
1

San Diego House Value Analysis
Advisor: Prof Ilkay Altintas, Prof Volkan Vural

Team Members: Shammi Khattar, Serdar Begnazarov, Amer Catovic, Hessam Jalali Ghajar

MAS DSE C4, 2019 - Group 2

Abstract

The general business challenge that this capstone project aims to address is to evaluate and predict

housing values in San Diego County. The intended public benefit from the project is to provide

further insights and guidance to homeowners, investors and government sectors. The last year’s

cohort established a baseline for our work. Our task was to provide additional and enhanced results

and insights using the following three avenues: new features, enhanced model and scalable

architecture. The specific objective we set at the beginning was to improve the RMSE by at least

10% with respect to the baseline. Our results indicate improvement of 34%.

1. Introduction and Question Formulation

Our capstone project aims to evaluate and predict housing values in San Diego County more

accurately than the baseline. Our task is to provide additional and enhanced insights. Several

important factors that determine the property values, such as regionality (coastal, inland.), the

proximity of schools, seasonality , house size and stability in the San Diego County are built in

the baseline model.

We intend to expand this to include:

- Macroeconomic factors: mortgage rates, GDP

- Microeconomic factors, such as employment and distance to Coast

- (Hybrid) Regional factors like Crime rates and statistics, School districts and their

Ratings

Our primary goal is to improve the housing price forecast model and hence the accuracy of price

prediction by 10% over baseline for the San Diego County.

The main challenge is to get public data for the features that contribute towards housing prices.

For example, one would imagine remodeling data would be useful in predicting a property price.

However that data is not available. Our project, however used data from the US Census, San

Diego County, SANDAG and SchoolDigger. The process of cleansing and loading even though

tedious is the first step towards EDA and extract good features to be fed to any ML algorithms.

2

Our intention is to answer the following questions:

a) How important is proximity to the local employment hubs?

b) Do prices vary more or less for various property segment types (SFR, MFR, Condos)?

c) Does local crime in zip code have any effect on pricing?

d) What features are most important outside of traditional characteristics when someone

buys a property?

e) For places like San Diego, Do people give much importance to buying a property closer

to the coast or be in a better school district?

After data was preprocessed, cleaned and EDA was performed, our models found that when

crime data was available people did give Crime more importance. People like to buy closer to the

coast, however this was more apparent for Condos than other property segment types. The next

few sections of this report detail more analysis and insights into key findings.

2. Team Roles and Responsibilities

Project Management: Shammi is responsible for project coordination and management. He is

also responsible for database management and backups, database deployment, integration and

querying.

Shammi organizes meetings within the team and with advisors, creates plans with team members

for each step and to ensure goals are accomplished on time. Shammi worked on mortgage and

migration features and contributed to all deliverables during the project lifecycle.

Feature engineering and general data engineering function: Amer took the responsibility for

feature engineering role as well as the majority of all other data engineering related tasks.

Modeling / Features / Kubernetes / Git:

Serdar is the lead engineer on the project. He focused on modeling and machine learning tasks.

He performed model selections and different ML techniques such as segmentation, clustering,

anomaly removal, etc. He also developed massively parallel hyperparameter tuning pipeline on

Kubernetes cluster.

Serdar also contributed on Feature Engineering/Augmentation. He worked on adjusting price

related feature to inflation. He also acquired Economic Conditions Index. He augmented some

features from existing ones.

Serdar benchmarked the resources allocated for `words-housing` namespace on Kubernetes

cluster and communicated with the cluster admins for additional resources and modules to

complete the project on timely manner.

3

Serdar managed the mirroring of source code from GitHub to GitLab and vice versa for

deployment of parallel jobs.

Visualization: Hessam is leading this role throughout the project. He developed visualization

tools and dashboards. He developed tools for final presentation demo as well. He also acquired

crime data, preprocessed, and introduced new engineered features for the model.

