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Introduction
• The average human brain has about 86 billion neurons
• Major breakthroughs in neuroscience rely on understanding the 

structure, function, and connectivity of the brain

• Mapping the brain could help researchers study the onset and 
progression of neurodegenerative diseases such as Alzheimer’s 
and Parkinson’s



How do we map the brain?
• 3D Image Segmentation

• Collect brain tissue samples, usually from rodents
• Perform electron microscopy on brain tissue
• Locate cell structures in electron microscopy images
• Create 3D reconstructions of objects
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Challenge
• Currently, the most accurate brain image segmentations are 

annotated manually by humans

• Manual segmentation is a labor-intensive process

• The manual segmentation of all mitochondria in one mouse brain 
would require 24/7 work for one year from ~2.7 million scientists

~500 mm3

Chicago



Problem and Value Statement
• Manual segmentation of 3D electron microscopy images is 

unsustainable, but neural networks are capable of automating 
3D image segmentation, and therefore can be used to improve 
the efficiency and accuracy of labeling organelles in brain cells



Our Solution
• CDense3M will improve on the accuracy of automated synapse 

segmentations compared to the existing CDeep3M tool by using 3D 
image analyses and flood-filling networks

• Accurate and automated synapse segmentations → faster brain mapping



Data Definitions
• Serial block-face scanning electron 

microscopy (SBEM) image volumes 
with genetically labeled organelles 
from brain tissue of lab mice

• SBEM constructs high resolution 3D 
images of tissues by repeatedly 
using an ultra-thin knife to cut a thin 
section from a block face and then 
imaging the next layer

Adapted from: Hughes, et al. (2014). Protoplasma, 251(22), 395-401.



Data Format
• 1024 x 1024 x 100 voxel image volume of Nucleus accumbens
• Stacking the images depth-wise results in a 3D stack of images



Data Pipeline

FFN 3D Vesicle Filtering

CDense3M



Exploratory Data Analysis
• Membranes and mitochondria 

segmentations are excellent

• Synaptic vesicles segmentations 
are good

• Synapse segmentations are poor
• Many false positives



Minimum Viable Modeling Product (MVMP)
• Based on biological knowledge:

1. Synapses should NOT overlap with mitochondria
2. Synapses should overlap to a large fraction with the membranes

1. We set the threshold 80%

• MVMP: Use more accurate segmentations of other organelles to 
improve synapse segmentations

• Erase synapses that overlap with mitochondria
• Erase synapses that do not overlap with membranes

• MVMP results in a 2% increase in the voxel-wise accuracy of synapse 
segmentations

• Not good enough – still too many false positives



2D Vesicle Filtering 
• 3D objects (areas) inside the boundaries may or may not have vesicles
• Set threshold of 5 vesicles and 100 pixels for defining presynaptic area 
• Erase those synapses that are not in presynaptic areas



Visualization Results of 2D Filtering



How can we reduce the errors?



Applying 3D Image Processing 

• Resolve the problem of 2D filtering
• Resolve the connection of 3D objects of images



3D Image Analyses

• 3D Image Analyses
• 3D concatenation
• 3D labeling
• 3D filtering

• Erosion Models
• Determine the threshold

• 3D models improve presynaptic recognition → improved synaptic 
density predictions



Hypotheses for 3D Filtering and Labeling
• Connection of 3D objects based on the overlapping areas

• 80% overlapping areas

• In 3D labeling, labeling of new 3D object is related to the labeling 
of previous 3D objects

• Vesicle erosion can reduce the errors of presynaptic areas’ 
recognition caused by 3D filtering

• Threshold tuning is required for the number and area of vesicles



Create 3D Images, 3D Concatenation, and 3D Labeling

• One dimension is added to all the segmented 2D images, with the 
images concatenated along the depth of the z-axis

• Concatenated the segmented images of microscopy in the third 
dimension

• 3D labeling model is calculated both through the similar areas and 
overlapping areas for the comparison. In both methods, the threshold 
is 80%.



