must earn at least a C - in each course used for the major. No courses taken to apply toward the major may be taken on a Pass/Not Pass basis except Sociology 197, 198 or 199. Only one such special studies course (including internships) may be applied toward the major. These special studies courses must be applied for and approved by the department before the beginning of the quarter in which the student wishes to enroll, and can only be taken on a Pass/Not Pass basis. See the staff undergraduate coordinator for the necessary application forms and deadlines.

Lower-Division

Sociology $1 A, 1 B, 20$, and 60 are required for the major. We strongly recommend that you take Sociology $1 A$ and Sociology $1 B$ in sequence. It is advisable that students complete these required lower-division courses (which should be taken during the freshman or sophomore year) before continuing with their upper-division work.

Upper-Division

Twelve upper-division courses are necessary for the major-five are courses in required clusters, and the other seven are upper-division electives. The upper-division sociology curriculum is divided into four areas of concentration (clusters) as follows:

A. Theory and Method
 (courses designated Soc/A)
 Theory
 $100,101 \mathrm{M}, 102,103 \mathrm{~F}, 103 \mathrm{~T}$
 Methods
 103M, 104, 105, 106, 108A, 108B, 109, 109S, 110A, 110B, 110C

B. Culture, Language, and Social Interaction

(courses designated Soc/B)
$112,113,114,116,117,118,118 \mathrm{~A}, 119,120 \mathrm{~S}$,
$128,130,131,142,143,145,146,160,161$,
$162,162 \mathrm{R}, 164 \mathrm{~J}, 166,167,170,172,173,174$
C. Organizations and Institutions
(courses designated Soc/C)
121, 123, 124, 125, 126, 129, 132, 134A, 134B,
135, 136A, 136B, 137, 138A-B, 139, 140, 141,
144, 148, 148C, 148L, 148M, 151M, 152, 153,
155, 156, 157, 159, 165A/B, 168E, 168T, 180
D. Comparative and Historical
(courses designated Soc/D) 120W, 133, 151, 158J, 169, 171, 175, 178, 179, 181, 185, 187, 187S, 188A, 188B, 188D, 188E, 188F, 188I, 188J, 188K, 189
All students must complete Sociology 100 (students are strongly advised to do so by the end of their junior year) and one method course from the list above. (Method courses are numbered Soc/A 103M to 110C.) One course is required in each of the other three areas. Students are encouraged to complete their theory and methods courses early in their program, since theoretical perspectives and skills in methods will enhance their subsequent course work.

In fulfilling the major, students may apply, with the Department of Sociology approval, up to two upper-division courses from the relevant offerings in the Departments of Anthropology, Economics, History, Linguistics, Political Science, Psychology, Urban Studies and Planning, macro and micro areas of the Department of Communication, and the Teacher Education Program. Courses from departments other than these may be taken if the student submits a petition to, and obtains approval from, the Department of Sociology.

Education Abroad Program

Students are able to participate in the UC Education Abroad Program (EAP) or UCSD's Opportunities Abroad Program (OAP) while still making progress toward completing their major. Students considering this option should discuss their plans with the undergraduate adviser prior to going abroad, and courses taken abroad must be approved by the department. It may be possible to use some related courses outside of the discipline of sociology toward the major. For more information on EAP, see the section of this catalog on the Education Abroad Program. Interested students should contact the Programs Abroad Office in the International Center. To petition particular courses taken abroad, see the undergraduate adviser in the Department of Sociology.

Recommendations for Transfer Students

If students wish to use courses taken at other institutions towards their major, they must first meet with the staff undergraduate coordinator in the department during designated office hours. (College transcripts, college catalogs, and course syllabi should be brought at the time of appointment.) Students are required to fill out one student petition per transfer course as well as an additional "information sheet" available in the Department of Sociology. Once these petitions are turned in, a determination will be made regarding the transferring of courses into the program.

It is important to note that eight of the twelve upper-division courses in the undergraduate program must be taken in the Department of Sociology at UCSD, unless students obtain special acceptance of additional courses from the chair and the faculty undergraduate adviser.

The Minor

The minor consists of seven sociology courses: two lower-division and five upper-division. Unless colleges specify specific courses to be taken, the student may choose any two lower-division sociology courses (Soc/L 1A, 1B, 10, 20, 30, 40 or 60) and any five upper-division courses (Soc. 100 to 190). Courses for the minor must be taken for a letter grade only. Special study courses or internships may not be applied toward the minor.

Science and Society Minor

OFFICE: 462 Social Science Building, (858) 534-2729

Faculty

Steven Epstein, Ph.D., Associate Professor of Sociology
Adrian Johns, Ph.D., Adjunct Professor of Sociology Andrew Scull, Ph.D., Professor of Sociology Steven Shapin, Ph.D., Professor of Sociology (Coordinator) sshapin@ucsd.edu

The Science and Society Minor offers an opportunity for students to examine in a systematic and extended fashion the nature, significance, and development of modern scientific, technological, and medical enterprises. Science, technology, and medicine permeate modern society, and scientific developments often spark heated public debate. Yet undergraduate education rarely offers the
chance to engage in systematic reflection upon how science influences society and how society influences science. The Science and Society Minor provides students with an innovative and interlinked series of courses that permit precisely such a disciplined discussion of these issues.

Students complete the Science and Society Minor by taking two lower-division and five upper-division courses, a sequence that allows them to explore how modern scientific and medical knowledge and their associated technologies developed from the Scientific Revolution to the present; to understand how the roles of the scientist and the physician assumed their modern forms; to grasp how the scientific, technological, and medical communities came to possess their current authority; and to consider the appropriate role of the public in debating scientific and technological issues. A number of the courses offered focus on present-day scientific, technological, and medical topics and controversies: the impact of the Internet, the problems and prospects of molecular medicine, the disputes over the reality and the possible impact of global warming, scientific fraud, the ethics of medical experimentation, the AIDS epidemic, etc. Others provide students with historical perspectives on the changing meaning and character of science, medicine, and technology as key features of modernity.

The Science and Society Minor is of particular relevance to prospective science and engineering majors interested in developing a broader understanding of the scientific enterprise; to pre-medical students wishing to understand the intellectual and institutional foundations of modern medicine; and to social science and humanities students wanting to obtain a systematic grasp of contemporary scientific and technological society.

Science and Society Minor Requirements

The minor consists of two lower-division courses and five upper-division courses, chosen from the list below. One or more relevant upperdivision courses offered in other departments or taken at another university may be petitioned for the minor, with the prior approval of the coordinator of the minor.

LOWER-DIVISION COURSES

Soc/L 30: Science and Society

Soc/L 40: Sociology of Health Care Issues

UPPER-DIVISION COURSES

Soc/B 128: Media and Society: From the Invention of Print to the Internet

Soc/C 134A: The Making of Modern Medicine
Soc/C 134B: Medicine in the Twentieth Century
Soc/C 135: Medical Sociology
Soc/C 136A: Sociology of Mental Illness: An Historical Approach

Soc/C 1368: Sociology of Mental Illness in Contemporary Society
Soc/C 137: Knowledge and Practice in Biomedicine
Soc/C 168E: Sociology of Science
Soc/C 168T: Sociology of Technology
Soc/D 171: Science and the Making of the Modern World

The Honors Program

The Department of Sociology offers an honors program to those students who have demonstrated excellence in the sociology major. Successful completion of the honors program enables the student to graduate "With Highest Distinction,""With High Distinction," or "With Distinction," depending upon performance in the program.

Eligibility

Students may apply to the honors program if they meet the following requirements:

1. junior standing (ninety units completed)
2. GPA of 3.5 or better in the major
3. recommendation of a faculty sponsor familiar with student's work
4. must have completed at least four upper-division sociology courses
5. overall GPA of 3.2 or better
6. must have completed Soc/A 100 and one upper-division methods course prior to the fall quarter when the honors course begins; alternatively, the consent of the honors program director or the undergraduate adviser must be obtained

Interested students may pick up an application from the staff undergraduate coordinator in the Department of Sociology. Completed applications must be in the department office no later than week five of the spring quarter prior to the start of the honors program in the fall.

Students traveling abroad during their junior year should note that the deadline for applications still applies to them and should make arrangements accordingly.

Enrollment in the honors program is limited. Final decisions on acceptance into the program will be made by the presiding faculty member.

Course Requirement

The student must take Sociology 196A, Advanced Studies in Sociology, and Sociology 196B, Supervised Thesis Research, which will count as two of the twelve upper-division courses required for the major. Each student will choose a faculty adviser to help supervise the thesis research and writing with the honors program director.

Students whose GPA in the major falls below 3.5 or who do not earn at least an A- in the honors seminars will not graduate with distinction, but they may count the two honors courses among the twelve upper-division courses required for the major. Students must maintain a 3.5 GPA in the major and a 3.2 overall GPA until final graduation, in order to receive honors in the sociology honors program. To graduate "With Highest Distinction" the student must earn an A+; to graduate "With High Distinction" the student must earn an A; and to graduate "With Distinction" the grade must be an A-.

The Graduate Program

The graduate program in sociology at the University of California, San Diego is organized on the basis of programs of specialization in comparative and historical sociology, the sociology of culture, and the sociology of science, technology, and medicine. It is designed to prepare students for two main goals: to contribute to the increase of knowledge about societies and thereby advance the discipline of sociology; and to teach sociology at the graduate and undergraduate levels. The majority of graduates from the program find teaching and research positions in colleges and universities, although some also work in non-academic research and social policy positions. The department offers a course of study leading to the doctor of philosophy degree. While the Master of Arts degree is awarded as a step toward the completion of the Ph.D., applicants seeking only an M.A. degree are not accepted.

Departmental Research and Teaching

Members of the department are engaged in a wide variety of research and teaching activities
that fall into three broad areas of concentration that correspond to our programs of specialization:

COMPARATIVE AND HISTORICAL SOCIOLOGY

Many members of our faculty have research interests in the historical and/or comparative analysis of social institutions, structures, and processes, and social change in general. Using methods of comparative historical research and concepts drawn from social theory, individual faculty are engaged in research on, among other things: (1) political sociology, including revolution, social and political movements, and the evolution of the modern state, (2) economic transformation in contemporary societies (industrial countries, "emerging markets," and agrarian societies), including the labor process, stratification and the organization of work, and the development of market economies, (3) collective identities and social relations, including nationalism, class, gender, race, and ethnicity, and (4) social control and institutionalization. The department is among the most internationally oriented departments of sociology in the world, with specialists in most regions of the world, including Eastern and Western Europe, the former Soviet Union, Japan, China, southern Africa, Latin America, the Middle East, as well as the United States.

SOCIOLOGY OF CULTURE

A great number of the faculty have research and teaching interests in the sociology of culture broadly conceived. Sociology of culture involves topics such as: (1) the interpretation of the symbol systems that constitute meaningful resources for social action, (2) the analysis of the processes through which patterns of meaning are socially reproduced, and (3) the study of the interaction between culture change and social change. Many faculty have an interest in the comparative study of cultural traditions around the world. Others are interested in the relationship of culture to social movements and collective identities. And some see the sociology of culture not simply as a subdiscipline but as a general theoretical perspective on social experience. More specific substantive interests include sociology of knowledge and intellectuals, political culture, the culture of work, education and socialization, comparative moral cultures, the cultural dimensions of ethnicity, gender, sexuality, and popular culture.

SOCIOLOGY OF SCIENCE, TECHNOLOGY, AND MEDICINE

A substantial fraction of the faculty has research and teaching interests focused on the interrelationships between science, technology, and medicine and modern society. Drawing on a range of sociological and historical methodologies, individual faculty are engaged in research on science and social movements, scientists and the state, biomedicine, the social history of madness and psychiatry, the historical sociology of scientific knowledge and practice, and sociological approaches to the Scientific Revolution. (For information on the interdisciplinary Science Studies Program, see below Specialized Programs of Study.)

In addition, the department plans to add a fourth program of specialization in inequalities (class, gender, and race). Many of our faculty teach and do research in these fields.

Admission

Admission to the graduate program in sociology is open to students with excellent undergraduate records in any field. Some previous work in sociology or the social and behavioral sciences is advisable, but not required. New students are admitted in the fall quarter of each academic year. A bachelor's degree from an accredited college or university is a prerequisite for admission to the graduate program.
Prospective applicants should submit the official application for admission and awards (same form), one set of official transcripts from each institution attended after high school, official scores from the Graduate Record Examination, application fee, at least three letters of recommendation, and one or more samples of the applicant's own writing, such as a term paper. Additionally, foreign applicants must submit official scores from the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE). Applicants are encouraged to contact and communicate with the department to talk with faculty and graduate students. The application deadline is January 1.

Program of Study

The graduate programs in the University of California system work under the "normative time" standard. Normative time refers to the time period in which students, under normal circumstances, are expected to complete their require-
ments for the Ph.D. degree. Each department establishes a normative time for its doctoral program, and for the Department of Sociology, as for most graduate programs in the university, it is six years. To provide an incentive for students to complete the Ph.D. within the normative time period, partial fee grants are made to all students who have advanced to candidacy and whose accrued time does not exceed six years (eighteen quarters). Once a student exceeds six years, he or she must again pay the full fees quarterly until graduation.

COURSE REQUIREMENTS

Students are required to enroll as full-time graduate students, to carry a minimum enrollment of twelve units of graduate-level courses each quarter, and to maintain a grade-point average of 3.0 or better.

Theory and Methods Requirements

Students take almost all the courses on theory and methods in their first year in the program. They are required to take two courses in classical sociological theory (Sociology 201A/B) and one in contemporary theory (Sociology 202), two in quantitative methods (Sociology 205 and 206), and two in qualitative methods (Sociology 203, Field Methods; Sociology 204, Text and Discourse Analysis; Sociology 207, Comparative-Historical Methods; or Sociology 227, Ethnographic Film). In addition, students enroll in a one-credit introduction to the faculty and their research (Sociology 208, Faculty Research Seminar).

The remaining theory and methods requirements are Sociology 252 and 253 , a two-quarter practicum, which will be taken in the second or third year. In these courses, students will complete a piece of research they have started in a previous seminar, write a paper, and revise it for submission to a journal. The emphasis in the first quarter will be on the completion of the research project, and the second quarter will focus on the writing of the results and revision of drafts.

Core Seminars

These are survey courses in major substantive fields. Students must take three out of the following eight, which the department offers regularly: Sociology 264, Economic Sociology; Sociology 226, Political Sociology; Sociology 216, Sociology of Culture; Sociology 234, Intellectual Foundations of the Study of Science, Technology, and Medicine; Sociology 212, Social Stratification;

Sociology 267, Sociology of Gender; Sociology 244, Sociology of Race and Ethnicity; and Sociology 222 , Social Movements. These are major areas of sociology and fields in which several of the members of our faculty specialize. Moreover, several of these seminars serve as introductions to the programs of specialization on which the program is based (see below).

Remaining Courses

Beyond these requirements, students must take six seminars, at least two of which must be in the program of specialization selected by the student. In total, eighteen graduate courses, plus the introduction to the faculty, are required for advancing to candidacy.

THE PROGRAMS OF SPECIALIZATION

The department currently offers specialized Ph.D. programs in comparative and historical sociology, sociology of culture, and the sociology of science, technology, and medicine. We are planning to establish a fourth program in social inequality (class, gender, and race). Affiliation to the clusters is voluntary and non-exclusive, and the department encourages multiple participation and joint activities among the groups. Students could qualify in more than one concentration, if they wish, and they will not be required to specialize in any one of them (although we are confident that most will find it advantageous to do so). The curriculum for each specialization is relatively light, in order to provide students with a solid common background in theory and methods, and allow for as much interface as possible between the programs. The requirements are:appropriate qualitative methods courses, one of the core seminars (see above) in areas relevant for the concentration, two specialized seminars, pertinent specialties for the field examination, and the dissertation.
The qualitative methods requirement varies according to the program of specialization. Students who concentrate in comparative and historical sociology must take Sociology 207, Comparative-Historical Methods. For sociology of culture, Sociology 203, Field Methods, is required. Finally, students specializing in sociology of science, technology, and medicine must choose two of the following three courses in qualitative methods: Sociology 203, Field Methods; Sociology 204, Text and Discourse Analysis; and Sociology 207, Comparative-Historical Methods. The required
core seminar will be one of the two specialties that students prepare for the field examination.

PROGRAM OVERVIEW

First-year Evaluation

All students are evaluated by the department faculty toward the end of the academic year. At the end of the student's first year in the program, student performance is also evaluated by the Graduate Program Committee, including the director of Graduate Studies, the faculty teaching the core sequences, and by their faculty adviser. Students whose performance is satisfactory are allowed to continue the regular course of study; others may be asked to repeat some courses or to do additional coursework; others may be asked to withdraw from the program. Evaluations are communicated to students in writing.

Second-year Evaluation and the M.A. Degree

The master's degree is earned as one of the requirements of the Ph.D. and is based on the quality of the student's course work described below. At the end of the second year, students are evaluated by the Graduate Program Committee for the master's degree. At that time, the committee ascertains the student's suitability for doctoral work.

Students must complete eighteen courses in order to receive the M.A. At the beginning of the spring quarter of their second year in the program or at the beginning of the quarter in which they wish to to be considered, students must submit to the committee for evaluation, three papers they have written for seminars taught by different faculty. Reviewers assess the quality of the overall record and determine whether it indicates a potential for conducting doctoral research.

The final decision regarding the M.A. degree is based on the student's GPA, the three papers, and yearly faculty evaluations. The committee makes one of the following three recommendations: pass, M.A. only , and non-pass. Pass means that students may proceed toward the Ph.D. Those given M.A. only evaluations are granted the degree but may not continue toward the Ph.D. Students who received non-pass evaluations are asked to withdraw without a graduate degree.
Students admitted for a Ph.D. with a master's degree in sociology may not be candidates for a second master's degree.

The Field Examination

Upon completion of the theory and methods requirements, the three core seminars, and the six elective seminars, students become eligible to take the field examination. This examination must be completed by the end of the student's third year in the program. The object of the field examination is to demonstrate mastery of two established, broad, and distinct fields of sociological inquiry, selected from a list of fields provided by the department. The examination is carried out by a faculty committee composed of no fewer than four departmental faculty, one of whom serves as chair. The choice of fields and the composition of the committee must be approved by the Graduate Program Committee. Faculty from departments other than sociology may be added (or, if necessary, substituted) by petition to the Graduate Program Committee.

The demonstration of mastery has both written and oral components. The written part consists of two papers, one in each field, and a course syllabus for a course they would teach in one of the two fields in which they take their orals. The papers are critical reviews of the literature in that field, demonstrating a grasp of key issues and debates, and of the broad, conceptual history of the field. These reviews are based on a bibliography drawn up by the student in consultation with relevant committee members and other faculty in each field. Field papers are limited to a minimum of thirty, maximum of fifty pages each, exclusive of notes and bibliography. The bibliography in each field should include at least twenty to thirty books or article equivalents. The two bibliographies may not significantly overlap, either in literature surveyed or in specific titles. In addition to the two papers, the student must submit to the examining committee the syllabus.

The oral part lasts two hours and covers both fields. It is given by the examining committee, sitting as a whole, and is based on the bibliographies, papers, and course syllabus submitted by the student. Following the oral examination, the committee evaluates the student on the basis of both the written and the oral components of the examination. Possible grades are high pass, pass, conditional pass, and no pass. High pass recognizes exceptional performance. Conditional pass indicates that the committee has passed the student pending the completion of additional work. Students receiving a grade of no pass will have an opportunity to retake the examination, should
they so desire, no later than the end of the subsequent quarter. Students electing not to retake the examination or receiving a grade of no pass a second time will be asked to withdraw from the graduate program.

Students will have to constitute their field exam committee two months before the proposed date of the exam. Once the committee is constituted it can be changed only if a faculty member becomes unavailable. Students will have to submit one copy per member of a substantial draft of their field papers one month in advance to the graduate coordinator, who then distributes them to the committee members. Faculty, in, turn will commit to read and comment on the papers in two weeks time.

All papers (as opposed to the drafts) and the syllabus must be submitted to the committee two weeks before the fields.

The Dissertation Prospectus and Hearing

The central intellectual activity leading to the award of the Ph.D. degree is the doctoral dissertation: an original contribution to knowledge, based on substantial, original research on a topic of intellectual significance within the field of sociology.

Following successful completion of the field examination, the student establishes a doctoral committee to supervise dissertation research. This is a five-person committee, including three faculty from within the department and two from other departments within the university. Committee members are chosen by the student and approved by the department chair. The student asks one of the department members to serve as chair. This composition of the committee may or may not overlap with the committee that carried out the field examination.
By the end of the spring quarter of the fourth year in the department, the student must have a dissertation prospectus approved by his or her doctoral committee. The dissertation prospectus is a document that presents the research topic of the dissertation, places it in the context of the relevant literature, discusses its significance, specifies and justifies the methods the student intends to use, establishes the feasibility of the research, and indicates the anticipated steps leading to completion.
Following submission of the dissertation prospectus, the student must defend it at a hearing before the doctoral committee. The purpose of the hearing is to certify that the prospectus is significant and feasible, that the research design is
appropriate, and that the student is prepared to carry it out successfully. Based on the written prospectus and the hearing, the committee may choose to approve the prospectus or to ask for revisions and resubmission. The prospectus hearing serves, in effect, as a qualifying examination, and approval of the dissertation prospectus is the final step to advancement to candidacy for the Ph.D. degree.
Students will have to constitute their dissertation committee three months before the proposed date of the exam. Once the committee is constituted it can be changed only if a faculty member becomes unavailable. Students will have to submit one copy per member of a substantial draft of their prospectus one month in advance to the graduate coordinator, who then distributes them to the committee members. Faculty in turn, will commit to read and comment on the papers in two weeks time.

The Doctoral Dissertation

Upon approval of the dissertation prospectus, the student proceeds with dissertation research. Students are expected to consult with committee members as the research progresses and to keep the committee chair advised of progress made.
Once the dissertation is substantially completed and committee members have had the opportunity to review drafts of the written work, the committee meets at least one month before the defense takes place, with or without the student present, to consider the progress made and to identify concerns, changes to be made, or further work to be done. Once the committee members are substantially satisfied with the written work, the student, in consultation with the committee, schedules the oral defense of the dissertation. By university regulation, this defense is open to the public.

The final version of the dissertation must be approved by each member of the doctoral committee. All members of the committee must be present at the defense. Exceptions may be made only under very restrictive conditions. Further, the student must consult with the Office of Graduate Studies and Research to be told of appropriate requirements for the thesis to be filed. Having obtained this approval and successfully defended the dissertation in oral examination, the student is eligible to receive the Ph.D. degree. The final version of the dissertation is then filed with the university librarian via the Office of Graduate Studies and Research. Acceptance of the dissertation by
the university librarian is the final step in completing all requirements for the Ph.D.

Ph.D.Time Limit Policies

Students must be advanced to candidacy by the end of four years (PCTL—Precandidacy Time Limit). Normative time is six years. Total university financial support (SUTL—Support Time Limit) cannot exceed seven years. Total registered (TRTL—Total Registered Time Limit) time at UCSD cannot exceed eight years.

Interdisciplinary Programs of Study

SOCIOLOGY OF SCIENCE, TECHNOLOGY, AND MEDICINE AND THE SCIENCE STUDIES PROGRAM

Students interested in the interrelationships between science, technology, and medicine (STM) and the larger social order can opt for one of two specialized programs of study. The first of these is undertaken wholly within the department (see above). The second approach is to seek admission to the Science Studies Program, a joint doctoral program that brings together graduate students from the Departments of Sociology, History, Philosophy, and Communication. Students in the Program pursue a cross-disciplinary curriculum leading to dissertation research in the sociology of science, technology, or medicine, broadly conceived. Sociology faculty affiliated with this Program have research interests across the broad spectrum of science studies, from the philosophy and history of science to the organization of scientific discovery and the culture of specific work.

Students may seek admission to the Science Studies Program at the same time they apply for admission to the Department of Sociology, or may, in certain circumstances, request to be accepted into the Program at some point after entering the University of California, San Diego. The requirements of the Science Studies Program are similar to those of the standard graduate program. However, there are some distinct curricular requirements in the first two years of the
Program, as well as some distinct emphases in the qualifying examination. The core of the Program is a two-quarter team-taught seminar sequence taken in the first year, the first quarter being an interdisciplinary introduction to science studies and the second quarter (or core seminar) being devoted to special topics in science studies which vary from year to year.

For details on the Science Studies Program, including information about requirements, write to the University of California, San Diego, Coordinator, Science Studies Program 0104, 9500 Gilman Drive, La Jolla, CA 92093-0104; or telephone the program coordinator at (858) 534-0491. Visit their Web site: http://sciencestudies.ucsd.edu

INTERDISCIPLINARY PROGRAM IN SOCIOLOGY AND COGNITIVE SCIENCE

This program allows students to earn a Ph.D. in sociology and cognitive science. Students must complete all the regular sociology requirements. In addition, they take six cognitive science seminars and select a dissertation committee composed of three Sociology and three Cognitive Science Program faculty. Admission to this program requires a separate application and is contingent on acceptance into the Sociology Department. For more information, contact the coordinators in the Sociology Department, (858) 534-4626, (jrudolph@ucsd.edu) or the Cognitive Science Department, (858) 534-7141, (garellano@ucsd.edu). Please view our Web site for application and department handbook information:http:// dssadmin.ucsd.edu/sociology/gbroch.htm.

COURSES

LOWER-DIVISION

Soc/L 1A. The Study of Society (4)
An introduction to the organizing themes and ideas, empirical concerns, and analytical approaches of the discipline of sociology. The course focuses on both classical and contemporary views of modern society, on the nature of community, and on inequality, with special attention to class, race, and gender. Materials include both theoretical statements and case studies. (This is a required course for the sociology major. It is normally offered fall quarter.)

Soc/L 1B. The Study of Society (4)
A continuation of Sociology/L 1A. The focus here is on socialization processes, culture, social reproduction and social control, and collective action. As in 1A, materials include both theoretical statements and case studies. While 1 B may be taken as an independent course, it is recommended that students take 1 A and 1 B in sequence, as the latter builds on the former. (This is a required course for the sociology major. It is normally offered winter quarter.)

Soc/L 10. American Society: Social Structure and Culture

 in the United States (4)An introduction to American society in historical, comparative, and contemporary perspectives. Topics will include American cultural traditions; industrialization; class structure; the welfare state; ethnic, racial, and gender relations; the changing position of religion; social movements; and political trends.

Soc/L 20. Social Change in the Modern World (4) A survey of the major economic, political, and social forces that have shaped the contemporary world. The course will provide an introduction to theories of social change, as well as prepare the student for upper-division work in comparative-historical sociology. (This is a required course for the sociology major.)

Soc/L 30. Science and Society (4)
A series of case studies of the relations between society and modern science, technology, and medicine. Global warming, reproductive medicine, AIDS, and other topical cases prompt students to view science-society interactions as problematic and complex.

Soc/L 40. Sociology of Health Care Issues (4)
Designed as a broad introduction to medicine as a social institution and its relationship to other institutions as well as its relation to society. It will make use of both micro and macro sociological work in this area and introduce students to sociological perspectives of contemporary health care issues.

Soc/L 60. The Practice of Social Research (4)
This course introduces students to the fundamental principles of the design of social research. It examines the key varieties of evidence, sampling methods, logic of comparison, and causal reasoning researchers use in their study of social issues. (This is a required course for the sociology major.)

Soc/L 90. Undergraduate Seminar (1)
This seminar will focus on a variety of current issues and special areas in the field of sociology, and will be focussed in particular on students of freshman status. Content will vary from year to year. (P/NP grades only.) Prerequisite: freshman status.

CLUSTER A:THEORY AND METHODS

Theory

Soc/A 100. Classical Sociological Theory (4)
Major figures and schools in sociology from the early nineteenth century onwards, including Marx, Tocqueville, Durkheim, and Weber. The objective of the course is to provide students with a background in classical social theory, and to show its relevance to contemporary sociology. Prerequisite: upper-division standing. (This is a required course for the sociology major.)

Soc/A 101M. Marxism, Culture, and Politics (4)
This course examines the writings of Marx and Engels and developments in Marxist theory since Marx (e.g., Lenin and Gramsci). It will consider philosophical presuppositions and historical contexts as well as a variety of issues in political, social, and economic theory. Prerequisite: upper-division standing. (Not offered in 2000-2001.)

Soc/A 102. Contemporary Sociological Theory (4) An analysis of leading theories in sociology with an emphasis on contemporary perspectives. Theoretical approaches include functionalism, Marxism, systems analysis, and interpretive sociology. Prerequisite: upperdivision standing.

Soc/A 103F. Feminist Criticism and Social Theory (4)
This course will examine recent contributions to social theory from feminist critics and scholars. Theoretical writings will be paired with empirical studies illustrating the development and application of these ideas. The central concern of these investigations will be to reconcile new theories of subjectivity and multiple
social worlds with classical understandings of society as a coherent body of practices. Prerequisite: upper-division standing.

Soc/A 103T. Special Topics in Theory (4)
Readings and discussion of particular theoretical issues in sociology. Topics will vary from year to year, depending on the current research of regular faculty or visiting faculty. Issues may include the study of a specific problem in social theory; the analysis of a particular theorist or school. Prerequisite: upper-division standing.

Methods

Soc/A 103M. Computer Applications to Data
Management in Sociology (4)
To develop skills in computer management and analysis of sociological data. Pursued through practical experience with data produced by sociological research. Students are expected to develop competency in the analysis of sociological data, by developing an extensive acquaintance with computer software used for data analysis and data management (e.g., SPSS). Prerequisite: upper-division standing. Will satisfy method requirement in Cluster A.

Soc/A 104. Field Research: Methods of Participant

 Observation (4)A basic course on the relations between sociological theory and field research. There is a strong emphasis on the theory and methods of participant observation, including a consideration of the problems of entry into field settings, recording observations, description and analysis of field data, and ethical problems in field work. Students will write a paper using these field methods. Prerequisite: upper-division standing. Will satisfy method requirement in Cluster A.

Soc/A 105. Ethnographic Film: Media Methods (6)
(Conjoined with SOCG 227.) Ethnographic recording of field data in written and audiovisual formats including film, video, and CD ROM applications. Critical assessment of ethnographies and audiovisual ethnographic videotape. Prerequisite: Soc/L $1 \mathrm{~A}, 1 \mathrm{~B}$, or consent of instructor. Will satisfy method requirement in Cluster A.

Soc/A 106. Comparative and Historical Methods (4) A broad-based consideration of the use of historical materials in sociological analysis, especially as this facilitates empirically oriented studies across different societies and through time, and their application in student research projects. Prerequisite: upper-division standing. Will satisfy method requirement in Cluster A.

Soc/A 108A. Survey Research Design (4)

This course covers the translation of research goals into a research design, including probability sampling, questionnaire construction, data collection (including interviewing techniques), data processing, coding, and preliminary tabulation of data. Statistical methods of analysis will be limited primarily to percentaging. Prerequisite: upper-division standing. Will satisfy method requirement in Cluster A.

Soc/A 108B. Quantitative Analysis of Survey Data (4) This course examines the quantitative analysis of survey research data through computer-based student participation in the research process. Emphasis will be placed on index and scale construction and on univariate, bivariate, and multivariate types of analysis, including some standard descriptive and inferential statistics. Prerequisite: upper-division standing. Will satisfy method requirement in Cluster A.

Sociology

Soc/A 109. Analysis of Sociological Data (4)
Students learn to test their own sociological research hypotheses using data from recent American and International social surveys and state-of-the-art computer software. The course covers application of the classical scientific method, interpretation of statistical results, and clear presentation of research findings. It is also designed to make students more informed consumers of sociological data. Prerequisite: Social Science 60 or consent of instructor. Will satisfy method requirement for Cluster A.

Soc/A 109S. Special Topics in Methods (4)
Readings and discussions of particular methodological issues in sociology. Topics will vary from year to year, depending on the current research of regular faculty or visiting faculty. Prerequisite: upper-division standing. Will satisfy method requirement in Cluster A.

Soc/A 110A-B-C. Qualitative Research in Educational

 Settings (4-4-4)Students will gain basic understanding of participant observation, interviewing, and other ethnographic research techniques through field experiences in school and community settings sponsored by CREATE. Students will learn to take field notes, write-up interviews, and compose interpretive essays based on their field experiences. Prerequisite: upper-division standing. Will satisfy method requirement in Cluster A.

CLUSTER B: CULTURE, LANGUAGE, AND SOCIAL INTERACTION

Soc/B 112. Social Psychology (4)
This course will deal with human behavior and personality development as affected by social group life. Major theories will be compared. The interaction dynamics of such substantive areas as socialization, normative and deviant behavior, learning and achievement, the social construction of the self, and the social identities will be considered. Prerequisite: upper-division standing.

Soc/B 113. Sociology of the AIDS Epidemic (4)
This course considers the social, cultural, political, and economic aspects of HIV/AIDS. Topics include the social context of transmission; the experiences of women living with HIV; AIDS activism; representations of AIDS; and the impact of race and class differences. Prerequisite: upper-division standing.

Soc/B 114. Culture and Ethnicity (4)
Examines culture and inter-ethnic relations, the links between culture and ethnic variations in socio-economic achievement, and the intersection of culture and ethnicity with politics and policy. Topics include intermarriage, ethnic conflict, multicultural education and affirmative action. Prerequisite: upper-division standing.

Soc/B 116. Gender and Poverty (4)

This course examines theoretical arguments, current policy debates, and empirical research concerning gender and poverty. The course provides an intellectual framework for understanding issues central to women's poverty, including family structure, reproduction, childcare, employment, and aging. Race and ethnicity are central. Particular attention is given to women and children in female-headed households. Prerequisite: upperdivision standing.

Soc/B 117. Language, Culture, and Education (4)
(Same as TEP 117.) The mutual influence of language, culture, and education will be explored; explanations of students' school successes and failures that employ lin-
guistic and cultural variables will be considered; bilingualism; cultural transmission through education. Prerequisite: upper-division standing.

Soc/B 118. Sociology of Gender (4)

An analysis of the social, biological, and psychological components of becoming a man or a woman. The course will survey a wide range of information in an attempt to specify what is distinctively social about gender roles and identities; i.e., to understand how a most basic part of the "self"-womanhood or man-hood-is socially defined and socially learned behavior. Prerequisite: upper-division standing.

Soc/B 118A. Gender and Language in Society (4)
(Same as LIGN 174.) This course examines how tanguage contributes to the social construction of gender identities, and how gender impacts language use and ideologies. Topics include the ways language and gender interact across the life span (especially childhood and adolescence); within ethnolinguistic minority communities; and across cultures. Prerequisite: upper-division standing.

Soc/B 119. Sociology of Sexuality and Sexual

Identities (4)
Introduction both to the sociological study of sexuality and to sociological perspectives in gay/lesbian studies. Examines the social construction of sexual meanings, identities, movements, and controversies; the relation of sexuality to other institutions; and the intersection of sexuality with gender, class, and race. Prerequisite: upper-division standing.

Soc/B 120S. Special Topics in Culture, Language, and Social Interaction (4)
This course will examine key issues in culture, language, and social interaction. Content will vary from year to year. Prerequisite: upper-division standing.

Soc/B 128. Media and Society: From the Invention of Print to the Internet (4)
It is no coincidence that the development of printed commun- ication has coincided with that of modern society. This course examines the connections between the two, tracing the historical sociology of print culture from the invention of the press to the communications revolution now at hand. Prerequisite: upper-division standing.

Soc/B 130. Interdisciplinary Approaches to Lesbian, Gay, Bisexual and Transgender Studies (4)
(Same as LTCS 135.) Introduction to the interdisciplinary examination of human sexuality and, especially, lesbian, gay, bisexual, and transgender identities and desires. Juxtaposes perspectives from the humanities, social sciences, and natural sciences, and introduces recent queer theory, to understand sexuality in relation to phenomena such as government, family, culture, medicine, race, gender, and class. Prerequisite: upperdivision standing.

Soc/B 131. Sociology of Youth (4)
Chronological age and social status; analysis of social processes bearing upon the socialization of children and adolescents. The emergence of "youth cultures," generational succession as a cultural problem. Prerequisite: upper-division standing.

Soc/B 142. Social Deviance (4)
This course studies the major forms of behavior seen as rule violations by large segments of our society and analyzes the major theories trying to explain them, as well as processes of rule making, rule enforcing, tech-
niques of neutralization, stigmatization and status degradation, and rule change. Prerequisite: upper-division standing.

Soc/B 143. Suicide (4)

Traditional and modern theories of suicide will be reviewed and tested. The study of suicide will be treated as one method for investigating the influence of society on the individual. Prerequisite: upper-division standing.

Soc/B 145. Violence and Society (4)

Focusing on American history, this course explores violence in the light of three major themes: struggles over citizenship and nationhood; the drawing and maintenance of racial, ethnic, and gender boundaries; and the persistence of notions of "masculinity" and its relation to violence. Prerequisite: upper-division standing.

Soc/B 146. Law Enforcement in America (4)
Provides a sociological understanding of policing in practice in the United States. Examines the social, political, and historical forces behind the development and shaping of policing in America-including the functions of police, the "working personality" of police officers, as well as police misconduct and its control. Prerequisite: upper-division standing.

Soc/B 160. Sociology of Culture (4)

This course will examine the concept of culture, its "disintegration" in the twentieth century, and the repercussions on the integration of the individual. We will look at this process from a variety of perspectives, each focusing on one cultural fragment (e.g., knowledge, literature, religion) and all suggesting various means to reunify culture and consequently the individual. Prerequisite: upper-division standing.

Soc/B 161. Sociology of the Life Course (4)

This course explores concepts, theory and empirical research related to demographic, socio-psychological, and institutional aspects of the different stages of human development. It considers social influences on opportunities and constraints by gender, class, race/ethnicity, and historical period. Prerequisite: upperdivision standing.

Soc/B 162. Popular Culture (4)

An overview of the historical development of popular culture from the early modern period to the present. Also a review of major theories explaining how popular culture reflects and/or affects patterns of social behavior. Prerequisite: upper-division standing.

Soc/B 162R. Religion and Popular Culture in

East Asia (4)

(Same as HIEA 119.) Historical, social, and cultural relationships between religion and popular culture. Secularization of culture through images, worldviews, and concepts of right and wrong, which may either derive from or pose challenges to the major East Asian religions. Prerequisite: upper-division standing.

Soc/B 164J. Persuasion and Society (4)
(Same as Com/Cul 174.) What is the role of messages intentionally designed to be persuasive in society? How are these messages crafted and what impact do they have? Topics will vary, but will typically include commercial advertising, public information campaigns, propaganda, public relations, and schooling. The course integrates research from sociology, social psychology, rhetoric, and communication. Prerequisite: upper-division standing or consent of instructor.

Soc/B 166. Sociology of Knowledge (4)
This course provides a general introduction to the development of the sociology of knowledge, and will explore questions concerning social determination of consciousness as well as theoretical ways to articulate a critique of ideology. Prerequisite: upper-division standing.

Soc/B 167. Intellectuals and Social Problems (4)
Sociological analysis of the intelligentsia: types of intellectual theories concerning their social role; research on the social sources of intellectual work in politics, literature, art, and science; historical considerations of intellectual milieu; international comparisons of intellectuals. Prerequisite: upper-division standing.

Soc/B 170. Sociology of Art (4)
(Conjoined with SOCG 263) This seminar explores the production and interpretation of art forms in cross-cultural context. Processes of symbolic and economic exchange in art worlds will be examined from sociological and semiotic perspectives. Contemporary and popular art forms will be analyzed as types of cultural reproduction. Graduate students will be required to submit a proposal abstract and final research paper of twenty-seven pages; undergraduates must complete a project and eleven-page paper. Prerequisite: upper-division standing.

Soc/B 172. Films and Society (4)

An analysis of films and how they portray various aspects of American society and culture. Prerequisite: upper-division standing.

Soc/B 173. Elite Crime (4)
Explores theoretical and conceptual dimensions in the analysis of the systematic violation of the laws and ethics of business and politics in the United States. Covers a range of illegal and unethical practices, the social and political advantages of such violators, as well as the historical bias in both theory and research that has contributed to our lack of understanding of such issues in sociology and criminology. Prerequisite: upperdivision

Soc/B 174. Sociology of Literature (4)
Literature will be discussed in the context of the ideas of national and regional culture, "historical situation," and "social order." Other issues to be studied are literary men and women as spokespersons and as rebels, literary movements and social conditions, and literary works as social documents. Prerequisite: upper-division standing.

CLUSTER C: SOCIAL ORGANIZATION AND INSTITUTIONS

Soc/C 121. Economy and Society (4)
An examination of a central concern of classical social theory; the relationship between economy and society, with special attention (theoretically and empirically) on the problem of the origins of modern capitalism. The course will investigate the role of technology and economic institutions in society; the influence of culture and politics on economic exchange, production, and consumption; the process of rationalization and the social division of labor; contemporary economic problems and the welfare state. Prerequisite: upper-division standing.

Soc/C 123. Sociology of Work (4)

A comparative analysis of work in contemporary industrial economies. Topics include: the division of labor in manufacturing and the changing structure of the work-
ing class, social and political consequences of skill and wage differentials, bureaucratization and determinants of job satisfaction, trade unions and their strategies, industrial conflict, labor movements, and the relationships between unions and political parties. Prerequisite: upper-division standing.

Soc/C 124. Business and Society (4)

This course places business organization and practices in their social setting. Topics include the relationship between business and government; the mutual impact of business and labor (union and nonunion); the interplay of business values and popular culture; and business and "globalization." Primary focus will be on the United States, past and present. Prerequisite: upper-division standing.

Soc/C 125. Minorities in the Schooling Process (4)
Using a survey format, the course will examine and critique various themes, principles, theories, and research concerning ethnic minorities in public education. The focus will be on Mexican-origin and African American students in public schools, grades K-12. Prerequisite: upper-division standing.

Soc/C 126. Social Organization of Education (4)

(Same as TEP 126.) The social organization of education in the U.S. and other societies; the functions of education for individuals and society; the structure of schools; educational decision making; educational testing; socialization and education; formal and informal education; cultural transmission. Prerequisite: upper-division standing.

Soc/C 129. The Family (4)
An examination of the family as an institution in modern and premodern societies. This course will begin with a study of the principles of kinship and then investigate the relationship of the family to social structure and social change. Prerequisite: upper-division standing.

Soc/C 132. Gender and Work (4)
Examination and analysis of empirical research and theoretical perspectives on gender and work. Special attention to occupational segregation. Other topics include: the interplay between work and family; gender, work and poverty; gender and work in the Third World. Prerequisite: upper-division standing.

Soc/C 134A. The Making of Modern Medicine (4)
A study of the social, intellectual, and institutional aspects of the nineteenth-century transformation of clinical medicine, examining both the changing content of medical knowledge and therapeutics, and the organization of the medical profession. Prerequisite: upper-division standing.

Soc/C 134B. Medicine in the Twentieth Century (4) A study of major intellectual and institutional changes in medicine in the twentieth century, place in their sociological context. The primary emphasis of the course will be on developments in North America and Britain. Prerequisite: upper-division standing.
Soc/C 135. Medical Sociology (4)
An inquiry into the roles of culture and social structure in mediating the health and illness experiences of individuals and groups. Topics include the social construction of illness, the relationships between patients and health professionals, and the organization of medical work. Prerequisite: upper-division standing.

Soc/C 136A. Sociology of Mental Illness: An Historical Approach (4)
An examination of the social, cultural, and political factors involved in the identification and treatment of mental illness. This course will emphasize historical material, focusing on the eighteenth, nineteenth, and early twentieth centuries. Developments in England as well as the United States will be examined from an historical perspective. Prerequisite: upper-division standing.

Soc/C 136B. Sociology of Mental Illness in Contemporary

 Society (4)This course will focus on recent developments in the mental illness sector and on the contemporary sociological literature on mental illness. Developments in England as well as the United States will be examined. Prerequisite: upper-division standing.

Soc/C 137. Knowledge and Practice in Biomedicine (4)
This course focuses on the biomedical research enterprise in its relationship to medical practice. Topics include the construction of medical knowledge, the resolution of controversies, the organization of medical work, and the cultural authority of biomedicine. Prerequisite: any lower- or upper-division course on the sociology of medicine or science, or consent of instructor.

Soc/C 138A-B. Civic Participation (4-4)

(Same as COSF 125A-B) What are the sources of political apathy and political engagement? What are the variety of ways Americans express civic involvement and political concern? Primary focus will be on the contemporary United States, but with substantial attention to comparative and historical perspectives. This will be run as a research seminar. Students will write literary-based or fieldwork-based empirical research papers of twenty-five to forty pages.

Soc/C 139. Social Inequality: Class, Race, and Gender (4) Massive inequality in wealth, power, and prestige is ever-present in industrial societies. In this course, causes and consequences of class, gender, racial and ethnic inequality ("stratification") will be considered through examination of classical and modern social science theory and research. Prerequisite: upper-division standing.

Soc/C 140. Sociology of Law (4)

This course analyzes the functions of law in society, the social sources of legal change, social conditions affecting the administration of justice, and the role of social science in jurisprudence. Prerequisite: upper-division standing.

Soc/C 141. Crime and Society (4)
A study of the social origins of criminal law, the administration of justice, causes and patterns of criminal behavior, and the prevention and control of crime, including individual rehabilitation and institutional change, and the politics of legal, police, and correctional reform. Prerequisite: upper-division standing.

Soc/C 144. Forms of Social Control (4)
The organization, development, and mission of social control agencies in the nineteenth and twentieth centuries, with emphasis on crime and madness; agency occupations (police, psychiatrists, correctional work, etc.); theories of control movements. Prerequisite: upperdivision standing.

Soc/C 148. Political Sociology (4)
Course focuses on the interaction between state and society. It discusses central concepts of political sociol-
ogy (social cleavages, mobilization, the state, legitimacy), institutional characteristics, causes, and consequences of contemporary political regimes (liberal democracies, authoritarianism, communism), and processes of political change. Prerequisite: upper-division standing.

Soc/C 148C. Power, Culture, and Social Revolt (4)

This course will focus on the problem of how power is meaningfully constructed and contended by examining cases of social revolt and everyday resistance. Clarifying the concepts of hegemony and ideology will be a central concern of the course. Prerequisite: upperdivision standing.

Soc/C 148L. Inequality and Jobs (4)
Some people do much better than others in the world of work. Causes and consequences of this inequality will be examined: How do characteristics of individuals (e.g., class, gender, race, education, talent) and characteristics of jobs affect market outcomes? Prerequisite: upper-division standing.

Soc/C 148M. Labor Market Inequality in Los Angeles and the Border Region (4)
(Same as USP 136.) Focus on the changing labor force and occupational structure of Los Angeles and the Mexican border. We apply theoretical work to recent changes, with special attention to immigrant and minority employment, economic restructuring and changes in the international division of labor. Prerequisite: upper-division standing or consent of instructor.

Soc/C 151M. Chicanos in American Society (4)
Survey of contemporary sociological issues affecting Mexican-origin people in the United States. Lectures and reading will be oriented toward providing a greater understanding of how key institutions in society allocate opportunities and institutional resources to different social groups. Prerequisite: upper-division standing.

Soc/C 152. Social Inequality and Public Policy (4)
(Same as USP 133.) Primary focus on understanding and analyzing poverty and public policy. Analysis of how current debates and public policy initiatives mesh with alternative social scientific explorations of poverty. Prerequisite: upper-division standing.

Soc/C 153. Urban Sociology (4)
(Same as USP 105) Introduces students to the major approaches in the sociological study of cities and to what a sociological analysis can add to our understanding of urban processes. It covers themes such as urbanism, the 'Urban Question,' and globalization. Prerequisite: upper-division standing oe consent of instructor.

Soc/C 155. The City of San Diego (4)
A research-oriented course studying a specific city. Students will describe and analyze a local community of San Diego. Additional work on one citywide institution. Guest lecturers from San Diego organizations and government. Readings largely from city reports and news media. Prerequisite: introductory sociology.

Soc/C 156. Sociology of Religion (4)
Diverse sociological explanations of religious ideas and religious behavior. The social consequences of different kinds of religious beliefs and religious organizations. The influence of religion upon concepts of history, the natural world, human nature, and the social order. The significance of such notions as "sacred peoples" and "sacred places." The religious-like character of certain
political movements and certain sociocultural attitudes. Prerequisite: upper-division standing.

Soc/C 157. Religion in Contemporary Society (4)
Sacred texts, religious experiences, and ritual settings are explored from the perspective of sociological analysis. The types and dynamic of religious sects and institutions are examined. African and contemporary U.S. religious data provide resources for lecture and comparative analysis. Prerequisite: upper-division standing.

Soc/C 159. Special Topics in Social Organizations and

 Institutions (4)Readings and discussion of particular substantive issues and research in the sociology of organizations and institutions-including such areas as population, economy, education, family, medicine, law, politics, and religion. Topics will vary from year to year. Prerequisite: upper-division standing.

Soc/C 165A-B. American News Media (4-4)

History, politics, social organization, and ideology of the American news media. 165A surveys the development of the news media as an institution, from earliest newspapers to modern mass news media. 165B deals with special topics, including the nature of television news, with methods of news media research, and requires a research paper. Prerequisite: Soc/L 1 A or consent of instructor; Soc/C $165 B$ requires Soc/C 165A.

Soc/C 168E. Sociology of Science (4)
A survey of theoretical and empirical studies concerning the workings of the scientific community and its relations with the wider society. Special attention will be given to the institutionalization of the scientific role and to the social constitution of scientific knowledge. Prerequisite: upper-division standing.

Soc/C 168T. Sociology of Technology (4)
An introduction to classic and recent sociological perspectives on technology, giving special attention to the relations between technology and science, technology and work, and technology and politics. Prerequisite: upper-division standing.

Soc/C 180. Social Movements and Social Protest (4)
An examination of the nature of protests and violence, particularly as they occur in the context of larger social movements. The course will further examine those generic facets of social movements having to do with their genesis, characteristic forms of development, relationship to established political configurations, and gradual fading away. Prerequisite: upper-division standing.

CLUSTER D: COMPARATIVE AND HISTORICAL sociology

Soc/D 120W. Gender and Development (4)
The purpose of this course is to examine the status of women in various parts of the world. Several cultures will be compared. Attention will be paid to the influence of cultural, sociopolitical, and economic factors on gender inequality. Women's roles in society, the community, and the family will be discussed. Prerequisite: upper-division standing.

Soc/D 120XL. Foreign Language Discussion Section (1) Students will exercise language skills to read and discuss materials in Soc/D 120W. Prerequisite:must be coregistered with Soc/D 120W.

Soc/D 133. Comparative Sex Stratification (4) Utilizing a new theory of factors affecting female status, we examine topics including women in evolutionary perspective. Third World women and modernization; women's changing position in the USSR, Israeli kibbutz, and especially the United States and the political economy of sex stratification. Prerequisite: upper-division standing.

Soc/D 133XL. Foreign Language Discussion Section (1) Students will exercise advanced foreign language skills to discuss materials in the correspondingly numbered English language foreign area course. This section is taught by the course professor, has no final and does not affect the grade in parent course (Soc/D 133).

Soc/D 151. Comparative Race and Ethnic Relations (4) An historical and comparative analysis of race and ethnic relations in various national settings, with emphasis on the United States. The course will analyze the origins of ethnic stratification systems, their maintenance, the adaptation of minority communities, and the role of reform and revolutionary movements and government policies in promoting civil rights and social change. Prerequisite: upper-division standing.

Soc/D 158J. Religion and Ethics in China and

Japan (4)
This course examines religious traditions of China and Japan. It explores the relationship between religious ideas and practices on the one hand, and issues of social and individual ethics and morality on the other. Prerequisite: upper-division standing.

Soc/D 169. Citizenship, Community, and Culture (4)

Will survey the alternative views on the construction of the modern citizen and alternative views of society. Prerequisite: upper-division standing.

Soc/D 171. Science and the Making of the Modern World (4)

This course deals with two questions and the relationships between them: How did modern scientific knowledge develop from the Scientific Revolution to the present, and how have the scientist's role and the scientific community come to have their current authority. Prerequisite: upper-division standing.