3. Data Acquisition

Data Sources, Data Sets and Size

Dataset

Sources

Data

Linkage

Destination

Pipeline Scripts Data Size Records

County -

Property

Characteristics

(PAR)

https://drive.google.com/

drive/u/0/folders/1kf9h_

wCDUWtVUFd2VwWG

hYkE8VocDkvk

Characteristics

(PAR)

SQL Server ETL

packages

1 GB/month

We will probably

have 15 years

worth of data load

1.3 million/file

County - Sales

https://drive.google.com/

drive/u/0/folders/1kf9h_

wCDUWtVUFd2VwWG

hYkE8VocDkvk

Sales

SQL Server ETL

packages

30 MB/month. Data

available since

1983

2.5 millions records

total

County - MPR

https://drive.google.com/

drive/u/0/folders/1kf9h_

wCDUWtVUFd2VwWG

hYkE8VocDkvk

(Property Value)

MPR

SQL Server ETL

packages

38 MB/month

We will probably

have 15 years

worth of data load

1.3 millions

County - Full

and Detailed

Address

https://drive.google.com/

drive/u/0/folders/1kf9h_

wCDUWtVUFd2VwWG

hYkE8VocDkvk

Clean data set for

property addresses

SQL Server ETL

packages

186 MB

1.4 millions

 Crime

https://www.sandag.org/i

ndex.asp?classid=14&su

bclassid=21&projectid=4

46&fuseaction=projects.

detail

Crime

SQL Server ETL

packages

 132 MB

 Jan 1st 2012

 to

 Dec 31st 2017

 160,000 per year

Mortgage

Rates*

https://fred.stlouisfed.org

/series/MORTGAGE30U

S

Mortgage rates

(30FRM, 15FRM,

5/1 ARMs after

2005)

SQL Server ETL

packages

Python notebooks

 135 KB

(1971-2018)

 2500

https://fred.stlouisfed.org/series/MORTGAGE30US
https://fred.stlouisfed.org/series/MORTGAGE30US
https://fred.stlouisfed.org/series/MORTGAGE30US

4

San Diego

Housing Price

Index

https://fred.stlouisfed.org

/series/SDXRSA HPI (Monthly) Python Notebooks 12 KB (1987-2019)

387

San Diego

Consumer Price

Index

https://data.bls.gov/times

eries/CUURS49ESA0 CPI (Annual) Python Notebooks 8 KB (1965-2019)

55

San Diego

Economic

Conditions

Index

https://fred.stlouisfed.org

/series/SDIAGRIDX ECI (Monthly) Python Notebooks 8KB (1990-2019)

350

School Ratings

https://drive.google.com/

drive/folders/1xeQRGLo

bT6M8kZxjZPAS4SB0

HwI8b6ku School ratings Python Notebooks 60MB (2018)

700,000

US GDP

https://www.multpl.com/

us-real-gdp-growth-

rate/table/by-quarter

GDP change

(quarterly) Python notebooks 2kB (1988-2018)

130

UC Census

Business

Patterns

https://census.gov/progra

ms-

surveys/cbp/data/datasets

.html

Employment hubs

(annual, per zipcode)

Python Notebooks,

SQL scripts 64kB(2004-2016)

1600

Coastline points Manual Coast distance SQL scripts 2kB

40

Table 1: Data source description

Data Ingestion

https://fred.stlouisfed.org/series/SDXRSA
https://fred.stlouisfed.org/series/SDXRSA
https://data.bls.gov/timeseries/CUURS49ESA0
https://data.bls.gov/timeseries/CUURS49ESA0
https://fred.stlouisfed.org/series/SDIAGRIDX
https://fred.stlouisfed.org/series/SDIAGRIDX
https://drive.google.com/drive/folders/1xeQRGLobT6M8kZxjZPAS4SB0HwI8b6ku
https://drive.google.com/drive/folders/1xeQRGLobT6M8kZxjZPAS4SB0HwI8b6ku
https://drive.google.com/drive/folders/1xeQRGLobT6M8kZxjZPAS4SB0HwI8b6ku
https://drive.google.com/drive/folders/1xeQRGLobT6M8kZxjZPAS4SB0HwI8b6ku
https://www.multpl.com/us-real-gdp-growth-rate/table/by-quarter
https://www.multpl.com/us-real-gdp-growth-rate/table/by-quarter
https://www.multpl.com/us-real-gdp-growth-rate/table/by-quarter
https://census.gov/programs-surveys/cbp/data/datasets.html
https://census.gov/programs-surveys/cbp/data/datasets.html
https://census.gov/programs-surveys/cbp/data/datasets.html
https://census.gov/programs-surveys/cbp/data/datasets.html

5

Based on the schema of incoming data, various tables within the postgres DB were created. The

data was primarily loaded using Python and DB libraries like sqlalchemy.

