GEOSECS EXPEDITION

Maria N

LEG G

R/V MELVILLE

INFORMAL REPORT AND INDEX OF NAVIGATION, MAGNETIC AND DEPTH DATA

Wellington, New Zealand (5 February 1974)

to

Wellington, New Zealand (6 March 1974)

Chief Scientist - J. Edmond Resident Marine Tech - R. Wilson Post-Cruise Processing by - S. Smith, U. Albright, G. Psaropulos, R. Lingley, J.L. Abbott

Prepared by

Underway Data Processing Group

S.I.O. Geological Data Center Scripps Institution of Oceanography La Jolla, California

November 25, 1975

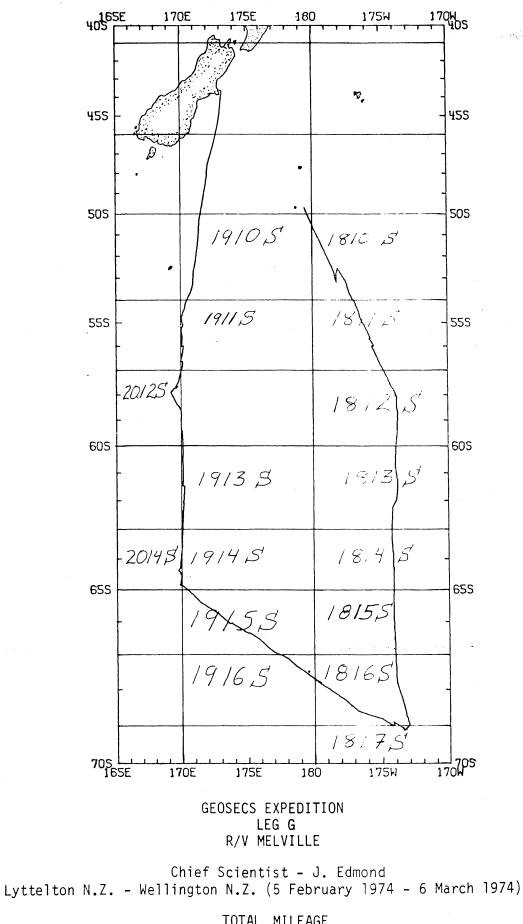
Preliminary Report and Index of Navigation, Depth, Magnetic and Subbottom Profiler Data

Contents:

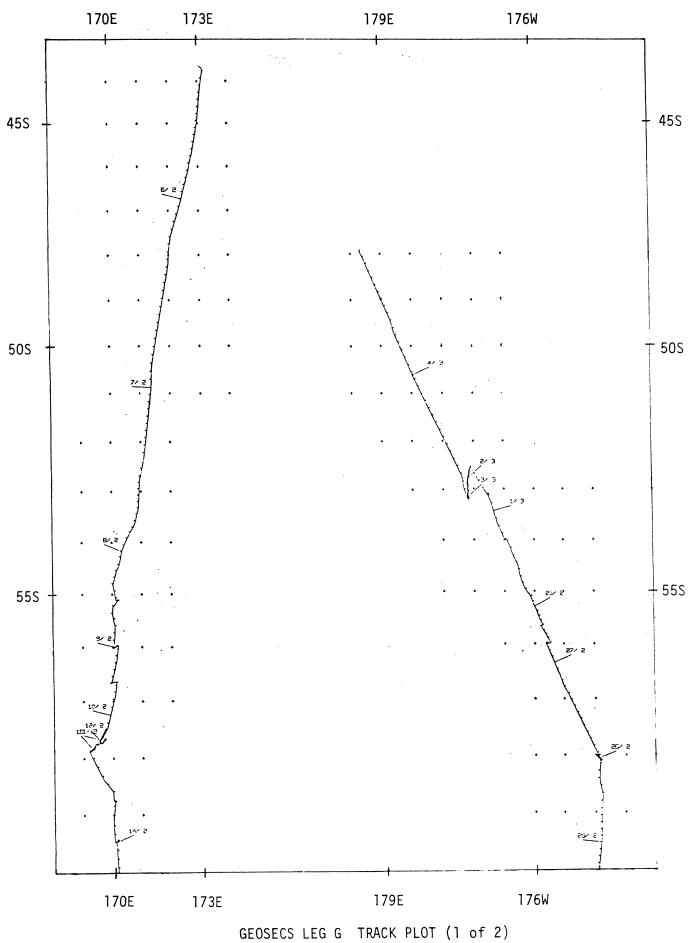
- Index Chart gives track of cruise leg and boundaries of depth compilation plots (see below).
- Track Charts annotated with dates (day/month) and hour ticks. The scale (.3"/deg. long) is the same as the index charts of previous SIO cruises published as Report INR TR-25.
- Profiles Depth and magnetic anomaly vs. distance. Dates (day/month) and positions of major course changes (greater than 30 degrees) are annotated. Sections of track having subbottom profiler (airgun) records have a solid black line along the bottom of the profile.

