
Video Game Review Sentiment to

Popularity

Advisor: Amarnath Gupta

Robert Coughlin

Abstract

When a video game is reviewed positively as a great form of entertainment, one can make an

educated guess that said game will sell well. If the hypothesis can be quantified into a machine

learning problem and tested, it provides the potential for use by developers and marketers to

interpret user feedback and determine if their game product is on track to meet sales milestones.

To evaluate the hypothesis, the problem is simplified into a classification problem to determine if

a review can indicate if the corresponding game would meet a maximum ownership threshold on

the Steam game distribution platform of greater than, but not equal to, 500,000 users (such

games henceforth referred to as bestsellers for conciseness). Snippets of review documents are

then fitted and fed into a Gensim Doc2Vec model to convert them into document vectors to serve

as inputs the classification learners can interpret.

The project uses web APIs to extract review data from OpenCritic, game lists from Steam, and

sales approximations from SteamSpy to form a dataset with 15% of reviews belonging to

bestseller games. Using this data, a logistic regression classifier has been constructed which has

achieved a test accuracy of 0.86 and a test F1 of 0.58 using Gensim Doc2Vec to feed document

vectors into a Random Forest Classifier. This pipeline served as part of a backend Python Flask

server, which takes in user input from a web-based dashboard that sends either text or file

contents containing review documents, and processes them into a prediction if the review(s)

indicate the game will meet the bestseller threshold, followed by a percentage probability

generated by the model to indicate confidence in the prediction. With this, customers can feed

reviews into the model to generate predictions.

However, the model’s weakness is its F1, which represents a mediocre predictive power for

positive cases. Presentation wise, it also does not provide explanation power as to why it arrived

at its prediction.

Introduction and Question Formulation

Video games are part of a multi-billion-dollar economy with a large network of game

developers, business investors and publishers who work to conceptualize, build, and market

games to a community composed of millions of people. Included are the thousands of journalists,

amateur and professional, who publish reviews which indicate to the community if the game is

worth playing, and this information can both affect and be reflective of the sentiments of a game.

Focusing on the reflective aspect, the question then becomes: could the text of those reviews be

reflective of how well a game sells in a measurable way, instead of just how good it is? This is

not a trivial distinction as the development and publication of a video game is extraordinarily

expensive and costs millions of dollars for a high-end studio to create one. In one outstanding

case, the cost ballooned to as high as $316 million (Sinclair). If the game's sales cannot match

the costs that go into creating it, it may not matter whether it is considered a high-quality game.

Without the money to make up for the costs, developers risk losing their career, their business

employer risks failing, and the organization may not be able to produce more games. Thus,

selling well becomes a matter of making a profit or a return on investment and ensuring the

business can continue operating, and being able to predict if their game can meet a certain sales

threshold, it will help to make a more informed business decision.

For now, it is only a question of if such a sentiment exists and to what extent it could make an

accurate prediction. The choice was made to simplify the problem as a binary classification

problem, defining a class called “bestseller,” which are games with more than 500,000 owners

on Steam. This choice loses the opportunity to discover if reviews can give sales predictions

within a certain margin but provides scoring metrics such as accuracy or F1 which are more

easily interpretable for the purpose of answering if a sales sentiment is present and works in hand

with NLP Python libraries that operate on class labels.

Related Work

“What makes the difference between popular games and unpopular games? Analysis of online

game reviews from steam platform using word2vec and bass model.” works with game

popularity as well using a binary classification for popular and unpopular games, though the

work uses Word2Vec to vectorize text keywords, and investigates an unsupervised learning

problem to try and identify what makes a game popular based upon already classified data

instead of predicting popularity.

“On the Robustness of Text Vectorizers.” is related in that while it does not involve video games,

it is a study of text vectorizers, a tool which was used extensively for analysis and as a part of the

solution architecture. The conclusions it drew were that text vectorizers, among which includes

Gensim Doc2Vec, are robust to the introduction of word replacements, with the error of a fixed

number of replacements declining as the text in question becomes longer. This is an important

consideration in the event of noisy and misspelled reviews and is thus a consideration which is

included in analysis for verification.

Team Roles and Responsibilities

Robert Coughlin serves as the single member of the project, responsible for data acquisition,

preparation, analysis, solution architecture implementation, and reporting.

However, when Group 6B was Group 6, components of the project were developed by Polina

Hyracha, who provided the question and suggested the solution architecture, and implemented

the data collection notebooks for extracting information from Steam and SteamSpy which have

since only been lightly modified.

Data Acquisition

Data Sources

The data sources used for the project are Steam, SteamSpy, and OpenCritic.

Steam is a PC-based video game distribution software developed by Valve Corporation and is

one of the most popular methods of purchasing games and game-related software applications

through non-physical copies. Using Steam as a data source, it provides the scope of the project

by narrowing down the games analyzed to a subset of games that are available on PC on the

Steam platform and contains both application name and application ID data to connect the data

sources. Through its API, about 18,000 games can be found a second, with over 100,000 Steam-

based applications on the platform, and approximately 6,000 of them released in the year 2022

alone.

SteamSpy is a third-party online service that provides statistical data relating to 63,000-64,000

games on Steam which is not available directly from Steam’s API. For the project, the statistic of

most interest is the number of owners, which will serve as a measurement of the number of sales

the game has achieved, serving as the output for supervised learning. Using the collection

technique outlined in Data Collection, about 5,000 games’ sales data can be retrieved every

second.

Last is OpenCritic, a review aggregation website which collects reviews for video games across

multiple platforms including the PC via a web crawler. According to the OpenCritic website

FAQ, this process happens every 10-25 minutes. It provides data on review authorship, review

scores, if the review is a recommendation, and a snippet of the review. The latter is of primary

interest, as the snippets will be the inputs used for supervised learning. It is the slowest of the

data sources which can be retrieved, requiring parallelization to try and speed up the process. It

can perform approximately 20 searches a second when needing to search OpenCritic game IDs to

match Steam IDs using the game title, and then with that data, the number of reviews retrieved

hovers around 70 a second using the search data.