Soc/D 175.The Aftermath of Slavery (4)

This course adopts a comparative perspective to examine variations in the nature and aftermath of slavery in different societies. Readings emphasize how contemporary race relations have been shaped by struggles over the maintenance, transformation, and abolition of slavery. Prerequisite: upper-division standing.

Soc/D 178. The Holocaust (4)

The study of the unique and universal aspects of the Holocaust. Special attention will be paid to the nature of discrimination and racism, those aspects of modernity that make genocide possible, the relationship among the perpetrators, the victims and the bystanders, and the teaching, memory, and denial of the Holocaust. Prerequisite: upper-division standing.

Soc/D 179. Social Change (4)

Course focuses on the development of capitalism as a worldwide process, with emphasis on its social and political consequences. Topics include: precapitalist societies, the rise of capitalism in the West, and the social and political responses to its expansion elsewhere. Prerequisite: upper-division standing.

Soc/D 181. Modern Western Society (4)
This course examines the nature and dynamics of modern western society in the context of the historical process by which this type of society has emerged over the last several centuries. The aim of the course is to help students think about what kind of society they live in, what makes it the way it is, and how it shapes their lives. Prerequisite: upper-division standing.

Soc/D 185. Sociology of Development (4)
Course examines conditions in the developing world since WWII. Viewing social development as more than a matter of sheer economic growth, course focuses on social changes and on the satisfaction of human needs. Emphasis is placed on the connections between historical/global contexts and various development strategies. Prerequisite: upper-division standing.

Soc/D 185XL. Foreign Language Discussion Section (1) Students will exercise advanced foreign language skills to discuss materials in Spanish in the correspondingly numbered English language foreign area course. This section is taught by the course instructor/professor; has no final exam and does not affect grade in parent course. Prerequisite: must be coregistered with Soc/D 185.

Soc/D 187. African Societies through Film (4)
Exploration of contemporary African urbanization and social change via film, including 1) transitional African communities, 2) social change in Africa, 3) Western vs. African filmmakers' cultural codes. Ideological and ethnographic representations, aesthetics, social rela tions, and market demand for African films are analyzed. Prerequisite: upper-division standing.

Soc/D 187S. The Sixties (4)

A sociological examination of the era of the 1960 s in America, its social and political movements, its cultural expressions, and debates over its significance, including those reflected in video documentaries. Comparisons will also be drawn with events in other countries. Prerequisites: upper-division standing.

Soc/D 188A. Community and Social Change in Africa (4) The process of social change in African communities, with emphasis on changing ways of seeing the world and the effects of religion and political philosophies of social change. The methods and data used in various village and community studies in Africa will be critically examined. Prerequisite: upper-division standing.

Soc/D 188B. Chinese Society (4)
The social structure of the People's Republic of China since 1949 , including a consideration of social organization at various levels: the economy, the policy, the community, and kinship institutions. Prerequisite: upper division standing.

Soc/D 188D. Latin America: Society and Politics (4)
Course focuses on the different types of social structures and political systems in Latin America. Topics include positions in the world economy, varieties of class structure and ethnic cleavages, political regimes, mobilization and legitimacy, class alignments, reform and revolution. Prerequisite: upper-division standing.

Soc/D 188E. Soviet Society (4)
Social change in the USSR since 1917. The attempt to create the world's first socialist society will be examined through a consideration of changing patterns of culture, politics, economics, and ethnic relations. Prerequisite: upper-division standing.

Soc/D 188F. Modern Jewish Societies and Israeli

 Society (4)Contradictory effects of modernization on Jewish society in Western and Eastern Europe and the plethora of Jewish responses: assimilation, fundamentalism, emigration, socialism, disapora nationalism, and Zionism. Special attention will be paid to issues of dis/continuity between Jewish societies and Israeli society. Simultaneously, we will scrutinize the influence of the Palestinian-Israeli conflict on israeli society, state, and identity. Prerequisite: upper-division standing.

Soc/D 188I. Eastern European Societies (4)
This course focuses on Eastern European societies. The topics to be covered include the transition from feudalism to capitalism, the rise of the modern state, nationalism, ethnicity, leftist and rightist revolutionary movements, and the transition to socialism. Prerequisite: upper-division standing.

Soc/D 188J. Change in Modern South Africa (4)
Using sociological and historical perspectives, this course examines the origins and demise of apartheid and assesses the progress that has been made since 1994, when apartheid was officially ended. It also contrasts racism in South Africa and the United States. Prerequisite: upper-division standing.

Soc/D 188K. American Society (4)

Comparative and historical perspectives on U.S. society The course highlights "American exceptionalism:" did America follow a special historical path, different from comparable nations in its social relations, politics, and culture? Specific topics include class relations, race, religion, and social policy. Prerequisite: upper-division standing.

Soc/D 188XL. Foreign Language Discussion Section (1) Students will exercise advanced foreign language skills to discuss materials in the correspondingly numbered English language foreign area course. Prerequisite:must be coregistered with parent course.

Soc/D 189. Special Topics in Comparative-Historical Sociology (4)
Readings and discussion in selected areas of comparative and historical macro-sociology. Topics may include the analysis of a particular research problem, the study of a specific society or of cross-national institutions, and the review of different theoretical perspectives. Contents will vary from year to year. Prerequisite: upperdivision standing.

CLUSTER E: INDEPENDENT RESEARCH AND HONORS PROGRAM

Soc/E 190. Senior Seminar (4)
A research seminar in special topics of interest to available staff; provides majors and minors in sociology with research experience in close cooperation with faculty. Prerequisite: senior standing.

Soc/E 194. Research Seminar in Washgton, D.C. (4) (Same as PS 194, COGN 194, ERTH 194, HIST 193, USP 194.) Course attached to six-unit internship taken by students participating in the UCDC Program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial research paper. Prerequisites: department approval. Participating in UCDC Program.

Soc/E 196A. Honors Seminar: Advanced Studies in Sociology (4)
This seminar will permit honors students to explore advanced issues in the field of sociology. It will also pro-
vide honors students the opportunity to develop a senior thesis proposal on a topic of their choice and begin preliminary work on the honors thesis under faculty supervision. Prerequisite: acceptance into Department of Sociology Honors Program.

Soc/E 196B. Honors Seminar: Supervised Thesis

 Research (4)This seminar will provide honors candidates the opportunity to complete research on and preparation of a senior honors thesis under close faculty supervision. Prerequisite: completion of SOC/E 196A.

Soc/E 197. Instructional Assistance and Research in Field Methods (4)
While fulfilling apprentice-level instructional tasks as peer advisers in the Field Research Methods course (Soc/A 104), students will conduct their own research on selected issues/problems faced by field researchers. Instructional and research activities will be closely supervised by the course instructor. Prerequisites: 3.5 in sociology, having excelled in Soc/A 104 (A or A+ grade); consent of course instructor; approval of sociology department chair.

Soc/E 198. Directed Group Study (4)

Group study of specific topics under the direction of an interested faculty member. Enrollment will be limited to a small group of students who have developed their topic and secured appropriate approval from the departmental committee on independent and group studies. These studies are to be conducted only in areas not covered in regular sociology courses. Prerequisites: junior standing and departmental approval required.

Soc/E 199. Independent Study (2 or 4)
Tutorial: individual study under the direction of an interested faculty member in an area not covered by the present course offerings. Approval must be secured from the departmental committee on independent studies. Prerequisites: junior standing and departmental approval required.

GRADUATE

Soc/G 201A. Classical Sociological Theory I (4)
A discussion of major themes in the work of Tocqueville and Marx. Prerequisite: graduate standing in sociology.

Soc/G 201B. Classical Sociological Theory II (4)
A discussion of major themes in the work of Weber and Durkheim. Prerequisite: graduate standing in sociology.

Soc/G 202. Contemporary Sociological Theory (4)
Themes important for social theory at the turn of the twenty-first century: Marxism (Gramsci, Althusser), Critical Theory (Adorno, Habermas), Interpretation (Geertz), Social Systems (Parsons), post-structuralism (Foucault), postmodernism, and social constructivism (Bourdieu). Prerequisite: graduate standing in sociology.

Soc/G 203. Field Methods (4)
Research will be conducted in field settings. The primary focus will be on mastering the problems and technical skills associated with the conduct of ethnographic and participant observational studies. Prerequisite: graduate standing in sociology.

Soc/G 204. Text and Discourse Analysis (4)
Techniques of gathering and analyzing transcripts of naturally occurring conversations, interviews, discourse in institutional settings, public political discourse, and text of historical materials. Prerequisite: graduate standing in sociology.

Soc/G 205. Quantitative Methods I (4)
This course covers some of the elementary techniques used 1) to select random samples, 2) to detect statistical patterns in the sample data, and 3) to determine whether any patterns found in sample data are statistically significant. The course also stresses the benefits and drawbacks of survey and aggregate data and some common ways in which these data are used incorrectly. Prerequisite: graduate standing in sociology.

Soc/G 206. Quantitative Methods II (4)
The course covers some of the more advanced techniques used 1) to select random samples, 2) to detect statistical patterns in the sample data, and 3) to determine whether any patterns found in sample data are statistically significant. The course also stresses the benefits and drawbacks of survey and aggregate data and some common ways in which these data are used incorrectly. Prerequisite: graduate standing in sociology.

Soc/G 207. Comparative-Historical Methods (4)
A broad-based consideration of the use of historical materials in sociological analysis, especially as this facilitates empirically oriented studies across different societies and through time. Prerequisite: graduate standing in sociology.

Soc/G 208. Faculty Research Seminar (2)
An introduction for entering graduate students to the range and variety of research and scholarly interest of the department's faculty. Through this introduction students will be better able to relate their own research interests and professional objectives to the ongoing work of faculty. Prerequisite: graduate standing in sociology. (S/U grades only.)

Soc/G 212. Social Stratification (4)
The causes and effects of social ranking in various societies. Theories of stratification; the dynamics of informal social grouping; determinants of institutional power, and the nature of struggles for power; the distribution of wealth and its causes; the dynamics of social mobility; the effects of stratification on life-styles, culture, and deviance. Prerequisite: graduate standing in sociology.

Soc/G 213. Popular Culture (4)
The purpose of the course is two-fold: 1) to introduce students to a variety of theoretical perspectives on issues central to studies of popular culture, and 2) to survey disciplines outside of the field of sociology that have been contributing to the enormous intellectua growth of popular culture studies. Prerequisite: graduate standing in sociology.

Soc/G 216. Sociology of Culture (4)
The history of the concept of culture; cultural pluralism in advanced industrialized societies; the differentiation of cultural institutions; cultural policy and social structure; culture as a property of social groups; conflict and accommodation over efforts to change and sustain traditional culture.

Soc/G 217. Globalization, Culture, and Everyday Life (4) This course explores the cultural, economic, and political processes which constitute globalization. Particular emphasis will be placed on understanding how consciousness and daily life practices are formed and transformed in a globalizing world. Prerequisite: graduate standing in sociology.

Soc/G 222. Social Movements (4)

An examination of theories accounting for the causes and consequences of social movements, including a discussion of the strengths and weaknesses of such theories for understanding historically specific revolutions, rebellions, and violent and nonviolent forms of
protest in various parts of the world. Prerequisite: graduate standing in sociology.

Soc/G 225. Madness and Society (4)
An examination of the historical and sociological literatures on the relationship between madness and society, focusing primarily on the United States and Great Britain, but with some comparative reference to Western Europe. Prerequisite: graduate standing in sociology.

Soc/G 226. Political Sociology (4)
This course discusses the relationship between state and society in a comparative perspective. The focus is on the interaction among states, domestic economic elites, and external economic and political processes in the determination of different developmental paths. Analytically, it includes topics such as characteristics and functions of the state in different types of society throughout history (with an emphasis on the varieties of capitalist and socialist state), the autonomy of the state and its causes in different settings, and developmental and predatory consequences of state activity. Readings will include both theoretical and empirical materials, the latter dealing mostly with nineteenthand twentieth-century Europe and twentiethcentury Latin America. Prerequisite: graduate standing in sociology.

Soc/G 227. Ethnographic Film: Media Methods (6)
Ethnographic recording of field data in written and audiovisual formats, including film, video, and CD ROM applications. Critical assessment of ethnographies and audiovisual data in terms of styles, format, and approaches. Graduate students are required to submit a fifteen-page mid-term paper comparing a written and an audiovisual ethnography and a final video ethnography with a project abstract. Prerequisites: graduate standing/Soc/L 1A, 1B or consent of instructor.

Soc/G 232. Advanced Issues in the Sociology of

 Knowledge (4)The social construction of 'knowledge' and the social institutions in which these processes take place are examined. Topics include relationships between knowledge and social institutions, foundations of knowledge in society, knowledge and social interactions, and contrasting folk and specialized theories. Prerequisites: graduate standing in sociology.

Soc/G 234. Intellectual Foundation of the Study of Science, Technology, and Medicine (4)

This course focuses on some classic methodological and theoretical resources upon which the sociology of science, technology, and medicine all draw. It gives special attention to relationships between knowledge and social order, and between knowledge and practice, that are common to science, technology, and medicine. Prerequisites: graduate standing in sociology.

Soc/G 239. Race/Ethnicity, Gender and Labor

 Markets (4)Exploration and analysis of the operation of race/ethnicity and gender in the U.S. labor market. Emphasis on understanding inequality in: labor force participation, unemployment, wage inequities, and occupational locations. Prerequisites: graduate standing in sociology.

Soc/G 243. Sociology of Social Control (4)
An examination of the sociological literature on social control, looking at theoretical developments over time, and examining the contemporary literature dealing with social control in historical and comparative perspective. Prerequisites: graduate standing in sociology.

Soc/G 244. Sociology of Race and Ethnicity (4)
Analysis of enduring topics in the study of race and ethnicity, including stratification, discrimination conflict, immigration, assimilation, and politics. Other topics include racial and ethnic identity and the social construction of race and ethnic categories. A special focus is on the role of 'culture' and 'structure' for explaining race/ethnic differentiation. Prerequisites: graduate standing in sociology.

Soc/G 245. Graduate Seminar in Gender and Work (4) Examination and analysis of empirical research and alternative theoretical perspectives on gender and work. Special attention to occupational segregation. Other topics include the interplay between work and family; gender, work and poverty; gender and work in the third world. Prerequisite: graduate standing in sociology.

Soc/G 248. Latin American Societies: Social Classes and State Policies in a Comparative Perspective (4)
(Same as IP/GEN 474.) Focuses on class structures, political mobilization, and government policies (economic and social policies in particular) in selected South American countries. Special attention will be given to the interaction between domestic and external economic and political processes. Prerequisite: graduate standing.

Soc/G 252. Research Practicum I (4)
In this seminar students work on a research project, which might have originated in a paper written for another course. The goal is to produce the first draft of a paper that will be submitted to an academic journal. Prerequisite: graduate standing in sociology.

Soc/G 253. Research Practicum II (4)

In this seminar students revise an existing research paper (usually the one they wrote for Sociology 252) for submission to an academic journal. Emphasis is placed on conceptual development, writing style and structure, and drawing links to the existing theoretical and empirical literature. Prerequisite: graduate standing in sociology.

Soc/G 255A. Introduction to Science Studies (4)
(Same as Phil. 209A, HIGR 238, and COGR 225A.) Study and discussion of classic work in history of science, sociology of science, and philosophy of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

Soc/G 255B. Seminar in Science Studies (4) (Same as Phil. 209B, HIGR 239, and COGR 225B.) Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

Soc/G 255C. Colloquium in Science Studies (4)

(Same as Phil. 209C, HIGR 240, and COGR 225C.) A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required of all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program.

Soc/G 260. Sociology of Religion (4)
The seminar will examine in detail one or two major issues in the anthropology of religion, as for example a theoretical problem like secularization and social change or a more substantive one like shamanism.

Students will be notified in advance regarding the seminar topic. Prerequisite: graduate standing in sociology.

Soc/G 263. Graduate Seminar in the Sociology of Art (4) This seminar explores the production and interpretation of art forms in cross-cultural context. Processes of symbolic and economic exchange in art worlds will be examined from sociological and semiotic perspectives. Contemporary and popular art forms will be analyzed as types of cultural reproduction. Graduate students will be required to submit a project abstract and final research paper of twenty-seven pages. Prerequisite: graduate standing in sociology.

Soc/G 264. Economic Sociology (4)
This course provides an overview of the classical and current debates in the economic sociology literature. It presents theories of the rise of industrial economics and addresses how economic activities are constituted and influenced by institutions, culture, and social structure. Prerequisite: graduate standing in sociology.

Soc/G 266. Dissertation Seminar (2)
Year-long seminar for presentation and discussion of dissertation work in progress. Prerequisite: graduate standing in sociology.

Soc/G 267. Sociology of Gender (4)
Course examines social construction of gender focusing on recent contributions to the field, including micro- and macro-level topics, i.e., social psychological issues in the development of gender, gender stratification in the labor force, gender and social protest, feminist methodologies. Prerequisite: graduate standing in sociology.

Soc/G 269. The Citizenship Debates (4)
Will examine the controversies surrounding the construction of the modern citizen and the good society of the liberal outlook, and their alternatives in the communitarian, social-democratic, nationalist, feminist, and multiculturalist perspectives. Prerequisite: graduate standing in sociology.

Soc/G 270. The Sociology of Education (4)
A consideration of the major theories of schooling and society, including functionalist, conflict, critical and interactional; selected topics in the sociology of education will be addressed in a given quarter, including the debate over inequality, social selection, cultural reproduction and the transition of knowledge, the cognitive and economic consequences of education. Major research methods will be discussed and critiqued. Prerequisite: graduate standing in sociology.

Soc/G 274. Culture and Ethnicity (4)

An in-depth analysis of the role of culture in the construction and experience of ethnicity. Topics include: culture and ethnic stratification, culture and ethnic relations, ethnic politics and policy, 'identity politics,' multiculturalism, and cross-national comparison of policy protecting ethnic cultural rights. Prerequisite: graduate standing in sociology.

Soc/G 280. Sociological Writing (4)
This seminar involves (1) reading and discussion on how to write sociology with clarity, precision, and rhetorical force, and (2) close, line-by-line criticism and editing of student papers. At the beginning of the quarter, each student must submit a paper he or she has recently written. At the end of the quarter, it will have been re-written in light of the discussion of it in the seminar. Prerequisite: graduate standing in sociology.

Soc/G 282. Immigration and Citizen (4)
Alternative theories of the relations of immigrants and host societies, and an examination on the debates on, and dynamic of, immigration expansion and restriction. Comparison of the bearing of liberal, communitarian, and ethnic citizenship discourses on the inclusion and exclusion of immigrants and their descendants. Prerequisite: graduate standing in sociology.

Soc/G 283 The Making of Modern Medicine (4)
An examination of the intellectual, social, cultural, and political dimensions of the Transformation of Western medicine from 1750 to 1900, with a primary focus on Anglo-American developments. Prerequisite: graduate standing.

Soc/G 290. Graduate Seminar (4)
A research seminar in special topics of interest to available staff, provides majors and minors in sociology with research experience in close cooperation with faculty. (S/U grades permitted.) Prerequisite: graduate standing in sociology.

Soc/G 298. Independent Study (1-8)
Tutorial individual guides study and/or independent research in an area not covered by present course offerings. (S/U grades only.) Prerequisite: graduate standing in sociology.

Soc/G 299. Thesis Research (1-12)
Open to graduate students engaged in thesis research. (S/U grades only.) Prerequisite: graduate standing in sociology.

Soc/G 500. Apprentice Teaching (2-4)
Supervised teaching in lower-division contact classes, supplemented by seminar on methods in teaching sociology. (S/U grades only.) Prerequisite: graduate standing in sociology.

Space Science and Engineering

OFFICE: Galbraith Hall, Room 180, Revelle College

The following are minor requirements for students admitted to UCSD January 1, 1998 and later. Students admitted to UCSD prior to the above date must see the program adviser to confirm minor requirements.

The space science and engineering minor is a focused set of seven upper-division courses open to students with junior standing in one of the following departments: MAE, chemistry, CSE, ECE, or physics. Other students with suitable chemistry, physics, and mathematics preparation may also pursue the minor.

The minor has three objectives. It is designed to offer an appropriate preparation for careers in space research and technology, with transcript notation of such a concentration of use to stu-
dents. The minor can help balance strongly focussed departmental offerings with a broader interdisciplinary approach that can foster interdepartmental activities beneficial to students. Finally such a minor contributes to the preservation and renewal of the broad, interdisciplinary style which has distinguished UCSD from other leading research universities.

Curriculum

The minor consists of two required courses, Space Science (MAE 180A) and Space Engineering (MAE 180B), plus five electives to be chosen from a list of courses with the approval of an adviser. The present list of electives includes:

CHEM 170. Cosmochemistry

ECE 120. Solar System Physics
ECE 166. Microwave Systems and Circuits (extensive prerequisites, lab component)
ERTH 130. Geodynamics of Terrestrial Planets MAE 155A-B. Aerospace Engineering Design PHYS 160. Stellar Astrophysics
PHYS 161. Galaxy and The Interstellar Medium PHYS 162. Galaxies and Cosmology
PHYS 163. Exploring the Solar Sytem
SE 144. Aerospace Structural Analysis

Spanish Literature

See Literature.

Structural Engineering

See Engineering, School of

Subject A

Web site: http://provost.ucsd.edu/suba/

For information about satisfying the Subject A requirement, especially prior to enrollment, please
refer to "Subject A: English Composition" in the catalog section, "Academic Regulations."

Students who have not satisfied the Subject A requirement before enrolling at UCSD must satisfy the requirement bky achieving a grade of C or better in SDCC 1 (English Composition-Subject A) and by passing the Subject A Exit Examination given at the end of SDCC 1. That examination is administered by the Subject A Program office. Students must enroll in SDCC 1 (or ESL) during the first quarter of residence at UCSD. SDCC 1 is a Mesa College course taught at UCSD as part of a cooperative program with the San Diego Community College District.

Under Academic Senate regulations, SDCC 1 cannot be counted towards graduation requirements; however, the course units do count as workload credit towards the minimum progress requirement and eligibility for financial assistance.

For further information about the Subject A requirement or the Proficiency Test, please visit the Subject A Program office, 3232 Literature Building, or call (858) 534-6177.

Teacher Education Program

OFFICE: Building 517A, Roosevelt College http://tep.ucsd.edu

Professors

Michael Cole, Ph.D., Communication
Guershon Harel, Ph.D., Mathematics
Hugh Mehan, Ph.D., Sociology (Executive Director, CREATE: Center for Research in Educational Equity, Assessment and Teaching Excellence) Kathryn A. Woolard, Ph.D., Anthropology

Associate Professors

Gerald Balzano, Ph.D., Music
Barbara Tomlinson, Ph.D., Literature
Olga Vasquez, Ph.D., Communication

Assistant Professor

Gedeon Deak, Ph.D., Cognitive Science

Senior Lecturer with Security of Employment

Randall Souviney, Ph.D. (Program Director)
Lecturers with Security of Employment
Tom L. Humphries, Ph.D., (TEP Associate Program
Director; Communication)

Paula F.Levin, Ph.D., (Graduate Adviser)

Supervisor of Teacher Education

Bernard (Rusty) Bresser, B.A.
Cheryl Forbes, M.A.
Caren Holtzman, M.A.
April Maskiewicz, M.A.
Marica Sewall, M.A.
Irene Villanueva, Ph.D.

Lecturers

Bobbie Allen, Ph.D.
Christopher Halter, M.A.
Beatrice Pita, Ph.D., Literature
Patrick Velasquez, Ph.D. (Director, OASIS)
Aurora Zepeda, M.P.A.
The Teacher Education Program (TEP) at UCSD offers the California Multiple Subject Teaching Credential for elementary school teachers, the Single Subject Credential in English, mathematics, biology, chemistry, geosciences, and physics for secondary school teachers, the Master of Arts in teaching and learning with an emphasis in curriculum design, the Master of Arts in deaf education and a minor in education. All TEP credentials have the Cross-cultural, Language and Academic Development (CLAD) emphasis, and the option of the Bilingual Cross-cultural, Language and Academic Development (BCLAD) in Spanish.

A primary focus of the Teacher Education Program is multicultural education. We require candidates to master the subject matter that they will teach and develop a repertoire of teaching practices which use their students' cultural knowledge and language as educational resources.

Teacher candidates in both the Multiple Subject and Single Subject credential programs can complete a preliminary or a professional clear credential at UCSD.

Admissions Process

A new M.E.D/Credential program is pending approval at the time of catalog copy submission. Please contact the teacher education program for information concerning possible significant changes changes to the program that could occur as early as Summer 2001. The application deadline for the credential programs is February 1.

Applicants interested in financial aid should complete the FAFSA application by March 2, and contact Graduate Student Financial Services at (858) 534-3807.

Each applicant is carefully reviewed for admission by a committee. The selection committee ensures that applicants have completed the requirements for admission described below and evaluates each applicant on the basis of the following criteria:

1. A strong interest in multicultural approaches to education; a strong desire to improve the quality of American education; a strong desire to develop self-activated learners;
2. Experience working with children in educational environments, especially with students from diverse backgrounds;
3. Participation in public service activities;
4. Academic excellence in their undergraduate and graduate studies.
More information about the entire application process is available in an instruction packet available from the TEP office. Students are encouraged to contact TEP as soon as they are interested in pursuing a teaching career.

Prerequisite Requirements for Graduate Credential Programs

Multiple Subject

(Elementary) Credential

- UCSD Undergraduates: Students working towards any major at UCSD may complete the prerequisite Multiple Subject Credential admission requirements and course of study while they are undergraduates.

Multiple Subject

Prerequisite Requirements

1. Undergraduates completing any major at UCSD may complete the prerequisite requirements for the Multiple Subject Credential. Candidates prior to completing their degree. Candidates who have already received a Bachelor of Arts or Science from any University of California campus, or an appropriate equivalent degree from another institution, must apply for graduate status as a Multiple Subject prerequisite credential student. Examples of majors not eligible for application to TEP include Business, Education, Liberal Studies, Marketing, and Recreation.

A 3.0 cumulative GPA is required from the
institution awarding the bachelor's degree.
2. Subject Matter Competence:

This requirement is satisfied by either:

- Providing evidence of satisfactory completion of the Multiple Subjects Assessment for Teachers (MSAT), or
- By providing transcripts showing the completion of $4 / 5$ of the approved subject matter preparation program for the multiple subject credential (Contact the TEP Office for more information.) (Note that remaining $1 / 5$ of the subject matter program must be completed prior to application for the California Multiple Subject Credential.)

3. The California Basic Educational Skills Test (CBEST):
Evidence of passing the CBEST satisfies this requirement.
4. U.S. Constitution requirement:

This requirement is satisfied by either:

- Completion of a course covering the provisions and principles of the U.S.
Constitution, or
- Passage of an appropriate exam offered through University Extension or the County Office of Education (Contact the TEP office for information.)

5. Sensitivity to second language learning:

Applicants must demonstrate, through course work or equivalent experience, an informed sensitivity to the challenges of second language learning and acquisition. This can be fulfilled in one of three ways:

- Completion of nine quarter units of college course work in a single language that is not the applicant's native language, or
- Completion of three years of secondary school course work in a language other than English. The course work must be taken in grades 7 through 12 , with at least a B average, or
- Demonstration of an "equivalent experience" in a second language situation. Applicants who wish to satisfy this requirement by one of the three options listed below must submit an essay that describes the length and circumstances of the experience, including at least three specific examples of situations that helped you gain personal knowledge and appreciation
of issues surrounding second language acquisition in a diverse cultural setting. The three equivalent experience options are:
i. The applicant has lived for prolonged period of time in a country where the language spoken was not native to the applicant, and where the applicant was continuously required to speak that second language (e.g., Peace Corps).
ii. The applicant has had an extended experience immersed in a multilingual community in his/her native country.
iii. The applicant was raised in a multilingual community.

6. Prerequisites for BCLAD Emphasis in Spanish or American Sign Language options:
These emphases are designed for students who have sufficient bilingual skills to effectively teach in English and either Spanish or American Sign Language. Students interested in applying for admission to the BCLAD program must demonstrate:
a. Spanish or American Sign Language fluency:
i. Spanish: Completion of two Spanish literature courses (Spanish/English BCLAD only), at least one of which must be upper-division in either Latin American or Chicano literature, and completion of the TEP Spanish Language Assessment, with an FSI score of at least 3 (scores of 3 -will be accepted, but students must receive a score of 3 prior to being recommended for the BCLAD credential). Since these exams are coordinated by TEP, please contact TEP in January prior to your application to the credential program.
ii. American Sign Language: Completion of the TEP American Sign Language assessment with a rating of "acceptable" by a panel of assessors
b. Cultural Knowledge:
i. Spanish: One history course and one culture course covering Chicano or Latin American-related topics
ii. American Sign Language: At least one course on the language or culture of deaf people in the U.S. or intensive experience living among deaf people in the U.S.
c. History, Politics, and Theory of Bilingual Education:TEP 125
d. A desire to teach in a bilingual setting.

Note: A grade of B - or higher is required for all BCLAD courses.

Prerequisite Course-of-Study for Multiple Subject (Elementary) Credential Candidates

UCSD students planning to apply to the TEP graduate Multiple Subject (elementary) Creden-tial Program must complete the Introduction to Teaching and Learning requirement listed in a below and one course from each of the remaining three areas, \mathbf{b}, \mathbf{c}, and \mathbf{d} (see Table 1 for a sample schedule). Graduate students admitted as prerequisite candidates may satisfy the Multiple Subject prerequisite requirements as an academic year program or through an intensive summer program of defined coursework (contact TEP for admission requirements and scheduling). A minimum 3.0 GPA for all prerequisite coursework is required for admission to the TEP credential program.
a. Introduction to Teaching and Learning. Three of the following courses and a corequisite practicum for each:
TEP 130. Introduction to Academic Mentoring of Elementary School Students
or
TEP 134. Introduction to Literacy and Numeracy Tutoring
and
TEP 128A-B. Introduction to Teaching and Learning (TEP 128B is restricted to students applying to TEP at UCSD and must be taken in the year of application to the program.)
and
TEP 139. Practicum in Teaching/Learning (corequisite for TEP 130 or 134 and TEP 128A-B)
b. Learning Environments. One of the following courses or equivalent:
TEP 114. Cognitive Development and Interactive Computing Environments (recommended for Multiple or Single Subject candidates)
TEP 115. Cognitive Development and Education (recommended for Multiple Subject candidates)

TEP 118. Adolescent Development and Education (recommended for Single Subject candidates)

Teacher Education Program

CogSci 154. Communication Disorders in Children and Adults (same as Psy 174)

COMT 116 Practicum in Child Development (same as HDP 135/Psy 128)
HDP 1. Introduction to Human Development
Psychology 101.Introduction to Developmental Psychology
c. Language and Culture. One of the following courses or equivalent:

TEP/SocB 117. Language, Culture and Education (recommended for credential candidates)

ANGN 117. Anthropology of Education
ANGN 149. Language in Society
COCU 144. Language and Society
COHI 122 . Communication and the Community

COHI 114. Bilingual Communication
Ethnic Studies 140. Language and American Ethnicity
Ethnic Studies 141. Language and Culture
d. School and Society. One of the following courses or equivalent:
TEP/SocC 126. Social Organization of Education (recommended for credential candidates)

TEP 125. History, Politics, and Theory of Bilingual Education (required for $B C L A D$ candidates)

ANGN 112. Language, Identity, and Community SocC 125. Minorities in the Schooling Process

Table 1: Sample Course-of-Study for Multiple Subject (Elementary) Credential

FALL	WINTER	SPRING
TEP 130	TEP 128A	TEP 128B (only
(also W or S)	(only W)	S-restricted to
TEP 139	TEP 139	TEP candidates)
TEP 117*	TEP 115 (only W)	TEP 139
		TEP 126* or
		TEP 125 (required
		for BCLAD)

* Offered various quarters. See other options above.

Professional Preparation

After students complete the prerequisites described above, they apply to the program, as described above. Upon acceptance, teacher candidates complete the professional preparation
activities which lead to the award of the Multiple Subject credential.

The professional preparation component of the Multiple Subject credential consists of five courses and fifteen weeks of student teaching in elementary school classrooms.
The professional preparation courses are:
TEP 150. Multicultural Education
TEP 151. Teaching the English Language Learner
TEP 161 ABC. Innovative Instructional Practices
Pre-Student Teaching is offered in winter as TEP 190 (4.0 units). Student Teaching is offered in winter and spring quarters as TEP 169A, 169B (9.0-9.0 units) (Practicum in Student Teaching).

Additional Requirements for BCLAD Candidates

Students pursuing the BCLAD emphasis in Spanish must also take TEP 152A-B (Bilingual Instructional Practices). Furthermore, BCLAD candidates will be placed in bilingual student teaching situations.

A typical student schedule for the professional preparation program is shown in Table 1:

Table 1: Schedule of Professional Preparation Activities for the Multiple Subject Credential

FALL	WINTER	SPRING
TEP 150 (4)	TEP 161B (4)	TEP 161C (4)
TEP 151 (4)	TEP 169A (9)	TEP 169B (9)
TEP 161A (6)	TEP 190 (4)	
TEP 180 (4)		
BCLAD candidates:		
TEP 152A (2)	TEP 152B (2)	

Single Subject (Secondary) Credential

- UCSD Undergraduates: Students working towards a Literature, Linguistics, Mathematics, or any Science major at UCSD may complete the prerequisite Single Subject Credential requirements while they are undergraduates.

Single Subject

Prerequisite Requirements

1. Undergraduates working toward selected majors at UCSD may complete the prerequisite requirements for the Single Subject Credential
prior to completing their degree. Students must be working toward a major in the discipline corresponding to that of the desired credential:

- English: any UCSD Literature or Linguistics major, or equivalent
- Mathematics: any UCSD Mathematics, Engineering, or Computer Science major, or equivalent,
- Biology, Chemistry, Geosciences, or Physics: any UCSD Natural Science major, or equivalent.

Candidates who have already received a literature, linguistics, mathematics, or science Bachelor of Arts or Science degree from any University of California campus, or an appropriate equivalent degree from another institution, must apply for graduate status as a Single Subject prerequisite credential student.

A 3.0 cumulative GPA is required from the institution awarding the bachelor's degree.
2. Subject Matter Competence:

This requirement is satisfied by either:

- providing evidence of satisfactory completion of the appropriate sections of the SSAT and PRAXIS
or
- having completed $4 / 5$ of the subject matter preparation program for the desired single subject credential (Contact the TEP Office for more information.) (Note that the remaining $1 / 5$ of the subject matter program must be completed prior to application for the California Single Subject Credential.)

3. The California Basic Educational Skills Test (CBEST):
Evidence of passing the CBEST satisfies this requirement.
4. U.S. Constitution requirement:

- completion of a course covering the provisions and principles of the U.S. Constitution or
- passage of an appropriate exam offered through University Extension or the County Office of Education (Contact the TEP office for information.)

5. Sensitivity to second language learning:

Applicants must demonstrate, through course work or equivalent experience, an informed sensitivity to the challenges of second language learning and acquisition. This can be fulfilled in one of three ways:

- completion of nine quarter units of college course work in a single language that is not the applicant's native language or
- completion of three years of secondary school course work in a language other than English. The course work must be taken in grades 7 through 12 , with at least a B average
or
- demonstration of an"equivalent experience" in a second language situation. Applicants who wish to satisfy this requirement by one of the three options listed below must submit an essay that describes the length and circumstances of the experience, including at least three specific examples of situations that heiped you gain personal knowledge and appreciation of issues surrounding second language acquisition in a diverse cultural setting. The three equivalent experience options are:
i. The applicant has lived for a prolonged period of time in a country where the language spoken was not native to the applicant, and where the applicant was continuously required to speak that second language (e.g., Peace Corps).
ii. The applicant has had an extended experience immersed in a multilingual community in his/her native country.
iii. The applicant was raised in a multilingual community.

6. Prerequisites for BCLAD Emphasis in Spanish:

This emphasis is designed for students who have sufficient bilingual skills to effectively teach in English and Spanish. Students interested in applying for admission to the BCLAD program must demonstrate:
a. Spanish Language Fluency:
i. Completion of two Spanish literature courses, at least one of which must be upper-division in either Latin American or Chicano literature, and
ii. Completion of the TEP Spanish Assessment, with an FSI score of at least 3 (Scores of 3will be accepted, but student must receive a score of 3 prior to being recommended for the BCLAD credential.) Since these exams are coordinated by TEP, please contact TEP in January prior to application to the credential program.
b. Cultural Knowledge: One history course and one culture course covering Chicano or Latin American-related topics.
c. History, Politics, and Theory of Bilingual Education:TEP 125
d. A desire to teach in a bilingual setting.

Note: A grade of B - or higher is required for all $B C L A D$ courses.

Prerequisite Course-of-Study for Single Subject (Secondary) Credential Candidates

UCSD students planniriy to apply to the TEP graduate Single Subject (secondary) Credential Program must complete the Introduction to Teaching and Learning requirement listed in a below and one course from each of the remaining three areas, \mathbf{b}, \mathbf{c}, and \mathbf{d} (see Table 2 for a sample schedule). A minimum 3.0 GPA for all prerequisite coursework is required for admission to the TEP credential program.
a. Introduction to Teaching and Learning. Three of the following courses and a corequisite practicum for each:
TEP 129 A-B-C. Introduction to Teaching and Learning (TEP 129C is restricted to students applying to TEP at UCSD and must be taken in the year of application to the program.)
or
TEP 136. Introduction to Academic Tutoring of Secondary School Students (may be substituted for TEP 129A only)
and
TEP 139. Practicum in Teaching/Learning (corequisite for TEP 129 A-B-C and TEP 136)
and
TEP 190. Research Practicum
(take concurrently with TEP 129C)
b. Learning Environments. One of the following courses or equivalent:

TEP 118. Adolescent Development and Education (recommended for Single Subject candidates)

TEP 114. Cognitive Development and Interactive Computing Environments (recommended for Multiple or Single Subject candidates)

TEP 115. Cognitive Development and Education (recommended for Multiple Subject candidates)

CogSci 154. Communication Disorders in Children and Adults (same as Psy 174)
COMT 116. Practicum in Child Development (same as HDP 135/Psy 128)

HDP 1. Introduction to Human Development
Psychology 101. Introduction to
Developmental Psychology
c. Language and Culture. One of the following courses or equivalent:

TEP/SocB 117.Language, Culture and Education (recommended for credential candidates)
ANGN 117. Anthropology of Education
ANGN 149. Language in Society
COCU 144. Language and Society
COHI 122. Communication and the Community

COHI 114.Bilingual Communication
Ethnic Studies 140. Language and American Ethnicity

Ethnic Studies 141. Language and Culture
d. School and Society. One of the following courses or equivalent:

TEP/SocC 126. Social Organization of Education (recommended for credential candidates)

TEP 125. History, Politics, and Theory of Bilingual Education (required for BCLAD candidates)
ANGN 112. Language, Identity, and Community
SocC 125. Minorities in the Schooling Process
and
TEP 153:Teaching Practices for Equitable Education

Table 2: Sample Course-of-Study for Single Subject (Secondary) Credential

FALL	WINTER	SPRING
TEE 129A (only F)	TEP 1298 (only W)	TEP 129C (only
TEP 139	TEP 139	S-restricted to
TEP 117*	TEP 118 (only W)	TEP candidates)
		TEP 139
		TEP 126* or
		TEP 125
		(required for
		BCLAD)
		TEP 190
		(concurrent
		with TEP 129C)

*Offered various quarters. See options above.

Internship and Student Teaching Programs

Those admitted to the Single Subject Credential Program are eligible to be interviewed in June, July, and August for a paid internship for the following school year, in a local middle or high school. Availability of internship positions in not guaranteed, though TEP attempts to facilitate internship positions for all Single Subject students. Students who do not receive an internship position will do their practicum as student teachers instead. Interns are responsible for teaching English, mathematics, biology, chemistry, geosciences, or physics courses under the guidance of a TEP supervisor and an on-site adviser. Interns, who are generally hired for part-time teaching loads, receive a salary from the school district commensurate with the number of courses they teach.

Professional Preparation Courses

Once students are selected, they are provided an intensive program of professional preparation, including a full-time summer program of teaching methods courses and seminars offered throughout the academic year which address classroom management techniques and strategies for dealing with concrete teaching and learning situations.

The professional preparation program for the Single Subject Credential consists of the following three courses (BCLAD-five courses), in addition to TEP 179ABC (8-8-8 units) Internship Field Experience, for a total of 36 quarter units (BCLAD—40 units).

TEP 151 Teaching the English Language Learner

TEP 173* Secondary English Teaching Practices
TEP 174* Secondary Mathematics Teaching Practices

TEP 175* Secondary Science Teaching Practices
TEP 176 Writing, Reading and Language Instruction
*Students may only take TEP 173, or 174 or 175.
A typical student schedule for the Single
Subject Professional Preparation Program is shown in Table 2.

Table 2: The Professional Preparation Program for the Single Subject Credential

SUMMER	FALL	WINTER	SPRING
TEP 173(4)	TEP 179A (8)	TEP 179B (8)	TEP 179C (8)
(or 174		TEP 151 (4)	
or 175)			
TEP 176 (4)			
TEP 180 (4)			

For BCLAD Candidates:
TEP 152B (2) TEP 152A (2)

Professional Clear Credentials

Completing the professional preparation sequence in Multiple or Single Subject described above entitles a teacher to teach in public schools in California for five years with a "Preliminary" credential. To teach past this time, teachers must complete additional courses, which lead to the award of a "Professional Clear" credential. Students may take this course work while they are completing the requirements for the "Preliminary" credential.

The courses required for the "Professional Clear" credential are:
TEP 180: Computer Applications in Teaching and Learning
TEP 181: Health Education
TEP 182: Inclusive Educational Practices
Above course work must be taken during the Single Subject internship year (TEP 180, TEP 181: summer, TEP 182: spring).

For Multiple Subject candidates, TEP 180, TEP 181 should be taken fall and TEP 182 in the spring during the credential year. UCSD undergraduates pursuing the Multiple Subject Credential are encouraged to take TEP 180 during their junior or senior year. UCSD TEP prerequisite students may take TEP 180 during the prerequisite year.

Minor in Teacher Education

UCSD undergraduate students who are interested in pursuing a teaching credential should refer to the appropriate elementary or secondary prerequisite course of study when selecting courses for the minor. Contact TEP for details.

The Teacher Education Program offers a Minor in Teacher Education that requires a minimum of twenty-eight units, twenty units of which must be upper division. All courses for the minor must be taken for a letter grade except TEP 139. Students must complete a course-of-study that includes a minimum of one course in category a below and a minimum of one course from two of the remaining three categories \mathbf{b}, \mathbf{c}, or \mathbf{d}. The TEP minor requires a minimum of twelve units in TEP courses. A maximum of eight units of practicum (TEP 139) may be applied to the minor.

a. Introduction to Teaching and Learning

One of the following courses (four quarter units) and corequisite practicum TEP 139 (two quarter units)
TEP 128 A-B. Introduction to Teaching and Learning (Elementary). (TEP 128B restricted to TEP Multiple Subject candidates and must be taken in the senior year.)
TEP 129 A-B-C Introduction to Teaching and Learning (Secondary) (TEP 129C restricted to TEP Single Subject candidates. It is preferable that 129A be taken in the senior year. 129B and 129C must be taken in the senior year.)
TEP 130. Introduction to Academic Mentoring of Elementary School Students
TEP 134. Introduction to Literacy and Numeracy Tutoring
TEP 136. Introduction to Academic Tutoring of Secondary School Students
TEP 138. Introduction to Academic Tutoring of Preuss School Students
and
TEP 139. Practicum in Teaching/Learning

b. Learning Environments

TEP 114. Cognitive Development and Interactive Computing Environments (recommended for Multiple or Single Subject candidates)

TEP 115. Cognitive Development and Education
(recommended for Multiple Subject candidates)
TEP 118. Adolescent Development and Education (recommended for Single Subject candidates)

Cog Sci 154. Communication Disorders in Children and Adults (same as Psychology 174)

COMT 116. Practicum in Child Development (same as HDP 135/Psychology 128)
HDP 1.Introduction to Human Development
Psychology 101. Introduction to Developmental Psychology

c. Language and Culture

TEP/SocB 117. Language, Culture and Education (recommended for all TEP credential candidates)
ANGN 117. Anthropology of Education
ANGN 149. Language in Society
COCU 144. Language and Society
COH 122. Communication and the Community
COHI 114. Bilingual Communication
Ethnic Studies 140. Language and American Ethnicity

Ethnic Studies 141. Language and Culture
d. School and Society

TEP/Soc 126. Social Organization of Education (recommended for all TEP credential candidates)
TEP 125. History, Politics, and Theory of Bilingual Education (required for BCLAD and recommended for all TEP credential candidates)

ANGN 112. Language, Identity, and Community
SocC 125. Minorities in the Schooling Process

The Master of Education (M.Ed.) Approval Pending

The Master of Education (M.Ed.) degree will articulate with existing credential programs at UCSD. The M.Ed. will be an intensive, fifteenmonth professional degree designed specifically for preservice elementary and secondary teachers earning their initial teaching credential at UCSD. This course of study will aliow candidates to earn a teaching credential and the M.Ed. degree from

UCSD prior to entering the teaching profession. The program will require applicants with strong subject matter preparation.

The Master of Arts in Teaching and Learning: Curriculum Design

The M.A. in teaching and learning at UCSD offers professional educators in elementary and secondary schools an extensive overview of principles of educational research and curriculum design.

A key feature of the M.A. program is the integration of research and practice. M.A. students remain full-time $\mathrm{K}-12$ teachers for the duration of the program. They design, implement, and evaluate curricular innovations in their own classrooms. The culmination of the M.A. work is a thesis describing the rationale, development, and effectiveness of these innovations.

Examples of M.A. Research Projects

The topics of the M.A. theses in past years are varied, and have included:multimedia approaches to secondary biology and chemistry instruction; writing revision among emergent writers; building partnerships between families and schools; activities which link home and school experiences in the content areas of reading and writing, mathematics, science, and social studies; improved integration of curriculum and assessment; motivation and art; using technology for mathematics and geography teaching; and embedding ESL in native language instruction.

Since the program's inception in 1988, 144 students have earned M.A. degrees in teaching and learning with an emphasis in curriculum design. Of these, eighty came from the ranks of elementary teachers, fifty-nine worked as secondary teachers, and five taught at the post-secondary level.

The M.A. Course of Study (Teaching and Learning: Emphasis in Curriculum Design)

The M.A. program requirements consist of forty quarter units of course work, including the master's thesis. Courses are usually offered for 4.0 quarter units of credit, and are typically offered one night per week, from 5:00-8:00 p.m. Core course work comprises twenty-eight units, with
the remaining twelve units consisting of elective course work.

A typical program consists of:

CORE M.A. COURSEWORK

First Summer

(mid June-late August)
TEP 231 or 232 (offered alternating summers)
Each summer includes an intensive course in innovative instructional theory and practices. Specific topic changes each year. Examples include: portfolio and authentic assessment; telecommunications in the classroom; collaborative learning; and research on child development and learning.

TEP 229
Introductory course about research on teaching practice.

Fall, Winter, and Spring:

TEP 230A-B-C
Three quarter seminar providing an extensive overview of curriculum design principles, and application of educational research to classroom practice.

TEP 233A-B
Graduate seminar series in which UCSD faculty present their research on educational topics.
TEP 290
Intensive work with faculty adviser (Spring only)

Second Summer

(mid June-late August)
TEP 231 or 232 (see above)
TEP 295
Completion of M.A. thesis writing.
Admission to the M.A. program in teaching and learning at UCSD is competitive. Factors considered by the selection committee include:

- teaching experience
- professional development activities
- experience and interest in curriculum design
- academic record

Admission to graduate standing at UCSD requires a minimum cumulative GPA of 3.0 for any prior graduate work, and for the bachelor's degree. Official scores from the GRE verbal, analytic, and quantitative sections are also required.

The Master of Arts in Teaching and Learning: Bilingual Education (ASL-English)

The Teacher Education Program (TEP) at UCSD offers a master of arts in teaching and learning: bilingual education emphasis (ASB-English) and the California Deaf and Hard-of-Hearing Specialist Teaching Credential and the Multiple Subject Teaching Credential with BCLAD emphasis for elementary school teachers. This program of study includes extensive practicum experience combined with the latest research and innovation in bilingual education and deaf education. Students in the program participate in research and development on the leading edge of bilingual, multicultural education for deaf and hard-of-hearing children.

In keeping with its aim of training teachers who will be able to meet the needs of deaf and hard-of-hearing children from various language and cultural backgrounds, TEP requires fluency in ASL for acceptance into the program. TEP's teacher training program is designed to prepare teachers to work in various types of school settings from residential school classrooms to local public school classrooms for deaf and hard-ofhearing children. TEP recognizes that deaf and hard-of-hearing children need teachers who are themselves bilingual and knowledgeable about the role of culture in human development.

Prerequisite Course of Study Education Foundations Sequence

Prior to admittance to the credential and master's study, prerequisite students (or UCSD undergraduates pursuing the minor in teacher education) complete the following five courses offered during the first summer.
TEP 128A-B: Practicum in Learning
TEP 115: Child Development
TEP 117: Language, Culture and Education
TEP 125: History, Politics, and Theory of Bilingual Education

Program of Study for the Deaf and Hard-of-Hearing Specialist Credential, the Multiple Subject Teaching Credential with BCLAD Emphasis and the Master of Arts in Teaching and Learning.

After completion of the prerequisite component, students complete a program of study resulting in the California Deaf and Hard-ofHearing Specialist Credential at the elementary level. Students also qualify for the Multiple Subject (BCLAD) credential.

This program of study consists of courses in bilingual education theory, methods, and applications to deaf education in addition to intensive classroom practice. During the second year of study the focus is on designing, implementing and evaluating a research project. This integration of research and practice is central to the goal of the M.A. program to develop teachers as researchers.

> A typical program of study includes:

YEAR 1

Fall
COHI 124/TEP151 (alternating): Voice: Deaf People in America/Teaching the English Language Learner
TEP 142A: ASL-English Bilingual Education Practices

TEP 150: Multicultural Education
TEP 161A: Innovative Instructional Practices

Winter

TEP 142B: ASL-English Bilingual Education Practices
TEP 161B: Innovative Instructional Practices
TEP 169A: Practicum in Student Teaching
TEP 190: Research Practicum (four units)

Spring

TEP 142C: ASL-English Bilingual Education Practices
TEP 161C: Innovative Instructional Practices
TEP 169B: Practicum in Student Teaching
TEP 182: Inclusive Educational Practices

YEAR 2

Fall
COHI 124/TEP 151 (alternating): Voice: Deaf People in America/Teaching the English Language Learner
\(\left.$$
\begin{array}{ll}\text { TEP 180: } & \begin{array}{l}\text { Computer Applications in Teaching } \\
\text { and Learning }\end{array} \\
\text { TEP 181: } & \begin{array}{l}\text { Health Education }\end{array} \\
\text { TEP 240A: } & \begin{array}{l}\text { Research in ASL-English Bilingual } \\
\text { Education }\end{array} \\
\text { TEP 241: } & \begin{array}{l}\text { Advanced Topics in Deaf Education }\end{array}
$$

Winter \&

TEP 233A or B: Topics in Education Research

and Design\end{array}\right\}\)| TEP 240B: | Research in ASL-English Bilingual
 Education |
| :--- | :--- |
| TEP 290: | Research Practicum |
| Spring | Education Specialist Student
 TEP 149: |
| TEP 240C: | Research in ASL-English Bilingual
 Education |

TEP 295: MA Thesis (summer if necessary) Summer
TEP 295: M.A.Thesis

Admission Requirements

Candidates will apply to graduate admission to the prerequisite component of this program. Upon satisfactory completion of the prerequisite component, students will advance to the professional component and master's component which require two years of study. The following are the minimum eligibility requirements to for admission to the graduate prerequisite component. Applications are available beginning in January. Application deadline is February 1.