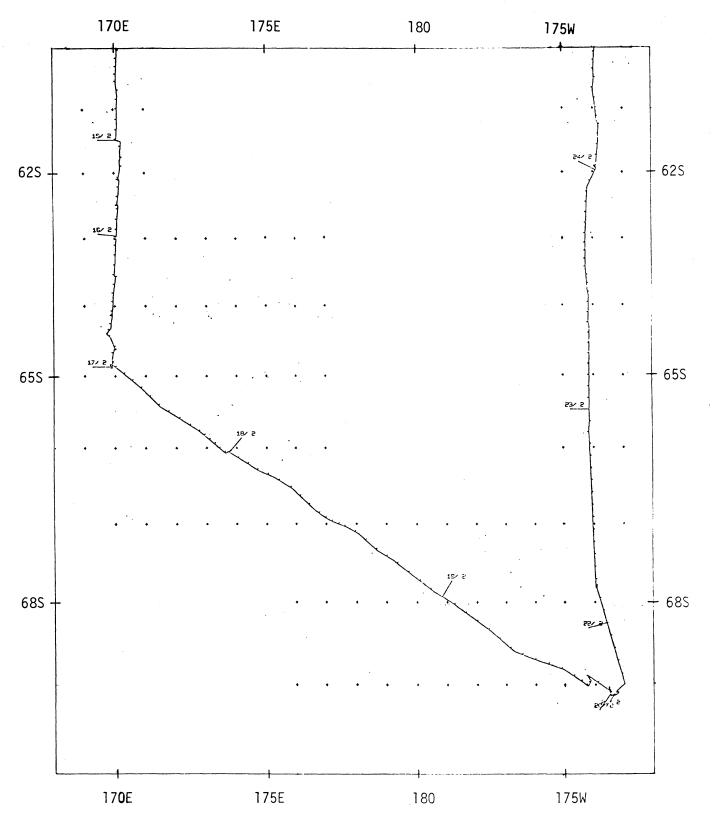
For information on the availability and reproduction costs of data in the following forms, contact T. E. Chase, Curator, Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92093 Phone: (714) 452-2182