3D Labeling Algorithms

• Performed labeling for the areas of new images that can be 
found in the old images

• Performed labeling for the areas of new images that cannot 
be found in the old images

• Biggest labeling method:  The purpose is to assign the biggest label 
for those labels of the new images that are not in the labels of 
previous images



Evaluate 3D Labeling Visualization to Define the Best Model

• Performed visualization based on how much the area of the new 
image (image 2 for example) is explained by last image (image 1)



Best 3D Model and its 3D Color Map Labeling Visualization

• The algorithm of this model is to create the random labels from the 
available labels of our 3D image and then shuffle these random labels



Modeling of 3D Presynaptic Areas

First Modeling Part
• Apply 3D vesicle filtering with the threshold of 5 vesicles on the 3D 

label objects. Second, third, and fourth models are related to erosion.

Second Modeling Part
• Focuses on the labeling of the presynaptic site
• Obtained data of this part from the remaining presynaptic sites left 

from first modeling part 
• Obtained labels of presynaptic areas from matching those remaining 

presynaptic sites with the unique identifiers in our 3D color map



Algorithm Base Comparisons and Accuracy 

• Counted the number of vesicles for each label of each image 
individually

• Received higher accuracy using the individual counting approach. This 
leads to the improvement of recognizing 3D presynaptic areas based 
on the 3D vesicles functions.



Source of Presynaptic Vesicle Errors
• Dissimilar size of 3D objects throughout the images
• Non-connections of labels in images due to the disconnected 

boundaries
• Overlapping of vesicles in some labels



Why Erosion Algorithms and Accuracy? 

• High error rate for Figure 1 and its label Figure 5 indicates 
erosion is required

• Applied the erosion algorithms to improve the accuracy of 
model

• Defined the kernel to erode vesicles and counted the vesicles 
before and after the erosion to improve the accuracy of erosion



Visualization of First Modeling Part with Erosion Models



Visualization of Second Modeling Part



Interpretation of Visualized Models
Vesicle Filtering Solution Models
• Figure 2 and its label Figure 6, which is the implementation of vesicle 

erosion, caused an increase in errors

• Figure 3 and its label Figure 7, which is the implementation of 3D objects 
(presynaptic) erosion, caused the reduction of errors

• Figure 4 and its label Figure 8, which is the implementation of applying 3D 
objects (presynaptic) erosion, along with setting two thresholds for 3D 
vesicle filtering that are 5 vesicles and 500 pixels, reduces the error the 
most



Effects of Best 3D Filtering on the Errors

• Combination of 3D filtering with two thresholds of 3D 
filtering, which are 5 vesicles with 500 pixels, along with 
presynaptic erosion, reduces the errors



Comparison of Presynaptic Areas Before 
and After the Best Filtering Model



3D Image Analyses Demo



Flood-Filling Networks (FFN)
• Trace brain cells in SBEM data
• Recurrent 3D convolutional network that directly produces individual 

segments from image
• Use FFN 3D cell-body segmentations to improve CDense3M’s synapse 

segmentations



FFN Models

FIB-25
• Trained on FIB-25 - medulla 

from fruit fly optic lobe
• 4 minutes to segment 

250x250x100 image volume
• 1.6 million voxels/minute

Membrane Prediction
• Trained on CDeep3M membrane 

segmentations
• 64 minutes to segment 

1024x1024x100 image volume
• 1.6 million voxels/minute



FFN Hypothesis
• An FFN model trained on membrane segmentations is more 

generalizable than the FIB-25 FFN model trained on the optic 
lobe of Drosophila (fruit fly) on different types of electron 
microscopy (EM) data

• CDense3M membrane segmentations are 8-bit grayscale images, which 
are similar in structure regardless of the raw EM data source

• The raw EM data from the brain of a fruit fly may look slightly different 
than that of a mouse, which could make transfer learning less effective



FFN Findings
• The provided FFN membrane model checkpoint at 6 million 

epochs did not cleanly segment even the FFN training data
• But retraining the model for another 2 million epochs 

resulted in an excellent segmentation on the training data

6 million epochs 8 million epochs



FFN Findings
• Continued training to 10 million epochs, but training metrics 

did not improve after 8 million epochs
• Use 8 million epochs checkpoint as model to avoid overfitting



FFN Findings
• The FFN membrane model expects the membrane segmentations 

input to closely match the xy dimensions of the segmentations it was 
trained on

• Otherwise, segmentation quality will suffer and be distorted

Unscaled Scaled



FIB-25 Results
• FIB-25 model performs poorly on Nucleus accumbens data
• Fails to locate seed points in all the black areas
• Missing many of the smaller cells
• Decent precision, low recall



