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Abstract 

When a video game is reviewed positively as a great form of entertainment, one can make an 

educated guess that said game will sell well. If the hypothesis can be quantified into a machine 

learning problem and tested, it provides the potential for use by developers and marketers to 

interpret user feedback and determine if their game product is on track to meet sales milestones. 

To evaluate the hypothesis, the problem is simplified into a classification problem to determine if 

a review can indicate if the corresponding game would meet a maximum ownership threshold on 

the Steam game distribution platform of greater than, but not equal to, 500,000 users (such 

games henceforth referred to as bestsellers for conciseness). Snippets of review documents are 

then fitted and fed into a Gensim Doc2Vec model to convert them into document vectors to serve 

as inputs the classification learners can interpret. 

The project uses web APIs to extract review data from OpenCritic, game lists from Steam, and 

sales approximations from SteamSpy to form a dataset with 15% of reviews belonging to 

bestseller games. Using this data, a logistic regression classifier has been constructed which has 

achieved a test accuracy of 0.86 and a test F1 of 0.58 using Gensim Doc2Vec to feed document 

vectors into a Random Forest Classifier. This pipeline served as part of a backend Python Flask 

server, which takes in user input from a web-based dashboard that sends either text or file 

contents containing review documents, and processes them into a prediction if the review(s) 

indicate the game will meet the bestseller threshold, followed by a percentage probability 

generated by the model to indicate confidence in the prediction. With this, customers can feed 

reviews into the model to generate predictions. 

However, the model’s weakness is its F1, which represents a mediocre predictive power for 

positive cases. Presentation wise, it also does not provide explanation power as to why it arrived 

at its prediction. 

Introduction and Question Formulation 

Video games are part of a multi-billion-dollar economy with a large network of game 

developers, business investors and publishers who work to conceptualize, build, and market 

games to a community composed of millions of people. Included are the thousands of journalists, 

amateur and professional, who publish reviews which indicate to the community if the game is 

worth playing, and this information can both affect and be reflective of the sentiments of a game. 



Focusing on the reflective aspect, the question then becomes: could the text of those reviews be 

reflective of how well a game sells in a measurable way, instead of just how good it is? This is 

not a trivial distinction as the development and publication of a video game is extraordinarily 

expensive and costs millions of dollars for a high-end studio to create one. In one outstanding 

case, the cost ballooned to as high as $316 million (Sinclair). If the game's sales cannot match 

the costs that go into creating it, it may not matter whether it is considered a high-quality game. 

Without the money to make up for the costs, developers risk losing their career, their business 

employer risks failing, and the organization may not be able to produce more games. Thus, 

selling well becomes a matter of making a profit or a return on investment and ensuring the 

business can continue operating, and being able to predict if their game can meet a certain sales 

threshold, it will help to make a more informed business decision. 

For now, it is only a question of if such a sentiment exists and to what extent it could make an 

accurate prediction. The choice was made to simplify the problem as a binary classification 

problem, defining a class called “bestseller,” which are games with more than 500,000 owners 

on Steam. This choice loses the opportunity to discover if reviews can give sales predictions 

within a certain margin but provides scoring metrics such as accuracy or F1 which are more 

easily interpretable for the purpose of answering if a sales sentiment is present and works in hand 

with NLP Python libraries that operate on class labels. 

Related Work 

“What makes the difference between popular games and unpopular games? Analysis of online 

game reviews from steam platform using word2vec and bass model.” works with game 

popularity as well using a binary classification for popular and unpopular games, though the 

work uses Word2Vec to vectorize text keywords, and investigates an unsupervised learning 

problem to try and identify what makes a game popular based upon already classified data 

instead of predicting popularity. 

 

“On the Robustness of Text Vectorizers.” is related in that while it does not involve video games, 

it is a study of text vectorizers, a tool which was used extensively for analysis and as a part of the 

solution architecture. The conclusions it drew were that text vectorizers, among which includes 

Gensim Doc2Vec, are robust to the introduction of word replacements, with the error of a fixed 

number of replacements declining as the text in question becomes longer. This is an important 

consideration in the event of noisy and misspelled reviews and is thus a consideration which is 

included in analysis for verification. 

Team Roles and Responsibilities 

Robert Coughlin serves as the single member of the project, responsible for data acquisition, 

preparation, analysis, solution architecture implementation, and reporting. 

However, when Group 6B was Group 6, components of the project were developed by Polina 

Hyracha, who provided the question and suggested the solution architecture, and implemented 

the data collection notebooks for extracting information from Steam and SteamSpy which have 

since only been lightly modified. 



Data Acquisition 

Data Sources 

The data sources used for the project are Steam, SteamSpy, and OpenCritic. 

Steam is a PC-based video game distribution software developed by Valve Corporation and is 

one of the most popular methods of purchasing games and game-related software applications 

through non-physical copies. Using Steam as a data source, it provides the scope of the project 

by narrowing down the games analyzed to a subset of games that are available on PC on the 

Steam platform and contains both application name and application ID data to connect the data 

sources. Through its API, about 18,000 games can be found a second, with over 100,000 Steam-

based applications on the platform, and approximately 6,000 of them released in the year 2022 

alone. 

SteamSpy is a third-party online service that provides statistical data relating to 63,000-64,000 

games on Steam which is not available directly from Steam’s API. For the project, the statistic of 

most interest is the number of owners, which will serve as a measurement of the number of sales 

the game has achieved, serving as the output for supervised learning. Using the collection 

technique outlined in Data Collection, about 5,000 games’ sales data can be retrieved every 

second. 

Last is OpenCritic, a review aggregation website which collects reviews for video games across 

multiple platforms including the PC via a web crawler. According to the OpenCritic website 

FAQ, this process happens every 10-25 minutes. It provides data on review authorship, review 

scores, if the review is a recommendation, and a snippet of the review. The latter is of primary 

interest, as the snippets will be the inputs used for supervised learning. It is the slowest of the 

data sources which can be retrieved, requiring parallelization to try and speed up the process. It 

can perform approximately 20 searches a second when needing to search OpenCritic game IDs to 

match Steam IDs using the game title, and then with that data, the number of reviews retrieved 

hovers around 70 a second using the search data. 