1. Navigation listing of times and positions of course and speed changes, fixes and drift velocity.

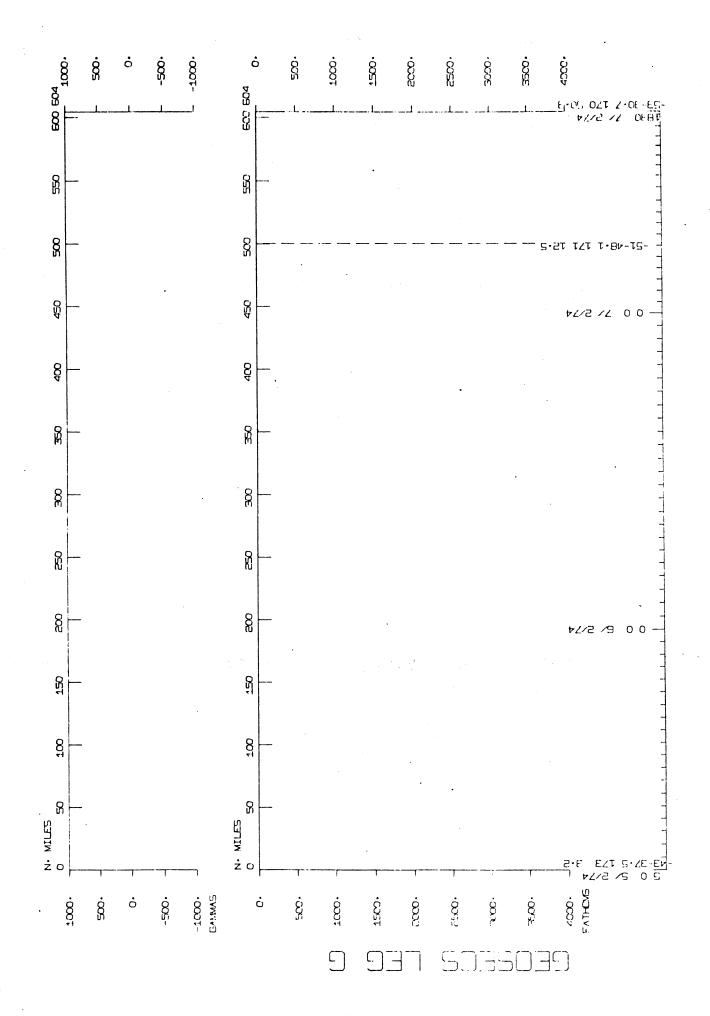

2. Depth compilation plots - in fathoms (assumed sound velocity of 800 fm./sec.) at approximately 1 mile spacing, plotted at 4" degree with standard U.S. Navy Oceanographic Office BC series boundaries (see index chart).

3. Plots of magnetic anomaly profiles along track-map scale = 1.2"/ degree; anomaly scale between 15°N and 15°S latitude = 500 gamma/inch; anomaly scale north of 15°N and south of 15°S = 1000 gamma/inch) from values retrieved at approximately 1 mile spacing and regional field removed using the 1965 IGRF.

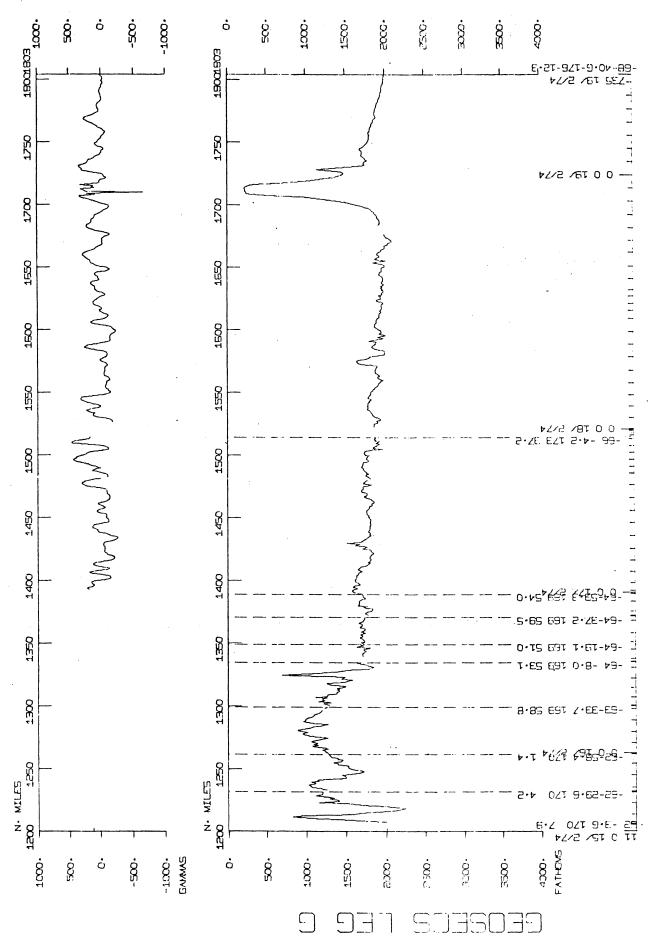

4. Card Decks of navigation, depth and magnetics (for specific formats, contact S. M. Smith, Geological Data Center). Phone: (714) 452-2752