- A bachelor's degree with a 3.0 cumulative GPA
- Official Graduate Record Exam (GRE) scores
- Subject matter competence
- The California Basic Educational Skills Test (CBEST)
- Completion of a course including the provisions and principles of the U.S. Constitution, or passage of the appropriate exam
- Official Graduate Application and Fee
- Statement of Purpose and Reference Letters
- Fluency in American Sign Language
- Knowledge and experience of the social and cultural life of deaf people
- A desire to teach deaf children of varying language and cultural backgrounds

Admission to graduate standing at UCSD requires a minimum cumulative GPA of 3.0 for any prior graduate work, and for the bachelor's degree. Official scores from the GRE verbal, analytic, and quantitative sections are also required.

COURSES

The following courses are offered by the TEP faculty. Students are advised to consult with a TEP adviser to determine which courses satisfy credential requirements. Undergraduate students may enroll in graduate seminars with the consent of instructor.

UPPER-DIVISION

COHI 124. Voice: Deaf People in America (4)
The relationship between small groups and dominant culture is studied by exploring the world of deaf people who have for the past twenty years begun to speak as a cultural group. Issues of language, communication, selfrepresentation, and social structure are examined. Prerequisite: Com/HIP 100 or consent of the instructor.

TEP 105. Teaching and Learning Physics (4)

(Same as PHYS 180.) A course on how people learn and understand key concepts in Newtonian mechanics. Reading in physics and cognitive science plus fieldwork teaching and evaluating $\mathrm{K}-12$ students. Useful for students interested in teaching. Prerequisite: Phys. 1A, 2A, or $4 A$ or consent of the instructor.

TEP 109. Teaching Physical Education (4)
This course is designed to assist future elementary teachers and recreation fitness leaders develop quality physical education programs for children. Instruction focuses on theory and practice of movement activities that are physically and emotionally safe, health promoting, and developmentally appropriate. (S)

TEP 114. Cognitive Development and Interactive

Computing Environments (4)
Learning and development considered as an evolving interplay between "internal representations" and "external representations" of the world, with special attention devoted to the design, history, and educational implications of computer-based tools and learning environments. Prerequisite:TEP 180 or consent of instructor. (W)

TEP 115. Cognitive Development and Education (4)
This course examines the development of thinking and language in preschool and elementary school children, with implications for education. Themes include facilitating children's learning, and individual differences in cognition. Examples of topics covered are word learning, mathematical knowledge, and scientific thinking. Letter grade only. (W)

TEP 116. The Psychology of Teaching and Structures of Information for Human Learning (0-4)

College students tutoring college students. Curriculum: basic applied learning principles, specifying objectives, planning and designing instruction, testing, evaluation, interpersonal communication skills, study skills. Objectives will be assessed by project completion and
practicum feedback. This course is not creditable toward professional preparation requirements for the multiple subject credential. Prerequisite: departmental approval (consent of instructor)-department stamp restriction. (F,W,S)

TEP 117. Language, Culture, and Education (4) (Same as Soc/B 117) The mutual influence of language, culture, and education. Explanations of students' school success and failure that employ linguistic and cultural variables, bilingualism, and cultural transmission through education are explored. (F,W,Su)

TEP 118. Adolescent Development and Education (4) This course introduces prospective secondary teachers to the cognitive, social, and emotional development of adolescents, including developmental learning theory, the teaching/learning process, effective learning environments, and cross-cultural variation in development. Implications for classroom practice are drawn. (W)

TEP 125. History, Politics, and Theory of Bilingual

 Education (4)This course provides a historical overview and models of bilingual education in the United States. Students will examine sociocultural, theoretical, and policy issues associated with native language and second-language instruction, and legal requirements for public bilingual program.

TEP 126. Social Organization of Education (4)

(Same as Soc/C 126) The social organization of education in the U.S.. and other societies; the functions of education for individuals and society; the structure of schools; educational decision-making; educational testing; socialization and education; formal and informal education; cultural transmission. (W,S,Su)

TEP 127A-B-C. Practicum in Interactive

Computing (4-4-4)
The course focuses on interactional computing in teaching/learning. Course work concentrates on interactive computing, application to teaching, learning, bilingualism, and communication. Concurrent with course work, students are assigned to a school or community field site implementing interactive computing. Students will write research reports integrating course work and field experience. (F,W,S)

TEP 128 A-B. Introduction to Teaching and Learning (Elementary) (4-4)
This course series is for undergraduates who are exploring a career in elementary school teaching. Topics addressed include: theories of teaching and learning; research on cognition and motivation; and the cultural context of classroom teaching and learning. TEP 128A focuses on the learner in the teaching-learning interaction and TEP 128B focuses on the teacher in the teach-ing-learning interaction. Prerequisites: department stamp required; TEP 139 must be taken as corequisite. TEP 130 or 134 must be completed before TEP 128 A and 128A for 128B. TEP 128B is reserved for students applying to the TEP Multiple Subject Credential Program.

TEP 129 A-B-C. Introduction to Teaching and Learning

 (Secondary) (4-4-4)This course series is for undergraduates who are exploring a career in teaching secondary school. Topics addressed include: theories of teaching and learning processes and motivation for science, mathematics, and English instruction. TEP 129A focuses on the analysis of the needs of individual learners and small group instruction techniques; TEP 129B emphasizes the various roles of the classroom teacher and planning indi-
vidual lessons; and TEP 129 C emphasizes the assessment of student work and longer-range curriculum planning. Prerequisites: department stamp. TEP 139 must be taken as corequisite. Must have successfully completed TEP 136, 138, or 129A for $129 B$ and 129B for 129C. TEP 129 C is reserved for students applying to the Single Subject Credential Program.

TEP 130. Introduction to Academic Mentoring of Elementary/School Students (4)
This course focuses on the role of undergraduate mentors in raising academic expectations for students and families traditionally underrepresented at the university. The relationship between the school and community, the social and political organization of elementary schools, and the academic achievement of elementary children are examined. Prerequisites: department stamp required. TEP 139 must be taken as a corequisite.

TEP 134. Introduction to Literacy and Numeracy Tutoring (4)
This course examines effective practices for language arts and mathematics learning for elementary school children. The field experience and seminar focus on the tutor/student relationship, teaching and learning processes for literacy and numeracy, and community service. Prerequisites: department stamp required. TEP 139 must be taken as a corequisite.

TEP 136. Introduction to Academic Tutoring of

 Secondary School Students (4)This course focuses on the role of undergraduate tutors in building academic resiliency in secondary students traditionally underrepresented at the university. The relationship between the school and community, the social and political organization of secondary schools, the philosophical, sociological, and political issues which relate to the U.S. secondary educational system, and the academic achievement of secondary children are examined. Prerequisites: department stamp required. TEP 139 must be taken as a corequisite. A student may not receive credit for both TEP 136 and TEP 138.

TEP 138. Introduction to Academic Tutoring at the

 Preuss School (4)This course focuses on effects of the Charter School movement on public education in the U.S., the role of the research universities in K-12 education, the social and political organization of the schools, the philosophical, sociological, and political issues which relate to the U.S. secondary educational system, and the academic achievement of secondary children. Students investigate the role of undergraduate tutors in building academic resiliency in secondary students traditionally underrepresented at the university. Prerequisites: department stamp required. TEP 139 must be taken as a corequisite. A student may not receive credit for both TEP 136 and TEP 138.

TEP 139. Practicum in Teaching/Learning (2)

Students are placed in local schools and work with students in classrooms and the community. Students work on educational activities with $\mathrm{K}-12$ students a minimum of four hours/week. Prequisites: department stamp required. One of the following courses (may be taken concurrently) TEP 109, or TEP 127A-B-C, or TEP 128A-B, or $129 \mathrm{~A}-\mathrm{B}-\mathrm{C}$, or 130 , or 134 , or 136 , or 138.

TEP 142A. ASL-English Bilingual Education Practices (4) Students will examine the history, current theory, philosophy, legislation, and trends in deaf education. Methods of first- and second-language development, communication, and literacy skills for deaf and hard-of-hearing children will be introduced. Prerequisites:

TEP 115, TEP 117, TEP 126, TEP 128A, TEP 128B. Must be a TE81 major. (F)

TEP 142B. ASL-English Bilingual Education Practices (2) Students will investigate formal and informal assessment techniques used for deaf and hard-of-hearing children, bilingual/multicultural education practices across the curriculum, effective learning environments and approaches for educating and interacting with families and communities. Prerequisites: TEP 142A, TEP 161A. Must be a TE81 major. (W)

TEP 142C. ASL-English Bilingual Education Practices (2) Students will continue to investigate formal and informal assessment techniques used for deaf and hard of hearing children, bilingual/multicultural education practices across the curriculum, effective learning environments and approaches for educating and interacting with families and communities. Prerequisites: TEP 142A, TEP 142B, TEP 161A. Must be a TE81 major.

TEP 149. Deaf Education Specialist Student Teaching

Practicum (9)

Education specialist credential candidate performs student teaching in participating schools for a minimum of seven weeks full-time under the supervision of a cooperating teacher and university supervisor. The field experience provides professional preparation and diversified teaching responsibilities for post-baccalaureate students pursuing the California Deaf and Hard of Hearing Specialist and BCLAD Credential. Prerequisites: must be a TE81 or TE79 major only-an affirmed Multiple Subject candidate at UCSD who has advanced to student teaching.

TEP 150. Multicultural Education (4)
The purpose of this course is to help prospective elementary and secondary teachers organize their classrooms to make education equitable for all students. Ways to utilize the talents and skills that students from diverse cultural backgrounds bring to school as resources for classroom instruction will be suggested. The discussion will be organized along three dimensions: (1) the ecology or environment of the classroom, (2) the discourse of the classroom, and (3) curriculum content. Included in the ecological category are such issues as grouping, seating arrangements, and visual displays. Included in the discourse category are teachers' instructional strategies, turn-taking procedures and non-verbal cues. Included in the curricular content category are issues of inclusion/exclusion, perspective, and relevance in math and science. Prerequisite: TE79 or TE80 major code. (F)

TEP 151. Teaching the English Language Learner (4)
Students will examine the principles of second language acquisition and approaches to bilingual education. They will develop a repertoire of strategies for teaching in elementary or secondary content areas. Prerequisite: TE79 or TE80 major code. (F,W)

TEP 152A. Bilingual Instructional Practices (2)
History and models of bilingual education; socio-cultural issues associated with second language instruction, legal requirements for public school bilingual programs, native language and ESL teaching methods. First course in a two course sequence. Prerequisite: TE79 or TE80 major code. (F)

TEP 152B. Bilingual Instructional Practices (2)
History and models of bilingual education; socio-cultural issues associated with second language instruction, legal requirements for public school bilingual
programs, native language and ESL teaching methods. Prerequisite: TE79 or TE80 major code. (Su,W)

TEP 161A. Innovative Instructional Practices (6)

First course in a three course sequence. It provides pedagogical methods for multiple subject teaching. Diverse subject areas (math, science, fine arts, P.E., and social studies) are integrated into a single intercurricular course of study by emphasizing activity/inquiry techniques of instruction. Prerequisite: must be a TE79 or TE81 major. (F)

TEP 161B. Innovative Instructional Practices (4)
Second course in a three course sequence. It provides pedagogical methods for multiple subject teaching. Diverse subject areas (language arts and English-as-a-second-language) are integrated into a single intercurricular course of study by emphasizing activity/inquiry techniques of instruction. Prerequisites: TEP 161A, must be a TE79 or TE81 major. (W)

TEP 161C. Innovative Instructional Practices (4)
Last course in a three course sequence. It provides pedagogical methods for multiple subject teaching. General teaching methods are integrated into a single intercurricular course of study by emphasizing activity/inquiry techniques of instruction. Prerequisites: TEP 1618, must be a TE79 or TE81 major. (S)

TEP 169 A-B. Multiple Subject (Elementary) Student

 Teaching Practicum (9-9)The elementary credential candidate performs student teaching in participating schools for seven to eight weeks full-time for each course (fifteen weeks total) under the supervision of a cooperating teacher and university supervisor. The student teaching experience offers professional preparation and diversified teaching responsibilities for post-baccalaureate students pursuing the California Multiple Subject Teaching Credential. Prerequisites: TE79 major. Affirmed Multiple Subject Credential candidate at UCSD who has advanced to student teaching.

TEP 173. Secondary English Teaching Practices (4)
The course introduces prospective secondary teachers to principles and strategies of teaching English language arts. Topics include: writing processes, reading processes, integrated language arts, assessment, the second language learner, the classroom community, the California English Language Arts Framework. Prerequisite: TE80 major code or consent of instructor. (Su)

TEP 174. Secondary Mathematics Teaching Practices (4) Mathematics teaching techniques including, curriculum design, California Model Curriculum Standards, instructional methods, computer applications, selection and use of textbooks, student assessment, lesson planning, and classroom organization. Professional matters including curriculum planning, professional organizations, para-professionals, professional ethics, education law, and parent involvement are addressed. Prerequisite: affirmed credential candidate or approval of instructor. (Su)

TEP 175. Secondary Science Teaching Practices (4)

Science teaching techniques, including science curriculum design, California Model Curriculum Standards, instructional methods, computer applications, selection and use of textbooks, student assessment, lesson planning, and classroom organization. Professional matters including curriculum planning, professional organizations, para-professionals, professional ethics, education law, and parent involvement are addressed.

Prerequisite: affirmed credential candidate or approval of instructor. (Su)

TEP 176. Language and Learning Instruction (4)

This course satisfies the California Commission on Teacher Credentialing requirement for preparation in reading theory and methods for all credential candidates. Theories of reading development, integration of the language arts, reading and writing in the content areas, teaching methods, and literature. Prerequisite: TE79 or TE80 major code. (Su)

TEP 179 A-B-C. Single Subject (Secondary) Internship

 Practicum (8-8-8)The secondary credential candidate teaches approximately one academic quarter for each course in this series (one public school academic year) under the guidance of a university supervisor with additional support provided by an on-site teacher. The internship offers extensive professional preparation and diversified teaching experience under actual classroom conditions for post-baccalaureate students pursuing the California Single Subject Teaching Credential. Prerequisites: TE80 major. Affirmed Single Subject internship credential candidate at UCSD.

TEP 180. Computer Applications in Teaching and Learning (4)

Microcomputers are viewed as a component of interactive communication media. Students learn to use microcomputers and computer networks in course work through hands-on experience. The possible impact of these new media on the teaching-learning process is explored. The course assumes a basic familiarity with social science concepts and the logic of social science inquiry. Prerequisite: upper-division standing or consent of instructor. (F,W,S,Su)

TEP 181. Health Education (4)

This course satisfies the Commission on Teacher Credentialing requirement for Health Education. Topics include: physical education, substance abuse, sex education, cardio-pulmonary resuscitation, nutrition, and first aid. Prerequisite: TE79 or TE80 major code. (F,Su)

TEP 182. Inclusive Educational Practices (4)

This course satisfies the Commission on Teacher Credentialing requirement for Special Education. Topics include: teaching methods for accommodating specialneeds students in the regular classroom, developing an Individual Education Plan, characteristics of specialneeds students, lesson planning to accommodate individual differences, and legislated mandates. Prerequisite: TE79 or TE80 major code. (S)

TEP 183. Current Issues in Teaching and Learning (4)

This course addresses curricula and teaching practices in the K-12 schools. Specific course topics will be developed in cooperation with local school faculty working with TEP on preservice, staff development, and research activities. General issues will include second language acquisition, uses of technology in schools, language arts, mathematics and science instruction, integrated curriculum, and alternative assessment. Prerequisite: TE79 or TE80 major code. (Su)

TEP 190. Research Practicum (1-6)

Supervised research studies with individual topics selected according to students' special interests. Students will develop a research proposal and begin to gather and analyze data. Prerequisite: consent of instructor. (F,W,S)

TEP 195. Apprentice Teaching (2-4)
Advanced TEP students are prepared in effective methods of supervising the preparation of UCSD students serving as paraprofessionals in $\mathrm{K}-12$ classrooms. Topics covered include: classroom management, interpersonal relations, supervision techniques, multi-cultural and multi-lingual education, politics in the school, and curriculum development. Each student serves as a discussion leader and conducts at least two workshops. Prerequisites: department stamp required and TE79 or TE80 major code.

TEP 198. Directed Group Study (4-2)

Directed group study, guided reading, and study involving research and analysis of activities and services in multicultural education, bilingual education, the teach-ing-learning process, and other areas that are not covered by the present curriculum. Prerequisite: consent of instructor.

TEP 199. Special Studies (4)

Individual guided reading and study involving research and analysis of activities and services in multicultural education, bilingual education, the teaching-learning process, and other areas that are not covered by the present curriculum. Prerequisite: consent of instructor.

GRADUATE

Sociology 270. The Sociology of Education (4)
A consideration of the major theories of schooling and society, including functionalist, conflict, critical, and interactional; selected topics in the sociology of education will be addressed in a given quarter, including: the debate over inequality, social selection, cultural reproduction and the transition of knowledge, the cognitive and economic consequences of education. Major research methods will be discussed and critiqued.

TEP 201. Introduction to Resources for Teaching and

 Learning (4)This course introduces students to educational resources, both in print and on-line. Students compile and evaluate research studies, curricular materials, and instructional approaches in preparation for future projects in developing and evaluating various approaches to teaching and learning. Prerequisite: students must be registered TEP graduate students.

TEP 203. Technology, Teaching, and Learning (4)

This course will review current literature on effective applications of technology in the classroom. Students will also become fluent in the use of productivity tools, presentation software, and Web development for teaching and learning; critique software relevant to their area of teaching; and develop an educational activity based on their review of the literature that harnesses the power of technology. Prerequisite: students must be registered TEP graduate students.

TEP 204. Technology and Professional Assessment (4) Advanced techniques for using network-based resources for teaching and learning will be introduced. Students will review relevant research on advanced technologies related to assessment of professional performance and student achievement. Students will present a Web based professional Teaching Performance Assessment Portfolio that reflects teaching performance during their student teaching or internship field experience. Prerequisite: students must be registered TEP graduate students.

TEP 205 A-B. Reflective Teaching Practice (2-2)
This course introduces principles and practices of reflective teaching. Student teachers and interns will systematically document their practice teaching and analyze observation data to improve performance. Students will collaborate with supervisors and expert teachers throughout the yearlong preservice teaching experience. Prerequisite: students must be registered TEP graduate students.

TEP 206. Teaching Performance Assessment

Portfolio (4)

This course introduces the use of a Teaching Performance Assessment Portfolio for assessment of teaching performance. Student teachers and interns will design an electronic portfolio that demonstrates acceptable performance on essential credential standards. National Board of Professional Teaching Standards will also be introduced. Prerequisite: students must be registered TEP graduate students.

TEP 229. Introduction to Educational Resources (4)
This course prepares $\mathrm{K}-12$ teacher-researchers to design, implement, and evaluate classroom research. Students learn how to access and evaluate research studies, curricular materials, and instructional approaches both online and in print. Prerequisite: students must be registered TE76 majors.

TEP 230A-B-C. Research on Curriculum Design (4-4-4)

A year-long course sequence which provides an extensive overview of curriculum design principles appropriate for $\mathrm{K}-12$ instruction. Consensus and model building methods will be discussed using case studies of curriculum research and development projects appropriate for various subject areas and grade levels. Participants will design, implement, and evaluate a curriculum project in their own classrooms. Prerequisite: must be TE76 major or consent of instructor. (F,W,S)

TEP 231. Advanced Instructional Practices (4)
Selected advanced topics in K-12 instructional practices in various subject areas. Techniques for teaching higher-level cogni-tive processes and advanced applications of computers and other technology will be stressed. Participants will conduct a field study of promising teaching practices appropriate to their grade level(s) and subject area(s) of instruction. Prerequisite: must be TE76 major or consent of instructor. (Su)

TEP 232. Special Topics in Education (4)

This course explores topical issues in education. It focuses on recent developments which have broad implications for research and practice in teaching and learning. Course topics will vary each time the course is offered. Prerequisite: must be TE76 major or consent of instructor. (Su)

TEP 233A-B. Topics in Education Research and

Design (2-2)
Current topics and issues in education and educational research methodology, including action research, participant observation, ethnography, and survey research. Prerequisite: must be TE76 major or consent of instructor.

TEP 240A-B-C. Research in ASL English Bilingual

 Education (4-4-4)A three-course sequence in which participants conduct an overview of research and design and conduct a study related to bilingual, bicultural education for deaf children. Prerequisite: must be TE81 major or consent of instructor. (F,W,S)

TEP 241. Advanced Topics in Deaf Education (2)

Topics in human development and education that relate to deaf and hard-of-hearing children and the relationship between home, community/culture, and classroom. Prerequisite: must be TE81 major or consent of instructor. (S)

TEP 250. Equitable Educational Research and Practice (4) This course introduces students to research studies and educational practices of educational equity, both in general and within specific content areas. Research studies relevant to educational equity will be examined, as will practices that have attempted to enable all students to achieve to the best of their abilities. Prerequisite: students must be registered TEP graduate students.

TEP 290. Research Practicum (1-6)
Supervised research studies with individual topics selected according to students' special interests. Students will develop a research proposal appropriate for M.A. thesis, begin to gather and analyze data. Prerequisites: M.A. candidate and consent of instructor. (S / U grades only.)

TEP 295. M.A. Thesis (4)
The student will work on the M.A. thesis under the direction of the students' thesis committee chair. Prerequisites: M.A. candidate and consent of committee chair. (S/U grades only.)

TEP 297. Directed Group Study (1-6)
Study and analysis of specific topics under the guidance of a faculty member. Offered for repeated registration. Prerequisite: consent of instructor.

TEP 298. Independent Study (1-6)
Individual guided study and/or independent research in an area not covered by present course offerings. Offered for repeated registration. Prerequisite:consent of instructor.

Theatre and Dance

OFFICE: 202 Galbraith Hall, Revelle College (858) 534-3791

Web site: http://theatre.ucsd.edu

Professors

Andrei Belgrader, M.F.A., Acting, Acting and Directing
Andrei Both, M.F.A., Scenic Design
Frantisek Deak, Ph.D.
Judith Dolan, Ph.D., M.F.A., Costume Design
Kyle Donnelly, M.F.A., Arthur and Molli Wagner
Chair in Acting, Acting and Directing
Deborah M. Dryden, Emeritus
Athol Fugard, Playwriting (Adjunct)
Floyd Gaffney, Ph.D., Emeritus
Joe Goode, B.A., Theatre Dance (Adjunct)
Jorge Huerta, Ph.D., Chancellor's Associates'
Endowed Chair III, Dramatic Literature

James Ingalls, B.F.A., Lighting Design (Adjunct)
Walt Jones, M.F.A., Chair
Marianne McDonald, Ph.D., Dramatic Literature Chris Parry, Lighting Design
Adele Shank, M.A., Playwriting
Theodore Shank, Ph.D., Emeritus
Janet Smarr, Ph.D., Literature and Italian Studies
Arthur Wagner, Ph.D., Emeritus
Les Waters, B.A., Directing and Acting
James Winker, M.F.A., Academic Senate
Distinguished Teaching Award, Acting

Associate Professors

James Carmody, Ph.D., Dramatic Literature
Mary Corrigan, M.A., Emeritus
Tony Curiel, M.A., Acting and Directing
Allan Havis, M.F.A., Playwriting
Luther James, Emeritus
John Rouse, Ph.D., Dramatic Literature
Jonathan Saville, Ph.D., Emeritus
Carol Ann Smart, B.A., Scenic and Costume
Design (Adjunct)

Senior Lecturers

with Security of Employment
Steven Adler, M.F.A., Stage Management and Directing
Margaret Marshall, M.F.A., Ballet, Dance History, Choreography
Charlie Oates, M.F.A., Movement and Acting
Patricia A. Rincón, M.F.A., Modern and Jazz Dance

Lecturers with Security of Employment

Eva W. Barnes, M.F.A., Speech
Ursula Meyer, M.F.A., Voice and Acting

Lecturers

Kristin Arcidiacono, B.F.A., Tap Dance and Musical Theatre
Tony Caligagan, Jazz Dance
Sandra Foster-King, M.F.A., Modern, Jazz, and African Dance
Jean Isaacs, B.A., Modern Dance
Ron Ranson, M.F.A., Technical Theatre Design
Alicia E. Rinc-n, M.F.A., Jazz Dance
Todd Salovey, M.F.A., Acting and Directing
Tonnie Sammartano, Dance
Amy Scholl, M.F.A., Acting
Judith A. Sharp, B.S., Ballet and Music for Dancers
Linda Vickerman, D.M.A., Singing

The Undergraduate Program

The curriculum of the Department of Theatre and Dance is based on the belief that a good undergraduate education in theatre or dance should provide the student with a solid background in dramatic literature and the aesthetics and history of theatrical performance as well as exposure to the different artistic components of theatrical art-performance, playwriting, design, and choreography. Finally, such an education should incorporate participation in the production process itself.

In addition to providing an integrated program for students desiring a theatre or dance major, the curriculum provides (1) a sequence of courses to fulfill the fine arts and/or humanities requirements for Muir College; (2) courses fulfilling Warren College program of concentration requirements; (3) courses to fulfill Revelle, Thurgood Marshall, and Eleanor Roosevelt Colleges' fine arts requirements; and (4) elective courses for the general student desiring experience in theatre or dance.

Any student who has been accepted to the University of California, San Diego is eligible to declare theatre or dance as a major, double major, or minor. Auditions are not required. Continuing UCSD students who are changing their major to theatre or dance must file a Change of Major form with the UCSD Registrar's Office.

The Theatre Major

The theatre major provides a student with a solid artistic and academic background. The required lower-division courses equip the student with the skills and knowledge necessary for more advanced work in each of the areas of study. The major is structured so that it can respond both to the needs of students who seek a broad-based "liberal arts" education in theatre and to the needs of students who plan to pursue their studies at the graduate level with the aim of acquiring either an M.F.A. or Ph.D. degree. Students should meet with the department's undergraduate coordinator the quarter in which they declare a theatre major in order to plan an appropriate individual course of study.

The major requirements are those published in the catalog that is in effect for the first quarter in which a student attends UCSD. Any student in good standing may declare a theatre major by
completing the appropriate form at the Registrar's Office. A department stamp is not necessary.

The Dance Major

The department proudly opened a new state-of-the-art dance studio facility, designed by award winning and nationally recognized architect Antoine Predock in winter 1998. The facility features three naturally lit and temperature controlled studios with superior acoustics and expansive views of an embracing grove of eucalyptus trees.

The dance major provides dancers with a solid academic base on which to build their dance technique education. The UCSD dance faculty believe that an understanding of the principles and theories of dance as a creative art is a vital component of any comprehensive training in dance. Instruction in dance seeks to promote the development of an intellectual understanding of dance history and dance aesthetics along with refinement of technical skill. Instruction in choreography allows the student to progress from approaching dance education as a question of technical skills to engaging in dance as a creative endeavor. The dance major provides a solid academic base through training in several dance idioms, a background in dance history, numerous performance opportunities, and extensive experience in dance choreography.

The major requirements are those published in the catalog that is in effect for the first quarter in which a student attends UCSD. Any student in good standing may declare a dance major by completing the appropriate form at the Registrar's Office. A department stamp is not necessary.

The Theatre-Dance Double Major

The double major in Theatre and Dance provides students with a solid academic base and a broader artistic base in both theatre and dance disciplines. Furthermore, requirements for this double major will create stronger and more competitive directors (for their exposure to choreography), choreographers (for their exposure to directing), actors (for the poise and strength they will attain from dance), and dancers (for having confronted text and character). Students should meet with the department's undergraduate adviser as soon as practical (but no later than the quarter in which they declare the major) in order to plan an appropriate individual course of study.

Double majors should complete the Petition for Double Major form obtained from their college and submit it to the department for review and approval.

Department of Theatre and Dance Advising

The Department of Theatre and Dance undergraduate theatre adviser, and the undergraduate dance adviser can provide guidance and answers to your questions concerning specific course content, transfer coursework, honors research projects, academic success, production, auditioning procedures, postgraduate opportunities, and departmental policy changes. The undergraduate coordinator can answer your questions regarding major requirements, procedural matters, class enrollment, the petition process, and give referrals to faculty and other campus resources for specific information.

Another important resource for theatre and dance majors are the undergraduate student representatives. The two students in each area organize biquarterly undergraduate faculty meetings presenting the opinions and needs of the undergraduate students in the Department of Theatre and Dance.

The department regularly communicates with our majors and minors as well as other students involved in our classes and productions through the campus email and listserver systems. Students are strongly urged to check their campus email accounts for timely messages or to make arrangements with Academic Computing Services to have campus email forwarded to any other email account they may use. Additionally, a handbook containing useful information is available in the department office, room 202, Galbraith Hall.

Satisfying Your Major Requirements

At least 50 percent of all course work required for the theatre or dance major (including both upper- and lower-division) must be taken at UCSD, regardless of approved transfer work, petitions, and the theatre residency requirement. Units for theatre practicum (THPR), or their equivalent, completed elsewhere do not satisfy the theatre and dance department's requirements for theatre practicum. All courses required for the major or minor must be taken for a letter grade. A theatre and dance department course for which a student earns a grade lower than C - will not be counted as satisfying any of the department's
graduation requirements. Four units of Instructional Assistance (THGE 195, P/NP credit) may be used as an upper-division elective for the theatre major, double major, or minor.

Major Requirements

Theatre majors are required to complete seven lower-division courses. Dance majors are required to complete three lower-division courses. All lower-division courses should be satisfied before starting upper-division course work.

The theatre practicum requirement, THPR 1,2 , 3 , or 4, must be completed within the first three quarters of declaring a theatre or dance major or minor.

Theatre History (THHS 11, 12, or 13) are prerequisites for most upper-division theatre history and theory courses. Introduction to Acting (THAC1), Theatre Design (THDE 1), and Theatre Playwriting (THPW 1) are all prerequisites for any upper-division course work in their respective areas. Prerequisites insure that you are properly prepared for the work required. Not completing prerequisites could therefore jeopardize your GPA.

Theatre majors are required to complete thirteen upper-division courses, including a twounit Major Seminar. Dance majors must complete thirteen upper-division courses. Specific courses will vary for each student depending upon electives and history/theory courses selected.

THEATRE MAJOR

Lower-Division Requirements

1. One course from:

THPR 1.Practicum-Scenery
THPR 2. Practicum-Costume
THPR 3. Practicum-Lighting
THPR 4. Practicum-Stage Management
Note: Students must complete the THPR requirement within one year of declaring a theatre major.
2. Each of the following :

THHS 11. History of Theatre 1:Classical to Renaissance

THHS 12. History of Theatre 2: Neoclassicism to Realism

THHS 13. History of Theatre 3:Symbolism to Postmodernism

Note: THHS 11 or THHS 12 or THHS 13 must be completed before taking any upper-division classes in history and theory.
3. Each of the area threshold classes:

Performance Area-
a) THAC 1. Introduction to Acting

Design Area-
b) THDE 1. Introduction to Design

Playwriting Area-
c) THPW 1 . Introduction to Playwriting

Note: The threshold classes listed above must be completed before taking any upper-division courses in each area.

Upper-Division Requirements

4. One upper-division four-unit acting course
5. One upper-division four-unit design course
6. One upper-division four-unit directing course
7. One upper-division four-unit playwriting course
8. One upper-division four-unit stage management course
9. Three upper-division four-unit theatre history courses
10. Four upper-division four-unit theatre electives
11. One upper-division two-unit Major Seminar

Note: THGE 197, 198, and 199 may not be used as upper-division electives by theatre majors.

DANCE MAJOR

Lower-Division Requirements

1. One course from:

THPR 1. Practicum-Scenery
THPR 2. Practicum-Costume
THPR 3. Practicum-Lighting
THPR 4. Practicum-Stage Management
Note: Students must complete the THPR requirement within one year of declaring a dance major.
2. Choose one of the following:

THAC 1. Introduction to Acting or THAC 101 Acting I
3. THDA 25. Music for Dancers (four units) Note: This course will not be offered every year.

Upper-Division Requirements

4. THDA 160. Dance Movement Analysis and Injury Prevention Techniques (four units) Note: This course may be offered every other year.
5. THDE 121. Theatre Production:Lighting (four units)
Note: This course may be offered every other year.
6. Three choreography courses (four units each): THDA 141. Principles of Choreography THDA 142. Choreography and Performance THDA 143. Choreography for Dramatic Text
7. Four history and theory courses (four units each). Choose from the following:
THDA 151. Dance History-Ballet
THDA 152. Dance History-Modern Dance
THDA 153. Dance History-Jazz Dance and Related Ethnic Studies
THDA 159. Dance Criticism and Aesthetics THHS 114. American Musical Theatre
8. Three advanced movement courses (four units each) in one of the following areas of emphasis:
THDA 102A-B, or C or 103A-B, or C. Ballet THDA 111A-B, or C or 112A-B, or C. Modern THDA 121A-B, or C or 122A-B, or C. Jazz
9. One advanced movement course (four units) outside the area of emphasis selected in number 8 .

THEATRE AND DANCE DOUBLE MAJOR

Lower-Division Requirements

1. One course from (four to six units)

THPR 1.Practicum-Scenery
THPR 2. Practicum-Costumes
THPR 3. Practicum-Lighting
THPR 4. Practicum-Stage Management
Note: Students must complete the THPR requirement within one year of declaring the double major.
2. Choose one of the following (four units)

THAC 1. Introduction to Acting
THAC 101. Acting I
3. THDA 25. Music for Dancers (four units)

Note: This course will not be offered every year.
4. Each of the following threshold classes:

THDE 1. Introduction to Design
THPW 1. Introduction to Playwriting
Note: Students must complete the threshold class requirement before taking any upper-division course in each respective area.

Upper-Division Requirements

5. One upper-division four-unit acting course
6. One upper-division four-unit design course
7. One upper-division four-unit directing course
8. One upper-division four-unit playwriting course
9. One upper-division four-unit stage management course
10. Six upper-division four-unit theatre and dance history courses (THHS 114 required as one of the six upper-division history courses)
11. Four upper-division theatre electives (with no more than two from the core dance curriculum)
12. THDA 160. Dance Movement Analysis and Injury Prevention Techniques
Note: This course will only be offered every other year.
13. THDE 121.Theatre Production: Lighting Note: This course will only be offered every other year.
14. Three four-unit choreography courses THDA 141, 142, and 143
15. Three advanced movement courses (four units each) in one of the following areas of emphasis:
THDA 102A-B, or C or 103A-B, or C. Ballet THDA 111A-B or or or 112A-B, or C. Modern THDA 121A-B, or C or 122A-B, or C. Jazz
16. One four-unit advanced movement course outside the area of emphasis selected in number 15.
17. One two-unit upper-division Major Seminar (THGE 100)
Note: THGE 197, 198, and 199 may not be used as upper-division electives by theatre and dance majors.

PLACEMENT AND PROFICIENCY FOR DANCE MAJORS

The technical command and the expansion of a vocabulary of movement are essential to the dancer's creative expression. As a new student in the dance program the faculty advise students to participate in beginning dance in all areas for a minimum of one year. These courses are designed to give the student the basic information needed to move on to the intermediate level II. The intermediate level is level II in all areas, and students should remain in this level for a minimum of one year unless your instructor encourages you to advance to level III. All students are required to audition and be approved by the faculty to be enrolled in all level III advanced, and level IV advanced dance courses. If you come to UCSD with a background in dance and would like to take an advanced class you need to audition in the class of your choice on the first day of the class meeting so that the teacher can accept you in the class or recommend another more appropriate class.

DEPARTMENTAL DEGREE CHECK

Departmental degree checks are completed upon request by the undergraduate coordinator. A degree check monitors your progress toward fulfillment of the theatre or dance majors or minors. It is suggested that you request a degree check at least once per year and particularly the quarter before graduation. You may call or stop by the Department of Theatre and Dance office to make an appointment for a degree check for your major. Remember you must also complete a degree check with your provost office prior to graduation. The provost office degree check will monitor all university and college requirements, such as GPA, units, residency requirements, P / NP limits, college general-education requirements, etc.

UNDERGRADUATE STUDENT PETITIONS

Undergraduate student petitions are required whenever an exception to a rule is being requested. They are required for: major or minor requirement substitutions; requesting credit from other departments; late course adding or dropping; or requesting a retroactive incomplete grade. The petition process can take anywhere from one to two weeks, depending on the request. Submit petitions for course substitutions well in advance of taking the course. To ensure that your petition is necessary, complete, and well
documented, have the Department of Theatre and Dance undergraduate coordinator assist you with the petition process if you have difficulty with the form. Incomplete or incorrectly completed forms may significantly increase the amount of time required to process your request.

ARTICULATION AGREEMENTS

As a prospective transfer student to UCSD, it is important to make sure that the community college courses you take are transferable to UCSD for transfer credit. Every California community college has an agreement with the University which specifies which of its courses receive UC transfer credit. These courses are listed in a Transferable Course Agreement, a document which is available from your community college counselor or from the Office of Admissions and Outreach at UCSD.

RECEIVING TRANSFER CREDIT

To receive credit toward the theatre/dance major, double major, or minor for courses you have taken at another institution, you must petition the Department of Theatre and Dance office. The following procedures and guidelines will help you with the transfer petition process.

First, review the Department of Theatre and Dance residency requirement. It is generally a good idea to petition a course before you take it. The Department of Theatre and Dance undergraduate faculty advisers will review petitions for all transfer courses. Attachments to the petition should include the catalog course description, a course syllabus and, in some cases, relevant support information (exams, papers, etc.)

The Department of Theatre and Dance can only give credit for courses that have been officially transferred to UCSD (i.e., the units have been posted on your UCSD transcript). The UCSD Admissions Office will determine if upper- or lower-division credit will be given for transfer work. Upper-division credit cannot be given for lower-division work. Course work done at a junior college can only transfer to UCSD as lower-division credit.

The Theatre Minor

Students should plan their minors and have them approved by the department prior to their junior year. Minor courses may not be taken on a Pass/No Pass basis.

The minor requirements are those that are published in the catalog in effect during the first quarter in which a student attends UCSD.

Lower-Division Minor Requirements

1. One course from:

THPR 1.Practicum-Scenery
THPR 2. Practicum-Costumes
THPR 3. Practicum-Lighting
THPR 4. Practicum-Stage Management
Note: Students must complete the THPR requirement within one year of declaring a theatre minor.
2. At least one course from the following list:

THHS 11. History of Theatre 1: Classical to Renaissance
THHS 12. History of Theatre 2: Neoclassicism to Realism
THHS 13. History of Theatre 3:Symbolism to Postmodernism
Note: THHS 11 or THHS 12 or THHS 13 must be completed before taking any upper-division classes in history and theory.

THAC 1. Introduction to Acting
Note: THAC 1 must be completed before taking any upper-division courses in Acting.

THDE 1 Introduction to Design
Note: THDE 1 must be completed before taking any upper-division courses in Design.

THPW 1. Introduction to Playwriting
Note: THPW 1 must be completed before taking any upper-division courses in playwriting

Upper-Division Requirements

3. Any five four-unit, upper-division theatre courses.

The Dance Minor

The dance minor consists of courses which concentrate on the principles of composition and choreography, the history of dance, and the process of performance. Dancers receive extensive training in one or more idioms (ballet, modern dance, jazz dance, and musical theatre). The dancer's training also includes participation in compositional workshops and productions including historical and contemporary performance experiences. Students should consult the dance adviser, if necessary, and submit their com-
pleted minor petition form to the undergraduate coordinator prior to their junior year. Minor courses may not be taken on a P/NP basis.

DANCE MINOR REQUIREMENTS

Lower-Division Requirements

1. One of THPR $1,2,3$, or 4

Upper-Division Dance Requirements

2. One of THDA $140,141,142$, or 143

One of THDA 151, 152, 153, or 159 (Dance History-Ballet, Modern, Jazz/Ethnic, Criticism and Aesthetics)

DANCE MINOR MOVEMENT REQUIREMENTS (sixteen units total)

A prerequisite for entrance into the dance minor is technical ability above the beginning level in ballet, jazz, or modern. The student's level is determined by audition and, depending on his or her technical ability, the student will be placed at the intermediate or advanced level. Students wishing to enter the minor without intermediate (level II) proficiency must take beginning (level I) courses (up to two years) or until they pass the audition into level II.
3. Choose the total sixteen units from a combination of the following list of movement courses.
(Note: Levels II, III, or IV courses may be repeated once for credit.)
THDA 101A-B, or C. Ballet II (Intermediate, 2 units each)
THDA 102A-B, or C. Ballet III (Advanced 1, 4 units each)
THDA 103A-B, or C. Ballet IV (Advanced 2, 4 units each)
THDA 110A-B, or C. Modern II (Intermediate, 2 units each)

THDA 111A-B, or C. Modern III (Advanced 1, 4 units each)
THDA 112A-B, or C. Modern IV (Advanced 2, 4 units each)
THDA 120A-B, or C. Jazz II (Intermediate, 2 units each)
THDA 121A-B, or C. Jazz III (Advanced 1, 4 units each)
THDA 122A-B, or C. Jazz IV (Advanced 2, 4 units each)
(Only movement courses from the above list may be used.)

THEATRE AND DANCE PERFORMANCE AND PRODUCTION OPPORTUNITIES

The Department of Theatre and Dance produces undergraduate productions throughout the academic year. These productions range in scale from student directed "black box" productions to full-scale faculty directed undergraduate productions on the mainstage. Every effort is made to provide a faculty directed opportunity for undergraduates each quarter. THGE 108 is a one-unit course under the supervision of the faculty director of theatre. This course is required by all students (except crews) involved in departmentally produced productions.

Each of these productions is staged with undergraduate actors and dancers. Historically, where there are design assignments to be made (sets, costumes, lights, sound), those assignments are given to qualified undergraduates. THDE 132 is a two-unit course required by all students involved in a design assignment for a departmentally produced production. Students participating in these productions MUST enroll in the appropriate class(es) or they will be dropped from the production.

Cabaret

Cabarets are low budget productions that are produced in the Studio Theatre. Students may submit proposals for cabarets one quarter in advance to the cabaret manager (His/Her mailbox is in the Department of Theatre and Dance lobby). The cabaret policy is subject to revision on a quarterly basis.

Undergraduate Arts Festival/Spring Celebration of the Arts

Each spring quarter there is a campuswide Undergraduate Arts Festival. The festival is a diverse and expansive showcase of work done by UCSD undergraduates in all fields of art including theatre and dance.

Undergraduate Audition Policy

Undergraduates are encouraged to audition for all shows produced in the department. Undergraduates are cast at all levels in department productions, and have often played substantial roles. Each quarter, open auditions will be held for all shows being produced in the subsequent quarter. All undergraduates who have com-
pleted THAC 1-Introduction to Acting are eligible to audition. (This prerequisite is subject to revision.) Complete information about the schedule as well as the format of auditions may be obtained in the department office.

UCSD Dance Repertory

This repertory is open to dance students through auditions. The company will perform lec-ture-demonstrations, performances, and teach master classes in the community or at other UC campuses.

Annual Concerts

Two main stage dance concerts are presented each year. In winter quarter's "An Evening of Dance," students perform choreography created by the professional faculty and international guest artists in the Mandell Weiss Center for the Performing Arts; and in spring quarter's "New Works" student dance concert, students perform the faculty directed experimental choreographic works for other students at the Mandeville Center Auditorium. In addition, smaller productions take place in our newly built and intimate Studio Theatre, located in the dance facility. Auditions are held at the beginning of the quarter for all productions. Students who are interested in the winter dance faculty production need to audition for the particular repertory class you are interested in, which each faculty teach. If you are chosen you must enroll in both Dance Repertory and Studies in Performance 130. Students who are interested in the spring student dance concert must audition for the dances at the beginning of the spring quarter; then, if chosen you must enroll in Studies in Performance 130. All students who are intending to participate in either dance production are required to be concurrently attending a technique class in any of the dance idioms. If you are intending to choreograph for the student dance concert you must have completed any of the choreography series or be concurrently enrolled in one.

Professional Company Internship

Dance students may apply for positions as interns. These internships provide qualified students an opportunity to work with, observe, and perform in professional companies. Internship possibilities include work with Patricia Rincon Dance Collective, California Ballet Company, San Diego Dance Institute, San Diego Dance Theatre,
and other San Diego area professional dance companies.

Ushering

Undergraduates can volunteer to usher for a performance of most theatre events. Ushering is a great way to see the shows for free. Contact the promotions manager for more information.

UCSD Show Card

The Department of Theatre and Dance offers students the UCSD Show Card, which is redeemable for main season shows produced by the Department of Theatre and Dance for $\$ 20$, a discount over regular student rates. The UCSD Show Card is a great bargain, especially for those students required to see productions for their classes.

Comps

Declared theatre and dance majors are eligible to receive a complimentary Show Card. Declared majors may obtain the Show Card by presenting their student identification card at the department office.

Honors Program

The department offers a special program of advanced study for outstanding undergraduates majoring in theatre or dance. Successful completion of the Honors Program enables the student to graduate "With Highest Distinction" (A+),"With High Distinction (A), or "With Distinction" (A-), depending upon performance in the program.

Eligibility

1. Junior standing (ninety units or more completed)
2. 3.7 GPA or better in the major
3. 3.5 GPA or better overall, which student must maintain until final graduation
4. Completion of at least four upper-division theatre courses
5. Recommendation of a faculty sponsor who is familiar with the student's work

Guideline

Application to the Honors Program may be made upon completion of ninety units or no later than the fifth week of the quarter preceding the final two quarters before graduation. The Undergraduate Committee will consider the application and, if approved, the student and the principal adviser will have the responsibility of
proposing an Honors Thesis Committee to the Undergraduate Committee for final approval.

Students are required to take THGE 196A, Honors Studies in theatre and 196B, Honors Thesis in theatre, in addition to the thirteen upper-division required courses for the major, THGE 196A-B are to be taken consecutively and may not be taken concurrently.

The Graduate Program
 Master of Fine Arts in Theatre Joint Doctoral Degree Program

M.F.A. in Theatre

The Department of Theatre and Dance has set an ambitious goal for its M.F.A. program: the training of artists who will shape the future direction of the theatre. Recently, the professional theatre training program ranked third in the nation (and first west of the Hudson River) [US News and World Report, 1997].

The curriculum for all students involves studio classes and seminars. These are integrated with a progressive sequence of work on productions and with a professional residency at the La Jolla Playhouse.

The M.F.A. program at UCSD is built around the master-apprentice system of training. All the faculty are active professionals who teach at UCSD because of a shared commitment to training young artists. Instruction takes place not just in the classroom, but in theatres around the country where faculty, with students as assistants, are involved in professional productions, including those at the La Jolla Playhouse.

Students graduating from the M.F.A. program at UCSD should be prepared to take positions in the professional theatre in the United States and abroad. Students are now working in New York, in resident theatres, in the film and television industry, and in European repertory theatres. M.F.A. candidates in acting, design, directing, playwriting, and stage management will complete at least ninety quarter-units of academic work during their tenure in the program.

Program Descriptions

ACTING

The body and mind of the actor are synthesized to serve as an instrument of expression. The actor must depend on her or his instrument to
perform, and the program places great emphasis on the strengthening and tuning of that instrument. The innate talent of the student is nurtured, coaxed, and challenged with individual attention from an extraordinary team of professionals and specialists in actor training.

Classes

Each year, intensive studio work in movement, voice, speech, and singing accesses, expands, and frees the physical body. Acting process introduces a range of improvisational and rehearsal techniques that help the actor approach onstage events with imagination and a rich emotional life. In the first year, studio classes guide the actor through daily explorations that encourage change and enhance artistic expression. The second year is devoted to the study of classical texts as well as the specific vocal and physical skills required to perform them. In the final year, classes focus on the needs of individual actors as they prepare to enter the professional world.

Productions

Actors work on classical and contemporary texts as well as new plays with graduate student, faculty, and professional guest directors. Each year the department schedules from fifteen to twenty productions of varying budget levels. Graduate students are given casting priority for all but a few plays. Student-scheduled and produced cabaret/workshop productions occur year-round and provide additional acting opportunities.

Externship

All graduate students serve a residency with the La Jolla Playhouse and are cast in positions ranging from supporting to leading roles alongside professional actors and directors of national and international stature. For many actors this opportunity establishes valuable networking relationships and exposure for future employment.

Research and Other Opportunities

Modest funds are sometimes available for the pursuit of research, special technique workshops, and travel to auditions and festivals. In addition, in the third year, the entire acting class receives a showcase presentation in both Los Angeles and New York at which specially invited groups of film, television, and theatre professionals are in attendance.

DESIGN

The design program aims to train students in the best professional practices of regional and commercial theatre. The design faculty are awardwinning working professionals also committed to teaching. The design training program stresses an interaction with the works of many visual artists from a wide range of disciplines. Students are trained to create designs that "comment" on the play and the text, not merely "illustrate" it. Students' talent and design work are showcased at a number of venues that have directly resulted in many national grants, awards, and other work opportunities for our alumni.

Classes

All students take a core curriculum of first-year design studio classes in scenery, costume, and lighting (taken together with directors), and a design seminar where all three years come together in a forum to share production experiences, portfolios, and professional career techniques and skills. This is followed in subsequent years by more specialized Advanced Design classes which combine with production work in the student's own area of concentration. We are also able to offer a double-emphasis study (e.g., scenery and costume design combined) to appropriate students. Classes in other areas (e.g., drafting, text analysis, visual arts) are also normally offered.

Production

We offer a generous number of (fully executed) production opportunities, and generally all productions are designed by students. Designers collaborate with student, faculty, and internationally prominent guest directors. Students are fully supported by the same professional workshop staff as the La Jolla Playhouse and are not expected to build or run their own productions.

Externship

Student designers participate in a residency program at the La Jolla Playhouse, and normally work as assistants to visiting professional designers. However, there are also some opportunities for talented students to be hired as principal designers by the Playhouse during their season.

Research and Other Opportunities

Students may also be offered opportunities to travel with faculty as assistants on professional assignments to major regional theatres, Broadway,

England, or Europe. Modest funds are sometimes available for student research and travel to see productions and to attend conferences and workshops.

DIRECTING

With an emphasis on the collaborative process, the Directing Program's purpose is to develop directors with a solid foundation in the components of production and the interpretation of text. Individuals are encouraged to make challenging choices, to break down barriers, and to create exciting, meaningful theatre. Graduates of the program are prepared to select and get to the heart of a text, communicate effectively with, and inspire production designers, and elicit expressive performances from the actors with whom they work.

Classes

The core curriculum of the Directing Process Program offers students opportunities to hone their skills in text analysis and scene work in all three years. The first-year student also completes a sequence in the acting process and the development of a visual vocabulary in theatrical design and visual arts courses. Also in the first year, the techniques of London's Joint Stock Theatre Group (originators of such work as Fanshen by David Hare as well as Fen and Cloud Nine by Caryl Churchill) are explored in collaborative process, a course which explores community issues via theatrical means.

Production

Directing students will direct from two to four department scheduled and supervised productions in the Mandell Weiss Center for the Performing Arts during their time at UCSD. In addition, studio, workshop, and cabaret productions of the director's choice are strongly encouraged. The production season also offers opportunities to assist guest and faculty directors.

Externship

In the second year, the La Jolla Playhouse provides a residency during which students typically serve as assistants with their directors.

Additional Opportunities

It is common for the directing faculty to take M.F.A directors with them to work as assistant directors at theatres around the United States and internationally.

PLAYWRITING

Playwrights are more than mere writers. They are artists who unleash their imagination in incredibly dramatic ways. The successful playwright writes with intellectual power and emotional honesty, with a distinct and essential voice that speaks with vulnerability and sentience to the heart and soul of the audience. Recognizing the muse and giving strong voice to one's art allows the emerging playwright to make the leap to the professional stage. The dedicated, individual attention and formidable production opportunities of the program offer talented writers the ability to stretch, expand, and witness the unfolding of their work on stage in the bodies of very gifted actors.

Classes

In playwriting seminar-the core curriculumwriters in all three years read and discuss their ongoing work, focusing on style, character, and structure. They also observe their work being read by M.F.A actors at times throughout the year. Both screenwriting and dramatization/adaptation are offered in rotation within a three-year cycle. In addition, students take a variety of topics in theatre and dramatic literature along with individual practicum classes. Playwrights can take advantage of rich offerings in literature, music, visual arts, and language study, as well as dramatic texts, theory, and design.

