"B" System, - The ditches and pipe Iines for irrigation of the bottom lands in the San Dieguito Basin.

In planning a syatem for the irrigation of the Ban Dieguito Kanch lands, there are three elements which have to be made to harmonize. The quantity of water, the quality and character of the soil, and the cost of putting it on the land. The lands which I have included in this plan, all lie under the 200 foot contour. In planning the location of the pipe lines, I have line carried a main gravity from the upper pumping plant, and the lower pumping plant, to a pumping station, or what might be termed a booster plant, at the south west corner of the Azuna place; this being the most advantageous point from which the other pipe lines may be carried to the locations required. For a more definite idea of the location, capacity and size of pipe, you are eferred to the map which forms a part of this report, and the tables giving all the data on these subjects. From this booster plant a main pipe line runs up to the lowest divide between the San Dieguito River Basin and Talnut Canyon. These pipe Iines are designated as mains to distinguish them from the other pipe lines, which distribute the water to the other points on the tract, for the reason that their cost is distributed to the different sections or parcels of land. The contour map referr ed to 2 s part of this report, was made from a survey by Merdith Jones, the original of which was handed me by the Kanager of your Company, and has been of great assistance in the location of the pips lines, and clasaification of the lands., For convenience in the description of the different tracts, and for estimaing the length and cost of the pipe lines, I have marked them alphabetically, the mains being described as $A 0, A 1$, etc. and the other sections as follows:-

"C" System, - those lands lying between the 40 foot contour

 and the 160 ft. contour. The 160 ft .contour follows along the edge of the steep hill on the west side of the San Dieguito Basin, terminating at the domestic reservoir above the ranch house.NOTE: The pipe lines are indicated upon the map by heavy broken Iines.
"D" System, - includes all the lands under the 200 ft contour around the head, and alonis the sides of Yalnut Canyon (sometimes designated as the Little San Slicjo) and also includes the lands sloping to the Rio San Rlijo on the east side.
"E" System consists of the lands lying under the 200 foot contour above what is known as Dutch Draw, at the southeast corner of the ranch.

NOTE: Complete tables, Givinf, all items of size, length capacity, size of pipe and cost, accompany and form a part of this report.

The estimated grade of these pipe lines is 7 ft . per mile. In their construction, outlet gates have been provided for at each 100 ft . The price for said gates is included in the price Br the pipe.
NOTE: It will be noticed in referring to the tables that the capacity of the pipes is in excess of the estimated amount capacity of the pipes is in excess of the estimated amo system, by providing an opportunity to accumulate a larger volume of water at any given point.

A reservoir on most convenient hill to pumping plant has been suggested, to furnish water for the Iockwood Mesa. I find a favorable location on hill amost directly west of booster plant at a distance of 4850^{\prime}, mariced "Domestic Reservoir". This is at an elevation of 320 ft . and about 2 miles from railroad., It is Anderstood that the water is to be delivered to reservoir, and the consumers take water at that point.
cosT:
12" pumping main $4656 \mathrm{ft.e} 76 \mathrm{k}-\mathrm{\$} 3538.56$
Reservoix, capacity $2,701,350$ gal $\frac{4757.00}{8295.56}$ Total Cost.

GRAVITY LINE TO DEL MAR:

This line may start at pumping plant $\# 2$, (old plant) or from pipe running to \#it from booster plant. The line can be run along the County Road, would have to make a slight deviation at two points.

