

ALZHEIMER'S DISEASE DATA ANALYSIS

Group 3, June 05, 2020

Team Members: Ashok Mondal Daniel Silva Doreh Kazemisefat Matthew Bond Peishan Sha

Advisors:

Dr. Mark Ellisman Matthew Madany Steve Peltier

Project Overview

→ Existing System

- Environment deployed on Nautilus
- CDeep3M for image segmentation
- → Goal
 - Improve original image quality
 - Enhance model performance
 - Improve output visualizations of brain organelles
 - Improve image segmentation and volume rendering

Approach

- → Understanding Challenges
- → Data Acquisition and Pipeline
 - Execute in cluster environment
 - Pull models and dependencies without user interaction
- → Exploratory Data Analysis
- → Define Hypothesis
 - Develop/Validate Hypothesis
- → Solution Engineering
 - Architecturing
 - Develop model
 - Validate results and optimization
 - Final Product

Challenges

- → Setting up the environment and installing required libraries
- \rightarrow Low quality image data from Electron Microscope
- → Scale of data makes analysis of any individual data set extremely difficult without dedicated supercomputer resource (e.g. 3500 x 3500 x n pixel image stacks)
- → Persons with high levels of understanding were required to label every feature of each cell by hand to generate ground truth data

Data Acquisition

Four datasets from different brain areas of mice provided by NCMIR

			Data Movement and	
		Destination in Data	Processing Scripts and	
Database Name	Source Location	Pipeline	Notebooks	Data Size
Cell Image Library (Public) -SBEM				
-TEM	http://www.cellimagelibrary.org/cdeep3m		Jupyter Notebook	100 GB
Cerebellum	Google Drive	As Target domain data in CycleGAN Process	Jupyter Notebook	2.92 GB
		 Original images as Source domain in CycleGAN Process Generated Images as CDeep3M input for image 		
Cortext_1	Google Drive	segmentation	Jupyter Notebook	3.5 GB
Cortext_2	Google Drive	""	Jupyter Notebook	7.1 GB
Hypothalamus	Google Drive	""	Jupyter Notebook	1.3 GB

Data Pipeline

Exploratory Data Analysis

- → Understanding Data from different part of brain
 - Cortex and Hypothalamus data is of poor quality, resulting in poor instance segmentation
 - Cerebellum data is of higher quality
- → Understanding Cycle-Consistent Generative Adversarial Networks (CycleGAN)
 - Improve low quality image through CycleGAN process

Data Sample

- → Electron microscopy samples from mouse brain
- → Pixel-level details of nanoscale structures
- The capability of imaging millimeter, micrometer, and smaller sizes
- → 2D images, the length of the Z axis is simply the depth of the image stack

Cerebellum

Cortex_2

Hypothalamus

Data Preparation

Data Preparation Occurs at Two Steps in Pipeline

→ Pre-CycleGAN Phase

- Generate large number of images with smaller dimensions
- Properly scale source images to match target image domain
- Generate artificial data from original data
 - Image perturbation
 - Heterogeneous data
- Tiled data
- → Post-CycleGAN Phase
 - Blending original and generated images
 - Ground truth data

CycleGAN

CycleGAN (PyTorch):

- → Cycle-Consistent Generative Adversarial Networks
- → Impressive results in image generation and image editing, and representation learning.
- → Cycle-Consistent loss to enforce two directions training.

Paired Images

Unpaired Images

CycleGAN(cont.)

CycleGANs algorithm

- → Learn a mapping G : X → Y and couple it with an inverse mapping F : Y
 → X and introduce a cycle consistency loss to push F(G(X)) ≈ X (and vice versa)
- → Loss function is a measure of reproducibility of model output
- → We can regain input image based on output image

Hypothesis

- → CycleGAN will normalize our original images, therefore improving the upstream image segmentation model
 - Image tiling with overlap will improve the poor neural net performance on the edges of tiles
- → Retraining the CDeep3M model with normalized images will improve the image segmentation quality

Solution Architecture

CycleGAN Model

Generate Normalized Images

Step 1:

- → Creating different datasets
 - Quantity
 - Scaling
 - Heterogeneous data
- → Training models (learning rate, epoch)

Different volumes of images with different scaling factors, learning rates and epoch values

Model Exploration - Training Size

Source Domain: Cortex_1 dataset Target Domain: Cerebellum dataset

Model Exploration - Training Size (cont.)

Source Domain: Cortex_1 dataset Target Domain: Cerebellum dataset

Model Exploration - Heterogeneous Data

Source Domain: Mixture of hypothalamus data and altered cerebellum dataset Target Domain: Cerebellum dataset

Model Optimization - Learning Rate

- → LR from 2.0x10⁻⁸ to 2.0x10⁻² at the step of 10 times growth have been compared
- \rightarrow LR 2.0x10⁻² does not have coverage at all
- → The result of epoch 250 is the best for rates of 2.0×10^{-3} , 2.0×10^{-4} , and 2.0×10^{-5}

Model Optimization -Learning Rate (cont.)

- For LR 2.0x10⁻⁶, 2.0x10⁻⁷, and 2.0x10⁻⁸, the result of \rightarrow 400 epochs is the best.
- LR 2.0x10⁻⁶ has the best results with 400 epochs \rightarrow among all scenarios
- (confirmed by domain expert) \rightarrow

LR= 0.000002

Model Optimization - Learning Rate (cont.)

Lowest LR (2.0×10^{-8}) with 400 epochs does not have coverage.

Model Performance - Learning Rate

$LR = 2.0 \times 10^{-8}$

- → Increasing the number of epochs from 250 to 400 improved the quality of the generated image.
- → Training continued over larger number of epochs to investigate the performance over time.
- → Epoch values of 100, 250, 400, 800, 1600, 3200, 6400 and 7200 have been tested.
- → The tests had a run time of over 80 hours, while using multiple GPUs with batch processing.

