INFORMAL REPORT AND INDEX OF

NAVIGATION, DEPTH AND MAGNETIC DATA.

(Issued April 12, 1978)

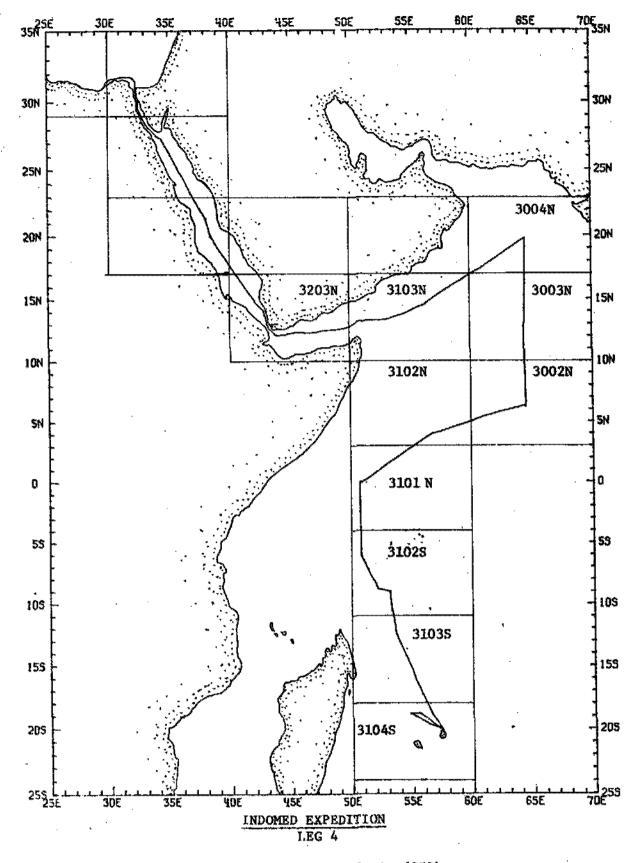
INDOMED EXPEDITION

LEG 4

Alexandria, Egypt (16 December 1977) to Pt. Louis, Mauritius (22 January 1978)

R/V Melville

Chief Scientist - H. Craig (SIO)


Resident Marine Tech - S. Witherow

Post-Cruise Processing and Report Preparation by S.I.O. Geological Data Center

Data Collection Funded by NSF Grant Number OCE76-03936 Data Processing Funded by SIA, NSF and ONR

NOTE: This is an index of underway geophysical data edited and processed shortly after the completion of the cruise leg and is intended primarily for informal use within the institution. This document is not to be reproduced or distributed outside Scripps without prior approval of the Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92093.

GDC Cruise I.D.# 169

Chief Scientist - H. Craig (SIO) Ports: Alexandria, Egypt - Pt. Louis, Mauritius Dates: 16 December 1977 - 22 January 1978 Ship: R/V Melville

TOTAL MILEAGE

- 1) Cruise 6520 miles
- 2) Bathymetry 4493 miles
- 3) Magnetics 3830 miles
- 4) Seismic Reflection none collected

Informal Report and Index of Navigation, Depth, Magnetic and Subbottom Profiler Data*

Contents:

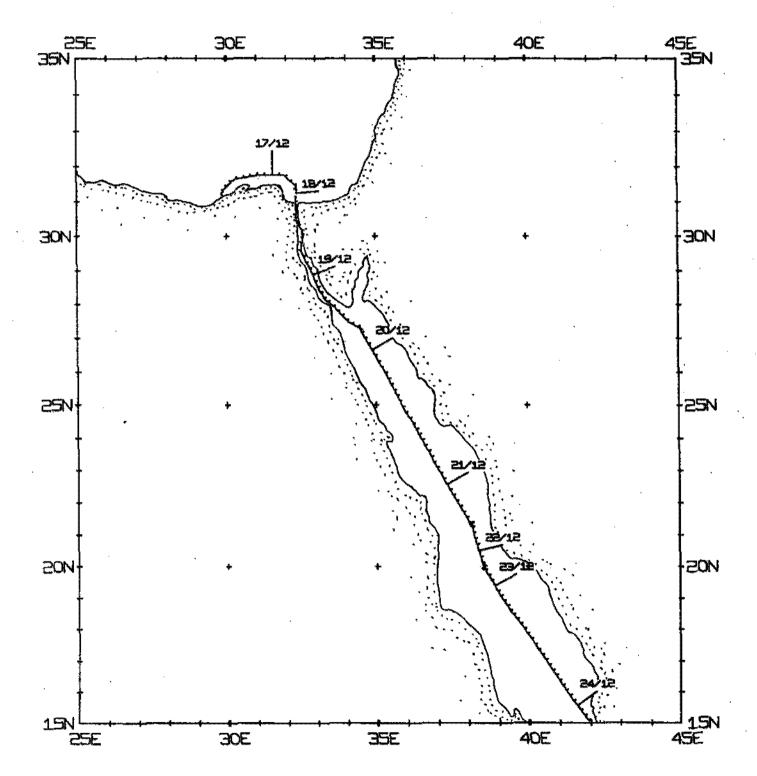
- Index Chart gives track of cruise leg and boundaries of depth compilation plots (see below).
- Track Charts annotated with dates (day/month) and hour ticks. The scale is .3"/deg. long.
- Profiles Depth and magnetic anomaly vs. distance. Dates (day/month) and positions of major course changes (greater than 30 degrees) are annotated. Sections of track having subbottom profiler (airgun) records have a solid black line along the bottom of the profile.

For information on the availability and reproduction costs of data in the following forms, contact S. M. Smith, Curator, Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92093. Phone: (714) 452-2752.

1. Navigation listing of times and positions of course and speed changes, fixes and drift velocity.

2. Depth compulation plots - in fathoms (assumed sound velocity of 800 fm./sec.) at approximately 1 mile spacing, plotted at 4"/ degree with standard U. S. Navy Oceanographic Office BC series boundaries (see index chart).

