

Wundman: $3309 \infty 7$
funnay
730
Shalido bories Meru Repos

Vichonise
321183 Annire (I)

Hollaud
Revïl RAUCH, Soheren ujou Park Hecie, the "tapue mus Velman 35 - -76.65
Cautes: Kalberer
Thu bovero Can
(216) Dhemerningen Lanmy Bom wieken
$181 \mathrm{~V}]$
Shield AThnumprowic umpos Berbhanis
\qquad
Proplube thit mix the athers oment tut mit anlt ure porteis e^{-n}

$$
e^{-\frac{x}{2}}
$$

that muster pulact if hivet is parferof

$$
\begin{aligned}
& f(x)=e^{-\frac{x}{2}} \\
& h^{2} f(x)=e^{-x} \\
& h^{2} g(x)=\left[\frac{f(x)}{q(x)}\right] \\
& N=\frac{f(x)}{g(x)} \frac{1}{(f(x)}
\end{aligned}
$$

$$
K \cdot f(x)=e^{-}
$$

$$
\begin{aligned}
& 1=e^{2} \\
& f(x)=\frac{f^{2}()^{2}}{f^{2}(x)}
\end{aligned} N=\frac{f(x)}{[g(x)]^{2}}
$$

Gaverty
Eit uen unvidur a olutimaps
pupmentior menertha ri ama
now

$$
\begin{aligned}
& f(x) \\
& \frac{e^{-n}}{\mu(x)}=t \\
& e x \text { ped } \\
& h^{2} \gamma(x)=e^{-2 n}
\end{aligned}
$$

Wu
this trecho therry,
mant \qquad pertart minther, there mines yumole= thin wavive or fullums that cemale hiss a perfoc por

$$
\left.\frac{I e^{-x}}{\lambda}\right] \text {;this is als mimilex of }
$$

$$
\begin{aligned}
& \begin{array}{l}
x g(x)=\alpha f(x)-e^{-\lambda / 2} \\
\text { (ien } f(x) \text { nempes fermes fion) }
\end{array} \\
& \text { find deloct at mup un }
\end{aligned}
$$

De Naro (basts

$$
\begin{aligned}
& \quad f(x)=o e^{-n} \\
& \quad d=f(x) e^{x} \\
& \text { andi } \quad \frac{g(x)}{f(x)}=e^{+n / 2} \\
& n=2 \ln \frac{f(x)}{f(x)}
\end{aligned}
$$

$$
\begin{aligned}
& x=2 \ln \frac{g(x)}{P(x)}
\end{aligned}
$$

Nimuteror is suyples in miveruperects

$$
\Gamma(x)
$$

anoples wher momain Ided It in aye meer x and suone thich at an aye oves $[x-3]$

La Novolbest fut

$$
\left(N e^{-n} \times e^{-n / 2}=\lg (x)\right.
$$

f(x) mizo of olect gamp
mberi $f(x)$ is ine the Hheckere
No normen in the veliet prow
Who h. hade dieds ilame
$N_{N} f(x)=e^{-x}$
sine of velect proup $=\underline{M f(x)}$
$\left\{N f(x) \cdot e^{-x / 2}\right\}$

buthor $\frac{\varphi(x)}{L(x)}=11 e^{-}$
(s) $\quad f(x)=\frac{g(x)}{N 民(x)]}=k(x) e^{-x / 2}$

Eamy_fes

$$
\begin{aligned}
& \text { What chrivere } \\
& \text { The } f(x)=\frac{1}{x_{0}} \\
& \alpha=2 \\
& \alpha(x)=\frac{1}{2} e^{-\frac{n}{2}} \frac{1}{2} \sqrt{\frac{1}{2}} \\
& f(x)=\frac{1}{4} e^{-\frac{n}{2}} \frac{1}{4} \frac{1}{20}
\end{aligned}
$$

If $x=0$ uncty me choose

$$
\begin{aligned}
& f(x)=\frac{1}{40} ; 4=\frac{1}{40} \\
& g(x)=\frac{40}{40} \\
& f(x)=\frac{10 \times 40}{40 \times}
\end{aligned}
$$

 hes, frull elluet. -
$r(x)$
frestion ef ench amples

$$
\frac{\Gamma(x)}{\Pi f(x)}=f(x)
$$

An Erestionp perlect nuples is:

$$
\frac{x^{2} \sqrt{(x)}}{N f(x)}=x^{2} f(x)
$$

and me shinue lissie

$$
\lambda_{(x)}^{2} f_{1}(x)=e^{-n}
$$

$$
f(x)=\frac{e^{-n}}{1 x^{2}}
$$

funèrà
i Le Navo
as deteminiminy (A) DeNrvo
$V_{s}=2 \quad$ me lisme deterncied
median for the lif cporen
of a pripielation menvi is sill if all ilmugery
norkers.

De Nrada

$$
\begin{aligned}
& \text { * } \\
& \operatorname{kg}(x)=x(x)=e^{-x / 2} \\
& \frac{f(x)}{f(x)}=e^{n / 2} \\
& {\left[\frac{f(x)}{f(x)}\right]^{2}=e^{-x}} \\
& X_{1} f(x)=e^{-x} \quad N=\frac{f(x)}{g(x)]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-n}-\left[\frac{f(x)}{f(x)}\right]^{2} \\
& x=\frac{f x}{[g(x)]^{2}}
\end{aligned}
$$

Lunera Aelrva

$$
\begin{aligned}
& x^{2} f(x)=e^{-x} \\
& \alpha \varphi(x)=e^{-n / 2} \\
& 1^{2}(q(x))^{2}=e^{-n} \\
& f(x)=[f(x)]^{2} \\
& \text { IM } f^{*}(x)=f(x-\alpha) \quad L^{*}(x)=h(x-\alpha) \\
& e^{-2 n} \text { all domilibeso arefor } \\
& \text { parpect thandore ita } \\
& \text { fince } \\
& \text { probinbiry trat a pisteres } \\
& \text { Mansthiter are pentect is } \\
& e^{-x} \text { pastect ís }
\end{aligned}
$$

brabolititg of 4 grouedporivent porpect

$$
e^{-2 x} \times e^{-2 x}=e^{-4 x}
$$

antrikute $2 e^{4 n}$ porndidtrens

$$
\frac{1}{2} e^{-3 x} \text { st priluab ot }
$$

Agrindporreubs perpect of in releet prump onomh in hast
我

$$
\begin{aligned}
& \frac{x}{x} \frac{1}{\lambda^{4}} \frac{1}{2} e^{-3 x} \\
& \text { g(x)} \\
& f(x)=\frac{1}{x} e^{-x}
\end{aligned}
$$

$$
v \xi(x) \geq \mu(x \lambda g(x)=\mu x) e^{-x / 2}
$$

$$
f(x)=\frac{1}{2} e^{-3 / 2}
$$

$$
g^{2}(x)=\frac{1}{i^{2}} e^{-3 n}
$$

ande $n / 2$

$$
\begin{aligned}
& \frac{d}{d x} \frac{f(x)}{f(x)}=0 \\
& f^{\prime}(x) g^{\prime}(x)=f^{\prime}(x) f(x) \\
& f(x) f^{\prime}(x) \\
& f^{\prime}(x) f^{\prime}(x) \\
& \left(f^{\prime}(x)=\left(\frac{f^{\prime}(x)}{f^{\prime}(x)}\right.\right. \\
& f^{\prime}(x)=2 f^{\prime}(x) \\
& f^{\prime}(x)=2 f^{\prime}(x) \\
& f^{\prime}(x) \\
& f^{\prime}(x)=2 f^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& N=100000 \\
& f(x)=4.5 f(x)=4.5 \frac{1}{40} \text { A. Affer } 10^{4} \\
& \approx 1000 \\
& \text { Hfoo, } \sec x f(x) \\
& g(x)=\frac{1}{4.5} \frac{1}{\lambda} \\
& \frac{f(x)}{f(x)}=e^{t x / 5} \\
& \left.f^{2} x^{2}\right\rangle \approx \frac{1}{100} \text { cauptes } 1000 \\
& \text { famsane }=\frac{1}{2}\left(\frac{1}{40}\right)^{3} \times 10^{5} \\
& =\frac{1}{2}-\frac{l}{64000}
\end{aligned}
$$

