
 1

Neuronal Circuit and Synapse Analysis with Deep Neural Networks

Advisors: Dr. Daniela Boassa, Dr. Matthias Haberl
Team Members: Faezeh Ghazi, Jason Kha

Abstract

Biomedical image segmentation has led to numerous breakthroughs in neuroscience research by
helping scientists map the brain. Brain mapping could be the key to understanding the
progression of neurodegenerative diseases. Currently, the most accurate neural segmentations
and synapse detections are annotated manually. However, manual annotation of synapses is
unsustainable given the very large size of electron microscopy datasets of the brain. Deep
learning tools such as CDeep3M can produce automated synapse segmentations on serial block-
face scanning electron microscopy (SBEM), but the segmentations are relatively inaccurate. This
is due to the numerous barriers including the inherent heterogeneity of neurons and their
synapses and the limited tools for assessing and analyzing ultrastructure in molecularly defined
synapses. Our developed solution for improving the automated segmentations of synapses,
known as CDense3M, could help neuroscientists discover new insights in neurodegenerative
diseases such as Alzheimer’s and Parkinson’s disease. We implement and apply two different
modeling components to perform 3D segmentations and labeling to improve the accuracy of
synaptic density segmentations. The first modeling component creates different algorithms for
3D concatenation, labeling, and filtering. As for 3D filtering, we also implement multiple models
that use erosion and determine the statistical thresholds for 3D vesicle filtering on 3D objects. In
each step of our 3D modeling, the new data is based off of previous modeling and as a result the
data in each step of modeling becomes the new data for the next step. The evaluation for our
image processing including 3D labeling and 2D and 3D vesicle filtering models is through the
visualization and using the biological behavior of known neuronal structures. This improves the
accuracy of defining the presynaptic areas based on the vesicle functions. The second modeling
component applies flood-filling networks, a class of 3D convolutional neural networks, to
perform cell-body segmentation on a 3D image volume. We train a custom flood-filling network
model on membrane segmentations produced by the CDeep3M automated segmentation tool.
The membrane model is more generalizable at segmenting cell bodies than the standard FIB-25
model trained on raw electron microscopy data from fruit flies. The improvement in the accuracy
of presynaptic area recognition from applying both modeling components results in a 10%
increase in precision and recall for the voxel-wise classification of synapses in a 3D image
volume of the Nucleus accumbens from lab mice.

Introduction and Question Formulation

Challenge

Electron microscopy datasets of the brain are very large, on the scale of 75 million neurons for a
mouse brain and 86 billion neurons for the human brain. Even the brain of a fruit fly, with just
100,000 neurons, requires 100 TB of image data. Identifying organelles from these 3D image

 2

volumes is quite labor-intensive. For example, the manual segmentation of all mitochondria in
one mouse brain would require 24/7 work for one year by 2.7 million scientists.

Manual segmentation of 3D image volumes of the brain is not a viable long-term approach.
CDeep3M is a deep learning software toolkit that automates the image segmentation of a variety
of organelles in 3D light, electron, and X-ray microscopy. Currently, the segmentations for
membranes, mitochondria, and synaptic vesicles are fairly accurate, but the segmentations for
synapses still require considerable improvement.

There are hundreds to thousands of small objects in each presynaptic terminal, also known as
vesicle clouds, some with sharply delineated membranes and others with much blurrier edges,
spanning between one to a few sections. This combination makes it a particularly difficult task
for human and computer segmentation to identify individual synapses.

Ingredients of Data Science Problem

Our data science problem is that the current CDeep3M neural network model trained on synapses
from serial block-face scanning electron microscopy (SBEM) predicts too many false positives.

We identify these synapses as false positives based on biological knowledge. For most of these
false positives, we can categorize them into the following groups based on the biological
principle that is violated:

• Synapses erroneously overlapping with mitochondria
• Synapses that do not overlap enough with a membrane
• Synapses that do not have vesicles on one side

The goal of this capstone project, Neuronal Circuit and Synapse Analysis with Deep Neural
Networks, is to increase the accuracy of the automated segmentation of synapses. We extend the
existing CDeep3M framework by adding two new modeling approaches that leverage 3D image
analyses and deep learning to achieve higher accuracy on the automated dense segmentation of
synapses. Hence, we have given our developed solution the name CDense3M.

Given the relationship between synapses and these three other organelles, we can use knowledge
from the segmentations of these three organelles to improve the segmentation of the synapses via
image processing. However, thresholding alone will not increase the accuracy of the synapse
segmentation enough to be considered acceptable. In turn, we explore 3D vesicle filtering and
3D labeling of the presynaptic sites. In parallel, we use flood-filling networks (FFN), a 3D
convolutional neural network, to perform automated neuronal tracing as a possible approach to
improve the 3D labeling algorithm. Accurately labeling 3D presynaptic areas is the key to
significantly improving the segmentation of the synapses.

The ingredients that form our data science problem are the raw SBEM data of brain tissue from
lab mice, the resulting segmentations produced by CDeep3M, the image processing techniques
used to slightly improve the synapse segmentation accuracy, and the more complex 3D instance
label segmentation algorithms used to significantly improve the synapse segmentation accuracy.

 3

Questions

1. How can we use biological knowledge to improve the segmentation accuracy of
synapses?

2. Why is thresholding and filtering not enough to increase the accuracy of the synapse
segmentation?

3. Why do we apply 3D image processing?
4. What are the fundamental differences of 2D and 3D algorithms and what techniques and

tools are applied in 2D, but not 3D, and vice versa?
5. How is the data and model in the next step of image processing related to the previous

step?
6. How do we evaluate our image processing models?
7. Which features should we use in 3D image analyses to more accurately label the 3D

presynaptic areas?
8. What tuned statistical thresholds can be used to improve the accuracy of presynaptic

recognition and in which model?
9. What morphological image processing operations (erosion, dilation) are needed to further

improve 3D presynaptic area recognition?
10. Can transfer learning be applied to improve synapse segmentation accuracy by using a

pre-trained FFN model on membrane segmentations to segment and trace neurons?
11. Which data preprocessing steps need to be taken to ensure optimal FFN performance?
12. How should we integrate 3D filtering and FFN into CDeep3M?
13. How do we improve the scalability and usability of our models?

Related Work

CDeep3M is the existing tool that our project is attempting to improve with our developed
solution called CDense3M. CDeep3M—Plug-and-Play cloud-based deep learning for image
segmentation by Haberl et al. is the original publication on CDeep3M. Our advisor Matthias is
the lead author, and our advisor Daniela is a co-author. This paper describes the automated
image segmentation workflow provided by CDeep3M.

There are three main reasons why we consider CDeep3M state-of-the-art. The first reason is the
generalized applicability of CDeep3M on a variety of image segmentation tasks, such as cellular
organelle segmentation and cell counting and classification. The second reason is that CDeep3M
deep neural network models outperform existing models in the field such as three-class
Conditional Random Field and Ilastik. For some datasets, the segmentation accuracy of
CDeep3M is equal to the accuracy of human expert annotators, according to the consensus
ground truth labels. The third reason is CDeep3M’s application of transfer learning, specifically
domain adaption, to speed up training. The paper describes how CDeep3M successfully retrained
a convolutional neural network trained on scanning electron microscope (SEM) to fully adapt the
network to an SBEM dataset. This shows that adaption of pre-trained models can reduce the
effort and time required for training by up to 90%. Our capstone project intends to build on
CDeep3M to improve its performance in the dense segmentation of synaptic densities.

 4

High-precision automated reconstruction of neurons with flood-filling networks by Januszewski
et al. is the original publication on flood-filling networks. FFN is a 3D convolutional neural
network that contains in addition a recurrent pathway that allows the iterative optimization and
extension of individual neuronal processes. It has outperformed other automated segmentation
approaches on FIB-25, a public dataset of Drosophila optic lobe electron microscopy. This
capstone project uses a different FFN model that Matthias trained on membrane segmentations
instead of FIB-25 to increase the generalizability of FFN on different types of electron
microscopy data besides FIB-25.

Team Roles and Responsibilities

Faezeh Ghazi is the project manager.

Jason Kha is the budget manager and record keeper.

Faezeh worked on the image processing. She used data modeling in 2D image analyses and their
binaries to create the data for 3D image analyses. She wrote different algorithms to break down
the 3D image processing into different steps of 3D labeling, 3D concatenation, and 3D vesicle
filtering. She dedicated a large amount of time to the 3D color labeling visualizations of the
presynaptic sites. Faezeh also implemented erosion models to further improve the accuracy of
3D presynaptic area recognition and ran several combinations of her models to test her
hypotheses. She iterated through the scientific method several times to find that 3D presynaptic
object erosion combined with a specific 3D vesicle filtering threshold. These strategies led to
more accurate presynaptic area labeling, which improves the accuracy of synapse segmentations.
Faezeh documented her findings very thoroughly in the step reports and presentations. In these
documented reports, she explained her progression and thought process of how she refined the
3D filtering and labeling models to improve their performance.