All data sources are collected as semi-structured JSON objects with known schemas.

OpenCritic’s data however includes nested object structures within them.

These are dynamic data sources, and as such may provide different data if the same data

collection is performed at different points in time. The last data retrieval was performed between

May 25th, 2023.

Data Collection

The data sources identified all have web APIs from which the data is collected. To make use of

them, they are each called through a separate Jupyter notebook to access and process the data in

Python.

For Steam, the requisition of games’ Steam application IDs (referred interchangeably as Steam

game IDs) is done through a URL-based request in the Steamworks Web API to retrieve a list of

JSONs of all apps in Steam. This is an exhaustive list and includes Steam applications that do not

qualify as video games, something that must be accounted for in data preparation.

Of the three, only the OpenCritic API required an API key to access. Due to the narrow

throughput and the volume of data requests needed to extract the desired information, a premium

subscription was required to attain the necessary throughput to gather the desired reviews.

OpenCritic reviews cannot be accessed using the Steam app IDs, so instead the API’s search

interface is used to find the closest match via the inverse trigram distance between the title of the

game returned from the Steam API. It is expected that a game in OpenCritic will be hit multiple

times, and thus the Steam game with the shortest distance to a given OpenCritic game is selected

for the match. Then the OpenCritic ID retrieved from the match is used to request the

corresponding game’s reviews. Each search and each game’s reviews must be requested one at a

time. To accelerate the process, this step is parallelized so multiple requests are made at once.

SteamSpy is the last data collection stage, making use of the OpenCritic data collection stage to

identify Steam IDs which have found a match. Like with the Steamworks Web API, a list can be

generated, but this is divided into pages of 1000 entries each. To resolve this, data collection is

performed within a function that handles one page at a time, recursively calling itself to handle

the next page until a desired number of random games are selected, or the function reaches a

page with a number other than a thousand games (indicated it is the last)

In all cases the information is then converted from JSON or a collection of JSONs into a Pandas

dataframe and then written to a local .csv file as a cache for further pre-processing,

computations, and exploration.

As part of data preparation, the data is cleaned up and then uploaded into the SQL server. As of

May 28th, the data currently cached and the data residing on the database server is represented

by the following. Complications with data extraction and variable dates in which they were

performed may have caused results that will be inconsistent with future runs in addition to the

fact the data source is dynamic.

Source Cache Size Cache Entries Database Size Database Entries

Steam Games (Cache Only) 3.2 MB 105,051 N/A N/A

SteamSpy Games & Sales 0.15 MB 10,250 0.68 MB 9,958

OpenCritic Reviews 122 MB 105,916 40 MB 85,620

Data Pipeline

Figure 1. The full data pipeline. This includes steps from data collection down to the last step of cleanup during and

before classification.

Data Environment

The environment is a hybrid of cloud databases and local flat files. The raw data extracted

through the APIs are cached to the local file system within the project’s Git repository with light

data cleanup as outlined in the Data Pipeline section. This allows for quick refactoring of code

for cleaning and engineering data without needing to repeatedly extract new data, which may not

be the same as last time.

Initial cleanup is performed on the cached data, downsizing it, and extracting 1-dimensional

features before uploading the information to a PostgreSQL database, from which the data is used

by the learner to build the classification model. This architecture is a legacy of Group 6 with the

goal of a common picture of data for the individuals working on the project. Its retention lies in

Data Sourcing

•OpenCritic API

•Subscription Required

•SteamSpy API

•Steamworks Web API

Data Extraction and Partial Cleanup

•Data read into local PC

•Cached to local PC as CSV Files

•Estimate Steam owners by upper bound given by
SteamSpy API

•Non-games and non-English games dropped

•Drop sales data from games not part of the best
matches in OpenCriitic

Cleanup 1

•TextBlob sentiment calculated

•Non-english revews dropped

•Reviews without review text,

•Data structures unfolded and values of interest are
given columns

•Cached data reorganized into tables & written to
SQL

PostgreSQL Database

•Stores intermediate data from cleanup 1

•Used as basis for model fitting and evaluation

•When data is read from SQL to local PC, Sales and
Review data are joined together by game ID on
query

Cleanup 2

•Bestseller classification calculated from estimated #
of owners. Default is >500,000

•Review text cleaned

•Extra spaces removed

•Special characters removed

•Converted to array of words

•Stop words removed

•Tagged using gensim TaggedDocument

the ease with which data can be combined between tables using SQL during queries, and its

utility to act independently of the working computer, which can be useful if needing to deploy

the dashboard server to new servers.

Data Preparation

Data preparation is done in three steps: during collection, during database data uploading, and

during analysis. The process is done mostly within Pandas dataframes, as this allows for the easy

management of features, dropping unwanted entries, and appending engineered features.

Data collection converts the JSON data from the APIs into .CSV files for the next stage of

cleanup to read from. For OpenCritic, the raw data from the web API, including the nested

objects, are kept as is inside the .CSV files, one file for the search results, and the other for

review data.

Quality wise, the review texts from OpenCritic are mostly well formed and well spelled

sentences. However, some reviews are missing, and NLP word analysis may not perform as well

if fed just the raw strings.

To resolve this, text cleanup is performed before text is ever fed into NLP processors. Text

cleanup will refer to the following steps: newlines, extra whitespace, and special characters are

removed, and the text is set to lowercase. Then the string is split into a word list with special stop

words dropped and the remaining words stemmatized.

In both data collection and data uploading, the cached OpenCritic search results are used, and the

Steam game with the lowest inverse trigram distance to a given OpenCritic game ID is used.

These will be referred to as the best search results.

