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Abstract

The general business challenge that this capstone project aims to address is to evaluate and predict
housing values in San Diego County. The intended public benefit from the project is to provide
further insights and guidance to homeowners, investors and government sectors. The last year’s
cohort established a baseline for our work. Our task was to provide additional and enhanced results
and insights using the following three avenues: new features, enhanced model and scalable
architecture. The specific objective we set at the beginning was to improve the RMSE by at least
10% with respect to the baseline. Our results indicate improvement of 34%.

1. Introduction and Question Formulation

Our capstone project aims to evaluate and predict housing values in San Diego County more
accurately than the baseline. Our task is to provide additional and enhanced insights. Several
important factors that determine the property values, such as regionality (coastal, inland.), the
proximity of schools, seasonality , house size and stability in the San Diego County are built in
the baseline model.

We intend to expand this to include:
- Macroeconomic factors: mortgage rates, GDP
- Microeconomic factors, such as employment and distance to Coast
- (Hybrid) Regional factors like Crime rates and statistics, School districts and their
Ratings

Our primary goal is to improve the housing price forecast model and hence the accuracy of price
prediction by 10% over baseline for the San Diego County.

The main challenge is to get public data for the features that contribute towards housing prices.
For example, one would imagine remodeling data would be useful in predicting a property price.
However that data is not available. Our project, however used data from the US Census, San
Diego County, SANDAG and SchoolDigger. The process of cleansing and loading even though
tedious is the first step towards EDA and extract good features to be fed to any ML algorithms.



Our intention is to answer the following questions:

a) How important is proximity to the local employment hubs?

b) Do prices vary more or less for various property segment types (SFR, MFR, Condos)?

c) Does local crime in zip code have any effect on pricing?

d) What features are most important outside of traditional characteristics when someone
buys a property?

e) For places like San Diego, Do people give much importance to buying a property closer
to the coast or be in a better school district?

After data was preprocessed, cleaned and EDA was performed, our models found that when
crime data was available people did give Crime more importance. People like to buy closer to the
coast, however this was more apparent for Condos than other property segment types. The next
few sections of this report detail more analysis and insights into key findings.

2. Team Roles and Responsibilities

Project Management: Shammi is responsible for project coordination and management. He is
also responsible for database management and backups, database deployment, integration and
querying.

Shammi organizes meetings within the team and with advisors, creates plans with team members
for each step and to ensure goals are accomplished on time. Shammi worked on mortgage and
migration features and contributed to all deliverables during the project lifecycle.

Feature engineering and general data engineering function: Amer took the responsibility for
feature engineering role as well as the majority of all other data engineering related tasks.

Modeling / Features / Kubernetes / Git:

Serdar is the lead engineer on the project. He focused on modeling and machine learning tasks.
He performed model selections and different ML techniques such as segmentation, clustering,
anomaly removal, etc. He also developed massively parallel hyperparameter tuning pipeline on
Kubernetes cluster.

Serdar also contributed on Feature Engineering/Augmentation. He worked on adjusting price
related feature to inflation. He also acquired Economic Conditions Index. He augmented some
features from existing ones.

Serdar benchmarked the resources allocated for "words-housing™ namespace on Kubernetes
cluster and communicated with the cluster admins for additional resources and modules to
complete the project on timely manner.



Serdar managed the mirroring of source code from GitHub to GitLab and vice versa for
deployment of parallel jobs.

Visualization: Hessam is leading this role throughout the project. He developed visualization
tools and dashboards. He developed tools for final presentation demo as well. He also acquired
crime data, preprocessed, and introduced new engineered features for the model.

3. Data Acquisition

Data Sources, Data Sets and Size

Dataset
Sources

County -
Property
Characteristics
(PAR)

County - Sales

County - MPR

County - Full
and Detailed
Address

Crime

Mortgage
Rates*

Data

Linkage
https://drive.google.com/
drive/u/O/folders/1kfoh_
wCDUWtVUFd2VWWG
hYKE8VocDkvk

https://drive.google.com/
drive/u/O/folders/1kfoh_

wCDUWtVUFd2VWWG
hYKE8VocDkvk

https://drive.google.com/
drive/u/O/folders/1kfoh_

wCDUWtVUFd2VwWWG
hYkKE8VocDkvk

https://drive.google.com/
drive/u/O/folders/1kfoh_

wCDUWtVUFd2VWWG
hYkKE8VocDkvk

https://www.sandag.org/i
ndex.asp?classid=14&su

Destination
Pipeline

Characteristics
(PAR)

Sales

(Property Value)
MPR

Clean data set for
property addresses

bclassid=21&projectid=4 Crime

46&fuseaction=projects.
detail

https://fred.stlouisfed.org

Mortgage rates

/seriessMORTGAGE30U (30FRM, 15FRM,

S

5/1 ARMs after
2005)