Jason worked on the FFN approach to improve the accuracy of synapse segmentations. Jason got
the FFN membrane model to segment well on its own training data by retraining the model for
another two million epochs. Afterwards, he implemented image preprocessing techniques to help
the FFN membrane model segment a test image volume more accurately than the baseline FIB-
25 FFN model, proving that the FFN membrane model is more generalizable than the FIB-25
model. Jason fully integrated FFN into the original CDeep3M data pipeline and added FFN color
overlays on the raw EM data. He also was responsible for designing the project’s solution
architecture. He successfully deployed his pipeline in both AWS inside a Docker container, and
in Google Colaboratory (Colab) as a Jupyter notebook.

Data Acquisition

Data Sources

Our data consists entirely of electron microscopy images of brain tissue. The only training data
we use is a set of 100 images of cleaned CDense3M membrane segmentations, along with their
corresponding ground truth labels. This dataset is used for training our custom FFN membrane

 5

model to perform cell-body segmentation. The original FFN training data is the only training
data we need because we had to retrain the FFN membrane model to improve its performance.
All of our other modeling work consists of performing image processing on segmentations
outputted by CDense3M. The existing CDense3M models we use to segment membranes,
mitochondria, and synaptic vesicles are already pre-trained, minimizing the need for additional
training data. Accessing data from a variety of sources using different technologies helps us
solve the questions we identified by adding another dataset that could potentially support our
hypotheses. Data variety may also help us discover new findings related to the different sources
and technologies used to collect the data, which will make our answers to the questions more
generally applicable. The table for our training datasets is below.

Name Volume Variety Velocity Location
FFN Training
Images (Membrane
Segmentations)

100
1024x1024
pixel images
(44.3 MB)

PNG,
grayscale 8-
bit image
(uint8)

N/A https://drive.google.com/
drive/folders/1D-
WzDtsh1uZwJ7sqL4_W
wpU-iC1Mb6wk

FFN Ground Truth
Cell Body
Segmentation Labels

100
1024x1024
pixel images
(4.1 MB)

PNG, color
64-bit image
(int64)

N/A https://drive.google.com/
drive/folders/1EfFlA0qfT
QqymTnLGOnMd8AyJR
gXychJ

Table 1: Training Data

We used two validation datasets to tune our models. The first dataset is from the Nucleus
accumbens region in the brain of C57BL/6NHsd mice, a common strain of lab mice. We use this
dataset to tune both the 3D filtering and labeling algorithms and FFN. The second dataset is the
FIB-25 dataset of optic lobe electron microscopy of Drosophila, more commonly known as fruit
flies. FIB-25 is used to tune the FFN. Both datasets are quite large in size in their original form,
so we cropped a subset of the 3D image volume when developing our models.

Name Volume Variety Velocity Location
Nucleus accumbens
Validation Images

100
1024x1024
pixel images
(105.3 MB)

TIFF,
grayscale 8-
bit image
(uint8)

N/A https://drive.google.com/
drive/folders/1GmfrqFrK
dTQZNqwC_y2Ua2d514
LbpnAZ

Nucleus accumbens
FFN Validation
Ground Truth Cell
Body Segmentation
Labels

100
1024x1024
pixel images
(4.8 MB)

PNG, color
64-bit image
(int64)

N/A https://drive.google.com/
drive/folders/1rxxQxB6d
ClJauiOjzSYXAp0G9xH
U2oif

Nucleus accumbens
Validation Ground
Truth Synapse
Segmentation Labels

100
1024x1024
pixel images
(3.3 MB)

PNG,
grayscale 8-
bit image
(uint8)

N/A https://drive.google.com/
drive/folders/1vgUUgWi
WGRnfNhpBm8XMgoM
TKOtk6H4j

FIB-25 Validation
Images

250 PNG,
grayscale 8-

N/A https://drive.google.com/
drive/folders/1RtFD5R4e

 6

250x250
pixel images
(18.5 MB)

bit image
(uint8)

FyI3ijZoahx3dph2BaNxa
KI3

FIB-25 FFN Ground
Truth Cell Body
Segmentation Labels

250
250x250
pixel images
(0.9 MB)

PNG, color
64-bit image
(int64)

N/A https://drive.google.com/
drive/folders/1gI1aX336
kFDkP9V3ugcgaj-
7ZFzhFfzF

Table 2: Validation Data

Our test data is a different cropped subset of the Nucleus accumbens image volume. This is used
to evaluate the accuracy of FFN segmentation and 3D synaptic area labeling.

Name Volume Variety Velocity Location
Nucleus accumbens
Test Images

100
1024x1024
pixel images
(105.3 MB)

TIFF,
grayscale 8-
bit image
(uint8)

N/A https://drive.google.com/
drive/folders/1pmr2WA4
oIaVgkf27C9awRCnSpH
f0k9Dd

Nucleus accumbens
FFN Test Ground
Truth Cell Body
Segmentation Labels

100
1024x1024
pixel images
(4.8 MB)

PNG, color
64-bit image
(int64)

N/A https://drive.google.com/
drive/folders/1O0iu32wE
jupx50Ep0N_Q3GftVL7l
yN9s

Nucleus accumbens
Test Ground Truth
Synapse
Segmentation Labels

100
1024x1024
pixel images
(3.3 MB)

PNG,
grayscale 8-
bit image
(uint8)

N/A https://drive.google.com/
drive/folders/1q6L7rU7y
IPNKiGymSyn04LDtOU
VGz5ej

Table 3: Test Data

Data Collection

The size of the full Nucleus accumbens image volume that we used is 121 GB. However, using
the full Nucleus accumbens dataset would be infeasible for our computationally expensive deep
learning models, so we took a 1024x1024x100 voxel slice that is 105.3 MB. The size of the full
FIB-25 dataset is 100 GB and we use a 250x250x250 sample of that, which is 19 MB.

The raw training data comes from SBEM microscopy data of C57BL/6NHsd laboratory mice
brain tissue. SBEM was performed using a Merlin SEM (Zeiss) with a Gatan 3View system at
high vacuum. SBEM constructs high resolution 3D images of tissues by repeatedly using an
ultramicrotome knife to cut a thin section from a block face and then imaging the next layer.

 7

Figure 1: SBEM Data Collection Process

Data Pipelines

Our data pipeline, also known as CDense3M, can be divided into three sequential stages. The
first and leftmost diagram is the original CDeep3M pipeline. The middle diagram is FFN
inference. The rightmost diagram is 3D vesicle filtering and 3D presynaptic site labeling.

Figure 2: CDense3M Data Pipeline

The CDeep3M data pipeline takes two data sources as input: 2D images slices and image labels
as training data, and a whole 3D image volume to predict. It performs data augmentation on
both, and then segmentation on the test volume and training in parallel. Once both processes are
complete, it uses the ensemble of up to three trained models to predict the segmented test
volume. For the neural network models, 1fm or one frame is a 2D model, whereas the 3fm and
5fm are 3D models. The 3fm model uses 3 frames and the 5fm model uses 5 frames for each
predicted image depth-wise by a constant z-step size. Finally, the slices are de-augmented and
merged back together to form the segmentation layer predictions for the test volume. For our
capstone project, we only used CDeep3M pre-trained models specific to membranes,
mitochondria, vesicles, and synapses. Since there is no need for training data, we only need to
provide the 3D image volume test dataset of the raw EM images as a folder of TIFF files.

 8

The diagram in the middle represents the FFN inference pipeline, which can only take membrane
segmentations as input, and outputs 3D cell labeled segmentations.

The diagram on the right is the 3D image analyses pipeline, which takes the FFN cell
segmentation output and synaptic vesicle segmentations from CDeep3M as input, and outputs
the presynaptic site and synapse labels.

Data Environment Setup

CDeep3M and FFN are typically run in the cloud because they consist of neural networks, which
are so computationally intensive that they require graphics processing units (GPUs) to be usable
for most deep learning tasks. However, the 3D image analysis was done locally. All our data is in
flat files because the data only consists of image. It does not make sense to insert images into a
database. 3D image volumes are either stored as a folder of its 2D image slices and labels in
TIFF format, or an HDF5 file that contains the entire 3D image stack.

Data Preparation

Data Quality Issues

The quality issues with the datasets are relatively minor. Some image stacks have noise along the
edges that confused CDense3M when it made its predicted segmentations. A voxel exclusion
cropping zone around the edges is used in order to compensate for inaccuracies of human
annotations along the borders of objects. This zone is usually one or two voxels wide.
CDense3M membrane segmentations tend to include stray myelin sheaths and membrane holes.
We use a membrane completion network, which is a CDense3M pre-trained model, to clean up
stray myelin and fill in the membrane holes in the membrane segmentations before running FFN
inference.

Data Transformation and Integration

We use the IMOD software to crop out a smaller portion of the 3D image volume to work with,
while maintaining an accurate 3D reconstruction and modeling of microscopy images.

The data formats we work with are listed and described below:

• DM4
o Data format for raw electron microscopy data

• MRC
o Data stack
o Can be read or opened partially
o No compression
o Can only be opened with molecular microscopy specific software like IMOD

• TIFF
o Usually individual files, but can also store multiple images in one TIFF
o Usually uncompressed

 9

o Slower data transfer
o Quick to read, since no decompression required

• PNG
o Strictly single-image format
o Lossless compression
o Fast data transfer
o Slower to read for large files, since it requires decompression

• HDF5
o Made for big data
o Supports n-dimensional datasets
o Each element in the dataset may itself be a complex object
o Can have multiple containers (folder structure)

Raw electron microscopy data for the Nucleus accumbens are stored in DM4 files. These DM4
files are then transformed into an MRC stack with the IMOD dm2mrc command. The Nucleus
accumebens bin-2 MRC aligned stack file is still 17 GB with 16606x10438x403 voxels. It would
be impractical to run deep learning algorithms on a 17GB image volume, so we use the IMOD
trimvol command to extracts a subset of the volume as a new MRC stack file.