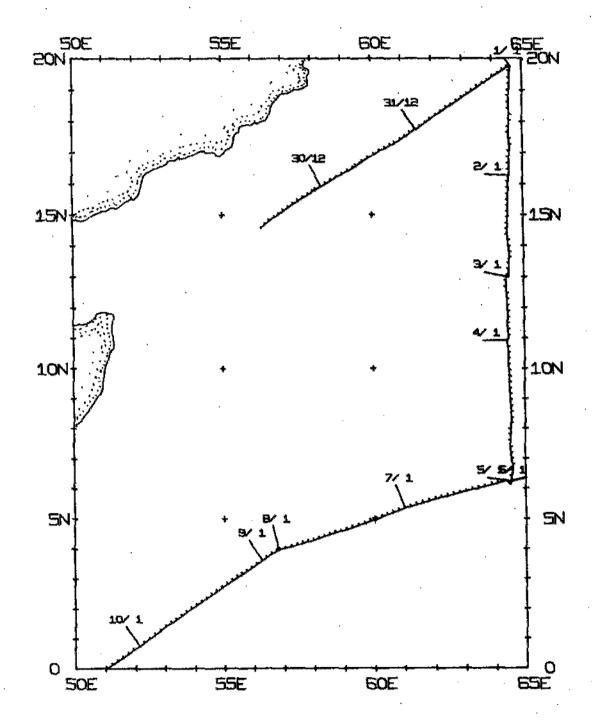
3. Plots of magnetic anomaly profiles along track - map scale = $1.2^{"}$ /degree; anomaly scale between 15°N and 15°S latitude = 500 gamm/inch; anomaly scale north of 15°N and south of 15°S = 1000 gamm/inch; from values retrieved at approximately 1 mile spacing and regional field removed using the 1975 ICRF.

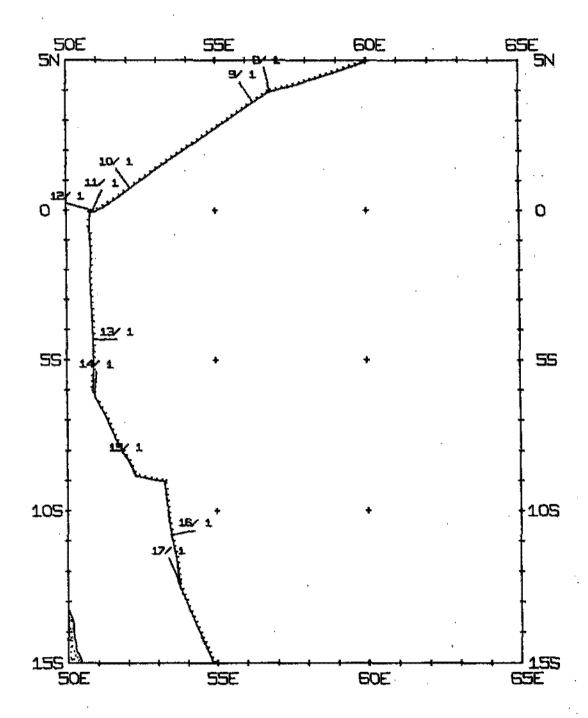

4. Card decks of navigation, depth and magnetics (for specific formats, contact S. M. Smith, Geological Data Center).

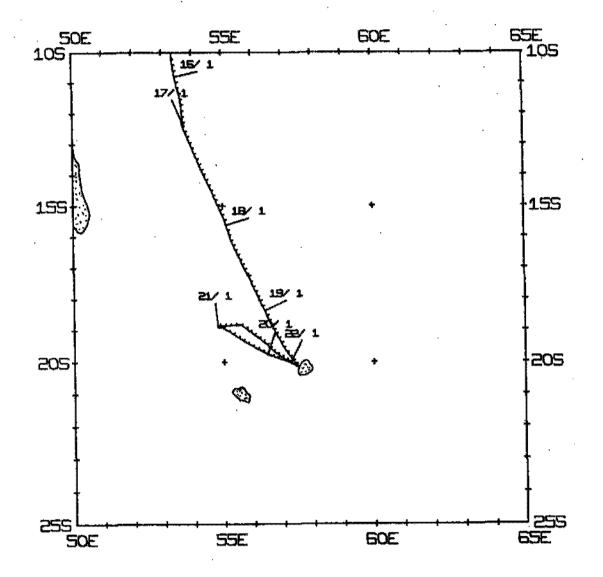
5. S. I. O. Sample Index - list of beginning and end times and positions of all underway records as well as all other samples (geology, biology, physical oceanography, etc.) collected on the cruise leg.

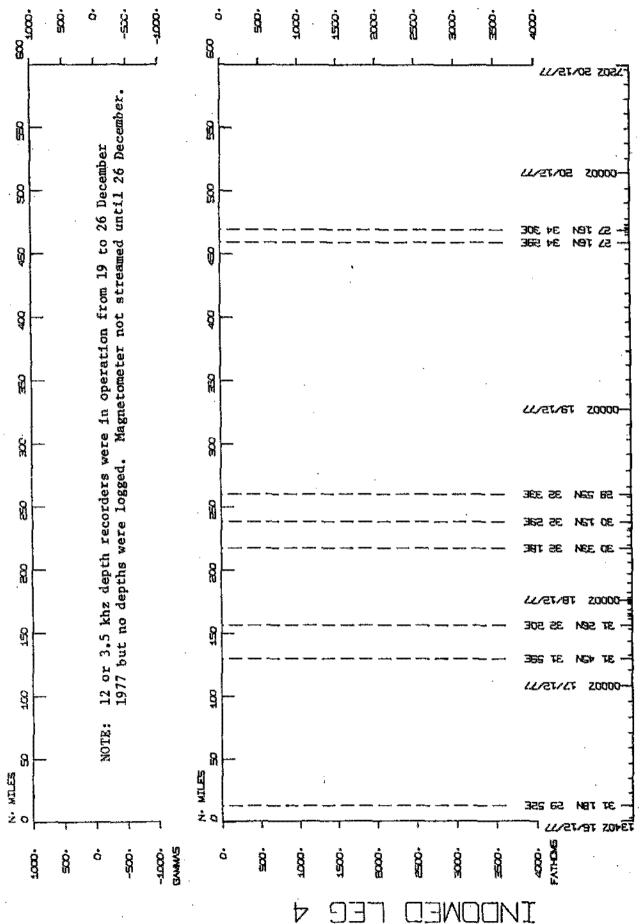
6. Microfilm or Xerox copies of:

- a. Echosounder records 12 and 3.5 kHz frequency
- b. Subbottom profiler records (airgun)
- c. Magnetometer records
- d. Underway Data Log