Scripts
SQL Server ETL

packages

SQL Server ETL
packages

SQL Server ETL
packages

SQL Server ETL
packages

SQL Server ETL
packages

SQL Server ETL
packages

Python notebooks

Data Size Records

1 GB/month

We will probably

have 15 years 1.3 million/file

worth of data load

30 MB/month. Data 2.5 millions records
available since total
1983

38 MB/month
We will probably
have 15 years
worth of data load

1.3 millions

186 MB 1.4 millions

132 MB
Jan 1st 2012
to
Dec 31st 2017

160,000 per year

2500
135 KB
(1971-2018)


https://fred.stlouisfed.org/series/MORTGAGE30US
https://fred.stlouisfed.org/series/MORTGAGE30US
https://fred.stlouisfed.org/series/MORTGAGE30US

San Diego
Housing Price
Index

San Diego
Consumer Price
Index

San Diego
Economic
Conditions
Index

School Ratings

US GDP

UC Census
Business
Patterns

Coastline points

https://fred.stlouisfed.org
[series/SDXRSA HPI (Monthly)

https://data.bls.gov/times
eriesstCUURS49ESAO0 CPI (Annual)

https://fred.stlouisfed.org
[series/SDIAGRIDX ECI (Monthly)

https://drive.google.com/
drive/folders/1xeQRGLO
bT6M8kZxjZPAS4SB0O

HwI18b6ku School ratings

https://www.multpl.com/
us-real-gdp-growth- GDP change
rate/table/by-quarter (quarterly)

https://census.gov/progra
ms-
surveys/cbp/data/datasets Employment hubs

Python Notebooks

Python Notebooks

Python Notebooks

Python Notebooks

Python notebooks

Python Notebooks,

.html (annual, per zipcode) SQL scripts

Manual Coast distance

SQL scripts

Table 1: Data source description

Data Ingestion

12 KB (1987-2019)

8 KB (1965-2019)

8KB (1990-2019)

60MB (2018)

2kB (1988-2018)

64kB(2004-2016)

2kB

387

55

350

700,000

130

1600

40


https://fred.stlouisfed.org/series/SDXRSA
https://fred.stlouisfed.org/series/SDXRSA
https://data.bls.gov/timeseries/CUURS49ESA0
https://data.bls.gov/timeseries/CUURS49ESA0
https://fred.stlouisfed.org/series/SDIAGRIDX
https://fred.stlouisfed.org/series/SDIAGRIDX
https://drive.google.com/drive/folders/1xeQRGLobT6M8kZxjZPAS4SB0HwI8b6ku
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https://census.gov/programs-surveys/cbp/data/datasets.html
https://census.gov/programs-surveys/cbp/data/datasets.html
https://census.gov/programs-surveys/cbp/data/datasets.html

Based on the schema of incoming data, various tables within the postgres DB were created. The
data was primarily loaded using Python and DB libraries like sqlalchemy.

The incoming data was in CSV and JSON formats, both were loaded in the DB easily.
Histograms and scatter plots were used to find any obvious anomalies. If there were any NaNs
found in the data - those records were dropped.

Data Exploration Summary for Key Features

Employment (Microeconomic):

Employment data is formatted in yearly files in the csv format, with one row for each zip code
and 10-12 columns for the features. The following steps were performed with this data:

1. Staging (pre-processing)
Python NB was created for merging the yearly csv data files into a single csv file.
The NB includes the following steps:
- Remove inconsistency in the number of features and their naming over the
years. This was fixed and a set of features was selected for the merged file.
- Filter the San Diego County zip codes based on the zip_codes table in the
database
- Save the merged and staged data as a new csv file, to be imported into the
database
2. Database import

- The employment data in the csv format from step 1 was imported into the

database as a new table zipcode_employment
3. EDA
The following EDA steps were performed using python notebook:

a. Load employment data from the database into a pandas dataframe

b. Clean up the data by interpolating the null values. These values occur when the
number of companies is very small, so the aggregate salary data may reveal
confidential information, so such data was removed by the US Census.

c. Compute the payroll per establishment (pay_per_est) and salary per employee
(pay_per_emp) and add them as new columns in the database. The salaries are
expected to be among the most relevant features related to employment.

d. Generate the histograms of employment data to understand the ranges and the zip
codes that are at each end of the ranges.