The validation and test images for the Nucleus accumbens data were created using the trimvol
command to extract two different 1024x1024x100 voxel stacks, which are a much more
reasonable 40 MB. These smaller volumes are then converted into 100 separate TIFF files for
each image slice depth-wise using the IMOD mrc2tif command. Although IMOD can also
convert MRC files to PNG, we use TIFF files because they can be read faster than PNG files.

Next, the CDense3M segmentation prediction command segments a specified organelle, which is
determined by the CDense3M model used, in all TIFF or PNG images of the raw data in a
defined input folder. CDense3M then produces grayscale 8-bit organelle segmentations as PNG
files.

FFN inference expects its input 3D image volume to be an HDF5 file. Thus, the PNG membrane
segmentations outputted by CDense3M must be converted to a single HDF5 file. This is done
automatically using a Python script. FFN inference saves its predicted 3D cell segmentations
both as an HDF5 file and as separate PNGs. The 3D image analyses algorithms work directly on
the PNG segmentations of cell bodies predicted by FFN and of vesicles predicted by CDense3M.

Figure 3: Data Transformation Process

Data Preprocessing

 10

The significance of the pre-processing methods we used in our project is that simple image
processing techniques can result in a nontrivial increase in segmentation accuracy. CDense3M
includes a Python script that enhances the stack of raw EM data images before predicting the
segmentations on it. The image enhancement data preprocessing script removes extreme outlier
pixels and denoises each image using the scikit-image, OpenCV, SciPy, and NumPy.

Data preprocessing methods require to integrate both 3D image processing and FFN inference
with the existing CDeep3M pipeline. For 3D image analyses, new data is based on previous data.
In other words, the 3D image analysis is a sequential model, where the output of the previous
model becomes the input of the next model. For example, the results of 2D image analyses with
the positive and negative controls of mitochondria and membranes for synapses became the data
for the analyses of the next step of 2D vesicle filtering. The data from 2D image analyses became
the new data for 3D image processing. Also, in 3D image analyses, the data from each step of 3D
modeling became the data foundation for the next step. For instance, the data from 3D modeling
and concatenation became the data for the 3D vesicle filtering and erosion models to identify and
recognize synapses based on the vesicle functions. Since each data output is the input of the next
step, it is crucial to provide accurate data initially. This evaluation through visualization and
biological interpretation supports the determination of any quality issues in our modeling in
which its output of visualization becomes the new data. Every step of data modeling requires
different Python scripts to do the model evaluation and provide the data for the next step.

Data preprocessing methods were also required to integrate FFN inference with the existing
CDeep3M pipeline. We had to write a custom Python script to convert the CDeep3M membrane
segmentations, which are separate PNG images for each image slice, into a single HDF5 stack in
order to link the existing CDeep3M workflow with FFN. This required inserting our Python
script into the pipeline right after CDeep3M produces PNGs containing the ensembled
membrane segmentations, but before calling FFN inference. The NumPy and H5py packages
were used to convert a series of PNG files into one HDF5 file.

Feature Selection

We selected and managed features based on the data type of the images being used. However, in
this capstone project, we only work directly with the pixel values of any given image. As for the
image analyses, feature selection depends on evaluation of the models derived from the
visualization as well as neurological interpretation. For example, 3D labeling identified those
labels under the same identifiers for the 3D concatenation. Also, the erosion models applied on
3D objects of labels and vesicles underline those labels that are presynaptic. FFN does also look
at the contour lines as a feature in its watershed flood-filling algorithm, but we did not interact
directly with the contour lines when running FFN inference.

The raw EM data TIFF files that are to be segmented by CDense3M are typically 8-bit unsigned
integer grayscale images (CDense3M segmentations are always 8-bit unsigned integer (uint8)
grayscale images, whose pixel values range from 0 to 255, inclusive. Out of the box, FFN
inference outputs its cell-body segmentations as npz files, which are NumPy arrays compressed
using gzip. After unzipping the npz file, we save the NumPy array with the float64 data type to

 11

support segmentations with a large range of pixel values and avoid clipping at too low of a
maximum pixel value, which distorts the segmentation. In addition, the Fiji ImageJ software
does not support uint32 or uint64 images, so we had to use float64 to gain additional precision.

One could consider each individual pixel value in an image to be a separate feature, so a
1024x1024 pixel image would have 1,048,576 features, and a 1024x1024x100 voxel image
volume would have 104,857,600 features. All three components of CDense3M consider each
pixel value as a feature, which are used by the models to segment and label the input images.

Analysis Methods

Preliminary Analysis Method Identification, Significance, and Influence

For exploratory data analysis, we used CDeep3M to generate segmentations on the same Nucleus
accumbens 3D image volume for four different organelles: membranes, mitochondria, synapses,
and synaptic vesicles. Our first task was to overlay these four segmentations on top of an
enhanced version of the raw EM data, with each organelle color-coded in a different color.

Predicted segmentations were generated by submitting 20 1024x1024 pixel images of the
Nucleus accumbens data to the CDeep3M-Preview web interface, which runs on the Nautilus
Pacific Research Platform (PRP) cluster. As CDeep3M can only recognize one organelle at a
time, we had to repeat this process four times by selecting each organelle-specific model in order
to generate each organelle-specific segmentation.

The stacked multi-color overlays with the four organelles distinguish each object with
contrasting colors, which helps determine where the models are making conflicting predictions.
For example, CDeep3M often predicts the presence of synapses when the structure is actually a
mitochondrion. This preliminary analysis of visualizing multiple segmentations with colored
overlays on a single image helps us identify current weaknesses in CDeep3M’s algorithms. Our
advisors identified this preliminary analysis method as a good introductory task to familiarize
ourselves with the data and the core of our data science problem. By color coding each cell
structure with a different color, it is be much easier to recognize errors visually. The significance
of using this stacked colored overlay method is that it provides a clear picture of our starting
point of synapse segmentation accuracy with CDeep3M alone, revealing both its strengths and
weaknesses in its segmentations. Moreover, this analytical method is used at the end of the
project to visually determine whether our models did result in an improvement for synapse
segmentations, and where our models could still improve further.

 12

Figure 4: Stacked Overlay of Four Cell Structures in Mouse Brain Tissue

The structures outlined in red are membranes. The structures outlined in green are mitochondria.
The structures outlined in blue are synapses. The structures outlined in yellow are vesicles.

Based on the multicolor stacked overlay of the test image above, the segmentations for
mitochondria and membranes are excellent. The segmentations for synaptic vesicles are good.
However, the segmentations for synapses are poor, with many false positives and erroneous
overlap with other organelles, especially mitochondria. Exploratory data analysis shows there is
a problem at the segmentation of synapses produced by CDeep3M’s models erroneously
overlapping with mitochondria and not overlapping with the membranes.

Our minimum viable modeling product (MVMP) attempted to correct problems identified in our
EDA. It involves using the corresponding segmentations of mitochondria as a negative control
filter and corresponding segmentations of membranes and vesicles as a positive control filter
against the segmentations of the synapses, to ensure that the segmentations of the synapses do
not appear where mitochondria are located, and only appear if the synapse is near a membrane.

This exploratory data analysis and the MVMP influenced the design of the next steps of the
project in that based on the results of applying our MVMP to the data, we each focused on one
modeling approach to further improve the segmentation of synapses. These analysis methods
also define our data science questions further in that we address weaknesses in the current
CDeep3M synapse model with more sophisticated techniques.

Involvement in Applying Analysis Techniques

The first analysis technique leverages the biological knowledge that synapses that have no
vesicles on one side should be removed.

A presynaptic neuron communicates by releasing neurotransmitter chemicals, which then move
across the synapse to be detected by and bind with receptors in the postsynaptic neuron. These
neurotransmitters are present within synaptic vesicles clustered at presynaptic terminals. If the
vesicles are not there, the signals cannot get through and the two neurons will not be able to
communicate. Therefore, all synapses must be near synaptic vesicles.

 13

Figure 5: Synapse Structure

The 3D vesicle filtering algorithm uses presynaptic sites to filter synapses, as every synapse
should be touching a presynaptic site. It assigns the membrane as the boundary of the presynaptic
site and grows the vesicle area until it reaches the membrane using image dilation techniques.
The algorithm removes synapses that have less than 80% overlap with the membranes. For
synapses that are 100% within the membrane, they are assigned to the nearest labeled
presynaptic sites. Then those synapses that are completely on the membrane will be in the same
area as vesicle when we grow the vesicles.