All data sources are collected as semi-structured JSON objects with known schemas. 

OpenCritic’s data however includes nested object structures within them. 

These are dynamic data sources, and as such may provide different data if the same data 

collection is performed at different points in time. The last data retrieval was performed between 

May 25th, 2023. 

Data Collection 

The data sources identified all have web APIs from which the data is collected. To make use of 

them, they are each called through a separate Jupyter notebook to access and process the data in 

Python. 



For Steam, the requisition of games’ Steam application IDs (referred interchangeably as Steam 

game IDs) is done through a URL-based request in the Steamworks Web API to retrieve a list of 

JSONs of all apps in Steam. This is an exhaustive list and includes Steam applications that do not 

qualify as video games, something that must be accounted for in data preparation. 

Of the three, only the OpenCritic API required an API key to access. Due to the narrow 

throughput and the volume of data requests needed to extract the desired information, a premium 

subscription was required to attain the necessary throughput to gather the desired reviews. 

OpenCritic reviews cannot be accessed using the Steam app IDs, so instead the API’s search 

interface is used to find the closest match via the inverse trigram distance between the title of the 

game returned from the Steam API. It is expected that a game in OpenCritic will be hit multiple 

times, and thus the Steam game with the shortest distance to a given OpenCritic game is selected 

for the match. Then the OpenCritic ID retrieved from the match is used to request the 

corresponding game’s reviews. Each search and each game’s reviews must be requested one at a 

time. To accelerate the process, this step is parallelized so multiple requests are made at once. 

SteamSpy is the last data collection stage, making use of the OpenCritic data collection stage to 

identify Steam IDs which have found a match. Like with the Steamworks Web API, a list can be 

generated, but this is divided into pages of 1000 entries each. To resolve this, data collection is 

performed within a function that handles one page at a time, recursively calling itself to handle 

the next page until a desired number of random games are selected, or the function reaches a 

page with a number other than a thousand games (indicated it is the last) 

In all cases the information is then converted from JSON or a collection of JSONs into a Pandas 

dataframe and then written to a local .csv file as a cache for further pre-processing, 

computations, and exploration. 

As part of data preparation, the data is cleaned up and then uploaded into the SQL server. As of 

May 28th, the data currently cached and the data residing on the database server is represented 

by the following. Complications with data extraction and variable dates in which they were 

performed may have caused results that will be inconsistent with future runs in addition to the 

fact the data source is dynamic. 

Source Cache Size Cache Entries Database Size Database Entries 

Steam Games (Cache Only) 3.2 MB 105,051 N/A N/A 

SteamSpy Games & Sales 0.15 MB 10,250 0.68 MB 9,958 

OpenCritic Reviews 122 MB 105,916 40 MB 85,620 

 

 

 

 



Data Pipeline 

 

Figure 1. The full data pipeline. This includes steps from data collection down to the last step of cleanup during and 

before classification. 

Data Environment 

The environment is a hybrid of cloud databases and local flat files. The raw data extracted 

through the APIs are cached to the local file system within the project’s Git repository with light 

data cleanup as outlined in the Data Pipeline section. This allows for quick refactoring of code 

for cleaning and engineering data without needing to repeatedly extract new data, which may not 

be the same as last time. 

Initial cleanup is performed on the cached data, downsizing it, and extracting 1-dimensional 

features before uploading the information to a PostgreSQL database, from which the data is used 

by the learner to build the classification model. This architecture is a legacy of Group 6 with the 

goal of a common picture of data for the individuals working on the project. Its retention lies in 

Data Sourcing

•OpenCritic API

•Subscription Required

•SteamSpy API

•Steamworks Web API

Data Extraction and Partial Cleanup

•Data read into local PC
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SteamSpy API

•Non-games and non-English games dropped
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•Bestseller classification calculated from estimated # 
of owners. Default is >500,000

•Review text cleaned

•Extra spaces removed

•Special characters removed

•Converted to array of words

•Stop words removed

•Tagged using gensim TaggedDocument



the ease with which data can be combined between tables using SQL during queries, and its 

utility to act independently of the working computer, which can be useful if needing to deploy 

the dashboard server to new servers. 

Data Preparation 

Data preparation is done in three steps: during collection, during database data uploading, and 

during analysis. The process is done mostly within Pandas dataframes, as this allows for the easy 

management of features, dropping unwanted entries, and appending engineered features. 

Data collection converts the JSON data from the APIs into .CSV files for the next stage of 

cleanup to read from. For OpenCritic, the raw data from the web API, including the nested 

objects, are kept as is inside the .CSV files, one file for the search results, and the other for 

review data. 

Quality wise, the review texts from OpenCritic are mostly well formed and well spelled 

sentences. However, some reviews are missing, and NLP word analysis may not perform as well 

if fed just the raw strings. 

To resolve this, text cleanup is performed before text is ever fed into NLP processors. Text 

cleanup will refer to the following steps: newlines, extra whitespace, and special characters are 

removed, and the text is set to lowercase. Then the string is split into a word list with special stop 

words dropped and the remaining words stemmatized. 

In both data collection and data uploading, the cached OpenCritic search results are used, and the 

Steam game with the lowest inverse trigram distance to a given OpenCritic game ID is used. 

These will be referred to as the best search results. 

During collection, the sales data from SteamSpy is not collected as a single integer. This is due 

to SteamSpy having imprecise data on Steam sales data. Instead, a string range is provided with a 

maximum and minimum delineated using two dots as well as comma separators in the numbers 

(i.e., “500,000 .. 1,000,000”). For analysis in the project, the higher number is selected and 

converted to an integer. As previously stated in Data Collection, the game ID for SteamSpy sales 

which are not part of the best search results are dropped before the sales data is cached to the 

local PC. Of the data collected, only the columns for Steam app ID and the sales estimate are 

retained. 