The incoming data was in CSV and JSON formats, both were loaded in the DB easily.

Histograms and scatter plots were used to find any obvious anomalies. If there were any NaNs

found in the data - those records were dropped.

Data Exploration Summary for Key Features

Employment (Microeconomic):

Employment data is formatted in yearly files in the csv format, with one row for each zip code

and 10-12 columns for the features. The following steps were performed with this data:

1. Staging (pre-processing)

Python NB was created for merging the yearly csv data files into a single csv file.

The NB includes the following steps:

- Remove inconsistency in the number of features and their naming over the

years. This was fixed and a set of features was selected for the merged file.

- Filter the San Diego County zip codes based on the zip_codes table in the

database

- Save the merged and staged data as a new csv file, to be imported into the

database

2. Database import

- The employment data in the csv format from step 1 was imported into the

database as a new table zipcode_employment

3. EDA

The following EDA steps were performed using python notebook:

a. Load employment data from the database into a pandas dataframe

b. Clean up the data by interpolating the null values. These values occur when the

number of companies is very small, so the aggregate salary data may reveal

confidential information, so such data was removed by the US Census.

c. Compute the payroll per establishment (pay_per_est) and salary per employee

(pay_per_emp) and add them as new columns in the database. The salaries are

expected to be among the most relevant features related to employment.

d. Generate the histograms of employment data to understand the ranges and the zip

codes that are at each end of the ranges.

First, we look at the histogram of the total number of employed people per zip

code, averaged over the 13 years. This should have some correlation to the overall

6

purchasing power and population density. We see that there is a wide range of

values, which indicates that there is a variety of business and population densities

in the county.

e. Next, we can see the histograms of annual salaries, over the 2004-2016 period. Even a

superficial examination reveals that some of the zip codes (e.g. 92121 and 92037) have

7

both among the highest number of employees and the highest salaries. We would expect

this to correlate strongly with the house prices in some way.

f. Next, we looked at the trends over the 2004-2016 period. We saw a somewhat

surprisingly even employment over the years, with a lull during the 2009 recession. It

appears though that the zip codes with high employment have a more upward trend in

recent years compared to other zip codes.

The salary trend is shown next. Here again, it seems that high income area have stronger upward

trend in recent years than the areas with lower incomes.

8

g. In the final step, we looked at the correlation between the zip codes in terms of the

employment and salaries. This may be the most interesting plot of all: it shows that many

zip codes have negative correlations in terms of employment and salaries, in some cases

quite strong. While this may be an interesting observation, it remains to be seen if this has

any implications on the housing prices per se, as opposed to, for example pure economic

impacts (e.g. competing companies/industries etc.).

Mortgage (Macroeconomic)

1. Data from St Louis Fed was provided in the form of raw CSV flat files with 9 fields.

2. For EDA, we focussed on 30 YR FRM and 15 YR FRM. The rates are not for San Diego

country but average rates that Fed is tracking for the entire nation along with the points

charged for taking a loan. The data does not assume any specific down payment

percentage.

The following table provides the set of attributes analyzed for exploration:

9

30 YR Fixed Rate Mortgage APR

30 YR Points

15 YR Fixed Rate Mortgage APR

15 YR Points

5/1 ARM APR

5/1 ARM Points

Key Findings of EDA

1. Employment: There is a significant degree of variation of the employment and salaries

both geographically (from one zip code to another) and over time. In terms of

geographical variation, some zip codes are strongly ahead of the pack in terms of the

number of employees and salaries. It also appears that the high performing zip codes

have registered steeper growth over time. An interesting initial observation is that there is

a strong negative correlation between some zip codes in terms of employment and

salaries. It remains to be seen whether there is any causality here. Another key challenge

will be to establish relationship between the geographical aspect of employment and

salaries, and housing prices. On the other hand, the hope is that the temporal relationship

between housing prices and the aggregate county-level employment would be easier to

establish.

2. Mortgage Rates: Historically there has been a strong correlation between mortgage rates

and the growth observed in the year to year property prices. The following plots illustrate

the sold_price vs sold year. If we were to correlate the price upward or downward trend,

its strongly observed when the rates are lower. The 30 YR FRM APR has been on the

downward trend since 1981. Looking at the average property prices in San Diego county

during the same temporal range overall the prices have gone up, with the exception of

2008-2010 recession. That seems to be attributed more towards the onset of 3/1 && 5/1

ARMs.