Production

First-year students receive a one-act showcase production each year, while second- and thirdyear students receive a more fully designed production often in one of the main theatres which is attended by literary managers, agents, and artistic directors both locally and nationally. Typically, all years of new play production are assigned to M.F.A. directors. Produc-tion of plays in any year of study, as in all production arrangements in the program, is dependent on the readiness of the work for staging.

Externship

Each student is assisted with a carefully chosen assignment, typically in the summer of the second year. Our playwrights may have an opportunity to gain exceptional literary and production experiences in a variety of theatres and venues in New York, Seattle, Los Angeles, London, Germany, and Rumania.

STAGE MANAGEMENT

The stage manager is a pivotal member of the collaborative process. She or he builds the creative environment that supports the work of the other members of the artistic team. The stage manager is the prime communicator and liaison who synthesizes the disparate elements of production into a cohesive whole and is responsible for the implementation of diverse artistic choices throughout the production process.

The Stage Management Program at UCSD seeks to integrate a comprehensive knowledge of all critical components of this complex field in order to prepare students for work in leading professional theatres. The program seeks to develop individualized, creative artists with personal approaches to their work. UCSD creates a supportive and stimulating environment that allows each student to develop the confidence and flexibility necessary to meet the challenges of production. Graduates are prepared for positions in a wide variety of venues and are adept at integrating other performance forms into their repertoire, such as dance, musical theatre, and multi-media.

Classes

All first-year students take a core curriculum in stage management process that explores the role of the stage manager in professional theatre today and offers a comprehensive investigation of the work from pre-production to closing a show. Students in all three years attend the stage management seminar, which serves as a forum for sharing insights and solving problems on current production assignments, as well as examining the bigger picture of stage management and theatre in America today. Additional coursework is offered in various aspects of theatre administration and management, directing, drafting, design, and collaborative process.

Productions

Great emphasis is placed on the student's ability to apply the theories learned in class to the production process. Students typically serve as both ASM and SM on a number of studio and mainstage productions in a variety of theatrical spaces. In addition to established scripts directed by M.F.A., faculty, and nationally prominent guest directors, students also work on new plays by graduate or guest playwrights as well as faculty and student choreographed dance concerts.

Research Opportunities

Students are encouraged to work or research in the field when time permits. Past projects have included stage managing at the National
Playwrights Conference at the O'Neill Center in Connecticut, interning at Warner Brothers Feature Animation, working as production assistant for the Broadway production of Play On, stage managing Andrei Serban's production of Our Country's Good at the Romanian National Theatre, and researching stage combat and weaponry at the Royal Shakespeare Company.

Externship

Each student is guaranteed at least one production opportunity at the La Jolla Playhouse, or a comparable professional residency experience.

Ph.D. in Theatre and Drama

The UCSD Department of Theatre and Dance and the Department of Drama at UC Irvine began to recruit students for the new Joint Doctoral Program in Theatre and Drama in fall 1999 for admission in fall 2000. Within the context of the program's twin focus on theory and history, an innovative structure permits each student to pursue a custom designed curriculum that draws from a rich variety of seminars in faculty research areas that include: Greek classical theatre; Shakespeare; neoclassical, modern, and contemporary French theatre; modern and contemporary German theatre; modernist and postmodernist theatre and performance; US Latino theatre; and theory.

Interested students are encouraged to request detailed information about the program and application materials, which will be available from either department each September.

PREPARATION

Students with a B.A. (minimum GPA: 3.5), M.A., or M.F.A. degrees in drama and theatre are eligible for admission to the doctoral program. We will also consider students with training in literature (or another area in the humanities), provided they can demonstrate a background in drama or theatre. Experience in one of the creative activities of theatre (acting, directing, playwriting, design, dramaturgy) will enhance chances of admission.

All applicants are required to take the Graduate Record Examination and to submit samples of their critical writing.

While not required for admission, a working knowledge of a second language is highly desirable (see Language Requirement).

COURSE OF STUDY

Students are required to take a minimum of 144 units, which is equivalent to four years of fulltime study (full-time students must enroll for a minimum of twelve units each quarter). forty of these units will be taken in required seminars; the balance will be made up of elective seminars, independant study, and research projects (including preparing the three qualifying papers), and dissertation research. Students must take a minimum of one seminar per year in the Department of Drama at UCI. The program of study makes it possible for students to take a significant number of elective courses and independent studies both with faculty in drama and theatre and in other departments.

Required Seminars

1. a minimum of twelve units of THGR 290
(Dramatic Literature and Theatre History to 1900)
2. a minimum of twelve units of THGR 291
(Dramatic Literature and Theatre History 1900 to the Present)
3. a minimum of sixteen units of THGR 292 (Cultural and Critical Theory)
These required seminars must be completed before the end of the student's third year. In addition to the ten required seminars, students must pass comprehensive examinations at the end of the first and second years (see "Comprehensive Examinations").

COMPREHENSIVE EXAMINATIONS

In the first year, students prepare for the written comprehensive examination, which is based on a reading list of approximately 150 titles ranging from the Ancient Greeks to the present. Students take the written comprehensive at the beginning of the fall quarter of the second year. (Comprehensive examinations are scheduled at the beginning of fall quarter in order to allow the students the summer to prepare.) Students who fail the written comprehensive may retake it no later than the first week of winter quarter of the second year. Students who fail the written comprehensive for a second time are dismissed from the program.

In the second year, students prepare for oral comprehensive examination. The reading list for this examination is designed to permit the student to acquire a knowledge of his or her dissertation subject area, broadly conceived. The reading list is compiled by the student and his or her dissertation adviser, in consultation with other members of the faculty, as appropriate; the reading list must be established by the end of winter quarter of the second year. Students take the oral comprehensive at the beginning of the fall quarter of the third year. Students also submit a dissertation prospectus (approx. five pages) at the time of the oral comprehensive. Students who fail the oral comprehensive may retake it no later than the first week of winter quarter of the third year. Students who fail the oral comprehensive for a second time are dismissed from the program.

Advancement to Candidacy:Three Qualifying Papers

Students normally select a dissertation adviser during the second year and must do so before the end of spring quarter of that year. In consultation with the dissertation adviser and other faculty members, students develop topics for three "qualifying papers," which are written during the third year. The three qualifying papers-one long (approx. fifty pages) and two short (approx. thirty pages each)-must be completed by the end of the third year; when completed, the qualifying papers provide the basis for the oral qualifying examination. Students write the long paper under the direction of the dissertation adviser; it is understood that the long paper is preparatory to the dissertation. The short papers deal with other related topics, subject to the approval of the student's advisers; the two short papers are understood as engaging in exploring the larger contexts of the dissertation. Students normally pass the qualifying examination and advance to candidacy at the end of the third year; students must advance to candidacy no later than the end of fall quarter of the fourth year. Once admitted to candidacy, students write the dissertation which, upon completion, is defended in a final oral examination. Students may select a dissertation adviser from either UCSD's Department of Theatre and Dance or UCl's Department of Drama. All UCSD doctoral dissertation committees must include at least one faculty member from UCI.

Language Requirement

Students are required to complete an advanced research project using primary and secondary material in a second language ("materials" should be understood as including live and/or recorded performance; interviews with artists, critics, and scholars; and other non-documentary sources, as well as more conventional textual sources). This requirement may be satisfied by writing a seminar paper or a qualifying paper (see "Advancement to Candidacy") that makes extensive use of materials in a second language. The second language requirement must be satisfied before the end of the third year. This requirement will not be waived for students who are bi- or multilingual; all students are required to do research level work in more than one language.

It is assumed that students will have acquired a second language before entering the doctoral program, although second-language proficiency is not a requirement for admission. While students may study one or more second languages while at UCI or UCSD, language classes may not be counted toward program requirements.

Teaching

Students are required to teach a minimum of four quarters. No more than eight units of apprentice teaching (THGR 500) may be counted toward the required 144 units.

Departmental Ph.D. Time Limit Policies

Students must advance to candidacy by the end of the fall quarter of their fourth year. Departmental normative time for completion of the degree is five years; total registered time in the Ph.D. program at UCSD or UCI cannot exceed seven years. While students with M.A. or M.F.A. degrees may be admitted to the Ph.D. program, they will be required to take all required doctoral seminars.

Financial Support

Ph.D. students entering the program with a B.A. may be supported (either by employment or fellowships) for five years. Students who have an M.A. and have been given transfer credit may be supported for four years. Such support depends upon the funds available, the number of students eligible, and the rate of progress.
*Contact department for application materials.

COURSES

Note: For changes in major requirements and in course offering implemented after publication, inquire at the office of the Department of Theatre and Dance.
The subject codes are:

> THAC Acting
> THDA Dance
> THDE Design
> THDR Directing, Stage Management
> THGE General
> THHS History and Theory
> THPR Practicum
> THPW Playwriting
> THGR Graduate

TH/AC Acting

TH/AC 1. Introduction to Acting (4)
A beginning course in the fundamentals of acting: establishing a working vocabulary and acquiring the basic skills of the acting process. Through exercises, compositions and improvisations, the student actor explores the imagination as the actor's primary resource, and the basic approach to text through action. Prerequisite: none.

TH/AC 101. Acting I (4)
This course focuses on beginning scene study with an emphasis on exploring action/objective and the given circumstances of a selected text:Prerequisit:THAC 1 orconsentof instructor.

TH/AC 102. Acting II (4)
Further study in the application of the given circumstances to a text and the development of characterization. The final stages of this course will be selection and preparation of audition material. Prerequisite: THAC 101 or consent of instructor.

TH/AC 104. Classical Text (4)

Studies of the heightened realities of poetic drama. Verse analysis, research methods and how to approach a classical dialogue. Prerequisite: THAC 102.

TH/AC 107. Improvisation for the Theatre (4) Improvisation for the theatre explores improvisation techniques as an alternative and unique approach to acting. Students should have a performance background, and should have taken THAC 1.

TH/AC 108. Advanced Topics (4)
Advanced topics in acting, such as Avant Garde Drama, Commedia, or Beckett, for students who possess basic acting techniques. Prerequisite: THAC 102.

TH/AC 109. Singing for the Actor (4)
This course introduces basic skills of breathing, placement, diction, musicianship, harmony, interpretation, and presentation needed by actors for roles requiring singing. Through a combination of group and individual coaching in class, students will prepare a program of short solo and ensemble pieces for a finals-week presentation. Prerequisites: THAC 1 and audition; department stamp.

TH/AC 111. Freeing the Voice (4)
Intensive workshop for actors and directors designed to"free the voice," with special emphasis on characterization and vocal flexibility in a wide range of dramatic texts. This proven method combines experimental and didactic learning with selected exercises, texts, tapes, films, and total time commitment. Prerequisite:THAC 101.

TH/AC 115. Movement for Actors (4)
An exploration of the wide array of physical skills necessary for the actor. Using techniques derived from mime, clowning, sports, acrobatics, and improvisation, students will investigate their individual physical potential as well as their sense of creativity and imagination. Prerequisite:THAC 101.

TH/AC 120. Ensemble (4)
An intensive theatre practicum designed to generate theatre created by an ensemble with particular emphasis upon the analysis of text. Students will explore and analyze the script and its author. Ensemble segments include black theatre, Chicano theatre, feminist theatre, and commedia dell'arte. A maximum of four units may be used for major credit. Prerequisite: department stamp.

TH/AC 122. Ensemble: Undergraduate Production (4)
Participation in a fully-staged theatre production directed by a M.F.A. or Ph.D. student for the Department of Theatre and Dance. Admission by audition only. A maximum of four units may be used for major credit. Prerequisites: consent of the instructor; department stamp.

TH/AC 123. Advanced Studies in Performance (4)
Participation in a fully-staged season production that is directed by a faculty member or guest for the Department of Theatre and Dance. Admission by audition only. A maximum of four units may be used for major credit. Prerequisites: consent of the instructor; department stamp.

TH/AC 126. Acting-Directing Process (4)
A studio class that investigates the relationship between the actor and the director. Working alongside directors, students learn how to animate the writer's and director's vision on stage through status exercises and scene work whilst expanding their skills in the acting process. Prerequisites: THDR 108,THAC 1, and consent of instructor.

TH/DA-DANCE

TH/DA 1. Ballet, Level I Beginning (2-2-2)
An introduction to classical ballet principles, technique, and terminology. Develops the body for strength, flexibility, coordination, and artistic interpretation. Emphasis on developing a foundation in classical movement for continuation of ballet training. Historical origin of ballet will be discussed along with an introduction to the kinesiological principles of movement. Prerequisite: none.

TH/DA 2. Modern Dance I, Beginning (2-2-2)
Introduction to modern dance as a means of visual communication. Pattern variations analyzed in time, space, design, and kinetic sense. Movement exploration includes improvisation and composition. Prerequisite: none.

TH/DA 3. Jazz Dance I, Beginning (2-2-2)
Emphasis on technical skills, terminology, contemporary compositions, and introduction to the history of
jazz dance. Explores specific rhythmic exercises, isolations, turns, locomotor combinations to a broad base of musical styles and variations. Prerequisite:none.

TH/DA 4. Pre-Ballet: Introduction to Ballet (2)
Designed for the novice, this course will focus on correct postural alignment and establish a basic foundation for the understanding of ballet movement vocabulary, terminology and form, and an introduction to exercises to develop muscles and coordination. Prerequisite: none.

TH/DA 11A. Theatrical Tap (2)
The study of theatrical tap dance. Various styles of tap-such as classical, rhythm and musical theatre will be introduced. Emphasis on rhythm, coordination, timing, and theatrical style. Includes basic through intermediate tap movement. Prerequisite: none.

TH/DA 11B. Theatrical Tap (2)
The further study of various styles of theatrical tap dance. Includes more intricate rhythms such a turns, pull-backs, pick-ups, and wings. More complex rhythm variations and choreographic composition will be introduced. Prerequisite:THDA 11A or consent of instructor.

TH/DA 11C. Theatrical Tap (2)

Includes more complicated rhythms and advanced principles of dance composition for the theatre. Improves on musical interpretation, performance quality and style. Will focus on individual performance and choreography. Prerequisites: THDA 11A and THDA 11B or consent of instructor.

TH/DA 15. Musical Theatre Dance A (2)

The study of American social and theatrical dances from the 1900s to the 1930s. Historical trends in musical theatre will be discussed with the use of film and text. Stresses choreography and musical analysis and introduces basic tap dance rhythms. Prerequisite: none.

TH/DA 16. Musical Theatre Dance B (2)
A continuation of the exploration of the historical development of musical theatre character dance forms covering the 1930s through the 1960s. Emphasizes composition and movement techniques of this rich period of pioneers and stylists. Choreography for film will be introduced. Prerequisite: none.

TH/DA 17. Musical Theatre Dance C (2)
Integrates the historical and contemporary trends of Musical Theatre Dance from the 1960's to present. Emphasis on the impact and development of dance techniques used in video, film and theatre and on advanced clarification of performance and choreographic skills. Prerequisite: none.

TH/DA 20.Dance Workshop (2)
The study of aesthetic examination of major choreographic works. Emphasis will be on formulating the creative process into a complete dance form. Projects in performance, production, choreography and directing. Prerequisite: consent of the instructor.

TH/DA 25. Music for Dancers (4)
A course designed to teach the fundamentals of all forms of music to dance students. Topics include identifying rhythm, instrumentation, vocabulary, and the orchestration of time in space. Historical and contemporary forms will be analyzed utilizing both live and recorded music. Prerequisite: none.

TH/DA 101A-B-C. Ballet II-Intermediate (2-2-2)
Continued studio work in ballet technique and terminology. Emphasis on increasing strength, flexibility and
balance, and interpretation of classical musical phrasing. Includes concepts of anatomy and physiology in relationship to ballet. THDA 1 is prerequisite for THDA 101A. THDA 101A is prerequisite for THDA 101B and THDA 101B is prerequisite for THDA 101C or consent of instructor.

TH/DA 102A-B-C. Ballet III-Advanced 1 (4-4-4)

Further emphasis on techniques, projection, terminology, and introduction to point work. Introduces historical ballet choreographic variations. Individual and group composition will be presented and aesthetic criticism applied. Text, film, and video used in depicting the historical evolution of ballet (Course materials fee: \$50). THDA 101C is a prerequisite for THDA 102A. THDA 102A is prerequisite for THDA 102B and THDA 102B is prerequisite for THDA 102C or consent of instructor.

TH/DA 103A-B-C. Ballet IV-Advanced 2 (4-4-4)
Designed for students with advanced training and includes point work, pas de deux, classical and contemporary variations, and repertory works. Emphasis on increasing composition and performing skills. The aesthetics for ballet in Western and Non-Western cultures will be discussed. THDA 102C is a prerequisite for THDA 103A. THDA 103A is prerequisite for THDA $103 B$ and THDA 103B is prerequisite for THDA 103C or consent of instructor.

TH/DA 110A-B-C. Modern Dance II-Intermediate (2-2-2) Further development of movement as an expressive medium. Introduces the principles and elements of modern dance and their relationship to other art forms. Discussion of modern dance pioneers. THDA 2 is a prerequisite for THDA 110A. THDA 110A is a prerequisite for THDA 110 and THDA 110 is prerequisite for THDA 110C, or consent of instructor.

TH/DA 111 A-B-C. Modern Dance III-Advanced 1 (4-4-4) Emphasis is on the development of modern dance as an expressive art concept. Individual and group choreography will be explored and aesthetic concepts. Incorporates applied physiological principles of human movement. Discussion of modern and post-modern trends using text, video, and film. THDA 110C is a prerequisite for THDA 111A. THDA 111A is a prerequisite for THDA 111B and THDA 111B is prerequisite for THDA 111C, or consent of instructor.

TH/DA 112A-B-C. Modern Dance IV-Advanced 2 (4-4-4) A continuation of advanced exploration of dance as an expression of artistic and social communication. Contemporary and historical choreographic styles will be reviewed. Advanced principles of composition and dance aesthetics will be discussed. THDA 111C is a prerequisite for THDA 112A. THDA 112A is a prerequisite for THDA $112 B$ and THDA $112 B$ is prerequisite for THDA 112C, or consent of instructor.

TH/DA 120A-B-C. Jazz Dance II-Intermediate (2-2-2) Further development of technical skills, terminology, and intermediate rhythmic patterns. Emphasis includes historical and current trends, and general concepts of anatomy and physiology in relationship to movement. Theories of spatial forms and structure will be discussed. THDA 3 is a prerequisite for THDA 120A. THDA 120A is a prerequisite for THDA 120B and THDA 120B is prerequisite for THDA 120C, or consent of instructor.

TH/DA 121A-B-C. Jazz Dance III-Advanced 1 (4) Techniques of body control, with a final performance focus. Development of movement theory as related to the performer. Application of constructive criticism to the performer utilizing small group and solo choreography. Includes discussions of jazz dance and its effect
of sociai-cultural and human behavior. THDA 120 C is a prerequisite for THDA 121A. THDA 121A is a prerequisite for THDA 121 B and THDA 121B is prerequisite for THDA 121C, or consent of instructor.

TH/DA 122A-B-C. Jazz Dance IV-Advanced 2 (4-4-4)
Extensive study in the development of movement theory as related to the performer. Includes lectures on choreographic principles, compositional forms, constructive criticism, and the history of jazz as an American art form. THDA 121C is a prerequisite for THDA 122A. THDA 122A is a prerequisite for THDA 122B and THDA 122B is a prerequisite for THDA 122C, or consent of instructor.

TH/DA 130A. Studies in Performance-Winter Faculty and Student Dance Concert (2-4)

The in-depth study of a major dance production. Admission by audition only. Corequisites: students must be concurrently enrolled in any level of THDA 1, 2, 3, 101, 102, 103, 110, 111, 112, 120 or 121; department stamp.

TH/DA 130B. Studies in Performance-Spring Student

 Dance Concert (2-4)The in-depth study of a major dance production; including choreography and/or performance. Admission by audition only. Corequisite: students must be concurrently enrolled in any level of THDA 1, 2, 3, 101, 102, 103, 110, 111, 112, 120 or 121. Prerequisites: choreographers must also either have completed or be currently enrolled in THDA 141, 142, or 143; department stamp.

TH/DA 131. Dance Repertory (2)

The study and aesthetic examination of major choreographic works created by dance faculty of the department or distinguished guest artists. A total of eight units of THDA 130 and THDA 131 may count towards major requirements. Audition is required. Prerequisite: department stamp.

TH/DA 132. Dances Of The World (4)
Course designed for in-depth study of the dance of a particular culture-Afro-Cuban, Spanish Balinese, Japanese, Latin, etc. Specific topic will vary from quarter to quarter (Course materials fee $\$ 20$). Prerequisite: upper-division standing.

TH/DA 140. Dance Improvisation (4)

Participants will learn improvisation methods as related to the aesthetic awareness of movement. Students will explore both structured and unstructured improvisation skills to expand their awareness of movement choices in time, space, and energy. Prerequisite: none.

TH/DA 141. Principles of Choreography (4)
Presents the concepts and elements of dance creation through studies, readings, discussions, and examination of theories. This course is the foundation of the fundamentals of dance composition. Prerequisite: none.

TH/DA 142. Choreography and Performance (4)
Theories and techniques of advanced choreographic problems exploring a range of performance options including multi-media collaborations using video, text, lighting, props, masks, dance/music improvisations, and environmental choreography and performance. Prerequisite: none.

TH/DA 143. Choreography for Dramatic Text (4)
Choreography problems in movement, style, and purpose will be explored through analysis of both historical and contemporary dramatic text. Emphasis will be placed on dance as a complement to verbal communication and a medium for non-verbal communication.

Theatre and Dance

Prerequisite: THDA 1 or THDA 2 or THDA 3, or above, and THAC 1, or consent of instructor.

TH/DA 151. Dance History-Ballet (4)
A study of ballet as a reflection of history from its origins and aesthetic development to its choreographic diversity of today. Prerequisite: none.

TH/DA 152. Dance History-Modern (4)
A study of modern dance as a reflection of history from its origins and aesthetic developments to its choreographic diversity of today. Reflections of the significant reactions of modern dance to social, economical, and cultural changes will be included. Prerequisite: none.

TH/DA 153. Dance History-Jazz Dance and Related

 Ethnic Studies (4)A study of jazz dance and other related ethnic dance cultures as a reflection of history from their origins and aesthetic development to their choreographic intentions of today. Evidence of artistic fluctuation in social, economical, and cultural diversity will be included. Prerequisite: none.

TH/DA 159. Dance Criticism and Aesthetics (4)
A historical analysis of aesthetic concepts related to dance and comparable visual arts. Critical writings on dance as a visual art will be studied from the renaissance to the present. Prerequisite: upper-division standing or consent of instructor.

TH/DA 160. Dance Movement Analysis and Injury

Prevention Techniques (4)
This course is designed to provide the dancer with a muscular skeletal understanding of dance education. Analytic studies will concentrate on kinesthetic functions, training practices, nutrition, distribution of dance injuries, and results of poor training. Prerequisite: upper-division standing or consent of instructor.

TH/DA 163. Dance Theory and Pedagogy (4)
The study of theoretical aspects of dance movement including an analysis of movement concepts for all ages. Development of basic technique training in all forms, curriculum planning, social awareness, and problem solving. Fundamental elements of cognitive and kinetic learning skills. Prerequisite: Level II in any dance form or consent of instructor.

TH/DA 193. Dance Externship (1-12)
Assist in teaching and mentoring children in K-12 level schools as well as other venues throughout San Diego. Build skills in communication, teaching, problem solving, and positive motivational techniques. Prerequisites: Technical levelli; department stamp.

TH/DA 195. Instructional Assistance (2 or 4)

Assist with instruction in undergraduate dance courses. Full description of duties will appear on the "application for Instructional Assistance." Prerequisite: upper-division standing, 3.0 GPA, etc. (per CEP guidelines).

TH/DA 197. Field Studies in Dance (1-12)
Designed for advanced students, this course significantly extends their knowledge of the theatre and dance through intensive participation in the creative work of a major professional theatre or dance company under the guidance of artists resident in those theatres or companies. Students will submit regular written evaluations each week of their ongoing field study. Prerequisites: upper-division standing and consent of instructor required. (e.g., "San Diego Dance Institute")

TH/DE Theatre Design

TH/DE 1. Introduction to Design for the Theatre (4)
A survey of contemporary and historical concepts and practices in the visual arts of the theatre; studies in text analysis, studio processes and technical production; elementary work in design criticism, scale model making, and costume design. A course serving as an introduction to theatre design and production.

TH/DE 101.Theatre Process-Scenery (4)
A hands-on course develops craft skills and solutionfinding process including script analysis, concept sketches, research, and scale model making. An exploration of fundamental ways of seeing and understanding visual design. Prerequisite: THDE 1 or THPR 1 or consent of instructor.

TH/DE 111. Theatre Process-Costumes (4)
The process of the costume designer from script analysis, research visualization of ideas, through the process of costume design. Lecture and demonstration labs parallel lecture material. This course is intended for those interested in a basic understanding of the costumer's process. No previous drawing or painting skills required. Prerequisite:THDE 1 .

TH/DE 121.Theatre Process-Lighting (4)
One of three classes in theatre process. The course aims to develop basic skills in lighting design through practical projects, lab work and lecture. These emphasize collaboration, manipulating light and color, and developing craft skills. Prerequisite: THDE 1 or THPR 3 or consent of instructor.

TH/DE 130. Assistant Designer (2-6)
A production-oriented course that continues to introduce students to the fundamentals of design assisting. Laboratory format allows the student to work with faculty, graduate, or advanced undergraduate theatre designers, doing research, developing design concepts, and supporting the designer in a number of professional ways. Prerequisites: THDE 1, any upper-division undergraduate theatre design class, THPR 1, 2, 3, 4, or 5; and, permission of instructor; department stamp. May be taken twice for credit.

TH/DE 131. Special Topics in Theatre Design (4)
A course designed to expose the theatre design student to a variety of specialized topics that will vary from quarter to quarter. Prerequisite: THDE 1 or consent of instructor. May be repeated three times for credit.

TH/DE 132. Undergraduate Mainstage Production:

Design (2)
A course which will guide a student in a design assignment on the undergraduate mainstage production. Specialized topics dependent on the design requirements of the production. Prerequisite: THDE 1 or consent of instructor. May be repeated two times for credit.

TH/DE 134. Advanced Undergraduate Mainstage

 Design (2-6)A production-oriented course that allows the advanced student major design opportunities in costumes, lighting, scenery, or sound. Laboratory format allows the student to work with faculty members and professional shop personnel in accomplishing significant creative work. Prerequisite: TH/DE 130, TH/DE 132,THPR 1,2,3,4, or 5; department stamp required. May be taken twice for credit.

TH/DE 190. Major Project in Design/Theatre

Production (4)
For the advanced design/production student. Concentration on a particularly challenging design or theatre production assignment, including such areas as assistant designer (scenery, lighting, or costumes), technical director, master cutter, or master electrician. May be repeated one time for credit. A maximum of eight units of major project study, regardless of area (design, directing, stage management, or playwriting) may be used to fulfill major requirements. Prerequisite: admission by consent of instructor only. See department for application form. May be taken two times for credit.

TH/DR Directing/Choreography/Stage Management

TH/DR 101. Stage Management (4)

Discussion and research into the duties, responsibilities, and roles of a stage manager. Work to include studies in script analysis, communication, rehearsal procedures, performance skills, and style and concept approach to theatre. THGE 1, THAC 1 , and THDE 1 recommended.

TH/DR 108. Text Analysis for Actors and Directors (4)
This is an introductory class in the process of understanding the play script. The class will focus on analyzing the story and the underlying dramatic structure in terms of dramatic action. Objectives, actions, choices, given circumstances, and character will be examined. Prerequisite: upper-division standing or consent of instructor.

TH/DR 111.Directing-Acting Process (4)

A studio class that investigates the fundamental skills a director needs to work with actors. Working with actors, students learn how to animate the text on stage through status exercises and scene work as they develop their skill in text work, staging, and dramatic storytelling. Prerequisite: THDR 108.

TH/DR 190. Major Project in Directing (4)

For the advanced student in directing. Intensive concentration on the full realization of a dramatic text from research and analysis through rehearsal and into performance. A maximum of eight units of major project study, regardless of area (design, directing, stage management, or playwriting) may be used to fulfill major requirements. See department for application. Prerequisites: THDR 108, 111, and consent of instructor. May be taken two times for credit.

TH/DR 191. Major Project in Stage Management (4)
For the advanced student in stage management. Intensive concentration on the full realization of a dramatic text, from research and analysis through rehearsal and final performance. A maximum of eight units of major project study regardless of area (design, directing, stage management, or playwriting) may be used to fulfill major requirements. See department for application. Prerequisites: THPR 4, THPR 104, THDR 101, and consent of instructor. May be taken two times for credit.

TH/GE Theatre General

TH/GE 1. Introduction to Theatre (4)
An introduction to fundamental concepts in drama and performance. Students will attend performances and learn about how the theatre functions as an art and as an industry in today's world. Prerequisite: none.

TH/GE 10. Theatre and Film (4)

Theatre and Film analyzes the essential differences between theatrical and cinematic approaches to drama. Through selected play/film combinations, the course looks at how the director uses actors and the visual languages of the stage and screen to guide and stimulate the audience's responses. Prerequisite: none.

TH/GE 11. Great Performances on Film (4)
Course examines major accomplishments in screen acting from the work of actors in films or in film genres. Prerequisite: none. May be taken three times for credit.

TH/GE 12. Great Films of Great Plays (4)
Examination of selected contemporary films based upon important plays. Involves viewing films, reading plays upon which they were based, and discussion of the transition of themes and artistic choices made in translation from one media to another. Prerequisite: none.

TH/GE 25. Public Speaking (4)
This course is designed to establish a clear understanding of the fundamentals of effective oral communication. The methodologies explore the integration of relaxation, concentration, organization, and clear voice and diction as applied to various public speaking modes. Prerequisite: none.

TH/GE 27. User-Friendly Shakespeare (4)

Do you get a puzzled or pained expression on your face when people mention Shakespeare? Try a congenial introduction to the world's greatest playwright from the perspective of performance. Film, live performance and illuminating facts confront the so-called difficulties in an appreciation of the Bard. Prerequisite: none.

TH/GE 90. Undergraduate Seminar (1)
Discussion of various theatre topics.
TH/GE 100. Major Seminar (2)
Discussion of various aspects of the contemporary theatre along with issues it faces. A secondary aim is to offer an introduction to the Department of Theatre and Dance, its aesthetic and goals. To be taught by the department chair in the fall quarter each year. Guest speakers from the faculty and the profession. Minors also encouraged to enroll. Open to all interested undergraduates. May be taken five times for credit.

TH/GE 101. Apprenticeship/La Jolla Playhouse (4) Professional production experience with performance training. In addition to conservatory class work, apprentices are with a production for the entire rehearsal and performance process. Assignments from two to eleven weeks, May-August depending on availability. This course does not satisfy any theatre major or minor requirements. Prerequisites: audition/interview, upper division standing, resume, and three letters of recommendation.

TH/GE 102. Conservatory/La Jolla Playhouse (12)
Concentrated studies in acting, scene study, text analysis, voice, speech, and movement. Taught by theatre professionals from the La Jolla Playhouse and the UCSD Department of Theatre and Dance. Eight-week program, Tuesday-Friday, 9:00 a.m.-5:00 p.m., concluding with a workshop presentation. This course does not satisfy any theatre major or minor requirements. Prerequisites: audition/interview, upper-division standing, or consent of instructor.

TH/GE 108. Production
The collaborative process from the rehearsal process through public performance. All participants will enroll in the same number of units with the director of theatre. Prerequisite: none.

TH/GE 120. Contemporary Film: Dramatizing Our Worid (4)

An examination of eight to ten selected films (mostly American) from the ' 80 s and ' 90 s as explorations of aspects of contemporary life. The class will concentrate on the ways in which selected filmmakers use film as a dramatic medium to address some of the complex issues facing contemporary society. Particular attention will be paid to comedies, thrillers, and romances Students will be required to see some films in current release. Prerequisites: none.

TH/GE 121. Broadway Goes Hollywood: Great American Movie Musicals (12)
This class examines that quintessentially American art form, the musical film. We will trace its origins from the Broadway stage via Hollywood in the 1920s through the great years during the studio heydays of the ' 30 s through the '60s, as well as examine the musical film's current status. Examples are The Jazz Singer, Jesus Christ Superstar, and others. Prerequisite: upper-division standing or consent of instructor.

TH/GE 123. Mary Poppins Meets Bladerunner (4)
A lecture class that examines significant historical and contemporary art direction/scenic design that effec tively supports film narration in a unique manner Highlights and video clips accompany each feature film presentation. (THDE 1 recommended.) Prerequisite. upper-division standing.

TH/GE 124. Cult Films: Weirdly Dramatic (4)
A select survey of eight to ten exceptional off-beat, frequently low-budget films from the last sixty years that have attained "cult" status. The mix includes Tod Browning's "Freaks" (1932) to John Water's "Pink Flamingos" (1973). Aspects of bad taste, cinematic irony and theatrical invention will be highlighted. Prere quisite: upper-division standing.

TH/GE 125. Topics in Theatre and Film (4)
An in-depth exposure to an important individual artist or subject in theatre and/or film. Topics vary from quarter to quarter. Prerequisite: upper-division standing or consent of instructor.

TH/GE 130. Let There Be Light! (4)
An adventure-theory class investigating the power of light and color used in art, architecture, theatre, film, television and exploring its impact on students' lives Students will perform research, submit papers, and create practical examples. No prior lighting/design skills required. Prerequisite: none.

TH/GE 133. Styles, Ideas, and Visual Expression (4)
An exploration of fundamental ways of seeing and thinking about the performance space. A special emphasis on the manipulation of image, sound, text, and message, in visual arts, theatre, opera, rock video clips, commercials, etc. The design process as it reflects ideas, styles, attitudes, and ways of seeing and thinking Prerequisite: none.

TH/GE 195. Instructional Assistance (2 or 4)
Assist with instruction in undergraduate theatre courses. Full description of duties will appear on the "Application for Instructional Assistance." Prerequisites:
upper-division standing; 3.0 GPA; department stamp. May be repeated for a total of 8 units.

TH/GE 196A. Honors Studies in Theatre (4)
This course will allow theatre honors students to explore advanced issues in the field of theatre. It will also provide honors students the opportunity to develop an honors thesis on the topic of their choice and begin preliminary work under faculty supervision Department stamp required. Can be taken for a letter grade only. Other requirements are junior standing (ninety- plus units); 3.5 GPA up to graduation; 3.7 GPA in major; must have completed at least four upper-division theatre courses; recommendation of faculty member familiar with student's work.

TH/GE 196B. Honors Thesis in Theatre
(4)

This course will provide honors candidates an opportunity to complete the research on and preparation of an honors thesis under close faculty supervision. Can be taken for a letter grade only. Other requirements are junior standing (ninety-plus units); 3.5 GPA overall up to point of graduation; 3.7 GPA in major; must have com pleted at least four upper-division theatre courses; recommendation of a faculty member familiar with student's work. Department stamp required.

TH/GE 197. Field Studies (1-12)
Designed for advanced students, this course significantly extends their knowledge of the theatre through intensive participation in the creative work of a major professional theatre, television, or film company under the guidance of artists resident in those theatres or companies. Students will submit reguiar written evaluations each week of their ongoing field study Prerequisites: consent of instructor, upper-division standing, and department stamp. May be taken two times for credit.

TH/GE 198. Directed Group Studies (0-2-4)
Group studies, readings, projects, and discussions in theatre history, problems of production and performance, and similarly appropriate subjects. Prerequisites: upper division standing, 2.5 GPA, and consent of instructor. May be repeated for a total of 12 units.

TH/HS Theatre History

TH/HS 10. Introduction to Play Analysis (4)
An introduction to the fundamental techniques of analyzing dramatic texts. Focus is on the student's ability to describe textual elements and their relationships to each other as well as on strategies for writing critically about drama. Prerequisites: none.

TH/HS 11. History of Theatre 1: Classical to

Renaissance (4)
An introduction to the plays, players, and places of Greek, Roman, and Renaissance theatre. Playwrights include Aeschylus, Sophacles, Euripides, Plautus Shakespeare, Marlowe, Cervantes, and Lupe de Vega. Emphasis will be on the plays in performance, as dra matic literature that lived for specific audiences in particular times and places. Prerequisite: none.

TH/HS 12. History of Theatre 2: Neoclassicism to

Realism (4)

An introduction to the plays, players, and places of 17th 18th, and 19th-century theatre. The course tracks the development of theatrical realism in acting, design, and playwriting. Playwrights include Molière, Racine, Sheridan, Goëthe, Beaumarchais, Ibsen, and Chekhov. The plays will be studied in the context of the theatre
and culture in which they were first performed. Prerequisite: none.

TH/HS 13. History of Theatre 3: Symbolism to

Postmodernism (4)
An introduction to the plays, players, and places of twentieth-century European and American theatre. Playwrights include Jarry, Pirandello, Brecht, O'Neill, Genet, Beckett, Baraka, Shange, Fornes, and Hwang. Emphasis will be on the plays in performance, as dramatic literature that lives for specific audiences in particular times and places. Prerequisite: none.

TH/HS 101. Topics in Dramatic Literature and Theatre

 History (4)An in-depth exposure to an important individual writer or subject in dramatic literature and/or theatre history. Topics vary from quarter to quarter. Recent courses have included Modern French Drama, and the History of Russian Theatre. Prerequisite: THHS 11 or 12 or 13 or consent of instructor. May be taken five times for credit.

TH/HS 102. Masters of Theatre (4)
Focus on the artists of seminal importance in the theatre. Consideration will be given to theory and practice of the artist, with emphasis on theatrical realizations that can be reconstructed by integrated research Examples of recent courses include Moliére, Fugard, and Strindberg. Prerequisite: THHS 11 or THHS 12 or THHS 13 or consent of instructor. May be taken three times for credit.

TH/HS 109. African Heritage in Contemporary Drama: African, Caribbean, and African-American (4)
This course is designed to introduce students to African, Caribbean, and African-American theatre/playwrights. Students will discover classwork to be inten sive rather than exhaustive. Each play will be examined for sources of dramatic power, type of world presented, relationships to audience, uses of language, uses of art as politics. (Cross-listed with Ethnic Studies 177.) Prerequisite:THHS 5 or consent of instructor.

TH/HS 110. Chicano Dramatic Literature (4)
Focusing on the contemporary evolution of Chicano dramatic literature, course will analyze playwrights and theatre groups that express the Chicano experience in the United States, examining relevant "actos," plays, and documentaries for their contributions to the developing Chicano theatre movement. (Cross-listed with Ethnic Studies 132.) Prerequisite: THHS 11 or 12 or 13 or consent of instructor.

TH/HS 111. Hispanic-American Dramatic Literature (4) Course examines the plays of leading Cuban-American, Puerto-Rican, and Chicano playwrights in an effort to understand the experience of these Hispanic-American groups in the United States. (Cross-listed with Ethnic Studies 133.) Prerequisite: THHS 11 or 12 or 13 or consent of instructor.

TH/HS 114. American Musical Theatre (4)

The class will explore this vital and unique theatre form by examining its origins, evolution components, and innovators. Special emphasis is placed on the process of adaptation and the roles of the director and choreographer.

TH/HS 115. History and Theory of Directing (4)

Evolution of directing theory from 1850 to the present with reference to the work of internationally influential directors such as Saxe-Meiningen, Antoine, Stanislavski, Meyerhold, Brecht, and Brook, among others. Prere-

quisite: upper-division standing or consent of instructor.

TH/HS 116. Old Myths in New Films (4)

The course will address the work of different writers each quarter, showing how their films derive from classic myths, legends, and traditions of a specific ethnic group. Authors discussed may include Kurosawa (Japanese), Herzog (German), Neil Jordan (Irish), and other moderns. Prerequisite: upper-division standing or consent of instructor. May be taken three times for credit.

TH/PR Practicum

TH/PR 1. Practicum-Scenery (4-6)
A production performance oriented course that introduces fundamentals of scenery construction and its theatrical operation. Laboratory format allows students to work through the scenery production process culminating in a crew assignment for a fully mounted theatrical production. Prerequisite: department stamp required.

TH/PR 2. Practicum-Costume (4-6)
A production performance oriented course that introduces fundamentals of costume construction and its integration into theatre operations. Laboratory format allows students to work through the costume production process culminating in a crew assignment for a fully mounted theatrical performance. Prerequisite: department stamp required

TH/PR 3. Practicum-Lighting (4-6)

A production performance oriented course that introduces fundamentals of stage lighting or sound and its technical operation. Laboratory format allows a student to work through the lighting or sound production process culminating in a crew assignment for a fully mounted theatrical production. Prerequisite: department stamp required.

TH/PR 4. Practicum-Stage Management (4-6)

A production performance oriented course that introduces fundamentals of stage management. Laboratory format allows students to work through entire production process culminating in a fully mounted theatrical production. Prerequisite: department stamp required.

TH/PR 5. Practicum-Sound (4-6)

A production performance-oriented course that introduces fundamentals of theatre sound and its technical operation. Laboratory format allows a student to work through the sound production process culminating in a crew assignment for a fully mounted theatrical production. Prerequisite: department stamp required.

TH/PR 102. Advanced Theatre Practicum (4-6)
A production performance-oriented course that continues the development of costume, lighting, scenery, or sound production and introduces greater responsibilities in the laboratory format. Students serve as crew heads on major departmental productions or creative projects. Prerequisite: THPR 1, 2, 3, 4, or 5; permission of instructor; department stamp required. May be taken for credit two times.

TH/PR 104. Advanced Practicum in Stage Management (4-6)

A production performance oriented course that continues the development of stage management skills and introduces greater responsibilities in the laboratory format. Students serve as either assistant stage managers on mainstage productions or stage managers on studio projects. Prerequisites: THPR 4, THDR 101, and consent of instructor. May be taken two times for credit.

TH/PW Playwriting

TH/PW 1. Introduction to Playwriting (4)
Beginning workshop in the fundamentals of playwriting. Students discuss material from a workbook which elucidates the basic principles of playwriting, do exercises designed to help them put those principles into creative practice, and are guided through the various stages of the playwriting process which culminates with in-class readings of the short plays they have completed

TH/PW 101. Playwriting Workshop (4)
A workshop where students present their plays at various stages of development for group analysis and discussion. Students write a thirty-minute play which culminates in a reading. Also includes writing exercises designed to stimulate imagination and develop writing techniques. Prerequisite: THPW 1 or consent of instructor. May be taken two times for credit.

TH/PW 102. Playwriting Workshop II (4)
Advanced workshop where students study the fulllength play structure and begin work on a long play. Students present their work at various stags of development for group discussion and analysis. Prerequisite: TH/PW 101 or consent of the instructor. May be taken for credit two times.

TH/PW 104. Screenwriting (4)

Basic principles of screenwriting using scenario composition, plot points, character study, story conflict, with emphasis on visual action and strong dramatic movement. Prerequisite: THPW 1.

TH/PW 190. Major Project in Playwriting/

Screenwriting (4)
For the advanced student in playwriting/screenwriting. This intensive concentration in the study of playwriting and/or screenwriting will culminate in the creation of a substantial length play. A maximum of eight units of major project study, regardless of area (Design, Directing, Stage Management, Playwriting) may be used to fulfill major requirements. Applicants must have completed the playwriting sequence, THPW 1, 101, and/or consent of instructor. See department for application form.

GRADUATE

TH/GR 200. Dynamics (1)
A daily program of physical, vocal, and speech exercises designed to prepare the student to move in a focused way into specific class areas with minimum amount of warm-up time. The exercises work on development of flexibility, strength, and coordination throughout the body. Strong emphasis is placed on physical and mental centering within a structured and disciplined approach to preparation. Prerequisite: graduate standing.

TH/GR 201. Stage Combat (2)
A study of the dramatic elements of stage violence, and practical work in developing the physical skills necessary to fully realize violent moments on the stage. At the core of the study is the process from text to convincing theatrical action. Physical work revolves around basic principles of energy, focus, and center inherent in unarmed and weapons combat. Prerequisite: graduate standing.

TH/GR 202. Joint Stock (3)
The process of collaborative creation from idea to performance. Prerequisite: graduate standing.

TH/GR 203. Seminar and Supervision for ArtsBridge

Scholars (1)
A workshop to address the specific pedagogical requirements and techniques to be employed by students as ArtsBridge (outreach) Scholars and Mentors of ArtsBridge Scholars. Instructor will mentor the students on-site as well as in seminars. Prerequisite: graduate standing.

TH/GR 204A. Text Analysis (4)

Topics to be covered will include: (1) concept of poetic language; lexical and syntactic analysis of dialogue; (2) the semantic context of dialogue; (3) thematic structure, from motive to themes; (4) the concept of dramatic character or hero; (5) dramatic narrative; (6) the material of drama; the relationship of myth and ritual to drama; (7) analysis versus interpretation; (8) practical applications. Prerequisite: graduate standing.

TH/GR 204B. Performance Analysis (4)
Semiotic analysis of historically significant and/or contemporary theatrical performances: research methodologies; problems of documentation; scenic writing and the dramatic text; the cultural context of mise-en-scène. Prerequisite: graduate standing.

TH/GR 205. Improvisation for the Theatre (3)
A course designed to introduce improvisational tech niques to professional acting students. A variety of approaches to the art of improvisation will be presented and practiced, both serious and comic. Small and large group improvisations will be offered for participation. Prerequisite: graduate standing.

TH/GR 206. Faculty Directed Production (1-8)
Faculty directed production, from the rehearsal process through public performance. All participants will enroll in the same section, the number of units depending upon degree of involvement. Prerequisite: graduate standing.

TH/GR 207. Production (2)

The collaborative process from the rehearsal process through public performance. All participants will enroll in the same section, the same number of units. Prerequisite: graduate standing.

TH/GR 209. Commedia and Comic Techniques (2)
A course designed to provide actors with tools, both physical and verbal, to play comedy, Included will be commedia del arte techniques, clown work, masks, circus techniques, mime, and scene work from comic scripts. Prerequisite: graduate standing.

TH/GR 210A. Acting Process I (3)
Actors focus on the nature of the acting process using exercises to stimulate imagination. Later work includes action and characterization using imaging and improvisational techniques to explore text and character. Directors work as actors and as directors of informa-tion-getting exercises and myth exploration. Prerequisite: graduate standing.

TH/GR 210B. Acting Process I (3)

The first four weeks are devoted to intensive rehearsal with faculty or guest director ending in public performance. Classes are suspended during rehearsals and instructors work with the production. The remainder of the quarter focuses on facial masks, physical characterization, and improvisation ending in a cabaret improvisation competition. Prerequisite: graduate standing.

TH/GR 210C. Acting Process I (3)

Text analysis of a realistic play ending in a public performance of scenes from that play. Prerequisite: gradu ate standing.

TH/GR $211 \mathrm{~A}-\mathrm{B}-\mathrm{C}$. Speech for the Actor I (1-1-1)
Introduction of the principles of phonetics and articulation. Constant study and drill to prepare the actor for standard speech and flexibility. Prerequisite: graduate standing.

TH/GR 212. Acting Practicum (2)

One-on-one laboratory workshop which examines practical applications of accents, speech and voice work, dialect, movement and combat work specific and ancillary to the productions in which the students have been cast. Prerequisite: graduate standing.

TH/GR 213A-B-C. Movement for Theatre I (2-2-2)
An intensive studio course in the art of movement as a basis for theatre performance. Theory and practice of energy flow, weight, spatial focus, time consumption, and the shape factor. (S / \cup grades only.) Prerequisites: 213A for $B, 213 B$ for C.

TH/GR 214A-B-C. Voice for Theatre I (2-2-2)
Voice exercises designed to "free the voice" with emphasis on diaphragmatic breathing, articulation exercises, and singing exercises. Course designed to broaden pitch, range, projection, and to expand the full range of potential characterizations. (S/U grades only.) Prerequisites: 214 A for $B ; 214 \mathrm{~B}$ for C.

TH/GR 216. Singing for the Actor I (1)
Vocal technique for the musical theatre. Exercises, scales, sight reading, ensemble work, preparation of individual pieces. Prerequisite: graduate standing.

TH/GR 217. New Plays Workshop (1-4)
A weekly workshop with actors, directors, writers, and dramaturgs. Course will focus on the development of stage readings of new works by the playwriting students. Prerequisite: graduate standing.

TH/GR 219. Directing Process Studio (2/4)
Preparation, presentation, and discussion of representative scenes from various periods of dramatic literature. Prerequisite: graduate standing.

TH/GR 220A-B-C. Acting Process II: Classical Text (3-3)
An intensive studio examination of problems and potentials associated with the theatrical realization of the classical text. Prerequisite: graduate standing.

TH/GR 221A-B. Speech for the Actor II (3-3)
Advanced work in phonetics and articulation. Intensive study of stage dialects to prepare actor for variety of roles. Prerequisite: graduate standing.

TH/GR 223A-B. Movement for Theatre II (2-2)
An advanced course in the art of movement for the theatre, building on the knowledge gained in Theatre 213. (S/U grades only.) Prerequisite: $223 A$ for B.

TH/GR 224A-B. Voice for Theatre II (2-2)
Advanced voice training designed to help the actor fuse voice, emotion, and body into a fully realized reflection of the text. (S / U grades only.) Prerequisite: 224A for B.

TH/GR 225A-B. Singing for the Actor II (1)
Continuing vocal technique for the musical theatre. More complicated musical material investigated and prepared. Prerequisite: graduate standing.

TH/GR 227. Directing Assistantship (6-12)

Assisting faculty with productions off-campus. Perform research necessary for project. Assist with casting. Participate in design meetings. Observe and participate in rehearsal. Direct, if delegated to do so. Prerequisite: graduate standing.

TH/GR 228. Designing Assistantship (6-12)
Assisting faculty with productions off-campus. To draft some or all of the project design. To perform research, either visual, historical or technical. To create and maintain all production plans and paperwork records from pre-production through opening night. To organize the staff for focus and work calls. Prerequisite: graduate standing.

TH/GR 229. Theatre Externship (9-12)
Selected professional opportunities in repertory and commercial theatre, designed to engage the student in particular creative responsibilities under the guidance of master artist-teachers. Prerequisite: graduate standing.

TH/GR 230. Acting Process III: Actors' Studio (3)
An advanced studio for graduate actors and directors, this work will explore a single text from the modern theatre under the direction of a master teacher-artist. Concentration will be on multiple possible modes of encountering a text, varieties of interpretation and performance realization, and the development of a theatre ensemble. Prerequisite: graduate standing.

TH/GR 233. Acting for the Camera (1)
This course is designed to aid the actor in the transition from stage to film work. Examination of film production and its physical characteristics and the acting style needed for work in film and television. Students will rehearse and perform in simulated studio setting. Prerequisite: graduate standing.

TH/GR 234. Voice for Theatre III (1-2)

A one-quarter course devoted exclusively to intensive development of the actor's vocal capability to master a variety of musical theatre scores. Concentration on extending the voca! range, sight reading, textual and musical analysis, and musical characterization. Prerequisite: graduate standing.

TH/GR 235. Singing for the Actor III (1)
Continuing vocal technique for the musical theatre. More complicated musical material investigated and prepared. Prerequisite: graduate standing.

TH/GR 239. Skills (1)
A unifying approach to acting skills (voice, movement, and speech) designed to result in providing the graduating actor with a daily regimen appropriate for professional work. Prerequisite: graduate standing.

TH/GR 240. Directing Seminar (1-6)

A seminar focusing on the current directing projects of all graduate directing students. Depending upon individual student needs, the work may include play selection, historical or sociological research, and discussion of emerging directorial concepts, the rehearsal process, and post-production evaluation. Prerequisite: graduate standing.

TH/GR 241. Directing—Site Specific (2-4)

A course designed to create theatre performance in non-theatrical settings. This will be done by using theatrical text in non-traditional settings or text specifically created for individual sites. Prerequisite: graduate standing.

H/GR 244. Dramatic Structure (2-4)

Analysis of fundamentals of dramatic structure; plotting, thematic structure, structure of action at the level of scene. Study of well-structured plays in several styles. Practical exercises in constructing plays effectively, along with theoretical considerations. Prerequisite: graduate standing.