The data collector also drops Steam apps which are either not games or are in a foreign language. 

Both are determined based upon keywords in the app name. Only the app name and the app ID 

are retained during caching. 

In the second stage of cleanup, before the data is uploaded to the PSQL database, the OpenCritic 

data is dropped from reviews with a missing score, missing description, missing NP score, or if it 

is in a non-English language. Any duplicate reviews are also removed and is non-deterministic 

on which duplicate is removed. 



The nested objects from the cache are not easily transferable to SQL, and so they are unwrapped 

and the OpenCritic game ID within is mapped to the best search results to associate a Steam app 

ID with each review. A temporary text cleanup of each review snippet is performed and then fed 

into TextBlob’s sentiment scorer to output the polarity and subjectivity of the data (Shah). 

Lastly, the data columns of interest are selected, renamed, and uploaded to the database while 

others are dropped. The columns related to the analysis in use are the review IDs, the 

summary/review snippets, and the Steam app ID. 

The Steam sales data is uploaded as is from the cache, with any duplicate information dropped if 

present. 

The final data preparation takes place during modeling. Using the SQL query language, the 

reviews and sales data are joined along the Steam app ID to associate the games’ sales data to 

each of their reviews. The bestseller classification is then computed, generating a boolean on if 

the game has more than 500,000 Steam owners. 

Because we are only concerned with the contents of the text, it and any sentiment values derived 

are the only features selected from review beyond review ID and game ID for identification 

purposes. However, classifiers cannot accept text directly as an input, and exploration has 

determined the sentiment features created during the second stage are insufficient. The last 

engineered feature, created dynamically during analysis, is a document vector transformer called 

Gensim Doc2Vec. Document vectors are n-dimensional numeric vectors that serve as 

compressed representations of a document, which in this context means the full snippet text after 

it is fully pre-processed. The vectors add the necessary dimensionality to the review text for the 

classification learners to try and determine if the class labels can be discerned. 

This step is not included in previous cleanup phases as the primary document to the vector class 

provided by Gensim will be modeled alongside the classifier. This is done by performing text 

cleanup, then wrapping the cleaned-up text into a Gensim tagged document with the tag in 

question true/false for if the review is for a bestseller. The inclusion of appropriate tags will 

influence the document vector to attain values closer to those with the same tag. 

This training will be done using only documents from the training set whenever data is split 

using train-test split. For all other documents (validation, test, dashboard input), the trained 

Doc2Vec model will infer the vector without referring to the document tag, as the tag would not 

be known for unlabeled text. Selection of the number of vector features for the Doc2Vec will be 

performed during Hyperparameter Tuning Analysis. 

Analysis 

Preliminary Analysis 

For analysis, the classification pipeline will refer to a scikit-learn Pipeline object composed of 

the following: a custom wrapper class which allows Gensim Doc2Vec to function within an 

Scikit-learn pipeline and expose some of its hyperparameters to the Pipeline class, a min-max 



scaler which normalizes the data to the range [0,1] using training data to set the scale (generally 

from [-1,1] to [0,1]), and a classifier which is interchangeable depending on the test case. The 

use of a Doc2Vec instead of a Word2Vec is due to the need to analyze the document rather than 

keywords during classification, using document tagging to attach a label to the documents during 

fitting (Li). 

Preliminary analysis was performed using accuracy and F1 to measure the pipeline’s 

performance by splitting the data into test and training sets, then fitting the pipeline using logistic 

regression as the classifier, modifying only the C-value. It was found that the model was 

extremely accurate but was unable to predict any positive values with an F1 near zero. This led 

to counting the values for bestsellers directly, and it was found that the number of positive cases 

is heavily outweighed by the number of negative cases (8% to 15% depending on the collection 

date). 

 
Figure 2. A histogram of game reviews based upon the number of owners for each review’s game. This graph was 

generated with an older extract for steam games, but nonetheless is the visualization for which it was decided 

500,000 represented an ideal cutoff point to indicate games that sold exceptionally well while balanced against the 

need for sufficient positive cases. 

This led to performing the same test again, this time by downsampling the number of negative 

cases to match the number of positive cases, leading to an accuracy and F1 of both around 0.75. 

From there it became the baseline starting point for the three analyses performed below. 

Later, during the analysis, however, it was determined that downsampling was the incorrect 

choice as it distorts the expected proportion of reviews which are expected to be received in the 

real world, especially as they are expected to be unlabeled. Thus, downsampling was reversed, 

and the process has been reworked to account for the full imbalance dataset. In addition, 

Doc2Vec was found to be non-deterministic in its outputs, resulting in changing scores in every 

re-run. This led to the choice to obtain averages for most of the data by obtaining the test score 

more than once. 

Because of how high the unweighted accuracy of the model was for the imbalanced dataset, the 

primary question was no longer if it is accurate, but if it can predict positive cases well enough. 



Analysis Techniques 

The analysis techniques used for the project were simple comparisons of different parameters 

and preparation techniques for the data before and after it is processed by the classifier to try and 

improve the test accuracy, precision, recall, and F1 scores of the outputs for the classification 

pipeline shown below. This forms the reasoning for choosing to convert the numeric regression 

problem of prediction the number of owners to prediction classification along an ownership 

threshold as an easier means to compute accuracy alongside the rationale of simplifying the 

prediction problem. 

 

Figure 3. A flowchart of the classification pipeline (top), which includes feature engineering as a part of the process. 

The classifier learner is interchangeable with any of the four learners listed inside the textbox. Below is a state of the 

data at each stage of the Pipeline. 

The scores are obtained by fitting the classification pipeline to training data, then predicting the 

labels on the test data and comparing them to the real labels. Because the scores are used for 

model selection through both automated and manual selection, they form the endpoint of all the 

following analysis tests. 