(1) $\frac{3 \text { phouss }}{10}$

4 mondpornuds is pirfult petting ell of firm lime hi age x is $E(x)$

$$
z(x)=\frac{e^{-3 x}}{\lambda^{4}} \quad \mu(x)=\frac{e^{-x}}{t}
$$

$$
\begin{aligned}
& \Sigma(x)=R^{(x)} \\
& \varepsilon(x)=\frac{1}{x} 中^{3}(x) \\
& \operatorname{lov} x= \\
& Q_{i}
\end{aligned}
$$

$$
\frac{e^{-x}}{x^{2}}=f^{2}(x)
$$

$$
\begin{aligned}
& \begin{array}{l}
=2=\frac{1}{1} \frac{1}{20} 20 \\
2(x)=\frac{1}{10900}
\end{array} e^{-2 \pi} \\
& \text { Nos }
\end{aligned}
$$

IMMUNE AGENTS MAY PLAY Ca ROLE

Researchers find that antigens and antibodies can cause mitosis in cultures of human blood cells

A
ntigens and antibodies may play a role in leukocytosis and neoplastic disease.

This suggestion comes from two widely separated teams of researchers. A Finnish research group bases its hypothesis on the finding that antibodies can induce mitosis in human leukocytes. New Zealand investigators reached the same conclusion after getting similar results with the antigen tuberculin.

While the two groups have come to much the same general conclusions, both their experimental studies and their conclusions lie along different paths.

The Finnish workers- Drs. Ralph Gräsbeck, Clas Nordman and Albert de la Chapelle of Helsingfors' Minerva Foundation Institute for Medical Research and the Folkhälsan Institute for Genetics-immunized rabbits with a series of five intravenous injections of a preparation of whole leukocytes obtained from five healthy human volunteers. The resulting antisera, harvested
ten days after the last injection, were added to cultures of human peripheral leukocytes.

For a control series, serum samples were taken from some of the rabbits before immunization; one rabbit was "immunized" with saline; and serum samples from other nonimmunized rabbits were used.

Dr. Gräsbeck's group found that four out of five antisera induced mitoses in the leukocyte cultures. The fifth antiserum had a toxic effect only.
"The results demonstrate a clear mitogenic action," they report in the Lancet, adding that "since the injected leukocyte preparations contained other blood cells, one cannot say against which cell type the antibody responsible for the mitogenic activity was directed.'

It is possible that leukocyte antigens are liberated in rabbits and are contained in the resulting antiserum, but at present the Finnish investigators believe that an antileukocytic immune globulin is responsible for the effect.

LEUKOCYTES cultured in antileukocyte serum show numerous mitoses with blast formations (left). Effect is absent in cells that are grown with nonimmunized serum (right).
"Our view is that some kind of biochemical chain reaction is involved when a cell is stimulated to divide. Apparently, numerous stimuli can trigger this reaction, and antigens acting on presensitized cells are one such group."

Such stimuli, they add, could include both phytohemagglutinin (a well-known inducer of cell division) and antileukocytic immune serum. "Adhering to the cell surface, they cause the cell to divide, no presensitization apparently being required."

Findings from New Zealand

The New Zealand investigatorsDrs. R. R. Lycette, G. E. Pearmain and P. H. Fitzgerald-based their studies on the hypothesis that the mitogenic action of phytohemagglutinin (PHA) might have an immunological basis.

Substituting tuberculin for PHA in peripheral blood leukocyte cultures made from individuals sensitized to tuberculin, they discovered mitoses similar to those obtained with PHA.

They then took lymphocytes from five patients with severe hay fever, and cultured them with grass pollens. Again, they found that blast transfor mation cells and mitoses occurred con sistently after four to six days of incubation at $37^{\circ} \mathrm{C}$. Lymphocytes culture -1 from normal persons as controls showed no such effect.

Further studies on lymphocyte cu!tures with Sabin polio vaccine also produced blast transformation cells and mitoses in four to five days.

These findings, they suggest, may be a clue to a possible explanation of the abnormal blood pictures in such conditions as sarcoidosis, berylliosis, rheumatoid arthritis and Hashimoto's disease, where the lymphocyte is histologically predominant.

They also point out that the abnormal leukocytes encountered in routine differential counts in young children, particularly those suffering from infections, may be the equivalent of blast transformation cells present in lymph-ocyte-antigen cultures.

$$
\begin{aligned}
& x=\frac{f(x)}{g(x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=1 / d \\
& \left(\frac{984}{}{ }^{\prime \prime}\right)^{2} \\
& \frac{f(x)}{[f(x)]} \\
& f(x)=\frac{1}{x}\left[\frac{1}{x}(x)\right]^{2}=\frac{e^{-2}}{e^{2}} \\
& f(x)=1 / 2\left[\frac{1(x)}{\varphi(x)}\right]^{2} \text { whira } \\
& \left.\frac{q(1)}{(4)}=4.5\right]\left[\frac{1(x)}{}\right]^{2}=\frac{1}{20} \text { Nuxt mithen } \\
& \text { (}(x)
\end{aligned}
$$

（14）

$$
\mu(x)=\frac{1}{2}\left(\frac{1}{20}\right)^{3} \text { (w) }
$$

（15）$\frac{d}{d x} \frac{d x}{f(x)}$
（16）
fince 1
（17）
（18）
（土1）$\quad f(x)=p^{2}(x)$
（22） $e^{-2 x}$
23
$24 \cdot) d(x)=K^{2}(x) e^{-n}$

$$
l f(x)=\lambda e^{n / 2}
$$

By thlfonewtintiong and Rusidicny （1）mith $\gamma(x)$ 和＂the＂dewting for鋫 the＂denthr mat of＂the $f^{\prime}(x)$

Hir damghters hove femer thau No E $\frac{4 N}{2}$ lim muny miell lavie less eg GN

$$
\frac{\operatorname{y}(\Delta N) \cdot\left(\frac{\Delta N}{2}\right)}{g(\Delta N)} \quad \frac{g(x)}{f(x)}=y\left(\frac{\Delta r}{2}\right)
$$