TH/GR 245. Directing Practicum (2-4)
Students enrolled in this course will work on productions in the function of a director. This will include staging, creative interpretation, blocking, etc. Prerequisite: graduate standing.

TH/GR 250. Playwriting Seminar (4)

A seminar focusing on the current playwriting project of all graduate playwriting students. Work for each quarter is individually determined according to student needs, but may include exploration of an inceptive idea, development of a scenario or other structural work, and writing dialogue. Students present work to be discussed in class. May include group or individual playwriting exercises. Prerequisite: graduate standing.

TH/GR 251. Playwriting Practicum (3-6)
Creative writing project developing original scripts from outline to the final play. Plays may vary depending on the quarter, but will include writing of a realistic oneact, a nonrealistic one-act, a one-act documentary or dramatization of fiction, a full-length play. Prerequisite: graduate standing.

TH/GR 252. Dramaturgy Seminar (2-3)
The seminar will deal with all dramaturgical issues pertaining to departmental productions: production research, textual analysis, translation, adaptation, rehearsal process, and critique. Concurrently with the dramaturgy issues of the given year, the seminar will discuss possible choices of plays for future production seasons. Prerequisite: graduate standing.

TH/GR 253. Dramaturgy Practicum (1-6)
Students enrolled in this course will work on productions in the function of a dramaturg. This will entail preparation of texts, research, participation at rehearsals, etc. Prerequisite: graduate standing

TH/GR 255. Restaging the Classics (1-4)
A series of detailed dramaturgic and scenographic examinations of influential reinterpretations of classic dramatic texts. The seminar will investigate selected texts from the dual perspectives of historic and contemporary theatre practice. Prerequisite: graduate standing.

TH/GR 256. Contemporary Plays (2)
A guided reading course focusing exclusively on very recent plays in an attempt to become aware of what is being written now. Plays chosen will be primarily American. Course may be repeated for credit. Prerequisite: graduate standing.

TH/GR 257. Screenwriting (4)
Students will develop the concept for an original piece for television or film and will write the screenplay Student work will be discussed in seminar at each phase of the development. Prerequisites: graduate standing and 250.

TH/GR 258. Dramatization and Adaptation (4)

Seminar will deal with dramatization and adaptation of literary texts for the purpose of theatrical production The class will study some significant examples of such practice from the past, and, subsequently, students will develop their own projects of dramatization, adapta-
tion, or modernization of texts. Prerequisite: graduate standing.

TH/GR 261. Theatre and Drama in Ancient Greece (4)
This class will deal mainly with the fifth-century theatre drama, and related subjects of mythology and philosophy of art. Prerequisite: graduate standing

TH/GR 270A-B-C. Design Studio I (4)
This course will focus on beginning-level problems in theatre design, including text analysis, research, conceptualization, and visual expression. Students will work on individual projects in lighting, costume, and scenic design. The course will include group critiques of completed designs and works in progress. 270A: Scenic Design (fall); 270B: Costume Design (winter); 270C: Lighting Design (spring) Prerequisite: graduate standing

TH/GR 271. Design Seminar (2)
A seminar focusing on all aspects of the design profession, including current projects of graduate design students. The work may also include portfolio presentations, research presentations, and guest lecturers Prerequisite: graduate standing

TH/GR 273. Fashioning the Body (4)
A survey/history of artistic and cultural stylistic change as embodied in clothing from early Western civilization to the contemporary period.

TH/GR 274. Advanced Scenic Design (4)
This course explores advanced problems in scenic design through development and critique of creative class projects and production works-in-progress. Prerequisite: graduate standing.

TH/GR 275. Advanced Lighting Design (4)
Creative projects and topics in Lighting Design to develop the student's techniques and professional practices. Work to include studies in design research, concepts, psychophysical considerations, collaboration, professional procedures and systems, paperwork, and organization. Various scales of production projects will be addressed by the student for presentation and critique, and may be theoretical or productions in the departmental calendar. Prerequisite: second- or thirdyear graduate standing.

TH/GR 276. Advanced Costume Design (4)
Projects in costume design, emphasizing script analysis, research, conceptualization, and visual expression. Studio work includes costume rendering in various media for specific plays. Prerequisite: graduate standing.

TH/GR 278. Special Topics in Theatre Design: (1-6)
A course designed to expose the theatre design student to a variety of specialized topics, including millinery, pattern drafting and draping, scenic painting, model making, figure drawing, drafting, fitting, rendering. Topics will vary from quarter to quarter. Prerequisite: graduate standing

TH/GR 279. Design Practicum (2-4)
This course covers the artistic, aesthetic and practical aspects of the designers work as they develop and execute the design toward a fully realized production. Prerequisite: graduate standing.

TH/GR 280. Stage Management (1-4)
Discussion and research into the duties, responsibilities, and roles of a stage manager. Work to include studies in script analysis, communication, rehearsal procedures, performance skills, and style and concept approach to theatre. Prerequisite: graduate standing.

TH/GR 281. Stage Management 2 (4)
A continuation of the introductory stage management course, to further explore the stage manager's process, focusing on the technical rehearsal period through the closing of a show. Prerequisites: graduate standing and 280.

TH/GR 286. Special Topics in Stage Management (1-6) A course for M.F.A. students in stage management. Topics will focus on various aspects of theatre administration, and advanced stage management including: Non-profit Theatre, Commercial Theatre, Advanced Problems, Venues, Musicals/Dance, Production Management, Theatre Development, Business Problems, and Theatre Marketing. Prerequisite: graduate standing.

TH/GR 288. Stage Management Seminar (1-12)
A weekly seminar in which all graduate stage managers participate. Includes discussions of problems encountered on current productions, paperwork, methodology, and production approaches. Prerequisite: graduate standing.

TH/GR 290. Dramatic Literature and Theatre History Prior

 to 1900 (4)Selected material from following topics: Classical Drama, Asian Drama,Medieval and Early Modern Drama, Shakespeare, European Drama 1600-1900. May be repeated as content varies. *Pending final approval.

TH/GR 291. Dramatic Literature and Theatre History 1900 to the Present (4)
Selected material from following topics: European Theatre 1900-Present, American Theatre 1900-Present, Contemporary Theatre and Performance. May be repeated as content varies. *Pending final approval.

TH/GR 292. Cultural and Critical Theory (4)
Selected material from following topics: Performance Theory, Dramatic Theory, Critical Theory, Cultural Studies. May be repeated as content varies. *Pending final approval.

TH/GR 293. Directed Studies (4-12)
Individual or small group directed study. *Pending final approval.

TH/GR 294. Dissertation Research (4-12)
Research and preparation of doctoral dissertation. *Pending final approval.

TH/GR 295. Acting Practicum (2)
This course covers the artistic, aesthetic, and practical aspects of the actors' work as they develop and execute the character/role towards a fully realized production. Prerequisite: graduate standing.

TH/GR 296. Stage Management Practicum (4-12)

Taken each term by all graduate stage management students. The class focuses on the development of knowledge and skills necessary for the contemporary stage manager. Seminar format is augmented by lab work that may include departmental productions. Prerequisite: graduate standing.

TH/GR 297. Thesis Research (2-12)
Thesis research for M.F.A. degree. (S/U grades only.) Prerequisite: graduate standing.

TH/GR 298. Special Projects (0-4)
Advanced seminar and research projects in theatre. (S/U grades only.) Prerequisite: graduate standing.

TH/GR 299. Thesis Project (2-12)

Specific projects in theatre individually determined to meet the developing needs, interests, and abilities of M.F.A. candidates. (S/U grades only.) Prerequisite: graduate standing.

TH/GR 500. Introduction to Apprentice Teaching (4) Intensive introduction to teaching techniques, analysis of instructional texts and materials, conducting of dis cussion sections, topics and questions for papers and examinations, and grading. This course is required for the M.F.A. degree program. Prerequisite: graduate standing.

TH/GR 501. Apprentice Teaching (2-4)
Apprentice teaching in undergraduate courses offered by the Department of Theatre and Dance. 2 units $=25$ percent TAship. 4 units=50 percent TAship. Prerequisites: TH/GR 500 (M.F.A. students) or equivalent teaching experience (Ph.D. students).

Third World Studies

OFFICE: 3313 Literature Building, Warren College, (858) 822-0377

Professors

Carlos Blanco-Aguinaga, Ph.D., Spanish and
Latin American Literature, Emeritus
Jaime Concha, Ph.D., Spanish and Latin
American Literature
Michael P. Montéon, Ph.D., Latin American History
Vicente L. Rafael, Ph.D., Communication:
Southeast Asian and Philippine Culture
Edward Reynolds, Ph.D., African History
Rosaura Sanchez, Ph.D., Spanish and Latin
American Literature, Linguistics
William Tay, Ph.D., Chinese Literature, Emeritus
Oumelbanine Zhiri, Ph.D., Literature

Associate Professors

Suzanne Brenner, Ph.D., Anthropology
Robert Cancel, Ph. D., African and Caribbean
Literature, Coordinator of Third World Studies
Ann L. Craig, Ph.D., Political Science
Rosemary George, Ph.D., Literature
Max Parra, Ph.D., Mexican Literature
Marta E. Sanchez, Ph.D., Latin American Literature Winnie Woodhull, Ph.D., Literature

The Third World Studies Program has three main objectives:

1. To provide an understanding of the Third World and its relationships to the West. In order to understand these relationships, it is necessary to study the historical context out of which the present relationships developed. For example, besides trying to understand what kind of society existed in Meso-America when the Spaniards arrived in 1520, the student must also have an understanding of the historical development in Europe which resulted in Spain's decision to seek wider trade abroad. There is insistence on both the similarities and differences which Third World societies have among themselves and the similarities and differences with Western societies.
2. To provide an interdisciplinary approach to the study of the Third World. The program is not conceived as being exclusively historically oriented nor as being predominantly a social science program, but rather one that integrates both the social sciences and the humanities.
3. To provide an understanding of the shifting economic and political nature of the countries designated as belonging to the "Third World," especially in light of the dramatic political and economic changes worldwide in the late 1980s and 1990s. To this end, our Third World Studies courses will, where appropriate, address and contextualize the history of the term "Third World" and its current applications in scholarship and the broader international media.

The Major Program

Students interested in Third World studies may focus on a theme, problem, or geohistori-cal area. A Third World studies program of study must be interdisciplinary. Students must choose course offerings from at least three disciplines (anthropology, economics, history, literature, political science, sociology, etc.).

A Third World studies major requires a minimum of twelve upper-division courses plus three lower-division courses from the Third World studies sequence (TWS 21, 22, 23, 24, 25, or 26). Students at Eleanor Roosevelt College may substitute up to two courses, Making of the Modern World 4 and 5 , for two of the three-course lowerdivision sequence, but must take at least one course in the TWS 21-26 sequence. Selection of a specific concentration, discipline, or department
should be determined in consultation with a Third World studies faculty member or program adviser.

Students majoring and minoring in Third World Studies are encouraged to experience their areas first-hand by studying abroad in any number of ways. Most convenient, depending on the area, is the University of California's Education Abroad Program, whereby students can gain UC credit for study at foreign universities. This is especially convenient for students who cannot find sufficient courses at UCSD pertaining to such regions as the Caribbean and the Indian subcontinent. Moreover, Latin America, Asia, and Africa coursework is available in these regions through the Education Abroad Program and various programs available through other U.S. universities.

Double Major

Students interested in Third World studies as a double major must have at least ten upper-division courses that are unique to each departmental major. The courses required for Third World studies may cover one or more disciplines. Courses may focus on a theme or problem or on a geo-historical area. The remaining two courses may overlap with the other major requirements. Approval from both departments is required for overlaps. Students should consult a Third World studies faculty member or program adviser for approval of a major program.

Minor

A student may minor in Third World studies by selecting two courses from the lower-division Third World studies sequence (TWS 21, 22, 23, 24, 25 , or 26) and five upper-division courses in disciplines dealing with the Third World.

Third World studies faculty members offer courses in the Departments of Anthropology, Communication, Literature, Political Science, Sociology, History, and in the Third World Studies Program. Appropriate courses in other departments may also be considered. Students should consult departmental and program listings for Third World area offerings.

COURSES

See listings also under the Departments of Anthropology, Communication, History, Literature, Political Science, and Sociology for other Third World area offerings.

LOWER-DIVISION

21-22-23-24-25-26. Third World Literatures (4-4-4-4-4-4) An introduction to the cultures of various Third World countries through close reading of selected literary texts.TWS 21 focuses on African literature, TWS 22 deals with Latin American literature, TWS 23 examines Chinese literature, TWS 24 examines Caribbean literature, TWS 25 examines Middle Eastern literature, and TWS 26 examines literature of the Indian Subcontinent. Topics will vary each quarter. (F,W,S)

UPPER-DIVISION

132. Literature and Third World Societies (4)

This course will investigate novelistic and dramatic treatments of European society in the era of nine-teenth-century imperialism, Third World societies under the impact of colonialism, and the position of national minorities inside the United States to the present day. Attention will center on the interplay between the aesthetic merits and social-historical-philosophical content of the works read.
135. Bilingualism: Research and Field Studies (4)

A study of sociolinguistic findings on bilingualism throughout the world and an evaluation of bilingual education theories. The students will also engage in surveys of local communities to assess bilingualism and educational needs of bilingual communities. Prerequisite: upper-division standing.
190. Undergraduate Seminars (4)

Seminars will be organized on the basis of topics with readings, discussions, and papers. Specific subjects to be covered will change each quarter depending on particular interest of instructors or students. May be repeated for credit.
197. Field Work (4)

In an attempt to explore and study some unique processes and aspects of community life, students will engage in research in field settings. Topics to be researched may vary, but in each case the course will provide skills for carrying out these studies.
198. Directed Group Studies (2 or 4)

Directed group study on a topic or in a field not included in the regular department curriculum, by special arrangement with a faculty member. Prerequisite: upper-division standing
199. Independent Study (2 or 4)

Tutorial, individual guided reading and research projects (to be arranged between student and instructor) in an area not normally covered in courses currently being offered in the department. (P/NP grades only.) Prerequisites: upper-division standing and consent of instructor. (F,W,S)

Third World Studies offerings in other departments:

Anthropology: Regional

ANRG 104. Traditional African Societies and Cultures
ANRG 117. Gender Across Cultures
ANRG 134. The Cultures of Mexico
ANRG 137. Societies and Cultures of Melanesia
ANRG 162. Peoples of the Middle East

ANRG 170. Traditional Chinese Society
ANRG 173. Chinese Popular Religion
ANRG 182. Ethnography of Island Southeast Asia

Communication and Culture

COCU 179. Colonialism and Culture

History

HIAF 110. History of Africa to 1880
HIAF 111. Modern Africa since 1880
HIAF 120. History of South Africa
HIAF 130. African Society and the Slave Trade HIAF 140. Economic History of Africa
HIAF 160. Special Topics in the Economic History of Africa

HIAF 161. Special Topics in African History
HIEA 112. Japan: From the Mid-Nineteenth Century Through the U.S. Occupation
HIEA 113. The Fifteen-Year War in Asia and the Pacific HIEA 123. Food in Chinese History

HIEA 130. History of the Modern Chinese Revolution: 1800-1911

HIEA 131. History of the Modern Chinese Revolution: 1911-1949

HIEA 132. History of the People's Republic of China HIEA 137. Women and Family in Chinese History HILA 100. Latin America: Colonial Transformation

HILA 101. Latin America: The Construction of Independence 1810-1898
HILA 102. Latin America in the Twentieth Century
HILA 105. South America: Labor, Coercion, and Society in the Nineteenth Century
HILA 107. State and Society in Nineteenth- and Twentieth-Century Latin America
HILA 112. Economic and Social History of Andean Region HILA 113. Lord and Peasants in Latin America HILA 114. Social History of Colonial Latin America

HILA 115. The Latin American City: A History
HILA 116. Encounter of Two Worlds: Early Colonial Latin America

HILA 117. Indians, Blacks, and Whites: Family relations in Latin America

HILA 120. History of Argentina
HILA 121. History of Brazil
HILA 122. Cuba: From Colony to Social Republic
HILA 123. The Incas and Their Ancestors
HILA 131. A History of Mexico
HILA 132. A History of Copntemporary Mexico
HILA 160. Topics in Latin America Colonial History: 1500-1820

HILA 161. History of Women in Latin America
HILA 162. Special topics in Latin America
HILA 166. Cuba: From Colony to Socialist Republic

HINE 114. History of the Islamic Middle East

Literature

English

LTEN 135. Twentieth-Century Literature from the Indian Subcontinent
LTEN 188. Contemporary Caribbean Literature
LTEN 189. Twentieth Century Postcolonial Literatures
Portuguese - (texts read in Portuguese)
LTPR 130. Brazilian Literature

Spanish - (texts read in Spanish)

LTSP 130B. Development of Latin American Literature LTSP 131. Spanish American Lit: The Colonial Period LTSP 132. Spanish American Lit: 19th Century

LTSP 133. Spanish American Lit: 20th Century
LTSP 134. Argentine Literature
LTSP 135. Mexican Literature
LTSP 136. Peruvian Literature
LTSP 137. Caribbean Literature
LTSP 140. Spanish-American Novel
LTSP 141. Spanish-American Poetry
LTSP 142. Spanish-American Short Story
LTSP 143. Spanish-American Essays
LTSP 144. Spanish-AmericanTheatre
LTSP 163. Spanish Language in Spanish-American Literature
LTSP 172. Indigenista Themes in Spanish-American Literature

LTSP 173. Problems in Spanish and Spanish-American Literary History

Literatures of the World (texts read in English)

LTAF 110. African Oral Literature

LTAF 120. Literature and Film of Modern Africa LTAM 110. Latin American Literature in Translation LTAM 120. Mexican Literature in Translation. LTEA 100A. Classical Chinese Poetry in Translation LTEA 100B. Modern Chinese Poetry in Translation
LTEA 100C. Contemporary Chinese Poetry in Translation LTEA 110B. Modern Chinese Fiction in Translation

LTEA 110C. Contemporary Chinese Fiction in Translation
LTEA 136. Special Topics in Japanese Literature
LTWL 140. Novel and History in the Third World
Music

MUS 126. Introduction to Oral Music

Political Science

POLI 130B. Politics in the People's Republic of China
POLI 130H. Vietnam: The Politics of Intervention
POLI 134B. Politics in Mexico
POLI 134C. Politics in Mexico: Research Seminar

POLI 134D. Selected Topics in Latin American Politics

POLI 134G. Politics in the Andes
POLI 134I. Politics in the Southern Cone of Latin America POLI 134N. Politics in Central America

POLI 134P. Organizing Women in Latin America
POLI 134Q. Organization, Resistance, and Protest in Latin America

POLI 144AA. Politics in the International Economic Order
POLI 144AB. Selected Topics in International Political Economy
POLI 145B. Conflict and Cooperation in International Politics

POLI 146A. The U.S. and Latin America: Political and Economic Relations

POLI 150A. Politics of Immigration

Sociology: D

SOCD 133. Comparative Sex Stratification
SOCD 151. Comparative Race and Ethnic Relations
SOCD 158. Islam in the Modern World
SOCD 158J. Religion and Ethics in China and Japan
SOCD 179. Social Change
SOCD 185. Sociology of Development
SOCD 187. African Societies through Film
SOCD 188A. Community and Social Change in Africa
SOCD 188B. Chinese Society
SOCD 188D. Latin America: Society and Politics
SOCD 188J. Change in Modern South Africa
Students wishing to include additional related courses from these and other departments should consult a Third World studies adviser.

Thurgood
 Marshall College

Honors Program and Special Courses

OFFICE: Provost, Thurgood Marshall College Administration Building

The Thurgood Marshall College Honors Program is designed to address one of the greatest responsibilities and challenges of public higher education: the education of students of exceptionally high academic achievement. The program provides the organization and the environment within which students are encouraged to pursue individual excellence.

Honors activities and events are designed to introduce Thurgood Marshall students to the excitement of pioneering research and innovative scholarship in all disciplines at UCSD and to create opportunities for discussion on public issues with locally and nationally known figures. Participation in these activities is an excellent way for students to meet faculty, expand their horizons, and plan for future coursework.

The honors seminar is an exciting component of the honors program. It is offered every quarter and is open to all class levels of honors students. Students participating in the honors seminar also are invited to participate in a variety of forums, such as the Price Public Affairs Forum, which invites leading public figures to speak on important issues of great interest. Also, each quarter, honors students enjoy a relaxed and informal evening with the provost at his home.

To qualify for the honors program, incoming freshmen must have achieved an evaluated high school GPA of 3.8 or better, and mathematical SAT score of 650 and verbal SAT score of 710 or higher. Continuing UCSD and transfer students are eligible upon successful completion of at least 12 graded units with a 3.7 or better cumulative GPA. All honors students must maintain a 3.50 or better cumulative GPA.

Thurgood Marshall College annually recognizes superior achievement. The Provost Award is presented at commencement to a graduating senior who is recognized for outstanding academic achievement and breadth of scholarship. In addition, students may be eligible for universitywide and departmental honors, Provost Honors, Thurgood Marshall College Honors, Phi Beta Kappa membership, and participation in small honors classes in science.

Public Service Minor

Thurgood Marshall College sponsors the Public Service Minor at UCSD, which encourages students to understand the history and practices of public service and to participate in the development of civic skills. This minor is open to all UCSD students in good standing. Please see "Public Service Minor" in the departmental listings.

COURSES

10. Thurgood Marshall College Methods of Inquiry (2) In this course, students learn analytical thinking strategies routinely used by professional scholars. Each stu-
dent applies strategies from the materials presented in lectures and reading assignments to his or her current course work. Prerequisite: concurrent enrollment in two lecture courses. (P/NP only.)
11. Introduction to Public Service in America (4)

This course is designed to study, discuss, and analyze the history and current role of public service in the United States. Students will be introduced to the different roles held by the three sectors of the American economic structure (government, business, and non-profit/ public service) with opportunity to provide a critical analysis of those roles within American society.
20. Thurgood Marshall College Honors Seminar (1) Weekly seminar conducted by UCSD facuity and distinguished guest lecturers on topics related to the core curriculum: diversity, justice, and imagination. (P/NP only.)
90. Undergraduate Seminar (1)

These seminars are designed to expose undergraduate students, especially freshmen and sophomores, to exciting research conducted by UCSD faculty. Prerequisite: none. (P/NP only.)
199. Marshall College Special Project (1-4)

Individual, independent research, or creative work intended to satisfy Marshall College graduation requirement. Designated for Marshall College students, topics are supervised by Marshall faculty in association with the honors seminar and honors projects. A written application describing the project is required. See Office of the Provost. Prerequisites: upper-division students with 2.5 GPA and 90 units and approval of the provost or faculty designee. Honors standing required for honors projects. (P/NP only)

UC San Diego Washington Center (UCDC)

Career Service Center, Room 112
http://career.ucsd.edu/studentsalumni/ucsd.htm
The UC San Diego Washington Center began in the 1997-98 academic year. It provides students an opportunity to intern in the nation's capital while continuing their academic coursework. The UCSD in DC program is open to all students who have completed 90 units toward graduation with a 2.5 grade-point average. Students earn fourteen units of academic credit, continue to be registered full time, and fulfill university residency requirements.

Internship-Students work twenty-four hours per week as interns in federal agencies, interest groups, trade associations, the national news media, museums, research institutions, or in other organizations related to policy, politics, science, and culture and geared to the interests and
objectives of individual students. Political Science 1971: six units of academic credit.

Research Seminar-Drawing on the internship experience, each student participates in a seminar and undertakes an independent research project, under supervision of the UC San Diego resident faculty. Political Science 194 (or depending on the student's major, one of the cross-listed equivalents): four units of academic credit.

Elective Course-Each student also enrolls in one upper-division seminar course at the Washington Center. These courses are taught by the different campuses' resident faculty and change each quarter. Typically they include a mix of political science, international relations, other social sciences, history, and the arts and humanities. In addition to regular instruction, seminars take advantage of the Washington locale and often include guest speakers and field work activities.

Students maintain financial aid eligibility; the amount can be adjusted to reflect the additional costs of the program. In addition, eligible students are considered for the University of California President's Washington Scholarship Program. Students live in university-arranged housing, convenient to public transportation.

Urban Studies and Planning

OFFICE: Social Science Building, Room 315, North Campus

Faculty

Amy Bridges, Ph.D., Professor Political Science Barbara Brody, M Public Health, USP Lecturer/FPM Lisa Catanzarite, Ph.D., Assistant Professor Sociology
Steven P. Erie, Ph.D., Associate Professor Political Science, Director of USP
Becky Nicolaides, Ph.D., Assistant Professor History
Keith Pezzoli, Ph.D. Urban Planning, USP Supervisor of Field Studies
Leland Saito, Ph.D., Associate Professor Ethnic Studies

Affiliated Faculty

Nathaniel Beck, Ph.D., Political Science
Steve Bouton, USP Lecturer

Mirle Bussell Rabinowitz, Ph.D., Urban Planning, USP Lecturer
Nico Calavita, Ph.D., Urban Planning, USP Lecturer Ivan Evans, Ph.D., Sociology
Carlos Graizbord, M Architecture, USP Lecturer
Ramon Gutierrez, Ph.D., Ethnic Studies
Lawrence Herzog, Ph.D., Geography/Metro Studies, USP Lecturer
James Holston, Ph.D., Anthropology
Richard Kronick, Ph.D., Family Preventive Medicine
George Lipsitz, Ph.D., Ethnic Studies
Arthur Lupia, Ph.D., Political Science
Hugh Mehan, (Bud) Ph.D., Sociology, TEP
Michael Parrish, Ph.D., History
Abraham J. Shragge, Ph.D., History, USP Lecturer Michelle White, Ph.D., Economics

The Urban Studies and Planning Program

The great majority of U.S. citizens, and a growing proportion of people throughout the world, live in cities. Cities provide the environment in which people work, learn, play, and make decisions together. Local governments make critical interventions in the quality of life. At the same time, the cities of the world are increasingly linked in a global economic system, making diverse contributions to the international division of labor.

Urban studies and planning is an interdisciplinary program providing students with a variety of perspectives for understanding the development, growth, and culture of cities and the communities within them. Course work introduces students to the ways different disciplines understand cities and the societies of which they are a part. Upperdivision requirements educate students about the parameters within which urban choices are made. Upper-division electives broaden students' social education and introduce students to policy and planning issues.

One of the outstanding features of the Urban Studies and Planning Program is the upper-division research requirement. During a two-quarter sequence designed to be taken in the fall and winter of the senior year, all USP majors are guided through a research internship and writing process. The upper-division field studies sequence allows students to work on specific policy projects in the San Diego region. Eligible students may choose to enroll in USP 190 in the spring to write an honors thesis. The honors option is an opportunity to do advanced research and writing
that builds on work already completed in the senior sequence.

Urban studies and planning is an undergraduate community of students with diverse interests and goals. After graduation some majors pursue graduate work in social science disciplines. Others pursue graduate study in public policy, law, planning, or architecture. Urban studies has always also attracted students interested in medicine and public health issues, who continue to study in these areas at schools of medicine or public health. Urban studies and planning is not designed as a training program in local government, planning, or urban design. It provides students with a solid liberal arts background for graduate study or for professional work in a number of fields. Many students find employment opportunities through their field work placement. More generally, graduates of urban studies and planning will have the analytic skills to think clearly and act creatively about the problems and prospects of the urban environment.

The Urban Studies and Planning Major

A bachelor of arts degree in urban studies and planning will be given to students who satisfactorily complete the general-education requirements of Muir, Revelle, Marshall, Warren, or Roosevelt College in addition to the urban studies and planning courses described below. The undergraduate program in urban studies and planning requires a three-quarter lower-division sequence in urban studies; Political Science 30 ; and twelve courses in upper-division urban studies and planning. Students are encouraged to complete the lower-division prerequisites before they enroll in the upper-division courses.

In accordance with campus academic regulations, courses used to satisfy the major cannot be applied toward a minor, although some overlap is allowed for double majors. All lower-division and upper-division requirements must be taken for a letter grade. A 2.0 grade-point average is required in the major, and students must earn at least C - in each course used for the major. Transfer students should see the urban studies and planning adviser to determine whether courses taken elsewhere satisfy USP program requirements. No more than one special studies course, USP 198 or USP 199, will be accepted to count towards the major.

Lower-Division Requirements

Students majoring in urban studies and planning must complete the introductory sequence USP 1, 2, 3, and Political Science 30.

Upper-Division Requirements

The upper-division requirements in urban studies and planning are:

1. two foundation courses
2. USP 101/Political Science 160AA. Introduction to Policy Analysis
3. seven upper-division courses, of which at least three are from the social science list
4. senior sequence of field work and internship

FOUNDATION COURSES

Foundation courses provide the conceptual tools for the major. Students are to choose two of:
USP 102. Urban Economics (Economics 135) (4)
USP 103. U.S. Cities in the Twentieth Century
(HIUS 148) (4)
(Can substitute USP 103 with USP 165/HIUS 147. History of the American Suburb.)

USP 107. Urban Politics (Political Science 102E) (4)

SENIOR SEQUENCE REQUIREMENT

In their senior year, all students must complete the senior sequence, USP 186 Field Work in the fall, and USP 187 Internship in the winter. These courses must be taken IN ORDER. The sequence develops each students ability to: (1) critically review others' research, (2) formulate interesting research questions of their own, (3) design an original research project and investigative strategy, (4) conduct research, and (5) analyze, interpret, and write up findings. The final requirement of USP 186 is a research proposal. By the end of USP 187 each student must complete a Senior Research Project.

Because the senior sequence includes an internship, no other internship or field placement will be counted towards the major.

USP 186. Urban Fieldwork Seminar (6)
USP 187. Urban Studies Internship (6)

HONORS IN URBAN STUDIES AND PLANNING

Candidates for Honors in Urban Studies and Planning are required to take USP 190 Senior Seminar, in which students write a senior thesis. Prerequisites for enrolling in USP 190 are a mini-
mum 3.5 GPA in the major, senior standing, USP 186 and 187, and consent of instructor. Majors who plan to write a senior thesis in USP 190 must declare their intent in USP 186.
USP 190. Senior Honors Seminar (4)

SOCIAL SCIENCE REQUIREMENT

Students must choose at least three to complete their upper-division social science requirement. Courses accepted for this requirement include:
102/Economics 135. Urban Economics
USP 103/History (HIUS) 148. American Cities of the Twentieth Century
USP 107/Political Science 102E. Urban Politics
USP 109/Political Science 103A. California Government and Politics
USP 110/Political Science 102J. Advanced Topics in Urban Politics
USP 111/Political Science 102JJ. Field Research in Urban Politics
USP 112/Political Science 166F. The American Welfare State

USP 129/Ethnic Studies 190. Research Methods: Studying Racial and Ethnic Communities
USP 130/Ethnic Studies 107. Field Work in Racial and Ethnic Communities

USP 133/Sociology C/152. Social Inequality and Public Policy
USP 135B/Ethnic Studies 161. Black Politics and Protest Since 1941

USP 136/Sociology C/148M. Labor Market Inequality and Public Policy
USP 158. City and Society in Anthropological Theory
USP 165/History (HIUS) 147. History of American Suburbs
USP 166. History of San Diego
USP 190. Senior Honors Seminar
USP 193. San Diego Community Research
ANRG 114. Urban Cultures in Latin America
Economics 116. Economic Development
Economics 130. Public Policy
Economics 139. Labor Economics
Economics 150. Economics of the Public Sector: Taxation
Economics 151. Economics of the Public Sector: Expenditures
Economics 152. Topics in Public Economics
Economics 155. Economics of Voting and Public Choice
Economics 179. Decisions in the Public Sector
Envi 102. Selected Topics in Environmental Studies Envi 130. Environmental Issues: Social Science

Ethnic Studies 105. Ethnic Diversity and the City
Ethnic Studies 106. Ethnoracial Transformations of U.S. Communities

Ethnic Studies 118. Contemporary Immigration Issues Ethnic Studies 121. Contemporary Asian-American History
Ethnic Studies 123. Asian-American Politics
Ethnic Studies 131/History (HIUS) 159. Social and Economic History of the Southwest II
Ethnic Studies 151. Ethnic Politics in America
Ethnic Studies 163. Leisure in Urban America
Ethnic Studies 182/History (HIUS) 165. Segregation, Freedom Movements, and the Crisis of the Twentieth Century
Ethnic Studies 184. Black Intellectuals in the Twentieth Century
History (HIEU) 124/VIS 122E. The City in Italy History (HIEU) 115. Latin American City, a History History (HILA) 121. History of Brazil
History (HISC) 105. History of Environmentalism History (HIUS) 114. California History
History (HIUS) 117. History of Los Angeles
History (HIUS) 137. The Built Environment in the Twentieth Century
History (HIUS) 140/Economics 158A. Economic History of the United States I
History (HIUS) 141/Economics 158B. Economic History of the United States II
History (HIUS) 154. Western Environmental History
History (HIUS) 180. Immigration and Ethnicity in Modern American Society
Political Science 100G. American Politics and Public Policy
Political Science 100H. Race and Ethnicity in American Politics
Political Science 117. Violence and Social Order
Political Science 160AB. Introduction to Policy Analysis

Psychology 104. Introduction to Social Psychology
Psychology 186. Psychology and Social Policy
Sociology A/100. Classical Sociological Theory
Sociology A/104. Field Research: Methods of Participant Observation
Sociology B/112. Social Psychology
Sociology C/121. Economy and Society
Sociology C/123. Sociology of Work
Sociology C/125. Minorities in the Schooling Process
Sociology C/132. Gender and Work
Sociology C/136B. Sociology of Mental Illness in Contemporary Society
Sociology C/139. Social Inequality: Class, Race, and Gender
Sociology C/141. Crime and Society
Sociology C/144. Forms of Social Control
Sociology C/148. Political Sociology
Sociology C/148C. Power, Culture, and Social Revolt
Sociology C/148L. Inequality and Jobs

Sociology C/151M. Chicanos in American Society
Sociology C/155. The City of San Diego
Sociology C/159. Special Topics in Social Organizations and Institutions

Sociology C/180. Social Movements and Social Protest
Sociology D/151. Comparative Race and Ethnic Relations

Sociology D/179. Social Change.

POLICY AND PLANNING REQUIREMENT

Courses accepted for this requirement include: USP 124. Land Use Planning

USP 133/Sociology C/152. Social Inequality and Public Policy
USP 137. Housing and Community Development Policy and Practice

USP 139. Women and the Built Environment
USP 143. U.S. Health Care System
USP 144. Environmental and Preventive Health Issues
USP 145. Aging-Social and Health Policy Issues
USP 147. Case Studies in Health Care Programs/Poor and Underserved Populations

USP 170. Planning Theory \& Practice
USP 171. Sustainable Development
USP 172. Planning/Policy-making: U.S.-Mexican Border Region
USP 173. History of Urban Planning and Design
USP 179. Urban Design, Theory, and Practice
USP 180.Transportation Planning
USP 190. Senior Honors Seminar
USP 192. GIS for Urban and Community Planning
USP 193. San Diego Community Research
Anthropology (ANBI) 132/Biology (BIEB) 176.
Conservation and the Human Predicament
Economics 130. Public Policy
Economics 131. Economics of the Environment
Economics 133. Housing Policy
Economics 138A-B. Economics of Health
Economics 180. Real Estate Finance
Envi 110. Environmental Law
History (HITO) 121. Geographic Information Systems for Historians and Social Scientists

Philosophy 163. Bio-Medical Ethics
Philosophy 165. Professional Ethics
Political Science 150A. Politics of Immigration
Political Science 150B. Politics of Immigration: Research Seminar
Political Science 160AB. Introduction to Policy
Analysis
Political Science 162. Environmental Policy
Political Science 168. Policy Assessment
Sociology B/117. Language, Culture, and Education
Sociology C/126. Social Organization of Education

Sociology C/135. Medical Sociology

Sociology C/136A. Sociology of Mental Illness: An Historical Approach

Sociology C/136B. Sociology of Mental Illness in Contemporary Society
Sociology C/141. Crime and Society
TEP 130. Public Service: Practicum in Learning

The Minor Program

The urban studies and planning minor consists of seven courses in urban studies and planning, selected with the prior approval of a faculty adviser. Students who wish to minor in urban studies may do so by taking any two courses from among the lower-division sequence and the upper-division foundation courses, and five upper-division courses from among those that serve the USP major. All courses must be taken for a letter grade and students must earn at least C - in each course used for the minor.

COURSES

LOWER-DIVISION

1. History of US Urban Communities (4)

This course charts the development of urban communities across the United States both temporally and geographically. It examines the patterns of cleavage, conflict, convergence of interest, and consensus that have structured urban life. Social, cultural, and economic forces will be analyzed for the roles they have played in shaping the diverse communities of America's cities.

2. Urban World System (4)

Examines cities and the environment in a global context. Emphasizes how the world's economy and the earth's ecology are increasingly interdependent. Focuses on biophysical and ethicosocial concerns rooted in the contemporary division of labor among cities, Third World industrialization, and the post-industrial transformation of U.S. cities.

3. The City and Social Theory (4)

An introduction to the sociological study of cities, focusing on urban society in the United States. Students in the course will examine theoretical approaches to the study of urban life; social stratification in the city; urban social and cultural systems-ethnic communities, suburbia, family life in the city, religion, art, and leisure.

UPPER-DIVISION

101. Introduction to Policy Analysis (4)
(Same as Political Science 160AA.) This course will explore the process by which the preferences of individuals are converted into public policy. Also included will be an examination of the complexity of policy problems, methods for designing better policies, and a review of tools used by analysts and policy makers.

Prerequisite: upper-division standing or consent of instructor.

102. Urban Economics (4)

(Same as Economics 135.) Urban economic problems and public policies to deal with them. Prerequisite: Economics $1 A-B$ or $2 A-B$.
103. American Cities in the Twentieth Century (4)
(Same as HIUS 148.)This course surveys changes in U.S. cities since about 1900. Case studies of individual cities illustrate the social, political, and environmental consequences of rapid urban expansion, as well as the ways in which "urban problems" have been understood historically. Prerequisite: upper-division standing or consent of instructor.

107. Urban Politics (4)

(Same as Political Science 102E.) This survey course focuses upon the following six topics: the evolution of urban politics since the mid-nineteenth century; the urban fiscal crisis; federal/urban relationships; the "new" politics; urban power structure and leadership; and selected contemporary policy issues such as downtown redevelopment, poverty, and race.
109. California Government and Politics (4)
(Same as Political Science 103A.) This survey course explores six topics: 1) the state's political history; 2) campaigning, the mass media, and elections; 3) actors and institutions in the making of state policy; 4) local government; 5) contemporary policy issues; e.g., Proposition 13, school desegration, crime, housing and land use, transportation, water; 6) California's role in national politics. Prerequisite: upper division standing
110. Advanced Topics in Urban Politics (4)
(Same as Political Science 102J.) Building upon the introductory urban politics course, the advanced topics course explores issues such as community power, minority empowerment, and the politics of growth. A research paper is required. Students wishing to fulfill the paper requirement with field research should enroll in the subsequent Political Science 102 JJ course offered Summer Session II. Prerequisites: upper division standing, consent of instructor.

111. Field Research in Urban Politics (4)

(Same as Political Science 102JJ.) To be taken with the approval of the Political Science 102J instructor, this course allows students to do original field research on topics in urban politics. This course is offered in Summer Session II subsequent to a spring 102J course. May not be used to fulfill any major or minor requirements in politics science or urban studies and planning. Prerequisites: USP 110/Political Science 102J and consent of instructor.
112. The Amereican Welfare State (4)
(Same as Political Science 166F.) This course examines the transformation of the American welfare state in the twentieth century. Topics include Progressivism, the New Deal and Great Society; Reagan-era retrenchment; race, gender and social policy, and policy devolution to state and local governments. Prerequisite: upper-division standing.
124. Land Use Planning (4)

Introduction to land use planning in the United States: zoning and subdivision, regulation, growth management, farmland preservation, environmental protection, and comprehensive planning. Prerequisite: upper-division standing or consent of instructor.

129. Research Methods: Studying Racial and Ethnic Communities (4)

(Same as ETHN 190.) The course offers students the basic research methods with which to study ethnic and racial communities. The various topics to be explored include human and physical geography, transportation, employment, economic structure, cultural values, hous ing, health, education, and intergroup relations. Prerequisite: upper-division standing or consent of instructor.
130. Field Work in Racial and Ethnic Communities (4) (Same as ETHN 107.) This is a research course examining social, economic, and political issues in ethnic and racial communities through field work. Topics are examined through a variety of research methods which may include interviews and archival, library, and historical research. Prerequisite: upper-division standing.
133. Social Inequality and Public Policy (4)
(Same as SOC C/152.) Primary focus on understanding and analyzing poverty and public policy. Analysis of how current debates and public policy initiatives mesh with alternative social scientific explanations of poverty. Prerequisite: upper-division standing.

135B. Black Politics and Protest Since 1941 (4)
Discussion of black social, political, and intellectual experiences since the publication of Richard Wright's Native Son. Close examination of blacks' involvement in and relationships to Second World War, Cold War, Civil Rights Movement, Black Power Movement, Reagan Revolution, and Underclass Debate. Prerequisite: upperdivision standing or consent of instructor.

136. Labor Market Inequality in Los Angeles and the

 Border Region (4)(Same as SOC C/148M.) Focus on the changing labor force and occupational structure of Los Angeles and the Mexican border. We apply theoretical work to recent changes, with special attention to immigrant and minority employment, economic restructuring, and changes in the international division of labor. Prerequisite: upper-division standing or consent of instructor.

137. Housing and Community Development Policy and Practice (4)

This course considers the history, theory, and practice of U.S. housing and community development. It examines how the public, private, and nonprofit sectors shape and implement planning and policy decisions at the federal, state, local and neighborhood levels. Prerequisite: upper-division standing.
143. The U.S. Health Care System (4)

This course will provide an overview of the organization of health care within the context of the community with emphasis on the political, social, and cultural influences. It is concerned with the structure, objectives, and trends of major health and health-related programs in the United States to include sponsorship, financing, training and utilization of health personnel. Prerequisite: upper-division standing or consent of instructor. (Offered winter quarter.)
144. Environmental and Preventive Health Issues (4) This course will analyze needs of populations, highlighting current major public health problems such as chronic and communicable diseases, environmental hazards of diseases, psychiatric problems and additional diseases, new social mores affecting health maintenance, consumer health awareness and health practices, special needs of economically and socially disadvantaged populations. The focus is on selected
areas of public and environmental health, namely: epidemiology, preventive services in family health, communicable and chronic disease control, and occupational health. Prerequisite: upper-division standing or consent of instructor. (Offered fall quarter.)
145. Aging-Social and Health Policy Issues (4)

This course will provide a brief introduction to the nature and problems of aging, with emphasis on socioeconomic and health status; determinants of priorities of social and health policies will be examined through analysis of the structure and organization of selected programs for the elderly. Field visits will constitute part of the course. Prerequisite: upper-division standing. (Offered spring quarter.)

147. Case Studies in Health Care Programs/Poor and

 Underserved Population (4)The purpose of this course is to identify the special health needs of low income and underserved populations and to review their status of care, factors influencing the incidence of disease and health problems, and political and legislative measures related to access and the provision of care. Selected current programs and policies that address the health care needs of selected underserved populations such as working poor, inner city populations, recent immigrants, and persons with severe disabling mental illnesses will be studied. Offered in alternate years. Prerequisite: upper-division standing or consent of instructor. (Not offered 2001 2002.)
158. City and Society in Anthropological Theory (4)
(Same as ANRG 118.) Although cities are fundamental sites of emergent social and cultural forms, the anthropological study of urban society remains problematic. The course addresses this problem, examining issues of complexity, revolution, nation, utopia, and modernity related to city life and social theory. Prerequisite: upperdivision standing.
165. History of the American Suburb (4)
(Same as HIUS 147.) This seminar explores the development of suburbs in America, from the early nineteenthcentury to the contemporary era. Topics include suburban formation, class, ethnic and racial dimensions, government influences, social life, and cultural responses to suburbia. The class will explore influences, social life, and cultural responses to suburbia. The class will explore competing theories of suburbanization as it surveys the major literature. Prerequisite: upper-division standing.

166. History of San Diego (4)

A lecture-discussion course that surveys the social, political, economic, cultural and environmental history of the San Diego region from pre-colonial times to the present, with emphasis on the urban development that has occurred since 1900. Prerequisite: upper-division standing.
170. Planning Theory and Practice (4)

Examines urban and regional planning theory and practice from an ecological, historical, and comparative perspective. Focuses on contributions of political ecology, utopianism, anarchism, bioregionalism, economics, and ethics. Identifies current planning strategies that aim to link economy, ecology, and community in sustainable development. Prerequisite: upper-division standing. (Not offered in 2001-2002.)
171. Sustainable Development (4)

Sustainable development is a concept invoked by an increasingly wide range of scholars, activists, and organizations dedicated to promoting environmentally
sound approaches to economic development. This course critically examines the diverse, often contradic tory, interests in sustainability. It provides a transdisciplinary overview of emergent theories and practices Prerequisite: upper-division standing.

172. Planning/Policy-making: U.S.-Mexican Border Region (4)

Course examines globalization and key regional/urban policy issues facing U.S.-Mexico border zone, including industrialization, urban sprawl, environmental manage ment, trade and infrastructure planning, social policy, transportation; focus on problems in the San Diego-Baja California region. Prerequisite: upper-division standing.
173. History of Urban Planning and Design (4)

The analysis of the evolution of city designs over time study of the forces that influence the form and content of a city: why cities change; comparison of urban planning and architecture in Europe and the United States Prerequisite: upper-division standing.
179. Urban Design, Theory, and Practice (4)

Various urban design methods will be presented Students will be introduced to the roles of the urban designer, preparing schematic proposals and perform ance statements, identifying opportunities for and constraints on designers. Each student will prepare a practical exercise in urban design. Prerequisite: upperdivision standing.

180.Transportation Planning (4)

Introduction to the history and current state of urban transportation planning, including the relationship between transportation and urban form; role of automotive, mass transit, and alternative modes; methods for transportation systems analysis; decision-making, regulatory, and financing mechanisms; and public attitudes. Prerequisite: upper-division standing.
186. Urban Field Work Seminar (6)

Introduces students to the theory and practice of social research. Examines the structuring of inquiry and observation, including nonobtrusive measures, interviews, and participant observations. Introduces techniques for logging data, including field notes and filing systems. The requirements of the course include both archival and field research assignments. During the second half of USP 186, students must complete five weeks (fifty hours) of the ten week (100 hour) internship requirement of the senior sequence. Prerequisites: USP major and senior status.

187. Urban Studies Internships (6)

Students during the first five weeks of USP 187 continue the internship begun in USP 186, spending ten hours per week as interns with a local public or private agency of their choice. The course provides a framework in which students examine the theoretical as well as practical aspect of their internship's experience. The final requirement calls for a senior research project. Prerequisite: USP 186.

190. Senior Honors Seminar (4)

Each student enrolled will be required to write an honors essay, a substantial research paper on a current urban policy issue, under the supervision of a member of the faculty. Most often the essay will be based on their previous fieldwork courses and internship. This essay and other written exercises, as well as class participation, will be the basis of the final grade for the course. The seminar will rotate from year to year among the faculty in urban studies and planning. Prerequisites: USP 186, USP 187, major GPA 3.5, and permission of instructor.
192. GIS for Urban and Community Planning (4) Introduction to Geographic Information Systems and using GIS to make decisions: acquiring data and organizing data in useful formats; demographic mapping; geocoding. Selected exercises examine crime data, political campaigns, banking and environmental planning, patterns of bank lending and finance. Prerequisite: upper-division standing.
193. San Diego Community Research (6)

Using the San Diego region as a case study, students will be introduced to the process of collecting, evaluating, and presenting urban and regional data using a variety of methods including aggregate data analysis, historical research, ethnography, and GIS mapping. Prerequisite: consent of instructor.
194. Research Seminar in Washington, D.C. (4) (Same as Cognitive Science 194, Communication 194, Earth Science 194, History 193, Political Science 194, Sociology E/194.) Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial research paper. Prerequisite: department approval. Participating in UCDC program.
195. Teaching Apprentice-Undergraduate (2-4) Introduction to teaching activities associated with course. Responsibilities include preparing reading materials assigned by the instructor, attending course lectures, meeting at least one hour per week with the instructor, assisting instructor in grading, and preparing a summary report to the instructor. Prerequisites: consent of instructor and an A in the course in which the student plans to assist.
198. Directed Group Study (2-4)

Directed group study on a topic or in a field not included in the regular departmental curriculum by special arrangement with a faculty member. Prerequisites: upper-division standing and consent of instructor.
199. Independent Study (2-4)

Reading and research programs and field-study projects to be arranged between student and instructor, depending on the student's needs and the instructor's advice in terms of these needs. Prerequisites: upper-division standing and consent of instructor.

Visual Arts

OFFICE: 216 Mandeville Center for the Arts http://visarts.ucsd.edu

Professors

David Antin, M.A., Emeritus
Eleanor Antin, B.A., Emeritus
Harold Cohen, Diploma of Fine Arts, Emeritus
Steve Fagin, M.A.
Manny Farber, Emeritus
Jean-Pierre Gorin, Licence de Philosophie

Helen Mayer Harrison, M.A., Emeritus
Newton Harrison, M.F.A., Emeritus
Louis J. Hock, M.F.A.
Madlyn M. Kahr, Ph.D., Emeritus
Allan Kaprow, M.A., Emeritus
Fred S. Lonidier, M.F.A.
Kim R. MacConnel, M.F.A.
Babette M. Mangolte
Sheldon A. Nodelman, Ph.D.
Patricia A. Patterson, Emeritus
Faith Ringgold, M.A.
Jerome Rothenberg, M.A., Emeritus
Italo Scanga, M.A.
Ernest R. Silva, M.F.A.
Lesley F. Stern, Ph.D.
Jehanne H. Teilhet-Fisk, Ph.D., Emeritus
John C. Welchman, Ph.D.

Associate Professors

Sheldon G. Brown, M.F.A.
Jack M. Greenstein, Ph.D.
Thomas Allen Harris, B.A.
Standish D. Lawder, Ph.D., Emeritus
Lev Manovich, Ph.D.
Susan L. Smith, Ph.D., Chair
Phel Steinmetz, Academic Senate Distinguished
Teaching Award
Mary Vidal, Ph.D.

Assistant Professors

Amy J. Alexander, M.F.A.
Adriene Jenik, M.F.A.
Grant Kester, Ph.D.
Elizabeth Newsome, Ph.D.

Lecturer with Security of Employment

Claudio Fenner-Lopez, M.A., Emeritus
The Department of Visual Arts offers courses in painting, drawing, sculpture, performance, computing for the arts, film, video, photography, and art history/criticism (including that of film and video). A bachelor's degree from this department provides students with a solid liberal arts background and is preparatory training for careers as artists, art historians, filmmakers, video artists, photographers, digital media artists, and art critics. It also provides students the initial skills required for teaching and work in museums, television, and the commercial film, photography, and internet industries.

By its composition, the Department of Visual Arts is biased in the direction of actively producing artists and critics whose presence at the cen-
ter of the contemporary art world necessitates reconsideration and reevaluation of artistic productions, their information structure, and significance. Consequently, a flexible introductory program of historically based courses has been devised mainly to provide the student an opportunity to concentrate on areas involving significantly different aesthetic and communication structures. A series of studio courses, in which painting and sculpture are included, is presented to bring the student into direct contact with the real contingencies compelling redistribution of aesthetic attitudes and reinterpretation of genres. Because of the exploratory nature of our program, the department is prepared to emphasize new media that would traditionally be considered to have scant relation to the visual arts. Thus courses in theatrical events, linguistic structures, etc., are provided. In this context, theoretical courses with a media orientation, as in film, video, photography, or computing, are offered also.