First, we look at the histogram of the total number of employed people per zip
code, averaged over the 13 years. This should have some correlation to the overall



avg. # of employees per zip code 2004 - 2016 (top 50)

values, which indicates that there is a variety of business and population densities

purchasing power and population density. We see that there is a wide range of
in the county.
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e. Next, we can see the histograms of annual salaries, over the 2004-2016 period. Even a
superficial examination reveals that some of the zip codes (e.g. 92121 and 92037) have



both among the highest number of employees and the highest salaries. We would expect
this to correlate strongly with the house prices in some way.

f. Next, we looked at the trends over the 2004-2016 period. We saw a somewhat
surprisingly even employment over the years, with a lull during the 2009 recession. It
appears though that the zip codes with high employment have a more upward trend in
recent years compared to other zip codes.
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The salary trend is shown next. Here again, it seems that high income area have stronger upward
trend in recent years than the areas with lower incomes.



g. In the final step, we looked at the correlation between the zip codes in terms of the
employment and salaries. This may be the most interesting plot of all: it shows that many
zip codes have negative correlations in terms of employment and salaries, in some cases
quite strong. While this may be an interesting observation, it remains to be seen if this has
any implications on the housing prices per se, as opposed to, for example pure economic
impacts (e.g. competing companies/industries etc.).

employment difference correlation empleyment YoY correlation
i ¥ |5 ik i Sk A T CATR ST k) 1

91911 ! 91911
-08 91917 -0B 91917 08
91941 51941
91962 91962
92003 92003
32010 32010
04 92021 04 92021 0.4
92028 92028
32054 92054
92059 92059
= o 52066 o = 92066 &
B 00 ® g7z 20 ® g7 I oo
92084 92084
92101 92101
92106 f 92106
-04 82111 -04 9111 04
92117 3 92117 ’
92122 & 92122
92128 92128
92135 92135
“08 9154 § 08 g5 os
92259 92259
P ap
salary correlation salary difference correlation salary YoY cerrelation
91901 o . il e 91901 P T
91911 - 91911
91917 -08 91917 Y
91941 [ I 91941
91962 £ 27 il 91962
92003 + 1 1 - - ot 92003
92010 92010
92021 - | I | 04 92021 04
92028 - o8 S | B T Y i 92028
92054 | | i 92054
92059 92059
2 92066 2 92066
" 92075 +h TE B F R BRI 00 m 3075 0o
92084 L e 92084
92101 -7 1 1 1 92101
92106 HH BB | SR SRttt 92106
92111 -4 I 4| 04 92111 o4
92117 IHE 8 L ool 92117
92122 4k L B | e R | 92122
92128 - N B R 1o e pd| 92128
92135 + i g (ol i el ks o oy 92135
92154 = i = 08 92154 -0.8
92259

52259 T

7p

Mortgage (Macroeconomic)

1.
2.

Data from St Louis Fed was provided in the form of raw CSV flat files with 9 fields.

For EDA, we focussed on 30 YR FRM and 15 YR FRM. The rates are not for San Diego
country but average rates that Fed is tracking for the entire nation along with the points
charged for taking a loan. The data does not assume any specific down payment
percentage.

The following table provides the set of attributes analyzed for exploration:



30 YR Fixed Rate Mortgage APR

30 YR Points

15 YR Fixed Rate Mortgage APR

15 YR Points

5/1 ARM APR

5/1 ARM Points

Key Findings of EDA

1. Employment: There is a significant degree of variation of the employment and salaries
both geographically (from one zip code to another) and over time. In terms of
geographical variation, some zip codes are strongly ahead of the pack in terms of the
number of employees and salaries. It also appears that the high performing zip codes
have registered steeper growth over time. An interesting initial observation is that there is
a strong negative correlation between some zip codes in terms of employment and
salaries. It remains to be seen whether there is any causality here. Another key challenge
will be to establish relationship between the geographical aspect of employment and
salaries, and housing prices. On the other hand, the hope is that the temporal relationship
between housing prices and the aggregate county-level employment would be easier to
establish.

2. Mortgage Rates: Historically there has been a strong correlation between mortgage rates
and the growth observed in the year to year property prices. The following plots illustrate
the sold_price vs sold year. If we were to correlate the price upward or downward trend,
its strongly observed when the rates are lower. The 30 YR FRM APR has been on the
downward trend since 1981. Looking at the average property prices in San Diego county
during the same temporal range overall the prices have gone up, with the exception of
2008-2010 recession. That seems to be attributed more towards the onset of 3/1 && 5/1
ARMs.

3. Distance to Coast: We selected 40 points on the SD county coastline. For each property,
we computed the minimum distance to the 40 coastline points and used as the distance to
coast for that property.

4. School Ratings: We used the www.schooldigger.com API to obtain the school districts,
elementary and secondary, serving each property and their ratings. If a property was part



http://www.schooldigger.com/

of a unified school district, we would then consider the district as both the elementary and
secondary school district. This data was available for the year 2018 only. This feature
was considered as linked to the property.

. GDP growth: We used the data for the quarterly GDP growth. This feature was
considered as linked to the property transaction.