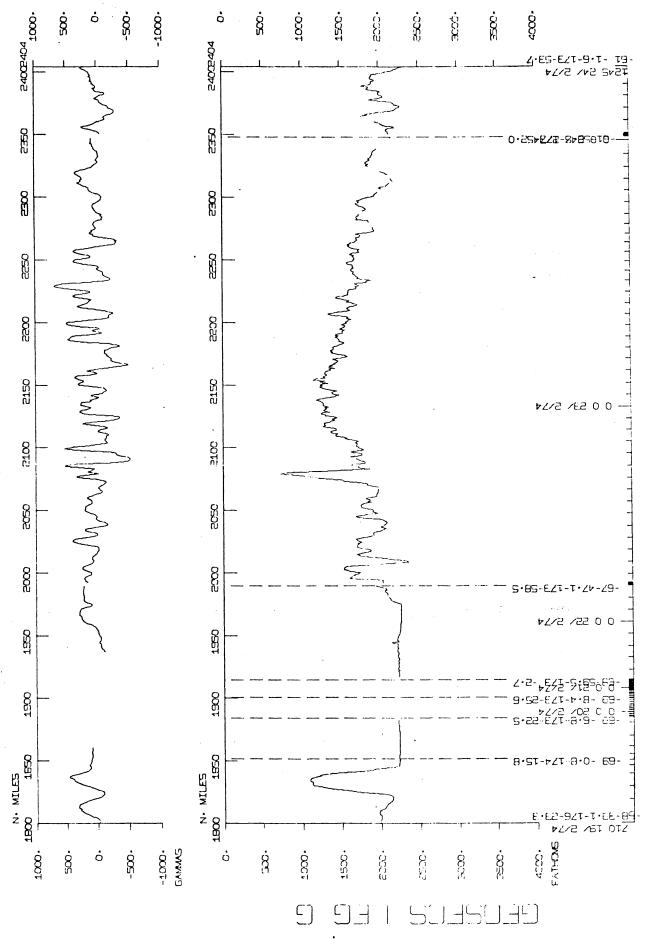

5. S.I.O. Sample Index - list of beginning and end times and positions of all underway records as well as all other samples (geology, biology, physical oceanography, etc.) collected on the cruise leg.

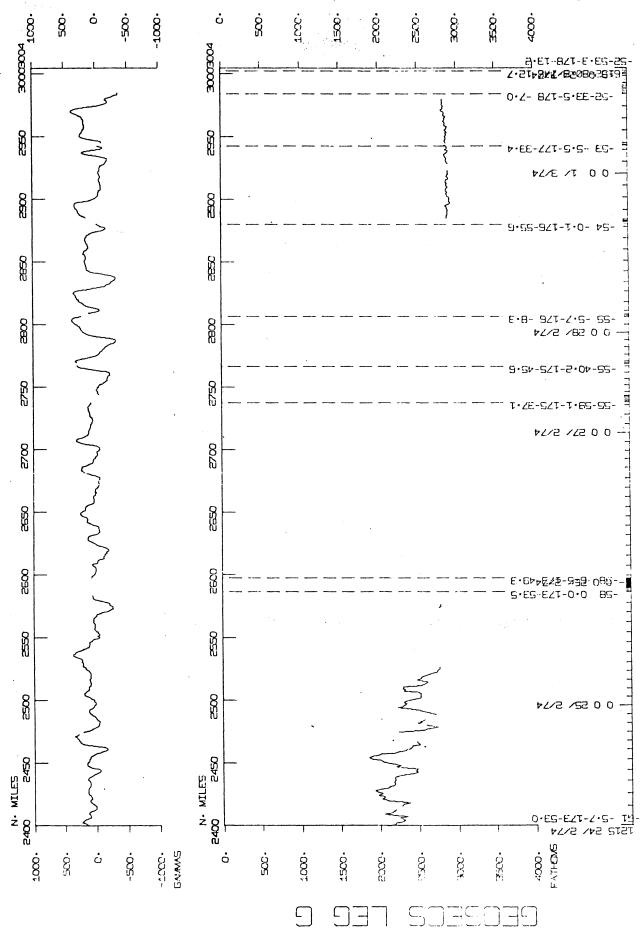
- 6. Microfilm or Xerox copies of:
 - a. Echosounder records 12 and 3.5 kHz frequency
 - b. Subbottom profiler records (airgun)
 - c. Magnetometer records
 - d. Underway Data Log
- * No subbottom profiler data was taken on this leg. Cruise report delay due to shipboard computer/receiver problems requiring reprocessing of satellite fixes.