The Department of Visual Arts is located in the Mandeville Center for the Arts. In addition, faculty and graduate students have offices/studios/ research spaces in the Visual Arts Facility located in Eleanor Roosevelt College. Facilities and equipment are available to undergraduates in both the Mandeville Center and at the campus-wide Media Center, providing the opportunity to study painting, drawing, photography, computing in the arts, 16 mm film, performance, sculpture, and video. Facilities at the Media Center include portable video recording equipment, video and audio editing suites, non-linear editing, and production studios. The department also has the in-house capacity to process and print black and white 16 mm film. Additional film equipment available includes an animation stand, optical printer, two sound-mixing studios, and numerous film editing suites. Courses in computing in the arts take place in the Silicon Graphics/Mac/NT lab located at the Visual Arts Facility, the INTEL-shared lab in the Applied Physics and Mathematics building, and a new dedicated ICAM lab in building 201 University Center.

The University Art Gallery displays a continually changing series of exhibitions, and the Mandeville Annex Gallery, located on the lower level, is directed by visual arts undergraduate students. A gallery and performance space, located in the Visual Arts Facility, are directed by graduate students.

The Undergraduate Program

College Requirements

The Department of Visual Arts teaches courses applicable toward the Muir and Warren generaleducation requirements, the Marshall humanities requirement, the Eleanor Roosevelt and Revelle fine arts requirements. Optional minors may be taken within any college.

Minor in Visual Arts

The Department of Visual Arts offers minors in seven areas of study: studio painting/drawing/ sculpture, photography, computing, art history, media history/criticism, film/video, and ICAM. A minor consists of six specific courses of which at least three must be upper-division. Effective January 1,1998 , a minor will consist of seven specific courses, of which at least five must be upperdivision. Because the requirements differ for each minor, prospective visual arts minors should consult with the departmental adviser for a complete list of appropriate classes acceptable for the minor.

Students are advised to begin their program in the second year; otherwise, they cannot be guaranteed enough time to complete the classes required for a minor.

Education Abroad Program

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD's Opportunities Abroad Program (OAP) while still making progress toward completing their major. Financial aid is applicable to study abroad and special study abroad scholarships are readily available. Students considering this option should discuss their plans with the director of Undergraduate Studies before going abroad, and courses taken abroad must be approved by the department. More information on EAP/OAP is detailed in the Education Abroad Program of the UCSD General Catalog or on their Web site http:// ucsd.edu/icenter/pao. Interested students should contact the Program Abroad Office in the International Center.

Residency Requirements

A minimum of two-thirds of the course work completed for the major must be taken as a registered student at UCSD. Students who transfer to

UCSD in their second or third year may petition to substitute courses taken at other colleges and universities for lower-division requirements.

Visual Arts 111, Structure of Art, is a required course for all students, including transfer students, in the art history, media, and studio majors.
Note: Rarely are community college transfer credits accepted toward fulfilling upper-division requirements in any of the four majors but courses of comparable content will be considered by petition.

Honors Programs

The department offers honors programs in art history, in media, and in studio for outstanding students.
The art history honors program will provide outstanding students with pre-professional experience. It consists of an issue-oriented seminar followed by a directed group study and will result in an exhibition with catalogue, a scholarly conference with a mock publication and/or series of research papers. Students who meet the criteria may, with permission of the art history faculty adviser or the art history honors seminar instructor, enroll in the art history honors program during the last quarter of their junior year or as a senior. This program is open to juniors and seniors who meet eligibility requirements: minimum GPA of 3.5 (3.3 overall), completion of all lower-division art history requirements, completion of all upperdivision art history distribution requirements, and completion of Art Historical Methods (VIS 112) and at least one additional art history seminar. The level of distinction will be determined by the faculty committee on the basis of work in the honors seminar and on the research project.

The media honors program will help students develop high quality professional portfolios. The honors thesis project sequence of individual studies runs the length of an academic year to provide sufficient time for ideas to develop and critically aware work to be produced. Students may arrange to work with different faculty advisers each term or may engage a single adviser for the year. To be eligible for the honors thesis sequence, taken during the last quarter of their junior year or as a senior, students must have at least a 3.5 GPA in the major and have approval of all the advisers with whom they will work. At the end of the spring quarter, all involved media faculty will meet to critique the overall quality of the final thesis work to determine level of distinction.

Through exhibition, verbal and written presentations and course work, the studio honors program is intended to give the student as strong a technical, critical, and theoretical base as possible. The program is open to juniors and seniors with a minimum 3.5 GPA in the major (3.0 overall), who have completed all lower-division studio requirements and all upper-division groups $\mathrm{l}, \mathrm{II}, \mathrm{III}$, and IV (subgroup A) requirements.

Students interested in participating in an honors programs should consult with the departmental adviser.

Double Major within the Department

There are three double majors within the Visual Arts department: Art History/Theory/ Criticism paired with either studio, media, or ICAM. Students interested in a double major within the department must have at least ten upper-division courses that are unique to each departmental major and the remaining courses may overlap with other major requirements. Students should consult with the departmental adviser for additional information.

Major Requirements

Twenty courses are required in studio, media, and ICAM and eighteen courses in art history for the attainment of the bachelor of arts degree. A minimum of twelve of these courses must be upper-division, however, some majors may require more upper-division courses.

All courses taken to satisfy major requirements must be taken for a letter grade, and only grades of C - or better will be accepted in the visual arts major.

Studio Major

The studio major is aimed at producing a theoretically based, highly productive group of artists. Lower-division courses are structured to expose students to a variety of ideas in and about the visual arts. Introductory skills are taught, but their development will occur at the upper-division level in conjunction with the student's increasing awareness of the range of theoretical possibilities in the field. The curriculum includes courses in drawing, painting, sculpture, performance, photography, video, 16 mm film, many offerings in art history/criticism, as well as new courses in digital imaging and electronics.

GROUP I: LOWER-DIVISION

Foundation Level

Five courses required

1	Introduction to Art Making:Two-
Dimensional Practices	
2	Introduction to Art Making: Motion and Time Based Art
3	Introduction to Art Making: Three-Dimensional Practices
22	Formations of Modern Art

Choose one from:
20 Introduction to Art History
21 Introduction to Non-Western Art 84 History of Film

GROUP II: UPPER-DIVISION

Entry Level

Five courses required
111 Structure of Art

Note: Required for Visual Arts studio, media, and art history majors. VIS 111 can be taken at the same time as any " A " series classes or VIS 40,60 or 70 N . VIS 40,60 , or 70 N can be taken to fulfill Group II upper-division studio.

Choose four from:
40/ICAM 40 Introduction to Computing in the Arts
60 Introduction to Photography
70N Introduction to Media
104A Performing the Self
105A Drawing: Representing the Subject
106A Painting:Image Making
107A Sculpture: Making the Object
GROUP III: UPPER-DIVISION
Intermediate Level
Two courses required

104BN	Verbal Performance
105B	Drawing: Practices and Genre
106B	Painting: Practices and Genre
107B	Sculpture: Practices and Genre
140/ICAM 101	Digital Imaging:Image and
Interactivity	
147A	Electronic Technologies for Art

Group IV: UPPER-DIVISION

Advanced Level
Five courses required

152

GROUP A:

Choose two from:
104CN Personal Narrative
105C Drawing: Portfolio Projects
106C Painting: Portfolio Projects
107CN Sculpture: Portfolio Projects
147B Electronic Technologies for the Art II

GROUP B:

Group A must be completed before Group B can be taken.

Choose three from:
108 Advanced Projects in Art
110A Contemporary Issues and Practices
110B New Genres/New and Old
Technologies
110 C
110D
110E
110F
$110 G$

110 H
1101 Performing for the Camera
110」 Ritual Performance
110K Installation Performance
130 Special Projects in Visual Arts
GROUP V: UPPER-DIVISION
Non-Studio
Three courses required
Upper-division art history, film history, and theory/criticism courses such as:

113CN*	History of Criticism III: Contemporary (1950-present)
1178*	Theories of Representation
117D*	Portraiture
124CN	Nineteenth Century Art
125A	Twentieth Century Art
125BN	Contemporary Art
125CN	Histories and Contexts of Conceptual Art
125E*	History of Performance
126F*	Western and Non-Western Rituals and Ceremonies
152	Film in Social Context
154	Hard Look at the Movies
157	Video History and Criticism
158	Histories of Photography

159/ICAM 150 History of Art and Technology *seminar

HONORS PROGRAM IN STUDIO

110 M	Studio Honors I
110 N	Studio Honors II

The Studio Honors I and the attached Studio Honors II count as one course towards the fulfillment of a Group IV requirement.

Art History/Theory/Criticism Major

The major in art history, theory, and criticism is designed both for students who desire a broadly based education in the humanities and for those who plan to pursue a career in an art-related profession. In both cases, the foundation for study is proficiency in the languages of artistic expression. Through the study of art history, students learn to treat works of art as manifestations of human belief, thought, and experience in Western and non-Western societies from prehistory to the present day. Courses in criticism review the theoretical approaches which are used to understand artistic achievement. By combining art historical and critical study, the program promotes in the student an awareness of the cultural traditions which have shaped his or her intellectual outlook and provides a framework for informed judgment on the crucial issues of meaning and expression in contemporary society.

Majors are encouraged to take relevant courses in allied disciplines such as history, communication, anthropology, and literature, and in such area programs as classics and Italian studies. In addition, students who plan to apply to graduate schools are strongly advised to develop proficiency in one or more foreign languages, as is dictated by their area of specialization.

FOUNDATION LEVEL—LOWER-DIVISION

Five courses required
20 Introduction to Art History
21 Introduction to Non-Western Art
22 Formations of Modern Art
23 Information Technologies in Art History
Choose one from:

$1,2,3$	Introduction to Art-Making
60	Introduction to Photography
70 N	Introduction to Media

ADVANCED LEVEL—UPPER-DIVISION

Thirteen courses required

GROUP I-Required Courses

Two courses
These two courses are required for all art history and criticism majors:
111 Structure of Art* ${ }^{*}$

Note: Majors must complete VIS 112 by the end of their junior year and are strongly advised to do so earlier.

* Required of Visual Arts art history, media, and studio majors.

GROUP II—DISTRIBUTIONAL REQUIREMENT

Five courses

Choose one course from each of the following areas:
A. Pre-Modern: Ancient and Medieval

120A
120B
120 C
120D
121AN The Idea of Medieval Art
121B Castles, Cathedrals, and Cities
121C* Art and Gender in the Middle Ages and Renaissance
121D* The llluminated Manuscript in the Middle Ages
121E The Pursuit of the Millennium
128AN Topics in Pre-Modern Art History
129AN* Special Problems in Pre-Modern Art History
B. Early Modern: Renaissance and Baroque

122AN Renaissance Art
122BN Vision, Belief, and Civic Virtue:Italian Art of the Early Renaissance
122CN Defining High Renaissance Art
122D Michelangelo
122E* The City in Italy
123AN Between Spirit and Flesh: Northern Art of the Early Renaissance
123BN* Jan van Eyck
123CN* Early Print Culture:The First Media Revolution
124AN Baroque Art
128BN Topics in Early Modern Art History
129BN* Special Problems in Early Modern Art History

C. Modern

124BN Art and the Enlightenment
124CN Nineteenth Century Art

125A
125BN
125CN

125DN*
$125 \mathrm{E}^{*}$
128CN
129CN*

158 Histories of Photography
159/ICAM 150 History of Art and Technology

D. Non-Western

126AN Pre-Columbian Art of Ancient Mexico and Central America
126BN The Art and Civilization of the Ancient Maya
126CN Art of the North American Indians
126DN African and Afro-American Art
126E
126F*
$126 G^{*}$
$126 \mathrm{H}^{*}$
128DN
129DN*

E. Theory

113AN* History of Criticism I: Early Modern
113BN* History of Criticism II: Early
Twentieth Century (1900-1950)
113CN* History of Criticism
III:Contemporary (1950-Present)
114 Art Criticism
117A* Narrative Structures
1178* Theories of Representation
117C* Art in Time:The Historical
Dimension
117D* Portraiture
117E* Problems in Ethnoaesthetics
128EN Topics in Art Theory and Criticism
129EN* Special Problems in Art Theory and Criticism
Students must take at least two upper-division seminars in addition to VIS 112 and to the course taken in fulfillment of the distribution requirement for Theory. These two additional seminars may be taken in fulfillment of Pre-Modern, Early

Modern, Modern and Non-Western or as open electives.

Art history majors cannot enroll in more than one upper-division seminar without having completed Information Technologies in Art History (VIS 23) and Art Historical Methods (VIS 112).

GROUP III-ELECTIVES

Six courses

Students are required to take six upper-division courses in addition to VIS 111, VIS 112 and those used to fulfill the distribution requirements. At least three of these must be courses in art history or theory. For the remaining three, choose from the following:

- Any upper-division art history course (s) in history or theory
- any upper-division course(s) in media history and criticism (e.g., VIS 150, 151, 152, 153, 154, 155, 157);
- up to two upper-division courses in studio or media production; or
- with permission of art history faculty adviser, one upper-division course in a related department or program such as anthropology, history, literature, or critical gender studies.
- Two two-unit curatorial practices workshop courses (VIS 127A) count as one course towards the fulfillment of an elective.

Media Major

With a visual arts foundation, the program is designed for students who want to become creative videomakers, filmmakers, photographers, and computer artists, encouraging the hybridity of media. The curriculum combines hands-on experience of making with practical and theoretical criticism, provides historical, social, and aesthetic backgrounds for the understanding of modern media, and emphasizes creativity, versatility, and intelligence over technical specializations. It should allow students to go on to more specialized graduate programs in the media arts, to seek careers in film, television, computing, or photography, or to develop as independent artists. All media majors should see the Visual Arts Undergraduate Adviser upon entrance into UCSD.

FOUNDATION LEVEL—LOWER-DIVISION

Six courses required

GROUP A

1 or 2 or 3 Introduction to Art Making
22
84
Formations of Modern Art History of Film

GROUP B
40/ICAM 40 Introduction to Computing in the Arts
60 Introduction to Photography $70 \mathrm{~N} \quad$ Introduction to Media

All six courses listed under Groups A and B above are required. VIS 70 N is prerequisite for use of the Media Center facilities; no further production courses may be taken until VIS 70 N is completed.

INTERMEDIATE LEVEL—UPPER-DIVISION
Nine courses required

GROUP A

Six courses required
$111 \quad$ Structure of Art

Both VIS 111 and VIS 174 are required and prerequisite to further study. Additionally, all courses from one of the following emphases are required.

Computing Emphasis

Three courses plus one from photography or film/video

140/ICAM 101	Digital Imaging: Image and Interactivity
and 141A/B Computer Programming for the Arts I and II	
or 145A/ Digital Media II:Time, Movement, ICAM 102 Sound 145B Digital Media II	

Photography Emphasis

Two courses plus two from computing or film/video

164 Photographic Strategies 165 Camera Techniques

Film and Video Emphasis

Three courses plus one from computing or photography

Studio Video
176
Introduction to Filmmaking
177

Note: Enrollment in production courses is limited to two per quarter. Production courses are numbered VIS 109, 131, 132, 140/ICAM 101, 141AB, 145A/ICAM 102, 145B, VIS 147A-B, 149/ICAM 130, 164-166, 172-177, and 180A-186.

Group B-History, Criticism, and Theory

Three courses required
113BN History of Criticism II: Early Twentieth Century (1900-1950)
113CN History of Criticism III:
Contemporary (1950-Present)
117B Theories of Representation
150 History and Art of the Silent Cinema
151 History of Experimental Film
152 Film in Social Context
153 The Genre Series
154
155
157
158
159//CAM 150 History of Art and Technology
Note: Any art history courses in Pre-Modern,
Early Modern, Modern, and Theory may be taken to fulfill the Group B requirement.

VIS 158 is required for all students with a photography emphasis.

VIS 159/ICAM 150 is required for all students with a computing emphasis.

ADVANCED LEVEL—UPPER DIVISION

Five courses required
180A/B Generating the Narrative I and II
Both of the above are required; VIS 180A must be taken before VIS 180B. Additionally, three electives must be taken.

Electives

Three courses required

Computing Emphasis

147A/B Electronic Technologies for Art I and II
149/ICAM 130 Seminar in Contemporary Computer Topics

Photography Electives

166 Advanced Camera Techniques

Film and Video Electives

181 Sound and Lighting

Advanced Editing
Advanced Filmmaking Strategies
VIS180A/B must be completed before any of the following four courses may be taken; instructor approval is required to enroll:

109

131
132
197

> Advanced Projects in Media Special Projects in Media Installation Production and Studio Media Honors Thesis

Interdisciplinary Computing and the Arts (ICAM)

The Interdisciplinary Computing and the Arts major in the Music and Visual Arts departments draws upon, and aims to bring together, ideas and paradigms from computer science, art, and cultural theory. It takes for granted that the computer has become a metamedium and that artists working with computers are expected to combine different media forms in their works. All of this makes the program unique among currently existing computer art or design programs which, on the one hand, usually focus on the use of computers for a particular media (for instance, specializing in computer animation, or computer music, or computer design for print) and, on the other hand, do not enter into a serious dialogue with current research in computer science, only teaching the students "off-the-shelf" software.

The program also recognizes that creating sophisticated artistic works with computers requires a new model of the creative process, one which combines traditional artistic procedures with the experimental research characteristic of the sciences. All in all, it aims to train a new type of cultural producer, who is familiar with art and media history, who is equally proficient with computer programming and artistic skills, who is always ready to learn new technologies, and who is comfortable interacting with scientists and computer industry resources.

The goals of the program are:

- to prepare the next generation of artists who will be functioning in a computer-mediated culture
- to give students necessary technical, theoretical, and historical backgrounds so they can contribute to the development of new aesthetics for computer media
- to prepare students to mediate between the worlds of computer science and technology, the arts, and the culture at large by being
equally proficient with computing and cultural concepts
- to give students sufficient understanding of the trajectories of development in computing so they can anticipate and work with the emerging trends, rather than being locked in particular software currently available on the market

LOWER-DIVISION

Eight courses required

Arts

Four courses required
MUS 4 Introduction to Western Music
VIS 1 Introduction to Art-Making:
Two-Dimensional Practices
and
VIS 22 Formations of Modern Art
VIS 70N Introduction to Media
or
MUS 14 Contemporary Music
and one from:
MUS 1A Music Literacy
MUS 2A Basic Musicianship
MUS 5 Introduction to Music Making

Computer Science

One course required
CSE 11 Introduction to Computer Science: JAVA
NOTE: CSE 11 is an accelerated course and presumes prior programming knowledge. If you do not have programming experience, contact the departmental adviser for acceptable alternatives.

Mathematics

Two courses required

MATH 20A | Calculus for Science and |
| :---: |
| Engineering |

MATH 20B | Calculus for Science and |
| :---: |
| Engineering |

Computing and the Arts
One course required
ICAM $40 /$ Introduction to Computing in the
VIS $40 \quad$ Arts

UPPER-DIVISION

Twelve courses required

Survey

One course required
ICAM 110 Computing in the Arts:
Current Practice

Foundation

Three courses required

ICAM 101/	Digital Imaging: Image and
VIS 140	Interactivity
ICAM 102/	Digital Media I:Time, Movement,
VIS 145A	Sound
ICAM 103/	Musical Acoustics
MUS 170	

Advanced

Four courses required
ICAM 120 Virtual Environments
ICAM 130/ Seminar in Contemporary
VIS 149 Computer Topics
VIS 109 Advanced Projects in Media
VIS 131 Special Projects in Media
VIS 132 Installation Production and Studio
VIS 141A Computer Programming for the Arts I
VIS 141B Computer Programming for the Arts II
VIS 145B Digital Media II
VIS 147A Electronic Technologies for Art I
VIS 147B Electronic Technologies for Art II
VIS 174 Media Sketchbook
MUS 171 Computer Music
MUS 172 Computer Music II
MUS 173 Audio Production: Mixing and Editing
MUS 175 Musical Psychoacoustics
MUS 176 Music Technology Seminar

Theory and History

Two courses required
ICAM 150/ History of Art and Technology
VIS 159
and one of:
VIS 123CN Early Print Culture:The First Media Revolution
VIS 125E
VIS 150
VIS 151
VIS 152
VIS 153
VIS 154
VIS 155
VIS 157
VIS 158

History of Performance
History and Art of the Silent Cinema History of the Experimental Film
Film in Social Context
The Genre Series
Hard Look at the Movies
The Director Series
Video History and Criticism
Histories of Photography

MUS 111	World Music Traditions
MUS 114	Music of the Twentieth Century

Senior Project

Two courses required
ICAM 160A-B Senior Project in Computer Arts

Admission to the ICAM Major and to the Media Major with Computing Emphasis

Student interest in the interdisciplinary computing and the arts major (ICAM) and the media major with computing emphasis has been strong. Because the department has limited resources to accommodate student demand, it is necessary to limit admission to these majors to the most highly qualified students. Any student admitted to UCSD beginning in fall 2002 who wishes to declare either an ICAM major or media major with computing emphasis will be admitted to the pre-major.

ICAM MAJOR

Students designated as pre-majors in ICAM must complete the following eight required lower-division courses within six quarters (by the end of their sophomore years):
MUS 4 Introduction to Western Music VIS 1 Introduction to Art-Making ICAM 40/ Introduction to Computing in the VIS 40 Arts
MATH 20A Calculus
MATH 20B Calculus
CSE 11* Introduction to Computer Science: JAVA
VIS 22 Formations of Modern Art VIS $70 \mathrm{~N} \quad$ Introduction to Media
*CSE 11 is an accelerated course in the JAVA programming language. CSE 8A and CSE 8B, which cover the same material in a non-accelerated format, may be substituted.

MEDIA MAJOR WITH COMPUTING EMPHASIS

Students designated as pre-majors in media with computing emphasis must complete the following six required lower-division courses within six quarters (i.e., by the end of their sophomore years):

Group A (3 courses)

VIS 1 Introduction to Art-Making:TwoDimensional Practices,

or

VIS 2
 Introduction to Art-Making: Motion and Time-Based Art,

or
VIS 3

VIS 22
Introduction to Art-Making:ThreeDimensional Practices

VIS 84
Formations of Modern Art

Group B (3 courses)

VIS 40/ Introduction to Computing in the ICAM 40 Arts
VIS 60
VIS 70N
Introduction to Photography Introduction to Media

APPLYING TO THE MAJORS

Upon completion of all required lower-division courses, pre-majors who seek entrance to either the ICAM major or the media with computing emphasis must formally apply at the visual arts department Undergraduate Program Office. Admission to these majors will be based on the following criteria: 1 . Performance in the lowerdivision courses as measured by a GPA of 3.0 or higher, determined by the department on an annual basis. 2. Submission to the department of a portfolio of work demonstrating superior progress as a pre-major. The portfolio for both majors will consist of at least two projects that the student has produced in ICAM 40NIS 40, in another digital arts class, or independently, that in the faculty's judgment demonstrate that the student possesses the artistic ability and technical skills to perform at a high level in upper-division courses in the majors. Pre-majors should consult the undergraduate coordinator in visual arts as to the form in which projects should be submitted (disk, slides, tapes, etc.).

TRANSFER STUDENTS

Beginning in fall 2002, transfer students who wish to declare an ICAM major or media with computing emphasis are subject to the major's admissions policies: that is, they will be admitted initially as pre-majors, apply to the major on the same basis as other students, and be subject to the same requirements with respect to lower-division courses, grade-point average, and portfolio evaluation. Transfers entering with 36 or more quarter units must apply for admission to the major no later than their third quarter of study at UCSD. At the time of admission to the pre-major, transfer students' transcripts will be evaluated by the department to determine what courses com-
pleted elsewhere, if any, may be petitioned as equivalent to required courses. Students should be prepared to provide course descriptions and other materials that may be required to determine the content of such courses.

CONTINUING STUDENTS (STUDENTS ADMITTED PRIOR TO FALL 2002)

Any student admitted to UCSD before fall 2002 may declare an ICAM major or media major with computing emphasis by completing a Change of Major form at the Registrar's Office, attending an orientation meeting, and obtaining a department stamp.

Policies Relating to the ICAM Major and the Media Major with Computing Emphasis

SATISFACTORY PROGRESS

Any ICAM major or media major with computing emphasis whose GPA in courses required for the major drops below 2.0 will be placed on probationary status the following quarter.If, during that probationary quarter, the GPA does not move back to up 2.0 or better, he or she will be dropped from the major.

PREREQUISITES

Students are required to complete all prerequisites prior to enrolling in any course required for the major. Exceptions must be negotiated with the instructor of the course in question, in consultation with the department undergraduate coordinator.

LIMITATIONS TO ENROLLMENT BY NON-MAJORS

A department stamp is required for all upperdivision courses in computing in the arts. Because ICAM and media with computing emphasis are impacted majors, first preference in enrollment in upper-division computing in the arts will be given to those two majors and to music majors with a technology concentration. Second preference will be given to other visual arts and music majors. Other students will be admitted to these courses only if space is available.

Master of Fine Arts Program

The program is designed to provide intensive professional training for the student who pro-
poses to pursue a career within the field of artincluding art making, criticism, and theory. The scope of the UCSD program includes painting, sculpture, performance, environmental art, photography, film, video, and computer media. The program is unique in that the course of study provides for and encourages student mobility within this range of traditional and media-based components. It also offers opportunities for collaborative work.

The educational path of students is focused around their particular interests in art. The department seeks to provide an integrated and comprehensive introduction to the possibilities of contemporary art production, the intellectual structures which underlie them, and the "world view" which they entail. All art-making activities are considered serious intellectual endeavors, and all students in the program find themselves confronted by the need to develop their intellectual and critical abilities in the working out of their artistic positions. A body of theory-oriented courses is required. Therefore, we have no craft-oriented programs or facilities; nor do we have any courses in art education or art therapy. The courses offered are intended to develop in the student a coherent and informed understanding of the past and recent developments in art and art theory. The program also provides for establishing a confident grasp of contemporary technological possibilities, including those involved in film, video, photography, and the electronic media.

The program includes formal education in lecture and seminar courses as well as study groups, studio meetings, and quarterly departmental critiques. Course work is intended to place art making in critical and intellectual context but doesn't underestimate the central importance of the student's own work. In fact, this aspect of the student's activity is expected to be self-motivated and forms the core around which the program of study operates and makes sense.

No two students will necessarily follow the same path through the degree program, and the constitution of individual programs will depend upon the analysis of their individual needs and interests, worked out by students in collaboration with their individual faculty advisers.

Admission Requirements

Grade-Point Average-An overall GPA of 3.00 and a 3.50 in a student's undergraduate major is required.

Art History-Students are expected to have had at least four semester courses or six quarter courses in art history and/or film history/criticism at the undergraduate level. Those who have a broader art history background will have a better chance of being awarded teaching assistantships. Students without this requirement can be admitted, but they may be expected to make up the six courses in excess of the seventy-two units required for the degree. If there are questions concerning this requirement, check with the department.

Statement-Students are required to submit an essay of approximately three pages on the direction of their work and its relationship to contemporary art. This essay should be critical in nature, refer explicitly to the student's own work, and may refer to other artists, recent events in art history, and issues in domains other than art that have bearing on the student's process, thought, and work.

Work-Students are asked to submit documentation of their best work in a suitable format such as slides, videotape, film, diskettes, CD-ROMs, photographs, etc. These will be returned upon review of the application. It is necessary to include a self-addressed, stamped envelope for return of work.

Regular University Admission Policies

Please note that no application will be processed until all required information has been received. Students should submit applications with the application fee to the graduate admissions office on or before Friday, February 1, 2002. Portfolio, statement, letters of recommendation, and official transcripts should be sent directly to the department.

Requirements for the Degree

The M.F.A. is considered the terminal degree in studio work, and is a two- to three-year program. The following requirements must be completed in order to receive the M.F.A.:

First Year Review-This review takes place in the third quarter in residence. Students make a formal presentation of their work to a faculty committee; this includes a position paper and an oral examination. This presentation is considered a departmental examination, and if at its conclusion the student's work is judged to be inadequate, the
student may be dismissed regardless of GPA, or may be reviewed again in the fourth quarter.

Seventy-two units of course work, including a four-unit apprentice teaching course, are required. Students may select sixteen of these units (four courses) from upper-division course offerings. (See listings in this catalog.) There are five required Visual Arts seminars:

- Introduction to Graduate Studies in the Visual Arts (VIS 200)
- Contemporary Critical Issues (VIS 201)
- Art Practice Seminar (VIS 202)
- Working Critique Seminar (VIS 203)
- one course in either Art Practice/Theory, or Advanced Theory/Criticism/History
Specific information on other course distribution requirements can be obtained from the department.

The M.F.A. Final Presentation

Presentation of Work-During the last quarter in residence, each student is required to present to the public a coherent exhibition or screening of his or her work.

Oral Examination-A committee of three Department of Visual Arts faculty members and one faculty member from another department will administer an oral examination to each student covering the student's work and its relationship to the field of art.

Thesis-Students are required to submit some form of written work for the M.F.A. degree. Four options are available:

1. Catalog-The student would design and have printed an actual catalog. This would include a critical essay of approximately 1,500 words.
2. Critical paper--The student would write a critical paper of 3,000 words analyzing his or her process and the relationship of his or her work to recent art history, with references to contemporary styles and specific artists.
3. Analytical essay on some phase of artStudents who have focused on both art production and art criticism would write a 3,000 word critical essay on any current art position. A brief discussion (750 words) of the student's work would also be included.
4. Critical thesis-Students whose emphasis is essentially criticism and who do not present an M.F.A. exhibition would write a forty- to fifty-
page thesis-the topic to be decided by the student and his or her adviser.
Applications and additional information can be obtained from the graduate office of the Department of Visual Arts.

COURSES

Note: The following list of courses represents all visual arts offerings; not all courses are offered each year.

LOWER-DIVISION

1. Introduction to Art-Making: Two-Dimensional

 Practices (4)An introduction to the concepts and techniques of art making with specific reference to the artists and issues of the twentieth century. Lectures and studio classes will examine the nature of images in relation to various themes. Drawing, painting, found objects, and texts will be employed. Prerequisite: none. This course is offered only one time each year.

2. Introduction to Art Making: Motion and Time

 Based Art (4)An introduction to the process of art making utilizing the transaction between people, objects, and situations. Includes both critical reflection on relevant aspects of avant-garde art of the last two decades (Duchamp, Cage, Rauschenberg, Gertrude Stein, conceptual art, happenings, etc.) and practical experience in a variety of artistic exercises. This course is offered only one time each year.

3. Introduction to Art-Making:Three-Dimensional

 Practices (4)An introduction to art making that uses as its base the idea of the "conceptual." The lecture exists as a bank of knowledge about various art world and non-art world conceptual plays. The studio section attempts to incorporate these ideas into individual and group projects using any "material." This course is offered only one time each year.

20. Introduction to Art History (4)

This course examines history of Western art and architecture through such defining issues as the respective roles of tradition and innovation in the production and appreciation of art; the relation of art to its broader intellectual and historical contexts; and the changing concepts of the monument, the artist, meaning, style, and"art"itself. Representative examples will be selected from different periods, ranging from Antiquity to Modern. Content will vary with the instructor. Prerequisite: none.

21. Introduction to Non-Western Art (4)

This course offers a comparative and thematic approach to the artistic achievements and cultural productions of societies with widely divergent structure and political organization from the ancient kingdoms and empires of Central America and Asia to the tribes of Africa and the chiefdoms of Native American and Oceanic peoples. Topics vary with the interests and expertise of the instructor. Prerequisite: none.

Visual Arts

22. Formations of Modern Art (4)

Wide-ranging survey introducing the key aspects of modern art and criticism in the nineteenth and twentieth centuries, including Neo-Classicism, Romanticism, Realism, Impressionism, Post-Impressionism, Symbolism, Fauvism, Cubism, Dada and Surrealism, Abstract Expressionism, Minimalism, Earth Art, and Conceptual Art. Prerequisite: none
23. Information Technologies in Art History (4)

This seminar introduces fundamentals of art historical practice such as descriptive and analytical writing, compiling annotated bibliographies with traditional and online resources, defining research topics, and writing project proposals. Prerequisite: none.
Note: Prerequisite for VIS 112 and highly recommended for all other seminars. Must be taken within a year of declaring major or transferring into the art history program.
40. Introduction to Computing in the Arts (4)
(Cross-listed with ICAM 40.) An introduction to the conceptual uses and historical precedents for the use of computers in art making. Preparation for further study in the computer arts area by providing overview of theoretical issues related to the use of computers by artists. Introduces the students to the program's computer facilities and teaches them basic computer skills. Prerequisite: open to visual arts and ICAM majors and minors only. Materials fee required.

60. Introduction to Photography (4)

An in-depth exploration of the camera, combining darkroom techniques in black and white, and color photography. Emphasis is placed on developing retiable control of the fundamental materials and procedures through lectures, field, and lab experience. Basic discussion of image making included. Materials fee required.

70N. Introduction to Media (6)
Operating as both a lecture and production course, this introductory class provides a technical foundation and theoretical context for all subsequent production-oriented film and video studies. In the laboratory, the student will learn the basic skills necessary to initiate video production. Completion of Visual Arts 70 N is necessary to obtain a media card. Prerequisite: none. Materials fee required.

84. History of Film (4)

A survey of the history and the art of the cinema. The course will stress the origins of cinema and the contributions of the earliest filmmakers, including those of Europe, Russia, and the United States. Materials fee required. This course is offered only one time each year
90. Undergraduate Seminar (1)

This seminar will introduce undergraduate students, especially freshmen and sophomores, to a variety of issues and topics organized around the research interests of faculty members.

UPPER-DIVISION

104A. Performing the Self (4)

Using autobiography, dream, confession, fantasy, or other means to invent one's self in a new way, or to evoke the variety of selves in our imagination, the course experiments with and explores the rich possibilities available to the contemporary artist in his or her own persona. Prerequisites: two from VIS 1,2,3 and either 22 or 111.

104BN.Verbal Performance (4)

The course is designed to introduce the student to the part played by language in contemporary performance art. Monologues, musically derived sound poetry, vocalizations, verbally inscribed installations, and the uses of language and voice in film and video are some of the areas explored. Prerequisite: VIS 104A.

104CN. Personal Narrative (4)
The course will explore primary experiential materials to more fully understand the relationship of voice, style, language, and personality, to issues of memory, identity self-awareness, and desire. Instructor and student will discuss student work as well as published personal narrative. Prerequisite: VIS $104 B N$.

105A. Drawing: Representing the Subject (4)
A studio course in beginning drawing covering basic drawing and composition. These concepts will be intro duced by the use of models, still life, landscapes, and conceptual projects. Prerequisites: two from VIS 1, 2,3 and either 22 or 111

105B. Drawing: Practices and Genre (4)

A continuation of VIS 105A. A studio course in which the student will investigate a wider variety of technical and conceptual issues involved in contemporary art practice related to drawing. Prerequisite: VIS 105A.

105C. Drawing: Portfolio Projects (4)
A studio course in drawing, emphasizing individual creative problems. Class projects, discussions, and critiques will focus on issues related to intention, subject matter and context. Prerequisite: V/S 1058.

106A. Painting: Image Making (4)

A studio course focusing on problems inherent in painting-transferring information and ideas onto a two-dimensional surface, color, composition, as well as manual and technical procedures. These concepts will be explored through the use of models, still life, and landscapes. Prerequisites: two from VIS 1,2,3 and either 22 or 111.

106B. Painting: Practices and Genre (4)
A continuation of VIS 106A. A studio course in which the student will investigate a wider variety of technical and conceptual issues involved in contemporary art prac tice related to painting. Prerequisite: VIS 106A.

106C. Painting: Portfolio Projects (4)

A studio course in painting emphasizing individual cre ative problems. Class projects, discussions, and critiques will focus on issues related to intention, subject matter and context. Prerequisite: V/S $106 B$.

107A. Sculpture: Making the Object (4)

A studio course focusing on the problems involved in transferring ideas and information into three-dimensions. Course will explore materials and construction as dictated by the intended object. Specific problems to be investigated will be determined by the individual professor. Prerequisites: two from VIS 1,2,3 and either 22 or 111.

107B. Sculpture: Practices and Genre (4)

A studio course in which the student will investigate a wider variety of technical and conceptual issues as well as materials involved in contemporary art practice related to sculpture. Prerequisite: VIS 107A.

107CN. Sculpture: Portfolio Projects (4)

A studio course in sculpture emphasizing individual creative problems. Class projects, discussions, and cri-
tiques will focus on issues related to intention, subject matter, and context. Prerequisite: VIS 107B

108. Advanced Projects in Art (4)

A studio course for serious art students at the advanced level. Stress will be placed on individual creative prob lems. Specific orientation of this course will vary with the instructor. Topics may include film, video, photography, painting, performance, etc. May be repeated twice for credit. Prerequisite: consent of instructor.
109. Advanced Projects in Media (4)

A production course for serious upper-division media students. Individual or group projects will be completed over one or two quarters. A specific project organized by the student(s) will be realized during this course, with the instructor acting as a close adviser and critic. Formal concept papers or scripts must be completed and approved by the instructor prior to enrollment. May be repeated twice for credit. Prerequisite: consent of instructor.

110A. Contemporary Issues and Practices (4)
An examination of contemporary studio art practice. The course is divided among research, discussion, and projects. Field trips to galleries and discussions with artists will combine with the students moving their work into a dialogue with the issues raised. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and $147 B$ or consent of instructor.

110B. New Genre/New and Old Technologies (4)
Advances the idea of different materials, methods, and practices raised at the intermediate level in drawing, painting, and sculpture, and explores and utilizes new and traditional media in studio production of work. Emphasis on multiple media, combining traditional and electronic media, as well as different genres, in an attempt to create new directions for the student's ideas. Prerequisites: two from VIS 104CN, 105C, 106C, 107 CN and 147 B or consent of instructor.

110C. Proposals, Plans, Presentations (4)
Explores the use of the maquette, or sketch, in the process of developing, proposing and planning visual works in various media for public projects, site specific works, grants, exhibition proposals, etc. The student will work on synthesizing ideas and representing them in alternate forms that deal with conception, fabrication and presentation. Prerequisites: two from VIS 104CN 105C, 106C, 107CN and 147B or consent of instructor.

110D. Visual Narrative/Tableau (4)

Examination and use of multi-media in exploring narra tive issues in art making. The identification of subject leads to the determination of choice or mix of media and construction of narrative. Traditional studio prac tice surrounding narrative painting and sculpture forms such as comic drawing or story boards, and the use of photo, video, and computing. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B or consent of instructor.

110E. Art in Public Places/Site Specific Art (4)
The course attempts to take painting and sculpture, as well as related media, out of the studio/gallery and into the public sphere by examining the contemporary his tory of public artworks with traditional and non-traditional site-specific work. The course will focus on production as well as critical discussion and writing. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147 B or consent of instructor.

110F. Installation: Cross-Disciplinary Projects (4)
Attempts to expand the idea contained in a singular work, or object, into the use of multiple objects, images and media that redefines the idea as well as the space for which it is intended. Examination of historic, mod ern, and contemporary works would be brought into discussion of project development and execution Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B or consent of instructor.

110G. The Natural and Altered Environment (4)

Explores the natural and altered environment as a basis for subject as well as placement of work pertaining to the environment. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B or consent of instructor.

110H. Image and Text Art (4)

Devoted to the study and practice of the multiple ways in which writing and other forms of visible language have been incorporated into contemporary and traditional artworks, including artists' books, collaging and poster art, visual and concrete poetry, typographical experiments, and calligraphies. Prerequisites: two from VIS 104CN, 105C, 106C,107CN and 147B or consent of instructor

110I. Performing for the Camera (4)

The dematerialization of the performer into a media based image-video, film, slides, still photographs using the camera as a spy, a co-conspirator, a friend or a foe-employing time lags, spatial derangement, image deconstruction, along with narrative, text, history, to invent time based pieces that break new ground while being firmly rooted in an understanding of the rich body of work done in this area over the last three decades. Prerequisites: two from VIS 104CN, 105C, 106 C 107 CN and 147B or consent of instructor.

110J. Ritual Performance (4)

The course will explore forms of art making that use dream and myth, body art, dance, social drama, hap penings, story telling, and enactments of contemporary and traditional forms of performance art that involve a crossing of the lines between different arts and genres Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and $147 B$ or consent of instructor.

110K. Installation Performance (4)

The artist as performer working with materials, objects props, technology, to create multi-layered, experimen tal, interesting three-dimensional art spaces in which the artist's body, voice, actions, or memory, moves through, enlivens, or haunts the physical space. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and $147 B$ or consent of instructor.

110M. Studio Honors I (4)

An advanced studio course intended for the produc tive, motivated, and self-disciplined student with a clear and unified body of work. The intent is to help refine and expand the student's work and ideas towards an exhibition and verbal written position. Prerequisite: consent of the instructor. Note:The Studio Honors I and the attached Studio Honors II count as one course toward the fulfillment of a Group IV requirement.

110N. Studio Honors II (4)

The second advanced studio course in the Honors Program in Studio, the successful completion of which will lead towards an honors degree in the studio major The course builds on the critical and technical issues raised in Studio Honors I.Prerequisite: VIS 110M.
111. The Structure of Art (4)

This course will address the structure of signification in art. We will consider the modes of signification in a wide range of representational and nonrepresentational artworks from architecture through drawing, painting, sculpture, photography, video, and film to performance. Examples will be selected from various places and epochs. This course is required for transfer students. This course is offered during winter quarter only.

112. Art Historical Methods (4)

A critical review of the principal strategies of investigation in past and present art-historical practice, a scrutiny of their contexts and underlying assumptions, and a look at alternative possibilities. The various traditions for formal and iconographic analysis as well as the categories of historical description will be studied. Required for all art history and criticism majors. Prerequisites: VIS 23 and one upper-division art history course; two recommended.

113AN. History of Criticism I: Early Modern (4)
Introducing Classical, Medieval, and Renaissance theories of the image, we concentrate on developments in the eighteenth and nineteenth centuries: NeoClassicism, Romanticism, Realism, and Symbolism. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

113BN. History of Criticism II: Early Twentieth Century (1900-1950) (4)
The principal theories of art and criticism from Symbolism until 1945: formalism and modernism, abstraction, Surrealism, Marxism, and social art histories, phenomenology, existentialism. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

113CN. History of Criticism III: Contemporary (1950-Present) (4)

Recent approaches to the image in art history and visual culture: structuralism, semiotics, psychoanalysis, post-structuralism, post-modernism, feminism, postcolonialism, cultural studies. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.
114. Art Criticism (4)

This course is intended to develop critical approaches to contemporary art. It will investigate contemporary forms of art criticism, stressing both traditional and alternate points of view. Outside field trips and critical writings will be assigned. May be repeated once for credit. Prerequisite: none; one upper-division modern art history course recommended.

117A. Narrative Structures (4)

How can a fixed image represent events in time? The strategies of storytelling and their consequences for the meaning of works of art will be investigated. Content of the course will vary. May be repeated twice for credit with permission of the instructor. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

117B. Theories of Representation (4)

A discussion of major Western theories of representation with a critique of their applicability to art. Material is drawn from a wide variety of historical periods from Antiquity to Modern. Emphasis is given to theories special significance for art history, but some attention is given to representation theories in other contexts. Readings may include selections from such modern theorists as Peirce, Panofsky, Gombrich, Bernheimer,

Barfield, Barthes, Goodman, Foucault, Bryson, Summers, and Mitchell and from classic texts by Plato, Aristotle, John of Damascus, Alberti, and Leonardo. Prerequisite: none; one or more upper-division courses in art history strongly recommended. Note: Majors must have taken VIS 23.

117C. Art in Tire: The Historical Dimensions (4)
How does a work of art live in time? What connects it with art past, present, and future? Where does tradition and innovation intersect? Why is past art always an issue for contemporary practice? This seminar considers these and other questions as well as different theoretical models for understanding art's historical dimension. Specific issues and readings may vary from year to year. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

117D. Portraiture (4)
Portraiture appeals to the human interest in human beings. This seminar explores how portraits from different periods (potentially ancient through modern) reflect cultural ideas about citizens even as they purport to convey actual appearances. Content may vary with instructor. Prerequisite: none; VIS 112 or two upperdivision courses in art history strongly recommended.

117E. Problems in Ethnoaesthetics (4)

This seminar will address and critique various approaches to studying the art of non-Western societies with respect to their own aesthetic and cultural systems. Students are encouraged to explore comparative philosophies of art and test paradigms of Western aesthetic scholarship. Prerequisite: none; VIS 21 or 112 or two upper-division courses in art history strongly recommended.

120A. Greek Art (4)

Greek classical civilization was a turning point in the history of humanity. Within a new kind of society, the idea of the individual as free and responsible was forged, and with it the invention of history, philosophy, tragedy, and science. The arts which expressed this cultural explosion were no less revolutionary. The achievements of Greek art in architecture, sculpture, and painting will be examined from their beginnings in the archaic period, to their epoch-making fulfillment in the classical decades of the fifth century B.C., to their diffusion over the entire ancient world in the age of Alexander and his successors. Prerequisite: none; VIS 20 recommended.

120B. Roman Art (4)

Roman art was the "modern art" of antiquity. Out of their Italic tradition and the great inheritance of Greek classic and Hellenistic art, the Romans forged a new language of form to meet the needs of a vast empire, a complex and tumultuous society, and a sophisticated, intellectually diverse culture. An unprecedented architecture of shaped space used new materials and revo lutionary engineering techniques in boldly functional ways for purposes of psychological control and symbolic assertion. Sculpture in the round and in relief was pictorialized to gain spatial effects and immediacy of presence, and an extraordinary art of portraiture investigated the psychology while asserting the status claims of the individual. Extreme shifts of style, from the classicism of the age of Augustus to the expressionism of the third century A.D., are characteristic of this period. The new modes of architecture, sculpture, and painting, whether in the service of the rhetoric of state power or of the individual quest for meaning, were passed on to the medieval and ultimately to the modern West. Prerequisite: none; VIS 20 recommended.

Visual Arts

120C. Late Antique Art (4)

During the later centuries of the Roman Empire, the ancient world underwent a profound crisis. Beset by barbarian invasions, torn by internal conflict and drastic social change, inflamed with religious passion which was to lead to a transformed vision of the individual, the world, and the divine, this momentous age saw the conversion of the Roman world to Christianity, the transfer of power from Rome to Constantinople, and the creation of a new society and culture. Out of this ferment, during the centuries from Constantine to Justinian, there emerged new art forms fit to represent the new vision of an otherworldly reality: a vaulted architecture of diaphanous space, a new art of mosaic which dissolved surfaces in light, a figural language both abstractly symbolic and urgently expressive. The great creative epoch transformed the heritage of classical Greco-Roman art and laid the foundations of the art of the Christian West and Moslem East for the next thousand years. Prerequisite: none; VIS 20 or $120 B$ recommended.

120D. Prehistoric Art (4)

Tens of thousands of years before the dawn of history, the hunting peoples of Ice Age Europe invented the first language of visual images. Their painted cave sanctuaries, such as Lascaux and Altamira, are dazzling in their expressive vitality and mystifying in meaning. This course link cave art with what is known about contemporary conditions of nature, society, and human life. Prerequisite: none; VIS 20 recommended.

121AN. The Idea of Medieval Art (4)
This course introduces the art and architecture of Western Europe from the fourth through the thirteenth centuries. A leading theme is the changing idea of what "medieval" has come to mean, from the coining of the terms "Middle Ages" and "Dark Ages" by Renaissance humanists, to the Romantic fascination with Gothic ruins, and finally to the fantasy medievalisms of twentieth century popular culture and current approaches to medieval art in art historical scholarship. Prerequisite: none; VIS 20 recommended.

121B. Castles, Cathedrals, and Cities (4)

Art production in Western Europe from the twelfth through the fourteenth centuries flowed from three principal centers of creative activity-the castle, the cathedral, and the city-which gave visible form to the interests and values of competing segments of medieval society. This course explores the art and architecture of these three centers in the context of the rituals of chivalry, church, and civic life that made a dazzling spectacle of art and life in the High Middle Ages. Prerequisite: none; VIS 20 recommended.

121C. Art and Gender in the Middle Ages and

Renaissance (4)

This seminar explores how different representational traditions involving women and men reflected but also contributed to the formation of period beliefs about gender difference. It also considers the differentia roles of women and men as producers and patrons of art and period expectations and practices involving male and female spectatorship. Specific content may vary from year to year. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

121D. The Illuminated Manuscript in the Middle Ages (4) This seminar charts the changing pictorial problematics presented by the illuminated manuscript from its origins in late antiquity to the disintegration of the manuscript tradition under the impact of the first
printed books. Works such as the Book of Kells and the Tres Riches Heures of the Duke of Berry, among the most brilliant achievements of Western painting, are among those considered. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

121E. Pursuit of the Millennium (4)

(Cross-listed with HIEU 115) The year 2000 provokes questions about the transformation of time, culture, and society. Taking the year 1000 as a touchstone, this class examines the history of apocalyptic expectations in the Middle Ages through a close scrutiny of both texts and art. Prerequisite: none.

122AN. Renaissance Art (4)

Italian artists and critics of the fourteenth through six teenth centuries were convinced that they were participating in a revival of the arts unparalleled since Antiquity. Focusing primarily on Italy, this course traces the emergence in painting, sculpture and architecture of an art based on natural philosophy, optical princi ples, and humanist values, which embodied the highest intellectual achievement and deepest spiritual beliefs of the age. Artists treated include Giotto, Donatello, Masaccio, Brunelleschi, Jan van Eyck, Mantegna Botticelli, Leonardo da Vinci, Michelangelo, Raphael Bramante, Durer, and Titian. Prerequisite: none; VIS 20 recommended.

122BN. Vision, Belief, and Civic Virtue: Italian Art of the Early Renaissance (4)

Spurred by a renewed interest in Antiquity, a coterie of artists working with Donatello and Brunelleschi in Florence forged a new language of art that defined the character and possibilities for painting, sculpture, and architecture for centuries to come. This lecture course analyzes the contributions of artists such as Masaccio Mantegna, Alberti, Piero della Francesca, Bellini, and Botticelli to emergence of the artist as intellectual, the conceptualization of the statue and the monument, the development of pictorial perspective, the theorization of artist practice, and the expanded role of images in urban and religious life. Prerequisite: none; VIS 20 or 122AN recommended.

122CN. Defining High Renaissance Art (4)

Since the sixteenth century, the names of Leonardo da Vinci, Raphael, and Bramante have conjured up images of the highest artistic achievement. This course shows the intellectual concerns common to the artist and scientific productions of Leonardo help illuminate the dis tinctive character of the art of two of his greatest contemporaries. Prerequisite: none; VIS 20, 122AN, or 122BN recommended.

122D. Michelangelo (4)
This course offers new approaches to understanding Michelangelo's greatest creations. By considering how each work relates to the setting for which it was intended, by regarding critical literature and artistic borrowings as evidence about the works, and by studying the thought of the spiritual reformers who counseled Michelangelo, new interpretations emerge which show the artist to be a deeply religious man who invested his works with both public and private meanings. Prerequisite: one upper-division course in Renaissance art; VIS 112 or 122 CN recommended.

122E. The City in Italy (4).
(Cross-listed with HIEU 124.) Each Italian city takes pride in having a style and history all its own. This lecture course, usually taught in conjunction with the his tory department's HIEU 124, considers various
approaches to and models for understanding the social, political, economic, and artistic fabric of such renowned medieval and Renaissance cities as Rome Florence, Venice, Naples, Milan, and Sienna. Content varies from year to year. May be repeated three times for credit. Prerequisite: none; an upper-division course in Pre-Modern or Early Modern art history or Pre-Modern or Early Modern European history is strongly recommended Note: May be used to fulfill the seminar requirement for art history majors.

123AN. Between Spirit and Flesh: Northern Art of the Early Renaissance (4)
The art of the Early Renaissance in Northern Europe is marked by what appears to be striking conflict: on the one hand, a new love of nature and of the pleasures of court society; and on the other, an intensified spiritual ity and focus on personal devotion. This course explores these provocative cross-currents in works by maste painters like Jan van Eyck and Hieronymous Bosch as well as in lesser known mass-produced objects of everyday use. Prerequisite: none; VIS 20, 121AN, and/or 122AN recommended.

123BN. Jan van Eyck (4)
Intensive study of the career of Jan van Eyck, whose magical paintings have always fascinated viewers with their microscopically detailed naturalism and subtly disguised spiritual meanings. Masterpieces such as the "Arnolfini Wedding" are emphasized. Prerequisite: none VIS 112 or two upper-division courses in art history recommended.