Membrane Model Results
• Membrane model is more accurate than FIB-25 on Nucleus accumbens data
• Better seeds → Better segmentations
• Some holes due to mitochondria being mistakenly segmented as 

membranes by CDense3M
• Supports our hypothesis that the FFN membrane model is more 

generalizable than FIB-25 on new data



Evaluating FFN Segmentation Accuracy
• Measure per voxel (3D pixel)
• One-hot encode each cell and apply binary segmentation mask for 

each cell ID
• 1: voxel is part of cell
• 0: voxel is not part of cell

• Count number of voxels that are true positives, true negatives, false 
positives, and false negatives for each cell ID using the predicted and 
ground truth segmentations

• Take the average value among all cells for each metric



FFN Metrics

Training Data with 
Membrane Model

Test Data with 
Membrane Model

Test Data with 
FIB-25 Model

Accuracy 0.9078 0.8237 0.6651

Precision 0.9720 0.9109 0.8737

Recall 0.9184 0.8262 0.7193

F1-score 0.9444 0.8665 0.7890

Jaccard index 0.8947 0.8041 0.6464



FFN Scalability
• Both FFN membrane and FIB-25 models run in linear time with 

respect to the total number of voxels
• Example for 16 GB of GPU RAM (AWS g4dn.xlarge EC2 instance)

• 1024x1024x100 voxels takes 64 minutes to segment
• 750x750x100 voxels takes 31 minutes to segment
• 1.6 million voxels/minute

• But when we double the GPU RAM to 32 GB (g4dn.2xlarge)
• 1024x1024x100 voxels takes 40 minutes to segment
• 750x750x100 voxels takes 22 minutes to segment
• 2.6 million voxels/minute

• CDense3M is 50% more efficient when doubling GPU RAM to 32 GB
• Certain stages of the pipeline run jobs in parallel



Business Value of Findings
• 10% improvement in the accuracy of automated synapse 

segmentations using 3D modeling and FFN → 10% fewer 
mistakes that a human expert needs to manually correct

• FFN membrane model generalizability makes it one-size-fits-all
• Transfer learning = Save time and money by not having to train own model

• Results are reproducible
• CDense3M extends CDeep3M
• No need to install or learn new stack like the similar Janelia DVID tool
• Command to segment images (runprediction.sh) in CDense3M is very 

similar to CDeep3M, with the only difference being two new options for 
running FFN in CDense3M



How can I start using CDense3M?



CDense3M

Solution Architecture - Production

Cost:  $0.54/hour for one g4dn.xlarge EC2 instance + 100 GB EBS volume



CDense3M

Solution Architecture - Development

Cost:  FREE
Disclaimer: Colab resources are not guaranteed and not unlimited, and the usage limits sometimes fluctuate. CDense3M shall not be liable for any loss or damage to property caused by Colab’s usage limits.



Business Value of Solution Architecture
• Supports multiple environments

• AWS
• Colab
• On-premises

• Easy installation
• Less time spent troubleshooting, more time for research

• Accessibility – caters to different types of users
• CLI for advanced users
• GUI for beginners

• Free option – albeit with limits



Next Steps
• Calculate more accurate threshold for 3D labeling and 

vesicle filtering 
• Clean up CDense3M membrane segmentations

• False mitochondria in membrane segmentations (confused with 
myelin sheaths) reduces the cell-body segmentation accuracy of 
the FFN membrane model

• Crop large images into smaller components and process 
them individually to handle memory constraints

• Publish a paper on CDense3M after implementing these 
improvements



FFN Demo



• All the hypotheses at the beginning were confirmed
• Verified the best 3D labeling is based on the overlapping of 3D 

objects with a threshold of over 80%
• Verified the best 3D vesicle filtering is based on keeping the 3D 

labeling overlapping relation with the individual vesicles analyses in 
each image.This results in a higher accuracy.

• All the data of 3D image processing in the next step is relevant to the 
previous step

• The threshold of our 3D filtering for our best model is 5 vesicles and 
500 pixels

Conclusion



Conclusion
• CDense3M achieves a 10% increase in the segmentation of 

synapses compared to CDeep3M2
• CDense3M is easy to install and use
• The ultimate goal of CDense3M is to help researchers 

accelerate their study of neurodegenerative diseases like 
Alzheimer’s and Parkinson’s disease in the search of better 
treatment options, or maybe even a cure
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Thanks for listening!

Questions?