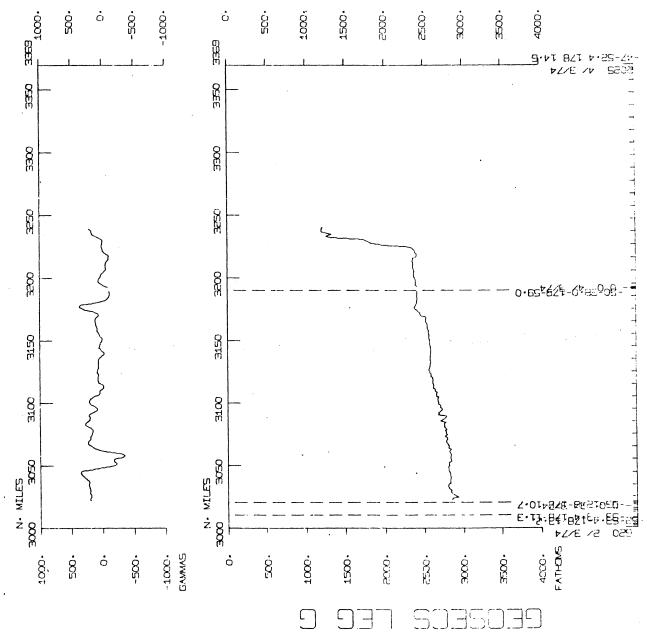


- TOTAL MILEAGE 1) Cruise 3369 miles 2) Bathymetrty 1819 miles
- 3) Magnetics 1962 miles4) Seismic Reflection none collected




GEOSECS LEG G TRACK PLOT (2 of 2)




.

•

SAMPLE INDEX

GEDSECS EXPEDITION LEG G

LISTED 04DEC75

0406 050274	LGPT B WELLINGTON, N.Z.	43 375S 173 32E F GECSOGMV
1900·0603 7 4	LGPT E WELLINGTON, N. Z.	41 525S 176 232E F GECSOGMV

PERSONNEL

÷

		-			
0	0 0 0	PECS	EDMOND, J.	SIX	GECSOGMV
0	000	PERT	WILSON, R.	GRD	GECSOGMV
0	000	PEMT	CUNNINGHAM, L.	GO G	GECSOGMV
0	000	PEET	FONG, R.	GO G	GECSOGMV
0	000	PEMT	KELLOG, D.	DCP	GECSOGMV
0	000	PEET	RENNER, R.	GO G	G EC S OGMV
0	0 0 0	PEMT	SEIFERT, E.	D SU	GECSOGMV
0	000	PEMT	TOY, C.	GO G	G EC S OGMV
0	0 0 0	PEMT	WHITEHOUSE, A.	CO G	GECSOGMV
0	000	P EC T	WYBORNEY, G.	GO G	GECSOGMV
0	000	PE	BOS, D.	GO G	GECSOGMV
0	000	PE	BREEZE, C.	GO G	G EC S OG M V
0	000	PE	DIXON, F.	GO G	GECSOGMV
0	000	PE	GOBAT, D.	SIX	GECSOGMV
0	000	PE	HESTER, A.	· GO G	GECSOGMV
0	000	PE	HOROWITZ, R.	GO G	GECSOGMV
0	000	PE	JAMES, B.	GO G	GECSOGMV
0	0 0 0	PE	KADAR, S.	WHO	G EC S OG M V
0	000	PE	LONGINELLI, A.	SIX	GECSOGMV
0	000	PE	LOWE, D.	NZD	GECSOGMV
0	000	PE	MCGILL, C.	NZD	GECSOGMV
0	000	PE	PRICE, W.	GO G	G EC S OGM V
0	000	PE	SLATER, E.	CAN	GECSOGMV
0	0 0 0	PE	SUNDQUIST, E.	GO G	G EC Š OG M V
0	0 0 0	PE	WILLIAMS, S.	LDO	GECSOGMV