During collection, the sales data from SteamSpy is not collected as a single integer. This is due

to SteamSpy having imprecise data on Steam sales data. Instead, a string range is provided with a

maximum and minimum delineated using two dots as well as comma separators in the numbers

(i.e., “500,000 .. 1,000,000”). For analysis in the project, the higher number is selected and

converted to an integer. As previously stated in Data Collection, the game ID for SteamSpy sales

which are not part of the best search results are dropped before the sales data is cached to the

local PC. Of the data collected, only the columns for Steam app ID and the sales estimate are

retained.

The data collector also drops Steam apps which are either not games or are in a foreign language.

Both are determined based upon keywords in the app name. Only the app name and the app ID

are retained during caching.

In the second stage of cleanup, before the data is uploaded to the PSQL database, the OpenCritic

data is dropped from reviews with a missing score, missing description, missing NP score, or if it

is in a non-English language. Any duplicate reviews are also removed and is non-deterministic

on which duplicate is removed.

The nested objects from the cache are not easily transferable to SQL, and so they are unwrapped

and the OpenCritic game ID within is mapped to the best search results to associate a Steam app

ID with each review. A temporary text cleanup of each review snippet is performed and then fed

into TextBlob’s sentiment scorer to output the polarity and subjectivity of the data (Shah).

Lastly, the data columns of interest are selected, renamed, and uploaded to the database while

others are dropped. The columns related to the analysis in use are the review IDs, the

summary/review snippets, and the Steam app ID.

The Steam sales data is uploaded as is from the cache, with any duplicate information dropped if

present.

The final data preparation takes place during modeling. Using the SQL query language, the

reviews and sales data are joined along the Steam app ID to associate the games’ sales data to

each of their reviews. The bestseller classification is then computed, generating a boolean on if

the game has more than 500,000 Steam owners.

Because we are only concerned with the contents of the text, it and any sentiment values derived

are the only features selected from review beyond review ID and game ID for identification

purposes. However, classifiers cannot accept text directly as an input, and exploration has

determined the sentiment features created during the second stage are insufficient. The last

engineered feature, created dynamically during analysis, is a document vector transformer called

Gensim Doc2Vec. Document vectors are n-dimensional numeric vectors that serve as

compressed representations of a document, which in this context means the full snippet text after

it is fully pre-processed. The vectors add the necessary dimensionality to the review text for the

classification learners to try and determine if the class labels can be discerned.

This step is not included in previous cleanup phases as the primary document to the vector class

provided by Gensim will be modeled alongside the classifier. This is done by performing text

cleanup, then wrapping the cleaned-up text into a Gensim tagged document with the tag in

question true/false for if the review is for a bestseller. The inclusion of appropriate tags will

influence the document vector to attain values closer to those with the same tag.

This training will be done using only documents from the training set whenever data is split

using train-test split. For all other documents (validation, test, dashboard input), the trained

Doc2Vec model will infer the vector without referring to the document tag, as the tag would not

be known for unlabeled text. Selection of the number of vector features for the Doc2Vec will be

performed during Hyperparameter Tuning Analysis.

Analysis

Preliminary Analysis

For analysis, the classification pipeline will refer to a scikit-learn Pipeline object composed of

the following: a custom wrapper class which allows Gensim Doc2Vec to function within an

Scikit-learn pipeline and expose some of its hyperparameters to the Pipeline class, a min-max

scaler which normalizes the data to the range [0,1] using training data to set the scale (generally

from [-1,1] to [0,1]), and a classifier which is interchangeable depending on the test case. The

use of a Doc2Vec instead of a Word2Vec is due to the need to analyze the document rather than

keywords during classification, using document tagging to attach a label to the documents during

fitting (Li).

Preliminary analysis was performed using accuracy and F1 to measure the pipeline’s

performance by splitting the data into test and training sets, then fitting the pipeline using logistic

regression as the classifier, modifying only the C-value. It was found that the model was

extremely accurate but was unable to predict any positive values with an F1 near zero. This led

to counting the values for bestsellers directly, and it was found that the number of positive cases

is heavily outweighed by the number of negative cases (8% to 15% depending on the collection

date).

Figure 2. A histogram of game reviews based upon the number of owners for each review’s game. This graph was

generated with an older extract for steam games, but nonetheless is the visualization for which it was decided

500,000 represented an ideal cutoff point to indicate games that sold exceptionally well while balanced against the

need for sufficient positive cases.

This led to performing the same test again, this time by downsampling the number of negative

cases to match the number of positive cases, leading to an accuracy and F1 of both around 0.75.

From there it became the baseline starting point for the three analyses performed below.

Later, during the analysis, however, it was determined that downsampling was the incorrect

choice as it distorts the expected proportion of reviews which are expected to be received in the

real world, especially as they are expected to be unlabeled. Thus, downsampling was reversed,

and the process has been reworked to account for the full imbalance dataset. In addition,

Doc2Vec was found to be non-deterministic in its outputs, resulting in changing scores in every

re-run. This led to the choice to obtain averages for most of the data by obtaining the test score

more than once.

Because of how high the unweighted accuracy of the model was for the imbalanced dataset, the

primary question was no longer if it is accurate, but if it can predict positive cases well enough.

Analysis Techniques

The analysis techniques used for the project were simple comparisons of different parameters

and preparation techniques for the data before and after it is processed by the classifier to try and

improve the test accuracy, precision, recall, and F1 scores of the outputs for the classification

pipeline shown below. This forms the reasoning for choosing to convert the numeric regression

problem of prediction the number of owners to prediction classification along an ownership

threshold as an easier means to compute accuracy alongside the rationale of simplifying the

prediction problem.

Figure 3. A flowchart of the classification pipeline (top), which includes feature engineering as a part of the process.

The classifier learner is interchangeable with any of the four learners listed inside the textbox. Below is a state of the

data at each stage of the Pipeline.

The scores are obtained by fitting the classification pipeline to training data, then predicting the

labels on the test data and comparing them to the real labels. Because the scores are used for

model selection through both automated and manual selection, they form the endpoint of all the

following analysis tests.