123CN. Early Print Culture: The First Media Revolution (4)

During the fifteenth century, two inventions-printed pictures and books printed with moveable type-revo lutionized both Western art making and information technologies. This seminar considers the conditions that made possible this "first media revolution," its immediate impact and its continuing resonances in early modern visual culture. Prerequisite: none; VIS 112 or two upper-division courses in art history recommended.

124AN. Baroque Art (4)

This course discusses the achievement of such major artists as Caravaggio, Gentileschi, Bernini, Borromini, Rubens, Rembrandt, Velasquez, and Vermeer within a culture marked by increasing intellectual specialization, the entrenchment of modern national boundaries, the co-existence of rival religious organizations, the for mations of artistic academies, and the rise of an art market serving the flourishing middle class. Prerequisite: none; VIS 20 recommended.

124BN. Art and the Enlightenment (4)

Eighteenth century artists and critics were convinced that art could be a force to improve society. This course places Roccoco and Neo-Classical artists such as Watteau, Fragonard, Tiepolo, Hogarth, Reynolds, Vigee Lebrun, Blake, and David, within the context of art acad emies, colonialism, the Grand Tour, Enlightenment conceptualizations of history and nature, and the American and French Revolutions. Prerequisite: none; VIS 20 or 22 recommended.

124CN. Nineteenth Century Art (4)

A critical survey discussing the crisis of the Enlighten ment, Romanticism, Realism and Naturalism, Academic Art and History Painting, representations of the New World, the Pre-Raphaelites, Impressionism, interna tional Symbolism, Post-Impressionism, and the beginnings of Modernism. Prerequisite: none; VIS 20 or 22 recommended.

125A. Twentieth Century Art (4)
A critical survey outlining the major avant-gardes after 1900: Fauvism, Cubism, Metaphysical Painting, Futurism, Dada, Surrealism, Neo-Plasticism, Purism, the Soviet avant-garde, Socialist Realism, and American art before Abstract Expressionism. Prerequisite: none; VIS 20 or 22 recommended.

125BN. Contemporary Art (4)

Art after Abstract Expressionism: Happenings, Postpainterly Abstraction, Minimalism, Performance, Earth Art, Conceptual Art, Neo-Expressionism, PostConceptualism and development in the 1990s, including non-Western contexts. We also explore the relation of these tendencies to Postmodernism, Feminism, and ideas of Postcoloniality. Prerequisite: none; VIS 20 or 22 recommended.

125CN. Histories and Contexts of Conceptual Art (4) A detailed exploration of the history, theories, and social contexts of the Conceptual Art movement from mid-1960s to the 1980s. Artists/theorists discussed include Duchamp, Kosuth, Weiner, Baldessari, Barry, Piper, Darboven, Huebler, Art and Language, Beuys, Holzer, and Neo-Conceptualism. Prerequisite: none; VIS 20 or 22 recommended.

125DN. Marcel Duchamp (4)
A critical examination of the work of one of the most radical twentieth century artists. In Duchamp's four dimensional perspective, the ideas of art-object, artist, and art itself are deconstructed. The Large Glass and Etant Donnees ... are the twin foci of an oeuvre without boundaries in which many twentieth-century avantgarde devices such as chance techniques, conceptual art, and the fashioning of fictive identities, are invented. Prerequisite: none.

125E. History of Performance Art (4)

The novel, perplexing, outrageous, and witty modes of performance by such contemporary artists as Acconci, Anderson, Antin, Beuys, Jonas, Kaprow, and Lacy will be examined in the critical framework of earlier twentiethcentury experiments in music, theater, and dance as well as in the visual arts. The movements of futurism, dada and surrealism, the Russian avant-garde, the Bauhaus, abstract expressionism, and happenings provide antecedents for performance art. So do the fields of anthropology, sociology, and psychology as well as the theater practices and theories of Artaud, Brecht, Piscator, Meyerhold, and Stanislavsky, and the experimental dance of Duncan, Wigman, Laban, Graham, Cunningham, and Rainer. Prerequisite: none.

126AN. Pre-Columbian Art of Ancient Mexico and Central America (4)

An introduction to the cities and monuments of the ancient civilizations which flourished in Mexico and Central America before the Spanish Conquest. This course will cover the major cultures of Mesoamerica, including the Olmec, Aztec, and neighboring groups. Prerequisite: none; VIS 21 recommended.

126BN. The Art and Civilization of the Ancient Maya (4) This course offers a history of Maya society from its formative stages to the eve of the Spanish Conquest through an investigation of its art and archeology. Special attention is given to its unique calendar and writing systems. Prerequisite: none; VIS 21 recommended.

126CN. Art of the North American Indians (4)
This course discusses the artistic legacy and cultural diversity of the ancient, historic, and surviving Native

American people of the United States and Canada. Prerequisite: none; VIS 21 recommended.

126DN. African and Afro-American Art (4)

The dynamic, expressive arts of selected West African societies and their subsequent survival and transformation in the New World will be studied. Emphasis will be placed on Afro-American modes of art and ceremony in the United States, Haiti, Brazil, and Suriname. Prerequisite: none; VIS 21 recommended.

126E. Oceanic Art (4)

An examination of the relation of art to ritual life, mythology, and social organization in the native Polynesian and Melanesian cultures of Hawaii, New Guinea, the Solomon Islands, and Australia. Prerequisite: none; VIS 21 recommended.

126F. Western and Non-Western Rituals and

 Ceremonies (4)This course will examine the process of image-making within specific ceremonies and/or rituals. Selected ceremonies from West Africa, Melanesia, Nepal, and the United States, including both Christian and nonChristian imagery, will be considered. Performance art and masquerade will be analyzed within a non-Western framework. Prerequisite: none; VIS 21 recommended.

126G. Problems in Mesoamerican Art History (4)
Topics of this seminar will address special problems or areas of research related to the major civilizations of ancient Mexico and Central America. Course offerings will vary in order to focus upon particular themes, subjects, or interpretive problems. Prerequisite: none; VIS 21 recommended.

126H. Problems in Ancient Maya Iconography and Inscriptions (4)

This seminar focuses upon the art, architecture, and inscriptions of the ancient Maya. Topics will vary within a range of problems that concern hieroglyphic writing, architecture, and visual symbols the Maya elite used to mediate their social, political, and spiritual worlds. Prerequisite: none; VIS 21 recommended.

127A. Curatorial Practices Workshop (2)

Students will be exposed to the professional context of institutional art research, preparation, exhibition, and publication. The content of the course will revolve around the curatorial experience of a particular faculty member. May be repeated once for credit. Prerequisite: VIS 112 or two upper-division courses in art history. Note: Two two-unit curatorial practices workshop courses count as one course towards the fulfillment of a Group III elective requirement in the major.

128AN-EN. Topics in Art History and Theory

These lecture courses are on topics of special interest to visiting and permanent faculty. Topics vary from term to term and with instructor and many will not be repeated. These courses fulfill upper-division distribution requirements. As the courses under this heading will be offered less frequently than those of the regular curriculum, students are urged to check for availability and descriptions of these supplementary courses in the annual catalogue listings. Like the courses listed under VIS 129, below, the letters following the course number designate the general area in which the courses fall. Students may take courses with the same number but of different content, with consent of instructor and/or program adviser. May be repeated three times for credit. Prerequisite: none; courses in art history recommended.

128AN. Topics in Pre-Modern Art History (4)
A lecture course on a topic of special interest in ancient or medieval art.

128BN. Topics in Early Modern Art History (4)
A lecture course on a topic of special interest in Renaissance or Baroque art.

128CN. Topics in Modern Art History (4)
A lecture course on a topic of special interest on Modern or Contemporary art.

128DN. Topics in Non-Western Art History (4)

A lecture course on a topic of special interest in PreColumbian, Native American, Oceanic, Asian, or African art.

128EN. Topics in Art Theory and Criticism (4)

A lecture course on a topic of special interest in art theory, art criticism, or the history of literature on art.

129AN-EN. Special Problems in Art Criticism and Theory (4)
These seminar courses provide the opportunity for indepth study of a particular work, artist, subject, period, or issue. Courses offered under this heading may reflect the current research interests of the instructor or treat a controversial theme in the field of art history and criticism. Active student research and classroom participation are expected. Enrollment is limited and preference will be given to majors. The letters following 129 in the course number designate the particular area of art history or theory concerned. Students may take courses with the same number but of different content more than once for credit, with consent of the instructor and/or the program adviser. May be repeated three times for credit. Prerequisite: VIS 112 or two upper-division courses in art history.

129AN. Special Problems in Pre-Modern Art History (4) A seminar on an advanced topic of special interest in ancient or medieval art.

129BN. Special Problems in Early Modern Art History (4) A seminar on an advanced topic of special interest in Renaissance or Baroque art.

129CN. Special Problems in Modern Art History (4)
A seminar on an advanced topic of special interest in Modern or Contemporary art.

129DN. Special Problems in Non-Western Art History (4) A seminar on an advanced topic of special interest in Pre-Columbian, native American, oceanic, Asian, or African art.

129EN. Special Problems in Art Theory and Criticism (4) A seminar on an advanced topic of special interest in art theory, art criticism, or the history of literature on art.

129G. Art History Honors Seminar (4)

This research seminar, centered on a series of critical, thematic, theoretical, and/or historical issues that cut across subdisciplinary specializations, provides outstanding advanced students with the opportunity to undertake graduate-level research. The first part of a two-part sequence completed by Art History Honors Directed Group Study (VIS 129H). Prerequisite: consent of instructor or art history faculty adviser. Note: The Art History Honors Seminar and the attached Art History Honors Directed Group Study counts as one course towards the fulfillment of the Group III requirement.

Visual Arts

129H. Art History Honors Directed Group Study (4)

The second part of the honors program sequence, this course provides a forum for students engaged in research and writing to develop their ideas with the help of a faculty adviser and in conjunction with similarly engaged students. Prerequisite: consent of instructor or art history faculty adviser.

130. Special Projects in Visual Arts (4)

Specific content will vary each quarter. Areas will cover expertise of visiting faculty. May be repeated twice for credit. Prerequisite: consent of instructor.

131. Special Projects in Media (4)

Specific content will vary each quarter. Areas will cover expertise of visiting faculty. May be repeated twice for credit. Prerequisite: consent of instructor.

132. Installation Production and Studio (4)

The artist transformation of physical space often incorporates many media simultaneously: drawing, painting, sculpture, photography, film, video, computing, and performance. Through discussions and readings, the class will examine the issues and aesthetics of installation art making. Using media familiar to them, students will produce several projects. May be repeated once for credit. Prerequisites: VIS 1 or 2 or 3, 22 and 111. Note: Open to all upper-division studio and media majors.
140. Digital Imaging: Image and Interactivity (4)
(Cross-listed with ICAM 101.) This introduction to the digital image involves images, texts, and interactive display, and operates both within a compuier mediated space (i.e., Web site) and in physical space (i.e., artist book). Interactive narrative and computer programming are explored. Prerequisite: VIS 40/ICAM 40. Note: Materials fee required.

141A. Computer Programming for the Arts I (4)
The use of computer programming as a tool and conceptual framework for art making will be explored. The course will use Silicon Graphics workstations to teach fundamental aspects of using the C programming language and the UNIX operating system to create computer graphics, audio, and text-based works. Portfolio required for admission. Prerequisites: VIS 40/ICAM 40, and 140/ICAM 101, department stamp required. Note: Materials fee required.

141B. Computer Programming for the Arts II (4)
Continuation of VIS 141A, where students extend their programming capabilities to include such areas as image processing, multimedia, and interactive 3-D graphics programming contextualized by a further exploration of topics in algorithmic and procedural modeling. Portfolio required for admission. Prerequisite: VIS 141 A/ICAM 102. Note: Materials fee required.

145A. Digital Media I: Time, Movement, Sound (4)
(Cross-listed with ICAM 102.) As an exploration of time dependent media components, this course will deal with the creation and manipulation of digital sound as well as moving images and their integration in multimedia work. Use of computer programming to control time is emphasized. Portfolio required for admission. Prerequisite: VIS 40/ICAM 40 and VIS 140/ICAM 101. Note: Materials fee required.

145B. Digital Media II (4)

Second course in the sequence where students will implement projects under direction of faculty. Projects will involve interactive narrative media and can include such things as Internet-based publishing (i.e., Web site), distributable media (i.e., CD-ROM), or computer-based
interactive environment (i.e., virtual reality). Portfolio required for admission. Prerequisite: VIS 145A. Note: Materials fee required.

147A. Electronic Technologies for Art I (4)
Develop artworks and installations that utilize digital electronics. Techniques in digital electronic construction and computer interfacing for interactive control of sound, lighting and electromechanics. Students will construct devices which can responsively adapt artworks to conditions involving viewer participation, space activation, and machine intelligence. Portfolio required for admission. Prerequisite: VIS 1. Note: Purchase of components kit required.

147B. Electronic Technologies for Art II (4)

A continuation of the electronics curriculum where students will design programmable microcontroller systems for creating artworks that are able to respond to complex sets of input conditions, perform algorithmic and procedural processing and generate real time output. Portfolio required for admission. Prerequisite: VIS 147A. Purchase of components kit required.

149. Seminar in Contemporary Computer Topics (4)

(Cross-listed with ICAM 130.) Treats selected topics drawn from a broad variety of subjects relevant to com-puter-based art and music making, such as computer methods for making art and music, the design of interactive systems, spatialization of visual and musical elements, and critical studies. Topics will vary. May be repeated five times for credit. Portfolio required for admission. Prerequisites: VIS 140/ICAM 101; VIS 145A/ ICAM 102 and ICAM 103/MUS 170 recommended. Note: Materials fee required.

150. History and Art of the Silent Cinema (4)

An investigation of silent films from early cinema (so called "primitive cinema") to the development of a classical style of filmmaking in the late teens and twenties. The course will explore issues of spectatorship, analyze differences between American and European cinema, and link thematic ard economic histories with cultural studies, with an emphasis on the interaction between film and other visual arts of the period in Europe, Russia, and the United States. Materials fee required. Prerequisite: VIS 84 or consent of instructor.
151. History of the Experimental Film (4)

An inquiry into a specialized alternative history of film, consisting of experimental works made outside the conventions of the movie industry and which in their style and nature are closer to modernist painting, poetry, etc., than to the mainstream theatrical cinema. Works by such film artists as Man Ray, Salvador Dali, Maya Deren, Stan Brakhage, and Michael Snow will be examined in depth. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

152. Film in Social Context (4)

This collection of courses gathers, under one cover, films that are strongly marked by period, geography, and the culture within which they received their dominating local quality. These courses pay particular attention to the stamp of place-climate, dress, habitation, language, music, politics-as well as the filmic moves that helped color such works as environmental. The series takes in the following subjects: Third World films, the Munich films (the new wave of Germans who made their first features in Munich following 1967), Japanese movies, films of the American thirties and their relationship to current thought, American Westerns, Ethnographic Film, Brazil's Cinema Novo, etc. Specific topics to be covered will vary with the instructor. May
be repeated twice for credit. Materials fee required. Prerequisite: VIS 84 or consent of instructor.
153. The Genre Series (4)

A group of related courses exploring the conventions within such generic and mythic forms as the cowboy, shamus, chorus girls, and vampire films. May be repeated twice for credit. Materials fee required. Prerequisite: none; VIS 84 recommended.
154. Hard Look at the Movies (4)

Examines a choice of films, selected along different lines of analysis, coherent within the particular premise of the course. Films are selected from different periods and genres among Hollywood, European, and Third World films. May be repeated once for credit. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

155. The Director Series (4)

A course that describes the experiences, looks, and structure of director-dominated films. A different director will be studied each quarter. The student will be required to attend the lecture in the course and to meet with the instructor at least once each week. May be repeated three times for credit. Materials fee required. Prerequisite: VIS 84 or consent of instructor.
156. Film Analysis of the Visuals (2)

An examination of a selection of films along difference lines of analysis to be taken with VIS $84,150,151,152$, 153,154 , and 155. This course will specialize in the study of the visuals of film with specific topics selected by the instructor and varying each quarter. Film analysis will cover a wide range of films, from silent, alternative experimental, films dominated by social context and place in history to special genre and director-dominated films. May be repeated twice for credit. Prerequisites: none; VIS 84, 150, 151,152,153,154, or 155 recommended. Note: May not be taken in lieu of a course for majors and minors. Pass/Not Pass grades only.

157. Video History and Criticism (4)

A lecture course that examines video as an art form, its relationship to the development from television and other art forms, and surveys current work in the medium. Materials fee required. Prerequisites: VIS 22, 84, and 111.
158. Histories of Photography (4)

Photography is so ubiquitous a part of our culture that it seems to defy any simple historical definition. Accordingly, this course presents a doubled account of the medium; it explores both the historical and cultural specificity of a singular photography as well as some of the multitude of photographies that inhabit our world. Will examine a number of the most important photographic themes from the past 200 years. Prerequisite: none.

159. History of Art and Technology (4)

(Cross-listed with ICAM 150.) Aims to provide historical context for computer arts by examining the interaction between the arts, media technologies, and sciences in different historical periods. Topics vary (e.g., Renaissance perspective, futurism and technology, and computer art of the 1950s and 1960s). Prerequisite: none. Note: Materials fee required.

164. Photographic Strategies (4)

An introduction to the aesthetic problems in photography. Portfolio required for admission. Materials fee required. Prerequisites: VIS 60 and consent of instructor.
165. Camera Techniques (4)

An intermediate course involving refined control over different films, developers, papers, and other photographic techniques. Portfolio required for admission. Materials fee required. Prerequisites: VIS 60 and consent of instructor.

166. Advanced Camera Techniques (4)

An advanced-level course involving new techniques and processes as well as refined control over different films, developers, papers, and other photographic materials. Portfolio required for admission. Materials fee required. Prerequisites: VIS 60, 164, 165, and consent of instructor.

172. Studio Video (4)

A production course of video as a creative medium and the video studio as a production and post-production tool. Covers lighting, studio sound, the switcher and special effects, directing and editing in the controlled environment of the video studio. Prerequisites: VIS 111 and 174, department stamp required.
174. Media Sketchbook (4)

Video medium is used in this class both as a production technology and also as a device to explore the fundamental character of filmmaking and time-based computer art practices. Students perform all aspects of production with particular attention to developing ideas and building analytical and critical skills. Prerequisites: VIS 7ON, department stamp required.
176. Introduction to Filmmaking (4)

Designed as an introduction to filmmaking, this course provides a technical foundation as well as a creative and theoretical context to 16 mm film production. The student learns the use of motion picture camera (Bell \& Howell, Bolex and Arriflex S), use of lightmeter, frame composition, sound recording, picture and sound editing. The course exposes the extent of the filmmaking process from shooting, lighting, to editing and mixing. Student to produce a short film (one to two minutes) with a post synchronized sound track. Prerequisites: VIS 174; VIS 60 and 177 recommended, department stamp required.

177. Scripting and Editing Strategies (4)

The aim of this course is to examine the conceptual rather than technical structures of scripting and editing. The emphasis for script writing will be on the reading and analysis of both traditional and more experimental works. Students will be expected to write several short scripts. Editing will be approached as a structural partner to scripting, studying the strategies and grammars that shape a film or videotape. Based on works available for study, students will produce analytical papers. Prerequisites: VIS 70 N and 174, department stamp required.

180A. Generating the Narrative I (4)

An exploration of storytelling techniques through a series of short (five minutes in length) exercises, this course will familiarize the students with the mechanisms of narrative by teaching them how to construct a scene and to build sequences by the assembling of scenes. Collective work in group of four or five students will be encouraged. Prerequisites: VIS 111, 174 and one from VIS 140, 141A, 141B, 145A, 145B, 164, 165, 172, 176, 177; VIS 177 strongly recommended.

180B. Generating the Narrative II (4)

Continuation of VIS 180A. This class explores narrative structure. Students will be to produce a fifteen- to thirty-minute narrative. The emphasis will be on fiction.

Collective work will be encouraged. Prerequisite: VIS 180A.

181. Sound and Lighting (4)

An advanced course aimed at gaining a sophisticated control of lighting and sound-recording techniques with the understanding of their theoretical implications and the interrelation between production values and subject matter. The interrelation between sound and image in various works (film, video, or installations) will also be discussed. Lighting principles like modelling, matching lights, and continuity lighting will be demonstrated in class. Sound characteristics like perspective, distance, and presence will be presented with rerecording and the construction of a mix sound track. Prerequisites: VIS 174 and three of the following courses, depending on emphasis: VIS 164, 165,172,176,177.

182. Advanced Editing (4)

Covering both film and video editing, this course is designed to study the problems of editing from both a theoretical and practical point of view. Films and tapes will be analyzed on a frame-by-frame, shot-by-shot basis. Course may be repeated twice for credit. Prerequisites: two from VIS $164,165,172,176,177$; VIS 177 strongly recommended.

186. Advanced Filmmaking Strategies (4)

Designed as the second part of a two-part sequence, this course presents the techniques of sync sound recording and shooting, crew work, planning preproduction and production, and links technical decisions with creative and theoretical understanding of film production. The student will prepare, produce and edit a short 16 mm film (three to five minutes). It is recommended that the student have, at the beginning of the quarter, a fully developed script for the final project. Prerequisites:VIS 176,177, and consent of instructor.

194. Fantasy in Film (4)

This course will explore the path of the deliberately "unreal" in movies. Fantasy in Film will be considered both in terms of its psychological manifestations and also in terms of imaginary worlds created in such willfully anti-realistic genres as science-fiction, horror, and musical films. Prerequisite: none. Offered in summer session only.
197. Media Honors Thesis (4)

This advanced-level sequence coordinates three consecutive independent research courses to culminate in a completed thesis project in the third quarter of study. After the project's public presentation, the faculty involved in the project will determine whether the student will graduate with departmental honors. Prerequisite: consent of instructor. Note: Requires a written proposal, 3.5 GPA in the major, prior consent from all involved and approvals by the department chair and provost.

198. Directed Group Study (2-4)

Directed group study on a topic or in a group field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor. Note: Open only to upper-division students. Requires instructor's, department chair's, and provost's approval. Pass/Not Pass grades only.

199. Special Studies in the Visual Arts (4)

Independent reading, research, or creative work under direction of a faculty member. Prerequisite: consent of instructor. Note: Open only to upper-division students. Requires instructor's, department chair's, and provost's approval. Pass/Not Pass grades only.

ICAM 103. Musical Acoustics (4)
(Cross-listed with MUS 170.) An introduction to the acoustics of music with particular emphasis on contemporary digital techniques for understanding and manipulating sound. Prerequisites: MUS 1A, 2 A , or 4

ICAM 110. Computing in the Arts: Current Practice (4) Designed around the presentations by visiting artists, critics, and scientists involved with contemporary issues related to computer arts. Lectures by the instructor and contextual readings provide background material for the visitor presentations. Prerequisite: none. Note: Materials fee required.

ICAM 120. Virtual Environments (4)
Students will create virtual reality artworks in this course. Projects may be done individually or in groups. An exploration of the theoretical issues involved will underlie the acquisition of techniques utilized in the construction of virtual realities. Portfolio required for admission. Prerequisites: ICAM 102NIS 145A; CSE 11 recommended. Note: Materials fee required.

ICAM 160A-B. Senior Project in Computer Arts (4-4)
Students will pursue projects of thier own design over two quarters with support from faculty in a seminar environment. Collaborations are possible. Portfolio required for admission. Prerequisites: ICAM 101/NIS 140, ICAM 102/VIS 145A, ICAM 103/MUS 170, ICAM 110, and senior standing.
ICAM 199. Special Studies (2/4)
Independent reading, research or creative work under direction of faculty member. Prerequisites: department stamp and upper-division standing required.

GRADUATE

200. Introduction to Graduate Studies in the Visual

 Arts (4)This seminar introduces students to the graduate program in a workshop environment. Emphasis is on the production of new work and on situating that work in relation to a larger art context. Offered every fall.

201. Contemporary Critical Issues (4)

An exploration of a range of issues important on the contemporary critical scene through readings and writing assignments. Topics will vary from year to year. Offered every fall.

202. Art Practice (4)

A workshop/seminar devoted to a particular materials practice (e.g., media, painting, digital media, etc.) that engages with critical questions arising within that discipline. Content will vary from quarter to quarter. May be repeated once for credit.

203. Working Critique (4)

Workshop in which students engage in an extensive evaluation of each others' ongoing work in preparation for either the First Year Review or MFA Review. Offered every winter. May be repeated once for credit.

210. Narrative (4)

Examination of narrative issues in contemporary artmaking. Traditional and experimental narrative practices in painting, drawing, sculpture, and performance are explored alongside narrative strategies in media and digital media.

Warren College

211. Fact and Fiction (4)

This seminar addresses the space between narrative work generated from a factual base and that generated from a fictional one. Special attention will be given to discussing work that confounds the assumed gap between the two.

212. History and Memory (4)

This seminar will engage the space between personal and larger histories. How is one's own past both intertwined with and determined by larger social histories?

213. Public Space (4)

An exploration of what public space is and how it operates, with a view toward an expanded context for considering how public artwork can operate within it. included are areas such as mass media, activism, community action, computer networks, ecology, and alternative forums.

214. Intentionality (4)

An inquiry into the possibility and conditions of interpretation of works of art. What account should be taken of the intentions-conscious or otherwise-of their authors vs. the material circumstances and wider social and historical contexts of their making?
215. Human Interface (4)

Examines human interface as it informs or transforms how we read and participate in culture at large. Concepts such as subject/author/object relationships, abstraction, metaphor, analogy, visualization, and complexity are discussed to establish context.
216. The Object (4)

An investigation of the world of artifacts ("works of art" and others) and how they function as agents of communication and modifiers of consciousness. Contemporary perspectives drawn from the fields of art theory, anthropology, contemporary art, and semiotics will be utilized.
217. Communities and Subcultures (4)

A critical examination of the practices of self-defined communities (e.g., Bauhaus, Shaker, Surrealists) which have attempted to change the social and spiritual quality of life by aesthetic means and of communities and subcultures defined by other means.

218 N. Imaging Selves and Others (4)
Explores various strategies exhibited in a wide range of contemporary art practices engaging in the representation of personality, spirituality, and the physical self.

219. Special Topics in Art Practice/Theory (4)

Examines a topic of special interest to permanent and visiting faculty that is not addressed in the regular curriculum. As in other Art Practice/Theory seminars, students will both produce work and read and write critically about the topic. Topics will vary.

230N. Theories of Visual Culture (4)
This seminar will deal with the larger narratives which unite the various visual practices across the twentieth century. Efforts will be made to find similarities across seemingly disparate practices: painting, photography, performance, etc.

231. Contemporary Art (4)

Addresses current art practice and issues on the basis of art journals, gallery and museum shows and reviews, and visiting artist program talks, with the intent of placing students' own work in relation to contemporary dialogues

232N. Theories and Histories of Media (4)

This seminar will focus on the intersecting histories of a variety of media practices: cinema, video, new technologies, etc.

233. Art, History, and Tradition (4)

Critical investigation of issues concerning artists' relation to the past (e.g., the mechanisms by which traditions are established and maintained, the relation between tradition and individual talent, appropriation) and to the place of art in its immediate historical context.

234. Concepts of Analysis (4)

Critical analysis and historical critique of central operative concepts and categories of art theory, criticism, and history, such as the artist, style, representation, genre, etc.

235. Studies in the History of Practice and Theory (4)

In-depth study of the relation of theory and practice in a given type of art practice, art movement, historical or cultural context; or in the work of an individual theorist/practitioner (e.g., Marcel Duchamp).

236N. Workshop in Critical Writing (4)
Practice in writing about art (both one's own and others) accompanied by analysis of selected contemporary critical writings.

250. Special Projects in Art Practice (4)

Advanced workshop in specialized areas of art practice (e.g., Sound and Lighting, Editing).
295. Individual Studies for Graduate Students (1-12) Individual research with the student's individual faculty adviser in preparation for their comprehensive exhibitions for the M.F.A. degree. These units can only be taken after completing the First Year Review, and are intended to be with the chair of the student's review committee.

298. Directed Group Study (1-12)

Directed group study on specific topics not covered at present in the normal curriculum. Used as an experimental testing of courses that may be given regular course numbers if proved successful. Special arrangement with faculty member. Prerequisite: consent of department.
299. Graduate Research (1-4)

Graduate-level research under the direct guidance of a faculty member. Prerequisite: consent of instructor.
500.Apprentice Teaching (1-4)

Apprentice teaching in undergraduate courses given by the Department of Visual Arts. Graduate students are required to teach a minimum of one quarter (four units) within the department to fulfill degree requirements.

Warren College

OFFICE: Literature Building, Second Floor, Warren College
http://warren.ucsd.edu/

The Writing Program

OFFICE: Building 410, University Center

Each student must complete a two-course sequence in Warren Writing (10A and 10B) within four quarters (following successful completion of the Subject A requirement). Note: Effective fall quarter 2000, all new and continuing students will be required to complete Warren writing courses only at UCSD. The purpose of the sequence is to teach and thereby enable students, through intensive practice, to read critically and write appropriately in a variety of academic contexts. Classes are seminar-size and center on discussion of student work.
The two-quarter sequence emphasizes written argumentation based on primary and secondary sources. The curriculum provides a context within which a diversity of cultural experiences is foregrounded to address a range of issues inherent in the relationship of the "Individual and U.S. Society," the primary theme of the sequence. The readings are accessible, scholarly writings that interrogate aspects of this relationship, and may include novels, short stories, essays, autobiographies, political documents, and book-length nonfictional treatments of the theme. Thus, the writing and readings prepare students for their work in various academic disciplines.
In both 10A and 10B, student writing is duplicated and discussed by the class in a workshop setting. Instructors hold conferences with students individually during the quarter and provide written and oral commentaries on student work. Every student receives a mid-quarter evaluation, and a final narrative evaluation is placed in the student's academic file. The minimum writing requirement is 8,000 words per quarter. Warren Writing 10 A and 10 B are offered P / NP only, and students cannot test out of this general-education requirement.

10A-10B. The Writing Course (4-4)
A workshop course in reading and writing required of all Warren College students. The course emphasizes argumentation and critical writing based on sources. Prerequisite: satisfaction of the university Subject A requirement.

Warren Honors Program

OFFICE: 3238 Literature Building, Second Floor, Warren College

The Warren Honors Program offers students educational, cultural, and social experiences designed to broaden their intellectual interests. The activities vary each year and are planned to foster student interaction and promote a sense of community.

Students may replace one course in a minor, program of concentration, or area study with a faculty-directed Independent Study (199) honors research paper. If the research paper is written within the student's major, departmental approval may be needed for acceptance toward major requirements. The paper also may be written as part of an Academic Internship (197). The Michael Addison award is presented at the graduation ceremony to the student who is judged to have written the most distinguished research paper in the Honors Program.

Entering freshmen with a high school GPA of 3.8 or above and SAT I scores of 710 verbal/650 mathematics, SAT II writing score of 710 , are eligible to participate in the Honors Program. Students remain in the program until thirty-six units of UCSD credit are completed. After that, a cumulative GPA of 3.5 on all units completed at UCSD must be maintained to remain in the program.

Students who do not qualify for the Honors Program at the time of admission may join it as soon as a cumulative GPA of 3.5 is attained on thirty-six or more units completed at UCSD. Entering transfer students with a GPA of 3.8 based on at least thirty-six quarter-units of college work are also eligible.

Warren Scholars Seminar

The Warren Scholars Seminar offers an interdisciplinary academic curriculum which is designed to help students broaden their intellectual interests. Students enroll in two seminars, Warren 11A-B, Warren Scholars Seminar, which fulfill the college writing requirement. The seminars are taught by a variety of distinguished faculty and teaching assistants.
Entering freshman Honors Program students are admitted to the Warren Scholars Seminar by invitation.
Students in the Honors Program may participate in teaching assistant apprenticeships (Warren 195, Apprentice Teaching) in Warren 11A and B. Teaching assistants participate in planning and developing the seminars. They interview the faculty speakers, are trained to lead group discus-
sions, read and evaluate student papers, and plan social events for the class.

Additional information may be obtained by writing to:Warren College Honors Program Coordinator, Warren College, UCSD, La Jolla CA 92093-0422.

11A-11B. Warren Scholars Seminar (4-4)
The Warren College Scholars Seminar allows students to develop and refine their expressive and analytical skills by participation in a two-quarter sequence. The emphasis is on the interdisciplinary approach to a group of topics linked to the relation of individuals and society, and the function of evidence and observation in the formation of theories.
195. Apprentice Teaching (1)

Undergraduate instructional assistance. Responsible both in area of learning and instruction. Student must prepare reading materials assigned by the professors and lead student discussions in Warren 11A or 11 B . Prerequisite: student must be in the Warren College Honors Program.

Ethics and Society

OFFICE: 3238 Literature Building, Second Floor, Warren College

Ethics and Society is an interdisciplinary course required of all Warren students. It is cross-listed as Political Science 27 and Philosophy 27 (see departmental listings). A student may enroll in this course through either department, but not both. Ethics and Society is to be taken after the completion of Warren Writing 10A-B (or Scholars Seminar $11 A-B$), either in the spring of the freshman year or in any quarter of the sophomore year. This requirement is waived for certain upper-division transfer students (see the program of concentration brochure).

Health Care—Social Issues

OFFICE: Interdisciplinary Programs, 3238 Literature Building, Second Floor, Warren College

Health Care-Social Issues is an interdisciplinary minor administered by Warren College, available to all UCSD students with a general interest in health care issues and to students considering a health care career. For more information, see listing under "Health Care-Social Issues."

Law and Society

OFFICE: Interdisciplinary Programs, 3238 Literature Building, Second Floor, Warren College

Law and Society is an interdisciplinary minor administered by Warren College, available to all UCSD students with a general interest in law as a social institution and to students considering lawrelated careers. For more information, see listing under "Law and Society."

Academic Internship

OFFICE: Literature Building, Second Floor, Warren College

The Academic Internship Program is developed and administered by Warren College, but it is available to juniors and seniors with a 2.5 GPA (some internships require a 3.0 GPA) in any college at UCSD. For more information, see listing under "Academic Internship."

One-unit Undergraduate Seminar

The One-Unit Undergraduate Seminar Program is a campuswide program administered by Warren College. The purpose is to (a) foster closer interaction between undergraduate students and faculty members; and (b) introduce undergraduates to exciting areas of intellectual interest. Generally, the seminars are accessible to students at all levels with no prerequisites. Enrollments are limited to twenty-five students per seminar. Grading is P/NP only, and each student is limited to four seminars for credit

Nondiscrimination and Affirmative Action Policy Statement for University of California

It is the policy of the university not to engage in discrimination against or harassment of any person employed by or seeking employment with the University of California on the basis of race, color, national origin, religion, sex, physical or mental disability, medical condition (cancerrelated or genetic characteristics), ancestry, marital status, age, sexual orientation, citizenship, or status as a covered veteran (special disabled veteran, Vietnam era veteran, or any other veteran who served on active duty during a war or in a campaign or expedition for which a campaign badge has been authorized). This policy applies to admissions, access, and all employment practices, including recruitment, selection, promotion, transfer, merit increase, salary, training and development, demotion, and separation. This policy is intended to be consistent with the provisions of applicable state and federal laws and university policies.

In addition, it is the policy of the university to undertake affirmative action, consistent with its obligations as a federal contractor, for minorities and women, for persons with disabilities, and for special disabled veterans, Vietnam era veterans, and any other veterans who served on active duty during a war or in a campaign or expedition for which a campaign badge has been authorized. The university commits itself to apply every good faith effort to achieve prompt and full utilization of minorities and women in all segments of its workforce where deficiencies exist. These efforts conform to all current legal and regulatory requirements, and are consistent with university standards of quality and excellence.

Inquiries regarding the University of California, San Diego's (UCSD) equal employment opportunity policies and student-related nondiscrimination policies may be directed to:

Student Affairs-
Joseph W. Watson
Vice Chancellor-Student Affairs

Bldg. 112 University Center, UCSD
9500 Gilman Drive, Dept. 0015
La Jolla, CA 92093-0015
(858) 534-4370

Academic Affairs-
Marsha A. Chandler
Senior Vice Chancellor-Academic Affairs
Bldg. 105 University Center,
UCSD
9500 Gilman Drive, Dept. 0001
La Jolla, CA 92093-0001
(858) 534-3130

Staff and Management-
Paula C. Doss, Director
Human Resources for Equal Opportunity/
Staff Affirmative Action
Torrey Pines Center South, Suite 370
UCSD
9500 Gilman Drive, Dept. 0923
La Jolla, CA 92093-0923
(858) 534-3694

UCSD recognizes its obligation to provide program accessibility (as described in Section 504 of the 1973 Rehabilitation Act and the Americans with Disabilities Act of 1990) for persons with disabilities. For information as to the existence and location of services, activities, and facilities that are accessible to and usable by persons with disabilities, contact:

Joseph W. Watson
Vice Chancellor Student Affairs
Sec. 504 Coordinator-Students
Bldg. 112 University Center, UCSD
9500 Gilman Drive, Dept. 0015
La Jolla, CA 92093-0015
(858) 534-4370

Marsha A. Chandler
Senior Vice Chancellor Academic Affairs
Sec. 504 Coordinator-Faculty
Bldg. 105 University Center, UCSD
9500 Gilman Drive, Dept. 0001
La Jolla, CA 92093-0001
(858) 534-3130

Barry J. Niman
ADA Coordinator
Manager, Employee Rehabilitation Program

Torrey Pines Center South, Suite 348
9500 Gilman Drive, Dept. 0944
La Jolla, CA 92093-0944
(858) 534-6743
(858) 534-3059

Steve W. Relyea
Vice Chancellor Business Affairs
Sec. 504 Coordinator--Staff
Bidg. 110 University Center, UCSD
9500 Gilman Drive, Dept. 0007
La Jolla, CA 92093-0007
(858) 534-3390

UCSD Policies and Procedures Applying to Student Activities

Students enrolling at UCSD are required to observe campus regulations, including but not limited to the Standards of Conduct and the Policies and Procedures Applying to Student Activities, which are available to students at http://ugr8.ucsd.edu/judicial/ as well as the following locations:

Student Legal Services
Student Organizations and Leadership Opportunities

College Dean Offices
Office of Graduate Studies and Research
Office of the Student Affairs Dean, School of Medicine

Student Policies and Judicial Affairs
SIO, Graduate Student Department

Notice to Students of Their Privacy Rights

In accordance with the Federal Family Educational Rights and Privacy Act of 1974 and campus procedures implementing the University of California Policies Applying to the Disclosure of Information from Student Records, students at the San Diego campus of the university have the right:

1. To inspect and review records pertaining to themselves in their capacity as students;
2. To have withheld from disclosure, absent their prior consent for release, personally identifiable information from their student records, with exceptions as noted in Section 10.70 of the university's policies (see also Directory or Public Information below);
3. To inspect records maintained by the campus of disclosure of personally identifiable information from their student records;
4. To seek correction of their student records through a request to amend the records or a request for a hearing; and
5. To file complaints with the Department of Education regarding alleged violations of the rights accorded them by the Federal Act.

Directory or Public Information

The Federal Family Educational Rights and Privacy Act of 1974 (revised June 1976) permits the university to release or publish, without the student's consent, items in the category of "public information" which are name, address (campus and/or permanent), telephone number, campus email address, date and place of birth, major fields of study, dates of attendance, degrees and honors received, the most recent previous educational institutions attended, participation in officially recognized activities, including intercollegiate athletics, and the name, weight and height of participants on intercollegiate university athletic teams. Students may request in writing, by the last day of registration each quarter, that any or all personally identifiable information from their records not be regarded as public information. Forms for this purpose are available in the Registrar's Office.

Notification of Rights Under FERPA for Postsecondary Institutions

The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. They are:

1. The right to inspect and review the student's education records within forty-five days of the day UCSD receives a request for access.

Student should submit to the registrar, dean, head of the department written
requests that identify the record(s) student wishes to inspect. The UCSD official to whom the request was submitted will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records were not maintained by the UCSD official to whom the request was submitted, that official shall advise the student of the correct official to whom the request should be addressed.
2. The right to request amendments of the student's education records that the student believes are inaccurate or misleading.

Students may ask UCSD officials to amend a record that they believe is inaccurate or misleading. They should write the UCSD official responsible for the record, clearly identify the part of the record they want changed, and specify why it is inaccurate or misleading. If the UCSD official decides not to amend the record as requested by the student, that official will notify the student of the decision and advise the student of the procedures to appeal the denial.
3. The right to consent to disclosures of personally identifiable information contained in the student's education records, except to the extent that FERPA authorizes disclosure without consent.

One exception which permits disclosure without consent is disclosures to UCSD or UC officials with legitimate educational interests. A UCSD or UC official is a person employed by UCSD or UC in an administrative, supervisory, academic, research, or support staff position: a person or company with whom UCSD or UC has contracted (such as attorney, auditor, or collection agent): or a student serving on an official committee, such as a disciplinary or grievance committee. A UCSD or UC official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility.
4. The right to file a complaint with the U.S.

Department of Education concerning alleged failures by UCSD to comply with the requirements of FERPA.

The name and address of the office that administers FERPA is:

Family Policy Compliance Office
U.S. Department of Education

400 Maryland Avenue, SW
Washington, DC, 20202-4605
Questions about these rights or any other aspect of student records management by UCSD officials may be referred to the Director, Student Policies and Judicial Affairs, Student Center, Building B, or by telephone at (858) 534-6225 or email at naguilar@ucsd.edu. The text of FERPA may be found in the Government Documents section of the UCSD Geisel Library. Copies of the UCSD student records policy, PPM 160-2, may be accessed electronically at http://
adminrecords.ucsd.edu/ppm/docs/160-2.html

UCSD Sexual Harassment Prevention and Policy

The University of California, San Diego is committed to creating and maintaining a community in which all persons who participate in UCSD programs and activities can work together in an atmosphere free from all forms of harassment, exploitation, or intimidation. Every member of the UCSD community should be aware that UCSD is strongly opposed to sexual harassment and that such behavior is prohibited both by law and UCSD policy. Retaliation against a person who brings a complaint of sexual harassment is also strictly prohibited and may result in separate disciplinary action. It is UCSD's intention to take whatever action may be needed to prevent, correct, and if necessary, discipline behavior which violates this policy.

Laws and University Policies Prohibiting Sexual Harassment

The California Fair Employment and Housing Act and Title VII of the Federal Civil Rights Act of 1964, as amended, prohibit sexual harassment in employment. Title IX of the Education Amendments of 1972 prohibits sexual harassment in educational institutions which are recipients of federal funds. UCSD's policy prohibits discrimination on the basis of sex, including sexual harassment, and provides for disciplinary action for inappropriate conduct.

Defining Sexual Harassment

Sexual harassment is defined as unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual
nature when any or all of the following conditions result:

- Submission to such conduct is made either explicitly or implicitly a term or condition of instruction, employment, or participation in any university activity.
- Submission to or rejection of such conduct by an individual is used as a basis for evaluation in making academic or personnel decisions affecting an individual.
- Such conduct has the purpose or effect of unreasonably interfering with an individual's performance or creating an intimidating, hostile, or offensive university environment.
A determination of whether particular conduct constitutes sexual harassment takes into account the totality of the circumstances, including:

1. the frequency of the offensive conduct;
2. its severity;
3. whether it is physically threatening or humiliating;
4. the location of the conduct and the context in which it occurred;
5. the degree to which the conduct affected the education or employment environment; and
6. the relationship between the parties.

Sexual harassment does not typically include verbal expression or written material that is relevant and appropriately related to course subject matter or curriculum.

Sexual harassment may occur between persons of differing power or between peers. In addition, while the majority of reported cases of sexual harassment involve a male harassing a female, sexual harassment may also involve a female harassing a male, or a male or female harassing a person of the same sex.

Prevention and Education

To implement UCSD's policy regarding sexual harassment, the Office of Sexual Harassment Prevention and Policy (OSHPP) provides assistance in investigating and resolving complaints and provides education to the entire UCSD community. Emphasis is on prevention and early resolution. Copies of UCSD's policy and procedures may be obtained at OSHPP at 201 University Center or at its campus Web page at http:// oshpp.ucsd.edu.

Complaint Resolution

UCSD has established formal and informal procedures for resolving sexual harassment complaints. There are several informal resolution options, depending on the circumstances, including educational programs for targeted campus units or for particular individuals and mediation between the parties. Where informal resolution is unsuccessful or inappropriate, a formal complaint may be filed and a formal investigation undertaken. There is no prescribed sequence, so choosing one option first does not prevent a complainant from choosing a different option for resolution later on.

Because complaints are most effectively resolved at the earliest possible stage, UCSD encourages early reporting of concerns or complaints regarding sexual harassment. If you believe you have been sexually harassed, you are encouraged to discuss your options and learn about UCSD procedures by contacting OSHPP at (858) 534-8298 or one of the Information Advisors listed in the Campus Telephone Directory under "Sexual Harassment."

A number of governmental agencies also accept complaints of sexual harassment, including the California Department of Fair Employment and Housing, the U.S. Equal Employment Opportunity Commission, and the Office for Civil Rights, U.S. Department of Education. The time deadlines for filing such complaints vary between 180 and 365 days.

Retaliation

Threats, other forms of intimidation, and retaliation against a faculty member, student, or staff employee for bringing a complaint of sexual harassment or for assisting another in bringing a complaint are prohibited. Retaliation is itself a violation of UCSD policy and applicable law, and is a serious offense. Complaints of retaliation may be brought through the informal or formal sexual harassment complaint procedures. Acts of retaliation may result in discipline.