*** NOTE *** TIME ZONES AND MINUTES OF LATITUDE AND LONGITUDE ARE LISTED IN TENTHS (E.G. 10.6 IS LISTED AS 106)

												×				. •
T IME GMT	D4 D.M		C LUC	CODE		SAMPLE					ΞL	ΑΤ.				AGE 1 CRUISE LEG-SHIF
		UNDERWAY	Y DAT	A - CU	R A	TOR T.	•E• C!	HASE	2ND F	LOOR	AQL	JAR IUM	(EX	T.218	2)	
L()G (BOO K										-				
0015 0730	080 041)274 0374	- · · ·	LBUW LBUW	B E	GED PHYS GED PHYS	SICAL SICAL	LOG LOG		GDC GDC	54 49	104S 511S	170 179	204E 303E	S S -	GECSOGM
***	NAV	IGATION	PLOT	S ***	÷				• •							
1836 1900	5 6	274 274		N V B P N V B P	B E	BRIDGE BRIDGE	PLOT PLOT	01 01		GD C GDC	45 50	514S 7S	172 171	441E 307E	S S	GECSOGM
		274 274		N V B P N V B P	B E	BRIDGE BRIDGE	PLOT PLOT	02 02		GDC GDC	50 53	216S 41S	171 170	251E 559E	S S	GECSOGM GECSOGM
1800 1048	7 9	274 274		NVB P N VBP	B E	BRIDGE BRIDGE	PLOT PLOT	03 03		GDC GDC	53 56	268S 236S	170 170	518E 40E	S S	G EC S OGM G E C S OGM
1940	9	274 274		NVBP NVBP	B E	BRIDGE BRIDGE	PLOT PLOT	04 04		GDC GDC						GECSOGM GECSOGM
625 1841	14 15	274 274		NVB P N VBP	B E	BR IDGE BR IDGE	PLOT PLOT	05 05		GDC GDC	59 62	255S 297S	170 170	38E 64E	S S	G EC S OGM G E C S OGM
2045 545	15 17	274 274				BRIDGE BRIDGE				GDC GDC	62 65	491S 152S	170 171	31E 25E	S S	G E C S O G M G EC S O G M
		274 274		N V B P N V B P	B E	BRIDGE BRIDGE	PLOT PLOT	07 07		GDC GDC	65 67	152S 580S	171 179	25E 4W	S S	G EC S OGM G E C S OGM
900 147		274 274				BRIDGE BRIDGE										G E C S O G M G EC S O G M
		274 274				BRIDGE BRIDGE										G EC S OG M G E C S OG M
	· ·	274				BRIDGE BRIDGE										G E C S O G M G EC S O G M
		274		N V B P N V B P	B E	BRIDGE BRIDGE	PLOT PLOT	11 11		GDC GDC						GECSOGM GECSOGM
		274 274				BRIDGE BRIDGE										GECSOGM GECSOGM
		7 274 8 274		NVB P NVBP	B E	BRIDGE BRIDGE	PLOT PLOT	13 13		GDC GDC	55 54	593S 5S	175 176	370W 582W	S S	G EC S OGM G E C S OGM
1930 830) 28) 3	8 274 8 374		N V B P N V B P	B E	BRIDGE BRIDGE	PLO1 PLO1	i 14 F 14		GDC GDC	54 52	5 S 3 5 8 S	176 178	582W 296W	s s	GECSOGN GECSOGN