The plan includes a provision for the following supplies: 50,000 galseper day for the Santa Fe Railway- 4n, Del Mar, 50", actual consumption $9^{\prime \prime}$, and domestic irrigation water for Lockweod Mesa and Cardiff. The water for Lockwood Kesa will be dellvered at sump at foot of hill, 250' high, 19,560' from plant, and pumped through a 14 g pipe 2000^{\prime} in length to reservoir at top of hill about 4500' from point of use. The vater for Del Mar, and AT\&SF Fy Co. will be carried in 18" reinforced concrete pipe to small pumping reservoir on edge of hill and near railway, about 6640'. A part of this pipe line where the ground is hard, may be a good quality of concrete pipe, but the greater part should be reinforced with iron rings, and at the joints. The capacity of the line down to the Lockwood Mesa Junction is 200". Deducting water for railway and Del har leaves $145^{\prime \prime}$ for the lands and domestic water for Lockwood Kesa and Cardiff equal 1,879, 200 gals.per day. The difference in cost between a pipe line to carry the water rwquired for the Railway and Del har, and a larger pipe line, is comparatively small, and the opportunity to supply these lands with water, lying along the rallroad, from the north bank of the San Dieguito River to Cardiff and beyond, will be very valuable. as the lands are good, and should the development continue, or increase, as many belleve, there will be a demand for small tracts, as the opportunity to secure such land, where the climate, transportation and water facilities are all so favorable, can be obtain ed in very few places. The gravity line could be built with the pump at point of delivery to Lockwood Mesa system, and reservoir at Del Kar, from which the water could be taken by Rallway Company into their distilling system, and by booster plant for Del Mar, and the remaining system completed when the demand required it. METHOD OF OPERATION AND SALE OF WATER:

In furnishga water supply, under conditions that might have to be used in a system where the water supply is partiy
domestic water, and the lands irrigated belong to other parties, there is olways a chance for disputes as to the method of delivery and the cost to the consumer, and experience teaches that there are too many elements of chance in aaid operation to make it a profitable investment, unless a provision is made for the sale of a water right to said lands, which is in some measure commensurate with the enhanced value of the land. The yearly cost of operation, includinfs all the elements of pumping, maintenance, taxes, depreciation and delivery of water, can be figured up, and an asseament made per acre, or a price per inch can be made for the vater delivered, based upon this cost. These charges may be estimated upon previous years, and the money collected in advance for each run, usually 30 days, and adjusted at the end of each year.

This method is the most satiafactory and economical, after the lands are sold to small holders. The method of collecting in advance makes tham more careful in the use of water. In adopting a plan as outlined above, a stock company should be formed, with a specifisd number of shares of stock to each parce? of land, so that when the lands are held by individual owners, they will also om the water system. In this way, by providing for the celivery of a certain amount of water at the head of their system, the owner of the water would be protected by law in the receipt of a proper income from the water. In the present case, the owners of the land could pay a stipulated price per inch for the water delivered at sump, and the cost of pumping thereafter, - said cost to include maintenance, operation and their proportionate share of depreciation, taxes and intereut on cost of necessary plant. If the land owners could not purchase outright, they could bond their stock company, and the company take their bonds; said stock and i bonds to be appurtenant to and secured by the land.

TEILS:
Three wells have been bored at the bend of the river, Just below the junction from LaJolla, the first one being bored dlose as posible to the River Channel, about 60 ft. from the south bank, and the second and third wells bored respectively at 65^{\prime} and 148^{\prime} north of the first one. This point was selected first because the soljd rock in place appeared almost in a vertical position on the south bank, and the river made an almost right
angle turn. (See map). I have found the deposits of gravel always deeper next to such a bank, while the finer sands are deposit ed well to the opposite side. Second, LaJolla Canyon running almost straight with the lower river, is indicative of a fault of seam. Well No.l.bored to depth of 65 to bedrock has a depth of 32 ft . of clear gravel and boulders. Well No. 2 is 561 in depth and contains more aand and gravel, and only a few boulders. Well No. 3 is mostly sand, some gravel. A pumping test of the first well with a 4^{n} centrifugal pump, running at a spped of 1132 revolutions per minute, gave an estimated capacity of $90^{\prime \prime}$. The water lowered $6 \frac{1}{2}$ ft. during the pumping, but the water level returned to normal at once, when the pumping was stopped. I think this well will yield at least $200^{\prime \prime}$ of water. The second well was only equal to the cap acity of the pump, and the third well produced very little water. WATER TEST LOWKR PEANT:

A test was made at old plant on December lst, 1913, pump ing one hour, beginning at 8.20 a.m.; at 9.15 a.m. depth to water was $29^{\prime} 7^{\prime \prime}$ in the nearest well to the pump. At 9.30 a.m. pump stopped, - at 9.30, depth 13'9", normal level, lowering the water during pumping, 15'10", measured the water carefully with a current meter and found the quantity of water to equal 194n. The depth to water at the end of pumping was at about sea level, and about 23 ft below the pump, but as before stated, the coarse gravel is mostly below this point, and by lowering the pump pit 6 or 8 feet, an inverted cone will be formed, and the yield would be at least doubled. The present amount pumped is all the load a 40 h. p.engine should carry. A cross section and \log of wells made by G.c.jidilett engineer of the company, and al so a tabulated record of the water levels kept by $M r \cdot y$ pGuire, operator at the pumpinis station, will accompany this report.