Model Performance

CycleGAN Model (cont.)

Step 2:

- \rightarrow Pre-processing:
 - Taking the input images and tiling them
- → CycleGAN output:
 - Modified Tiled Images
- \rightarrow Post-processing:
 - Fusing the tiled images to get the full sized normalized image

Enhancing edge quality

CDeep3M Model

Step 3:

- Creating blended datasets with CycleGAN generated images and original images
- Retraining the model with ground truth images and the blended images

Segmentation Tool

Creating Ground Truth

- → 10 Consecutive slices
 (membranes and mitochondria)
- → Same ROI
- → 800x800 pixel crop

Validation and Performance Evaluatation

- → Subjective Measurement
 - Qualitative
 - Image overlay
- → Quantitative Measurement
 - Accuracy, precision, recall, F-Score, F-beta
 - Why is F-Beta important?
- \rightarrow Model Selection from Evaluation of 40+ Models
 - Both measurements done with different pixel threshold values 100,125, 150,...,250
 - With best F1-Score while keeping F-Beta in consideration too

Qualitative Evaluation

Image Overlay

Original Image

Predicted Membranes

Yellow	True Positive
Green	False Negative
	False Positive

Quantitative Evaluation

Membranes

Precision Recall Specificity Accuracy F1 F_Beta

Model	Threshold	Images	Scale	Epoch	Denoise	Learning Rate	Retrained	Blended	Original(%)	Generated(%)						
I200_S567_LR000002_D_E1600_BL_O1G9_R800: Re- trained Model (+800 iterations) with generated & groundtruth data, prediction on blended(10% Original 90% Generated) images, and tuned hyperparameters	125	200	Multi	1600	Yes	0.000002	Yes	Yes	10	90	0.6823	0.8716	0.8355	0.8459	0.7654	0.8258
I200_S567_LR000002_D_E1600_BL_O9G1_R800: Re- trained Model (+800 iterations) with generated & groundtruth data, prediction on blended(90% Original 10% Generated) images, and tuned hyperparameters	125	200	Multi	1600	Yes	0.000002	Yes	Yes	90	10	0.6907	0.867	0.8426	0.8497	0.7688	0.8249
I200_S567_LR000002_D_E1600_BL_06G4_R800: Re- trained Model (+800 iterations) with generated & groundtruth data, prediction on blended(60% Original 40% Generated) images, and tuned hyperparameters	125	200	Multi	1600	Yes	0.000002	Yes	Yes	60	40	0.7074	0.8394	0.8593	0.8536	0.7678	0.8092
I200_S567_LR000002_D_E1600_BL_O6G4: Base Model , prediction on blended(60% Original 40% Generated) images and tuned hyperparameters	125	200	Multi	1600	Yes	0.000002	No	Yes	60	40	0.7229	0.7363	0.8856	0.8426	0.7295	0.7336
Base Model, prediction on original images	125		Single	200	No	0.0002	No	No	100	0	0.5332	0.7985	0.7167	0.7403	0.6394	0.7262

Mitochondria

											Precision	Recall	Specificity	Accuracy	F1	F_Beta
Model	Threshold	Images	Scale	Epoch	Denoise	Learning Rate	Retrained	Blended	Original(%)	Generated(%)						
I200_S567_LR000002_D_E1600_BL_09G1_R800: Re- trained Model (+800 iterations) with generated & groundtruth data, prediction on blended(90% Original 10% Generated) images, and tuned hyperparameters	125	200	Multi	1600	Yes	0.000002	Yes	Yes	90	10	0.6413	0.929	0.9487	0.9469	0.7588	0.8525
I200_S567_LR000002_D_E1600_BL_O1G9: Base Model , prediction on blended(10% Original 90% Generated) images and tuned hyperparameters	125	200	Multi	1600	Yes	0.000002	No	Yes	10	90	0.5935	0.8117	0.9451	0.9331	0.6857	0.7561
I200_S567_LR000002_D_E1600_BL_O3G7: Base Model , prediction on blended(30% Original 70% Generated) images and tuned hyperparameters	125	200	Multi	1600	Yes	0.000002	No	Yes	30	70	0.5404	0.8211	0.931	0.9211	0.6518	0.7438
Base Model, prediction on original images	125		Single	200	No	0.0002	No	No	100	0	0.5279	0.7534	0.9334	0.9172	0.6208	0.6941
I200_S567_LR000002_D_E1600_BL_O9G1: Base Model, prediction on blended(90% Original 10% Generated) images and tuned hyperparameters	125	200	Multi	1600	Yes	0.000002	No	Yes	90	10	0.3297	0.8618	0.8269	0.83	0.4769	0.6515

Quantitative Evaluation (cont.)

Model Selection

Ground Truth

Base Model Output 🕂

New Model Output

Ground Truth

Witochondria

Base Model Output

New Model Output

Volume Rendering

Before

After

Future Work

Techniques and findings applied to current projects can be applied to other domains (e.g. human tissue samples)

Conclusion

Accomplishments/Findings

- → Measured Improvement in Membrane Detection
 - Over 20% improvement in F1 score
 - Approx 14% improvement in F-beta score
- → Measured Improvement in Mitochondria Detection
 - Over 22.2% improvement in F1 score
 - Approx 22.8% improvement in F-beta score
- → Retraining leads to thicker Membrane Predictions
 - Cleaner predictions with good boundary
- → Interactive Volume Rendering
 - End user has more control

Acknowledgements

- Advisors
 - Matthew Madany
 - Dr. Mark Ellisman
 - Steve Peltier
- Dr. Ilkay Altintas
- UCSD MAS DSE Program and Staff
- Friends and Family
- Various pets and random smurfs