3. Distance to Coast: We selected 40 points on the SD county coastline. For each property,

we computed the minimum distance to the 40 coastline points and used as the distance to

coast for that property.

4. School Ratings: We used the www.schooldigger.com API to obtain the school districts,

elementary and secondary, serving each property and their ratings. If a property was part

http://www.schooldigger.com/

10

of a unified school district, we would then consider the district as both the elementary and

secondary school district. This data was available for the year 2018 only. This feature

was considered as linked to the property.

5. GDP growth: We used the data for the quarterly GDP growth. This feature was

considered as linked to the property transaction.

6. Crime Data Exploration:

Raw data description:

● Dataset includes geocoded crime incidents from 2012 to December 31st of 2017

that were provided by the San Diego Association of Governments (SANDAG).

The crime data is updated daily by different agencies throughout San Diego

county. In the crime data, there are 795k total data incidents starting from 183k in

2012 to 210k in 2017 per year. Address block field is only provided to the nearest

hundred block in order to maintain privacy, so we decided to use zip code column

as a primary feature for the choropleth map.

Data processing:

● The schema from 2012-2015 was different from 2016-2017, so some matching

had to be done before merging all the data together. Zip code, and the city name

have some missing values as well as some mixed values. For example, there are

some zip code value in a city name and vice versa that made the preprocessing

complicated.

 Some EDA graphs to explore the dataset:

11

12

13

Data pipeline

Table: Pipeline

The data pipelines above shows at a high level the data flowed from the source into our database

which was hosted as part of the Kubernetes cluster. Once the data was cleaned and preprocessed,

EDA was performed. Once some insights were projected using various plotting libraries and

tools like Tableau - features were extracted, engineered and further cleaned before being fed to

ML models.

14

 Table: Solution Architecture

Data Deployment

All the raw data (in various formats (CSV, Json)) was loaded in postgres using python and

PostgreSQL.

Data is deployed on PostgreSQL server on kubernetes.

4. Data Preparation

Data Quality Issues

Outlier Removal :

1. Transaction and property data had properties from outside the San Diego county. These

had to be removed.

2. Some properties had very low Sold price - these had to be removed in order for model to

work.

3. US Census data was clean

4. Crime data had some zip codes are not related to SD county and had to be removed from

the data set.

15

Data Transformation and Integration for analytics

- Data Cleansing: For invalid content our SQL ingestions and python notebooks altered the

data to fit the schema.

- Data Formatting: The schemas were defined in such a way so that they match the

incoming data from various sources.

- Data Finding: Primary keys were defined in such a way that they can easily queried and

referred as foreign keys from other tables. Example for linking mortgage rates to the sold

date was easily done by getting the mortgage rates from the database and linking them to

each transaction sold date hence providing the true picture of the macroeconomic

mortgage when the house was sold.

- Data Matching: We applied basics string matching, date matching and other factors to

link the data sources with each other.

- Data Modeling/Reconstructing: Baseline data was loaded using the provided SQLs. For

new data and features we modeled the schema to be as close to the source. While

ingesting data we kept what was needed and dropped that was not.

Pre-Processing Methods

Data was loaded directly from the source in various tables. The schema matched the incoming

data. Various database views and MAT views were created to query the data that was helpful and

needed.

Features Management and Selection

School related features

School related features that were fed into the model included distances (min, average) to nearby

schools and the school ratings. After performing deeper analysis of the school related features,

we discovered the following issues:

- The distances to schools did not seem correct;

- Serving schools were determined based on the distance. This is typically not how homes

are assigned to schools. School districts design school boundaries trying to balance the

number and mix of students rather than minimize the distance to the serving school

- In order to minimize the computational burden, the search for serving schools was limited

to the same zip code. However, school and school district boundaries have no relation to

zip code boundaries.

- Some high schools in San Diego do not have boundaries at all. Students from the entire

school district are eligible to attend such schools.

Therefore, we decide to remove the baseline features and add new features dedicated to schools.