The second analysis technique assigns the cell identities in 3D using flood-filling networks
(FFN), which are 3D convolutional neural networks designed for the instance segmentation of
3D image volumes. FFN is implemented in TensorFlow and provides scripts for both training
and inference. We use a custom FFN trained model trained on the membrane segmentations from
CDense3M to perform cell-body segmentation. Initially, we believed that we would only need to
run FFN inference, but it ended up that we also had to retrain the custom FFN membrane model
for another two million epochs to obtain high-quality results, even on the training data.

In the flood-filling algorithm, the membranes serve as the watershed lines. Neighboring pixels of
each flood marker are inserted into a priority queue based on the gradient magnitude of the pixel.
Each pixel is assigned the label of its marked neighbors when removed from the queue, and all
non-marked neighbors are placed on the queue. This process repeats until the queue is empty.
After all pixels are labeled, FFN inference is done with its cell-body segmentations.

Using the cell boundaries predicted by FFN, we can identify the presynaptic neurons using 3D
image analyses techniques described later on. We use the Fiji ImageJ tool to apply a 3-3-2 RGB
image lookup table to add color to the FFN segmentations, which gives us a clear picture of how
well FFN inference is performing. The only involvement in applying the FFN inference analysis
technique to our data is configuring a Protobuf file with model parameters and data locations,
and executing a Python script to run FFN inference and perform the cell-body segmentation.

 14

Figure 6: Cell Identities Assigned by Flood-Filling Network

Basic Analysis Techniques

Our first cut at a solution, or MVMP, involved erasing synapse segmentations that either overlap
with mitochondria or do not overlap with membranes. This is a basic analysis technique because
it can be implemented in a simple Python script, using standard data science libraries such as
NumPy and Pillow. We used the MVMP as a basic analysis technique because our exploratory
data analysis and biological principles both indicated that the MVMP would be a simple model
that could eliminate the most conspicuous synapse segmentation errors.

Our MVMP led to a 2% increase in validation voxel-wise accuracy of synapse segmentations
compared to the unfiltered model. However, even with our thresholding and filtering MVMP,
synapse segmentations are still not accurate enough. There are too many false positives.
Synapses should only be adjacent to presynaptic cells, which must contain synaptic vesicles in
order to facilitate the transmission of neurotransmitters from the presynaptic neuron to the
postsynaptic neuron. The results from applying our MVMP led us to implement and apply our
two more advanced models – 3D image analyses and FFN.

After mitochondria and membrane filtering, the aim of reducing the presynaptic recognition and
synapses errors influenced the design of the 2D vesicle filtering method. The data from the
previous filtering step is our new data for this. We use the remaining synapses, derived from the
negative control of mitochondria and positive control of vesicles. This 2D vesicle filtering
method leverages biological knowledge and eliminate the remaining synapses that have less than
a certain number of vesicles on one side defined by a threshold. In the 2D vesicle filtering, we set
the threshold on the number and area of vesicles and membranes to determine the appropriate
presynaptic areas. The threshold for membrane is 80% and the threshold for vesicles is 5 and 100
pixels.

The method for 2D vesicle filtering is to grow a region around the vesicles until it reaches the
membranes, define this as the presynaptic site, and accept all synapses that are on a membrane,
that is part of this presynaptic site. In order to do so, the kernel was used for the synapses and
vesicles separately to reach the boundary of a presynaptic site. The results of the dilation of
vesicles and synapses to find the presynaptic areas will be the same. Those presynaptic sites
could then be colorized to visualize if our method is performing accurately. The vesicle filtering
algorithm uses presynaptic sites to filter synapses, as every synapse should be touching a
presynaptic site. We have assigned the membrane as the boundary of the presynaptic site, and the

 15

code grows the vesicle area until it reaches the membrane using image dilation techniques. The
algorithm removes synapses that have less than 80% overlap with the membranes. For synapses
that are 100% within the membrane, they are assigned to the nearest labeled presynaptic sites.
Then those synapses that are completely on the membrane will be in the same area as vesicle
when we grow the vesicles. Then, the algorithm applies the vesicle filtering threshold of 5
vesicles and 100 pixels and removes those synapses that are below this threshold. The primary
analyses of visualizing the presynaptic sites that will be colorized help us to evaluate our model
performance. The significance of using 2D filtering is we applied the grown vesicles along with
the statistical threshold for our primarily model performance analyses and was able to find the
best models. As for the visualized primary analyses, we visualized the model based on the
vesicle threshold of 5 objects on the left-side and threshold of 100 pixels on the right-side below.

Figure 7: Different presynaptic and vesicles for 5 vesicles on the left and 100 pixels on the right

The primary analyses of our above visualization finding indicates that the model with 5 vesicle
objects will give us more accurate results, as we can keep more presynaptic areas that pass the
vesicle thresholds. As a result, the binary image of synapses and presynaptic areas before and
after filtering for the threshold of 5 vesicles is shown in Figures 8 and 9.

Figure 8: Synapses before filtering on the left and synapses after filtering on the right

Figure 9: Presynaptic areas before filtering on the left and after filtering on the right

In Figure 10, we considered the positive vesicle control variables with the threshold of 5 to
combine the segmentations of the 4 cell structures of mitochondria, synapses, vesicles, and
membranes into a single combined segmentation image. We then overlay these combined
segmentation images on top of an enhanced version of the original microscopy image with each
organelle color-coded in a different color.

 16

Figure 10: Stacked Overlay of Four Cell Structures after vesicle filtering

The results of visualization in terms of images obtained from the model are the predicted output.
The predicted output has to be evaluated for its accuracy and significance. The findings of the
above visualization demonstrate that the 5-vesicle threshold is better than 100 pixels vesicle
threshold. This is because we can keep more accurate presynaptic areas, which leads to better
synapse predictions. Figures 6 and 7 indicate that filtering is effective on reducing the synapse’s
errors. It can be seen that the number of synapses and 3D objects(labels) are reduced as the errors
were eliminated. This threshold of 5 vesicles gives us the output of Figure 8 that has a higher
prediction accuracy.

Next Steps for 2D Model Evaluation and the Reason for Applying 3D Image Processing

The problem of 2D image filtering is the loss of some presynaptic sites in our microscopy images
that led to inaccurate presynaptic recognitions. The reason for the loss of presynaptic areas is 2D
vesicle filtering on segmented images of 3D microscopy images. The 3D microscopy images are
sliced into segmented images. These segmented images consist of 3D objects in which the
membranes are their boundary. One can visualize each 3D object in each image as different
pieces of a worm’s body. As a result, these 3D objects in each image are in contact with 3D
objects in other images as they contribute to each other to form the worm, for example. For
instance, a worm’s head is a 3D object in one image, and its body is composed of other 3D
objects divided in other images. These 3D objects that are connected throughout the images may
or may not have vesicles. The problem caused by 2D vesicle filtering on these images is that it
considers these images individually without the connection of 3D objects of images. This
affected the count of vesicles as the number of vesicles in each 3D object that should be summed
together are counted separately. This 3D object’s connection is one of the fundamental
differences of 2D and 3D image processing that can make vesicle filtering and grown regions. As
a result, some 3D objects of images that do not meet the vesicle threshold requirement are
deleted by mistake at the time of 2D vesicle filtering. These 3D objects could be presynaptic
sites and meet the requirement of vesicle filtering if their connection with other images’ 3D
objects are taken into account. Therefore, the preliminary analyses of these inaccurate
presynaptic areas help us move toward the applicable solution of 3D image analyses. The
significance of using this 3D analyses is this method considers the connection of 3D object’s
vesicles, so the vesicle counts in each 3D object will be summed together. 3D image processing
can be dissected into different steps that are 3D concatenation, 3D labeling and 3D filtering.
These techniques involved in 3D modeling are not applicable in 2D image processing in that its
algorithm interacts with each image’s 3D objects separately. The significance of our 3D image
processing is this 3D technique can help improve the accuracy of presynaptic site recognition.

Creating the 3D Images

 17

A Python program was written to create the 3D images stack using CDeep3M’s pre-trained
models for synapses, membrane, vesicles, and mitochondria. The technique for creating 3D
images is to integrate the shape as a parameter into the 3D pixels in which the area is on the xy
plane and depth along the z-axis. When this one dimension is added to all the segmented 2D
images, the images are concatenated along the depth of the z-axis.

3D Concatenation

3D concatenation merges 3D objects of each image with each other. The problem is that the
location of 3D objects that are in contact with each other are not the same throughout the images.
We considered these 3D objects as the pieces of a worm’s body that are divided into different
pieces across the images. These different pieces as 3D objects have different areas in each image
that caused the problem of not being exactly at the same location in each image. As a result of
this issue, the irrelevant 3D objects that should not be linked together become one area and get
one label. The primary analyses of this 3D concatenation issue help identify the 3D objects’
labels in each image.

3D Labeling

3D labeling is the technique used to set the label for each 3D object throughout the images. The
3D images created in our previous method are the new data for 3D labeling. Since all the 3D
objects in each image are related to 3D objects of other images, the kernel was used in our
program to link the 3D objects from up and down, right and left. Also, the front and back (depth)
of 3D objects of each image were taken into account. For each pixel, we looked at the cube
around it. The 3D labeling model was calculated both through the similar areas and overlapping
to evaluate the model performance through the primary analyses of visualization. In both
methods, the threshold is based on the areas above 80%. The significance of 3D labeling is the
labeling of the next image was based off the labeling of the previous image. With this, we
labeled the first image and then labeled the second image based on the following algorithms.

