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Abstract 
 
Biomedical image segmentation has led to numerous breakthroughs in neuroscience research by 
helping scientists map the brain. Brain mapping could be the key to understanding the 
progression of neurodegenerative diseases. Currently, the most accurate neural segmentations 
and synapse detections are annotated manually. However, manual annotation of synapses is 
unsustainable given the very large size of electron microscopy datasets of the brain. Deep 
learning tools such as CDeep3M can produce automated synapse segmentations on serial block-
face scanning electron microscopy (SBEM), but the segmentations are relatively inaccurate. This 
is due to the numerous barriers including the inherent heterogeneity of neurons and their 
synapses and the limited tools for assessing and analyzing ultrastructure in molecularly defined 
synapses. Our developed solution for improving the automated segmentations of synapses, 
known as CDense3M, could help neuroscientists discover new insights in neurodegenerative 
diseases such as Alzheimer’s and Parkinson’s disease. We implement and apply two different 
modeling components to perform 3D segmentations and labeling to improve the accuracy of 
synaptic density segmentations. The first modeling component creates different algorithms for 
3D concatenation, labeling, and filtering. As for 3D filtering, we also implement multiple models 
that use erosion and determine the statistical thresholds for 3D vesicle filtering on 3D objects. In 
each step of our 3D modeling, the new data is based off of previous modeling and as a result the 
data in each step of modeling becomes the new data for the next step. The evaluation for our 
image processing including 3D labeling and 2D and 3D vesicle filtering models is through the 
visualization and using the biological behavior of known neuronal structures. This improves the 
accuracy of defining the presynaptic areas based on the vesicle functions. The second modeling 
component applies flood-filling networks, a class of 3D convolutional neural networks, to 
perform cell-body segmentation on a 3D image volume. We train a custom flood-filling network 
model on membrane segmentations produced by the CDeep3M automated segmentation tool. 
The membrane model is more generalizable at segmenting cell bodies than the standard FIB-25 
model trained on raw electron microscopy data from fruit flies. The improvement in the accuracy 
of presynaptic area recognition from applying both modeling components results in a 10% 
increase in precision and recall for the voxel-wise classification of synapses in a 3D image 
volume of the Nucleus accumbens from lab mice. 
 
 
Introduction and Question Formulation 
 
Challenge 
 
Electron microscopy datasets of the brain are very large, on the scale of 75 million neurons for a 
mouse brain and 86 billion neurons for the human brain. Even the brain of a fruit fly, with just 
100,000 neurons, requires 100 TB of image data. Identifying organelles from these 3D image 
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volumes is quite labor-intensive. For example, the manual segmentation of all mitochondria in 
one mouse brain would require 24/7 work for one year by 2.7 million scientists. 
 
Manual segmentation of 3D image volumes of the brain is not a viable long-term approach. 
CDeep3M is a deep learning software toolkit that automates the image segmentation of a variety 
of organelles in 3D light, electron, and X-ray microscopy. Currently, the segmentations for 
membranes, mitochondria, and synaptic vesicles are fairly accurate, but the segmentations for 
synapses still require considerable improvement. 
 
There are hundreds to thousands of small objects in each presynaptic terminal, also known as 
vesicle clouds, some with sharply delineated membranes and others with much blurrier edges, 
spanning between one to a few sections. This combination makes it a particularly difficult task 
for human and computer segmentation to identify individual synapses. 
 
Ingredients of Data Science Problem 
 
Our data science problem is that the current CDeep3M neural network model trained on synapses 
from serial block-face scanning electron microscopy (SBEM) predicts too many false positives. 
 
We identify these synapses as false positives based on biological knowledge. For most of these 
false positives, we can categorize them into the following groups based on the biological 
principle that is violated: 

• Synapses erroneously overlapping with mitochondria 
• Synapses that do not overlap enough with a membrane 
• Synapses that do not have vesicles on one side 

 
The goal of this capstone project, Neuronal Circuit and Synapse Analysis with Deep Neural 
Networks, is to increase the accuracy of the automated segmentation of synapses. We extend the 
existing CDeep3M framework by adding two new modeling approaches that leverage 3D image 
analyses and deep learning to achieve higher accuracy on the automated dense segmentation of 
synapses. Hence, we have given our developed solution the name CDense3M. 
 
Given the relationship between synapses and these three other organelles, we can use knowledge 
from the segmentations of these three organelles to improve the segmentation of the synapses via 
image processing. However, thresholding alone will not increase the accuracy of the synapse 
segmentation enough to be considered acceptable. In turn, we explore 3D vesicle filtering and 
3D labeling of the presynaptic sites. In parallel, we use flood-filling networks (FFN), a 3D 
convolutional neural network, to perform automated neuronal tracing as a possible approach to 
improve the 3D labeling algorithm. Accurately labeling 3D presynaptic areas is the key to 
significantly improving the segmentation of the synapses. 
 
The ingredients that form our data science problem are the raw SBEM data of brain tissue from 
lab mice, the resulting segmentations produced by CDeep3M, the image processing techniques 
used to slightly improve the synapse segmentation accuracy, and the more complex 3D instance 
label segmentation algorithms used to significantly improve the synapse segmentation accuracy. 
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Questions 
 

1. How can we use biological knowledge to improve the segmentation accuracy of 
synapses? 

2. Why is thresholding and filtering not enough to increase the accuracy of the synapse 
segmentation? 

3. Why do we apply 3D image processing? 
4. What are the fundamental differences of 2D and 3D algorithms and what techniques and 

tools are applied in 2D, but not 3D, and vice versa? 
5. How is the data and model in the next step of image processing related to the previous 

step? 
6. How do we evaluate our image processing models? 
7. Which features should we use in 3D image analyses to more accurately label the 3D 

presynaptic areas? 
8. What tuned statistical thresholds can be used to improve the accuracy of presynaptic 

recognition and in which model? 
9. What morphological image processing operations (erosion, dilation) are needed to further 

improve 3D presynaptic area recognition? 
10. Can transfer learning be applied to improve synapse segmentation accuracy by using a 

pre-trained FFN model on membrane segmentations to segment and trace neurons? 
11. Which data preprocessing steps need to be taken to ensure optimal FFN performance? 
12. How should we integrate 3D filtering and FFN into CDeep3M? 
13. How do we improve the scalability and usability of our models? 

 
Related Work 
 
CDeep3M is the existing tool that our project is attempting to improve with our developed 
solution called CDense3M. CDeep3M—Plug-and-Play cloud-based deep learning for image 
segmentation by Haberl et al. is the original publication on CDeep3M. Our advisor Matthias is 
the lead author, and our advisor Daniela is a co-author. This paper describes the automated 
image segmentation workflow provided by CDeep3M. 
 
There are three main reasons why we consider CDeep3M state-of-the-art. The first reason is the 
generalized applicability of CDeep3M on a variety of image segmentation tasks, such as cellular 
organelle segmentation and cell counting and classification. The second reason is that CDeep3M 
deep neural network models outperform existing models in the field such as three-class 
Conditional Random Field and Ilastik. For some datasets, the segmentation accuracy of 
CDeep3M is equal to the accuracy of human expert annotators, according to the consensus 
ground truth labels. The third reason is CDeep3M’s application of transfer learning, specifically 
domain adaption, to speed up training. The paper describes how CDeep3M successfully retrained 
a convolutional neural network trained on scanning electron microscope (SEM) to fully adapt the 
network to an SBEM dataset. This shows that adaption of pre-trained models can reduce the 
effort and time required for training by up to 90%. Our capstone project intends to build on 
CDeep3M to improve its performance in the dense segmentation of synaptic densities. 
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High-precision automated reconstruction of neurons with flood-filling networks by Januszewski 
et al. is the original publication on flood-filling networks. FFN is a 3D convolutional neural 
network that contains in addition a recurrent pathway that allows the iterative optimization and 
extension of individual neuronal processes. It has outperformed other automated segmentation 
approaches on FIB-25, a public dataset of Drosophila optic lobe electron microscopy. This 
capstone project uses a different FFN model that Matthias trained on membrane segmentations 
instead of FIB-25 to increase the generalizability of FFN on different types of electron 
microscopy data besides FIB-25. 
 
Team Roles and Responsibilities 
 
Faezeh Ghazi is the project manager. 
 
Jason Kha is the budget manager and record keeper. 
 
Faezeh worked on the image processing. She used data modeling in 2D image analyses and their 
binaries to create the data for 3D image analyses. She wrote different algorithms to break down 
the 3D image processing into different steps of 3D labeling, 3D concatenation, and 3D vesicle 
filtering. She dedicated a large amount of time to the 3D color labeling visualizations of the 
presynaptic sites. Faezeh also implemented erosion models to further improve the accuracy of 
3D presynaptic area recognition and ran several combinations of her models to test her 
hypotheses. She iterated through the scientific method several times to find that 3D presynaptic 
object erosion combined with a specific 3D vesicle filtering threshold. These strategies led to 
more accurate presynaptic area labeling, which improves the accuracy of synapse segmentations. 
Faezeh documented her findings very thoroughly in the step reports and presentations. In these 
documented reports, she explained her progression and thought process of how she refined the 
3D filtering and labeling models to improve their performance. 
 
Jason worked on the FFN approach to improve the accuracy of synapse segmentations. Jason got 
the FFN membrane model to segment well on its own training data by retraining the model for 
another two million epochs. Afterwards, he implemented image preprocessing techniques to help 
the FFN membrane model segment a test image volume more accurately than the baseline FIB-
25 FFN model, proving that the FFN membrane model is more generalizable than the FIB-25 
model. Jason fully integrated FFN into the original CDeep3M data pipeline and added FFN color 
overlays on the raw EM data. He also was responsible for designing the project’s solution 
architecture. He successfully deployed his pipeline in both AWS inside a Docker container, and 
in Google Colaboratory (Colab) as a Jupyter notebook. 
 