We realized that adding features related to individual schools may be difficult, due to the same

challenges that have been faced before. So we opted for using the rating of the school districts to

16

which the home belongs, rather than of the individual schools. We used the API available at

https://api.schooldigger.com, which provides information about school districts serving a specific

location. The location can be specified in terms of lat/lon or address. Here’s an example of the

url corresponding to a request for school district information for 2202 MR RANCH RD,

FALLBROOK

https://api.schooldigger.com/v1.1/districts?appID=2388f8cf&appKey=7da38000f86bcc27e3fa1a

10dd92de7e&st=CA&boundaryAddress=2202%20MR%20RANCH%20RD%20FALLBROOK

%20CA&isInBoundaryOnly=true

The corresponding response, in JSON format, includes the following information, which we

used:

"districtList": [

 {

 "districtID": "0613500",

 "districtName": "Fallbrook Union Elementary",

...

 "rankHistory": [

 {

 "year": 2018,

 "rank": 225,

 "rankOf": 856,

 "rankStars": 4,

 "rankStatewidePercentage": 73.71,

 "rankScore": 0.6827871

 },...

We made over 700,000 calls to this API to retrieve the serving school districts for every property

and their rating. The API calls were implemented in Python and timed according to the

maximum pace allowed by the API administrator.

Employment related features

We observed that using the raw distance to the employment hubs may not be optimal, because

the hubs have different number of employees and average salary. It made sense to reflect that in

the distance feature. So we engineered a new feature called proximity in the following way:

d is the distance from the property to zipcode. k is a scaling constant, set to 2. The weights wi

correspond to the % of the total county payroll that was generated in the zipcode, according to

the following table:

ZIP Community % payroll (wi)

92121 San Diego 15.3

https://api.schooldigger.com/
https://api.schooldigger.com/v1.1/districts?appID=2388f8cf&appKey=7da38000f86bcc27e3fa1a10dd92de7e&st=CA&boundaryAddress=2202%20MR%20RANCH%20RD%20FALLBROOK%20CA&isInBoundaryOnly=true
https://api.schooldigger.com/v1.1/districts?appID=2388f8cf&appKey=7da38000f86bcc27e3fa1a10dd92de7e&st=CA&boundaryAddress=2202%20MR%20RANCH%20RD%20FALLBROOK%20CA&isInBoundaryOnly=true
https://api.schooldigger.com/v1.1/districts?appID=2388f8cf&appKey=7da38000f86bcc27e3fa1a10dd92de7e&st=CA&boundaryAddress=2202%20MR%20RANCH%20RD%20FALLBROOK%20CA&isInBoundaryOnly=true

17

92123 San Diego 6.8

92101 San Diego 5.4

92008 Carlsbad 3.7

92108 San Diego 3.6

92037 La Jolla 3.2

The figure below shows the proximity values as functions of the distance for each of the

employment hubs.

Distance to coast

We used the same approach as for the distances to the employment hubs to convert the distances

to proximities. The only difference is that the weight w was set to 1 and the scaling factor k was

1.8.

Crime Feature extraction

The initial use case of crime data on the model was just to get the sum of all crime count for all

categories per zip code and then divide it by the population of the zip code for a given year. We

were not satisfied with the result and crime features didn’t show up on the features importance

graph. The table below shows the result for just 14 sliding windows from 2012 through 2017.

So we introduced new engineered features by the below formula.

18

Where is the number of crimes of category c in a given zip code Z and i represent 13

different crime categories. We got the best result for Larceny >= $400 category. The table shows

the result with the new features. We were able to reduce the Mean RMSE by 6%.

5. Analysis Methods

Modeling

Analytic Approach:

We have proposed 4 new factors that determine housing price; particularly we are trying to find

out if the suggested features can improve the performance of the base model. Questions below

are helping us to define our analytic approach.

1. How does distance from coast affect property value?

2. Does distance to employment hubs affect the fluctuation of the home prices over time?

3. Does mortgage rate as one of our macroeconomic factors that change over the years affect the

model?

4. Can crime rate in each zip code help us predict housing price?

We have also introduced Inflation-Adjusted Sold Price as new target feature to use in our

model.

Inflation adjusted sold price was calculated based on San Diego Home Price Index and

Consumer Price Index (CPI). On each iteration, we added one of the introduced features on top

of the baseline features and evaluated the performance.

Model Description:

During our model selection process, we started with the baseline features and model that were

already given to us. The baseline model is using the Sliding Window validation technique. This

technique works as the following:

1. Start the window from the earliest date and pick 12 months of data for training. For

example, data from 1987-01-01 to 1988-01-01 is used for training.