Poleab that nuther has 4 N 4WH
$\xrightarrow{\Delta N}$
g

Int muler if "An mumhens "N depines an x Crothot hatf of inde in Mnals bould live to x and líg boers
 Hhir damghters hove fimer thauNo $\overline{\text { E }}$ $\begin{aligned} & \frac{4 N}{2} \operatorname{Ham}_{\text {and }}\left(\frac{\Delta N}{2}\right) \\ & g(4 N)\end{aligned} \quad g(x)=y\left(\frac{\Delta r}{2}\right)$

Priseab thit nother has $\triangle N$
W

Thase who nurvisue

a MeNRir mesn Nulme No-IN and of throe whw hrve mill of a yurvian wsthe This nown natue a frootitur vi(x) mundr marivice

$$
\begin{aligned}
& 2(p(x)-a)=f\left(\frac{a m}{2}\right) \\
& \text { if } f(x)>f(x)
\end{aligned}
$$

molaw lurtyft far a receca sudtas to hove IV hiznud onitsine sulue

$$
\begin{aligned}
& G\left(\frac{a x}{2}\right) \\
& \frac{2(f(x)-a)}{2(f(x)-a)}=\frac{g\left(\frac{4 x}{2}\right)}{g(4 x)} \\
& \frac{g(x)}{f(x)} \leq \frac{g\left(\frac{a x}{2}\right.}{g(4 x)}
\end{aligned}
$$

hahe anx;' Hase is an Atsu Mrat $1 / 2$ off thoo nelso hoze an n moller Hran no- Δx mell morue fo x

$$
R(x)=a+1 / 2 g(4 n)
$$

if all mathers thene ane
O(4x) subu fall in sume cafeefosy
 if the intanespling dwugh kev nitre are Aunythers of moch suapluess ave lasyes than

$$
\begin{aligned}
& g(\Delta \eta) G\left(\frac{\Delta u}{2}\right) \\
& 2(h(x)-a)=H(\Delta x)
\end{aligned}
$$

1, wose

$$
g\left(\frac{1}{2}\right)=g
$$

4)

$$
\frac{f A}{f(x)}=g\left(\frac{A}{2}\right)
$$

OX $f(4)$ imphuser $f(4) 9\left(\frac{4}{2}\right)$ ano
dunthins "4mutres blelow N" (behw N) is $V\left(\frac{A}{2}\right)$
 4(4)

$$
K=[q(x)]^{2} K
$$

Whut in prilinbe of hemxle hroving $n(1)$?
foub Mivar Pionit $\left[\frac{x+n}{2} ; n,\right]$ ohuyther having ns if mather
\qquad

If rpuridavd dezscalione is slioflex bsel, It licu Hucery
Dure sumsire An aye
to werich $21 / 20 / 0$ of ma K get

$$
\begin{aligned}
& \text { pxpulxfion mumoves? } \\
& \frac{2.5}{2}=1.25 \\
& \frac{5,2,05}{4.875}
\end{aligned} \quad \sigma=2.24
$$

$$
\text { for } \sigma=\ln 2
$$

$$
\frac{5000}{3606} \text { or } 26 \%
$$

$\frac{26 \%}{2.5 \%}$ somglaly floctor 10
in ur cose foekorft 4.5 for $~ u=3$

$$
\frac{f(x)}{f(x)}=\frac{f\left(\frac{1}{2}\right)}{f(\Delta)}
$$

This sedencinizs \triangle
 in the eproming of

$$
\text { Pissan for formin }=\frac{n_{1}+m_{0}}{2} ; x^{2}
$$

Prelable for dauphter hos r-
Off Nambers H Hese ingen popmetation whase mather had (hese prodab that g(e)

$$
\begin{aligned}
& \begin{array}{ll}
\text { KIC V } \\
\text { VIC }
\end{array}
\end{aligned}
$$

Beard (Pat.livilap)
FA1 5295 Or. B. Beryamin Mminsori

Peant Arsmance Co kito (high Aobern. Low dow w.C.I. Ho Lban 8441

$\begin{array}{ll}(4) & (5) \\ 2 & 3\end{array}$

$$
\begin{array}{llll}
4 & 5 & 4 & 5 \\
2 & 3 & 3 & 2
\end{array}
$$

She horan Arxy
Rabbit
(4) (5)

Buthor $4 / 4$ Athew $5 / 5$ Atoposing mother ímumbed se shat has untist.
Nowluor and alor antulf las vuy little 5 and linge annumb of (4)

$$
\text { Dndinast mation }[4]:[5]=2 \text { hol }
$$

Nature

Moruhtenic Node ovlls (matimimuisised adnlet less tham 1% if alls sems he make anlf attalipre
校 An $\mathrm{H}_{3}(5)$ antiola

(4) $\quad(5)$

23
4

5	4	5
3	3	2

Is foly $y^{\prime} / 2$ i/y at the finitreue

$$
\frac{\frac{d \varphi}{d y}}{y}=e^{-\lambda y}
$$

$$
\begin{aligned}
& \sqrt{x e^{-x^{x}}} v \\
& u_{x} v e^{-x}=-e^{-x} \\
& \frac{1}{x} e^{-x}
\end{aligned}
$$

$$
\begin{aligned}
\int^{y^{\prime} v} & =u v-v^{\prime} u \\
& =-e^{-2 x}-e^{-x}
\end{aligned}
$$

$$
H A n_{0}=y_{b}^{x} p \times k=\left(\frac{b x^{2}}{2}\right.
$$

H
1 (x)dxpmender firy is $2(x) d x$
prob that 1 hualt with Coble sombe nimy henarea x nue $x t$ NT is $\mu(B) d x e^{-\mu(G)}$
muber of dendles $f(x)$ $\frac{48}{t_{0}}$

$$
\begin{aligned}
& f(x)=e^{-\beta x} \\
& x \text { hat } n=\int^{x} e^{-\beta x} d x=\frac{-1}{\beta} \int_{0}^{e_{0}^{-\beta x}} \Delta x
\end{aligned}
$$

$$
\text { Whal } n=\frac{t}{3} e^{-3 \times 0} \text { Enctepex }
$$

mear

$$
\begin{aligned}
& \left\{\frac{d}{d l}\left\{\frac{4 e^{-\beta x}}{\beta 5} x e^{-\beta x}\right\}=\frac{\operatorname{Th} x}{} e^{-\beta x}+\frac{x}{\beta} e^{-\beta x}-\beta e^{-\beta x}\right. \\
& \frac{d}{d x} v v=\omega \\
& u=-\frac{1}{\beta} e^{-\beta x} v v-v^{\prime} u=v^{\prime} 2 \\
& \frac{-x}{\beta} e^{-\beta x}-e^{-\beta x}=\int_{0}^{x} x e^{-\beta x} \mu x \\
& \text { Cuch: }+\frac{x}{x} e^{-\beta x}-\frac{1}{\beta} e^{-\beta x}+\beta e^{-\beta x}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{x}{\beta} e^{-\beta x}-\frac{1}{\beta^{2}} e^{-\beta x}=\int_{0}^{1} x e^{-\beta x} d x \\
& \frac{d}{\alpha x} L=+x e^{-\beta x}-\frac{1}{\beta} e^{-\beta x}+\frac{1}{\beta} e^{-\beta x} A \in \frac{1}{\beta} \\
& y=\frac{1}{\beta^{2}}-\frac{1}{\beta^{2}} e^{-\beta x_{0}}-\frac{x_{0}}{\beta} e^{-\beta x_{0}} \\
& y=\frac{1}{\beta^{2}}-\left(\frac{1}{\beta^{2}}+\frac{x_{0}}{\beta}\right) e^{-\beta x_{0}}
\end{aligned}
$$

 befuneen x and $x x+$ del
sumairiong

$$
\begin{aligned}
& \text { at } X \sqrt{N}=\text { Cunst } \\
& N=\frac{1}{(\Delta t)^{2}} \quad N=\frac{1}{(\Delta t)^{2}(4 t)^{2}}=\frac{1}{N N}
\end{aligned}
$$

$$
\begin{aligned}
& \left.g_{2 g(2 \sigma)}\right) g(\sigma) \\
& 29(2 a) \\
& \text { Pratutertity if mutherthoun N }
\end{aligned}
$$ Gruosian.