The first algorithm for 3D labeling intended to label the 3D objects of new images that could be
found in the old images. If the 3D object’s areas of image 2 had above 80% similarity with the
area of image 1’s 3D objects, the area of image 2 was updated to get the same label as the area of
image 1. As a result, the updated label of new images is based on the labeling of the last images
was saved in the matrix. We first assigned the value of zero to all elements of our matrix, and
then updated the labels according to the areas of previous image’s 3D objects. As for the
overlapping regions, if the area of the old image overlapped two areas of new image, the label of
the area that had more overlapping regions would be the label for both areas.

The second algorithm of 3D labeling aimed to label the 3D objects of new images that could not
be found in the old images. The biggest label method was used for this labeling. The purpose of
the biggest label method was to assign the new label for those labels of the new images that were
not in the labels of previous images. If there were some areas in image 2 that had either no
overlap or overlapping areas less than 80%, those areas of image 2 were assigned the new labels.
This new label of new images was based on the biggest label. For example, if the biggest label

 18

was 117 in image 2 and 100 labels of image 2 were in common with image 1, then the labels
from 100 until 117 (the rest of labels) got the new label. These new labels also got a new color.

Analytical Workflow

The analytical workflow for the two new modeling components of CDense3M are quite similar.
We run through the algorithm with the default parameters to get a baseline level of performance.
Then we make one change at a time and compare the results after making that change to the
baseline. If the change consistently results in an improvement in accuracy, the model with the
change becomes the new best model. We iteratively test different hyperparameter combinations
and other preprocessing techniques in an attempt to outperform the best model so far. This
corresponds to the analyze stage in the data science analytical workflow process, which involves
model selection and analyzing the results. Once we are satisfied with the best model’s
performance on the validation data, we give it new test data and repeat the process. The process
for acquiring and preparing the data is illustrated in the figure below.

Figure 11: Acquire and Prepare Steps in Analytical Workflow

The analytical workflow is partially automated. CDense3M can run a parameter sweep for FFN
and 3D filtering and labeling to obtain the results for each simulation run with a different
parameter combination. All our image processing models are evaluated through visualizations
using different algorithms. These image processing algorithms are run in Python, using the
OpenCV, NumPy, and SciPy libraries. We aggregate relevant metrics and visualizations from
our trial runs and save them in a Plotly Dash reporting dashboard. We present these findings to
domain experts like Daniela and Matthias, and they act by figuring out the neuroscience
principles that explain our findings.

Processing Environment Setup

Our exploratory data analysis and MVMP work was done locally in Jupyter notebooks and
Python scripts. The 3D image analyses scripts were implemented locally in Python. We retrieved
a cropped image volume of the Nucleus accumbens data from a National Center for Microscopy
and Imaging Research (NCMIR) lab machine using IMOD and copied the images to our local
and cloud machines. We ran CDense3M and FFN in AWS and Colab for most of this project.
Both CDense3M and FFN include convolutional neural networks, and most deep learning
models require a GPU for reasonable runtimes on large datasets.

 19

Findings and Reporting

Findings

This section describes the findings related to our experiments to test hypotheses related to 3D
image analyses and flood-filling networks. We will first discuss findings for 3D filtering and
labeling using erosion models. Then we will report our findings and evaluation metrics from
applying the FFN membrane model.

3D Image Analyses Findings

The preliminary analysis of the 3D labeling algorithms was to use the visualizations to evaluate
the model’s performance. The visualization was based on the logic of how much of the area of
the new image (image 2 for example) was explained by last image (image 1).

Figure 12: Labeling of 3D images based on the similar areas

Figure 13: Labeling of 3D images based on the overlapping areas while there are grown vesicles

Figure 14: Labeling of 3D images based on overlapping areas

In the above figures, if the color of the areas of images stayed the same, that means those areas
of images had identical labels. If the color of areas of images were changed, that means the label
of the image was changed. Also, if the labels’ areas overlapped over 80%, that means these
labels are unique. If the areas’ similarity and overlapping were under the threshold, it means that
the labels had different identities and colors. The difference between Figures 13 and 14 is that in
Figure 13, the vesicles were grown. But, in Figure 14, we considered all the areas inside the
membrane. The preliminary analysis of evaluation was based on the consistency of labels that
pass the 80% threshold, which Figure 14 performed the best in.

We could reach the conclusion that there were some algorithms that were assigned for 2D image
analyses were not in 3D image analyses. The results of Figure 13 also indicated that the growth
of vesicles caused the loss of some 3D presynaptic areas. The growth of vesicles was used to
identify presynaptic regions used in 2D analyses. The reason was that the growth of vesicles was
applied in each 3D object separately, while all these 3D objects in each image were actually
related to 3D objects of corresponding images. This approach ended up losing some 3D objects

 20

that had no vesicles, visualized in Figure 13. These 3D objects could be connected with 3D
objects of other images that had met the threshold for vesicles. Therefore, some labels that could
be true presynaptic sites are removed, which increased presynaptic recognition errors. In our
overlapping Figure 14, there was still not very clear visualizations. That was the reason we
applied 3D color labeling visualization to identify each label of 3D labeling more precisely. Our
preliminary analyses indicated that each step of 3D modeling influences the next step to improve
the accuracy. For example, the 3D color labeling visualization was influenced by the 3D labeling
data to improve the model performance.

3D Color Labeling Visualization

The goal of the first category of this model was to provide more distinguishing colors for 3D
labeling. The algorithm for this model creates random labels equal to the number of available
labels in our 3D images, and then shuffle these random labels. Then, our images were saved in
the zero-filled matrix with the same size as the image. This matrix is updated based on the
random labels. For example, label 2 of the matrix was replaced with the second random label,
such as 100 for instance. As a result, label 100 comes after label 1 instead of label 2. Therefore,
based on the relocation of labels, we could assign different colors to each label.

The visualization of the 3D analysis algorithms performance is illustrated as follows.

Figure 15: 3D labeling with the order of labels

Figure 16: 3D Labeling based on random colors

In Figure 15, each label was in order, while in Figure 16, the labels were not in order. In Figure
16, the Python random library was used to generate the random labels.

3D Vesicle Filtering

As for the vesicles, we want the content of the vesicles within the 3D structure. The idea is that
all of the vesicles are the individual parts of neurons, which forms a presynaptic site. In our
visualizations above, each of the labels has a unique identifier, shown in the image with different
colors. Each of those colors means 3D objects, and in 3D objects each color could have no
vesicles or many vesicles. The threshold is our criteria to determine the presynaptic areas. If the
number of vesicles is under the threshold, that means noise. If the number of vesicles exceed the
threshold, that means presynaptic areas. This approach can be divided into two parts.

3D Vesicle Filtering – First Modeling Part

 21

In this part, four models are created to improve the accuracy of presynaptic sites. The first model
applies 3D vesicle filtering with the threshold of 5 vesicles on the 3D label objects. The basis of
this algorithm is to count the number of vesicles for each label of each image individually. The
preliminary visualization analysis of the model illustrates that there are some errors in our first
model. These errors are either from removing some areas that have above 5 vesicles, or keeping
some areas that have less than 5 vesicles. The significance about using this method is we can
visualize the origins of the errors throughout the images. The reason for these errors is the
dissimilar size of 3D objects throughout the images. This caused membranes that are the
boundaries of 3D objects in some images to disappear, and thus 3D objects to be falsely
connected to each other. In addition, the vesicles are overlapping on each other in some images
that caused the algorithm to consider all the overlapping vesicles as one vesicle.

Our preliminary analyses indicate that the erosion technique is used to correct the above errors
and generate more accurate presynaptic recognitions. The errors of 3D vesicle filtering in the
first model influence the design of the second, third, and fourth models that erosion come into
account with 3D vesicle filtering. In the erosion models, the kernel method is involved to erode
vesicles and count the vesicles before and after the erosion. If both vesicles before and after the
erosion are less than 5, that means the removal of that label from that image. The erosion models
were applied on the vesicles and 3D objects. We also tuned the 3D vesicle filtering threshold to
evaluate the best model. The tuned threshold involves 5 vesicles and 500 pixels. In the following
Figures 17-20, the color blue illustrates the vesicles. The red/white regions illustrate those labels
that are removed/stay after applying 3D vesicle filtering. The white labels represent the
presynaptic areas and the red labels represent noise.

Figure 17: 3D vesicle filtering without erosion

Figure 18: 3D vesicle filtering, applying the erosion of vesicles

Figure 19: 3D vesicle filtering and applying the erosion of 3D objects (presynaptic)

 22

Figure 20: 3D vesicle filtering with two thresholds of 5 vesicles and 500 pixels and applying the
erosion of 3D objects (presynaptic)

3D Vesicle Filtering – Second Modeling Part

The first modeling part influences the design of the second modeling part, which focuses on
assigning the label for each presynaptic site that is identified in the first modeling part. That is
the reason the labels of this part come from the remaining presynaptic sites left from first
modeling part after applying filtering. With this, we need to match those remaining presynaptic
sites with the unique identifiers in our 3D color map images. Each of these 3D objects has a
unique ID. Then, we need to go through each of the remaining presynaptic areas after applying
the 3D filtering to look for the labels that are occupied in 3D labeling. This would indicate our
label group is under the same identifier. The performance of these models is shown in Figures
21-24. The preliminary visualization analyses of following figures demonstrate the labeling of
the remaining presynaptic sites after vesicle filtering. The significance about the two modeling
parts of vesicle filtering is the link between these two modeling parts. For example, in the first
model, the presynaptic areas are defined, and in the second part, they received the labels. As a
result, the presynaptic labels of Figures 17-20 are Figures 21-24.