A cross- section and 10 E of the upper weils will also accompany, and form a part of this report.

Fells designated as Well No. 4 and 5 , have been bored in Halnut Canyon, the upper well, desimnated as No. 4 was bored dow 20 ft . Into the granite, in the hopes of striking gravel or a crevice, but this was without result. Weㅛㅣ No.5, after passing
through a strata of sand, also reached the granite. The location of these wellis, which are a little more than one-fourth of a mile apart, are shown wpon the map. Well No. 6 , was bored near the grant line on the east side of Rio San miljo Canyon; this al so reached granite, but no water was found. Vell No.7, bored near the southwest corner of the grant, near the bridge, - no water of any consequence was found. A well is now beinis bored at the domestic plant in Walnut Canyon. Quite a wide strata of fine sand has been located, and the well is being dotlled to greater depth; by putting in a perforated screened pipe a valuable supply of water may be secured, which will be sufficient to carry the walnut trees over the year. The loy of ail these wells, showing the conditions and class of material, will be made and attached to the report after said wells have been completed. If no favorable results are obtained, it will settle the question of water supply for all the territory west of the San Dieguito River basin, and south of the southerly line of the grant, as a number of wells have been bored at different points lower \therefore iom the river, and the results have been unfavorable. The Dinsmore plant at the point of hill immediately south, has some driven wells which furnish about $28^{\prime \prime}$ of water, but all the other wells indicate a very poor quality of water, and in limited quantities.

WELL PIT AND PUTPING STATION AT UPPER PLANT.
The well pit should be placed at Well No.l, and the pit should go down at least 40'. This will be within the suction limit to the bottom of the well. The pit should be made of reinforced concrete, with an inside diameter of 9^{\prime}, and a wall $12^{\prime \prime}$ in thickness.

LOWER PLANT

The sea level fixes practical vacuum at 6 ft. That is, if it were a reservoir of water to the ocear., it could not be lower ed below that level; but being a body of sand and gravel, wi th a gradient toward the ocean of about 7 ft . per mile, by leaving this sand and gravel undisturbed as has been already recommended, and liberally irrigating the bottom lands, I think the depressed cone caused by pumping at the plant will be protected.. To do this, it will be necessary to lowdr the pump to 24 ft . below the surface, and connect the wells by a tunnel underground. This will have to be built on a true line and grade, and should be cemented. The present connecting pipe will have to be replaced by a larger pipe, also the suction pipes, as they are too small for pumping the water this plant will produce. The present discharge to ditch can still be used. The new discharge will be connected to booster plant on the opposite side.
ESTMEATE OF COST:
Pumping pit 24 ft . in depth and $9^{n \prime}$ in diameter $12^{\text {a }}$ wall reinforced concrete $(\mathbb{3}) \$ 25.00$ per ft.
324 lineal ft. of tunnels to wells (23 3.60 per ft

UAIM PULPIMG STATION-BOOSTER PLANT:

Pump reservoir- 60^{\prime} square 6^{\prime} depth, capacity 216 cu.ft.equal to $300^{\prime \prime}$ for one hour 400 inches for $\mathbf{4 5}$ minutes. Lined with concrete $6^{\prime \prime}$ thick on the sides, reinforced with iron rods at the corners, bottom $4^{\prime \prime}$ thick, reinforced with wire 4^{n} mesh.