Chuk ningettmix It mather hiopindf(20) ther modeatio thrue medion is inangeide! asmine miniace $\frac{i+1}{2+}=\frac{3}{2}$ and $\sigma \leq \sqrt{\frac{3}{4}}=\frac{5}{5}=0.86$ dumphter at Axt $\frac{1}{0.5 \sigma}=1.157 \sigma$ $\mathscr{L}(2 \sigma) \mathscr{C}(\sigma=1015 \pi)$ t. $\overline{f(2 \sigma)}$
e for muther ta be Ihepain σ $=g(\sigma=1.157)=$
$.12,30$
pint $N=\frac{1}{4 t}$

$$
\int \frac{1}{x}=\operatorname{lnc} x
$$

onghto $2_{2 \sigma}$. Udedelices

$$
\frac{1}{2} \varphi(2 \sigma) g(2 \sigma)=C\left(\theta_{1}\right.
$$

cut $x_{0}=$
$\frac{\mu}{2}$ inucken onvel la
\square
patang ho finis hav hi

$$
\begin{aligned}
& \text { is }\left(\frac{1}{\lambda}\right)^{2} \frac{1}{2} \sqrt{(2 \sigma)} \\
& y^{2}=\frac{1}{2}=10 \\
& 10^{5}=2500 \\
& 10^{5}=6 \text { couple }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Aseculstave }}{\frac{f^{\prime}(x)}{f^{(x)}}=-c e^{b x}}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{f^{\prime}(x)}{c \infty} e^{-b x} d x \\
& y=\int_{x}^{\infty} \varphi(x) d x=\int_{x}^{\infty} \frac{-1}{c} \varphi^{\prime}(x) e^{-\frac{b_{x}}{d x}} \\
& d\left(w_{R} u\right)=\frac{d h}{d_{2}} 2 \\
& x^{2}(x)=\int \frac{1}{y(\xi) \varphi(x+\xi)} \boldsymbol{y} \\
& I^{\prime}(x)=c_{x}^{*} e^{\alpha x} \quad \varphi_{1}^{\prime}(x)=C_{\phi}^{\varepsilon_{0}} \\
& P(\xi)=e^{\frac{(\xi-\xi)^{2}}{\sigma^{2}}} \\
& \frac{d a_{n} f}{d_{x}}=\ln _{0} c_{0} \operatorname{tax}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{1}{2 \pi} \ln y\right)=\left(e^{a t}\right. \\
& 1-\left(1-\frac{1}{Q}\right)^{2} \\
& 1-\left(1-\frac{2}{Q}-\left(\frac{1}{Q}\right)^{2}\right) \\
& \ln \frac{2}{Q^{\varepsilon}}=\left(\ln 2-\frac{1 \pi}{2}\right) m \\
& \left.m \xi=\frac{2 a t}{2 \pi}\right)
\end{aligned}
$$

Puming hume he
 senches l'zult in neorfutere porpming tuarh in stuminy ayingy?
 Nut om be owne mind nul ulf hue mindigytle af inj process thess sectir hored ding $\left\{\begin{array}{l}\text { Now rowhy } \\ 7 / 1 \\ \text { renh }\end{array}\right.$

$$
\begin{aligned}
& \frac{d x}{u v}=v^{u v+v v^{\prime}} \\
& u v=\int_{y}^{u}+\int v v^{\prime} \quad y=u v-\int v u^{\prime} \\
& -y_{2}=P_{(x)}-\int g(\xi) \varphi(x+\xi) d \xi
\end{aligned}
$$

 unvuph A_{n} pemit axclavouge st of Lurit
 mhich is weathly qismacel hut unt toren elnnuos bulvel ard thingly absovthed.
ieda nat Ánowa
hyler havesen
is due A yen गolt
sudt it m huw mula ano of
Io mquico ran the na nosicober ons whing's UWMiende mitani culd qiun in ouequroset Acon
the purpmive this pugoes
 ennurier iy Nefleminin
mean of minturs or Fitpheis
Thit pretertion in hoed ou the
M $x \rightarrow+)^{2}=$ Cumsitentions

orytrine divetrien If tany lience
Gumend therrem:
prediet suthether Mris' mill, hmpgre and c 4 os milien lent to dxan son sxlle. taexaur ve Mre Ballavis! yuestian:
2σ males
aserveal senthening of ogl at Aleath
wese all due, gain Ito der. if ogen $=9$ yuro
Aital pos fatal youi $=\sqrt{x} 0$

$$
\sigma=\sqrt{3} n=\frac{u}{\sqrt{3}}
$$

rabul p ain $(n)=x \sqrt{3} \times 0$

$$
\begin{aligned}
& \text { hor } n=b \\
& \text { for } x_{n}>x \\
& \begin{aligned}
\text { Latal yai } & =20 \\
4 & >
\end{aligned}
\end{aligned}
$$

ver) Natar «
Dronf $=2_{2} \quad$ ivyen $=$ q reess

$$
\begin{aligned}
& 10^{2}=q^{2}+x^{2} \\
& x=\sqrt{100-81} \sqrt{19}= \\
& M \operatorname{Gin}=\sqrt{\sin }=\frac{10}{\sqrt{2}}=
\end{aligned}
$$

In and psisvie sunn is alsoue piimon with ancrive af x Mmpfther is then prissan. mill macreqe at $\frac{n}{2}$ What is ghalt? rhipt is

$$
\frac{x}{2}=1.5
$$

$e^{-\left(\frac{n_{0}-n}{n_{0}}\right)^{2}}$ dimpther heprucl 20

$$
\begin{aligned}
& \frac{\int(2 \pi) \frac{y(1.23 \sigma}{\sigma_{1}^{2}+D / 川}}{\left.\frac{\sigma}{\sigma_{0}}\right)} \\
& \text { hum is at } \sigma \text { from mion } \\
& \int_{20} \cdot 0^{2}=\left(\frac{1}{44}\right) \left\lvert\, \sigma \times \frac{\sqrt{\sqrt{2}}}{\sqrt{2}}=\frac{\sigma}{\sqrt{2}}\right. \\
& \text { auth } \frac{0}{1.23}
\end{aligned}
$$

Tex人

$$
\begin{aligned}
& \sigma=\frac{r_{x}}{\sqrt{2^{3}}} \text { su }
\end{aligned}
$$