 
Data Acquisition 
 
Data Sources 
 
Our data consists entirely of electron microscopy images of brain tissue. The only training data 
we use is a set of 100 images of cleaned CDense3M membrane segmentations, along with their 
corresponding ground truth labels. This dataset is used for training our custom FFN membrane 
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model to perform cell-body segmentation. The original FFN training data is the only training 
data we need because we had to retrain the FFN membrane model to improve its performance. 
All of our other modeling work consists of performing image processing on segmentations 
outputted by CDense3M. The existing CDense3M models we use to segment membranes, 
mitochondria, and synaptic vesicles are already pre-trained, minimizing the need for additional 
training data. Accessing data from a variety of sources using different technologies helps us 
solve the questions we identified by adding another dataset that could potentially support our 
hypotheses. Data variety may also help us discover new findings related to the different sources 
and technologies used to collect the data, which will make our answers to the questions more 
generally applicable. The table for our training datasets is below. 
 
Name Volume Variety Velocity Location 
FFN Training 
Images (Membrane 
Segmentations) 

100 
1024x1024 
pixel images 
(44.3 MB) 

PNG, 
grayscale 8-
bit image 
(uint8) 

N/A https://drive.google.com/
drive/folders/1D-
WzDtsh1uZwJ7sqL4_W
wpU-iC1Mb6wk 

FFN Ground Truth 
Cell Body 
Segmentation Labels 

100 
1024x1024 
pixel images 
(4.1 MB) 

PNG, color 
64-bit image 
(int64) 

N/A https://drive.google.com/
drive/folders/1EfFlA0qfT
QqymTnLGOnMd8AyJR
gXychJ 

Table 1: Training Data 
 
We used two validation datasets to tune our models. The first dataset is from the Nucleus 
accumbens region in the brain of C57BL/6NHsd mice, a common strain of lab mice. We use this 
dataset to tune both the 3D filtering and labeling algorithms and FFN. The second dataset is the 
FIB-25 dataset of optic lobe electron microscopy of Drosophila, more commonly known as fruit 
flies. FIB-25 is used to tune the FFN. Both datasets are quite large in size in their original form, 
so we cropped a subset of the 3D image volume when developing our models. 
 
Name Volume Variety Velocity Location 
Nucleus accumbens 
Validation Images 

100 
1024x1024 
pixel images 
(105.3 MB) 

TIFF, 
grayscale 8-
bit image 
(uint8) 

N/A https://drive.google.com/
drive/folders/1GmfrqFrK
dTQZNqwC_y2Ua2d514
LbpnAZ 

Nucleus accumbens 
FFN Validation 
Ground Truth Cell 
Body Segmentation 
Labels 

100 
1024x1024 
pixel images 
(4.8 MB) 

PNG, color 
64-bit image 
(int64) 

N/A https://drive.google.com/
drive/folders/1rxxQxB6d
ClJauiOjzSYXAp0G9xH
U2oif 

Nucleus accumbens 
Validation Ground 
Truth Synapse 
Segmentation Labels 

100 
1024x1024 
pixel images 
(3.3 MB) 

PNG, 
grayscale 8-
bit image 
(uint8) 

N/A https://drive.google.com/
drive/folders/1vgUUgWi
WGRnfNhpBm8XMgoM
TKOtk6H4j 

FIB-25 Validation 
Images 

250 PNG, 
grayscale 8-

N/A https://drive.google.com/
drive/folders/1RtFD5R4e
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250x250 
pixel images 
(18.5 MB) 

bit image 
(uint8) 

FyI3ijZoahx3dph2BaNxa
KI3 

FIB-25 FFN Ground 
Truth Cell Body 
Segmentation Labels 

250 
250x250 
pixel images 
(0.9 MB) 

PNG, color 
64-bit image 
(int64) 

N/A https://drive.google.com/
drive/folders/1gI1aX336
kFDkP9V3ugcgaj-
7ZFzhFfzF 

Table 2: Validation Data 
 
Our test data is a different cropped subset of the Nucleus accumbens image volume. This is used 
to evaluate the accuracy of FFN segmentation and 3D synaptic area labeling. 
 
 
Name Volume Variety Velocity Location 
Nucleus accumbens 
Test Images 

100 
1024x1024 
pixel images 
(105.3 MB) 

TIFF, 
grayscale 8-
bit image 
(uint8) 

N/A https://drive.google.com/
drive/folders/1pmr2WA4
oIaVgkf27C9awRCnSpH
f0k9Dd 

Nucleus accumbens 
FFN Test Ground 
Truth Cell Body 
Segmentation Labels 

100 
1024x1024 
pixel images 
(4.8 MB) 

PNG, color 
64-bit image 
(int64) 

N/A https://drive.google.com/
drive/folders/1O0iu32wE
jupx50Ep0N_Q3GftVL7l
yN9s 

Nucleus accumbens 
Test Ground Truth 
Synapse 
Segmentation Labels 

100 
1024x1024 
pixel images 
(3.3 MB) 

PNG, 
grayscale 8-
bit image 
(uint8) 

N/A https://drive.google.com/
drive/folders/1q6L7rU7y
IPNKiGymSyn04LDtOU
VGz5ej 

Table 3: Test Data 
 
Data Collection 
 
The size of the full Nucleus accumbens image volume that we used is 121 GB. However, using 
the full Nucleus accumbens dataset would be infeasible for our computationally expensive deep 
learning models, so we took a 1024x1024x100 voxel slice that is 105.3 MB. The size of the full 
FIB-25 dataset is 100 GB and we use a 250x250x250 sample of that, which is 19 MB. 
 
The raw training data comes from SBEM microscopy data of C57BL/6NHsd laboratory mice 
brain tissue. SBEM was performed using a Merlin SEM (Zeiss) with a Gatan 3View system at 
high vacuum. SBEM constructs high resolution 3D images of tissues by repeatedly using an 
ultramicrotome knife to cut a thin section from a block face and then imaging the next layer. 
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Figure 1: SBEM Data Collection Process 

 
Data Pipelines 
 
Our data pipeline, also known as CDense3M, can be divided into three sequential stages. The 
first and leftmost diagram is the original CDeep3M pipeline. The middle diagram is FFN 
inference. The rightmost diagram is 3D vesicle filtering and 3D presynaptic site labeling. 
 

 
 

Figure 2: CDense3M Data Pipeline 
 
The CDeep3M data pipeline takes two data sources as input: 2D images slices and image labels 
as training data, and a whole 3D image volume to predict. It performs data augmentation on 
both, and then segmentation on the test volume and training in parallel. Once both processes are 
complete, it uses the ensemble of up to three trained models to predict the segmented test 
volume. For the neural network models, 1fm or one frame is a 2D model, whereas the 3fm and 
5fm are 3D models. The 3fm model uses 3 frames and the 5fm model uses 5 frames for each 
predicted image depth-wise by a constant z-step size. Finally, the slices are de-augmented and 
merged back together to form the segmentation layer predictions for the test volume. For our 
capstone project, we only used CDeep3M pre-trained models specific to membranes, 
mitochondria, vesicles, and synapses. Since there is no need for training data, we only need to 
provide the 3D image volume test dataset of the raw EM images as a folder of TIFF files. 
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The diagram in the middle represents the FFN inference pipeline, which can only take membrane 
segmentations as input, and outputs 3D cell labeled segmentations. 
 
The diagram on the right is the 3D image analyses pipeline, which takes the FFN cell 
segmentation output and synaptic vesicle segmentations from CDeep3M as input, and outputs 
the presynaptic site and synapse labels. 
 
Data Environment Setup 
 
CDeep3M and FFN are typically run in the cloud because they consist of neural networks, which 
are so computationally intensive that they require graphics processing units (GPUs) to be usable 
for most deep learning tasks. However, the 3D image analysis was done locally. All our data is in 
flat files because the data only consists of image. It does not make sense to insert images into a 
database. 3D image volumes are either stored as a folder of its 2D image slices and labels in 
TIFF format, or an HDF5 file that contains the entire 3D image stack. 
 
 
Data Preparation 
 
Data Quality Issues 
 
The quality issues with the datasets are relatively minor. Some image stacks have noise along the 
edges that confused CDense3M when it made its predicted segmentations. A voxel exclusion 
cropping zone around the edges is used in order to compensate for inaccuracies of human 
annotations along the borders of objects. This zone is usually one or two voxels wide. 
CDense3M membrane segmentations tend to include stray myelin sheaths and membrane holes. 
We use a membrane completion network, which is a CDense3M pre-trained model, to clean up 
stray myelin and fill in the membrane holes in the membrane segmentations before running FFN 
inference. 
 
Data Transformation and Integration 
 
We use the IMOD software to crop out a smaller portion of the 3D image volume to work with, 
while maintaining an accurate 3D reconstruction and modeling of microscopy images. 
 
The data formats we work with are listed and described below: 

• DM4 
o Data format for raw electron microscopy data 

• MRC 
o Data stack 
o Can be read or opened partially 
o No compression 
o Can only be opened with molecular microscopy specific software like IMOD 

• TIFF 
o Usually individual files, but can also store multiple images in one TIFF 
o Usually uncompressed 
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o Slower data transfer 
o Quick to read, since no decompression required 

• PNG 
o Strictly single-image format 
o Lossless compression 
o Fast data transfer 
o Slower to read for large files, since it requires decompression 

• HDF5 
o Made for big data 
o Supports n-dimensional datasets 
o Each element in the dataset may itself be a complex object 
o Can have multiple containers (folder structure) 

 
Raw electron microscopy data for the Nucleus accumbens are stored in DM4 files. These DM4 
files are then transformed into an MRC stack with the IMOD dm2mrc command. The Nucleus 
accumebens bin-2 MRC aligned stack file is still 17 GB with 16606x10438x403 voxels. It would 
be impractical to run deep learning algorithms on a 17GB image volume, so we use the IMOD 
trimvol command to extracts a subset of the volume as a new MRC stack file. 
 