Figure 21: Determination of the labeling of 3D vesicle filtering (Figure 17 presynaptic label)

Figure 22: Determination of the labeling of 3D vesicle filtering, applying the vesicle erosion

(Figure 18 presynaptic label)

Figure 23: Determination of the labeling of 3D vesicle filtering, applying the 3D objects

(presynaptic) erosion (Figure 19 presynaptic label)

Figure 24: Determination of the labeling of 3D vesicle filtering with two thresholds that are 5
vesicles and 500 pixels, along with 3D objects (presynaptic) erosion. (Figure 20 presynaptic

label)

 23

In the following Figures 25 and 26, the performance of our second modeling part is evaluated.
The preliminary analysis of this evaluation is based on the comparison between the presynaptic
areas before applying the first model and after applying the first model. The first model is
selected from modeling part 1, visualized in Figure 23.

Figure 25: Binary images of presynaptic areas before filtering on the left side and after vesicle

filtering of labeling with threshold 5 and 500 along with 3D objects erosion (best selected
modeling part 1) on the right side

Figure 26: Labeling of binary images of presynaptic areas before filtering on the left side and
after vesicle filtering of labeling with threshold 5 and 500 along with 3D objects erosion (best

selected modeling part 1) on the right side

As for the findings of the first model, the criteria of 3D filtering visualized evaluation are based
on keeping the presynaptic areas based on the vesicle functions that meet the threshold. In the
visualizations above, Figure 20 is the best model, with the lowest error and the most accurate
presynaptic site predictions. The significance of our finding is defining other criteria for the
threshold of our 3D vesicle filtering that used to be 5 vesicles. The threshold of our 3D filtering
for our best model is 5 vesicles and 500 pixels. The second modeling part demonstrates the
labels of identified presynaptic sites in the first modeling part. To resolve the errors of Figure 17
and its label Figure 21, we applied erosion to separate the labels properly. As a result, the erosion
models visualized in Figure 18 and its label Figure 22, Figure 19 and its label Figure 23, as well
as Figure 20 and its label Figure 24. As for Figure 18 and its label Figure 22, it can be seen that
the implementation of vesicle erosion increased the error. As for Figure 19 and its label Figure
23, it can be seen that the implementation of 3D objects (presynaptic) erosion caused the
reduction of errors. There are more presynaptic sites that are recognized accurately. As for
Figure 20 and its label Figure 24, it can be seen the implementation of applying 3D objects
(presynaptic) erosion along with setting two thresholds for 3D vesicle filtering that are 5 vesicles
and 500 pixels has the lowest error. This model demonstrates that those labels that have vesicles
less/above 5 and 500 pixels should be removed/stay and therefore those 3D labels that stay are
presynaptic sites. As a result, Figure 20 confirms our fourth hypothesis. The fourth model that is
visualized in Figure 20 will give us the best results. Figure 20 and its label Figure 24 has the
highest accuracy to define and recognize the 3D presynaptic areas. Figures 25 and 26 evaluated
our second modeling part through the best-chosen model of modeling part 1, which was the
combination of 3D objects erosion with the threshold tuning of 5 and 500. The presynaptic areas
after filtering were less than before filtering, indicating the removal of irrelevant areas. The
evaluation through these figures also indicated the improvement in the accuracy of presynaptic
recognition and synapses segmentations.

 24

The significance of all these image processing models is each new method is designed to
improve on the previous step based on the errors, so we can achieve the goal of accurate
presynaptic recognition. For example, our 2D image processing involves filtering mitochondria,
membrane, and vesicles to achieve more accurate presynaptic areas and synapses. After the 2D
vesicle filtering with the tuned threshold approach, we received errors in terms of losing some
presynaptic areas. These errors were visualized by the stacked overlay figure. This 2D filtering
influenced the design of 3D image processing to reduce the synapses’ errors and retrieve more
accurate presynaptic recognition. The 3D model is dissected into different algorithmic steps of
3D concatenation, 3D labeling, and finally 3D vesicle filtering. 3D labeling aimed to address the
errors of the dissimilar label locations caused by the dissimilar size of 3D objects, through
identifying the labels of 3D objects. Therefore, the 3D labeling was designed for more accurate
3D analyses of 3D vesicle filtering. There were still some errors after applying 3D vesicle
filtering. These errors are derived from the erroneous connections or non-connections of some
labels in images, or the overlapping of vesicles in one label that caused our model to not
recognize the separation of these labels and vesicles. These errors influenced the erosion models
we designed to improve the accuracy of presynaptic recognition. As a result, different erosion
models were applied on vesicles, 3D objects, and the combination of vesicles and 3D objects.
However, there were some errors on the erosion models that influenced our model building to
tune the statistical thresholds to minimize the errors. After applying different thresholds, the
erosion models on 3D objects with the tuned thresholds of 5 and 500 vesicles gave us the most
accurate results.

However, we can still improve the accuracy of our best models so far to further improve the
accuracy of 3D presynaptic recognition and synapses. In 3D analyses, the mathematical
equation-based models that formulate the null hypotheses can calculate a more accurate
statistical threshold based on the biological definition of neurons’ functions. Our next approach
is to bring mathematical and statistical tools to set more accurate thresholds for the connection
and separation of labels and vesicles, therefore improving the accuracy.

Flood-Filling Networks Findings

Our hypothesis for FFN is that a custom FFN model trained on membrane segmentations is more
generalizable at 3D cell segmentation than the provided FFN model trained on the standard FIB-
25 Drosophila optic lobe raw electron microscopy (EM) data. The rationale is that an FFN model
trained on membrane segmentations is more generic than an FFN model trained on raw EM data
from fruit flies. Our custom FFN model is less likely to overfit on novel data because it is trained
on 8-bit grayscale segmentation images of membranes produced by CDense3M’s segmentation
prediction script. The structure of grayscale membrane segmentations is consistent across all EM
data. Thus, the FFN membrane model can handle any type of raw EM data that is segmented.

We had to train the provided FFN membrane model for another two million epochs in order to
obtain a segmentation accuracy comparable to the FFN whitepaper. The provided 6 million
epoch checkpoint produced poor segmentations, even when running FFN inference on the
images the FFN was initially trained on. The dark spots indicate that FFN was struggling to find
seed points to fill. Conflicting colors in a single cell indicate that there was a split error, while

 25

cells that are different colors that should be together are considered merge errors. A sequential
ID cell labeling scheme was used to keep track of merge and split errors across the xyz plane.

Figure 27: FFN inference result from using 6 million epoch checkpoint of FFN membrane model

Retraining the FFN for 2 million more epochs greatly improved the FFN dense segmentations on
the original FFN training images. Matthias initially trained the model for 6 million epochs in
UNI-EM, found at https://github.com/urakubo/UNI-EM. UNI-EM is a wrapper that provides an
GUI for running FFN. But to eliminate a potential source of deviation, the FFN membrane model
was retrained using the script from the original FFN source code. It took 88 hours of training on
an AWS g4dn.xlarge EC2 instance to train the model 2 million more epochs. By 8 million
epochs, the FFN achieves a much better dense segmentation on the training data, as seen below.

Figure 28: FFN inference result from using 8 million epoch checkpoint of FFN membrane model

We continued training the FFN membrane model for another two million epochs to reach ten
million epochs. However, as seen in the line chart below, the performance of the FFN membrane
model plateaus after eight million epochs. Since the training metrics for the FFN membrane
model peak at and do not improve after eight million epochs, we chose the eight million epoch
checkpoint as the final FFN membrane model to avoid overfitting on the training data.

Figure 29: FFN Membrane Model Training Metrics

 26

After confirming the viability of the FFN membrane model on the original training data, the next
step was to apply the model to a different dataset to see how well it generalizes to new data. We
used the Nucleus accumbens raw EM data since we already had ground truth labels for that
dataset. The most important step to boost FFN’s performance is to resize any input data to have
the same xy dimensions as the training data. Our FFN model was trained on a 1024x1024x100
voxel image volume, so we took a 1024x1024x100 block of the raw EM data using IMOD.

The FFN membrane model expects membrane segmentations, not raw EM data, as input.
Therefore, we first had to run the main CDeep3M pipeline to generate the membrane
segmentations that would be then be used as the input to FFN inference. Fortunately, FFN
inference is now fully integrated with CDeep3M in the form of the new CDense3M product, so
CDeep3M and FFN segmentations can run consecutively. Running FFN inference with
CDense3M is controlled by a boolean flag, since it only makes sense to run FFN when
CDense3M is performing a membrane segmentation.