（n，Lunce pin $>$ for $n \geq 1$

$$
\begin{aligned}
& \frac{\left(\frac{\left.x_{0}-x\right)^{2}}{x_{0}}\right.}{x_{0}} e^{\frac{y_{0}-y}{y_{0}}} \\
& 1 \\
& \text { 参 } \frac{x^{x}}{r^{1}} e^{-x} \\
& \frac{K}{x}\left(\frac{1}{2}\right)^{x} \frac{x^{x}}{x!} e^{-x}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{N_{1}-N_{2}} \\
& \frac{t_{0}}{N_{0}}-N_{\infty}
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\frac{\sigma_{1}^{2}-\sigma_{2}^{2}}{\left.R_{1}-N_{2}\right)} \\
\left(N-N_{2}\right) L=\Delta t \\
\frac{\sigma_{1}^{2}-\sigma_{2}^{2}}{\Delta t}=\tau \quad \frac{\sigma_{2}=\sigma_{2}^{2}}{(\Delta \bar{t})^{2}}=\frac{1}{\Delta M_{2}} \\
N \approx \frac{(\Delta t)^{4}=\frac{1}{\sqrt{N}}}{\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right)^{2}}
\end{array}\right.
$$

$$
\begin{aligned}
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots
\end{aligned}
$$

Ansther

$$
\begin{aligned}
& \sigma^{2} \text { mathre }=\frac{N_{0}}{2}+\frac{N_{0}-\Delta N_{0}}{4} \text { k } \\
& \Delta N_{0}=0 ; \sigma_{\text {manlege }}^{2}=\frac{3}{4} N_{0} \\
& \sigma_{0} a_{2}=\sigma^{2}(m)+\frac{3}{4} N_{0} \tau^{2}-\frac{\Delta N_{0}}{4} \tau^{2} \\
& \text { munthprs] }=\sigma^{2} n \neq 110 \tau^{2} \\
& \operatorname{Mr} f=\frac{1}{4} N_{0} \tau^{2}+\frac{4 K_{0}}{4} \tau^{2} \\
& F_{m_{0}} E_{0}=\frac{\Delta N_{0} \tau}{2} \\
& \frac{d N t}{t\left(N_{0}\right)-\bar{x}_{0}}=\frac{\hbar}{2} \frac{\sum_{N_{0}} \bar{\Delta}+}{\Delta N_{0}} \frac{1}{2} \tau=\frac{1}{2}\left(W W_{0}+1\right) \frac{L}{L} \\
& =\frac{1}{2}\left(\frac{N_{0}}{\Delta N_{0}}+1\right) \tau \\
& \frac{\operatorname{ar} t}{\left(t\left(m_{0}\right)_{0}\right)^{2}}=\frac{4\left(\frac{1}{4} N_{0} \tau^{2}+\frac{\Delta N_{0}}{4} \tau^{2}\right)}{\left(\Delta N_{0}\right)^{2} \tau^{2}} \\
& =\frac{N_{0}}{\left(4 N_{0}\right)^{2}}+\frac{1}{4 N_{0}} \\
& =1+\frac{1}{\sqrt{N}} \\
& \begin{array}{ll}
\sigma^{2} d i f f= & \frac{n}{2} \tau^{2} \\
\operatorname{shft}=\frac{n}{2} \tau & \frac{n^{2}}{4} \tau^{2}
\end{array} \\
& \frac{(\operatorname{shoft})^{2}}{\operatorname{hon} / \sigma^{2}}= \\
& =\frac{1}{2} n
\end{aligned}
$$

$$
\begin{aligned}
& \bar{t}-\overline{t_{2}}=\frac{\sqrt{N}}{A} \\
& \frac{\sigma_{1}^{2}-\sigma_{2}^{2}}{\Delta E}=\tau \\
& \frac{\sigma_{1}^{2}-\sigma_{2}^{2}}{[\Delta \bar{t}]^{2}}=\frac{\frac{1}{\sqrt{N}}}{A} \\
& = \\
& \frac{N a}{=} \\
& \frac{A}{A} \frac{\sqrt{N}}{A}=\frac{[\Delta t]^{2}}{\sigma_{1}^{2}-\sigma_{2}^{2}} \\
& \frac{N}{A^{2}}=\frac{[\Delta t]^{4}}{\left[\sigma_{1}^{2}-\sigma_{2}^{2}\right]^{2}} \\
& \left(\bar{t}_{1}-\bar{E}_{2}\right)^{3} \\
& \sigma_{1}^{2}-\sigma_{2}^{2}
\end{aligned}
$$

$$
\sqrt{\frac{3}{4} N} \sqrt{\frac{3}{4}} \sqrt{N}=1.7
$$

$$
\begin{aligned}
& \sigma_{0}^{2}-\sigma^{2} \text { (mulhers } n=3 \text { ru }=\frac{m}{2} \tau^{2} \\
& \text { shift is }=\frac{n}{2} \bar{c} \\
& \frac{\sigma_{0}^{2}-\sigma^{2}(\text { mathes })}{\text { shopt }}=\tau \\
& A 0_{0}^{2} A \sigma^{2} \text { sporquicipi } J^{2} \\
& \frac{s h i f t}{2}=\frac{n}{2} \\
& \frac{[\operatorname{shn} H A]^{2}}{\sigma_{0}-\sigma^{2}(\text { mothes })}=\frac{\frac{x}{2}}{2} \\
& m=\frac{2[\operatorname{sith} f t]^{2}}{\sigma_{0}^{2}(a \operatorname{s})-\sigma_{m}^{2} \text { (uls) }} \\
& \int x^{2} e^{\frac{\left(x_{0}-x\right)^{2}}{d x}} \\
& \int\left(x^{-\infty}-x_{0}\right)^{2} e^{-\left(x_{0}-x\right)^{2}}=0^{2} \\
& x^{2}-2 x_{0}+x_{0}^{2} \\
& A^{2} y-2 x_{0}^{2}+x_{0}^{2}=0^{2} \\
& \begin{aligned}
y-x_{0}^{2} & =\sigma^{2} \\
y & =x_{0}^{2}+\sigma^{2}=z^{2}+d^{2}
\end{aligned}
\end{aligned}
$$

hyper
Anncil, II nuay
Enopherve

Sovid Plass Pro/LichRun Sbue
$\{$ Papnl. Gin: Allam ANlevensin

Naupe . T. Von den Brinte Cuntal Stufietócal office perype ast-Driniand Atr.
IV.Y. Pipilitiun Brances U,N.

Trmeselman [matrop. Live]
(brsonghve Whto-] Mael.fer

$$
\begin{aligned}
& \sigma_{\text {min }}^{2}=n \bar{\tau}^{2}+n \lambda^{2}+\sigma^{2}(n) \\
& =-\frac{\pi}{2} \lambda^{2}+\sigma^{2}(m) \\
& \text { 酶 } \bar{\tau} \text { is kmurn }-A \\
& \text { CAVALLI - SFOREX } \\
& 1156 \\
& \begin{array}{l}
\text { Hotel "de Wittebrug" } \\
\text { copposite Madurdaug) }
\end{array} \\
& \text { (opposite Madurdam) } \\
& \text { Rewturn }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1* } \\
& 3 \text { 小1315 flmimoty }
\end{aligned}
$$

+'rume Nos datherves
\square

IV hemirine i $\frac{\text { Anflyonve }}{\text { Thremine }}$

1

Wadaliny hom
Penvose
R.A.