Title IX Coordinator

Persons who wish to bring a complaint alleging a violation of Title IX of the Education Amendments of 1972 may contact the Title IX Coordinator as follows:

Lori Chamberlain, Title IX Coordinator University of California, San Diego

9500 Gilman Drive, Mail Code 0024
La Jolla, California 92093
(858) 534-8298

The Regents of the
 University of California

REGENTS EX OFFICIO

Governor of California and President of the Board of Regents

Gray Davis

Lieutenant Governor of California

Cruz Bustamante

Speaker of the Assembly
Robert M. Hertzberg
State Superintendent of Public Instruction Delaine Eastin

President of the Alumni Associations of the University of California

Irene Miura

Vice President of the Alumni Association of the University of California
Dr. Markell W. Kohn
President of the University

Richard C. Atkinson

APPOINTED REGENTS

The term of office of appointed regents is twelve years, and terms expire on March 1 of the year indicated.
William T. Bagley (2002)
Ward Connerly (2005)
John G. Davies (2004)
Judith L. Hopkinson (2009)
Odessa Johnson (2012)
S. Sue Johnson (2002)

Meredith J. Khachigian (2001)
Joanne Kozberg (2010)
Sherry L. Lansing (2010)
Howard H. Leach (2001)
David S. Lee (2006)
Velma Montoya (2005)
John J. Moores (2009)
S. Stephen Nakashima (2004)

Gerald L. Parsky (2008)
Peter Preuss (2008)
Tom Sayles (2006)
Justin Fong, Student Regent
(June 30, 2001)

PRINCIPAL OFFICERS OF THE REGENTS

President of the Regents

Gray Davis

Chair of the Regents
S. Sue Johnson

Vice Chair of the Regents

Sherry L. Lansing

Treasurer (Interim)
DeWitt F. Bowman
General Counsel
James E. Holst
Secretary of the Regents
1111 Franklin Street, 12th Floor
Oakland, CA 94607
Leigh Trivette

FACULTY REPRESENTATIVES TO THE BOARD OF REGENTS

Chand Viswanathan

(September 1, 2000 to August 31, 2002)

Michael Cowan

(September 1, 1999 to August 31, 2001)
Systemwide Administration
President of the University
Richard C. Atkinson
Provost and Senior Vice PresidentAcademic Affairs

C. Judson King

Senior Vice President-Business and Finance Joseph P. Mullinix

Senior Vice President—University and External Relations
Bruce B. Darling
Vice President--Health Affairs
Michael V. Drake, M.D.
Vice President-Agriculture and Natural Resources

W. R. Gomes

Vice President-Clinical Services Development

William H. Gurtner

Vice President-Budget

Lawrence C. Hershman

Vice President-Educational Outreach

Alex Saragoza

CHANCELLORS OF THE CAMPUSES

Berkeley
Robert M. Berdahl
Davis
Larry N. Vanderhoef
Irvine
Ralph J. Cicerone
Los Angeles
Albert Carnesale
Merced
Carol Tomlinson-Keasey
Riverside
Raymond L. Orbach
San Diego
Robert C. Dynes
San Francisco
J. Michael Bishop

Santa Barbara
Henry T. Yang
Santa Cruz
M.R.C. Greenwood

UNIVERSITY PROFESSORS
University Professor
J. Michael Bishop

Chancellor's Office
126 Medical Sciences Building, Box 0402
UC San Francisco
San Francisco, CA 94143
University Professor Emeritus

E. Margaret Burbidge

Department of Physics, Mail code 0424
SERF Building, Room 330
UC San Diego
La Jolla, CA 92093
University Professor

Marvin L. Cohen

Department of Physics
539 Birge Hall, Mail code 7300
UC Berkeley
Berkeley, CA 94720
University Professor

Michael Cole

Department of Communications, 0503
Media Center/Communications Building,
Room 204
UC San Diego
La Jolla, CA 92093

University Professor Emeritus

Donald Cram

Department of Chemistry and Biochemistry
Mail code 156905
3060 Young Hall
UC Los Angeles
Los Angeles, CA 90024
University Professor Emeritus

Gerard Debreu

Departments of Economics and Mathematics
549 Evans Hall, Mail code 3880
UC Berkeley
Berkeley, CA 94720
University Professor

Robert B. Edgerton

Departments of Psychiatry and Biobehavioral
Sciences and Anthropology
C9-938 Neuropsychiatric Institute
Mail code 175919
UC Los Angeles,
Los Angeles, CA 90024
University Professor

Sandra M. Faber

Department of Astronomy and Astrophysics
Kerr Hall
UC Santa Cruz
Santa Cruz, CA 95064
University Professor

Arturo Gomez-Pompa

Department of Botany and Plant Sciences
3101 Batchelor Hall, Mail code 072
UC Riverside
Riverside, CA 92521
University Professor

M. Frederick Hawthorne

Department of Chemistry and Biochemistry
2505A Molecular Sciences Building
Mail code 156905
UC Los Angeles
Los Angeles, CA 90024
University Professor Emeritus
Richard Karp
Departments of Electrical Engineering and
Computer Sciences
621 Soda Hall, Mail code 1776
UC Berkeley
Berkeley, CA 94720

University Professor Emeritus

Yuan T. Lee

Department of Chemistry
B38 Hildebrand Hall, Mail code 1460
UC Berkeley
Berkeley, CA 94720
University Professor
Frank H. Shu
Department of Astronomy
403 Campbell Hall, Mail code 3411
UC Berkeley
Berkeley, CA 94720
University Professor Emeritus

S. Jonathan Singer

Department of Biology, Mail code 0322
3430 Bonner Hall, Room 2202
UC San Diego
La Jolla, CA 92093
University Professor Emeritus

Neil J. Smelser

Department of Sociology
410 Barrows Hall and
Institute for International Studies
215 Moses Hall
UC Berkeley
Berkeley, CA 94720
University Professor Emeritus

Edward A. Teller

501F Building 111; P.O. Box 808
Lawrence Livermore National Laboratory
Livermore, CA 94550
University Professor
Chang-Lin Tien
Department of Mechanical Engineering
6101 Etcheverry Hall, Mail code 1740
UC Berkeley
Berkeley, CA 94720
University Professor Emeritus
Charles H. Townes
Department of Physics
557 Birge Hall, Mail code 7300
UC Berkeley
Berkeley, CA 94720
University Professor Emeritus
John R. Whinnery
Department of Electrical Engineering and Computer Sciences
193 M Cory Hall, Mail code 1770
UC Berkeley
Berkeley, CA 94720

University Professor Emeritus
Hayden White
History of Consciousness Department
Oakes College
UC Santa Cruz
Santa Cruz, CA 95064
Regents' Professor at UCSD
Ravi Shankar

ACADEMIC AND ADMINISTRATIVE OFFICERS UNIVERSITY OF CALIFORNIA, SAN DIEGO

Chancellor

Robert C. Dynes

Senior Vice Chancellor

Marsha A. Chandler, Academic Affairs

Vice Chancellors

Richard E. Attiyeh, Research
Edward W. Holmes, M.D., Health Sciences
Charles F. Kennel, Marine Sciences
James M. Langley, External Relations
Steven W. Relyea, Business Affairs
Joseph W. Watson, Student Affairs
John A. Woods, Resource Management and Planning

Associate Chancellor

Laura E. Schreibman

Assistant Chancellor

Linda Williams

Chair, Academic Senate
Michael A. Bernstein, 2001-02
Douglas Magde, 2000-01

Academic Deans

Arts and Humanities
Frantisek Deak, Dean
Biology
William McGinnis, Interim Dean
Extended Studies and Public Service
Mary Lindenstein Walshok, Dean

Graduate School of International Relations and Pacific Studies
Stephan Haggard, Interim Dean
Graduate School of Marine Sciences
Charles F. Kennel, Dean
Graduate Studies
Richard Attiyeh, Dean
International Education
Mary L. Dhooge, Dean
Jacobs School of Engineering
Robert W. Conn, Dean
Physical Sciences
Mark Thiemens, Interim Dean
School of Medicine
Edward W. Holmes, M.D., Dean
Social Sciences
Paul W. Drake, Dean

Chief Officers

University Librarian
Brian E.C. Schottlaender
Campus Counsel
Ann Parode

College Provosts

Revelle College
F. Thomas Bond

John Muir College
Patrick J. Ledden
Thurgood Marshall College
Cecil Lytle
Earl Warren College
David Jordan
Eleanor Roosevelt College
Ann L. Craig
Sixth College
Gabriele Weinhausen

Associate Vice Chancellors

Tom Collins, Marine Sciences
Winifred Cox, University Communications
Edward Furtek, Science and Technology Policy and Projects

William S. Hodgkiss, Marine Sciences
Roger D. Meyer, Health Sciences
Administration

David Miller, Academic Planning and Programs
Ted Peck, Development
Mary Lindenstein Walshok, Extended Studies and Public Service

John Wooley, Research

Assistant Vice Chancellors

Richard Backer, Enrollment Management/ Registrar

Jennefer Collins, Academic Affairs
Rogers Davis, Human Resources
Elazar Harel, Administrative Computing and Telecommunications
M. Boone Hellmann, Facilities Design and Construction

John J. Hug, Auxiliary and Plant Services
Donald Larson, Controller, Business and Financial Services

Debbie McGraw, Resource Administration
Brian J. Murray, Student Development
Margaret Pryatel, Resource Management
Jeffrey A. Steindorf, Campus Planning
Loren C. Thompson, Student Educational Advancement
Tom R. Tucker, Student Programs and Facilities

College Deans

Eleanor Roosevelt College
Patricia L. Scott
John Muir College
Charles L. Dreilinger
Revelle College
Renee Barnett Terry
Thurgood Marshall College
Ashanti Houston-Hands
Earl Warren College
Ramon Aldecoa, Acting Dean

College Directors of Advising

Eleanor Roosevelt College

Nancy Friedlander

John Muir College
Kay Reynolds

Revelle College
Nancy Groves
Thurgood Marshall College
Anne Porter
Earl Warren College
Catherine A. Joseph

Organized Research Units, Institutes, Laboratories, and Projects

African and African American Studies Project Bennetta Jules-Rosette, Director
AIDS Research Institute
Douglas Richman, Director
California Institute for Telecommunication and Information Technologies (CAL-(IT) ${ }^{2}$)
Larry Smarr, Director
California Space Institute
Wolfgang Berger, Director
Cancer Center
David Tarin, Director
Center for Astrophysics and Space Sciences Arthur Wolfe, Director

Center for Atmospheric Sciences
V. Ramanathan, Director

Center for Coastal Studies
Robert T. Guza, Director
Center for Comparative Immigration Studies
Wayne Cornelius, Director
Center for Energy Research
Forman A. Williams, Director
Center for Environmental Research and Training
Mark Thiemens, Director
Center for Human Development
Mark Appelbaum, Co-Director
Joan Stiles, Co-Director
Center for Human Information Processing
V.S. Ramachandran, Director

Center for Iberian and Latin American Studies
Peter H. Smith, Director
Center for Interface and Materials Science
M. Brian Maple, Director

Center for Magnetic Recording Research
Paul Siegel, Director
Center for Marine Biotechnology and Biomedicine
William Fenical, Director

Center for Molecular Agriculture
Maarten Chrispeels, Director
Center for Molecular Genetics
Richard Firtel, Director
Center for Research in Biological Structure Mark Ellisman, Director
Center for Research in Computing and the Arts Sheldon Brown, Director

Center for Research on Educational Equity, Assessment, and Teaching Excellence (CREATE) Hugh Mehan, Director

Center for Research in Language
Elizabeth Bates, Director
Center for U.S.-Mexican Studies
Kevin Middlebrook, Director
Climate Research Division
Daniel Cayan, Director
Geosciences Research Division Jeremy Jackson, Director
Glycobiology Research and Training Center Ajit Varki, Director

Institute of Geophysics and Planetary Physics
Bernard Minster, Director
Institute on Global Conflict and Cooperation
Peter Cowhey, Director
Institute for Neural Computation
Terrence Sejnowski, Director
Institute for Nonlinear Science Henry Abarbanel, Director
Institute for Pure and Applied Physical Sciences
M. Brian Maple, Director

Laboratory of Comparative Human Cognition
Michael Cole, Director
Marine Biology Research Division
Ronald Burton, Director
Marine Life Research Group
Elizabeth Venrick, Interim Director
Marine Physical Laboratory
William Kuperman, Director
Marine Research Division
Joris Gieskes, Director
Physical Oceanography Research Division
Bruce Cornuelle, Director
Project for Explaining the Origins of Humans
Ajit Varki, Director
Project in Display Phosphor Research
Jan B. Talbot, Coordinator

Project in Econometric Analysis
Clive Granger, Coordinator
Project in Geometry and Physics
Jeff Remmel, Coordinator
Project on International and Security Affairs
Peter Gourevitch, Director
Public Policy Research Project
Mathew McCubbins, Director
San Diego Supercomputer Center
Sidney Karin, Director
Stein Institute for Research on Aging
Dennis Carson, Director
Whitaker Institute for Biomedical Engineering
Shu Chien, Director
White Mountain Research Station
Frank Powell, Director

UCSD Healthcare

David I. Sakai, Chief Financial Officer
Sumiyo Kastelic, Director, UCSD Medical Center

Scott S. Hofferber, Chief Operating Officer
Jan R. Radke, Chief Medical Officer
Edward Babakanian, Chief Information Officer
Lawrence S. Friedman, Medical Director, Ambulatory and Primary Care
Paul J. Hensler, Administrator, Thornton Hospital
Robert W. Hogan, Associate Director, Finance, UCSD Medical Center

James D. Kaufman, Director of Support Services

Dennis E. Goodrich, Director of Facilities Planning and Management
Mary Middleton, Associate Director, Patient Care Services, UCSD Medical Center
Dennis Moran, Associate Director, Clinical and Professional Services, UCSD Medical Center

Cecilia M. Smith, Medical Director, UCSD Medical Center

UCSD School of Medicine

Leslie Bruce, Director, Government and Community Relations
Ruth Covell, Associate Dean, Program and Policy Analysis
Terence Davidson, Associate Dean,
Continuing Medical Education

Leslie Franz, Director, Health Sciences Communications
Edward W. Holmes, M.D., Dean
Julianne R. Howell, Director, Health Sciences Planning
Cecilia M. Smith, Associate Dean, Medical Center Affairs and Graduate Medical Education
Roger D. Meyer, Associate Dean, Administration
Charles Mittman, Dean, Clinical Affairs
George E. Palade, Dean, Scientific Affairs
Jacqueline Parthemore, Associate Dean, Veterans'Affairs

Robert Resnik, Associate Dean, Admissions and Financial Aid

Maria Savoia, Associate Dean, Curriculum and Student Affairs

Jerry Schneider, Dean, Academic Affairs
David Tarin, Associate Dean, Cancer Affairs

Endowed Chairs

University of California, San Diego
Akamai Chair of Internet Mathematics
-
Victor C. Alderson Chair of Applied Ocean Science
Veerabhadran Ramanathan
Atkinson Family Chair
-
Richard C. Atkinson Chair
-
Rita L. Atkinson Chair
-
Sanford I. Berman Chair in Language and Human Communication -
J. Robert Beyster Chair in Engineering Joseph Pasquale

Blasker Chair in Environmental Engineering Paul Linden

Simon Bolivar Chair in Latin American Studies Peter H. Smith

Dan Broida Chair in Elementary Particle Physics

Callaway Golf Chair in Structural Mechanics
John B. Kosmatka
Center for Magnetic Recording Research Chair in Materials
-
Center for Magnetic Recording Research Chair in Mechanics and Tribology

Frank E. Talke

Center for Magnetic Recording Research Chair in Physics

H. Neal Bertram

Chancellor's Associates Chair in Chemistry and Biochemistry

Mark H. Thiemens

Chancellor's Associates Chair in Econometrics I Robert F. Engle
Chancellor's Associates Chair in Econometrics II
Clive W.J. Granger
Chancellor's Associates Chair in Theatre
Jorge A. Huerta
Chancellor's Associates Chair in Physics
Arthur Wolfe
Chancellor's Associates Chair in Ethnic Studies
Ramon A. Gutierrez
Chugai Pharmaceutical Chair in Cancer David Tarin

Communications Industry Professorship in Engineering

Lawrence Larson

Distinguished Chair in Physical Chemistry

Edward A. Frieman Chair in Global Observation Research
-
Frank Caylus Grandier Chair in Medieval European History

Gildred Chair for United States-Mexican Relations Wayne A. Cornelius

Chair in Hebrew Biblical Studies
David Noel Freedman
Walter F. Heiligenberg Professorship in Neuroethology

James Nieh

Ingrid and Joseph W. Hibben Chair in Space Science and Education

Sally Ride

Hwei-Chih and Julia Hsiu Chair in Chinese Studies

Joseph W. Esherick

Chair in Infectious Diseases
-
Institute of the Americas Chair for Inter-American Affairs

Paul W. Drake

John Dove Isaacs Chair in Natural Philosophy

Sia Nemat-Nasser

Kazuo Iwama Chair in Material Science

Irwin Mark and Joan Klein Jacobs Chair in Information and Computer Science

Ronald Graham

Helen A. Jarrett Chair in Alzheimer's
Disease Research
David P. Salmon, M.D.
Chair of Judaic Studies

David Goodblatt

Katzin Chair of Jewish Civilization Richard E. Friedman

Nancy Kaehr Chair in Pediatric Research Sanjay K. Nigam
Lawrence B. and Sallye K. Krause Chair in Korean Studies

Stephen Haggard

Stephen W. Kuffler Chair in Biology
Mu-Ming Poo
Estelle and Edgar Levi Memorial Chair in Aging Daniel Steinberg
Benard L. Maas Chair in Inherited Metabolic Disease
Jerry A. Schneider
Mary Gilman Marston Chair in Psychiatry

Lewis L. Judd

Quinn Martin Chair in Drama
-
Bernd T. Matthias Chair in Physics
M. Brian Maple

Joseph E. Mayer Chair of Theoretical Chemistry

J. Andrew McCammon

Hajime Mori Chair in Japanese Language and Literature

Masao Miyoshi

Novartis Chair in Plant Science
Julian I. Schroeder

Nancy Olmsted Chair in Pediatric Pulmonology
Paul M. Quinton
Pacific Economic Cooperation Chair in International Economic Relations
-
Edith and William M. Perlman Chair in Clinical Cardiology
Kirk L. Peterson
Charles Lee Powell Chair in Mathematics
Michael H. Freedman
Charles Lee Powell Chair in Wireless Communication
Bang-Sup Song
Presidential Chair in Engineering Combustion Research
Forman A. Williams
Presidential Chair in Philosophy
Patricia S. Churchland
Professorship in Neuroregeneration

Marla Feller

Helen Ranney Chair in Medicine
Stephen I. Wasserman
Anne Ratner Chair in Pediatric Ophthalmology

-

Eric and Johanna Reissner Chair in the Department of Structural Engineering

Frieder Seible

Stephen O. Rice Chair in Magnetic Recording Research
Jack K. Wolf
Florence Seeley Riford Chair for Acquired Immune Deficiency Syndrome (AIDS) Research

Flossie Wong-Staal

Florence Riford Chair for Alzheimer's Disease Research
Leon J. Thal
William E. and Mary B. Ritter Memorial Chair Jeremy Jackson

Rohr Chair in Pacific Economic Relations Miles Kahler

Paul D. Saltman Chair in Science Education Immo Scheffler
San Diego County Heart Association Chair in Cardiovascular Research
John Ross, Jr.
Science Applications International Corporation Chair in Engineering

Andrew Chien

Harold Simon Chair in International Health and Cross Cultural Medicine

Sokwanlock Chair in Chinese International Affairs

Barry Naughton

Herbert Stern Chair in Biology
Jean Wang
Evelyn and Edwin Tasch Chair in Cancer Research
-
Tasch Endowed Chair in Parkinson's Disease Research
-
Ronald R. Taylor Chair in Information Technology in Computer Science

Pavel Pevzner

Sandra and Monroe Trout Chair in Pharmacology

Palmer W. Taylor

Monroe E. Trout Chair in Surgery
David Hoyt
Harold Clayton Urey Chair in Chemistry
Clifford Kubiak
Valtz Family Chair in Philosophy
Clark Glymour
Arthur and Molli Wagner Chair in Acting
Kyle Donnelly
Sam M. Walton Endowed Chair for Cancer Research

John P. Pierce

Judith and Jack White Chair in Cardiology
-
Muriel Jeannette Whitehill Chair in Bio-Medical Ethics

Theodore Friedmann

Herman Wouk Chair of Modern Jewish Studies
Samuel S.C. Yen Chair in Reproductive Medicine
-
Walter J. Zable Chair in Engineering
Robert W. Conn

UC SAN DIEGO FOUNDATION

Chancellor
Robert C. Dynes
President
James M. Langley

Chair
Malin Burnham
Vice Chairs
Peggy Preuss
Duane J. Roth
Treasurer
Marc R. Brutten
Assistant Treasurer
Steven M. Relyea
Chairs Emeriti

J. R. Beyster

Jerome S. Katzin Richard C. Levi
R. Barry McComic

Monroe E. Trout
Trustees
Richard Attiyeh
William E. Beamer
Mary F. Berglund
Beth A. Binger
Linden S. Blue
Arthur Brody
Marc R. Brutten
Malin Burnham
Ramon Castro
Marsha A. Chandler
William T. Comer
Joseph Coors, Sr.
Gary Curtis
John G. Davies
Robert C. Dynes
Anne L. Evans
Stanley Foster
Edward A. Frieman
Elaine Galinson
Lennon Goins
David F. Hale
Richard H. Hertzberg
Edward W. Holmes
Joan K. Jacobs
Charles F. Kennel
Herbert G. Klein
Minerva G. Kunzel
James M. Langley
Gloria Ma
Mark J. Machina
John J. Moores
William A. Owens
Paul A. Peterson
Peggy Preuss
Robert E. Price

Dev Purkayastha
Steven W. Relyea
Lawrence B. Robinson
Duane J. Roth
Martin A. Shapiro
Louis A. Simpson
Ronald R. Taylor
Dixie Unruh
Joseph W. Watson
Eric I. Weitzen
John A. Woods

Board of Overseers

University of California, San Diego
Penny Allen
Laurie Black
Esther Burnham
Malin Burnham
Hugh Carter
Marsha Chandler
Martin Colby
Homer F. Delawie
Edward Dennis
Daniel Eaton
Alan Greenway
Charles Guthrie
Joel Holliday
John Johnson
Mel Katz
Jerome Katzin
Lucy Killea
Minerva Kunzel
Pepe Larroque
George Lattimer
James Lemke
Milton Levy, Jr.
Art Madrid
James Mullins
Ray Peet
Paul Peterson
Olivia Puentes-Reynolds
Deann Salcido
Ross Schwartz
Robert Scurlock
Jacquelyn Sherman-Rustin
Darlene Shiley
Roberta Sistos
Dixie Unruh
Victor Woo
Elizabeth Yamada
UCSD Facts and Figures
(as of fall 2000)
On-campus student enrollment
Undergraduate 16,496
Warren 3,856
Muir 3,503
Revelle 3,348
Marshall 3,342
Roosevelt. 2,447
Graduate 2,643
Medical School (including 540 Medical Center residents and interns) 1,073
Total students 20,212
Grade-point averages
Freshman 2.68
Sophomore 2.99
Junior 3.00
Senior 3.03
Number of undergraduates in most populousdepartments
Biology 3,302
Economics 1,341
Computer Science and Engineering 1,082
Electrical and Computer Engineering 1,000
Psychology 974
Political Science. 878
Communication 763
Human Development 575
Visual Arts 542
Bioengineering 531
Based upon the previous year's experience, 94 percent of all new freshmen enrolled at UCSD in the fall quarter are also enrolled in the subsequent fall quarter. Seventy-nine percent of all students who begin their undergraduate studies as freshmen at UCSD complete their degree requirements here within six years. Questions or requests for more detailed information should be directed to the Office of Student Research and Information.
UCSD Extension enrollment 39,982
Summer Session enrollment 7,971
On campus teaching faculty members 1,547
Books in library collection 2,616,776
Total land area-UCSD
Main campus 1,157
Outlying areas 405
UC Natural Reserves. 414
Total acres 1,976
Members of Honorary
Societies/Prizes/Awards
Academie des Sciences, France 1
Acoustical Society of America 1
African Studies Association 1
American Academy of Arts and Sciences 70
American Academy of Mechanics 4
American Academy of Microbiology 1
American Academy of Religion 1
American Anthropological Association. 6
American Association for the Advancement of Science 76
American Association of Anatomists 1
American Astronomical Society 10
American Chemical Society 57
American Geophysical Union 9
American Institute of Aeronautics and Astronautics 9
American Institute of Chemists 2
American Mathematical Society 23
American Nuclear Society 3
American Philosophical Society 14
American Physical Society 37
American Psychiatric Association 1
American Psychological Association 9
American Society for Biological Chemists 13
American Society for Cell Biology 4
American Society of Composers,
Authors \& Publishers 3
American Society of Mechanical Engineers. 7
American Society of Plant Physiologists 1
Balzan 3
Beckman 2
Chancellor's Summer Faculty Fellowship 12
Charles E. Molnar Award 1
Econometric Society 8
Fulbright Awards. 44
German Marshall Fund 4
Gregory Luebbert Prize 1
Guggenheim 141
Hellman Faculty Fellowship 17
Humboldt Research Award 9
Institute of Electrical
\& Electronic Engineers 21
Institute of Mathematical Statistics 3
Institute of Medicine 14
International Academy of Astronautics 6
International Union of Radio Scientists. 1
Johan Skyette Prize. 1
La Society des Oceanists,
Musee de L'Homme 1
Macarthur Foundation 5
Meteroical Society 1
National Academy of Education 2
National Academy of Engineering 15
National Academy of Sciences 66
National Medal of Science 4
New York Academy of Science 6
Nobel Laureates 5
Oceanology International Lifetime Achievement Award 1
Optical Society of America 7
Presidential Early Career Award for Scientists and Engineers 2
Presidential Young Investigators Award 8
Pulitzer Prize 1
Royal Anthropological Institute. 1
Royal Anthropological Institute- Great Britain \& Ireland 1
Royal Astronomical Society 7
Royal Danish Academy of Science and Letters 1
Royal Historical Society 1
Royal Netherlands Academy of Science 1
Royal Society of Chemistry 3
Royal Society of London 9
Royal Society of Victoria 1
Royal Statistical Society 1
Searle Scholar 7
Sloan Research Fellows 6
Society of Experimental Psychology 7
Swedish Royal 1
Tyler Prize 1
White House National Medal of Science 1

A

Absence, Leave of, Graduate.................... . 95
Absence/Readmission, Undergraduate 73
Academic and Administrative Calendar 5
Academic Enrichment Programs 98
Academic Internship Program (also see
Warren College).............................. . 199
Academic Regulations 61
Add/Drop Courses 53
Administrative Officers.......................... . 625
Admissions, Graduate . 90
Admissions, Policies and Procedures
undergraduate............................ 40
admission policy............................. . 40
college orientation and registration of
new students........................ 52
intention to register 51
reapplication................................ 52
student health requirement.............. 52
transfer.. . . 51
applying for admission 49
application fees 50
checklist for applicants 50
college choice............................... 50
transcripts 50
UC campus choice. 50
colleges and majors 39
impacted majors 40
college board advanced placement
at UC (chart) 46
definitions.. 39
freshman applicant........................ . . 39
international applicant. 39
nonresident applicant 39
transfer applicant. 39
undergraduate applicant. 39
educational opportunity programs......... 39
fees and expenses............................. 52
estimated expenses for undergraduate
residents (chart) 51
freshman applicant admission 41
additional preparation.................. 43
college credit (advanced placement) 44
college credit (courses) 44
eligibility 43
examination requirement. 43
grade-point averages and corresponding
test scores (chart) 42
high school diploma requirement 41
honors-level courses... 43
non-resident requirements 43
scholarship requirement 43
subject requirement examination 41
international applicants 48
transfer applicant admissions 44
credit from another college 45
determining your grade-point average. 45
eligibility 45
second baccalaureate or limited status applicant. 45
transfer admission requirements 45
Adult Education-see UCSD Extension Advanced Placement (chart). 46
Adviser, Graduate 76
Aerospace engineering-see Mechanical and
Aerospace Engineering
Affirmative Action Program, Student 118
Affirmative Action Policy 621
African Studies Minor 199
Alumni Association, UCSD 121
American History and Institutions 19, 61
AMES—see Mechanical and Aerospace
Engineering
Anthropology, Department of 200
Apartments 115
Appendix 621
Application for Degree 64
Application Procedures, Graduate. 91
Applied Mechanics and Engineering Sciences,Department of-see Mechanical andAerospace Engineering
Applied Ocean Science. 210
Art—see Visual Arts
Art Galleries 121
Assistance in Courses 65
Assistantships, research, teaching language 87
Astronomy-see Physics, see Center for
Astrophysics and Space SciencesAstrophysics-see Physics, see Center forAstrophysics and Space Sciences
Athletics-see Recreation

B
Bachelor's Degree
general degree requirements for. 17,61
see also Muir, Revelle, Marshall, Warren, and Roosevelt College
Billing Statement 57
Biochemistry 210, 232
Bioengineering, Department of 299
Biology, Department of 211
Biomedical Sciences 227
Biophysics 231
Board of Overseers, UCSD 629
Bookstore 122
C
Caledonian Society 25
Calendars
Academic and Administrative 5
Undergraduate Admission Information and Enrollment Deadlines 6
Graduate Admission Information and Enrollment Deadlines 7
California Residence, definition of. 54
California Space Institute 125
Campus Map 638
Candidacy, Advancement to
M.A.-M.S. Degrees 79
M.F.A. Degree 79
Ph.D. Degree. 80
Ph.D.-M.D. Program 83
Candidate in Philosophy Degree 82
Career Services 107
Career Services, Graduate 78, 107
Centers
Cancer Center 130
Center for Astrophysics and Space Sciences 130
Center for Energy and Combustion Research 130
Center for Environmental Research and Training (CERT). 130
Center for Human Development (CHD) 131
Center for Human Information Processing 13Center for Iberian and Latin AmericanStudies (CILAS)131
Center for Magnetic Recording Research. 131
Center for Molecular Agriculture (CMA) 132
Center for Molecular Genetics. 132
Center for Research in BiologicalStructure132
Center for Research in Computing and theArts132
Center for Research in Language 133
Center for U.S.-Mexican Studies 133
Computing Center 97
Crafts Center 121
Cross-Cultural Center 121
Day Care Center 121
Glycobiology Research and Training Center. 134
San Diego Supercomputer Center 0, 134
Change of address 54
Chemical Engineering Program 308
Chemistry and Biochemistry,
Department of 232
Chemistry, Joint Doctoral Program in 239
Chicano Literature-see Ethnic Studies and Literature
Chinese Literature 450
Chinese Studies, Program in 243
Choosing a College at UCSD 15
CILAS-see Centers
Classical Studies, Program in. 246
Clinical Psychology 250
Joint Doctoral Program in 251
Clubs
Recreation. 116
Sports 117
Cognitive Science, Department of 252
College, Choosing a 15
College Credit advanced placement 44
Colleges and Majors, Undergraduate 39
Communication, Department of 261
Comparative Literature 450
Comparative Studies in Language, Society, and Culture, Program in 270
Comparison of Graduation Requirements 17
Computer Science and Engineering, Department of. 312
Computing and the Arts-see Music and Visual Arts
Computing Services 97
Concurrent Registration 105
Confidentiality of and Access to StudentRecords621
CONNECT 103
Contemporary Black Arts Program 270
Contemporary Issues, Program in 271
Continued Learning, Institute for 105
Continuing Education-see UCSD ExtensionContinuing Education for Educators.103
Correspondence Directory 1
Costs-see Fees
Counseling and psychological services 116
Courses, Curricula, and Programs of Instruction 199
Crafts Center 121
Credentials for Public Schools Teachers 572
Credit by Examination 65
Credit, Transfer 45, 79
Critical Gender Studies 271
D
Dance-see Theatre and Dance, Department ofDartmouth Exchange Program.23
Day Care Center 121
Deadline Dates 6, 7, 50
Deans' Offices, College 108
Degrees
application for undergraduate 64
duplication of 90
graduate degrees offered 77
requirements, general 61
Dialogue, San Diego 104
Dimensions of Culture 275
Dining Services 108
Disabilities, Office for Students with 108
Dishonesty, Academic 70
Division of Extended Studies and Public
Programs. 103
Doctor of Philosophy Degree 80
Double Majors 61
Drop/Add Courses 53
Duplicating Services--see Imprints
EEarl Warren College-see Warren College
Earth Sciences 276
Economics, Department of 281
EDNA (Student Information Center) 120
Education Abroad Program....... 72, 84, 99, 287
Educational Fee 60
Educational Opportunity Programs 39
Educators, Continuing Education for 103
Eleanor Roosevelt College 35, 297
educational philosophy 16
general-education requirements 35
graduation requirements 37
honors 38, 297
Making of the Modern World 35,467
Electrical and Computer Engineering,
Department of 326
Employment, Student. 107
Engineering, Jacobs School of 297
see also
Bioengineering, Computer Science and
Engineering, Electrical and Computer
Engineering, Mechanical and Aerospace
Engineering, and Structural Engineering
English as a Second Language 368
English Composition (Subject A). 62,571
English, Literatures in. 445, 451Enrollment
Adding and Dropping Courses 53
Continuing Students 53
New Students. 53
Enrollment deadlines undergraduate 6
graduate 7
Environmental Studies 368
Environmental Systems 370
Esperanto-see Linguistics
Ethnic Studies, Department of 373
Evening Courses-see UCSD Extension
Examination Papers (Retention). 65
Examination Requirement (Freshman Admissions) 43
Examinations
ACT (American College Test) 42, 43
College Board 44
credit by 65
eligibility 43
final. 65
GRE (Graduate Record Examination) 92
graduate student language examinations 92
SAT (Scholastic Aptitude Test). 42,43
TOEFL (Test of English as a Foreign Language) 92
TSE (Test of Spoken English) 92
Executive Program for Scientists and Engineers 103
Expenses-see Fees
Extended studies and public programs 103
Extension, UCSD 103
F
Faculty members 143
Faculty, UCSD 142
Family Educational Rights and Privacy Act (FERPA) 621
Fees and Expenses 50,57
application 52
educational fee 60, 85
exemption from. 59
graduate 85
miscellaneous 60
payment of 57
recreation facility 85
assistantships 87
fellowships and traineeships 86
grants 87, 109
loans 87,109
scholarships 110
work-study 109
Food Services-see Dining Services
Foreign Language Requirements (Graduate) 81
Foreign Students, Admission 49
Foreign StudyEducation Abroad Program.... 72, 84, 99, 287
French Language and Literature-see Linguisticsand Literature
French, Literatures in 445, 454
Freshman Applicant. 41
G
General-Education Requirements Revelle College 17
Muir College 23
Marshall College 27
Warren College 32
Roosevelt College 35
General Undergraduate Degree Requirements 61
Geology - see Earth SciencesGerman-see Linguistics and LiteratureGerman, Literatures in446, 456
German Studies, Program in 381
Grade-Point Average 47, 66
Grading Policy, Undergraduate 66
changes in grades 66
extension of incomplete (I) 68
grade appeals 68
grade points 66
incomplete (I) grade 67
in progress (IP) grade 67
pass/not pass (P/NP) grade 66
no report/no record (NR) 66
withdrawal (W) grade 66
see also Graduate Studies grades 88
Graduate Adviser 76
Graduate Council 76
Graduate Degrees Offered 77
Graduate Record Examination (GRE) 92
Graduate Student Association 76
Graduate Student Diversity 76
Graduate Studies 75
academic residence 79, 80, 81
administration 76
admission and registration 93
admission policies 90
admission requirements 90
admission examinations 92
admission, non-degree 91
advancement to candidacy 79, 80, 82
adviser 76
appeals 88
application procedures 87,91
apprentice teaching 79
assistantships. 87
award notification 87
bar from registration, academic, nonacademic 96
candidate in philosophy degree. 82
career services 78
change in course selection 94
change of name and address 95
continuous registration 94
council, graduate 76
course repetition. 89
degrees offered 77
degrees, duplication of 90
dissertation and final examination. 82
diversity 76
doctoral committee, appointment,
reconstitution 81
doctoral degrees 80
documents (application) 91
education abroad 84
educational fee 85
enrollment limits. 95
fees and expenses 84
fellowship awards 88
fellowships and traineeships 86
filing fee. 86
final grades 90
financial assistance 86
foreign applicant financial statement 92
foreign language requirements 81
full-time study 93
general policies and requirements 78, 88
grade appeals 88
grades 78, 89
grading system 89
health insurance, supplemental 85
health sciences 82
identification card 94
integrity of scholarship 88
intercampus exchange program 83
joint doctoral programs 83
language requirements 81
late fees 86
late registration 94
leave of absence/extension 95
letter of completion 82
letters of recommendation 92
loans and grants-in-aid 87
master's degree 78
master of engineering 79
master of fine arts 79
master of Pacific international affairs 80
non-degree study 91
off-campus study 83
part-time study 91,93
parking fees 86
penalty fees 86
Ph.D.-M.D. program 83
photo-identification card 94
postdoctoral study 84
postgraduate appointments 82
priority enrollment 93
programs of study. 78, 79, 80
qualifying examination for Ph.D 82
readmission 93
reapplication 93
reconstitution committees. 82
recreation facility fee 85
reduced fee enrollment. 85
refund of fees 86
registration procedures 94
fees 94
required documents 91
residence requirements for M.A. and M.S. 80
residence requirements for M.F.A. 80
residence requirements for Ph.D. 81
residency and fees 84
Muir College 24
Marshall College 28
Warren College 32
Roosevelt College 37
Grants 109
Greek-see Literature
Greek Literature 456
H
Health Care-Social Issues 382
Health Requirement
graduate 85
undergraduate. 52
Health Sciences, Graduate Programs in 82
Health Service, Student 118
Hebrew-see Judaic Studies
Hebrew Literature 457
High School Diploma Requirement. 41
History, Department of 383
"Holds," Registration 54
Honors
college honors. 63
department honors 63
provost honors 63
Phi Beta Kappa 18,63
Housing
off-campus 114,115
on-campus 116
Human Development, Program in 402
Humanities, Program in 406
1
Identification Card, Student. 94
Imprints 122
Information Center, Student (EDNA) 120
Incompletes 67,89
Institutes
AIDS Research Institute 127
California Space Institute 125
Institute of Geophysics and Planetary
Physics 126
Institute on Global Conflict and Cooperation 126
Institute for Neural Computation 128
Institute for Nonlinear Science 128
Institute for Pure and Applied Physical
Sciences 129
Sam and Rose Stein Institute for Research on Aging 129
Whitaker Institute of Biomedical Engineering 129
White Mountain Research Station 127
Intention to Register 51
Intercampus Exchange Program 83
Intercampus Transfer, Undergraduate 72
Intercampus Visitor, Undergraduate 72
Intercollegiate Athletics 117
International Applicant 39, 49
International Center 100, 115
International Relations and Pacific Studies, Graduate School of 141, 407
Internships 199
Interviews with faculty and students 167
Intramurals 117
Introduction 9
Italian-see Linguistics and Literature
Italian Literature 446, 457
Italian Studies, Program in 419
J
Japanese Studies, Program in 420
John Muir College - see Muir College Joint Doctoral Programs 83
Judaic Studies, Program in 422
Judicial Affairs 119
K
Korean, Language and Literature 458
1
LaboratoriesLaboratory of Comparative HumanCognition.131
Language-see Linguistics
Language and Communicative Disorders. 424
Latin-see Literature
Latin American Studies, Program in 426
Latin Literature 458
Law and Society, Program in. 429
Leave of Absence
Graduate 95
Undergraduate 73
Legal Services, Student. 119
Libraries 106
Limited Status 45
Linguistics, Department of 431
Literature/Cultural Studies 450
Literature, Department of 442
Literature/Theory 461
Loans 87, 108
Lost and Found 124
M
Making of the Modern World 467
Majors, Undergraduate 11,39
Map, Campus 638
Marathon 2-see Computing Services
Marshall College-see Thurgood Marshall College Master of Arts and Master of Science Degrees 78
Master of Fine Arts Degree 79
Materials Science Program 468
Mathematics, Department of 471
Mathematics and Science Education Program. 483
Mechanical and Aerospace Engineering (MAE) 345
Medical History Forms 52
Medicine, School of 137
Middle East Studies Program 484
Minimum Progress. 64
Minimum Units for Graduation 17
Minors and Programs of Concentration. 63
Molecular Pathology Program 484
Muir College 15, 23, 486
Caledonian Society 25
character of the college 23
Dartmouth Exchange Program 23
general-education requirements 23
graduation requirements 24
Muir Special Project Major 24, 486
special projects 24
transfer students 18
writing program 486
Music, Department of 486
N
Natural Reserve System 136
Neurosciences, Department of. 499
Night School-see UCSD Extension
Nonresidents
applicant 39
scholarship requirements 43
tuition fee 51 (chart), 59
0
OASIS (Office of Academic Support and Instructional Services) 99
Oceanography-see Scripps Institution of Oceanography
Off-Campus Study, Graduate Student 80,83
Orientations, College 52
P
Parking on Campus 122
Part-Time Student, Graduate 91
Part-Time Student, Undergraduate 60
Payment of Registration Fees 57
Petition, Student 66
Ph.D. Degree 80
Ph.D.-M.D. Program 83
Phi Beta Kappa 18,63
Philosophy, Department of 502
Physical Education Courses, Graduation Credit for 62
Physics, Department of 509
Police, University 124
Policies and Procedures, Student Activities 621
Political Science, Department of 521
Portuguese Literature 458
Postdoctoral Study 84
Post Office 124
Privacy Rights 621
Price Center 119
Probation 64
Progress toward Degree. 64
Projects
African and African-American StudiesResearch Project135
Project for Explaining the Origins of Humans 135
Project in Display Phosphor Research. 135
Project in Econometric Analysis 135
Project in Geometry and Physics 136
Project on International and Security Affairs (PISA) 136
Public Policy Research Project. 136
Provosts 16
Psychological and Counseling Services 116
Psychology, Clinical, Joint Doctoral Program in 83
Psychology, Department of. 532
Public Policy Analysis Minor 543
QQuick Copy Centers-see Imprints
R
Reapplication for Admission 52
Recreational Facilities 116
Regents of the University 623
Registration Fee, University 57
Registration, Graduate 93
graduate studies, bar from 96
late registration, graduate studies 94
Registration, Undergraduate 53
approval for enrollment for more than 200 units 53
California residence requirements. 54
change of address 54
definitions 53
enrolled students 53
registered students 53
dropping and adding courses 53
enrollment in courses 53
continuing students 53
new student orientation 53
part-time study 60
admissions and enrollment 60
general policy 60
procedures 60
reduced fees 60
payment of registration fees 57
educational fee. 60
exemption from fees 59
miscellaneous expenses 60
nonresident tuition 59
parking 60
payment of fees 57
returned checks 60
university registration fee 59
registration "holds". 54
Registration Requirements and Procedures,
Graduate 93
Regulations, Academic 61
degree requirements 61
American history and institutions 61
application for a degree 64
graduation credit for physical education courses 62
honors (college, department, provost's, Phi Beta Kappa) 63
maximum units 62
minors and programs of concentration 63
senior residence. 62
Subject A/English composition 62
grading policies 66
changes in grades 66
extension of incomplete (I) 68
grade appeals 68
grade points 66
incomplete (I) grade 67
in-progress (IP) grade 67
pass/not pass (P/NP) 66
no report/no record (NR) 66
student copy of final grades. 68
transcript requests 68
withdrawal (W) grade. 66
special programs 72
Education Abroad Program $72,84,99,287$
intercampus transfer (ICT). 72
intercampus visitor (ICV) 72
Opportunities Abroad Program 72
ROTC 72
specific regulations credit by examination 64
double majors 64
final examinations. 65
minimum progress 64
probation 64
progress toward degrees 64
repetition of courses 64
special studies courses. 64
subject to disqualification 64
undergraduate assistance in courses 65
use of student petition. 66
writing requirements 65
UCSD policy on integrity of scholarship 69
academic dishonesty 70
procedures for disposition of cases of academic dishonesty 70
withdrawal/absence/readmission to the university 73
Religion, Study of 545
Religious Affairs, Office of 118
Repetition of Courses 64,89
Requirements for the Bachelor's Degree 61
Research at UCSD 125
Residence Halls 114
Residence Requirements, California 54
Revelle College 15, 19, 547
educational philosophy 15
general-education requirements 19
graduation requirements 21
honors 18, 21,547
Humanities, Program in 406,547
major 20
optional minor. 21
pass/not pass regulations. 21

School of Medicine . 137
Science Studies Program 548
Science, Technology and Public Affairs,
\quad Program in 550
Scripps Institution of Oceanography 139
Scripps Institution of Oceanography,
Department of.......................... . . 550
Second Baccalaureate or Limited Status Applicant... 45
Services and Facilities . 97
academic enrichment programs. 98
academic services and programs........... 97
automobile parking services............... 122
bookstore...................................... . . 122
career center 107
computing services 97
crafts center................................... . . 121
day care center 121
dining services. 108
financial aid 108
grants... . . 109
housing...................................... . . 114
international advisers 99
libraries, university . 106
loans... . . 109
lost and found................................. . . . 124
student health. 118
student services 107
Sexual Harassment 622
Sociology, Department of 559
Space Science and Engineering Program 571
Spanish-see Linguistics and Literature
Spanish Literature....................... . 446, 459
Special Programs 72
Sports.. . 117
Statement of Intention to Register 51
Structural engineering . 359
Student Appeals, graduate 88
Student Center . 119
Student Council, Graduate. 76
Students
Center .. . 119
employment office.......................... . . 107
financial services.............................. . . 108
health service. 118
information center (EDNA). 120
Subject A.................................... . 64, 571
Subject A Examination 43
Subject Requirement 41
Subject to Disqualification....................... . . 64
Summer Session................................... . . 10
Supercomputer................................... . . 100

Teacher Education-see Continuing Education for Educators
Teacher Education Program 572
Tests for Admission to Graduate Studies Graduate Record Examination. 92
Test of English as a Foreign Language 92
Test of Spoken English. 92
Theatre and Dance, Department of 581
Third World Studies, Program in 597
Thurgood Marshall College 15, 27, 599
college-sponsored programs................ 29
Dimensions of Culture. 275
general-education requirements 27
graduation requirements 28
honors program....................... 28, 599
transfer students. 18, 28
Traineeships... . . 86
Transcript of Records 50, 68, 91
Transfer Applicant Admission. 44
Transfer of credit. 45
graduate 79
Transfer, Intercampus 48
Transportation and Parking Services 122
Tuition-see Fees
Tutorial Program.................................. . . 99

U
UC Campus Change. 48
UCSD Admission Policy. 40
UCSD Admission Selection Criteria 40
UCSD Bookstore. 122
UCSD Extension . 103
UCSD Facts and Figures . 629
UCSD Libraries 106
UCSD Washington Center 599
Undergraduate Majors 11
Unit Limitation to Degree 62
University Art Gallery . 121
University Events . 120
University of California Transfer Agreements . . 48
University Professors. 624
University Centers 119
Urban Studies and Planning, Program in 600

v

Veterans' Affairs . 120
Visual Arts, Department of 604

w

Warren College 16, 31, 618
academic internship.......................... 33
general-education requirements 32
graduation requirements 32
honors. 33, 618
scholars seminar 619
transfer students. 18, 33
writing program 618
Withdrawal, Graduate 95
Withdrawal, Undergraduate 73
Women's Studies, Program in-see CriticalGender Studies
Work-Study Program 107
World Literatures 446
Writing/Literature 466
Writing Programs
Marshall College 275
Muir College 486
Revelle College 547
Roosevelt College 467
Warren College 618

UCSD

University of California, San Diego

9415A Ratner Children's Eye Center
265 Recreation Gymnasium 149 Revelle College Provost Bldg RIMAC-Recreation and Intramural Athletic Complex
Robinson Bldg. ComplexGraduate School of International Relations and Pacific Studies
481 San Diego Supercomputer Center
855 School of Medicine Bidg. 1
851 School of Medicine Bldg. 2
6 School of Medicine Bldg. 4 .
Science Engineering Research Facility (SERF)
350 Sequoyah Hall.
9415 B Shiley Eye Center
Sierra Summit and Rathskeilar (food)
Social Sciences Building
Solis Hall
Spanos Athletic Training Facility
Stein Clinical Research Bldg.
Structural Components Laboratory.
Charles Lee Powell
Structural Systems Laboratory.
Charies Lee Pow
3 Student Center
Student Center Bldg. B
215 Tenaya Hall.
Sally B Thorpital-The John M. and
Saly B. Thornton Rospital
0 Tioga Hall.
10300 North Correr North.
10300 North Torrey Pines Rd
Torrey Pines Center South
10280 North Torrey Pines R
UCSD Extension Complex
University Center
9A Buildings 104-112
University Center
9B Buildings 201-202
University Center.
Buildings 214-21
University Center
Buildings $301-303$
University Center. University Center D Buildings 400-413 University Center Buildings 500-504 University Center 9630 La Jolla Farms Ro
113 Urey Hall
114 Urey Hall Addition.
3350 Veterans Administration Medical Center
711 Visual Arts Facility
5 Warren College Residence Halis and Apartments H5
625 Warren Lecture Halls. Women's Center, Bldg 407 University

Services, Centers, Insituluse, and Academic \& Administrative Departmentis

855 AIDS Institute

Academic Senate, Bidg. 215 University Center
Admissions-Graduate Bidg 520 Rooseveit College
Admissions-School of Medicine 162 Medical Teaching Facility Bldg 301 University Center Alumni Relations Bldg 202 University Center
Anthropology Dept. Sociai Sciences Bldg.
600 Applied Mechanics and Engineering Sciences Dept., Engineering Bidg.
Arts and Humanities. Dean's Office Literature Bidg
600 Bioengineering Dept., Engineering Bldg.
Biology Dept.. Bonner Hal
10 Box Ofice, Price Center
Bursar's Office, Bldg. University Center
A Campus Planning Office. Bidg. 108 University Center
Cancer Center Administration
Cashier, Bldg. 401 University Cente
CASS-Center for Astrophysics and Space Sciences, Science Engineering
Research Facility (SERF).
CECR-Center for Energy and
Combustion Research. EBU
Cellular and Molecular Medicine Division of, CMM West.
Unancellor's Office, Bldg. 107 University Center
Chemistry and Biochemistry Dept.
Urey Hall Addition. Urey Hall Addition.
CHIP - Center for Human Information P....
McGill Hall
451 CILAS - Center for Iberian and Latin American Studies, Gildred CIMS-Center for Interface
Materials Science Mayer Hal Materials Science, Mayer Hal
Genetics. CMG Bldo
Geneics, CMG Bldg.
Recording Research. CMRR BIdg.

Cognitive Science Dept cognitive Science Bldg. Bldg. Computer Science and Engineering Dept. Applied Physics and Mathematics Bldg.
249 Computing Services. Academic,
Applied Physics and Mathematics Bldg. A Conference Room 111A, Bldg. 111 University Center
86 Conference Services, Fireside Lounge
CRCA-Center for Research in Computing and the Arts, CRCA Bldg. CRL-Center for Research in Language. Cognitive Science Bldg. 5 Development Office, Torrey Pines Center North
9224 E
9 Early Outreach Services Center (Partnership, Partners, Upward Bound). Student Center, Bldg. B
370 Economics Dept., Economics Bldg Electrical and Computer Engineering Dept.. Engineering Bidg Torrey Pines Center South Employment, Student, Career Services Center Engineering, Jacobs School of, Dean's Office, Engineering Bldg
Ethnic Studies Dept
Social Sciences Bldg
Medicine Preventre Medicine Dept., Date

F11
9B Financial Services-Student, Bldg 201 University

Food Services

640 Canyon Vista (Canyon Vista Administration Bldg.).
161 Che Cate
857 Club Med.
640 Earl's Place (Canyon Vista Administration Błdg.).

G5
F10

293 Grove Caffe (Student Center)
La Casa (Marshall College Commons)
391 The Munch Box (Marshall Coliege ommons)
305 Ocearview Terrace.
127 Plaza Cate (Revelle Commons)
910 Price Center
225 Rathskellar (Muir Commons)
225 Sierra Summit (Muir Commons)
910 Sunshine Store (Price Center)
20 Garren Auditorium, Basic Science Bldg
Graduate Studies and Research Office. Bidg. 520 Roosevelt College. 2nd floor
293 Grove Caffe (food). Student Center
50 History Dept.. Humanities and Social Sciences Bldg.
9 Housing (off-campus), Student Center Bldg. B.
C Housing (on-campus), Bidg. 310 University Center
1 Howard Hughes Medical Institute. CMM West
930 IBME-Institute for Biomedical Engineering, Science Engineering Research Facility (SERF).
ICL-Institute for Continued Learning UCSD Extension Complex. Rm. 122.
IGCC--Institute on Global Conflict and Cooperation Robinson Bldg. Complex..................... at Particle Accelerators. Mayer hall

$$
0 \text { Imprints (Campus Services Complex. }
$$

Bldg A)

INC-Institute for Neural Computation. Cognitive Science Bldg.
INLS-institute for Nonlinear Science CMRR BIdg
463 International Relations and Pacific Studies (IR/PS). Graduate School of. Robinson Bldg. Complex.
113 IPAPS-Institute for Pure and
Applied Physical Sciences. Urey Hati C10
C ITER (International Thermonuclear
Energy Reactor) Home Team.
Bldg. 302 University Center.
600
Jacobs School of Engineering,
LCHC-Laboratory for Comparative
Human Cognition, Bldg. 517
Roosevelt College, 2nd floor
Libraries
900 Art and Architecture.
Geisel Library
821 Biomedical
463 International Relations and
Science and Engineering, Geisel Library
141 Undergraduate, Gaibraith Hal (under construction)
820 Liebow Auditorium, Basic Science Bldg.
C11
F10
246 Linguistics Dept. McGill Hall.
627 Literature Dept., Literature Bldg.
249 LMS-Laboratory for Mathematics
and Statistics, Applied Physics and Mathematics
Bidg.
10 Mandeville Suite. Tioga Hall.
249 Mathematics Dept., Applied Physics
and Mathematics Bldg.
856 Molecular Medicine, LLC

Muir College Provost. Humanities and Social Sciences Bldg..rm. 2126
Musi Dept.. Mandevilie Center Natural Sciences, Dean's Office Urey Hall Addition. Neurosciences Dept. Medical Teaching Facility
15 Ophthalmology Dept.. Shiley Eye Center (see East Campus map, D3)
3 Parking Office.
Gilman Parking Structure
20 Pathology Dept., Basic Science Bidg.

Patienn Services

g3so Cardiology. Periman Ambulatory Care Center
9350 Family Medicine, PerIman Ambulatory Care Center
550 Medicine and Subspecialties, Perlman Ambulatory Care Center
50 Neurology, Perlman Ambulatory Care Center
9415 Ophthalmology, Shiley Eye Center
4150 Orthopaedics, UCSD OrthoMed.
4150 Regents Park Row. Suite 300 (off Regents Rd.)
9350 Pediatrics. Perlman Ambulatory Care Center
9350 Pharmacy, Periman Ambulatory Care Center
Radiology. PerIman Ambulatory Care Center
9350 Reproductive Medicine, Periman Ambulatory Care Center
9350 PerIman Ambulatory Care Center Personnel: Academic, Bldg. 402 University Center
Personnel: Staff.
Torrey Pines Center South.
Pharmacology Dept..
Basic Science Bldg.
Philosophy Dept., Humanities and Social Sciences Bldg.
14 Physics Dept. Urey Hall Addition
9E Police, Bldg. 500 University Center
Political Science Dept., Social Sciences Bldg. .
10 Post Office, Price Center.
246 Psychology Dept., McGill Hal
661 Recreation Office Cye Center
1 Recreation Office. Canyonview Aquatic Registrar Bidg Wall Facility
C Registrar. Bidg. 301 University Center
Religious Aftairs Office of Revelle Formal Lounge
3 Rideshare
Gilman Parking Structure
90 Roosevelt College Administration
Bldg. 412 University Center.
School of Medicine
830 Admissions. Medical Teaching Facility, rm. 162.
861 Continuing Medical Education,

www.UCSD.edu

University of California, San Diego
9500 Gilman Drive
La Jolla, California 92093

[^0]: * If open-contact Undergraduate Admissions for details, (858) 534-4831. Students applying for winter or spring quarter admission and also applying for financial aid are urged to apply early as mid year funds for winter and spring applicants may be limited to only bank loans, Federal Pell Grant, and/or Renewal Cal Grant.

[^1]: NOTE: STUDENTS MAY PURSUE ANY MAJOR, REGARDLESS OF THE COLLEGE THEY CHOOSE. Majors are identical regardless of the student's chosen college. Most majors require twelve to eighteen upper-division courses based upon adequate lower-division preparation; such preparation may be part of the general-education requirements. Majors in certain engineering programs may require as many as twenty-one upper-division courses.

[^2]: *Deceased

[^3]: One course, English Composition, three semester- (four to five quarter-) units; this course is a prerequisite to Critical Thinking.
 One course, Critical Thinking-English Composition, three semester- (four to five quarter-) units; strong emphasis on writing; prerequisite: English Composition.

 One course, Mathematics/Quantitative Reasoning, three semester- (four to five quarter-) units.
 Three courses, at least one course in arts, and at least one course in humanities, nine semester- (twelve to fifteen quarter-) units.
 Three courses in at least two disciplines or an interdisciplinary sequence, social and behavioral sciences, nine semester(twelve to fifteen quarter-) units.
 One course in each area, at least one must include a laboratory; two courses, seven to nine semester- (nine to twelve quarter-) units.
 Proficiency equivalent to two years' high school study in the same language.

[^4]: * Recommended schedule for students with programming experience. This schedule will require students to get clearance from the CSE department to take CSE 8 B and CSE 20 concurrently
 ** Recommended schedule for students with no programming experience. This schedule will require students to get clearance from the CSE department to take CSE 8B and CSE 12 in the winter quarter, and CSE 20 and CSE 30 concurrently in the spring quarter. CSE 21 should then be taken during the summer sessions or the following fall quarter.

[^5]: ${ }^{1}$ Experimentalists may replace 105 B with an additional lab.
 ${ }^{2}$ Any course from lab group listed above

[^6]: COURSES

 LITERATURE
 LTRU 1A-B-C First-year Russian (4-4-4)
 LTRU 2A-B-C Second-year Russian (4-4-4)