Four analytical workflows were created during the project, each dealing with a different facet of 

the process workflow: hyperparameter tuning, data preparation alternatives, data scaling and data 

aggregation. In aggregate, the analyses seek to determine which of the four classifiers selected 

for analysis–logistic regression, random forest, multilayer perceptron, and k-nearest neighbors–in 

combination with different preparation techniques, will perform best, with an additional analysis 

evaluating how well the pipeline performs under scaling and robustness tests. 

Applying the techniques involved changing the parameters and processes of the pipeline, how 

data is prepared, how data is sampled or split, and what hyperparameters are used. Then the 

training data is fit to the classification pipeline to learn a new classifier, which is then evaluated 

via the test data that is outputted to determine the changes in performance. Training and testing 

data is split 60% to 40% (60-40) unless otherwise specified. 

Processing Environment 

Doc2Vec 
Transformer

•Custom wrapper for 
Gensim Doc2Vec

•Tagged documents are 
converted using Doc2Vec 
to vectors

MinMaxScaler
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to [0,1]
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•Random Forest
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• ['great', 'game', 'excel', 
'mechan', 'compel', 
'romanc', 'stori', 'well', 
'optim', 'bugfre', 'execut'] 

• tags=[True] (training only)

Array

• [0, -.391, .393, .181, .381]

Array

• [0.5   , 0.3045, 0.6965, 
0.5905, 0.6905]

Boolean (Is it a 
bestseller?)

• True



The execution environment is within an Anaconda distribution on Windows. Extraction, cleanup, 

analysis, and model learning is performed within Jupyter Notebooks executed either through 

Jupyter Lab or the Visual Studio Code application on Anaconda. VS Code is also the application 

whose terminal and debug tools are used to build and execute the dashboard solution. Each of the 

below subsections are run on one independent Jupyter notebook each and can be executed from 

start to finish. Hyperparameter Tuning must be performed before Scaling and Robustness and 

Data Aggregation workflows. 

Hyperparameter Tuning 

Hyperparameter tuning seeks to alter the hyperparameters of Gensim Doc2Vec and the classifier 

in use to improve performance without changing the inputs or the output format beyond the 

standard data pipeline. 

Analysis of optimal parameters was performed using Scikit-learn GridSearchCVs. This allows 

for the automatic and exhaustive testing of various combinations of hyperparameters on the 

various classifiers being evaluated. Each grid search performs a 3-fold cross-validation with F1 

being the score used to automatically evaluate the hyperparameters using the same training and 

test data to generate scores. The GridSearchCVs will then record which are the best 

hyperparameters and its validation F1, then the test data is fed into the best model to generate 

predictions to get the best F1, which will be the only validation score used in this workflow. 

There are also two additional tests to evaluate feature selection and balance. The first introduces 

a linear support vector classifier (SVC) to scikit-learn’s SelectFromModel feature selector, which 

is then introduced between the min-max scaler and the primary classifier to try and narrow the 

vector elements down to those which are significant, reduce overfitting, and increase test 

performance. The SVC and SelectFromModel use default hyperparameters, and the main 

classifier uses the best hyperparameters found from tuning the logistic regression pipeline. 

The last test is if giving disproportionate weight to positive cases on the linear classification 

pipeline instead of a balanced weight will improve the F1 of the pipeline. 

Once all the pipelines are fitted to their best hyperparameters, each generates a single set of test 

scores at the end of the workflow. Only the cross-validation, and the corresponding validation 

F1, will display a mean finding. 

Learner Tuned Hyperparameters Additional Notes 

Doc2Vec 'dm': [0, 1], 
'dbow_words': [0, 1], 
'vector_size': [50, 200], 
'min_count': [2, 5], 
'negative' : [0, 5, 10], 
'hs': [0, 1] 

Uses logistic regression with default 

hyperparameters except 

class_weights=‘balanced’ 
 
Best results used for Doc2Vec pipeline are 

added to the parameters for remaining grid 

searches 



Logistic Regression {  
'clf__C': [1e-3, 1e-2, 1e-1,1, 1e2, 1e3, 1e4, 1e5], 
'clf__penalty': ['l2'], 
'clf__solver': ['lbfgs'] 
},  
{'clf__C': [1e-3, 1e-2, 1e-1, 1, 1e2, 1e3, 1e4, 1e5], 
'clf__penalty': ['l1', 'l2'], 
'clf__solver': ['liblinear'] 
} 

Limited-memory BFGS (LBFGS) cannot 

be used with an L1 penalty, and thus uses 

its own set of hyperparameters to 

distinguish penalty sets. 
 
The classifier also has the following 

hyperparameter included: 

class_weights=‘balanced’ 

Random Forest 'clf__n_estimators': [50,100,150,200], 
'clf__criterion': ['gini','entropy', 'log_loss'], 
'clf__class_weight': 

["balanced","balanced_subsample"], 
'clf__max_depth': [None, 5, 10, 15, 20] 

 

Multi-Layer Perceptron 'clf__hidden_layer_sizes': 

[(10,30,10),(20,),(100,300,100),(50,100,100,50)], 
'clf__activation': ['tanh', 'relu'], 
'clf__solver': ['sgd', 'adam'], 
'clf__alpha': [0.0001, 0.05], 
'clf__learning_rate': ['constant', 'adaptive'] 

Parameters derived from “scikit learn 

hyperparameter optimization for 

MLPClassifier.”” (Panjeh) 

K-Nearest Neighbors 'doc2vec__vector_size': [50, 100, 200], 
'clf__n_neighbors': [2, 4, 6, 8, 10], 
'clf__weights': ['uniform', 'distance'] 

To increase the number of cases 

investigated, vector size for Doc2Vec was 

modified outside of the choice from the 

first test to tune to different vector sizes 

Linear Regression w/ 

SelectFromModel 

LinearSVC feature 

selection 

 None Uses the best hyperparameters from linear 

regression case  

Linear Regression w/ 

varying weights 
'clf__class_weight': [None, "balanced", weight1, 

weight2, weight3] 
 
weight1 = {1: 100 ,0: 1} 
weight2 = {1: 50 ,0: 1} 
weight3 = {1: 200 ,0: 1}  

Uses the best hyperparameters from linear 

regression case 
 
0 = False 
1 = True 

 

The outputs from this workflow specifically are used to generate hyperparameters for the 

solution architecture. 