Four analytical workflows were created during the project, each dealing with a different facet of

the process workflow: hyperparameter tuning, data preparation alternatives, data scaling and data

aggregation. In aggregate, the analyses seek to determine which of the four classifiers selected

for analysis–logistic regression, random forest, multilayer perceptron, and k-nearest neighbors–in

combination with different preparation techniques, will perform best, with an additional analysis

evaluating how well the pipeline performs under scaling and robustness tests.

Applying the techniques involved changing the parameters and processes of the pipeline, how

data is prepared, how data is sampled or split, and what hyperparameters are used. Then the

training data is fit to the classification pipeline to learn a new classifier, which is then evaluated

via the test data that is outputted to determine the changes in performance. Training and testing

data is split 60% to 40% (60-40) unless otherwise specified.

Processing Environment

Doc2Vec
Transformer

•Custom wrapper for
Gensim Doc2Vec

•Tagged documents are
converted using Doc2Vec
to vectors

MinMaxScaler

•Scales the input vectors
to [0,1]

•In most cases, from [-1,1]
to [0,1]

Binary Classifier

•Logisitc Regression

•Random Forest

•MLP Neural Network

•K-Nearest Neighbors

Tagged Document

• ['great', 'game', 'excel',
'mechan', 'compel',
'romanc', 'stori', 'well',
'optim', 'bugfre', 'execut']

• tags=[True] (training only)

Array

• [0, -.391, .393, .181, .381]

Array

• [0.5 , 0.3045, 0.6965,
0.5905, 0.6905]

Boolean (Is it a
bestseller?)

• True

The execution environment is within an Anaconda distribution on Windows. Extraction, cleanup,

analysis, and model learning is performed within Jupyter Notebooks executed either through

Jupyter Lab or the Visual Studio Code application on Anaconda. VS Code is also the application

whose terminal and debug tools are used to build and execute the dashboard solution. Each of the

below subsections are run on one independent Jupyter notebook each and can be executed from

start to finish. Hyperparameter Tuning must be performed before Scaling and Robustness and

Data Aggregation workflows.

Hyperparameter Tuning

Hyperparameter tuning seeks to alter the hyperparameters of Gensim Doc2Vec and the classifier

in use to improve performance without changing the inputs or the output format beyond the

standard data pipeline.

Analysis of optimal parameters was performed using Scikit-learn GridSearchCVs. This allows

for the automatic and exhaustive testing of various combinations of hyperparameters on the

various classifiers being evaluated. Each grid search performs a 3-fold cross-validation with F1

being the score used to automatically evaluate the hyperparameters using the same training and

test data to generate scores. The GridSearchCVs will then record which are the best

hyperparameters and its validation F1, then the test data is fed into the best model to generate

predictions to get the best F1, which will be the only validation score used in this workflow.

There are also two additional tests to evaluate feature selection and balance. The first introduces

a linear support vector classifier (SVC) to scikit-learn’s SelectFromModel feature selector, which

is then introduced between the min-max scaler and the primary classifier to try and narrow the

vector elements down to those which are significant, reduce overfitting, and increase test

performance. The SVC and SelectFromModel use default hyperparameters, and the main

classifier uses the best hyperparameters found from tuning the logistic regression pipeline.

The last test is if giving disproportionate weight to positive cases on the linear classification

pipeline instead of a balanced weight will improve the F1 of the pipeline.

Once all the pipelines are fitted to their best hyperparameters, each generates a single set of test

scores at the end of the workflow. Only the cross-validation, and the corresponding validation

F1, will display a mean finding.

Learner Tuned Hyperparameters Additional Notes

Doc2Vec 'dm': [0, 1],
'dbow_words': [0, 1],
'vector_size': [50, 200],
'min_count': [2, 5],
'negative' : [0, 5, 10],
'hs': [0, 1]

Uses logistic regression with default

hyperparameters except

class_weights=‘balanced’

Best results used for Doc2Vec pipeline are

added to the parameters for remaining grid

searches

Logistic Regression {
'clf__C': [1e-3, 1e-2, 1e-1,1, 1e2, 1e3, 1e4, 1e5],
'clf__penalty': ['l2'],
'clf__solver': ['lbfgs']
},
{'clf__C': [1e-3, 1e-2, 1e-1, 1, 1e2, 1e3, 1e4, 1e5],
'clf__penalty': ['l1', 'l2'],
'clf__solver': ['liblinear']
}

Limited-memory BFGS (LBFGS) cannot

be used with an L1 penalty, and thus uses

its own set of hyperparameters to

distinguish penalty sets.

The classifier also has the following

hyperparameter included:

class_weights=‘balanced’

Random Forest 'clf__n_estimators': [50,100,150,200],
'clf__criterion': ['gini','entropy', 'log_loss'],
'clf__class_weight':

["balanced","balanced_subsample"],
'clf__max_depth': [None, 5, 10, 15, 20]

Multi-Layer Perceptron 'clf__hidden_layer_sizes':

[(10,30,10),(20,),(100,300,100),(50,100,100,50)],
'clf__activation': ['tanh', 'relu'],
'clf__solver': ['sgd', 'adam'],
'clf__alpha': [0.0001, 0.05],
'clf__learning_rate': ['constant', 'adaptive']

Parameters derived from “scikit learn

hyperparameter optimization for

MLPClassifier.”” (Panjeh)

K-Nearest Neighbors 'doc2vec__vector_size': [50, 100, 200],
'clf__n_neighbors': [2, 4, 6, 8, 10],
'clf__weights': ['uniform', 'distance']

To increase the number of cases

investigated, vector size for Doc2Vec was

modified outside of the choice from the

first test to tune to different vector sizes

Linear Regression w/

SelectFromModel

LinearSVC feature

selection

 None Uses the best hyperparameters from linear

regression case

Linear Regression w/

varying weights
'clf__class_weight': [None, "balanced", weight1,

weight2, weight3]

weight1 = {1: 100 ,0: 1}
weight2 = {1: 50 ,0: 1}
weight3 = {1: 200 ,0: 1}

Uses the best hyperparameters from linear

regression case

0 = False
1 = True

The outputs from this workflow specifically are used to generate hyperparameters for the

solution architecture.