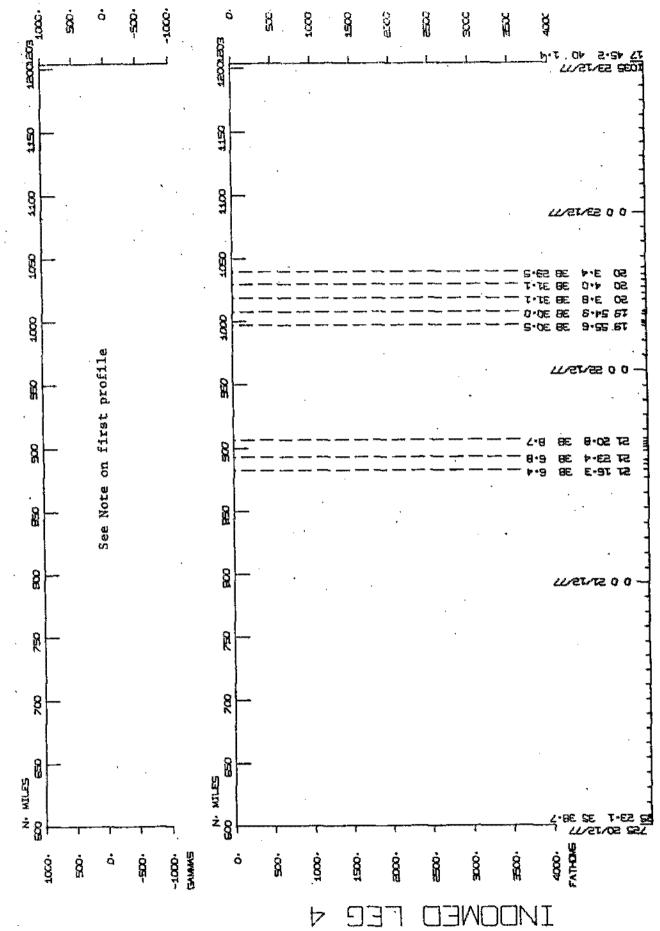

* NO SUBBOTTOM PROFILER DATA COLLECTED

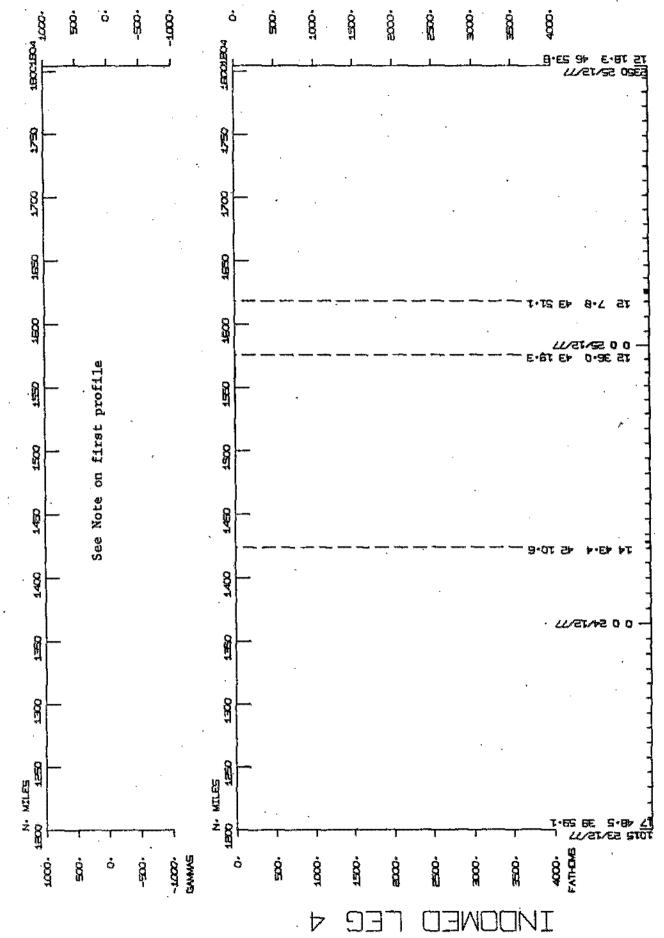

INMOO4MV TRACK PLOT (2 OF 5)

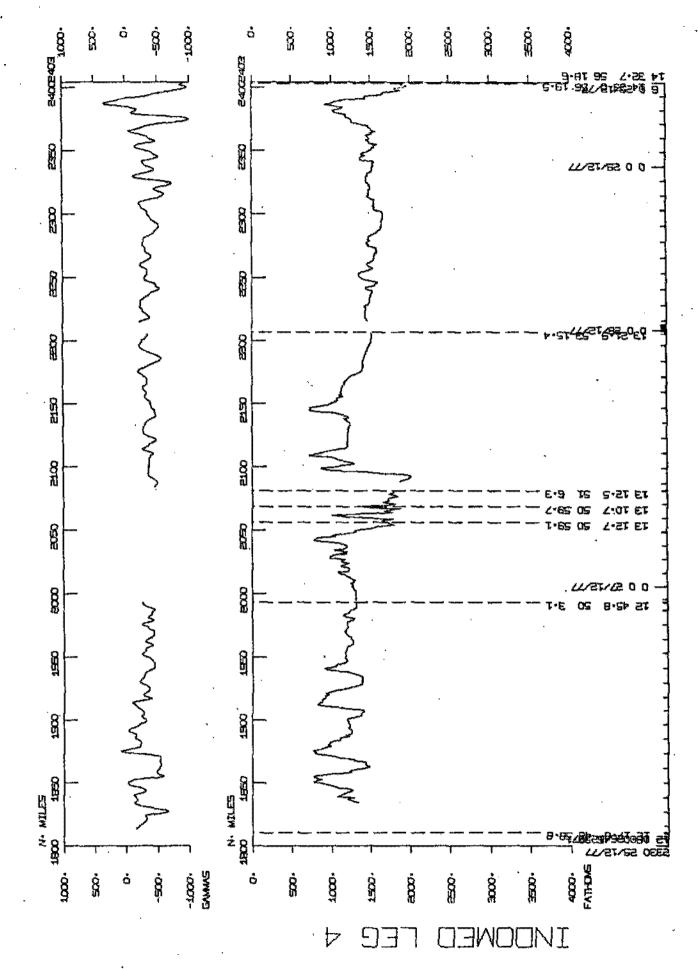

INMOO4MV TRACK PLOT (3 OF 5)