Data Preparation Alternatives 

This workflow sought to test various techniques of data preparation beyond what was outlined in 

the data pipeline to improve the inputs to the data pipeline without having to modify 

hyperparameters. Improvements can then be added to hyperparameter tuning (if any), creating a 

better solution for the end-user. 

First is by simply re-splitting the same data five times to get new training and test data for each 

test, to assess if scores are an artifact of the manner data was split at the time of test. This will 

also be the baseline of the workflow, as the same technique will be applied to other data prep 

analyses. 



Second is appending the previously retrieved sentiment and polarity values during data 

preparation to the document vectors, to assess if the two dimensions contain independently 

varying information that can inform the learner with information not in the vectors. The third 

way excludes the two sentiment values and instead aggregates the input vectors along the game 

ID, to assess if the man of the input vectors will provide more accurate information and control 

for the fact that reviews for individual games can express differing opinions. 

The last data prep analysis is from substituting Gensim Doc2Vec with spaCy’s en_core_web_sm 

model for generating vectors, first by combining sentence vectors into a mean, then by 

generating a doc vector using default settings for spaCy’s class constructor. 

Each data preparation technique will be fed into the four classifiers chosen for analysis. The 

exception will be the spaCy data prep method, which will only use the Random Forest and 

Logistic Regression classifiers. Each case will generate average scores from the 5 re-splits used 

to generate the training and test data to control variation in the scores, and those same scores will 

be compared within each learner type using Welch’s t-test to establish statistical significance 

against the first resampling with no modifications. 

Scaling and Robustness Analysis 

The scaling and robustness workflow seeks to determine how well the model could be scaled up 

to receive new data, and handle minor to moderate errors in the review text. The classification 

pipeline for this workflow is the logistic regression pipeline with the best hyperparameters in 

findings. 

It should be noted that this workflow was performed using downsampling of the negative cases 

using an older review dataset with an 8% positive label composition. The findings from this 

section were used to update the workflow in other sections. Thus, the hyperparameters used for 

the classification pipeline and the results for the baseline are expected to be very different from 

the other workflows. 

Because the data was smaller, the training and test data split was 80-20 to allow enough training 

data to be part of the fitting process. The test data is then transformed into predictions and 

evaluated 5 times (as Doc2Vec is non-deterministic) to attain an average. The classification 

pipeline is tuned to the best hyperparameters for logistic regression as found in hyperparameter 

tuning. 

Analyzing the model’s scalability was done in multiple ways. First, by reducing the classification 

threshold from > 500,000 owners to >= 500,000 owners, which changes the proportion of 

positive cases in the dataset. A second control group is formed where the training data and test 

data are still the same size as before. 

With the same balanced subset, the data is split so that the training data is the same absolute size 

as the control groups to verify if the model performance does not drop off as more unlabeled data 

of similar quality as before is added. Next, the train-test data is 80-20 to determine if adding 

more training data will improve the scores with the new classification threshold. 



A final scalability test is to use the balanced training data from the first control to fit the model 

and use an imbalance test set with the same proportion as the entire dataset by appending 

negative data points. 

Because a control group was used for this analysis unlike the previous workflows, the multiple 

score samplings taken for each test undergo a Welch’s t-test to validate if the changes between 

cases and the control groups are statistically significant. 

Robustness was tested by scrambling 4 characters in each review document, swapping two sets 

of adjacent words per document, scrambling 20 characters in every 5 documents, and finally a 

combination of all the above. Character scrambling is applied before text cleanup to verify that 

cleanup can handle the introduction of this type of noise, and word swap will occur after text 

cleanup and before Doc2Vec conversion, as the documents would already be organized into 

word lists at that point and would be no different if the change was introduced earlier. 

These four cases will have outputs predicted on two different types of pipelines: the control 

pipeline, and an individual pipeline fitted with the training data with the corresponding type of 

noise introduced to them. All test data will receive the noise corresponding to their test case. 

Because the workflow was concerned with precisely where among precision and recall the 

models are affected and not the overall performance, F1 was omitted. 

Data Aggregation 

Aggregating data outputs seeks to achieve a similar aim as the third data prep case from the 

above section, but training data is fitted to the pipeline as they normally are. Instead, test data is 

aggregated in one of two ways: by concatenating the review texts together to generate one 

prediction per game, or by averaging the prediction probabilities for the game from every review, 

then vote for the class label with the highest probability. 

These aggregation analyses are designed to determine if combining review data for each game 

and considering how each review can express different potential outcomes can create an 

aggregate picture that more accurately reflects the bestseller state of the game than if reviews 

were looked at individually. 

The classification pipeline used will include a logistic regression classifier using the best 

hyperparameters in the Hyperparameter Tuning findings and balanced class weights. Twenty re-

evaluations of the test set will be done for each case to account for non-deterministic outputs, 

then they will run against the non-aggregated test output using Welch’s t-test to determine if 

there is a statistically significant difference. 

Findings and Reporting 

The scores represent the average of multiple scores evaluated for each model. 



Hyperparameter Tuning 

The test F1 indicates Gensim Doc2Vec, combined with a Random Forest classifier, seems to be 

the best performing model during hyperparameter tuning. Using linear SVM for feature selection 

and changing weights manually does not seem to provide any improved results. 

Learner 

Tuned 

Best 

Hyperparameters 

Valid. 

F1 

Test 

Acc. 

Test 

Prec. 