Tatingto Pmp y Butury
alan
(1)

Horerminy $\left\{\begin{array}{l}\text { Sutim K.C. L.A } \\ \text { Ames }\end{array}\right.$
thomaptalise
2.) Mendulation
2.) bi) Pabority mutants \{entriain
say "2" hmehen out
3.) eqrantor 0 Beckwith (Pmlu)

miverme makes 'zuse also phimblasicull new ware Fhoming tien.e

BuanMi Mhellaigal

I caye

$$
\text { 5wonlout }\left\{\frac{116}{\frac{112 ; 000}{1125 / \text { malesix }}}\right.
$$

Y4015 4,000000 nalume
Auter Hundbust on Anchupial bule (IIS.A.) (1960) W.S. 名utior Henmer 24 mporith] Ge spon
orvtancock 2.L.
unimal Breending Revench Corgan S. Oswald RA holinformuph 9 .
Avtle Edimburugh

Turhes
Whail 6 ore meen per gemention

Crimpe of sex in amplistría Watochí Chang (Tard)

$$
\begin{aligned}
& \sqrt{\left(x^{y}-y\right)^{2} e^{\left(x_{0}-x\right)^{2}} e^{(y-y)^{2}} x_{x} d y=\left(x_{0}-x-y-y\right)} \\
& \left.y_{y}+y-2 \bar{x}-2\right)^{2} \\
& \sqrt{2} \text { in mimif } \sqrt{\frac{2 \sigma^{2}}{(x-y)^{2}}}=\left(x_{0}-x\right)^{2}+(y-y)^{2}
\end{aligned}
$$

Sidenve Vali4iNo 3583
H.7. Surti's Radinlewalapt A.L. T Eleery Ex. Bundemossth, laudow 1961 p. 193
Hype of Mowther of birth ief heetf on langeves

CGmeley and Hiz. Iunti's one. Nat. Rend. $\sqrt{2}$. 49 626, 1963 (Cnnubsume afturtions in lines)
K.fShemon (Curris Rushiation Res. \& $15,774,1961$
Curtas and comuly Rasitiutivin Res. Is 337.1963
Curpis II Pt has buen estinuatud Naw -692 the immin anin lawses abunt 10, ano boun cells mez dnz.."
Cinhis 'Chivinum, Bornlay Aepet Prophtionen Nat. Lab. Hapor. N. I.

$$
\int(x-y)^{2} e^{-1} e^{-1} d x d y
$$

AA Aa au
wyres at undabes
tamplonoh donmoses H.O. Callau

$A B$
$A C A$

Parker, Has mell
Anmur Popent Ple Pagu
Chichern ytue hifst; y ihmore
firmis Hully qis for it funse. Parion vilherss Freigntec
Daid Gemals curatinovisim) \subset

Viunnia 7764 ginse Whige

$$
\begin{aligned}
& \text { leolecrer } \\
& \text { revain Axhusdu } \\
& \frac{\text { Leprx } \rightarrow \text { th }}{\text { arsuy thess }} 6 \\
& \sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sigma \quad \frac{\sum|x-\bar{x}|}{n}=\text { mem divinax } \\
& 203 \text { pes } \frac{2}{\sqrt{4 \pi}} \int_{0}^{\infty} x e^{-x^{2} / 2} d x \\
& 6_{2} \sqrt{\left|x_{1}-x_{2}\right|}= \\
& \Sigma\left(x_{1}-x_{2}\right)^{2}=2 \Sigma\left(x_{1}-\bar{x}\right)^{2}
\end{aligned}
$$

fimly Goass

- War mid Mums RotriniAt Ro fro Ro bre bruch mumel
M.L.D.

Maning Orem
thuy Duman
General Piere GALLOIS
(Bloch-Dassault) Rue

Rembrand. PARSS. 8.

Prop. Scheunes - Bonn Univessity
Theo Sommer - Zeitung "die Welt" Heamburg withelm von Cornides. Europa-Archir-Born.

Mikhail I. Bruk,
Senior Editor, the Novosty (Hewis)
Press Ageney,' Pushkin Square,
thoscas, U.S.S.R.
Anvaldi(Ennztic) Home $50-28-91$

Helfrnith
luep
Movedis
The Sommens Salivince? Pap. Mead

MSGR P MARCINKUS
Vaticand City
trapais be Pose
Undré Bcanfine Drene, Dassault Undse Fontaine ${ }^{-1}$ Le for firkixite finders

$$
\begin{aligned}
& \text { Tre ExdeNeN CERN } 342050 \\
& \text { Dim Fixecuan } \\
& \text { Nuw fósupsman } \\
& \text { 10. Gt. Twnmotile LinC: } \\
& 1100-3 \mathrm{mx}-4000 \text { norils } \\
& \text { Encombter } \\
& \text { The riwiter; helwin tasky }
\end{aligned}
$$

Waqhañ Young : 100 Bayswater Ro, London Wz. (lonkliamer) Ainisastadon 4187

offici: Recliolsremen! 444041
R.P

DUBARLE
35 Rue de la GPaciers
Paris 13^{2}

Ir 11 Gaulle:
Etionne BURIN_DES - ROSIERS_ Pritimen d La Réputlique - Palaii s l 'Elyoie. |Geud Secuetary of the PD.)
Pione GENEVEY. Secritariat gènéral de Ca Défuse nationale - 51 Bonlevard de LatourMaubourg. Paris(VII) SoL 4204 (Conseiller pomble désarmement)

PlAPAAtA, L.A; Fi hypridle/ huo inuil mixic if F, hoy foride live shasteming

Bun Hintioner

 shridumy if inadiated aminual per 100 M . 25ner Nr tanthing yowes

Bullogh Rirlect all. H
Boptif mallyf
thurse-liver ||
Comea fluss
K. Lfuning; Canstmithe Ros
intre smin aldini suile
hathersistan six per a/200 n,

Gevall Leach. 110 Regents Park Row
Lowion NwI
[PRImrose 3776]
BBC Prodwer: Phitip Daly BBC Telersion Centse [SHEpherds Burh 8000] will contait yon in Senera someturie in neat thw days about long firm unterview

Bunalti (Hame) 35-66-816
office sz. Forti 4602
via Incamia 29 CNEN
830 mm Pref fiveomello
Axdane Navane
P
2.195

Sall manh - Reven wot teius
$\operatorname{miN} N_{2}$
150
A 37 for Fumoriceles $300 x$ leso ande
\square
LDrohor, enco of ampuycy
WORK CLERkenwell 0661 Pamiena limdMp
Home ESDALE SPEedwell 5860
58, wildwand Rd.
N.W.ll

41 Pratand

Stiftury Volkswaggewerk Nonurver Garlar-Brandt-Str. 7 (21.887657)
Klus von Bisrearck