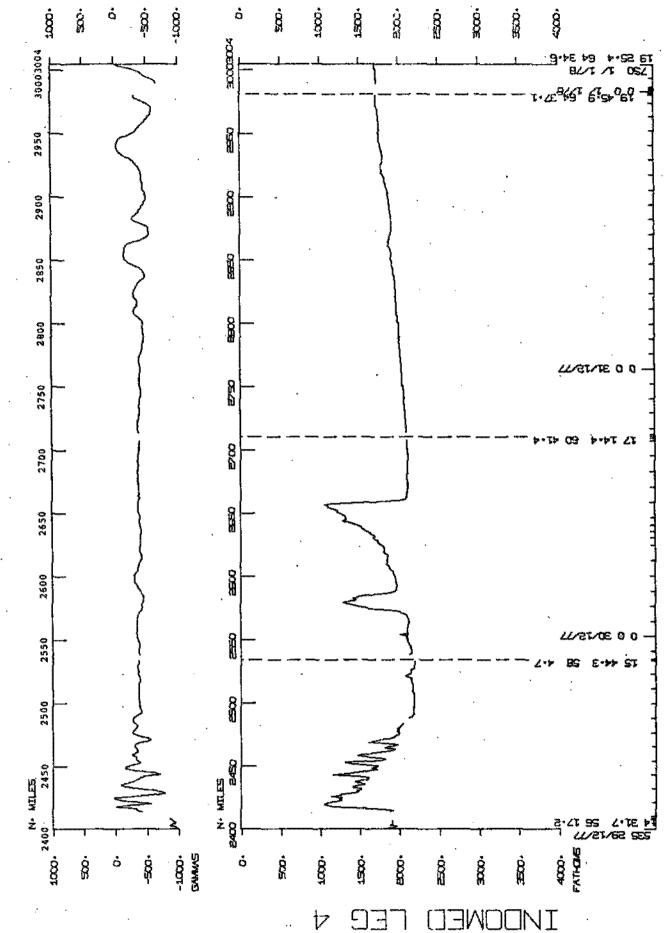
INMOO4MV TRACK PLOT (4 OF 5)

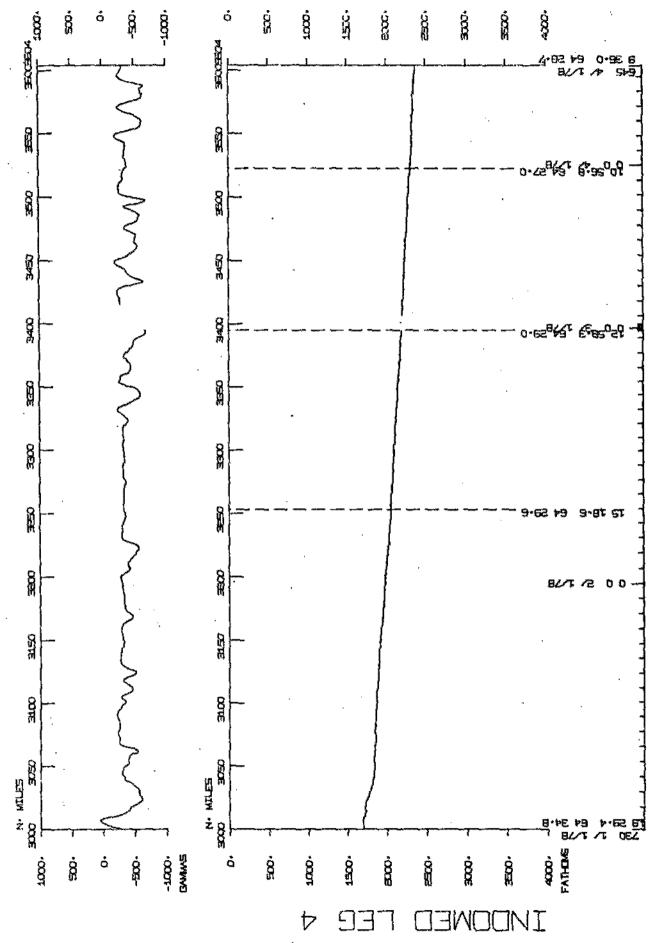



INMOO4MV TRACK PLOT (5 OF 5)