2. Use the next 4 months of data for testing (i.e. from 1988-01-01 to 1988-05-01). Record

the RMSE value, which is used for scoring metric.

19

3. Slide the beginning of window for 4 months. For example, the beginning of window will

move from 1987-01-01 to 1987-05-01.

4. Repeat the steps 1-3 until the end of the sliding window exceeds the latest date in the

entire dataset.

With the baseline features, we run 2 baseline regression models (RandomForestRegressor and

GradientBoostingRegressor) and 5 new regressors from sklearn, xgboost, and mlxtend libraries

with similar hyperparameters.

Figure 1 and Table 1 below show the RMSE trend graph and statistical values among those

regression models that we tried with the baseline features. GradientBoostingRegressor and

XGBRegressor showed the best results in terms of both mean and median RMSE scores, which

are roughly 75K. Therefore, we decided to continue with the hybrid approach, where the mean

of RMSE values from both GradientBoostingRegressor and XGBRegressor models is used as the

final evaluation metric.

Figure 1: RMSE trend comparison among various Regression models

Table 1: RMSE statistics (sorted by median value) among various Regression models

Model Improvement:

20

To improve our model, we first modified the Sliding Window technique by adding various

intermediate steps. The following is a pseudocode for our technique:

For each sliding window

Separate the dataset into 3 segments based on property type

For each segment

Apply Anomaly Removal method called Isolation Forest

Apply different Hybrid model (GB, XGB) on normal data

Calculate per-sliding-window RMSE score in 2 different ways

Combined: Combine the predictions from all 3 segments and then

calculate the RMSE between those predictions and actual values.

Weighted: First calculate the RMSE for individual segments and then

take the weighted sum of all 3 RMSE values. Weight is proportional to the

segment’s sample points in each sliding window.

Figure 2 below illustrates the modified Sliding Window technique. For 12-month training, 4-

month testing, and 4-month sliding window configuration, there are 89 complete iterations for

the dataset from 1987-01-01 to 2017-10-24.

21

Figure 2: Illustration of the Sliding Window technique

Model Performance:

With the improved Sliding Window technique and newly introduced features, the model

performance has improved significantly. Figure 3 below shows the RMSE trend graph for the

evolution of our model.

Blue line represents the baseline model performance (GradientBoostingRegressor).

Orange line represents our model with segmentation technique.

Green line represents our model with segmentation and anomaly removal techniques.

Red line represents our model with segmentation and anomaly removal techniques on top of

newly introduced features.

22

Figure 3: RMSE trend comparison

Looking at the statistics in Table 2 below, we can see that the mean of RMSE score improved at

every intermediate step. Our final model show roughly 34% improvement over the baseline

model.

Table 2: RMSE statistics for the baseline and improved models

6. Findings and Reporting

Key findings

By looking at the RMSE trendline in Figure 3, we observe that each additional refinement step of

our model resulted in the RMSE reduction. The largest portion of the improvement is attributed to

the removal of outliers using the isolation forest model. This testifies to the fact that careful data

preparation, preprocessing and outlier removal is a key element of a successful model.

23

We further observe that simple adjustment of the model to the dataset, namely: segmentation of

the dataset based on the property type (condo, SF, MF), can yield substantial improvement.

Next, we observe that our feature engineering provided visible improvement, albeit not as much

as the other refinements we made.

Finally, we observe that the model performance varies substantially over the time period between

1988 and 2017. In particular, the RMSE increases between 1996 and 2004 and then again between

2009 and 2012. The former time period corresponds to the housing market that ended in the

housing bubble burst in 2006. In this time period, there was a significant amount of “irrationality”

in the market, reflected in the readiness of buyer to pay prices above the market value. The latter

time period corresponds to the recession, when buyers or banks were selling properties below the

market value, again exhibiting “irrational” behavior. We suspect that this “irrationality” in the

market, which cannot be modelled by the features that we used in our model, is the main reason

for the spike in the RMSE during these two periods. Looking at the raw % error trend in Figure 4,

we observe that, indeed, the model has difficulties tracking the market between 1998 and 2006,

which is reflected in the rising amplitudes of the error spikes. The model attempts to understand

the market, using the moving average/sliding window mechanism, which is reflected in frequent

zero crossing of the error, but the “irrationality” in the market escapes it. Similar observations can

be made for the time between 2008 and 2012.