Rovirdant des tiess Sater
Pef. RAOPACA, Rumuclen, 2ukituor fi二 bstfensclung

PM. BERGSTR AESSER, FREISURG

Prot. Dithlets (Dulbiataion dun All in hen tt) Cunaditign tmin
Lheven Ameler:
Brid whompures ((y 0)
Uve Nemreichrecomidos)
Anvscour
Peralal Framal Ronepaller $\neq 0$
Mnit Mreselson
Chiven Buuller

$$
\begin{aligned}
& \left.\begin{array}{c}
\text { Yrust Havs } \\
2 \text { Cand Priedsute. } \\
\text { Fsuntimi Lany }
\end{array}\right) \\
& \text { Fruntilin Leny }
\end{aligned}
$$

Bonle fumer

$$
12-15 \text { Suncory Hexfmar }
$$

16507 Ingereceiny, stigeles. R. 48 .
bother: Thichand vin Winmisher
Dicht (firge) Latter hir Rusis siver

Hatuthing in Oure Zart" grafin Douncraft

Frhe celer. perstenmaier
Sebpoder (palitician)
Prandt
${ }^{2}$ Goithenerf $\left(\text { ens } \Delta \cdot V_{n}\right)^{\text {? }}$

Av.di Busche lesi Besec Baind uun hichard W

funsi Gaop Bandisoin, Fontaimbican (Nnto) Strafe Rof

Bunationion
Rome
$\}$ clise

[C.H Boehnviruér Sulne, mpolheina]

Reyinalad Paget
Tusady night limm B.B.C.
WA Rumch BBC sham Th lmath Crossman
 sut mond mishosen 1/4

 Phome Sor unctry Sanes
WALSM Demis Healey 330
Tu A.Shevous Bly
Niestumintles Inde Stat.
Wel 1 pou rean hoymue Jones \downarrow
Wd $\frac{5^{30}}{7 \text { Ta unuals }}$
Mronntotew-3130 fmith So

Vhrup Al avin Club (The Ray)
3^{330} (an thymartit 25 (Pantoon fir.) Encountes
anbry Janes.

$$
\left\{\frac{9 \text { Vincent Sypare }}{1 \text { ponn }}\right\} \frac{\left.\begin{array}{l}
K \mid N G S \| C \text { Combr. } \\
50411 \\
(5285 i \\
\text { Ed Home }
\end{array}\right]}{[\text { hils }]}
$$

Lask Th 4561 [[保 Bryan Mealing]] HATimithio $2 \sqrt{50} 3^{30} \mathrm{pm}$ vanton. - Muspifer
arom gliknaw fluth Braunt Vipilout 6011
Flurman D171, thine chipstead sonvland 1434

(xamention Chorter Houbre esog s.C.l. Nen be. Bldy.
Losout faldschtuefer
$40 ;$
Rumeme Rd
Oflive TR 2775 Rumur Rd N.W.P
$\frac{\text { Oflee TR } 2775 \text { Primsse } 3362}{\text { Brmi Of Shrecker P.M.S. Bluchete }}$

$$
\begin{aligned}
& \text { Fax; Grist, 7atm (donestic) } \\
& \text { doved Wherel (fonerqu) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { anbyer Dinescax Wilson }
\end{aligned}
$$

Ving secunt thonefire (2) Whan nomal entlstore iniveedid si proxilgoed live e then D/tey 5 Muys yot ome get ankitend with aly ivouit Whin an an imet pith a poastipring

mow soith A Augsiman imnon-
mide mith attidsteres.- no anto lendy. -o

$1 / 2$

Renclags
liven (mareical)
Muilisson; Gmid bnesser

Dinfombiamic in mice / maless
,5,6 Mifinivit (
"1,6 Boispllmuin in zamose theth the 19 harus. -
" If hin holf tipe 4 durs
RoDminnintios netumis helweete
3. H_{0} G. m n wéks.

Rimunic if ornymus anulas setum of nos pusitandss. \qquad
Poralsted animal
mill shake, aitidenily if it recesixese
colls from on iomucirnd amimol mhich makes an hodaly
Dinulysud amimae seeximicep alls pmu nut immmeridel misnde in anpalie of numite

R.D Clarke Pmolential B-Brtiamin Maniniry of teack
wiffit pars. PERKS

- M. Redingtón paol Prudential.

Ed.Lem
The oncestry of the Raveq Fhied Rxymornd Deafel
$L=a+b 2$
sumpity $\mu_{,}=B e^{x \cdot x}$
thobbem

$$
=A+B e^{\lambda x}
$$

pabs

$$
=\frac{A+B e^{\lambda 1}}{1+D e^{\lambda \lambda}}
$$

Qumbers
HSAJ BSA
Rableix sdy "2lyfe
hime 3 tays
僱 Grixcheer (Anlion)
Is Mauc Arnoled = Foster
Gol: Alion Inym Jones
FLA 8841
off CON CEN 2000
fr. Jamies dy
13 es nunde- Lroice
(Lmis Henen nurates) Gmenantive

Tulian enitehely

Pr. Anvarh Anvinae Gevedies (W adrding hire) Exinksungh. -

Amanitla
Bor Horhous; sintrud sopelests
A
B
C
are therse in Grend bires in Arvit'; Herre Clighou Walthington
or Haws Rleplanalp, Panltry Hus baridry, hivr of hel Druis cal.-
mbead kines in Arichen there are blandifincival inden fersuble, - ash Ar.filmove fichaxt of ayriulture Catubrsdye In torty gan unld use calors.
Micher laves ho 15 years!
$A B$
AB

100 eygs $\frac{10 \text { ohay one } 10 \text { Ary } 3}{\text { finor or } 5 \text { monkt }}$ the．

$$
\text { mithin } 4 \text { mecks }
$$

no artithishatlay mioemineath ar in 者解民时 drochen． ups hutah in 21 doup
enct lahes 5 mouths fo lie alole
1 erch +15 hens gimes

$$
15 \times 5 \times 52 \text { mentes }
$$

Pngminese Mnaíl ＂l duzs affer 6 mueks smouts
set nyp one to one 5 ogg／preah or luo expy mo Aurenty mick

Bn't. Jumr, of lop. Path.

Muab Rich mond (Pallock)
Onviellanuse
Jabm Stlicus"
Mnndelstau repression is phave sressler:
Chmeh Hhmotirez
(astemar [in withe spothesize]
the broilde
James gonvins
pronget 55% mall $\frac{50}{0}$ boge.
F, bugporides (untay 5 mags nere)
rive
gets tunts disease
Grester; bavid
IMice|cBA
Quer Expeninizuto:
B Gss 6
Amuphrez Asherson
*skonas minithe (Yxe)

Tenp-senst B-gal (i) mutand
Parismut $30^{\circ} \quad e^{+} \quad$ S, $A=0.0006$

Daokin Rowefocer Fo Gepobble Formial (fienon muder)
Miso Tanner
Haminel Nersommbo Beodle
ω altes

$$
\text { meen } m_{3-0800-x 4004}
$$

wher Runsicaces his exxurpte, Bont welg amest a 2 mlio soves fos R, He has witt Hove ang thing nemehensibele aced M tre is asve ded tis ploce suill be lnkea G munther monfintic R ontse hiper Ahat Ge mont be cauytut. IGese is ur shordage if purre hic Rumbin?