Data Preparation Alternatives

This workflow sought to test various techniques of data preparation beyond what was outlined in

the data pipeline to improve the inputs to the data pipeline without having to modify

hyperparameters. Improvements can then be added to hyperparameter tuning (if any), creating a

better solution for the end-user.

First is by simply re-splitting the same data five times to get new training and test data for each

test, to assess if scores are an artifact of the manner data was split at the time of test. This will

also be the baseline of the workflow, as the same technique will be applied to other data prep

analyses.

Second is appending the previously retrieved sentiment and polarity values during data

preparation to the document vectors, to assess if the two dimensions contain independently

varying information that can inform the learner with information not in the vectors. The third

way excludes the two sentiment values and instead aggregates the input vectors along the game

ID, to assess if the man of the input vectors will provide more accurate information and control

for the fact that reviews for individual games can express differing opinions.

The last data prep analysis is from substituting Gensim Doc2Vec with spaCy’s en_core_web_sm

model for generating vectors, first by combining sentence vectors into a mean, then by

generating a doc vector using default settings for spaCy’s class constructor.

Each data preparation technique will be fed into the four classifiers chosen for analysis. The

exception will be the spaCy data prep method, which will only use the Random Forest and

Logistic Regression classifiers. Each case will generate average scores from the 5 re-splits used

to generate the training and test data to control variation in the scores, and those same scores will

be compared within each learner type using Welch’s t-test to establish statistical significance

against the first resampling with no modifications.

Scaling and Robustness Analysis

The scaling and robustness workflow seeks to determine how well the model could be scaled up

to receive new data, and handle minor to moderate errors in the review text. The classification

pipeline for this workflow is the logistic regression pipeline with the best hyperparameters in

findings.

It should be noted that this workflow was performed using downsampling of the negative cases

using an older review dataset with an 8% positive label composition. The findings from this

section were used to update the workflow in other sections. Thus, the hyperparameters used for

the classification pipeline and the results for the baseline are expected to be very different from

the other workflows.

Because the data was smaller, the training and test data split was 80-20 to allow enough training

data to be part of the fitting process. The test data is then transformed into predictions and

evaluated 5 times (as Doc2Vec is non-deterministic) to attain an average. The classification

pipeline is tuned to the best hyperparameters for logistic regression as found in hyperparameter

tuning.

Analyzing the model’s scalability was done in multiple ways. First, by reducing the classification

threshold from > 500,000 owners to >= 500,000 owners, which changes the proportion of

positive cases in the dataset. A second control group is formed where the training data and test

data are still the same size as before.

With the same balanced subset, the data is split so that the training data is the same absolute size

as the control groups to verify if the model performance does not drop off as more unlabeled data

of similar quality as before is added. Next, the train-test data is 80-20 to determine if adding

more training data will improve the scores with the new classification threshold.

A final scalability test is to use the balanced training data from the first control to fit the model

and use an imbalance test set with the same proportion as the entire dataset by appending

negative data points.

Because a control group was used for this analysis unlike the previous workflows, the multiple

score samplings taken for each test undergo a Welch’s t-test to validate if the changes between

cases and the control groups are statistically significant.

Robustness was tested by scrambling 4 characters in each review document, swapping two sets

of adjacent words per document, scrambling 20 characters in every 5 documents, and finally a

combination of all the above. Character scrambling is applied before text cleanup to verify that

cleanup can handle the introduction of this type of noise, and word swap will occur after text

cleanup and before Doc2Vec conversion, as the documents would already be organized into

word lists at that point and would be no different if the change was introduced earlier.

These four cases will have outputs predicted on two different types of pipelines: the control

pipeline, and an individual pipeline fitted with the training data with the corresponding type of

noise introduced to them. All test data will receive the noise corresponding to their test case.

Because the workflow was concerned with precisely where among precision and recall the

models are affected and not the overall performance, F1 was omitted.

Data Aggregation

Aggregating data outputs seeks to achieve a similar aim as the third data prep case from the

above section, but training data is fitted to the pipeline as they normally are. Instead, test data is

aggregated in one of two ways: by concatenating the review texts together to generate one

prediction per game, or by averaging the prediction probabilities for the game from every review,

then vote for the class label with the highest probability.

These aggregation analyses are designed to determine if combining review data for each game

and considering how each review can express different potential outcomes can create an

aggregate picture that more accurately reflects the bestseller state of the game than if reviews

were looked at individually.

The classification pipeline used will include a logistic regression classifier using the best

hyperparameters in the Hyperparameter Tuning findings and balanced class weights. Twenty re-

evaluations of the test set will be done for each case to account for non-deterministic outputs,

then they will run against the non-aggregated test output using Welch’s t-test to determine if

there is a statistically significant difference.

Findings and Reporting

The scores represent the average of multiple scores evaluated for each model.

Hyperparameter Tuning

The test F1 indicates Gensim Doc2Vec, combined with a Random Forest classifier, seems to be

the best performing model during hyperparameter tuning. Using linear SVM for feature selection

and changing weights manually does not seem to provide any improved results.

Learner

Tuned

Best

Hyperparameters

Valid.

F1

Test

Acc.

Test

Prec.