The validation and test images for the Nucleus accumbens data were created using the trimvol 
command to extract two different 1024x1024x100 voxel stacks, which are a much more 
reasonable 40 MB. These smaller volumes are then converted into 100 separate TIFF files for 
each image slice depth-wise using the IMOD mrc2tif command. Although IMOD can also 
convert MRC files to PNG, we use TIFF files because they can be read faster than PNG files. 
 
Next, the CDense3M segmentation prediction command segments a specified organelle, which is 
determined by the CDense3M model used, in all TIFF or PNG images of the raw data in a 
defined input folder. CDense3M then produces grayscale 8-bit organelle segmentations as PNG 
files. 
 
FFN inference expects its input 3D image volume to be an HDF5 file. Thus, the PNG membrane 
segmentations outputted by CDense3M must be converted to a single HDF5 file. This is done 
automatically using a Python script. FFN inference saves its predicted 3D cell segmentations 
both as an HDF5 file and as separate PNGs. The 3D image analyses algorithms work directly on 
the PNG segmentations of cell bodies predicted by FFN and of vesicles predicted by CDense3M. 
 

 
Figure 3: Data Transformation Process 

 
Data Preprocessing 
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The significance of the pre-processing methods we used in our project is that simple image 
processing techniques can result in a nontrivial increase in segmentation accuracy. CDense3M 
includes a Python script that enhances the stack of raw EM data images before predicting the 
segmentations on it. The image enhancement data preprocessing script removes extreme outlier 
pixels and denoises each image using the scikit-image, OpenCV, SciPy, and NumPy. 
 
Data preprocessing methods require to integrate both 3D image processing and FFN inference 
with the existing CDeep3M pipeline. For 3D image analyses, new data is based on previous data. 
In other words, the 3D image analysis is a sequential model, where the output of the previous 
model becomes the input of the next model. For example, the results of 2D image analyses with 
the positive and negative controls of mitochondria and membranes for synapses became the data 
for the analyses of the next step of 2D vesicle filtering. The data from 2D image analyses became 
the new data for 3D image processing. Also, in 3D image analyses, the data from each step of 3D 
modeling became the data foundation for the next step. For instance, the data from 3D modeling 
and concatenation became the data for the 3D vesicle filtering and erosion models to identify and 
recognize synapses based on the vesicle functions. Since each data output is the input of the next 
step, it is crucial to provide accurate data initially. This evaluation through visualization and 
biological interpretation supports the determination of any quality issues in our modeling in 
which its output of visualization becomes the new data. Every step of data modeling requires 
different Python scripts to do the model evaluation and provide the data for the next step. 
 
Data preprocessing methods were also required to integrate FFN inference with the existing 
CDeep3M pipeline. We had to write a custom Python script to convert the CDeep3M membrane 
segmentations, which are separate PNG images for each image slice, into a single HDF5 stack in 
order to link the existing CDeep3M workflow with FFN. This required inserting our Python 
script into the pipeline right after CDeep3M produces PNGs containing the ensembled 
membrane segmentations, but before calling FFN inference. The NumPy and H5py packages 
were used to convert a series of PNG files into one HDF5 file. 
 
Feature Selection 
 
We selected and managed features based on the data type of the images being used. However, in 
this capstone project, we only work directly with the pixel values of any given image. As for the 
image analyses, feature selection depends on evaluation of the models derived from the 
visualization as well as neurological interpretation. For example, 3D labeling identified those 
labels under the same identifiers for the 3D concatenation. Also, the erosion models applied on 
3D objects of labels and vesicles underline those labels that are presynaptic. FFN does also look 
at the contour lines as a feature in its watershed flood-filling algorithm, but we did not interact 
directly with the contour lines when running FFN inference. 
 
The raw EM data TIFF files that are to be segmented by CDense3M are typically 8-bit unsigned 
integer grayscale images (CDense3M segmentations are always 8-bit unsigned integer (uint8) 
grayscale images, whose pixel values range from 0 to 255, inclusive. Out of the box, FFN 
inference outputs its cell-body segmentations as npz files, which are NumPy arrays compressed 
using gzip. After unzipping the npz file, we save the NumPy array with the float64 data type to 
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support segmentations with a large range of pixel values and avoid clipping at too low of a 
maximum pixel value, which distorts the segmentation. In addition, the Fiji ImageJ software 
does not support uint32 or uint64 images, so we had to use float64 to gain additional precision. 
 
One could consider each individual pixel value in an image to be a separate feature, so a 
1024x1024 pixel image would have 1,048,576 features, and a 1024x1024x100 voxel image 
volume would have 104,857,600 features. All three components of CDense3M consider each 
pixel value as a feature, which are used by the models to segment and label the input images. 
 
 
Analysis Methods 
 
Preliminary Analysis Method Identification, Significance, and Influence 
 
For exploratory data analysis, we used CDeep3M to generate segmentations on the same Nucleus 
accumbens 3D image volume for four different organelles: membranes, mitochondria, synapses, 
and synaptic vesicles. Our first task was to overlay these four segmentations on top of an 
enhanced version of the raw EM data, with each organelle color-coded in a different color. 
 
Predicted segmentations were generated by submitting 20 1024x1024 pixel images of the 
Nucleus accumbens data to the CDeep3M-Preview web interface, which runs on the Nautilus 
Pacific Research Platform (PRP) cluster. As CDeep3M can only recognize one organelle at a 
time, we had to repeat this process four times by selecting each organelle-specific model in order 
to generate each organelle-specific segmentation. 
 
The stacked multi-color overlays with the four organelles distinguish each object with 
contrasting colors, which helps determine where the models are making conflicting predictions. 
For example, CDeep3M often predicts the presence of synapses when the structure is actually a 
mitochondrion. This preliminary analysis of visualizing multiple segmentations with colored 
overlays on a single image helps us identify current weaknesses in CDeep3M’s algorithms. Our 
advisors identified this preliminary analysis method as a good introductory task to familiarize 
ourselves with the data and the core of our data science problem. By color coding each cell 
structure with a different color, it is be much easier to recognize errors visually. The significance 
of using this stacked colored overlay method is that it provides a clear picture of our starting 
point of synapse segmentation accuracy with CDeep3M alone, revealing both its strengths and 
weaknesses in its segmentations. Moreover, this analytical method is used at the end of the 
project to visually determine whether our models did result in an improvement for synapse 
segmentations, and where our models could still improve further. 
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Figure 4: Stacked Overlay of Four Cell Structures in Mouse Brain Tissue 

 
The structures outlined in red are membranes. The structures outlined in green are mitochondria. 
The structures outlined in blue are synapses. The structures outlined in yellow are vesicles. 
 
Based on the multicolor stacked overlay of the test image above, the segmentations for 
mitochondria and membranes are excellent. The segmentations for synaptic vesicles are good. 
However, the segmentations for synapses are poor, with many false positives and erroneous 
overlap with other organelles, especially mitochondria. Exploratory data analysis shows there is 
a problem at the segmentation of synapses produced by CDeep3M’s models erroneously 
overlapping with mitochondria and not overlapping with the membranes. 
 
Our minimum viable modeling product (MVMP) attempted to correct problems identified in our 
EDA. It involves using the corresponding segmentations of mitochondria as a negative control 
filter and corresponding segmentations of membranes and vesicles as a positive control filter 
against the segmentations of the synapses, to ensure that the segmentations of the synapses do 
not appear where mitochondria are located, and only appear if the synapse is near a membrane. 
 
This exploratory data analysis and the MVMP influenced the design of the next steps of the 
project in that based on the results of applying our MVMP to the data, we each focused on one 
modeling approach to further improve the segmentation of synapses. These analysis methods 
also define our data science questions further in that we address weaknesses in the current 
CDeep3M synapse model with more sophisticated techniques. 
 
Involvement in Applying Analysis Techniques 
 
The first analysis technique leverages the biological knowledge that synapses that have no 
vesicles on one side should be removed. 
 
A presynaptic neuron communicates by releasing neurotransmitter chemicals, which then move 
across the synapse to be detected by and bind with receptors in the postsynaptic neuron. These 
neurotransmitters are present within synaptic vesicles clustered at presynaptic terminals. If the 
vesicles are not there, the signals cannot get through and the two neurons will not be able to 
communicate. Therefore, all synapses must be near synaptic vesicles. 
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Figure 5: Synapse Structure 

 
The 3D vesicle filtering algorithm uses presynaptic sites to filter synapses, as every synapse 
should be touching a presynaptic site. It assigns the membrane as the boundary of the presynaptic 
site and grows the vesicle area until it reaches the membrane using image dilation techniques. 
The algorithm removes synapses that have less than 80% overlap with the membranes. For 
synapses that are 100% within the membrane, they are assigned to the nearest labeled 
presynaptic sites. Then those synapses that are completely on the membrane will be in the same 
area as vesicle when we grow the vesicles. 
 