Cost of excavation
Concreting 1680 sq.ft sides, 3149 sq.ft bottom $4080 \mathrm{sq} . \mathrm{f}^{\prime} \mathrm{wire}$ and $20-3 / 8 \times 121$ rods
$25^{\prime}-18^{\prime \prime}$ drain pipe
Drain pit
Gate and stand pipe

Engine base $6 \times 16^{\prime} \times 4^{\prime}$
Building with concrete floor Building foundations
200.00
452.52
34.00
34.00
8.75
8.75
15.00

15.00
24.00

Power in two units $\# 1-150$ h.p. gas engine)
119.00

Includes all expense of setting up.
1-\#8 two step pump, centrifugal)
1-\#6 "

ESTIMATED COST GRAVITY IILE TO DGL LAR, WITH SUPPIY FO LOCKOOOD HKSA

$\begin{array}{ll}\text { Pumping Plt \#1 } & \begin{array}{ll}\text { \#3794.20 } \\ \text { \#2 } & 8923.13\end{array} \\ & 863.27\end{array}$
Booster 16231.67
Storage reservoir
at Plant \#1
Pipe mains
Ieverrea.e toy
momac.ater $(11,30)$
$\$ 28949.00$
$\$ 5000.00$ 1662.00

Cost of irrigating 1850 acres of hill land -

Which equals - \$16.50 per H. P. hour fuel per annum
8.47 per acre per annum
59.35 per inch per annum
65.00 per H. P. per annum

Bottom lande - 975 acres -

Puel cost per annum $\$ 720.96$
Depreciation 810.00
Interest
Taxes
Supervision \& attendance .

Total $\$ 5031.87$
Which equals - $\$ 3.00$ fuel per H.P. hr. per annum

> 15.50 per inch per annum
> 5.20 per acre per annum
> 10.48 per H.P. per annum

The above figures are far below the cost in many
localities, the cost ranging from a minimum of $\$ 6.00$ per acre to a maximum of $\$ 27.00$ per acre.

The annual cost of irrigation, which here will be $\$ 8.50$ per acre for the hill 1 ands and $\$ 5.00$ per acre for bottom land, is less than in many localities where water is pumped successfully. The annual cost at Corona is from \$24.00 to $\$ 27.00$ per acre; at San Dimas, $\$ 24.20$, and La Verne $\$ 18.15$; and the pipe system is more conveniently located to the lands than in many instances. The bottom lands are alluvial fill, made from river deposits, well adapted to the growth of alfalfa, barley and other grains, also sugar beets. Some of the land damaging alkali, and make the land very productive. When these developments are made, the two loops in the river above and below the headquarters which I have indicated by double red lines, should be cut off, so that the channel will follow continually around the foot of the hill.

VALUE OF WAMER LANDS:
The value of water is determined from two points of view - the cost of developing, and its value to the land upon which it is used. These should be termed the two factors in the value of the property -

1. The water right.
2. The cost of the plant, or system of works.

In this instence the second factor has been estimated to be $\$ 107,998.60$, equal to $\$ 8.50$ per acre for bottom lands, and $\$ 46.16$ per acre for hill lands. The water right being underground waters of the basin of the San Dieguito River within the San Dieguito Rancho, which extends acrosa whe basin on each side of the river, all within the watershed of the river, and cannot be disputed or assailed. It therefore represents the difference in cost between the cost of the system of works, plus the market value of the land before water was placed upon it; and the value of the land with water.

The system of works cost $\$ 107.998 .60$, average $\$ 34.00$ per acre.
The land without water $=156,750.00$ " 50.00 n
The land with water $=940,500.00$ " 300.00 n $"$
Value of water right 675.757 .40 in 216.00 " "
The commercial value of water is given as $\$ 1000.00$ per inch, in many instances for irrigation, which would make this water worth $\$ 700,000.00$ after it is developed. (A reasonably close check on the above figures.)
"G" SYSTEL S.E.ABOV. DUTCH WHAN

DIVISION	HEAD	CAPACITY	SIIE	Lenctit	THICKNESS K	$\begin{aligned} & \text { KIND OF } \\ & \text { PIPE } \end{aligned}$	GAUGE	$\begin{gathered} \text { PRICE PKR } \\ \text { BT } \\ \hline \end{gathered}$	TOTAL
51	1401	60"	12"	$10{ }^{1}$	Across oreek	Dou. Hiv	/12	Lx 1.2 .4	150.00
F 2	$140{ }^{\prime \prime}$	$60^{\prime \prime}$	12"	1000		"	\#14	66\%	660.00
E3 and 4	Gravity	60"	12"	$1550{ }^{\prime}$	$1{ }^{\frac{1}{4}}$	Cement		226	3400.00
							otal		4210.00