Test

Recall

Test F1 Additional Notes

Doc2Vec 'dm': [0],

'dbow_words': [0],

'vector_size': [50],

'min_count': [2],

'negative' : [10],

'hs': [0]

0.546 0.826 0.452 0.720 0.556 Uses logistic

regression with

default

hyperparameters

except

class_weights=‘balan

ced’

Logistic

Regression

'clf__C': [0.001],

'clf__penalty': ['l2'],

'clf__solver':

['lbfgs']

0.547 0.835 0.475 0.670 0.556 Uses logistic

regression with

default

hyperparameters

except

class_weights=‘balan

ced’

Random

Forest

'clf__class_weight':

[‘balanced_subsam

ple’],

'clf__n_estimators':

[150],

'clf__criterion':

['entropy''],

'clf__max_depth':

[20]

0.572 0.858 0.531 0.644 0.582

Multi-Layer

Perceptron

'clf__hidden_layer_

sizes':

[(100,300,100)],

'clf__activation':

['relu'],

'clf__solver':

['adam'],

'clf__alpha': [0.05],

'clf__learning_rate':

['constant']

0.568 0.882 0.667 0.474 0.554

K-Nearest

Neighbors

'doc2vec__vector_s

ize': [200],

'clf__n_neighbors':

[8],

'clf__weights':

['distance']

0.549 0.869 0.581 0.557 0.568

Linear

Regression

w/

SelectFrom

Model

LinearSVC

feature

selection

 None 0.548 0.835 0.475 0.672 0.557

Linear

Regression

w/ varying

weights

'clf__class_weight':

["balanced"]

0.544 0.830 0.667 0.548 0.548

Figure 4.1. Histogram of the predicted and

actual classes (right) when organized by

prediction probability (top) and review

character length (bottom)–as well as a

confusion matrix of the predictions by

absolute value (top left) and normalized by

prediction (bottom left)–of a random forest

classifier, which has the best F1. Note that as

prediction probability increases, the number

of false classifications tends to decrease.

Figure 4.2. Precision-recall curve of the best estimators for each of the cases tested. Note that Neural Network

(MLP), Random Forest, and K-Nearest neighbors performed better than the logistic regression implementations.

Data Preparation Alternatives

None of the alternative data preparation methods evaluated in this workflow appear to provide a

consistent improvement in model performance to justify their addition to the data pipeline, with

spaCy’s model in particular eliminating almost any predictive power for the classification

pipeline. p values are very high in almost any case, making any improvement questionable at

best.

Data Prep Model Test

Accuracy

Test

Precision

Test

Recall

Test F1 Additional

Notes

Baseline

Resampling

Logistic
Regression

0.791 0.402 0.731 0.519 Uses logistic

regression for classifier

RF 0.847 0.894 0.0104 0.0206

MLP 0.872 0.618 0.479 0.535

KNN 0.838 0.384 0.0798 0.132

Sentiment Score Logistic

Regression
0.79

p = 0.9

0.401

p = 0.85

0.728

p = 0.462

0.518

p = 0.633

RF 0.847

p = 0.826

0.884

p = 0.64

0.0124

p = 0.107

0.0244

p = 0.107

MLP 0.878

p = 0.153

0.667

p = 0.131

0.427

p = 0.154

0.519

p = 0.28

KNN 0.838

p = 0.692

0.379

p = 0.561

0.0801

p = 0.917

0.132

p = 0.983

Aggregate Logistic

Regression
0.790

p = 0.752

0.401

p = 0.776

0.73

p = 0.728

0.518

p = 0.583

RF 0.847

p = 0.914

0.901

p = 0.796

0.011

p = 0.485

0.022

p = 0.486

MLP 0.874

p = 0.718

0.633

p = 0.679

0.466

p = 0.751

0.532

p = 0.82

KNN 0.838

p = 0.784

0.388

p = 0.664

0.0805

p = 0.837

0.133

p = 0.812

spaCy Aggregate

Sentence
Logistic
Regression

0.589

p < 0.01

0.191

p < 0.01

0.514

p < 0.01

0.278

p < 0.01

RF 0.846

p = 0.206

0.513

p < 0.01

0.00228

p < 0.01

0.00454

p < 0.01

spaCy Doc Logistic
Regression

0.602

p < 0.01

0.195

p < 0.01

0.507

p < 0.01

0.282

p < 0.01

RF 0.846

p = 0.204

0.508

p < 0.01

0.00233

p < 0.01

0.00464

p < 0.01

Scaling and Robustness Analysis

The scaling analysis indicated that proportionally increasing data did not cause a significant

drop-off in performance, with precision being statistically negligible. However, the use of a

balanced subset to train the model caused a significant drop-off in precision, making the

continued practice unviable when confronted with real-world proportions of unlabeled data. The

scaling findings informed the revision of the other workflows to consider imbalance data

reflective of the real world.

The following is data previously collected from Report #8. The p-values for the t-test against the

second control will be bolded.

Scaling Case Test Accuracy Test Precision Test Recall

Control 1 (> 500,000 owners) 0.761 0.749 0.762

Control 2 (>= 500,000 owners) 0.692 (p < 0.01) 0.666 (p < 0.01) 0.725 (p < 0.01)

>= 500,000, balanced,
small training set, big test set

0.694
(p < 0.01) (p < 0.01)

0.694
(p < 0.01) (p < 0.75)

0.694
(p < 0.01) (p < 0.01)

>= 500,000, balanced,
80% training set, 20% test set

0.756
(p < 0.05) (p < 0.01)

0.760
(p < 0.01) (p < 0.01)

0.747
(p < 0.1) (p < 0.01)

Real Imbalanced (> 500,000 owners) 0.755 (p = 0.021) 0.203 (p < 0.01) 0.765 (p = 0.183)

Figure 5. The precision-recall curve of the control pipeline when given an imbalanced and a balanced test set. The curves

indicate a massive drop in performance when classifying the bestseller class.

The model pipeline was found to be robust in the event of minor misspellings or rare cases of

many misspellings and is unaffected by a small number of word swaps in a statistically

significant manner. Even if trained on the noisy data, the models retain some of their

performance. The case when there is a major drop-off is if all three cases used were combined

and included in the training data.

The following is data previously collected from Report #8.