The second analysis technique assigns the cell identities in 3D using flood-filling networks 
(FFN), which are 3D convolutional neural networks designed for the instance segmentation of 
3D image volumes. FFN is implemented in TensorFlow and provides scripts for both training 
and inference. We use a custom FFN trained model trained on the membrane segmentations from 
CDense3M to perform cell-body segmentation. Initially, we believed that we would only need to 
run FFN inference, but it ended up that we also had to retrain the custom FFN membrane model 
for another two million epochs to obtain high-quality results, even on the training data. 
 
In the flood-filling algorithm, the membranes serve as the watershed lines. Neighboring pixels of 
each flood marker are inserted into a priority queue based on the gradient magnitude of the pixel. 
Each pixel is assigned the label of its marked neighbors when removed from the queue, and all 
non-marked neighbors are placed on the queue. This process repeats until the queue is empty. 
After all pixels are labeled, FFN inference is done with its cell-body segmentations. 
 
Using the cell boundaries predicted by FFN, we can identify the presynaptic neurons using 3D 
image analyses techniques described later on. We use the Fiji ImageJ tool to apply a 3-3-2 RGB 
image lookup table to add color to the FFN segmentations, which gives us a clear picture of how 
well FFN inference is performing. The only involvement in applying the FFN inference analysis 
technique to our data is configuring a Protobuf file with model parameters and data locations, 
and executing a Python script to run FFN inference and perform the cell-body segmentation. 
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Figure 6: Cell Identities Assigned by Flood-Filling Network 

 
Basic Analysis Techniques 
 
Our first cut at a solution, or MVMP, involved erasing synapse segmentations that either overlap 
with mitochondria or do not overlap with membranes. This is a basic analysis technique because 
it can be implemented in a simple Python script, using standard data science libraries such as 
NumPy and Pillow. We used the MVMP as a basic analysis technique because our exploratory 
data analysis and biological principles both indicated that the MVMP would be a simple model 
that could eliminate the most conspicuous synapse segmentation errors. 
 
Our MVMP led to a 2% increase in validation voxel-wise accuracy of synapse segmentations 
compared to the unfiltered model. However, even with our thresholding and filtering MVMP, 
synapse segmentations are still not accurate enough. There are too many false positives. 
Synapses should only be adjacent to presynaptic cells, which must contain synaptic vesicles in 
order to facilitate the transmission of neurotransmitters from the presynaptic neuron to the 
postsynaptic neuron. The results from applying our MVMP led us to implement and apply our 
two more advanced models – 3D image analyses and FFN. 
 
After mitochondria and membrane filtering, the aim of reducing the presynaptic recognition and 
synapses errors influenced the design of the 2D vesicle filtering method. The data from the 
previous filtering step is our new data for this. We use the remaining synapses, derived from the 
negative control of mitochondria and positive control of vesicles. This 2D vesicle filtering 
method leverages biological knowledge and eliminate the remaining synapses that have less than 
a certain number of vesicles on one side defined by a threshold. In the 2D vesicle filtering, we set 
the threshold on the number and area of vesicles and membranes to determine the appropriate 
presynaptic areas. The threshold for membrane is 80% and the threshold for vesicles is 5 and 100 
pixels. 
 
The method for 2D vesicle filtering is to grow a region around the vesicles until it reaches the 
membranes, define this as the presynaptic site, and accept all synapses that are on a membrane, 
that is part of this presynaptic site. In order to do so, the kernel was used for the synapses and 
vesicles separately to reach the boundary of a presynaptic site. The results of the dilation of 
vesicles and synapses to find the presynaptic areas will be the same. Those presynaptic sites 
could then be colorized to visualize if our method is performing accurately. The vesicle filtering 
algorithm uses presynaptic sites to filter synapses, as every synapse should be touching a 
presynaptic site. We have assigned the membrane as the boundary of the presynaptic site, and the 
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code grows the vesicle area until it reaches the membrane using image dilation techniques. The 
algorithm removes synapses that have less than 80% overlap with the membranes. For synapses 
that are 100% within the membrane, they are assigned to the nearest labeled presynaptic sites. 
Then those synapses that are completely on the membrane will be in the same area as vesicle 
when we grow the vesicles. Then, the algorithm applies the vesicle filtering threshold of 5 
vesicles and 100 pixels and removes those synapses that are below this threshold. The primary 
analyses of visualizing the presynaptic sites that will be colorized help us to evaluate our model 
performance. The significance of using 2D filtering is we applied the grown vesicles along with 
the statistical threshold for our primarily model performance analyses and was able to find the 
best models. As for the visualized primary analyses, we visualized the model based on the 
vesicle threshold of 5 objects on the left-side and threshold of 100 pixels on the right-side below. 
      

      
Figure 7: Different presynaptic and vesicles for 5 vesicles on the left and 100 pixels on the right 

 
The primary analyses of our above visualization finding indicates that the model with 5 vesicle 
objects will give us more accurate results, as we can keep more presynaptic areas that pass the 
vesicle thresholds. As a result, the binary image of synapses and presynaptic areas before and 
after filtering for the threshold of 5 vesicles is shown in Figures 8 and 9.  
 

     
Figure 8: Synapses before filtering on the left and synapses after filtering on the right 

 

     
Figure 9: Presynaptic areas before filtering on the left and after filtering on the right 

 
In Figure 10, we considered the positive vesicle control variables with the threshold of 5 to 
combine the segmentations of the 4 cell structures of mitochondria, synapses, vesicles, and 
membranes into a single combined segmentation image. We then overlay these combined 
segmentation images on top of an enhanced version of the original microscopy image with each 
organelle color-coded in a different color. 
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Figure 10: Stacked Overlay of Four Cell Structures after vesicle filtering 

 
The results of visualization in terms of images obtained from the model are the predicted output. 
The predicted output has to be evaluated for its accuracy and significance. The findings of the 
above visualization demonstrate that the 5-vesicle threshold is better than 100 pixels vesicle 
threshold. This is because we can keep more accurate presynaptic areas, which leads to better 
synapse predictions. Figures 6 and 7 indicate that filtering is effective on reducing the synapse’s 
errors. It can be seen that the number of synapses and 3D objects(labels) are reduced as the errors 
were eliminated. This threshold of 5 vesicles gives us the output of Figure 8 that has a higher 
prediction accuracy. 
 
Next Steps for 2D Model Evaluation and the Reason for Applying 3D Image Processing 
 
The problem of 2D image filtering is the loss of some presynaptic sites in our microscopy images 
that led to inaccurate presynaptic recognitions. The reason for the loss of presynaptic areas is 2D 
vesicle filtering on segmented images of 3D microscopy images. The 3D microscopy images are 
sliced into segmented images. These segmented images consist of 3D objects in which the 
membranes are their boundary. One can visualize each 3D object in each image as different 
pieces of a worm’s body. As a result, these 3D objects in each image are in contact with 3D 
objects in other images as they contribute to each other to form the worm, for example. For 
instance, a worm’s head is a 3D object in one image, and its body is composed of other 3D 
objects divided in other images. These 3D objects that are connected throughout the images may 
or may not have vesicles. The problem caused by 2D vesicle filtering on these images is that it 
considers these images individually without the connection of 3D objects of images. This 
affected the count of vesicles as the number of vesicles in each 3D object that should be summed 
together are counted separately. This 3D object’s connection is one of the fundamental 
differences of 2D and 3D image processing that can make vesicle filtering and grown regions. As 
a result, some 3D objects of images that do not meet the vesicle threshold requirement are 
deleted by mistake at the time of 2D vesicle filtering. These 3D objects could be presynaptic 
sites and meet the requirement of vesicle filtering if their connection with other images’ 3D 
objects are taken into account. Therefore, the preliminary analyses of these inaccurate 
presynaptic areas help us move toward the applicable solution of 3D image analyses. The 
significance of using this 3D analyses is this method considers the connection of 3D object’s 
vesicles, so the vesicle counts in each 3D object will be summed together. 3D image processing 
can be dissected into different steps that are 3D concatenation, 3D labeling and 3D filtering. 
These techniques involved in 3D modeling are not applicable in 2D image processing in that its 
algorithm interacts with each image’s 3D objects separately. The significance of our 3D image 
processing is this 3D technique can help improve the accuracy of presynaptic site recognition. 
 
Creating the 3D Images 
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A Python program was written to create the 3D images stack using CDeep3M’s pre-trained 
models for synapses, membrane, vesicles, and mitochondria. The technique for creating 3D 
images is to integrate the shape as a parameter into the 3D pixels in which the area is on the xy 
plane and depth along the z-axis. When this one dimension is added to all the segmented 2D 
images, the images are concatenated along the depth of the z-axis.  
 
3D Concatenation 
 
3D concatenation merges 3D objects of each image with each other. The problem is that the 
location of 3D objects that are in contact with each other are not the same throughout the images. 
We considered these 3D objects as the pieces of a worm’s body that are divided into different 
pieces across the images. These different pieces as 3D objects have different areas in each image 
that caused the problem of not being exactly at the same location in each image. As a result of 
this issue, the irrelevant 3D objects that should not be linked together become one area and get 
one label. The primary analyses of this 3D concatenation issue help identify the 3D objects’ 
labels in each image. 
 
3D Labeling 
 
3D labeling is the technique used to set the label for each 3D object throughout the images. The 
3D images created in our previous method are the new data for 3D labeling. Since all the 3D 
objects in each image are related to 3D objects of other images, the kernel was used in our 
program to link the 3D objects from up and down, right and left. Also, the front and back (depth) 
of 3D objects of each image were taken into account. For each pixel, we looked at the cube 
around it. The 3D labeling model was calculated both through the similar areas and overlapping 
to evaluate the model performance through the primary analyses of visualization. In both 
methods, the threshold is based on the areas above 80%. The significance of 3D labeling is the 
labeling of the next image was based off the labeling of the previous image. With this, we 
labeled the first image and then labeled the second image based on the following algorithms.  
 