Test 

Recall 

Test F1 Additional Notes 

Doc2Vec 'dm': [0], 

'dbow_words': [0], 

'vector_size': [50], 

'min_count': [2], 

'negative' : [10], 

'hs': [0] 

0.546 0.826 0.452 0.720 0.556 Uses logistic 

regression with 

default 

hyperparameters 

except 

class_weights=‘balan

ced’ 

Logistic 

Regression 

'clf__C': [0.001], 

'clf__penalty': ['l2'], 

'clf__solver': 

['lbfgs'] 

0.547 0.835 0.475 0.670 0.556 Uses logistic 

regression with 

default 

hyperparameters 

except 

class_weights=‘balan

ced’ 

Random 

Forest 

'clf__class_weight': 

[‘balanced_subsam

ple’], 

'clf__n_estimators': 

[150], 

'clf__criterion': 

['entropy''], 

'clf__max_depth': 

[20] 

0.572 0.858 0.531 0.644 0.582 
 

Multi-Layer 

Perceptron 

'clf__hidden_layer_

sizes': 

[(100,300,100)], 

'clf__activation': 

['relu'], 

'clf__solver': 

['adam'], 

'clf__alpha': [0.05], 

'clf__learning_rate': 

['constant'] 

0.568 0.882 0.667 0.474 0.554 
 

K-Nearest 

Neighbors 

'doc2vec__vector_s

ize': [200], 

'clf__n_neighbors': 

[8], 

'clf__weights': 

['distance'] 

0.549 0.869 0.581 0.557 0.568 
 



Linear 

Regression 

w/ 

SelectFrom

Model 

LinearSVC 

feature 

selection 

 None 0.548 0.835 0.475 0.672 0.557 
 

Linear 

Regression 

w/ varying 

weights 

'clf__class_weight': 

["balanced"]  

0.544 0.830 0.667 0.548 0.548 
 

 

 
Figure 4.1. Histogram of the predicted and 

actual classes (right) when organized by 

prediction probability (top) and review 

character length (bottom)–as well as a 

confusion matrix of the predictions by 

absolute value (top left) and normalized by 

prediction (bottom left)–of a random forest 

classifier, which has the best F1. Note that as 

prediction probability increases, the number 

of false classifications tends to decrease. 

 



 
Figure 4.2. Precision-recall curve of the best estimators for each of the cases tested. Note that Neural Network 

(MLP), Random Forest, and K-Nearest neighbors performed better than the logistic regression implementations. 

Data Preparation Alternatives 

None of the alternative data preparation methods evaluated in this workflow appear to provide a 

consistent improvement in model performance to justify their addition to the data pipeline, with 

spaCy’s model in particular eliminating almost any predictive power for the classification 

pipeline. p values are very high in almost any case, making any improvement questionable at 

best. 

Data Prep Model Test 

Accuracy 

Test 

Precision 

Test 

Recall 

Test F1 Additional 

Notes 

Baseline 

Resampling  

Logistic 
Regression 

0.791 0.402 0.731 0.519 Uses logistic 

regression for classifier 

RF 0.847 0.894 0.0104 0.0206 

MLP 0.872 0.618 0.479 0.535 

KNN 0.838 0.384 0.0798 0.132 

Sentiment Score Logistic 

Regression 
0.79 

p = 0.9 

0.401 

p = 0.85 

0.728 

p = 0.462 

0.518 

p = 0.633 

 



RF 0.847 

p = 0.826 

0.884 

p = 0.64 

0.0124 

p = 0.107 

0.0244 

p = 0.107 

MLP 0.878 

p = 0.153 

0.667 

p = 0.131 

0.427 

p = 0.154 

0.519 

p = 0.28 

KNN 0.838 

p = 0.692 

0.379 

p = 0.561 

0.0801 

p = 0.917 

0.132 

p = 0.983 

Aggregate Logistic 

Regression 
0.790 

p = 0.752 

0.401 

p = 0.776 

0.73 

p = 0.728 

0.518 

p = 0.583 

 

RF 0.847 

p = 0.914 

0.901 

p = 0.796 

0.011 

p = 0.485 

0.022 

p = 0.486 

MLP 0.874 

p = 0.718 

0.633 

p = 0.679 

0.466 

p = 0.751 

0.532 

p = 0.82 

KNN 0.838 

p = 0.784 

0.388 

p = 0.664 

0.0805 

p = 0.837 

0.133 

p = 0.812 

spaCy Aggregate 

Sentence 
Logistic 
Regression 

0.589 

p < 0.01 

0.191 

p < 0.01 

0.514 

p < 0.01 

0.278 

p < 0.01 

 

RF 0.846 

p = 0.206 

0.513 

p < 0.01 

0.00228 

p < 0.01 

0.00454 

p < 0.01 

spaCy Doc Logistic 
Regression 

0.602 

p < 0.01 

0.195 

p < 0.01 

0.507 

p < 0.01 

0.282 

p < 0.01 

 

RF 0.846 

p = 0.204 

0.508 

p < 0.01 

0.00233 

p < 0.01 

0.00464 

p < 0.01 

Scaling and Robustness Analysis 

The scaling analysis indicated that proportionally increasing data did not cause a significant 

drop-off in performance, with precision being statistically negligible. However, the use of a 

balanced subset to train the model caused a significant drop-off in precision, making the 

continued practice unviable when confronted with real-world proportions of unlabeled data. The 

scaling findings informed the revision of the other workflows to consider imbalance data 

reflective of the real world. 

 

The following is data previously collected from Report #8. The p-values for the t-test against the 

second control will be bolded. 