															•		
		•															
TIME	D A	-	т7	SAMD								,	•	08 D	EC 75	Ρ	AGE 2 CRUISE
GMT	D.M	Y. LOC	LOC	CUDE		SAM	PLE	IDE	NT.		CODE	L	AT.	LO	NG.		CRUISE LEG-SHIP
																•	
* * * F /	АТНО	GRAMS *	* *														
•																	
210	8	274		DPRT	В	GDR	12	кнг	R-01		GDC	54	269 5	170	137E	S	GECSOGMV GECSOGMV
700	8	274		DPRT	E	GDR	12	KHZ	R-01		GDC	55	415	170	65E	S	GECSOGMV
937	13	274	•	DPRT	Β.	GDR ·	12	кнг	R-02	· ·	GDC	57	563S.	169	141E	S	GECSOGMV.
1500	13	274		DPRT	E	GDR	12	кнг	R-02		GDC	58	448S	169	590E	S	GECSOGMV
1840	13	274		DPRT	в	GDR	12	кнг	R-03		GDC	58	469S	170	16E	Ś	GECSOGMV GECSOGMV
2256	13	274		DPRT	Ε	GDR	12	кнг	R-03		GDC	59	275S	170	0E	S	GECSOGMV
0645	14	274		DPRT	в	GDR	12	кнг	R-04		GDC	59	276S	170	30E	S	GECSOGMV
2055	14	274		DPRT	Ε	GDR	12	кнг	R-04		GDC	61	2 76 S	170	41E	S	GECSOGMV
724	15	274		DPRT	в	GDR	12	кнг	R-05		GDC	61	3 0 5 S	170	130E	s	GECSOGMV
1024	16	274		DPRT	Ē	GDR	12	кнг	R-05		GDC	64	74S	169	533E	S	GECSOGMV GECSOGMV
1205	16	274		NDDT	B	CDP	12	к н 7	8-06		GDC	64	815	169	546F	ς	GECSOGMV
1613	17	274		DPRT	E	GDR	12	KHZ	R-06		GDC	66	42 S	173	371E	S	GECSOGMV GECSOGMV
								•							•		
1725	18	274		DPRT	E	GDR	12	KHZ	R-07		GDC	69	503 685	173	490E 225W	S	G EC SOGMV G E C SOGMV
1920	21	274		DPRI	E	GDR	12	KHZ	R-08 R-08		GDC	68 67	587S	173	582W	s S	GECSOGMV GECSOGMV
912	22	274 274			B	GDR	12	KHZ KHZ	R-09 R-09		GDC	61 66	4945	173	585W 40W	S S	GECSOGMV GECSOGMV
1541	22	274 274			B	GDR	12	кнг	R-10 R-10		GDC	66	4795	174	42W 526W	S	GECŠOGMV GECSOGMV
		274			B	GDR	12	KHZ	R-11		GDC	61 58	542S	173	524W	S	GECSOGMV GECSOGMV
223	25	217															
		274															GECSOGMV GECSOGMV
215	1	374							R-12		-						
450		374		DPRT	В	GDR	12	KHZ	R-13		GDC	53	74 S	177	327W	S	GECSOGMV
610	1	374															GECSOGMV
610		374															GECSOGMV
900	1	374		UPRT	E	GDR	12	кнг	R-14		GDC	52	3365	1/8	68W	2	GECSOGMV
44 C		374		DPR T	В	GDR	12	. KH Z	R-15		GDC	53	1175	178	115W	S	GECSOGMV GECSOGMV
2128	3	374		DPRT	E	GDR	12	кнг	R-15	•	GDC	50	3835	179	584W	S	GECSOGMV
249		374		DPRT	в	GDR	12	кнг	R-16		GDC	50	353S	179	599E	Ś	GECSOGMV
730) 4	374		DPRT	E	GDR	12	кнг	R-16		GDC	49	5 08 S	179	300E	S	GECSOGMV

•

TIME	DA	TE TIM	ETZ	SAMP						DISP				EC75		CRUI
GMT	D•M	1.Y. LO	C LOC	CODE		SAMPLE	IDEN	T.		CODE	L 	AT .	LC	NG.		LEG-
*** M	AGN	NETOMET	ER **	*												
6 720	8 4	274 374		MGR MGR	B E	MA GNETIC MAGNETIC	S R- S R-	01 01		GDC GDC	54 49	103S 519S	170 179	203E 306E	S S	G EC S G E C S
***GE	001	HEMICAL	STAT	ION-L/	ARC	GE VOLUME	***									
146 928	10 13	274 274		GCLV GCLV	B E	GEOSECS GEOSECS	S T A S T A	282 282		60 G 60 G	57 57	292S 552S	169 169	474E 132E	S S	GECS GECS
1725 1914	19 21	274 274		GCL V GCLV	B E	GEOSECS GEOSECS	STA STA	287 287		60 G 60 G	69 68	68 S 59 7 S	173 173	225W 25W	S S	GECS GECS
1210 840	25 26	274 274		GCLV GCLV	B E	GEDSECS GEDSECS	STA STA	290 290		60 G 60 G	58 58	0S 65 S	173 173	535W 493W	S S	GECS GECS
912 427	1 3	374 374		GCL V GCL V	B E	GED SEC S GED SEC S	STA STA	293 293	٠	60 6 60 6	52 53	336S 130S	178 178	70W 107W	S S	G EC S G E C S
***G	0C	HEMICAL	. STAT	ION-S	MAI	LL VOLUME	***									
		274 274		GC SV GC S V	B E	GED SEC S GED SEC S	S T A S T A	280 280		GO G GO G	56 55	13S 579S	170 170	19E 119E	S S	G E C S G E C S
1300 1900						GED SEC S GED SEC S										
2100 712	14 15	274 274		GCSV GCSV	B E	GEDSECS GEDSECS	STA STA	285 285		60 G 60 G	61 61	28 0S 3 01 S	170 170	41E 129E	S S	G E C G E C
		274 274				GEOSECS GEOSECS								371E 446E		
300 912	22 22	274 274		GC SV GC S V	B E	GEDSECS GEDSECS	STA STA	288 288		60 6 60 6	67 67	475S 494S	173 173	582W 585W	S S	G E C G E C
		274 274				GEO SEC S GEO SEC S								525W 525W		
		274 274		GCSV GCSV	B	GEDSECS GEDSECS	STA STA	291 291	•	GO G GO G	55 56	593S 1S	175 175	370W 271W	S S	G E C G E C
1	28	274		GCSV	В	GEDSECS	STA	292 .		60 G 60 G	54	25	176	559W	S	GEC