The first algorithm for 3D labeling intended to label the 3D objects of new images that could be 
found in the old images. If the 3D object’s areas of image 2 had above 80% similarity with the 
area of image 1’s 3D objects, the area of image 2 was updated to get the same label as the area of 
image 1. As a result, the updated label of new images is based on the labeling of the last images 
was saved in the matrix. We first assigned the value of zero to all elements of our matrix, and 
then updated the labels according to the areas of previous image’s 3D objects. As for the 
overlapping regions, if the area of the old image overlapped two areas of new image, the label of 
the area that had more overlapping regions would be the label for both areas. 
 
The second algorithm of 3D labeling aimed to label the 3D objects of new images that could not 
be found in the old images. The biggest label method was used for this labeling. The purpose of 
the biggest label method was to assign the new label for those labels of the new images that were 
not in the labels of previous images. If there were some areas in image 2 that had either no 
overlap or overlapping areas less than 80%, those areas of image 2 were assigned the new labels. 
This new label of new images was based on the biggest label. For example, if the biggest label 
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was 117 in image 2 and 100 labels of image 2 were in common with image 1, then the labels 
from 100 until 117 (the rest of labels) got the new label. These new labels also got a new color. 
 
Analytical Workflow 
 
The analytical workflow for the two new modeling components of CDense3M are quite similar. 
We run through the algorithm with the default parameters to get a baseline level of performance. 
Then we make one change at a time and compare the results after making that change to the 
baseline. If the change consistently results in an improvement in accuracy, the model with the 
change becomes the new best model. We iteratively test different hyperparameter combinations 
and other preprocessing techniques in an attempt to outperform the best model so far. This 
corresponds to the analyze stage in the data science analytical workflow process, which involves 
model selection and analyzing the results. Once we are satisfied with the best model’s 
performance on the validation data, we give it new test data and repeat the process. The process 
for acquiring and preparing the data is illustrated in the figure below. 
 

 
Figure 11: Acquire and Prepare Steps in Analytical Workflow 

 
The analytical workflow is partially automated. CDense3M can run a parameter sweep for FFN 
and 3D filtering and labeling to obtain the results for each simulation run with a different 
parameter combination. All our image processing models are evaluated through visualizations 
using different algorithms. These image processing algorithms are run in Python, using the 
OpenCV, NumPy, and SciPy libraries. We aggregate relevant metrics and visualizations from 
our trial runs and save them in a Plotly Dash reporting dashboard. We present these findings to 
domain experts like Daniela and Matthias, and they act by figuring out the neuroscience 
principles that explain our findings. 
 
Processing Environment Setup 
 
Our exploratory data analysis and MVMP work was done locally in Jupyter notebooks and 
Python scripts. The 3D image analyses scripts were implemented locally in Python. We retrieved 
a cropped image volume of the Nucleus accumbens data from a National Center for Microscopy 
and Imaging Research (NCMIR) lab machine using IMOD and copied the images to our local 
and cloud machines. We ran CDense3M and FFN in AWS and Colab for most of this project. 
Both CDense3M and FFN include convolutional neural networks, and most deep learning 
models require a GPU for reasonable runtimes on large datasets. 
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Findings and Reporting 
 
Findings 
 
This section describes the findings related to our experiments to test hypotheses related to 3D 
image analyses and flood-filling networks. We will first discuss findings for 3D filtering and 
labeling using erosion models. Then we will report our findings and evaluation metrics from 
applying the FFN membrane model. 
 
3D Image Analyses Findings 
 
The preliminary analysis of the 3D labeling algorithms was to use the visualizations to evaluate 
the model’s performance. The visualization was based on the logic of how much of the area of 
the new image (image 2 for example) was explained by last image (image 1). 
 

          
Figure 12: Labeling of 3D images based on the similar areas 

 

           
Figure 13: Labeling of 3D images based on the overlapping areas while there are grown vesicles 

 

          
Figure 14: Labeling of 3D images based on overlapping areas 

 
In the above figures, if the color of the areas of images stayed the same, that means those areas 
of images had identical labels. If the color of areas of images were changed, that means the label 
of the image was changed. Also, if the labels’ areas overlapped over 80%, that means these 
labels are unique. If the areas’ similarity and overlapping were under the threshold, it means that 
the labels had different identities and colors. The difference between Figures 13 and 14 is that in 
Figure 13, the vesicles were grown. But, in Figure 14, we considered all the areas inside the 
membrane. The preliminary analysis of evaluation was based on the consistency of labels that 
pass the 80% threshold, which Figure 14 performed the best in. 
 
We could reach the conclusion that there were some algorithms that were assigned for 2D image 
analyses were not in 3D image analyses. The results of Figure 13 also indicated that the growth 
of vesicles caused the loss of some 3D presynaptic areas. The growth of vesicles was used to 
identify presynaptic regions used in 2D analyses. The reason was that the growth of vesicles was 
applied in each 3D object separately, while all these 3D objects in each image were actually 
related to 3D objects of corresponding images. This approach ended up losing some 3D objects 



 20 

that had no vesicles, visualized in Figure 13. These 3D objects could be connected with 3D 
objects of other images that had met the threshold for vesicles. Therefore, some labels that could 
be true presynaptic sites are removed, which increased presynaptic recognition errors. In our 
overlapping Figure 14, there was still not very clear visualizations. That was the reason we 
applied 3D color labeling visualization to identify each label of 3D labeling more precisely. Our 
preliminary analyses indicated that each step of 3D modeling influences the next step to improve 
the accuracy. For example, the 3D color labeling visualization was influenced by the 3D labeling 
data to improve the model performance. 
 
3D Color Labeling Visualization 
 
The goal of the first category of this model was to provide more distinguishing colors for 3D 
labeling. The algorithm for this model creates random labels equal to the number of available 
labels in our 3D images, and then shuffle these random labels. Then, our images were saved in 
the zero-filled matrix with the same size as the image. This matrix is updated based on the 
random labels. For example, label 2 of the matrix was replaced with the second random label, 
such as 100 for instance. As a result, label 100 comes after label 1 instead of label 2. Therefore, 
based on the relocation of labels, we could assign different colors to each label. 
 
The visualization of the 3D analysis algorithms performance is illustrated as follows. 

          
Figure 15: 3D labeling with the order of labels 

 

          
Figure 16: 3D Labeling based on random colors 

 
In Figure 15, each label was in order, while in Figure 16, the labels were not in order. In Figure 
16, the Python random library was used to generate the random labels. 
 
3D Vesicle Filtering 
 
As for the vesicles, we want the content of the vesicles within the 3D structure. The idea is that 
all of the vesicles are the individual parts of neurons, which forms a presynaptic site. In our 
visualizations above, each of the labels has a unique identifier, shown in the image with different 
colors. Each of those colors means 3D objects, and in 3D objects each color could have no 
vesicles or many vesicles. The threshold is our criteria to determine the presynaptic areas. If the 
number of vesicles is under the threshold, that means noise. If the number of vesicles exceed the 
threshold, that means presynaptic areas. This approach can be divided into two parts. 
 
3D Vesicle Filtering – First Modeling Part 
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In this part, four models are created to improve the accuracy of presynaptic sites. The first model 
applies 3D vesicle filtering with the threshold of 5 vesicles on the 3D label objects. The basis of 
this algorithm is to count the number of vesicles for each label of each image individually. The 
preliminary visualization analysis of the model illustrates that there are some errors in our first 
model. These errors are either from removing some areas that have above 5 vesicles, or keeping 
some areas that have less than 5 vesicles. The significance about using this method is we can 
visualize the origins of the errors throughout the images. The reason for these errors is the 
dissimilar size of 3D objects throughout the images. This caused membranes that are the 
boundaries of 3D objects in some images to disappear, and thus 3D objects to be falsely 
connected to each other. In addition, the vesicles are overlapping on each other in some images 
that caused the algorithm to consider all the overlapping vesicles as one vesicle. 
 
Our preliminary analyses indicate that the erosion technique is used to correct the above errors 
and generate more accurate presynaptic recognitions. The errors of 3D vesicle filtering in the 
first model influence the design of the second, third, and fourth models that erosion come into 
account with 3D vesicle filtering. In the erosion models, the kernel method is involved to erode 
vesicles and count the vesicles before and after the erosion. If both vesicles before and after the 
erosion are less than 5, that means the removal of that label from that image. The erosion models 
were applied on the vesicles and 3D objects. We also tuned the 3D vesicle filtering threshold to 
evaluate the best model. The tuned threshold involves 5 vesicles and 500 pixels. In the following 
Figures 17-20, the color blue illustrates the vesicles. The red/white regions illustrate those labels 
that are removed/stay after applying 3D vesicle filtering. The white labels represent the 
presynaptic areas and the red labels represent noise. 
 

          
Figure 17: 3D vesicle filtering without erosion 

 

          
Figure 18: 3D vesicle filtering, applying the erosion of vesicles 

          
Figure 19: 3D vesicle filtering and applying the erosion of 3D objects (presynaptic) 
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Figure 20: 3D vesicle filtering with two thresholds of 5 vesicles and 500 pixels and applying the 
erosion of 3D objects (presynaptic) 

 
3D Vesicle Filtering – Second Modeling Part 
 
The first modeling part influences the design of the second modeling part, which focuses on 
assigning the label for each presynaptic site that is identified in the first modeling part. That is 
the reason the labels of this part come from the remaining presynaptic sites left from first 
modeling part after applying filtering. With this, we need to match those remaining presynaptic 
sites with the unique identifiers in our 3D color map images. Each of these 3D objects has a 
unique ID. Then, we need to go through each of the remaining presynaptic areas after applying 
the 3D filtering to look for the labels that are occupied in 3D labeling. This would indicate our 
label group is under the same identifier. The performance of these models is shown in Figures 
21-24. The preliminary visualization analyses of following figures demonstrate the labeling of 
the remaining presynaptic sites after vesicle filtering. The significance about the two modeling 
parts of vesicle filtering is the link between these two modeling parts. For example, in the first 
model, the presynaptic areas are defined, and in the second part, they received the labels. As a 
result, the presynaptic labels of Figures 17-20 are Figures 21-24. 
 