Predictions made on control model Predictions made on model fit to noisy data

from the same case

Robustness Case Test

Accuracy
Test

Precision
Test

Recall
Test

Accuracy
Test

Precision
Test

Recall

Control 1 0.762 0.744 0.753 0.762 0.744 0.753

4-character scrambles in

all reviews
0.725
(p > 0.01)

0.718
(p > 0.01)

0.713
(p >

0.01)

0.738
(p > 0.01)

0.722
(p > 0.01)

0.746
(p > 0.01)

20-character scrambles

in 1 out of 5 reviews
0.747
(p > 0.01)

0.732
(p > 0.01)

0.751
(p =

0.61)

0.740
(p > 0.01)

0.725
(p > 0.01)

0.748
(p = 0.50)

2-word swaps in all

reviews
0.756
(p = 0.89)

0.745
(p = 0.87)

0.754
(p =

0.96)

0.764
(p = 0.68)

0.744
(p = 0.76)

0.780
(p = 0.70)

All cases combined 0.723
(p > 0.01)

0.712
(p > 0.01)

0.720
(p >

0.01)

0.69

(p > 0.01)
0.67

(p > 0.01)
0.722
(p > 0.01)

Data Aggregation

The two methods of aggregation evaluated in this workflow appear to have marginally increased

the F1, though concatenating reviews caused a drop in precision while voting has increased

Precision, Recall, and F1 at the same time, making it the better choice of aggregation and an

improvement over looking at singular reviews. The following data was collected from Report #9.

Single Review Concatenated Review Vote by Probability Sum

Statistic Scores Scores P-value from single review Scores P-value from single review

Accuracy 0.844 0.831 > 0.01 0.886 > 0.01

Precision 0.495 0.417 > 0.01 0.543 > 0.01

Recall 0.632 0.797 > 0.01 0.706 > 0.01

F1 0.555 0.547 > 0.01 0.614 > 0.01

Figure 6. Histogram of the predicted and actual classes of a logistic regression classifier when predicting class

labels from combining the review text (left) or the prediction probabilities of reviews (right) for each game. Note

that the prediction count skews between 0.55 and 0.60 instead of towards 0.90 as in Figure 4. Again, as prediction

probability increases, the number of false classifications tends to decrease.

Reporting

Few of the findings are presented directly to the customer, and instead inform the project for

evaluating the models and refining the analysis. These findings were reported in the paper as a

matter of performance evaluation, model tuning, and development of the solution architecture.

Reporting the accuracy allows for measuring the overall performance of each case for modifying

the model, its inputs, or outputs, while the F1, precision, and recall helped to indicate which

performed best at predicting the positive cases.

What is reported to a customer directly depends upon the customer in question. For IT

technicians, whose job is to maintain the model as part of the server hosting the solution

architecture, they are presented with the various scores given in the findings if they run the

notebooks, and the best hyperparameters are each exported to a JSON file as part of the notebook

workflow for Hyperparameter Tuning. The JSON reports are of greatest interest to the

technicians, as these hyperparameters can be selected in a config file and then used in generating

a new classification pipeline whenever the reporting dashboard’s server is enabled. Using the

score findings, particularly for F1, helps inform them which model to choose from to have the

best chance at identifying bestsellers.

For business customers, such as game developers, marketers, and publishing organizations, most

of the previous findings are not presented to these customers directly. Their priority is not how

the product functions in the background nor how it was developed, but instead on what it

produces. In this case: a true/false classification label if text describing a game with unknown

ownership levels is likely to have more than 500,000 owners on steam.

To present this reporting, a dashboard is created to service predictions for new inputs. The

dashboard is created using React.js to construct the user interface and is hosted on a Python

Flask server to take advantage of the experience developed from the analysis to construct a new

model used exclusively for the dashboard (Reine). The model in question is selected within a

configuration file, and its hyperparameters are selected from a JSON file generated from

Hyperparameter Tuning. The server and the database could be serviced by the business’s IT

department, or by a separate party who services multiple businesses.

Figure 7. The frontend of the Video Game Review Sentiment to Popularity Dashboard, shortened to “Video Game

Review Analyzer.” Note the presence of options to either submit text within the given textbox or submit multiple

text files for a game to compute the prediction.

The dashboard can take either text or a .txt file and use it to generate a prediction. Based upon

findings from Data Aggregation, it was decided to include the option to import multiple review

files, which will then have their predictions aggregated by vote using the technique described

Data Aggregation Analysis Methods. At the bottom of the page, the prediction will be displayed,

and the prediction’s probability as described by the classification pipeline will be displayed.

The exceptions to presenting performance findings are the findings for test scores for the model

chosen by the technician for use in their business, for which the test evaluation scores are

reported at the top of the dashboard which includes accuracy, recall, and precision scores. This is

included as a necessary piece of information, in combination with the confidence score given for

a prediction, for businesses to assess how trustworthy certain predictions may be. As the other

types of classifiers remain unused, and thus of little immediate interest to the dashboard user,

their information will be omitted on the dashboard.

Performance and Evaluation

Performance in all cases was obtained primarily through the F1 scores are included as well to

evaluate the performance for positive cases, as it is expected that end-users are most interested in

ensuring their product becomes a bestseller and will want to identify positive cases as accurately

as possible. In Hyperparameter Tuning, the GridSearchCV is tuned using just the F1, and thus

the best score is measured only in F1. Precision and recall, of which F1 is a function of, are kept

in findings to further breakdown how positive cases are treated. The models are then evaluated

by comparing all the test cases in each workflow, then selecting the cases which have the best

F1.

Based on findings during Hyperparameter Tuning, it can be concluded that the text of a review

has predictive power for a game’s ability to meet a fixed ownership threshold of more than

500,000 Steam owners, with the best performing model used during analysis by F1 being a

Random Forest classifier with an overall accuracy of 0.858 and an F1 of 0.582, and a precision

and recall of 0.531 and 0.644 respectively. The MLP classifier meanwhile has a lower recall of

474, but a higher accuracy and precision of 0.822 and 0.667, making it the second best. The F1 is

improved even further by aggregating reviews together by probability vote and deriving a

prediction from it.