COST OE PIPING ON DIFHERENT TRACTS

SYSTk	S4 DESCRIPTION	ACREAGE	ALEOUNT OF WATER RICQUIRED 1" to 4 acres	CAPACITY OF PIPE	$\begin{aligned} & \text { COST OF } \\ & \text { I.AT.PIPSS } \end{aligned}$	$\begin{aligned} & \text { COST OF } \\ & \text { SAING } \\ & \hline \end{aligned}$	COST OF PIPIRG PKR ACRE.
	Bottom lands	975	1" to 4 acres	$\begin{aligned} & 6325^{\prime \prime} \\ & 60^{\prime \prime} \text { to } 100^{\prime \prime} \\ & 208^{\prime \prime} \\ & 100^{\prime \prime} \end{aligned}$	$\begin{aligned} & 4331.00 \\ & 3270.00 \end{aligned}$	2544.309174.002390.00	$\begin{array}{r} 4.45 \\ 17.70 \end{array}$
	Bet 400 \& $160 c$	330	$53^{\prime \prime}=1$ " to 7 ac				
	Under 200c		170"ミ1" " 7				
	on Rio San Elijo	- 330	44"		17298.00		19.24
"E"	On hill above Dutch Flat	310	$44^{\prime \prime}$				
		3135 ac	E 555		4210.00		13.60

"C" SYSTEU DISTRIBUTING LATERALS

DIVISION HEAD CA	CAPACITY	SITE	LENGTH	$\begin{aligned} & \text { THICK } \\ & \text { NWSS } \end{aligned}$	WT PER $F T$	$\begin{aligned} & \text { KIND OF } \\ & \text { PIPE } \end{aligned}$	GAUGI	$\begin{aligned} & \text { COST PAF } \\ & \text { BT LAID } \end{aligned}$	R TOTL
C 2 to Divide Gravity	y 200\%	12'	9600^{\prime}	11_{4}^{1}	50\#1	$\begin{aligned} & \text { Cement } \\ & 384 \text { gate } \end{aligned}$	at 1.25	$e e^{196}$	$\begin{array}{r} \$ 1824.00 \\ 280.00 \end{array}$
C 3 to Draw	$100^{\prime \prime}$	12"	1300'	$1 \frac{1}{4}$ "	50\#	Cement-i) gates	ludes	226	228.00
64 to Reservoir "	100 "	12"	4000 '		$\begin{aligned} & 50 \text { "f } \\ & 0 F \\ & \hline 10 " \end{aligned}$	Cement YSTEM -	- . -	226	$\frac{880.00}{\$ 3270.00}$

"D" SYSTEM DISTRIBUTING LATERALS

D2	Gravity	100"	$12^{\prime \prime}$	24000^{\prime}				226	5280.00
D1		208 "	20"	10700 :	2\%"	Cement		256	5280.00
D3	"	208 "	18 "	5001	. 078	Steel		1.150	575.00
Cross line		$132^{\prime \prime}$	14.	3001	. 078	"1	\#14	$\begin{array}{r} 1.15 \\ 1.10 \end{array}$	$\begin{aligned} & 575.00 \\ & 330.00 \end{aligned}$
D 4		100"	124	61501		Cement		220	1358.00
D ${ }^{\text {\% }}$		155.	$16^{\prime \prime}$	7600'				268	1976.00
D 6		100 "	12 "	30001		"		226	660.00
D 7		100 "	12"	60001		"		226	1320.00
D 8		100 "	12"	$2800{ }^{\prime}$		"		226	616.00
D 9		100 "	$12^{\prime \prime}$	32001		"		226	704.00
D 10		100"	$12 \prime$	32001		"		226	704.00
	ividing	gates	jun	on of p	e 11 n	ach			$\begin{array}{r} 35.00 \\ \$ 17298.9 \end{array}$

LONER MLANT．
LOG OF SANT8 BE WELLS NOS．5．7 and 1 ，for Nov． 1913. Nov WELL NO． 5 Well No． 7 Well No． 1 Well No． 5 Well No． 7 Well No．l