          
Figure 21: Determination of the labeling of 3D vesicle filtering (Figure 17 presynaptic label) 

 

          
Figure 22: Determination of the labeling of 3D vesicle filtering, applying the vesicle erosion 

(Figure 18 presynaptic label) 
 

            
Figure 23: Determination of the labeling of 3D vesicle filtering, applying the 3D objects 

(presynaptic) erosion (Figure 19 presynaptic label) 
 

          
Figure 24: Determination of the labeling of 3D vesicle filtering with two thresholds that are 5 
vesicles and 500 pixels, along with 3D objects (presynaptic) erosion. (Figure 20 presynaptic 

label) 
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In the following Figures 25 and 26, the performance of our second modeling part is evaluated. 
The preliminary analysis of this evaluation is based on the comparison between the presynaptic 
areas before applying the first model and after applying the first model. The first model is 
selected from modeling part 1, visualized in Figure 23. 
 

     
Figure 25: Binary images of presynaptic areas before filtering on the left side and after vesicle 

filtering of labeling with threshold 5 and 500 along with 3D objects erosion (best selected 
modeling part 1) on the right side 

 

     
Figure 26: Labeling of binary images of presynaptic areas before filtering on the left side and 
after vesicle filtering of labeling with threshold 5 and 500 along with 3D objects erosion (best 

selected modeling part 1) on the right side 
 
As for the findings of the first model, the criteria of 3D filtering visualized evaluation are based 
on keeping the presynaptic areas based on the vesicle functions that meet the threshold. In the 
visualizations above, Figure 20 is the best model, with the lowest error and the most accurate 
presynaptic site predictions. The significance of our finding is defining other criteria for the 
threshold of our 3D vesicle filtering that used to be 5 vesicles. The threshold of our 3D filtering 
for our best model is 5 vesicles and 500 pixels. The second modeling part demonstrates the 
labels of identified presynaptic sites in the first modeling part. To resolve the errors of Figure 17 
and its label Figure 21, we applied erosion to separate the labels properly. As a result, the erosion 
models visualized in Figure 18 and its label Figure 22, Figure 19 and its label Figure 23, as well 
as Figure 20 and its label Figure 24. As for Figure 18 and its label Figure 22, it can be seen that 
the implementation of vesicle erosion increased the error. As for Figure 19 and its label Figure 
23, it can be seen that the implementation of 3D objects (presynaptic) erosion caused the 
reduction of errors. There are more presynaptic sites that are recognized accurately. As for 
Figure 20 and its label Figure 24, it can be seen the implementation of applying 3D objects 
(presynaptic) erosion along with setting two thresholds for 3D vesicle filtering that are 5 vesicles 
and 500 pixels has the lowest error. This model demonstrates that those labels that have vesicles 
less/above 5 and 500 pixels should be removed/stay and therefore those 3D labels that stay are 
presynaptic sites. As a result, Figure 20 confirms our fourth hypothesis. The fourth model that is 
visualized in Figure 20 will give us the best results. Figure 20 and its label Figure 24 has the 
highest accuracy to define and recognize the 3D presynaptic areas. Figures 25 and 26 evaluated 
our second modeling part through the best-chosen model of modeling part 1, which was the 
combination of 3D objects erosion with the threshold tuning of 5 and 500. The presynaptic areas 
after filtering were less than before filtering, indicating the removal of irrelevant areas. The 
evaluation through these figures also indicated the improvement in the accuracy of presynaptic 
recognition and synapses segmentations. 
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The significance of all these image processing models is each new method is designed to 
improve on the previous step based on the errors, so we can achieve the goal of accurate 
presynaptic recognition. For example, our 2D image processing involves filtering mitochondria, 
membrane, and vesicles to achieve more accurate presynaptic areas and synapses. After the 2D 
vesicle filtering with the tuned threshold approach, we received errors in terms of losing some 
presynaptic areas. These errors were visualized by the stacked overlay figure. This 2D filtering 
influenced the design of 3D image processing to reduce the synapses’ errors and retrieve more 
accurate presynaptic recognition. The 3D model is dissected into different algorithmic steps of 
3D concatenation, 3D labeling, and finally 3D vesicle filtering. 3D labeling aimed to address the 
errors of the dissimilar label locations caused by the dissimilar size of 3D objects, through 
identifying the labels of 3D objects. Therefore, the 3D labeling was designed for more accurate 
3D analyses of 3D vesicle filtering. There were still some errors after applying 3D vesicle 
filtering. These errors are derived from the erroneous connections or non-connections of some 
labels in images, or the overlapping of vesicles in one label that caused our model to not 
recognize the separation of these labels and vesicles. These errors influenced the erosion models 
we designed to improve the accuracy of presynaptic recognition. As a result, different erosion 
models were applied on vesicles, 3D objects, and the combination of vesicles and 3D objects. 
However, there were some errors on the erosion models that influenced our model building to 
tune the statistical thresholds to minimize the errors. After applying different thresholds, the 
erosion models on 3D objects with the tuned thresholds of 5 and 500 vesicles gave us the most 
accurate results. 
 
However, we can still improve the accuracy of our best models so far to further improve the 
accuracy of 3D presynaptic recognition and synapses. In 3D analyses, the mathematical 
equation-based models that formulate the null hypotheses can calculate a more accurate 
statistical threshold based on the biological definition of neurons’ functions. Our next approach 
is to bring mathematical and statistical tools to set more accurate thresholds for the connection 
and separation of labels and vesicles, therefore improving the accuracy. 
 
Flood-Filling Networks Findings 
 
Our hypothesis for FFN is that a custom FFN model trained on membrane segmentations is more 
generalizable at 3D cell segmentation than the provided FFN model trained on the standard FIB-
25 Drosophila optic lobe raw electron microscopy (EM) data. The rationale is that an FFN model 
trained on membrane segmentations is more generic than an FFN model trained on raw EM data 
from fruit flies. Our custom FFN model is less likely to overfit on novel data because it is trained 
on 8-bit grayscale segmentation images of membranes produced by CDense3M’s segmentation 
prediction script. The structure of grayscale membrane segmentations is consistent across all EM 
data. Thus, the FFN membrane model can handle any type of raw EM data that is segmented. 
 
We had to train the provided FFN membrane model for another two million epochs in order to 
obtain a segmentation accuracy comparable to the FFN whitepaper. The provided 6 million 
epoch checkpoint produced poor segmentations, even when running FFN inference on the 
images the FFN was initially trained on. The dark spots indicate that FFN was struggling to find 
seed points to fill. Conflicting colors in a single cell indicate that there was a split error, while 
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cells that are different colors that should be together are considered merge errors. A sequential 
ID cell labeling scheme was used to keep track of merge and split errors across the xyz plane. 

 
Figure 27: FFN inference result from using 6 million epoch checkpoint of FFN membrane model 
 
Retraining the FFN for 2 million more epochs greatly improved the FFN dense segmentations on 
the original FFN training images. Matthias initially trained the model for 6 million epochs in 
UNI-EM, found at https://github.com/urakubo/UNI-EM. UNI-EM is a wrapper that provides an 
GUI for running FFN. But to eliminate a potential source of deviation, the FFN membrane model 
was retrained using the script from the original FFN source code. It took 88 hours of training on 
an AWS g4dn.xlarge EC2 instance to train the model 2 million more epochs. By 8 million 
epochs, the FFN achieves a much better dense segmentation on the training data, as seen below. 

 
Figure 28: FFN inference result from using 8 million epoch checkpoint of FFN membrane model 
 
We continued training the FFN membrane model for another two million epochs to reach ten 
million epochs. However, as seen in the line chart below, the performance of the FFN membrane 
model plateaus after eight million epochs. Since the training metrics for the FFN membrane 
model peak at and do not improve after eight million epochs, we chose the eight million epoch 
checkpoint as the final FFN membrane model to avoid overfitting on the training data. 

 
Figure 29: FFN Membrane Model Training Metrics 
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After confirming the viability of the FFN membrane model on the original training data, the next 
step was to apply the model to a different dataset to see how well it generalizes to new data. We 
used the Nucleus accumbens raw EM data since we already had ground truth labels for that 
dataset. The most important step to boost FFN’s performance is to resize any input data to have 
the same xy dimensions as the training data. Our FFN model was trained on a 1024x1024x100 
voxel image volume, so we took a 1024x1024x100 block of the raw EM data using IMOD. 
 
The FFN membrane model expects membrane segmentations, not raw EM data, as input. 
Therefore, we first had to run the main CDeep3M pipeline to generate the membrane 
segmentations that would be then be used as the input to FFN inference. Fortunately, FFN 
inference is now fully integrated with CDeep3M in the form of the new CDense3M product, so 
CDeep3M and FFN segmentations can run consecutively. Running FFN inference with 
CDense3M is controlled by a boolean flag, since it only makes sense to run FFN when 
CDense3M is performing a membrane segmentation. 
 