.

•

	DATE TIME •M•Y• LOC		SAMPLE IDENT	•	DISP CODE LAT.	08DEC75 LUNG.	PAGE 4 CRUISE LEG-SHI
SAL	INITY, TEM	PERATURE,	DEPTH				
			•				
717 1045			GEOSECS STA 2 GEOSECS STA 2		GDG 55 62 GDG 55 63		
1500 1 1840 1			GEOSECS STA 2 GEOSECS STA 2		GOG 58 448 GOG 58 469		
2256 1 628 1	3 274 4 274		GEOSECS STA 2 GEOSECS STA 2		GOG 59 275 GOG 59 255		
HEA	T FLO₩			••			•
512 1	5 274	HF 2 M	HEAT FLOW	4010M	MPL 61 301	S 170 105E	S GECSOG
1259 1		HF 2M	HEAT FLOW	3774M	MPL 62 57	S 170 70E	S GECSOG
1749 1		HF2M	HEAT FLOW	2207M		S 170 57E	
2300 1 505 1		HF 2M HF 2 M	HEAT FLOW HEAT FLOW	2375M 2375M	MPL 62 579	S 170 23E S 170 6E	
1346 1		HF 2M	HEAT FLOW	2083M	MPL 65 534		
1908 1		HF2M	HEAT FLOW	3083M 3188M 4149M	MPL 64 372	S 169 591E	S GECSOGI
1335 2		HF 2M	HEAT FLOW	4149M	MPL 69 10	S 173 71W	
	2 274	HF 2 M	HEAT FLOW	3809M		S 173 585W	
	4 274	HF 2M	HEAT FLOW 1	3951M		S 173 539W	
	7 274	HF 2 M	HEAT FLOW 1	5043M		IS 175 292W	
	8 274	HF 2M	HEAT FLOW 1	5163M		S 176 588W	
	8 274	HF2M	HEAT FLOW 1	5295M		S 176 74W	
1437 2	8 274	HF 2M HF 2M	HEAT FLOW 1 HEAT FLOW 1	5401M		S 176 576W S 177 324W	
	2 374	HF 2M	HEAT FLOW 1	5397M 5275M	MPL 55 61	S 178 120W	
		111 211		52.15.1			
C0R	ES						
1012	2 274	606		5 2 0 0 M			5 656506
1012	2 374	COG	CORE 1	2233M	MPL 52 500	2 110 114W	3 620306
***BAT	HYTHERMOG	\APH ***	•			•	•
0	8 274	втх	NO. SAMPLES =	3	BTS 54 105	55 170 199E	S GECSOG
	9 274	BTX	NO. SAMPLES =			DS 170 61E	
	.0 274	BTX	NO. SAMPLES =			+S 169 543E	
	.3 274	BTX	NO. SAMPLES =			LS 169 196E	
	.4 274 .5 274	BTX BTX	NO. SAMPLES = NO. SAMPLES =			95 170 30E 25 170 54E	
	.5 214	BTX	NO. SAMPLES =			5 170 546 55 170 30E	
	.7 274	BTX	NO. SAMPLES =			LS 169 522E	
	8 274	BTX	NO. SAMPLES =			2S 173 450E	
			•				