We use per-voxel accuracy, precision, recall, F1-score, and Jaccard index to evaluate FFN’s
performance on the original FFN training and raw EM test datasets. In a binary segmentation
mask, a segmented voxel is positive and a non-segmented voxel is negative. We scaled the input
images we used to match the xy dimensions of the training images for the two FFN models. This
means the membrane model needs 1024x1024 images, and FIB-25 needs 250x250 images.
 Training Data with

Membrane Model
Test Data with
Membrane Model

Test Data with
FIB-25 Model

Accuracy 0.9078 0.8237 0.6651
Precision 0.9720 0.9109 0.8737
Recall 0.9184 0.8262 0.7193
F1-score 0.9444 0.8665 0.7890
Jaccard index 0.8947 0.8041 0.6464

Table 4: FFN models segmentation evaluation metrics

Accuracy is the proportion of voxels that are classified correctly – segmented or not segmented.

Precision measures the fraction of true positives out of all the predicted segmented voxels. This
is equivalent to the formula: Precision = TP / (TP + FP) = TP/Predicted Positive. We expect high
precision out of the FFN model for both datasets because the watershed algorithm used by FFN
will normally lead to an over-segmentation. This means the image is segmented into too many
regions. FFN only starts flood-filling from seed points that are extremely positive - greater than
0.95 logits – and then only segments voxels that reach a high probability threshold. Thus, most
of these segmented voxels predicted by FFN are true positives, leading to FFN’s high precision.

Recall is equal to the true positive rate, or the proportion of true positives over all positives. We
expect recall to be slightly lower than precision for FFN because FFN by default has a high
threshold for accepting seed points. With fewer seed points and higher thresholds, positive
voxels may be missed by FFN’s segmentation. There are tunable parameters that lower these
thresholds for FFN inference, but lowering these thresholds would also lower the precision.

 27

To find a better balance between precision and recall, we calculate the F1-score, also known as
the Dice coefficient, which is the harmonic mean of precision and recall.

Another value we measured is the Jaccard index, which is the proportion of overlap between the
predicted and ground truth bounding boxes over their area of union.

As expected, our FFN membrane model is very accurate on its own training data, with most
scores over 0.9 and a much higher precision than recall. The key finding, however, is that the
FFN membrane model performs around 10% better than the FIB-25 FFN model on the raw EM
test data in most metrics listed in Table 4. This supports our hypothesis that the FFN membrane
model is more generalizable than the FIB-25 model on a variety of raw EM data.

Another finding is that the membrane model takes 16 times longer than the FIB-25 model to
perform 3D segmentation, with an average duration of 64 minutes versus 4 minutes, respectively.
One major caveat is that we scaled down our raw EM data image volume from 1024x1024x100
voxels when running the membrane model to 250x250x100 voxels when running the FIB-25
model. Resizing the images is required since FFN expects incoming data to have the same width
and height as its training data. A 1024x1024x100 image stack has around 16.8 times more voxels
than a 250x250x100 stack, which explains why the membrane model takes 16 times longer to
finish. Two insights from this analysis are that the FFN membrane and FIB-25 models have a
similar per-voxel runtime, and that FFN runs in linear time per voxel.

The last finding for FFN is that the quality of the incoming membrane segmentation is positively
correlated with FFN segmentation accuracy and its other evaluation metrics. CDense3M’s
membrane model can sometimes generate membrane segmentations that include residual
mitochondria. The most probable reason for this is that the membrane model is confusing the
mitochondria with myelin sheaths, since the SBEM, TEM Membranes (50789) model was
trained on EM data that contained myelin. A flawed membrane segmentation will spill over to
the FFN, causing the FFN to mistakenly treat mitochondria as membranes and produce a less
accurate 3D cell segmentation. This discrepancy partially explains how the segmentation
evaluation metrics for the test data are on average 7% lower than the training data metrics.

Reportable Findings

The audience for these findings is the neuroscience research community. Neuroscientists like
Daniela and Matthias, as well as the rest of the staff at NCMIR are especially interested in
validating the findings related to erosion models for 3D labeling and the FFN membrane model.

Therefore, we determined that we would present a comparison between the accuracy
CDense3M’s and CDeep3M’s synapse segmentations in reporting our findings. Our main
hypothesis is that CDense3M is more accurate at segmenting synapses than CDeep3M. This
includes individual hypotheses for each modeling component. The FFN hypothesis is that the
FFN membrane model is more generalizable than the FIB-25 FFN model. The 3D image
analyses visualizations prove the null hypothesis that erosion models improve the accuracy of the
3D labeling of the presynaptic sites.

 28

We present reportable evaluation metrics and visualizations that support our findings to help the
audience quantify and visualize the results. For each finding, we emphasize the potential
business value in how each finding can positively contribute to the scientific process of
automated brain segmentation to accelerate the study of neurodegenerative diseases.
Determining the appropriate amount and level of information to present when reporting our
findings is key to convincing a diverse audience that our CDense3M solution has satisfied its
objective, which is improving the accuracy of existing synapse segmentations from CDeep3M.

Techniques and Tools Used to Communicate Results

We ran a controlled experiment to test our hypotheses that erosion models are better for 3D
labeling and that the FFN membrane model is better than FIB-25. The 3D filtering and 3D
presynaptic site recognition and visualization code used SciPy, NumPy, scikit-learn, and
OpenCV. The FFN accuracy evaluation Python script used NumPy to quantify the results for
each trial run. The FFN visualization Python script used NumPy, H5py, and OpenCV to produce
an HDF5 stack file and separate flat PNG files of the FFN segmentation. The Fiji distribution of
ImageJ is provided in the CDense3M Docker image to visualize the FFN segmentation HDF5 or
PNG files in 3-3-2 RGB color and determine areas that need improvement.

We communicate our results in two primary mediums, a high-level reporting dashboard and
more detailed log files generated by each stage in CDense3M. The techniques and tools we used
to communicate our results were selected to increase the accessibility of CDense3M for new
users, while communicating valuable details to more advanced users without overwhelming new
users. The reporting dashboard summarizes the findings with charts and images, while the log
files provide detailed statistics on the cells with the largest contribution to the error and the
runtime for each step in the pipeline.

Visualization and other Reportable Products of Findings

Visualizations and other reportable products of our findings were added to the project as part of
this step. Plotly’s Dash framework was used to create a reporting dashboard to visualize the key
metrics in our results in a single page.

Figure 30: CDense3M Reporting Dashboard

 29

For 3D labeling, Figures 12-26 are the visualizations for the findings. For FFN, Daniela
requested a colored overlay of the FFN segmentations with the raw EM data. This is in addition
to the HDF5 file and colorful segmentation PNGs produced by the CDense3M FFN inference
script. We used the NumPy arange, vstack, meshgrid, reshape, and transpose functions to create
a lookup table that colorized the grayscale FFN 3D cell segmentations with up to 65,536 colors.
The opencv-python and scikit-image libraries were then used to overlay the FFN colored
segmentations on top of the corresponding raw EM data images. An example is shown below.

Figure 31: FFN colored segmentation overlay on top of raw EM data

Solution Architecture, Performance and Evaluation

Easy Deployment

CDense3M’s portability makes it possible to deploy on various platform. AWS is the main
deployment platform for CDense3M in production. Given our project’s requirements of graphics
processing units (GPUs) in deep learning for large-scale image segmentation, Amazon’s
g4dn.xlarge Elastic Compute Cloud (EC2) instance type was the lowest-cost platform available
that met our needs, with an on-demand price of $0.526/hour.

For development, we use Google Colab for up to 12 hours of free access to GPUs. Colab even
provides free tensor processing units (TPU), which are optimized for TensorFlow. We added
TPU support for FFN inference in CDense3M, which was not in the originally upstream FFN
source code. The Colab notebooks are in https://github.com/haberlmatt/cdeep3m-colab.
However, Colab’s GPU/TPU has usage limits, so critical CDense3M jobs should run in AWS.

We use an AWS CloudFormation template to automate the creation and provisioning of EC2
instances that are capable of running CDense3M. The CloudFormation stack is configured to
launch an EC2 instance with the NVIDIA Deep Learning Amazon Machine Image (AMI). With
CloudFormation, anyone with an AWS account can set up CDense3M in less than a minute.

Figure 32: CDense3M CloudFormation Stack Creation Page and Resulting EC2 Instance Created

 30

CDense3M itself can be run as a Docker container. It is available on Docker Hub at
https://hub.docker.com/r/ncmir/cdeep3m. Docker containers isolate software applications from
the host environment. By isolating processes from each other, similar to a sandbox, Docker
containers avoid polluting the local machine with unwanted or possibly system-breaking
changes. Docker also ensures developers are operating in a consistent environment. Deploying
CDense3M with Docker also supports the multitenancy robustness requirement, allowing
different users to run CDense3M on their own isolated sandbox in the same machine. We mount
a Docker volume at the /data directory for persisting data generated and used by containers.

CloudFormation along with AMIs ensure users create machines that meet the specifications for
running CDense3M. Docker completes the installation and configuration of CDense3M in a
standardized way. AWS and Docker makes CDense3M a robust and scalable solution that
satisfies the second and third case studies, as deploying CDense3M is consistent and repeatable
for many machines, and users can run two CDense3M versions in isolation on the same machine.