We use per-voxel accuracy, precision, recall, F1-score, and Jaccard index to evaluate FFN’s 
performance on the original FFN training and raw EM test datasets. In a binary segmentation 
mask, a segmented voxel is positive and a non-segmented voxel is negative. We scaled the input 
images we used to match the xy dimensions of the training images for the two FFN models. This 
means the membrane model needs 1024x1024 images, and FIB-25 needs 250x250 images. 
 Training Data with 

Membrane Model 
Test Data with 
Membrane Model 

Test Data with 
FIB-25 Model 

Accuracy 0.9078 0.8237 0.6651 
Precision 0.9720 0.9109 0.8737 
Recall 0.9184 0.8262 0.7193 
F1-score 0.9444 0.8665 0.7890 
Jaccard index 0.8947 0.8041 0.6464 

Table 4: FFN models segmentation evaluation metrics 
 
Accuracy is the proportion of voxels that are classified correctly – segmented or not segmented. 
 
Precision measures the fraction of true positives out of all the predicted segmented voxels. This 
is equivalent to the formula: Precision = TP / (TP + FP) = TP/Predicted Positive. We expect high 
precision out of the FFN model for both datasets because the watershed algorithm used by FFN 
will normally lead to an over-segmentation. This means the image is segmented into too many 
regions. FFN only starts flood-filling from seed points that are extremely positive - greater than 
0.95 logits – and then only segments voxels that reach a high probability threshold. Thus, most 
of these segmented voxels predicted by FFN are true positives, leading to FFN’s high precision. 
 
Recall is equal to the true positive rate, or the proportion of true positives over all positives. We 
expect recall to be slightly lower than precision for FFN because FFN by default has a high 
threshold for accepting seed points. With fewer seed points and higher thresholds, positive 
voxels may be missed by FFN’s segmentation. There are tunable parameters that lower these 
thresholds for FFN inference, but lowering these thresholds would also lower the precision. 
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To find a better balance between precision and recall, we calculate the F1-score, also known as 
the Dice coefficient, which is the harmonic mean of precision and recall. 
 
Another value we measured is the Jaccard index, which is the proportion of overlap between the 
predicted and ground truth bounding boxes over their area of union. 
 
As expected, our FFN membrane model is very accurate on its own training data, with most 
scores over 0.9 and a much higher precision than recall. The key finding, however, is that the 
FFN membrane model performs around 10% better than the FIB-25 FFN model on the raw EM 
test data in most metrics listed in Table 4. This supports our hypothesis that the FFN membrane 
model is more generalizable than the FIB-25 model on a variety of raw EM data. 
 
Another finding is that the membrane model takes 16 times longer than the FIB-25 model to 
perform 3D segmentation, with an average duration of 64 minutes versus 4 minutes, respectively. 
One major caveat is that we scaled down our raw EM data image volume from 1024x1024x100 
voxels when running the membrane model to 250x250x100 voxels when running the FIB-25 
model. Resizing the images is required since FFN expects incoming data to have the same width 
and height as its training data. A 1024x1024x100 image stack has around 16.8 times more voxels 
than a 250x250x100 stack, which explains why the membrane model takes 16 times longer to 
finish. Two insights from this analysis are that the FFN membrane and FIB-25 models have a 
similar per-voxel runtime, and that FFN runs in linear time per voxel. 
 
The last finding for FFN is that the quality of the incoming membrane segmentation is positively 
correlated with FFN segmentation accuracy and its other evaluation metrics. CDense3M’s 
membrane model can sometimes generate membrane segmentations that include residual 
mitochondria. The most probable reason for this is that the membrane model is confusing the 
mitochondria with myelin sheaths, since the SBEM, TEM Membranes (50789) model was 
trained on EM data that contained myelin. A flawed membrane segmentation will spill over to 
the FFN, causing the FFN to mistakenly treat mitochondria as membranes and produce a less 
accurate 3D cell segmentation. This discrepancy partially explains how the segmentation 
evaluation metrics for the test data are on average 7% lower than the training data metrics. 
 
Reportable Findings 
 
The audience for these findings is the neuroscience research community. Neuroscientists like 
Daniela and Matthias, as well as the rest of the staff at NCMIR are especially interested in 
validating the findings related to erosion models for 3D labeling and the FFN membrane model. 
 
Therefore, we determined that we would present a comparison between the accuracy 
CDense3M’s and CDeep3M’s synapse segmentations in reporting our findings. Our main 
hypothesis is that CDense3M is more accurate at segmenting synapses than CDeep3M. This 
includes individual hypotheses for each modeling component. The FFN hypothesis is that the 
FFN membrane model is more generalizable than the FIB-25 FFN model. The 3D image 
analyses visualizations prove the null hypothesis that erosion models improve the accuracy of the 
3D labeling of the presynaptic sites. 
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We present reportable evaluation metrics and visualizations that support our findings to help the 
audience quantify and visualize the results. For each finding, we emphasize the potential 
business value in how each finding can positively contribute to the scientific process of 
automated brain segmentation to accelerate the study of neurodegenerative diseases. 
Determining the appropriate amount and level of information to present when reporting our 
findings is key to convincing a diverse audience that our CDense3M solution has satisfied its 
objective, which is improving the accuracy of existing synapse segmentations from CDeep3M. 
 
Techniques and Tools Used to Communicate Results 
 
We ran a controlled experiment to test our hypotheses that erosion models are better for 3D 
labeling and that the FFN membrane model is better than FIB-25. The 3D filtering and 3D 
presynaptic site recognition and visualization code used SciPy, NumPy, scikit-learn, and 
OpenCV. The FFN accuracy evaluation Python script used NumPy to quantify the results for 
each trial run. The FFN visualization Python script used NumPy, H5py, and OpenCV to produce 
an HDF5 stack file and separate flat PNG files of the FFN segmentation. The Fiji distribution of 
ImageJ is provided in the CDense3M Docker image to visualize the FFN segmentation HDF5 or 
PNG files in 3-3-2 RGB color and determine areas that need improvement. 
 
We communicate our results in two primary mediums, a high-level reporting dashboard and 
more detailed log files generated by each stage in CDense3M. The techniques and tools we used 
to communicate our results were selected to increase the accessibility of CDense3M for new 
users, while communicating valuable details to more advanced users without overwhelming new 
users. The reporting dashboard summarizes the findings with charts and images, while the log 
files provide detailed statistics on the cells with the largest contribution to the error and the 
runtime for each step in the pipeline. 
 
Visualization and other Reportable Products of Findings 
 
Visualizations and other reportable products of our findings were added to the project as part of 
this step. Plotly’s Dash framework was used to create a reporting dashboard to visualize the key 
metrics in our results in a single page. 
 

 
Figure 30: CDense3M Reporting Dashboard 
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For 3D labeling, Figures 12-26 are the visualizations for the findings. For FFN, Daniela 
requested a colored overlay of the FFN segmentations with the raw EM data. This is in addition 
to the HDF5 file and colorful segmentation PNGs produced by the CDense3M FFN inference 
script. We used the NumPy arange, vstack, meshgrid, reshape, and transpose functions to create 
a lookup table that colorized the grayscale FFN 3D cell segmentations with up to 65,536 colors. 
The opencv-python and scikit-image libraries were then used to overlay the FFN colored 
segmentations on top of the corresponding raw EM data images. An example is shown below. 

 
Figure 31: FFN colored segmentation overlay on top of raw EM data 

 
 
Solution Architecture, Performance and Evaluation 
 
Easy Deployment 
 
CDense3M’s portability makes it possible to deploy on various platform. AWS is the main 
deployment platform for CDense3M in production. Given our project’s requirements of graphics 
processing units (GPUs) in deep learning for large-scale image segmentation, Amazon’s 
g4dn.xlarge Elastic Compute Cloud (EC2) instance type was the lowest-cost platform available 
that met our needs, with an on-demand price of $0.526/hour. 
 
For development, we use Google Colab for up to 12 hours of free access to GPUs. Colab even 
provides free tensor processing units (TPU), which are optimized for TensorFlow. We added 
TPU support for FFN inference in CDense3M, which was not in the originally upstream FFN 
source code. The Colab notebooks are in https://github.com/haberlmatt/cdeep3m-colab. 
However, Colab’s GPU/TPU has usage limits, so critical CDense3M jobs should run in AWS. 
 
We use an AWS CloudFormation template to automate the creation and provisioning of EC2 
instances that are capable of running CDense3M. The CloudFormation stack is configured to 
launch an EC2 instance with the NVIDIA Deep Learning Amazon Machine Image (AMI). With 
CloudFormation, anyone with an AWS account can set up CDense3M in less than a minute. 

 
Figure 32: CDense3M CloudFormation Stack Creation Page and Resulting EC2 Instance Created 
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CDense3M itself can be run as a Docker container. It is available on Docker Hub at 
https://hub.docker.com/r/ncmir/cdeep3m. Docker containers isolate software applications from 
the host environment. By isolating processes from each other, similar to a sandbox, Docker 
containers avoid polluting the local machine with unwanted or possibly system-breaking 
changes. Docker also ensures developers are operating in a consistent environment. Deploying 
CDense3M with Docker also supports the multitenancy robustness requirement, allowing 
different users to run CDense3M on their own isolated sandbox in the same machine. We mount 
a Docker volume at the /data directory for persisting data generated and used by containers. 
 
CloudFormation along with AMIs ensure users create machines that meet the specifications for 
running CDense3M. Docker completes the installation and configuration of CDense3M in a 
standardized way. AWS and Docker makes CDense3M a robust and scalable solution that 
satisfies the second and third case studies, as deploying CDense3M is consistent and repeatable 
for many machines, and users can run two CDense3M versions in isolation on the same machine. 