 Figure 3: raw % error trend

24

Reporting and presenting the findings

The RMSE is the key performance measure for our model. So we focused on the presenting the

RMSE and its trends. We made sure that we exhibit the impact of the different improvement

steps we undertook.

It is also important to demonstrate the performance of our model on specific properties and

compare it to the commercial tools, such as Zillow. We developed two dashboards to showcase

how our model works on a random property and how it performs compared to Zillow.

Property

Type
Parcel ID Address

Zip

Code

Adjusted

Sold

Price/

Date

DSE C4

Predicte

d Value

Adjusted

Zillow

Estimate

%

error

%

error

Single

Family
5772921800

8131

Brennan

St.

92114
$432,335

Sep, 2017
$428,471 $454,207

-0.89%
5.06%

Single

Family
1694914100

4911

Kalamis

Way

92056
$517,928

Nov, 2009
$547,802 $487,751 5.77% -5.82%

Condo 3451420803

4435

Nobel Dr

Unit #3

92122
$316,842

Sep, 2017
$305,314 $322,463 -3.64% 1.77%

25

Multi 5490732900
635 Stork

St.
92114

$419,503

Nov, 2016
$386,121 $420,565 -7.96% 0.25%

The dashboard below shows the number of transaction on a given year (background

color) while the radius of circles represents the Mean absolute percentage error for each

zip code. The color shows the percentage error indicator as well.

26

7. Solution Architecture, Performance and Evaluation

Performance measure

The key performance measure was the RMSE. We were able to reduce the RMSE w.r.t. The

baseline by 34%. Additional performance measures of interest are:

- Standard deviation of the RMSE, which was reduced by ~50% compared to the baseline

- Maximum RMSE, which was reduced by ~40% compared to the baseline

In addition to the improved performance in terms of RMSE, we also improved the performance

in terms of the time needed to run and tune the model, as described in the subsequent sections.

Scalability

As usual in any Machine Learning project, the hyperparameter tuning process was the most

compute intensive stage for this project. We wanted to try 1632 different configurations of

hyperparameters for each of 3 segments and for each of 90 sliding windows. That would be 1632

* 3 * 90 = 440,640 unit time. Let’s assume that the function calls (fit, predict,

mean_square_error, sqrt) take only 2 minutes on average for each segment given the size of our

dataset. If we were to run the tuning on a single core, it would take 440,640 * 2 = 881,280

minutes = 612 days = 1 year 8 months 1 week. Since we didn’t have that much time for this

project, we had to find an alternative solution for this problem. Our solution was data and task

parallelism.

27

Data Parallelism:

We split the entire dataset into 10 chunks. Each chunk contains data for 48 months. There is a

12-month overlap between consecutive chunks because first 12-month for each chunk will be the

starting data for training.

Figure 4 below shows how we split the entire dataset for a massively parallel hyperparameter

tuning.

Figure 4: Dataset splitting for a massively parallel hyperparameter tuning

Task Parallelism:

Each data chunk was offloaded with a separate “Job” to different nodes in the Kubernetes cluster

at the same time. Kubernetes nodes were carefully selected among those that have higher number

of CPU cores so that we could utilize the most of them. For example, if a particular node has 48

cores, there will be 48 different models’ task that runs on exactly the same subset of data on a

given sliding window.

Table 3 below shows the names of Kubernetes node that we selected for each job. All except two

nodes had 48 or more cores. At each node, we used CoreCount - 8 cores. In other words, if a

particular node had 64 cores, we used 54 of them (64 - 8).

28

Table 3: Kubernetes nodes selected for a massively parallel hyperparameter tuning

Hyperparameter tuning completion:

As shown in Table 4 below, with the massively parallel computation, entire hyperparameter

tuning process took only 4546 minutes = 3 days 4 hours. That was only 0.5% of our initial

estimate. In other words, with the data and task parallelism approach, we increased the

hyperparameter tuning process by 200 times in speed.

29

Table 3: Kubernetes jobs completion time

Scalability solution:

If we were to scale this project to State (aka. California) and maybe to Country level, we could

solve the Big Data problem with the similar data and task parallelism approach. Dataset will vary

significantly from state to state. Therefore, each state may require different model. That will

make data parallelism easier. As long as we have enough resources in Kubernetes clusters, task

parallelism shouldn’t be a problem.