Figure 33: CDense3M Solution Architecture

Performance

Performance for CDense3M is primarily is measured by two metrics: voxel-wise segmentation
quality and runtime. For FFN, we one-hot encode each cell ID into a separate 1024x1024x100
stack. This is equivalent to applying a binary segmentation mask for each cell ID, where 1 means
the voxel is part of the cell, and 0 means the voxel is not part of the cell. We count the number of
voxels that are true positives, true negatives, false positives, and false negatives for each cell ID
using the predicted and ground truth segmentations. Then we take the average value for the five
standard segmentation quality metrics among all cells. These segmentation quality metrics are
the most important evaluation criteria for the performance of FFN, but speed is also very
important. CDense3M must still remain usable even when processing a large volume of data.

CDense3M must also be robust when multiple users are running it on the same machine. In other
words, CDense3M must support multitenancy. Two concurrently running CDense3M jobs that
would in combination require more RAM than the machine can provide at one time should not
cause the system to run out of memory. They also should not clobber each other’s results
regardless of the order in which the jobs finish. To ensure that CDense3M is fault-tolerant if the
available RAM is not enough, we add retry logic to have it wait a certain amount of time for

 31

RAM to become available before aborting. To guarantee the independence of the results,
concurrent CDense3M jobs on the same machine must run in isolated environments.

Additionally, we envision multiple people working on different features of CDense3M at any
given time. These branches of CDense3M, such as the one for flood-filling networks (FFN),
require installing additional dependencies like TensorFlow 1.x. We want to be able to test
different versions of CDense3M without interfering with other development efforts. Therefore,
in order for CDense3M to be fully robust, different versions of CDense3M need to run in
isolated sandboxes. Docker solves the multitenancy problem for keeping multiple CDense3M
jobs running at the same time from clobbering each other, and keeping different version of
CDense3M from clobbering each other. The accuracy of running two CDense3M jobs in Docker
on the same machine was equal to running them on separate machines. As expected, it took twice
as long to run the two CDense3M jobs in parallel, so CDense3M runs in linear time.

Scalability

Model scalability is how well CDense3M performs when given bigger or unseen datasets. If the
available resources remain constant, CDense3M should run in linear time or faster as the input
data size increases. If we provide CDense3M with additional resources like better or more GPUs,
CDense3M should be able to process larger amounts of data just as quickly as before.

If we were to double the GPU RAM available by switching from a g4dn.xlarge to a g4dn.2xlarge
EC2 instance, CDense3M should scale up and complete both jobs in the same amount of time as
one job, or sooner. Similar logic applies when we double the size of the input images. For
example, if we decide to use 1024x1024 pixel images instead of 750x750 pixels, each image will
have almost double the number of pixels, so we would expect CDense3M to take twice as long.

When we doubled the GPU RAM to 32GB, CDense3M completed the two parallel tasks in 40
minutes, faster than the 1 hour it would take to complete a single task on the 16GB RAM GPU.
FFN inference for the 1024x1024 images took 1.5 times longer compared to the 750x750
images. This means CDense3M’s code is somewhat optimized to take advantage of additional
GPU RAM, most likely via a combination of parallelism and increased batch sizes, so
CDense3M is scalable. Benchmark testing was performed on AWS g4dn.xlarge or g4dn.2xlarge
EC2 instances and the FFN model’s scalability was evaluated using voxels segmented/minute.

Budget

We spent $238 in AWS cloud computing costs, which was paid for by NCMIR’s operating
budget. This cost is exclusively from testing FFN inference and integrating it into CDense3M,
since the deep neural networks for these models require GPUs. About two-thirds of the total cost
was from several attempts to retrain the FFN membrane model to obtain better performance on
the FFN training images. The rest of the cost was performing hyperparameter tuning for FFN
inference early on and testing its full integration with the original CDeep3M prediction script. It
took approximately a week to train the original six million epoch FFN membrane model
checkpoint for another four million epochs to reach ten million epochs.

 32

We managed our budget by moving FFN inference tasks to Google Colab, starting in mid-April,
to take advantage of the 12 hours of free GPU at a time. 12 hours is enough time for ten runs of
FFN inference, so we significantly reduced our cloud costs by cutting our AWS usage in half.
We also turned off our EC2 instances as soon as we completed our work for the day to eliminate
unnecessary on-demand EC2 instance usage costs.

Conclusions

The developed solution of CDense3M, or CDeep3M extended with 3D image analyses and FFN,
would align with the scientific process of improving the accuracy of the predicted segmentation
of synapses. The purpose of CDense3M is to improve upon CDeep3M’s performance on the
dense segmentation of synaptic densities. We integrated our models into CDeep3M’s automated
workflow, and maintained its programmability, scalability, and ability to deploy to multiple
platforms such as AWS and Colab. CDense3M will save scientists considerable amounts of time,
since more accurate synapse segmentations are a step closer to the automated extraction of
connectomes, which currently requires long hours of manual proofreading and editing.

We incorporate biological knowledge with all our models to improve the segmentation accuracy
of synapses. We apply 3D image processing to prevent the loss of presynaptic areas during 2D
vesicle filtering. The 2D vesicle filtering considers each 3D objects individually in each image,
while the 3D processing links the 3D objects throughout the images. As a result, the 2D grown
vesicles and the method of 2D vesicle filtering are not applicable in 3D image processing. Also,
we are able to prove that each new step of image processing is relevant to the previous step. The
significance of all these image processing models is each new method is designed to improve
upon the errors from the previous step, which will increase the accuracy of presynaptic
recognition. For example, our 2D image processing involves filtering mitochondria, membranes,
and vesicles to achieve more accurate presynaptic areas and synapses. After the 2D vesicle
filtering with the tuned threshold approach, we received errors in terms of losing some
presynaptic areas, visualized in different figures. This 2D filtering influences the design of 3D
image processing to reduce the synapses’ errors and retrieve more accurate presynaptic
recognition. The 3D model is dissected into the methods of 3D concatenation, 3D labeling and
3D vesicle filtering. These methods in 3D image processing are not applicable in 2D image
processing. 3D labeling aims to address the errors of the dissimilar label locations caused by the
dissimilar size of 3D objects, through identifying the labels of 3D objects. Therefore, the 3D
labeling is designed for more accurate 3D analyses of 3D vesicle filtering. There are still some
errors after applying 3D vesicle filtering. These errors are derived from the erroneous
connections or non-connections of some labels in images, or the overlapping of vesicles in one
label that caused our model to not recognize the separation of these labels and vesicles. These
errors influence the erosion models we designed to improve the accuracy of presynaptic
recognition. As a result, different erosion models are applied on vesicles, 3D objects, and the
combination of vesicles and 3D objects. However, there are some errors on the erosion models
that influence our model building to tune the statistical thresholds to minimize the errors. After
applying different thresholds, the erosion models on 3D objects with the tuned thresholds of 5
and 500 vesicles give us the most accurate results.

 33

Currently, automated synapse segmentations predictions on SBEM datasets are relatively
inaccurate. CDense3M improves the voxel-wise classification accuracy of synapse
segmentations by 10% compared to the baseline CDeep3M synapse segmentation. However, we
can still improve the accuracy of our best models so far to further improve the accuracy of 3D
presynaptic recognition and synapses. In 3D analyses, the mathematical equation-based models
that formulate the null hypotheses can calculate a more accurate statistical threshold based on the
biological definition of neurons’ functions. Our next approach is to bring mathematical and
statistical tools to set more accurate thresholds for the connection and separation of labels and
vesicles, therefore improving the accuracy. For the FFN membrane model, we will optimize its
performance on very large images by cropping the images to handle memory constraints. We
will also develop data preprocessing methods to clean the input membrane segmentations to
ensure cleaner cell-body segmentations. Implementing these improvements for both 3D analyses
and FFN will lead to an even greater increase in the accuracy of synapse segmentations.

By providing accurate and automated segmentations of synapses, CDense3M will help
researchers study neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease more
efficiently. Our hope is that CDense3M will help researchers make a breakthrough sooner in the
search of better treatment options or even a cure for these neurodegenerative diseases.

 34

References

1. Haberl, M.G., Churas, C., Tindall, L. et al. CDeep3M—Plug-and-Play cloud-based deep
learning for image segmentation. Nat Methods 15, 677–680 (2018).
https://doi.org/10.1038/s41592-018-0106-z

2. Januszewski, M., Kornfeld, J., Li, P.H. et al. High-precision automated reconstruction of

neurons with flood-filling networks. Nat Methods 15, 605–610 (2018).
https://doi.org/10.1038/s41592-018-0049-4

 35

Appendices

DSE MAS Knowledge Applied to the Project

We made heavy use of NumPy, which was taught in DSE 200. The FFN 3D convolutional neural
network was implemented in TensorFlow, which we learned in DSE 220 and DSE 230. The
linear algebra we used in the image processing scripts for our exploratory data analysis and 3D
image analyses was covered in DSE 210. We created our reporting dashboard in Plotly Dash and
applied knowledge of effective and expressive visualization principles from DSE 241 to the
project. Last but not least, the project management skills and data science process we learned in
DSE 260A and DSE260B were essential to completing this capstone project.

Link to the Library Archive for Reproducibility

https://doi.org/10.6075/J0QJ7FT8