 

Scaling Case Test Accuracy Test Precision Test Recall 

Control 1 (> 500,000 owners) 0.761 0.749 0.762 

Control 2 (>= 500,000 owners) 0.692 (p < 0.01) 0.666 (p < 0.01) 0.725 (p < 0.01) 



>= 500,000, balanced, 
small training set, big test set 

0.694 
(p < 0.01) (p < 0.01) 

0.694 
(p < 0.01) (p < 0.75) 

0.694 
(p < 0.01) (p < 0.01) 

>= 500,000, balanced, 
80% training set, 20% test set 

0.756 
(p < 0.05) (p < 0.01) 

0.760 
(p < 0.01) (p < 0.01) 

0.747 
(p < 0.1) (p < 0.01) 

Real Imbalanced (> 500,000 owners) 0.755 (p = 0.021) 0.203 (p < 0.01) 0.765 (p = 0.183) 

 
Figure 5. The precision-recall curve of the control pipeline when given an imbalanced and a balanced test set. The curves 

indicate a massive drop in performance when classifying the bestseller class. 
 

The model pipeline was found to be robust in the event of minor misspellings or rare cases of 

many misspellings and is unaffected by a small number of word swaps in a statistically 

significant manner. Even if trained on the noisy data, the models retain some of their 

performance. The case when there is a major drop-off is if all three cases used were combined 

and included in the training data. 

 

The following is data previously collected from Report #8. 

 
 

Predictions made on control model Predictions made on model fit to noisy data 

from the same case 

Robustness Case Test 

Accuracy  
Test 

Precision 
Test 

Recall 
Test 

Accuracy  
Test 

Precision  
Test 

Recall  

Control 1 0.762 0.744 0.753 0.762 0.744 0.753 

4-character scrambles in 

all reviews 
0.725 
(p > 0.01) 

0.718 
(p > 0.01) 

0.713 
(p > 

0.01) 

0.738 
(p > 0.01) 

0.722 
(p > 0.01) 

0.746 
(p > 0.01) 

20-character scrambles 

in 1 out of 5 reviews 
0.747 
(p > 0.01) 

0.732 
(p > 0.01) 

0.751 
(p = 

0.61) 

0.740 
(p > 0.01) 

0.725 
(p > 0.01) 

0.748 
(p = 0.50) 



2-word swaps in all 

reviews 
0.756 
(p = 0.89) 

0.745 
(p = 0.87) 

0.754 
(p = 

0.96) 

0.764 
(p = 0.68) 

0.744 
(p = 0.76) 

0.780 
(p = 0.70) 

All cases combined 0.723 
(p > 0.01) 

0.712 
(p > 0.01) 

0.720 
(p > 

0.01) 

0.69 

(p > 0.01) 
0.67 

(p > 0.01) 
0.722 
(p > 0.01) 

Data Aggregation 

The two methods of aggregation evaluated in this workflow appear to have marginally increased 

the F1, though concatenating reviews caused a drop in precision while voting has increased 

Precision, Recall, and F1 at the same time, making it the better choice of aggregation and an 

improvement over looking at singular reviews. The following data was collected from Report #9. 

 
 

Single Review Concatenated Review Vote by Probability Sum 

Statistic Scores Scores P-value from single review Scores P-value from single review 

Accuracy 0.844 0.831 > 0.01 0.886 > 0.01 

Precision 0.495 0.417 > 0.01 0.543 > 0.01 

Recall 0.632 0.797 > 0.01 0.706 > 0.01 

F1 0.555 0.547 > 0.01 0.614 > 0.01 

 
Figure 6. Histogram of the predicted and actual classes of a logistic regression classifier when predicting class 

labels from combining the review text (left) or the prediction probabilities of reviews (right) for each game. Note 

that the prediction count skews between 0.55 and 0.60 instead of towards 0.90 as in Figure 4. Again, as prediction 

probability increases, the number of false classifications tends to decrease. 

Reporting 

Few of the findings are presented directly to the customer, and instead inform the project for 

evaluating the models and refining the analysis. These findings were reported in the paper as a 

matter of performance evaluation, model tuning, and development of the solution architecture. 



Reporting the accuracy allows for measuring the overall performance of each case for modifying 

the model, its inputs, or outputs, while the F1, precision, and recall helped to indicate which 

performed best at predicting the positive cases. 

What is reported to a customer directly depends upon the customer in question. For IT 

technicians, whose job is to maintain the model as part of the server hosting the solution 

architecture, they are presented with the various scores given in the findings if they run the 

notebooks, and the best hyperparameters are each exported to a JSON file as part of the notebook 

workflow for Hyperparameter Tuning. The JSON reports are of greatest interest to the 

technicians, as these hyperparameters can be selected in a config file and then used in generating 

a new classification pipeline whenever the reporting dashboard’s server is enabled. Using the 

score findings, particularly for F1, helps inform them which model to choose from to have the 

best chance at identifying bestsellers. 

For business customers, such as game developers, marketers, and publishing organizations, most 

of the previous findings are not presented to these customers directly. Their priority is not how 

the product functions in the background nor how it was developed, but instead on what it 

produces. In this case: a true/false classification label if text describing a game with unknown 

ownership levels is likely to have more than 500,000 owners on steam. 

To present this reporting, a dashboard is created to service predictions for new inputs. The 

dashboard is created using React.js to construct the user interface and is hosted on a Python 

Flask server to take advantage of the experience developed from the analysis to construct a new 

model used exclusively for the dashboard (Reine). The model in question is selected within a 

configuration file, and its hyperparameters are selected from a JSON file generated from 

Hyperparameter Tuning. The server and the database could be serviced by the business’s IT 

department, or by a separate party who services multiple businesses. 

 



Figure 7. The frontend of the Video Game Review Sentiment to Popularity Dashboard, shortened to “Video Game 

Review Analyzer.” Note the presence of options to either submit text within the given textbox or submit multiple 

text files for a game to compute the prediction. 

The dashboard can take either text or a .txt file and use it to generate a prediction. Based upon 

findings from Data Aggregation, it was decided to include the option to import multiple review 

files, which will then have their predictions aggregated by vote using the technique described 

Data Aggregation Analysis Methods. At the bottom of the page, the prediction will be displayed, 

and the prediction’s probability as described by the classification pipeline will be displayed. 