If the kBS Mis canews Aluo In R is a sorz whz mut jurt fit hin thscexty ßnow thio. His usefwl' men Aasa on hr Rusvia munhd tionfie/Vly mo Nre R. He rimiur of tellics Hera Hint his mion hos Ar be replaeed

$$
\begin{aligned}
& \text { mat hone wivi fult thoxia no } \\
& \text { Anulist Pat B hut } \\
& \text { monul firtove houdft posishise } \\
& R \text { as a hnunot } \\
& \text { Anstun inlun pres fn } \\
& \text { aseskiny an keverodede of } \\
& \text { mer ffes vpiles for } R \\
& \text { Hehos dunc sanceth } \\
& \text { Nhat } \\
& \text { yourall } \\
& \text { as neprechensilble ande } \\
& \text { his wner }
\end{aligned}
$$

If the a more
I de suw lofirper it and 1 stroed with divief wiotur exehnuye betmen thea is mavill bide likely to be af hryt ohrakime and MK lnylund consed ha the an inhezral pork if the Nu Whinse sojsterva sto vore finert tu Ex ingncied, She urifht exelleencel vithouluin in der

apry inless
hr fin tuvinue lififlacife in

ap a mulin wotacR erencwe hum of to \qquad The hinclaind/ a/ moh shelless

the con the R-1t cuntroverges
 Ruroin suricel not moved myinot a hof Bertoin on Bux
\qquad mill move afrest fincel in in mindided owells mininitac dely of inno. is kurrpe

Vowiry alsomed nt dore nanye He problizal Mr gems in the presice of the Ite in be falonverch ll pises

L364 leanhide
isonglus eve cur he disue
But of the presiolent 'wo
 ly defanet.
 this it mahell de urve

 no xi/his momin ane sures unt esense Me fiet that, the perviling Mrefmi pemple ins sut hesen inorease If Mrefin remple ines nyt in in
be tno sumblele.

\qquad The Twin
there is macare of tuelyoucy Oh formbich ane anas the momiel
 mith is weck But/rom then nove numuun Un/ we he nisunquen to his miple. I mes shall numsied hivis firit mife and if wow oneryturbof Winil unsminge -if his milfe ot ank Mind wis no fruelf aphis. Nune of Mis annul shate B's self cmplidence. I in nof taroe te badil mis aud mur aysin and oome
 If the trun posk ìs जư a.? shap so xacht an ceshowe of struhesple sufuee shotee drieched ayxiurk ineh athers dempto
\qquad piemple miyht mell muslerpen n chunse fut somn
\qquad
\qquad
be bosing a ant on ay hinger

I num inncrive of remeras
ahoctian theit moyte be sived bue shuygst tis woult

Gefor vinctivi. is heiven eurene is
\qquad
\qquad miningy at mehteleweit is mon Curifur micthir N. - ponier $/ /$ Mu ancet
\qquad
Purl I
shoft trum firs puse
P位muse of the rappensty,
inporionty of her gtropt. shatiof hovees ni
Awson puninietinnu mommalet's thet
Ansspia woanld fovie \qquad apafiost wor if Are Allies tiststz bote live

Hre aotwent it nutunnkean miths nould

 a Closeitl, if Alveivia one ot hn clure atbes in Hestom Einngre nin A poowta thind inhets. that Rusira ines nhalitathe in Whos fusliotion in a
nixoindinsuthingene. A Amssim nopone proside nuwed be mure tivects ha vergoun in this farhdan in sonhentian

Natowst I Russtar serpsurse of Crizhe futare hinid wauld be mola mire bikely in sehumetrex pmoty

It nowath To une th reims likels that
Ansostan sapeon mompinmifi if the Arm
 Rusia poon responding in buts a pushion but 9 nuint mat nentare to mosche ony prenicfiun lisi ampunont moteld sut tovy bued si sulusstrien mosls any thuper.

1) Rinamine nimedes nuciole
2.) Numinul muckevplatile
3.1 Himus Cliiza

$$
\begin{aligned}
& \theta e^{x}=\frac{1}{f_{0}^{*}} e \\
& x=\operatorname{lnin} t+\left(\frac{\left.R_{0}-R\right)^{2}}{R_{0}}\right. \\
& =\cos x+x_{0}^{2}-2 x_{0} x+x^{2} \\
& \begin{array}{l}
=\text { Cunot }+L_{0}-2 x^{2}+\frac{\lambda^{2}}{v_{0}^{2}} \\
=2+(2-\lambda)^{2}
\end{array} \\
& \frac{d}{d x}=-2+\frac{2 \lambda}{\lambda^{2}} \\
& \text { suncibuns }=\int_{0}^{0} d x=\left[\left(\operatorname{Cmos}_{1}^{2}+v_{0}\right) \lambda_{3}\right. \\
& \left.-\frac{\lambda^{2}}{2}+\frac{1}{3} \frac{\lambda^{3}}{t_{0}}\right]^{0} \\
& \frac{d x}{d x} \text { /rmpiners }=-2+\frac{2 \lambda}{L_{0}^{2}}\left(\left(\operatorname{const}^{2}+t_{0}\right) \lambda\right. \\
& =\frac{-2}{\sin t+x_{0}} \frac{1}{\operatorname{dt}}
\end{aligned}
$$

those motor survie $\mu_{1} x$ hove a distritution of N
and of thove mux honce ins bitbutboen X(x) Surnave
$w(N, x)$

$$
\begin{aligned}
& f(x)]^{2}=f(x) \quad \xi=\frac{t}{2 \pi \tau} \\
& f=\left[1-\left(1-e^{-\xi}\right)^{2 \pi}\right]^{m-r} e^{-x ⿱ 亠 幺} \\
& (m-r) \text { is vally }=m \cdot e^{-\frac{r}{m}} \\
& \text { and } e^{-x \xi}=e^{-m\left(1-e^{-\frac{x}{m}}\right) \hat{\xi}}
\end{aligned}
$$

$$
\frac{x^{2}}{100}
$$

$$
\begin{equation*}
\frac{x^{2}}{100}=\frac{\left(\lambda_{0}-\lambda\right)^{2}}{x_{0}} \tag{Cmo}
\end{equation*}
$$

apmel matust for K befneem to nowl
$\frac{X}{10}=\frac{k_{0}-k}{\sqrt{1}} \quad \lambda_{0} h$ igh

$$
y=\int_{\lambda}^{0} x d x=10 \int_{\lambda}^{0} \frac{x_{0}-1}{\sqrt{x_{0}}}
$$

$$
\begin{aligned}
& \begin{array}{l}
f=\left[1-\left(1-e^{-2 m \tau}\right)\right]^{m} \\
\ln f=m \ln \left[1-\left(1-e^{\left.-\frac{t}{c} \frac{1}{2 m}\right)^{2}}\right.\right.
\end{array} \\
& P_{n}=\frac{n^{r}}{r!} e^{-x} \frac{\pi}{=\frac{x}{r}} \\
& x_{\text {munadenn }}=\sqrt{4 m \ln \frac{1}{f^{x}}}+\operatorname{ta} \frac{1}{x^{*}} \\
& e^{\frac{\left(x x^{2}\right.}{4 m}}=\frac{1}{1+}=\frac{1}{1_{0}^{*}} \cdot e^{+\frac{x_{0}-k}{x_{0}}}
\end{aligned}
$$