4	12＇81 ${ }^{1 / 2}$	281	1314＇			
5	12＇9＂	281	$13^{\prime \prime}$			
6	12，${ }^{\text {d＂}}$	281	13.10			
3	12110	281	$14 \cdot 1$＂			
8	12＇11＂	28＇	14.50			
10	12＇11＂	281	1415＂			
11			14	12＇11＂	$12^{\prime \prime}{ }^{\prime \prime}$	14＇5＂Water
12				12＇10＂	12＇2＇	14＇3＂lowers
13				12＇9＊	12＇2＂	141 ${ }^{\prime \prime}{ }^{\prime \prime}$
14				12＇818＂	12＇1＇	13＇11＂Well \＃ty
15				12：8\％	1212，	$13110{ }^{\prime \prime}{ }^{\prime \prime}$ when
						$13^{\prime \prime}{ }^{\prime \prime} \mathrm{electric}$
17				1218 ＂	12＇2＂	13＇8 motor
18				1218	12＇，	13＇\％＂runs 2
19				$1218{ }^{\prime \prime}$	11110	13＇5＇hours
20				1218	111010	$1315{ }^{\prime \prime}$
21				1218＂	111910	1314年＂
22				12＇8＇	1110＂	$1314{ }^{\prime \prime}$
23				1218	1110＂	$13^{\prime \prime}{ }^{\prime \prime}$
24				$1218{ }^{\prime \prime}$	1110＂	$13^{\prime \prime}$
25				12，711	1110＂	13＇3音＂
26				1217 ${ }^{\frac{1}{2}}$	21＇910	13＇3年＂
27				1217	1199！	$13^{\prime \prime}$
28				1217＂	119年	13，${ }^{*}$
29				遃	11＇9゙	$13^{\prime \prime}$
30				1217＂	11＇9＂	$13^{\prime} 3^{\prime \prime}$

Bored in February，March and April． 1914.

LOO OF EXPERIKGYTAL WHLLS

above house

Fhrough clay soil to rock．End of l2＂pipe． work－some heavy blu
1100^{\prime} down stream from \＃4
grough top soil and clay， 10^{\prime} of sand and gravel．to rock．Well perforated．pilled about 5 gallons per minute．

Well located about 125^{\prime} east of west line of Rancho and 801 south of ranch roed，being 50^{\prime} east and 40^{\prime} south of point selected ro solid formation－no water．（Log not

Point near the southeast corner of Rancho water－Log not finished．
this point windmill pumps about 7 gallons per minute

PIPE		TABLE (c)	
Line			
1 A	57	301	(a) 26°
2 B	14	24.4	24°
2 C	46	230	$22^{\prime \prime}$
2 D	35	184.	20°
2 E	50	50	$12^{\prime \prime}$
2 F	35	99	$18^{\prime \prime}$
2 G	64	64	14*
Total	301		
	mplete t this ches, ade. ee Kel ages		lloggs 34° may show e increased ssened port e

二NOTE $=$
Line 1 A and Line 2 limited to their irrigation loading. (No provision for Cardiff and Encinitas) May 7, 1917. W.S. Foat.

R.2W. S.B.M.

SAN DIEGUITO MUTUAL WATER CO. DIAGRAM
of
Acreage assigned shown thus Miners Inches of water assigned shown thus (a.)
by Kellogg and Post Dec. 1916
Seale $\frac{1}{62500}$
Drawing Ne 156
File N°

Ed Fletcher Papers

1870-1955
MSS. 81

Box: 38 Folder: 11

Business Records - Reports - Kellogg, H.C - "Extract from Kellogg's Report on San Dieguito Ranch"

Copyright: UC Regents
Use: This work is available from the UC San Diego Libraries. This digital copy of the work is intended to support research, teaching, and private study.

Constraints: This work is protected by the U.S. Copyright Law (Title 17, U.S.C.). Use of this work beyond that allowed by "fair use" requires written permission of the UC Regents. Permission may be obtained from the UC SanDiego Libraries department having custody of the work (http://libraries.ucsd.edu/collections $/ \mathrm{mscl} /$). Responsibility for obtaining permissions and any use and distribution of this work rests exclusively with the user and not the UC San Diego Libraries.