The exceptions to presenting performance findings are the findings for test scores for the model 

chosen by the technician for use in their business, for which the test evaluation scores are 

reported at the top of the dashboard which includes accuracy, recall, and precision scores. This is 

included as a necessary piece of information, in combination with the confidence score given for 

a prediction, for businesses to assess how trustworthy certain predictions may be. As the other 

types of classifiers remain unused, and thus of little immediate interest to the dashboard user, 

their information will be omitted on the dashboard. 

 

Performance and Evaluation 

Performance in all cases was obtained primarily through the F1 scores are included as well to 

evaluate the performance for positive cases, as it is expected that end-users are most interested in 

ensuring their product becomes a bestseller and will want to identify positive cases as accurately 

as possible. In Hyperparameter Tuning, the GridSearchCV is tuned using just the F1, and thus 

the best score is measured only in F1. Precision and recall, of which F1 is a function of, are kept 

in findings to further breakdown how positive cases are treated. The models are then evaluated 

by comparing all the test cases in each workflow, then selecting the cases which have the best 

F1. 

Based on findings during Hyperparameter Tuning, it can be concluded that the text of a review 

has predictive power for a game’s ability to meet a fixed ownership threshold of more than 

500,000 Steam owners, with the best performing model used during analysis by F1 being a 

Random Forest classifier with an overall accuracy of 0.858 and an F1 of 0.582, and a precision 

and recall of 0.531 and 0.644 respectively. The MLP classifier meanwhile has a lower recall of 

474, but a higher accuracy and precision of 0.822 and 0.667, making it the second best. The F1 is 

improved even further by aggregating reviews together by probability vote and deriving a 

prediction from it. 

 

 

 

 



Solution Architecture, Scaling, & Budgeting 

 

Figure 8. A simplified flowchart of the solution architecture. The three white box sections refer to discrete parts of 

the solution, which can be present on one computer or multiple ones. Omitted from the flowchart are the score 

findings of the selected model, which is provided to the webpage on loading. 

The solution architecture of the Review Sentiment Analyzer Dashboard takes the hyperparameter 

data retrieved from the findings and uses them as the settings for the classification pipeline as 

previously mentioned in Reporting as being exported to a JSON file. In figure X this pipeline is 

referred to as the Review Sentiment Analyzer. Instead of using the models trained during 

analysis, each time the server is started, the analyzer trains directly from the same database used 

during analysis, which in-turn can be updated to include new data from SteamSpy, Steam, or 

OpenCritic. It then receives text from dashboard requests and returns the prediction and 

probability to the dashboard. 

In matters of scaling the models for deployment, the solution is expected to receive a small 

throughput at a given time each hour, much smaller than the dataset used to train and test them. 

Scaling analysis findings showed that new inputs of similarly clean review data do not result in a 

large drop in performance either. Instead, the focus was on streamlining their deployment on the 

dashboard server to reduce latency between requests for predictions and the predictions 

themselves. 

The initial design had the model be fit during a request, but given the very high latency of such a 

design, the design was further revised to fit on server startup. To further improve its scalability in 

the event that the model is fitted with an especially large dataset, the Skops library is used to 

dump the model, while the test scores gained after fitting are dumped to a JSON, allowing for 

them to be quickly loaded again on rebooting the server. 



For budgeting, the only resources which required direct payment from the start of the project 

were operation costs for the PSQL server, which was hosted using Amazon Web Services, and 

the Subscription for the OpenCritic API to overcome the daily query limits of the API. 

To budget for the PSQL, the payment came out of an account provided by UCSD. To ensure it 

can stay active at any time, the smallest pre-defined set on AWS is used so that only around 

$0.50 a day is expended whenever it is active. This allowed for a cost-efficient 24/7 operation. 

For OpenCritic, only the highest subscription rate allowed for the number of searches and 

reviews needed to be accomplished for the data collection in a timely manner ($50/month). This 

was paid out of pocket and will be unsubscribed to when it is deemed no longer needed after any 

repeat extraction operations are complete. 

Instead of hosting the dashboard on the remote server, for the purposes of this project it was 

hosted locally for simplicity, which also avoids expenses for hosting the Flask server using a web 

service. 

Conclusion 

The texts of reviews provide a rough but non-random ability to successfully predict games’ 

ability to meet an ownership threshold on Steam above 500,000 owners. These findings can then 

be used within a web server data loop to give users feedback from the input text to indicate the 

sales outlook for a given game product. If the solution architecture can be applied within a 

business development environment, using textual feedback data from focus groups, test 

engineers, and customer preview feedback, it can better inform where to improve a product 

based on who to target, what reviews indicate who or why someone would or would not buy it 

that is not explicitly stated in text. Being able to aggregate the data provides the potential to 

provide an overall picture of the health of the project from a marketing and sales point. 

Future work into the topic should investigate identifying key factors in the documents which 

cause predictions to weigh towards certain labels, i.e., what keywords do each include, what 

categories of information do the reviews provide, to give end-users more granular information to 

provide better feedback. Using a fixed threshold of 500,000 is also non-indicative for the exact 

number of sales achieved for a game, and it may be useful to investigate converting the problem 

from a classification problem to a regression problem to better indicate where within each label a 

game sells. 
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Appendices 

A. DSE MAS Knowledge Applied to the Project 

1. Supervised learning, classification 

i. Logistic Regression 

ii. Random Forest Classifier 

iii. K-Nearest Neighbors 

iv. Neural Networks 

2. Model Evaluation 

i. Confusion Matrix 

ii. Accuracy 

iii. F1 

iv. Precision 

v. Recall 

3. Model Selection 

i. Validation score 

ii. Hyperparameter Tuning, Grid Search 

4. Min-Max Normalization 

5. Natural Language Processing 

i. Text Vectorization 

ii. Text Cleanup 

1. Drop special characters 

2. Drop stop words 

iii. Text Distance Measurement (behind API) 

B. Link to the Library Archive for Reproducibility 

1. https://doi.org/10.6075/J06D5T5H 

https://doi.org/10.6075/J06D5T5H
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