Solution Architecture, Scaling, & Budgeting

Figure 8. A simplified flowchart of the solution architecture. The three white box sections refer to discrete parts of

the solution, which can be present on one computer or multiple ones. Omitted from the flowchart are the score

findings of the selected model, which is provided to the webpage on loading.

The solution architecture of the Review Sentiment Analyzer Dashboard takes the hyperparameter

data retrieved from the findings and uses them as the settings for the classification pipeline as

previously mentioned in Reporting as being exported to a JSON file. In figure X this pipeline is

referred to as the Review Sentiment Analyzer. Instead of using the models trained during

analysis, each time the server is started, the analyzer trains directly from the same database used

during analysis, which in-turn can be updated to include new data from SteamSpy, Steam, or

OpenCritic. It then receives text from dashboard requests and returns the prediction and

probability to the dashboard.

In matters of scaling the models for deployment, the solution is expected to receive a small

throughput at a given time each hour, much smaller than the dataset used to train and test them.

Scaling analysis findings showed that new inputs of similarly clean review data do not result in a

large drop in performance either. Instead, the focus was on streamlining their deployment on the

dashboard server to reduce latency between requests for predictions and the predictions

themselves.

The initial design had the model be fit during a request, but given the very high latency of such a

design, the design was further revised to fit on server startup. To further improve its scalability in

the event that the model is fitted with an especially large dataset, the Skops library is used to

dump the model, while the test scores gained after fitting are dumped to a JSON, allowing for

them to be quickly loaded again on rebooting the server.

For budgeting, the only resources which required direct payment from the start of the project

were operation costs for the PSQL server, which was hosted using Amazon Web Services, and

the Subscription for the OpenCritic API to overcome the daily query limits of the API.

To budget for the PSQL, the payment came out of an account provided by UCSD. To ensure it

can stay active at any time, the smallest pre-defined set on AWS is used so that only around

$0.50 a day is expended whenever it is active. This allowed for a cost-efficient 24/7 operation.

For OpenCritic, only the highest subscription rate allowed for the number of searches and

reviews needed to be accomplished for the data collection in a timely manner ($50/month). This

was paid out of pocket and will be unsubscribed to when it is deemed no longer needed after any

repeat extraction operations are complete.

Instead of hosting the dashboard on the remote server, for the purposes of this project it was

hosted locally for simplicity, which also avoids expenses for hosting the Flask server using a web

service.

Conclusion

The texts of reviews provide a rough but non-random ability to successfully predict games’

ability to meet an ownership threshold on Steam above 500,000 owners. These findings can then

be used within a web server data loop to give users feedback from the input text to indicate the

sales outlook for a given game product. If the solution architecture can be applied within a

business development environment, using textual feedback data from focus groups, test

engineers, and customer preview feedback, it can better inform where to improve a product

based on who to target, what reviews indicate who or why someone would or would not buy it

that is not explicitly stated in text. Being able to aggregate the data provides the potential to

provide an overall picture of the health of the project from a marketing and sales point.

Future work into the topic should investigate identifying key factors in the documents which

cause predictions to weigh towards certain labels, i.e., what keywords do each include, what

categories of information do the reviews provide, to give end-users more granular information to

provide better feedback. Using a fixed threshold of 500,000 is also non-indicative for the exact

number of sales achieved for a game, and it may be useful to investigate converting the problem

from a classification problem to a regression problem to better indicate where within each label a

game sells.

References

Ahn, Sang ho & Kang, Juyoung & Park, Sang-Un. “What makes the difference between popular games

and unpopular games? Analysis of online game reviews from steam platform using word2vec

and bass model.” ICIC Express Letters. 11. 1729-1737. 10.24507/icicel.11.12.1729.

Catellier, Rémi & Vaiter, Samuel & Garreau, Damien. 2023. “On the Robustness of Text Vectorizers.”

Li, Susan. “Multi-Class Text Classification with Doc2Vec & Logistic Regression.” Medium, 4 Dec.

2018. towardsdatascience.com/multi-class-text-classification-with-doc2vec-logistic-regression-

9da9947b43f4#:~:text=Doc2vec%20is%20an%20NLP%20tool.

Panjeh. “scikit learn hyperparameter optimization for MLPClassifier.” Medium. 29 June 2020.

https://panjeh.medium.com/scikit-learn-hyperparameter-optimization-for-mlpclassifier-

4d670413042b

Reine, R. “How to build & deploy a react + flask app.” Towards Data Science. 29 June 2022.

https://towardsdatascience.com/build-deploy-a-react-flask-app-47a89a5d17d9

Sinclair, B. “CD Projekt refunded around 30,000 Cyberpunk 2077 copies. GamesIndustry.Biz.” 22 April

2021. https://www.gamesindustry.biz/cd-projekt-refunded-around-30-000-cyberpunk-2077-

copies

Shah, P. “Sentiment Analysis using TextBlob.” Towards Data Science. 6 November 2020.

https://towardsdatascience.com/my-absolute-go-to-for-sentiment-analysis-textblob-3ac3a11d524

Appendices

A. DSE MAS Knowledge Applied to the Project

1. Supervised learning, classification

i. Logistic Regression

ii. Random Forest Classifier

iii. K-Nearest Neighbors

iv. Neural Networks

2. Model Evaluation

i. Confusion Matrix

ii. Accuracy

iii. F1

iv. Precision

v. Recall

3. Model Selection

i. Validation score

ii. Hyperparameter Tuning, Grid Search

4. Min-Max Normalization

5. Natural Language Processing

i. Text Vectorization

ii. Text Cleanup

1. Drop special characters

2. Drop stop words

iii. Text Distance Measurement (behind API)

B. Link to the Library Archive for Reproducibility

1. https://doi.org/10.6075/J06D5T5H

https://doi.org/10.6075/J06D5T5H

Credit to Polina Haryacha for their help in developing the intro and question formulation, and for

developing the Steam and SteamSpy extraction notebooks.