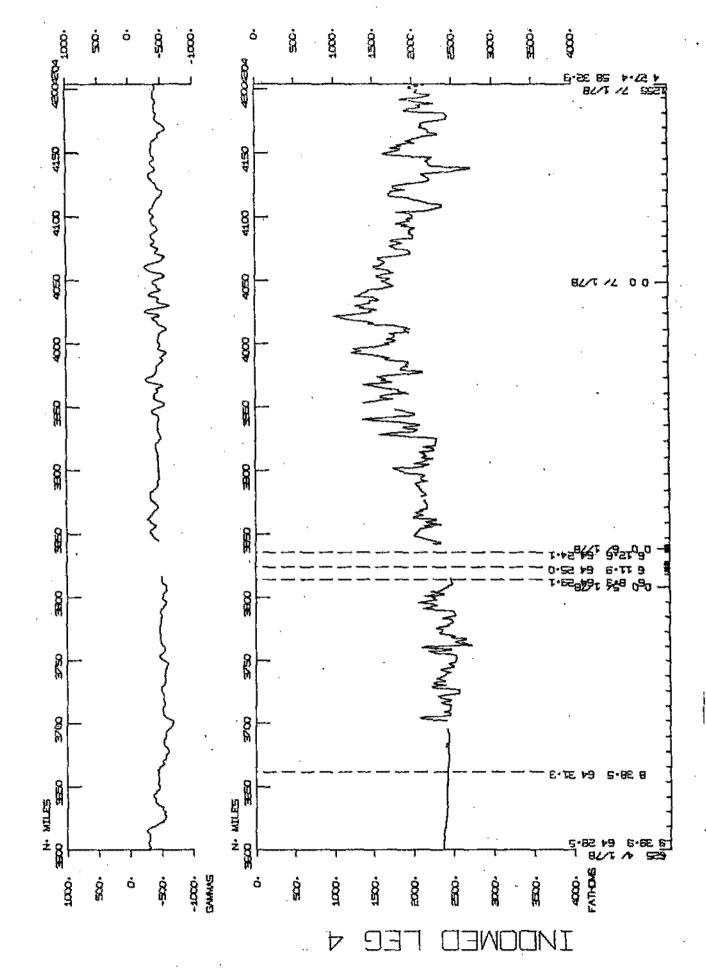


MF





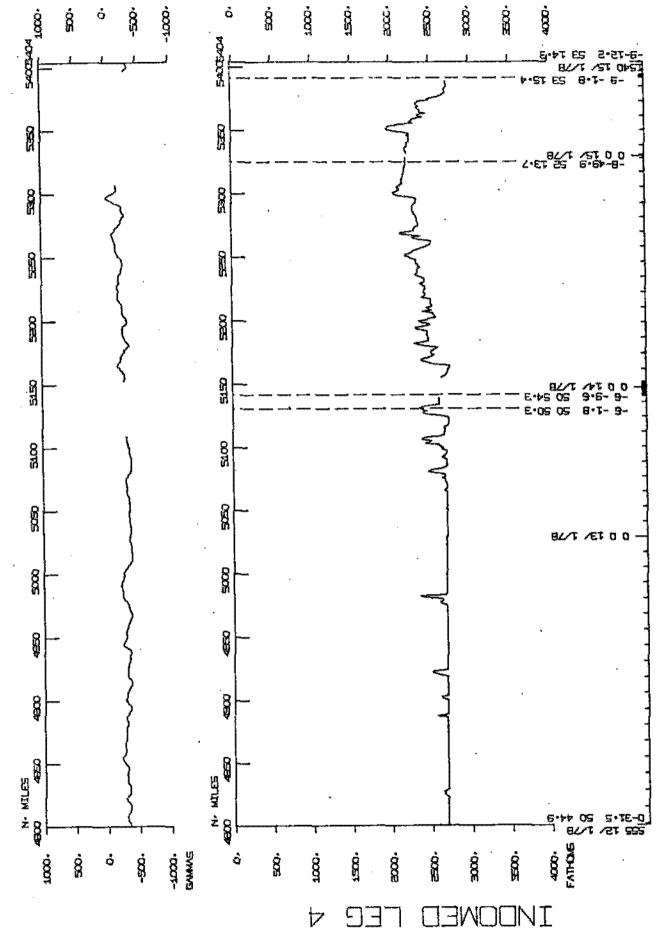
-



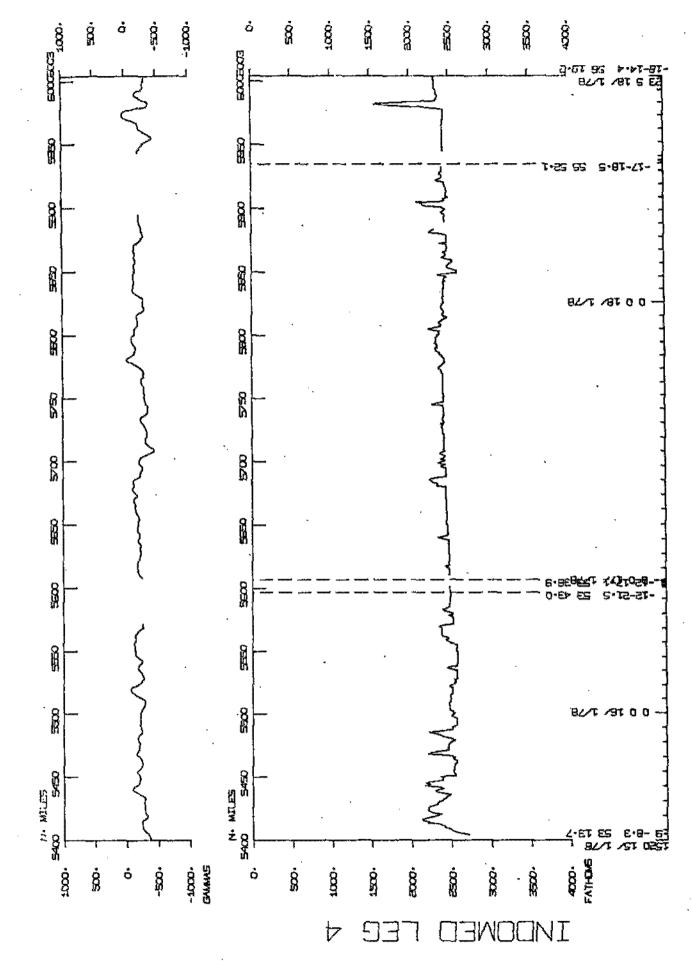
:



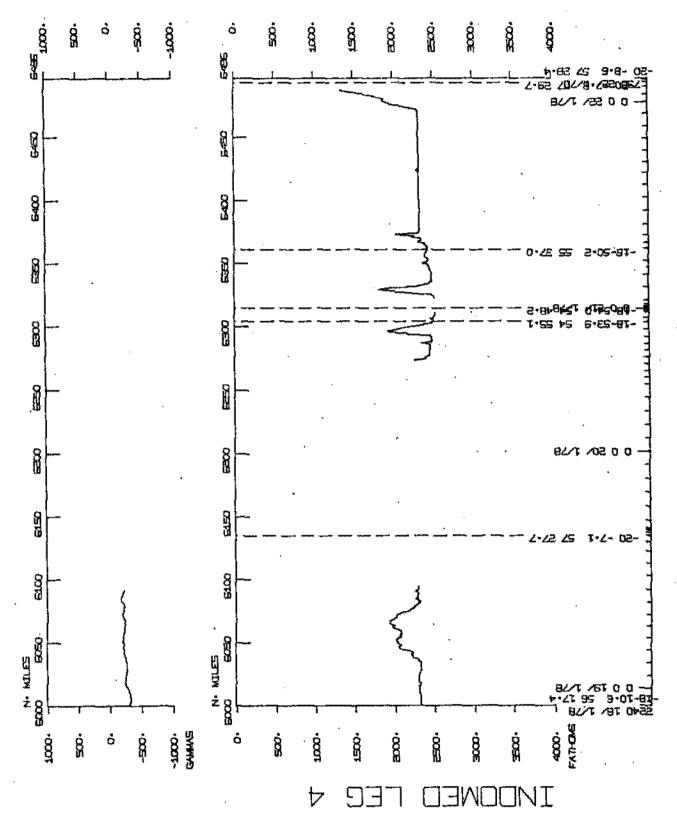
.



:


.

•


•

T N I'''

' i

•

į

S.I.O. SAMPLE INDEX

(Issued April 12, 1978)

INDOMED EXPEDITION

LEG 4

Alexandria, Egypt (16 December 1977) to Pt. Louis, Mauritius (22 January 1978)

R/V Melville

Chief Scientist - H. Craig (SIO)

Resident Marine Tech - S. Witherow

Post-Cruise Processing and Report Preparation by S.I.O. Geological Data Center

Index Encoding Funded by NSF Grant Number OCE76-80618 Index Processing and Report Preparation Funded in part by SIA

The Sample Index is a first level interdisciplinary listing of time, position, sample identification and disposition of all samples, records and measuremnets collected on this cruise leg. The index data are encoded at sea by the Resident Technician and processed on shore by the S.I.O. Geological Data Center shortly after the completion of the cruise leg.