 
Figure 33: CDense3M Solution Architecture 

 
Performance 
 
Performance for CDense3M is primarily is measured by two metrics: voxel-wise segmentation 
quality and runtime. For FFN, we one-hot encode each cell ID into a separate 1024x1024x100 
stack. This is equivalent to applying a binary segmentation mask for each cell ID, where 1 means 
the voxel is part of the cell, and 0 means the voxel is not part of the cell. We count the number of 
voxels that are true positives, true negatives, false positives, and false negatives for each cell ID 
using the predicted and ground truth segmentations. Then we take the average value for the five 
standard segmentation quality metrics among all cells. These segmentation quality metrics are 
the most important evaluation criteria for the performance of FFN, but speed is also very 
important. CDense3M must still remain usable even when processing a large volume of data. 
 
CDense3M must also be robust when multiple users are running it on the same machine. In other 
words, CDense3M must support multitenancy. Two concurrently running CDense3M jobs that 
would in combination require more RAM than the machine can provide at one time should not 
cause the system to run out of memory. They also should not clobber each other’s results 
regardless of the order in which the jobs finish. To ensure that CDense3M is fault-tolerant if the 
available RAM is not enough, we add retry logic to have it wait a certain amount of time for 
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RAM to become available before aborting. To guarantee the independence of the results, 
concurrent CDense3M jobs on the same machine must run in isolated environments. 
 
Additionally, we envision multiple people working on different features of CDense3M at any 
given time. These branches of CDense3M, such as the one for flood-filling networks (FFN), 
require installing additional dependencies like TensorFlow 1.x. We want to be able to test 
different versions of CDense3M without interfering with other development efforts. Therefore, 
in order for CDense3M to be fully robust, different versions of CDense3M need to run in 
isolated sandboxes. Docker solves the multitenancy problem for keeping multiple CDense3M 
jobs running at the same time from clobbering each other, and keeping different version of 
CDense3M from clobbering each other. The accuracy of running two CDense3M jobs in Docker 
on the same machine was equal to running them on separate machines. As expected, it took twice 
as long to run the two CDense3M jobs in parallel, so CDense3M runs in linear time. 
 
Scalability 
 
Model scalability is how well CDense3M performs when given bigger or unseen datasets. If the 
available resources remain constant, CDense3M should run in linear time or faster as the input 
data size increases. If we provide CDense3M with additional resources like better or more GPUs, 
CDense3M should be able to process larger amounts of data just as quickly as before. 
 
If we were to double the GPU RAM available by switching from a g4dn.xlarge to a g4dn.2xlarge 
EC2 instance, CDense3M should scale up and complete both jobs in the same amount of time as 
one job, or sooner. Similar logic applies when we double the size of the input images. For 
example, if we decide to use 1024x1024 pixel images instead of 750x750 pixels, each image will 
have almost double the number of pixels, so we would expect CDense3M to take twice as long. 
 
When we doubled the GPU RAM to 32GB, CDense3M completed the two parallel tasks in 40 
minutes, faster than the 1 hour it would take to complete a single task on the 16GB RAM GPU. 
FFN inference for the 1024x1024 images took 1.5 times longer compared to the 750x750 
images. This means CDense3M’s code is somewhat optimized to take advantage of additional 
GPU RAM, most likely via a combination of parallelism and increased batch sizes, so 
CDense3M is scalable. Benchmark testing was performed on AWS g4dn.xlarge or g4dn.2xlarge 
EC2 instances and the FFN model’s scalability was evaluated using voxels segmented/minute. 
 
Budget 
 
We spent $238 in AWS cloud computing costs, which was paid for by NCMIR’s operating 
budget. This cost is exclusively from testing FFN inference and integrating it into CDense3M, 
since the deep neural networks for these models require GPUs. About two-thirds of the total cost 
was from several attempts to retrain the FFN membrane model to obtain better performance on 
the FFN training images. The rest of the cost was performing hyperparameter tuning for FFN 
inference early on and testing its full integration with the original CDeep3M prediction script. It 
took approximately a week to train the original six million epoch FFN membrane model 
checkpoint for another four million epochs to reach ten million epochs. 
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We managed our budget by moving FFN inference tasks to Google Colab, starting in mid-April, 
to take advantage of the 12 hours of free GPU at a time. 12 hours is enough time for ten runs of 
FFN inference, so we significantly reduced our cloud costs by cutting our AWS usage in half. 
We also turned off our EC2 instances as soon as we completed our work for the day to eliminate 
unnecessary on-demand EC2 instance usage costs. 
 
 
Conclusions 
 
The developed solution of CDense3M, or CDeep3M extended with 3D image analyses and FFN, 
would align with the scientific process of improving the accuracy of the predicted segmentation 
of synapses. The purpose of CDense3M is to improve upon CDeep3M’s performance on the 
dense segmentation of synaptic densities. We integrated our models into CDeep3M’s automated 
workflow, and maintained its programmability, scalability, and ability to deploy to multiple 
platforms such as AWS and Colab. CDense3M will save scientists considerable amounts of time, 
since more accurate synapse segmentations are a step closer to the automated extraction of 
connectomes, which currently requires long hours of manual proofreading and editing. 
 
We incorporate biological knowledge with all our models to improve the segmentation accuracy 
of synapses. We apply 3D image processing to prevent the loss of presynaptic areas during 2D 
vesicle filtering. The 2D vesicle filtering considers each 3D objects individually in each image, 
while the 3D processing links the 3D objects throughout the images. As a result, the 2D grown 
vesicles and the method of 2D vesicle filtering are not applicable in 3D image processing. Also, 
we are able to prove that each new step of image processing is relevant to the previous step. The 
significance of all these image processing models is each new method is designed to improve 
upon the errors from the previous step, which will increase the accuracy of presynaptic 
recognition. For example, our 2D image processing involves filtering mitochondria, membranes, 
and vesicles to achieve more accurate presynaptic areas and synapses. After the 2D vesicle 
filtering with the tuned threshold approach, we received errors in terms of losing some 
presynaptic areas, visualized in different figures. This 2D filtering influences the design of 3D 
image processing to reduce the synapses’ errors and retrieve more accurate presynaptic 
recognition. The 3D model is dissected into the methods of 3D concatenation, 3D labeling and 
3D vesicle filtering. These methods in 3D image processing are not applicable in 2D image 
processing. 3D labeling aims to address the errors of the dissimilar label locations caused by the 
dissimilar size of 3D objects, through identifying the labels of 3D objects. Therefore, the 3D 
labeling is designed for more accurate 3D analyses of 3D vesicle filtering. There are still some 
errors after applying 3D vesicle filtering. These errors are derived from the erroneous 
connections or non-connections of some labels in images, or the overlapping of vesicles in one 
label that caused our model to not recognize the separation of these labels and vesicles. These 
errors influence the erosion models we designed to improve the accuracy of presynaptic 
recognition. As a result, different erosion models are applied on vesicles, 3D objects, and the 
combination of vesicles and 3D objects. However, there are some errors on the erosion models 
that influence our model building to tune the statistical thresholds to minimize the errors. After 
applying different thresholds, the erosion models on 3D objects with the tuned thresholds of 5 
and 500 vesicles give us the most accurate results. 
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Currently, automated synapse segmentations predictions on SBEM datasets are relatively 
inaccurate. CDense3M improves the voxel-wise classification accuracy of synapse 
segmentations by 10% compared to the baseline CDeep3M synapse segmentation. However, we 
can still improve the accuracy of our best models so far to further improve the accuracy of 3D 
presynaptic recognition and synapses. In 3D analyses, the mathematical equation-based models 
that formulate the null hypotheses can calculate a more accurate statistical threshold based on the 
biological definition of neurons’ functions. Our next approach is to bring mathematical and 
statistical tools to set more accurate thresholds for the connection and separation of labels and 
vesicles, therefore improving the accuracy. For the FFN membrane model, we will optimize its 
performance on very large images by cropping the images to handle memory constraints. We 
will also develop data preprocessing methods to clean the input membrane segmentations to 
ensure cleaner cell-body segmentations. Implementing these improvements for both 3D analyses 
and FFN will lead to an even greater increase in the accuracy of synapse segmentations. 
 
By providing accurate and automated segmentations of synapses, CDense3M will help 
researchers study neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease more 
efficiently. Our hope is that CDense3M will help researchers make a breakthrough sooner in the 
search of better treatment options or even a cure for these neurodegenerative diseases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 34 

References 
 

1. Haberl, M.G., Churas, C., Tindall, L. et al. CDeep3M—Plug-and-Play cloud-based deep 
learning for image segmentation. Nat Methods 15, 677–680 (2018). 
https://doi.org/10.1038/s41592-018-0106-z 

 
2. Januszewski, M., Kornfeld, J., Li, P.H. et al. High-precision automated reconstruction of 

neurons with flood-filling networks. Nat Methods 15, 605–610 (2018). 
https://doi.org/10.1038/s41592-018-0049-4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 35 

Appendices 
 
 
DSE MAS Knowledge Applied to the Project 
 
We made heavy use of NumPy, which was taught in DSE 200. The FFN 3D convolutional neural 
network was implemented in TensorFlow, which we learned in DSE 220 and DSE 230. The 
linear algebra we used in the image processing scripts for our exploratory data analysis and 3D 
image analyses was covered in DSE 210. We created our reporting dashboard in Plotly Dash and 
applied knowledge of effective and expressive visualization principles from DSE 241 to the 
project. Last but not least, the project management skills and data science process we learned in 
DSE 260A and DSE260B were essential to completing this capstone project. 
 
Link to the Library Archive for Reproducibility 
 
https://doi.org/10.6075/J0QJ7FT8 
 