Budget management

Since we did not use Amazon Web Services on our project, Budget management was not our

concern. However, we spent 10% of our budget for SchoolDigger API and also updating latitude

and longitude features on the dataset.

8. Conclusions:

30

The initial goal was to get a better RMSE (10% or better) than the baseline work, however we

were able to improve RMSE by 34%. Based on our observation, during normal market (1994-

2000) and (2013 -2017), the percentage error is almost zero, but during the bubble and crash

markets, the error spikes up to 5.25% on the weighted version. Basically, the model attempts to

converge on the changes in the market gradually. All in all, we may have reached a ceiling by

improving the model and adding more features.

Appendices

31

A. DSE MAS Knowledge Applied to the Project

Almost every skill learnt as part of the program was utilized in designing and implementing the

project. Python for Data Analysis was key as all our code and analysis used Python and the

associated modules and packages for database(sqlalchemy), file loading and parsing (numpy,

pandas) and scikit-learn were used heavily. Matplotlib was used to create plots and graphs.

Postgres was used as the database management system. We used Materialized views heavily to

materialize the data so our queries could run in an optimized manner. Once data was loaded,

ETL was performed and clean data was ingested in other tables which were later referred by the

MAT views and used for EDA and Analysis. Tableau and Matplotlib were key to do all analysis

and really helped with feature engineering. Key evaluation metrics like RMSE , Standard

deviation, mean absolute error were used as a comparison with baseline work to determine the

improvement our work achieved. Various machine learning algorithms were used to model the

data. XGB, GB, RandomForest to name a few. Others like Adaboost were experimented with but

did not perform well on our data. Lastly, for visualization Tableau was key to create a real life

demonstration of predicted values of the properties that our model generated. Overall, every

course in the curriculum was essential to get the project done.

B. Data and Software Archive for Reproducibility

Project Links

1. Digital Object Identifier (DOI): https://doi.org/10.6075/J0891459.

Dataset: https://drive.google.com/open?id=1Pbtbdz_P3eFnIUstv4AjZuE1bArbmZ0g

Main Google drive: https://drive.google.com/open?id=1IKc6LpmMBrBAQe00BWa3CbPSovx_MY5e

Output Result: /cephfs/housing/mas19/ on https://housing-jupyter.nautilus.optiputer.net

Dataset description: https://github.com/alexyanw/dse_capstone/tree/master/data

2. Report, notebooks and source code.

All source code and notebooks are uploaded to github project, the project folder is well

structured, refer to README: https://github.com/vvural/Housing/blob/master/mas19/readme.txt

Python notebooks: https://github.com/vvural/Housing/blob/master/mas19/runner.ipynb

Python source code: https://github.com/vvural/Housing/tree/master/mas19/src

Report and presentation: https://drive.google.com/open?id=1pXlVXnfCCa4UIAqoH3x-D0CsUlf_CXzO

Tools Set Up

1. PostgresSQL

https://doi.org/10.6075/J0891459
https://drive.google.com/open?id=1Pbtbdz_P3eFnIUstv4AjZuE1bArbmZ0g
https://drive.google.com/open?id=1IKc6LpmMBrBAQe00BWa3CbPSovx_MY5e
https://housing-jupyter.nautilus.optiputer.net/
https://github.com/alexyanw/dse_capstone/tree/master/data
https://github.com/vvural/Housing/blob/master/mas19/readme.txt
https://github.com/vvural/Housing/blob/master/mas19/runner.ipynb
https://github.com/vvural/Housing/tree/master/mas19/src

32

PostgreSQL 9.6 and below extensions installed

CREATE EXTENSION postgis;

CREATE EXTENSION fuzzystrmatch; --needed for postgis_tiger_geocoder

CREATE EXTENSION address_standardizer;

CREATE EXTENSION address_standardizer_data_us;

CREATE EXTENSION postgis_topology;

CREATE EXTENSION postgis_tiger_geocoder;

2. Tableau Workbook

Tableau workbook is located at the path below named “V1.twb”; all datasource needed are saved

in the same location in a csv file called “df_pred_new_lat_lon.csv”

https://drive.google.com/open?id=1XVzun13-4437xd8ceW65HxFuOCQ7f0Fc