Positions are interpolated on the basis of sample time by comparison to a single, edited navigation file. Samples beginning at one time and position and ending at another are entered on two consecutive cards. Disposition and sample type are represented by three and four character codes to permit future computer searches on these parameters. (Listings defining these codes are available from the Geological Data Center.)

NOTE: This document is intended primarily for informal use within the institution and is not to be reproduced or distributed outside Scripps without prior approval of the Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92093.

S.I.O. SAMPLE INDEX

GENERATED 30MAR78

60E 120E 180 120W 60W 0W 85N 'X' = SHIP'S TRACK BY 5 DEGREE SQUARE 0 0 0 0 85N 'X' = SHIP'S TRACK BY 5 DEGREE SQUARE 0 0 0000 0 75N 0 0 00000 00000 000000000 000000000000000000000000000000000000	45N 40N 35N 30N
85N 'X + = SHIP *S TRACK BY 5 DEGREE SQUARE 80N 0 0 0000 75N 0 0 00000000 0000000000 70N 000000000000000000000000000000000000	80N 75N 65N 60N 55N 45N 40N 35N 30N
80N 0 0000 75N 0 0.0000 0.00000 70N 0.000000000 0.000 0.000000 65N 0000 0.00000000000000000000000000000000000	80N 75N 65N 60N 55N 45N 40N 35N 30N
75N 0 0.00000 0.00000 0.00000 70N 0.000000000 0.000 0.000 0.000 0.000 65N 0.000 0.00000000000000000000000000000000000	75N 70N 65N 55N 50N 45N 45N 35N 30N
70N 00000000000000000000000000000000000	70N 65N 55N 50N 45N 35N 30N
65N 0009 010000000000000000000000000000000	65N 60N 55N 50N 45N 40N 35N 30N
	60N 55N 50N 45N 40N 35N 30N
	55N 50N 45N 40N 35N 30N
<u>50N NADOGOUNDOGOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO</u>	50N 45N 40N 35N 30N
50N 0/0000000000000000000000000000000000	45N 40N 35N 30N
45N U000000000000000000000000000000000000	40 N 35 N 30 N
40N U 00 00 00000000000 0 00000000	35N 30N
35N D (U000 00000000 0 000000 0 0000000 0	30 N
30N (100 U0000000000000 0 0000000 00 0000000 00	26 41
25N 000000000000000000000000000000000000	£ 211
20N 0000000 X0000 000 00000 0 0 0 00 000 0	
15N 0000000XX00XX 0 00 0 00 00 00 00 00 00	15N
10N 0000000XXXX 0 0 0 0 00	ION
5N 00000000 X 0 00000 000	
UN UCEGEOG XX 00 00 0000000000000000000000000000	ON
55 800000 X 0.0.0 00 00 000000	55
105 00000 X 0 00 00000000	105
155 00000 X 0 0 000000 205 00000 0XX 00000 000000	15S 20S
	203
	305
305 00 0000000 0000	355
40S 00 0 000	405
45S 0 00	455
50S 00	505
55\$ 0	55 S
60\$	60\$
65S	65 S
70S 00 000000000 0	705
755 UNUUNNUUNNUUNNUUNNUUNNUUNNUUNNUUNNUUN	
805 00000000000000000000000000000000000	
855 00000000000000000000000000000000000	
900000000000000000000000000000000000000	
60E 120E 180 120W. 60W 0	
1,1,1,2, 9,2,1,2,2, 9,2,2, 9,2,2, 1,1,2,2,2, 1,1,2,2,2,2	
16DEC77 - ALEXANDRIA, EGYPT TA	
22JAN78 - PT. LOUIS, MAURITIUS	
SHIP - R/V MELVILLE (SIO)	

PRODUCED BY GEOLOGICAL DATA CENTER, SCRIPPS INSTITUTION OF OCEANOGRAPHY, LA JOLLA, CALIFORNIA 92093

NUMBER OF SAMPLES OF CLASS 'TYPE' GOING TO DESTINATION 'DISP'

DISP				TYP	6		T	OTAL
		DP	GC	LB	MG	PE		- 1000 - 2000 - 2000 - 2000 - 2000 - 2000
GDC	Į	26		1	2	'	Į	29
GOG	I		22			15	I	37
GRD	I					2	I	2
GSX	I					1	I	1
HIG	I					1	I	1
L00	I					2	I	2
MTG	I			•		2	1	2 2
\$10	I					2	I	2
SIX	I					3	I	3
TOTAL	I	26	22	1	2	28	I	79

SAMPLE 'TYPE' CODES USED ABUVE

DP = DEPTH

GC = GENCHEMICAL SAMPLING

LB = LOG BOOKS

NG = MAGNETICS (TOWED VEHICLE, SURFACE, TOTAL FIELD)

PE = PERSONNEL IN SCIENTIFIC PARTY

SANPLE 'DISP' CODES USED ABOVE

GDC = GEOLOGICAL DATA CENTER -- S. SMITH (EXT. 2752)

GDG = GENCHEMICAL OCEAN SECTIONS PROJECT - SEE GSX

GRD = GEDLIGICAL RESEARCH DIVISION (EXT. 3360)

GSX = GENCHEMICAL OCEAN SECTIONS STUDY (EXT. 4420)

HIG = HAWAIIAN INSTITUTE OF GEUPHYSICS, UNIV. OF HAWAII, HONOLULU

LDU = LAMUNT-DOHERTY GEOPHYSICAL OBSERVATORY, COLUMBIA UNIVERSITY

NTG = MARINE TECHNOLOGY GROUP (EXT 4194)

SIU = SCRIPPS INSTITUTION OF DEEANDGRAPHY, LA JULLA, CAL. 92093

SIX = SCRIPPS INSTITUTION NON-EMPLOYEE - (CONTACT DORCAS UTTER EXT. 2356)

	INDOME	LEG 4 SAMPLE INDEX							INMD04MV
*** PORTS ***									
1600 161277 140 22 178		ALEXANDRIA, EGYPT PT, LOUIS, MAURITIUS			11 10				INMOO4MV INMOO4MV
PERSONNEL									
	PECS PERT PECT	CRAIG, H. WITHERDW, S. ELSTON, M.	GRD MTG MTG					-	I NMDO 4M V I NMDO 4M V I NMDO 4M V
	PE PE PE	BEAUPRE, M. BOS, D. CHRISTIANSON, M.	60 6 60 6 60 6 60 6						INMDO4MV INMDO4MV INMDO4MV
	PE PE PEMT	CHUNG, Y. CRAIG, V. FIELD, T.	GSX SIO GOG	-					INMDO4MV INMDO4MV INMOO4MV
	PEXN Pe Peet	GOBAT, D. Hester, A. Jaeger, E.	GOG GOG GOG S 10		•				INMDO4MV INMDO4MV INMDO4MV INMDO4MV
	PEXN PE PE PE	KIM, K. KROOPNICK, P. MANTYLA, N. MOORE, W.	HIG GOG SIX						INMOO4MV INMOO4MV INMOO4MV
	РЕ РЕМТ РЕ	MORRIONE, M. RAGAN, R. RICHTER, W.	GOG GOG GOG						INMDO4MV ,INMDO4MV INMDO4MV
	PE PE	SAIGN, D. SANBORN, K.	LDO GOG SIX						INMDO4MV INMDO4MV INMDO4MV
	PEXN PE PEMT	SARIN, M. M. Schectman, N. Slater, E.	LD0 60 G						INMDO4MV INMDO4MV
	PEXN PE PEMT PE	SOMAYAJULU, B. L. K. VAN WOY, F. WELLS, J. WILLIAMS, R.	SIX GRD GOG GOG						INMDO4MV INMDO4MV INMDO4MV INMDO4MV

1

1^t

*** NOTE *** TIME ZONES AND MINUTES OF LATITUDE AND LONGITUDE ARE LISTED IN TENTHS (E.G. 10.6 IS LISTED AS 106)

*** NOTE *** AN 'X' IN THE (B)EGIN/(F)ND COLUMN FOLLOWING THE SAMPLE CODE INDICATES NO SAMPLE OR DATA RECOVERED

TIME	OATE TIME	T7	SAMP						DISP	,		301	4AK78	P	AGE 2 CRUISE
GMT	D.M.Y. LDC	LUC	CODE		SAMPL	ΕI	DEI	VT.	CODE		"AT•	LC	ING .		LEG-SHIP
	8 178 10 178		DPR3	e E	EDR 3.	5 K	HZ	R-16 R-16	GDC	0	572N 17N	55 51	476E 32E	S	INMOO4MV INMDO4MV
	12 178		DPR3	B	EDR 3.	5 K	ΗZ	R-17 R-17	GDC		425				INMD04MV
						*					2905				INMD04MV
	12 178 13 178							R-18 R-18	GDC GDC		2965 5705				I NMDO 4M V I NMDO 4M V
	14 178							R-19			1575				INMOO4MV
840	15 178		DPR3	E	EUR 3.	5 K	ΗZ	R-19	GDC	9	175	53	153E	S	INMD04MV
	15 178 16 178				EOR 3. EDR 3.			R-20 R-20			118S 65S				INMDO 4M V INMDO 4M V
	17 178							R-21			2975				INMDO 4M V
	18 178							R-21			1805				INMDO 4MV
	18 178		DPK3	в	EDR 3.	5 K	нz	R-22	GDC	17	2005	55	532E	s	INMD04MV
800	19 178		OPK 3	E	EDR 3.	5 K	ΗZ	R-22	GDC	19	3255	57	16E	S	INMD04MV
	20 178 22 178		OPR3 DPR3	B E	EDR 3. EDR 3.	5 K	H Z H Z	R-23 R-23	GDC GDC	19 20	102S 56S	55 57	234E 243E	s s	I NMDO 4M V I NMDO 4M V
	191277 191277		OPR T DPRT	8 8	EDR 12 EDR 12	? KH ? KH	Z	k-01 R-01			251N 150N				INMDO4MV INMDO4MV
2020	191277										142N				INMD04MV
1052	221277		OPRT	Ε	EDR 12	S KH	Z	R-02	GDC	19	571N	38	30 I E	Ş	INMCO4NV
	211277				EDR 12						204N				INMDO 4MV
	221277				EDR 12						38N				INMD04MV
1029 330	241277 251277				EDR 17 EDR 17						420N 79N				INMD04MV INMD04MV
					EDR 12										INMD04MV
	251277 261277														INMDO4MV
李华李	MAGNETUMETE	H **	а												
	261277				MAGNE				GDC	12	224N	47	249E	S	INMD04MV
1500	1 178		MGR	Ε	MAGNET	LICS	R	-01	GDC	18	17N	64	331E	S	INMD04MV

. . .

1000	1 1 (0	MOK	C MAGNETICS	K-01	UUL	10	1. <i>1</i> 14	0*	JAYE	3	1 NUDO 464 A
1 . 1 . 1 .	1 178 18 178		B MAGNETICS E MAGNETICS								INMDO 4M V INMDO 4M V

					,
				30M AR 78	PAGE 1
TIME DATE TIME TZ GMT D.M.Y. LOC LOC	SAMP CODE SAMPLE	IDENT.	DISP CODE LAT.	LONG.	CRUISE LEG-SHIP
प्राण केन्द्र काठे साह के प्रारं के प्रारं के प्रारं के सिंह का लाग प्रारं की प्रारं का प्रारं के साह को रहा ह	ता नाग नाग नाग नागि स्वार व्या प्रता प्रता नाग नाग नाग नाग के कि स्वार के कि	भीति सिति सिति करने ताल पाल पाल पीला अंधी केलि सिन्हे नेता झुला प्	पर आसः सारु प्रता हता तातः विक्रे प्रता ताता नेतीर नेता तेता नहीं न	1979 ya 419 mayon ma ma far 300	tan an Ti ti ta ta ta ta ta ta
*** LOG BOUKS ***					
0550 261277	LUW & UNDERWAY	WATCH ING	GDC 12 372N	47 414F	S IMMDOAMV
	LBUW E UNDERWAY		GDC 20 565		
≈ FATHOGRAMS ***					
	OPR3 B EOR 3.5		GDC 19 577N		
1120 231277	DPR3 E EDR 3.5		GDC 17 376N		S INMDO4MV
1124 231277 457 241277	DPR3 8 EDR 3.5 DPR3 E EDR 3.5		GDC 17 369N GDC 14 448N		S INMDO4MV S INMDO4MV
550 261277 1940 261277	OPR3 8 EDR 3.5 DPR3 E EDR 3.5		GDC 12 224N GDC 12 458N		S INMDO4MV S INMDO4MV
2259 261277	OPR3 8 EOR 3.5 DPR3 E EDR 3.5		GOC 12 461N GDC 13 113N		S INMDO4MV S INMDO4MV
1044 271277	OPR3 8 EDR 3.5		GDC 13 133N		S INMDOAMV
2042 271277	DPR3 E EDR 3.5		GDC 13 222N		S INMOO4MV
1351-281277 610-291277	DPR3 B EDR 3.5 DPR3 E EDR 3.5		GDC 13 234N GDC 14 326N		
	DPR3 8 EDR 3.5 DPR3 E EDR 3.5		GDC 14 369N GDC 15 433N		
	DPR3 8 EDR 3.5		GDC 15 433N		
2224 291277 330 301277	DPR3 E EDR 3.5		GDC 15 447N GDC 16 145N		
340 301277 1050 301277	OPR3 8 EDR 3.5 OPR3 E EDR 3.5		GDC 16 279N GDC 16 750N		
1950 301277 338 311277	OPR3 8 EOR 3.5 OPR3 E EDR 3.5		GDC 17 161N GDC 18 83N		
1600 1 178	DPR3 B EDR 3.5	KHZ R-13	GDC 17 465N	64 532E	F INMDO4MV
1520 2 178	OPR3'E EDR 3.5	KHZ R-13	GDC 13 225N	64 308E	S INMDO4MV
1400 3 178 2200 4 178	OPR3 8 EDR 3.5 DPR3 E EDR 3.5		GDC 12 522N GDC 6 372N		
735 6 178 2040 7 178	DPR3 8 EDR 3.5 DPR3 E EDR 3.5	KHZ R-15	GDC 6 148N GDC 4 13N		

GMT	0.M.Y.	LINC	LUC (CODE		SAMPLE	IDE	17.	CODE	1.	AT.	L0	NG .		AGE 3 CRUISE LEG-SHIP
	EOC HEM IC							*			•				
1155 2030	191277 191277		1	GCLV GCLV	B E	GEO SEC S GEO SEC S	STA STA	405 405	60 G 60 G	27 27	150N 141N	34 34	590E 59 J E	s s	INMDO4MV INMDO4MV
1306 1915	211277 211277		4	GCLV GCLV	8 E	GEOSECS GEOSECS	STA STA	406 406	60 G 60 G	21 21	207N 206N	38 38	48E 78E	ÌS S	INMDO4MV INMDO4MV
606 2030	221277 221277		-	GCLV GCLV	B E	GEOSECS GEOSECS	STA STA	407 407	60.6 60.6	19 19	550N 594N	38 38	300E 314E	5 5	INMDO4MV INMDO4MV
	241277 241277														I NMDO 4M V LNMDO 4M V
330 800	251277 251277			GCLV GCLV	8 E	GEDSECS GEDSECS	STA STA	409 409	606 606	12 12	79N 51N	43 43	558E 541E	\$ \$	I NMD04MV I NMD04MV
30 335	261277 261277			GCLV GCLV	B E	GEO SEC S GEO SEC S	STA STA	410 410	60 G 60 G	12 12	188N 176N	46 46	586E 599E	s s	I NMDO 4M V I NMDO 4M V
1942 2246	261277 261277					GEOSECS GEOSECS			60 G 60 G	12 12	458N 454N	50 50	31E 38E	5 5	I NMDO 4M V I NMDO 4M V
5 55 1020	271277 271277			GCLV GCLV	8 E	GEOSECS GEOSECS	STA STA	412 412	606 606	13 13	123N 129N	51 51	63E 72E	S S	I NMDO 4M V I NMDO 4M V
2100 1338	271277 281277			GCLV GCLV	8 E	GEOSECS GEOSECS	STA STA	413 413	G(16 GD 6	13 13	222N 230N	53 53	139E 198E	5 5	INMOO4MV INMDO4MV
626 932	291277 291277			GCLV GCLV	8 E	GEOSECS GEOSECS	STA 5 γα	414 414	60 G 60 G	14 14	334N 451N	56 56	186E 330e	5 5	INMDO4MV INMDO4MV
1513 1932	301277 301277			GCLV GCLV	8 E	GEUSECS GEOSECS	STA STA	415 415							INMDO4MV INMDO4MV
	311277 1 178					GEOSECS GEOSECS									I NMDO 4M V I NMDO 4M V
1734 1331				GCLV	8	GEOSECS GEOSECS	S TA	417			585N 577N				I NMDO 4M V I NMDO 4M V
1856 730						GEOSECS GEOSECS			60 G 60 G		126N 149N				I NMDO 4M V I NMDO 4M V
2215 2045						GEOSECS GEOSECS			GO G GD G		569N 572N				I NMDO 4M V I NMDO 4M V
	10 178 12 178					GE(\SECS GE(\SECS			60 G 60 G						I NMDO 4M V I NMDO 4M V

,

.

•

•

. . .

,

		ATE TIME T M.Y. LOC 1			SAMPLE	IDEI	NT.		E (LAT.	LO			PAGE 4 CRUISE LEG-SHIP
		178	GCLV	8	GEUSECS	STA	421	GO G	6	925				INMD04MV
		178	GCLV	Е	GEOSECS	STA	421	GOG		1575				I NMDO 4M V
150	14	178	GCLV	8	GEOSECS	S TA	422	60 G	8	501S	52	1536	s	INMD04MV
327	15	178	GCLV	Ε	GEOSECS	STA	422	GOG	8	4995	52	158E	\$	INMD04MV
840	15	178	GCLV	B	GEOSECS	STA	423	GOG	9	175	53	15 3E	S	INMO04MV
1449	15	178	GCLV	Ε	GERISECS	STA	423	GDG	9	245				INMD04MV
830	16	178	GCLV	8	GEOSECS	STA	424	GOG	12	1955	53	4 18E	s	INMDO 4MV
416	17	178	GCLV	E	GEOSECS	STA	424	60 G						INMD04MV
		178	GCLV	8	GEOSECS	STA	425	GOG	17	1855	55	519E	s	INMDO 4MV
1730	18	178	GCLV	E	GEOSECS	STA	425	GOG		2235	55			I NMDO 4M V
		178			GEDSECS			G() G	18	550S	54	490E	s	INMD04MV
658 9900	21	178	GCLV		GEOSECS END SAMP			GCIG	18	514S	54	540E	5	INMD04MV INMD04MV

.