. Crime Data Exploration:
Raw data description:

e Dataset includes geocoded crime incidents from 2012 to December 31st of 2017
that were provided by the San Diego Association of Governments (SANDAG).
The crime data is updated daily by different agencies throughout San Diego
county. In the crime data, there are 795k total data incidents starting from 183k in
2012 to 210k in 2017 per year. Address block field is only provided to the nearest
hundred block in order to maintain privacy, so we decided to use zip code column
as a primary feature for the choropleth map.

Data processing:

e The schema from 2012-2015 was different from 2016-2017, so some matching
had to be done before merging all the data together. Zip code, and the city name
have some missing values as well as some mixed values. For example, there are
some zip code value in a city name and vice versa that made the preprocessing
complicated.

Some EDA graphs to explore the dataset:

10
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Data pipeline
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Table: Pipeline

The data pipelines above shows at a high level the data flowed from the source into our database
which was hosted as part of the Kubernetes cluster. Once the data was cleaned and preprocessed,
EDA was performed. Once some insights were projected using various plotting libraries and
tools like Tableau - features were extracted, engineered and further cleaned before being fed to
ML models.
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Address

Sales Data

Kubernetes
Environment
Valuation Data
Characteristics Data dumps in
Data CSV format
- U

— Employment — Ql
Data

Postgres DB

Preprocess
Cleanse
Filter

Crime Data

School Ratings

Match
Merge

Mortgage

GDP

— P

Distance to
coast

Table: Solution Architecture

Data Deployment

All the raw data (in various formats (CSV, Json)) was loaded in postgres using python and
PostgreSQL.
Data is deployed on PostgreSQL server on kubernetes.

4. Data Preparation

Data Quality Issues

Outlier Removal :

1. Transaction and property data had properties from outside the San Diego county. These
had to be removed.

2. Some properties had very low Sold price - these had to be removed in order for model to
work.

3. US Census data was clean

4. Crime data had some zip codes are not related to SD county and had to be removed from
the data set.
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Data Transformation and Integration for analytics

Data Cleansing: For invalid content our SQL ingestions and python notebooks altered the
data to fit the schema.

Data Formatting: The schemas were defined in such a way so that they match the
incoming data from various sources.

Data Finding: Primary keys were defined in such a way that they can easily queried and
referred as foreign keys from other tables. Example for linking mortgage rates to the sold
date was easily done by getting the mortgage rates from the database and linking them to
each transaction sold date hence providing the true picture of the macroeconomic
mortgage when the house was sold.

Data Matching: We applied basics string matching, date matching and other factors to
link the data sources with each other.

Data Modeling/Reconstructing: Baseline data was loaded using the provided SQLs. For
new data and features we modeled the schema to be as close to the source. While
ingesting data we kept what was needed and dropped that was not.

Pre-Processing Methods

Data was loaded directly from the source in various tables. The schema matched the incoming
data. Various database views and MAT views were created to query the data that was helpful and
needed.

Features Management and Selection

School related features

School related features that were fed into the model included distances (min, average) to nearby
schools and the school ratings. After performing deeper analysis of the school related features,
we discovered the following issues:

The distances to schools did not seem correct;

Serving schools were determined based on the distance. This is typically not how homes
are assigned to schools. School districts design school boundaries trying to balance the
number and mix of students rather than minimize the distance to the serving school

In order to minimize the computational burden, the search for serving schools was limited
to the same zip code. However, school and school district boundaries have no relation to
zip code boundaries.

Some high schools in San Diego do not have boundaries at all. Students from the entire
school district are eligible to attend such schools.

Therefore, we decide to remove the baseline features and add new features dedicated to schools.
We realized that adding features related to individual schools may be difficult, due to the same
challenges that have been faced before. So we opted for using the rating of the school districts to
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which the home belongs, rather than of the individual schools. We used the API available at
https://api.schooldigger.com, which provides information about school districts serving a specific
location. The location can be specified in terms of lat/lon or address. Here’s an example of the
url corresponding to a request for school district information for 2202 MR RANCH RD,
FALLBROOK
https://api.schooldigger.com/v1.1/districts?applD=2388f8cf&appKey=7da38000f86bcc27e3fala
10dd92de7e&st=CA&boundaryAddress=2202%20MR%20RANCH%20RD%20FALLBROOK
%20CA&isInBoundaryOnly=true
The corresponding response, in JSON format, includes the following information, which we
used:
"districtList™: [
{
"districtID": "0613500",
"districtName": "Fallbrook Union Elementary",

"rankHistory": [
{
"year": 2018,
"rank': 225,
"rankOf": 856,
"rankStars": 4,
"rankStatewidePercentage™: 73.71,
"rankScore™: 0.6827871

1.

We made over 700,000 calls to this API to retrieve the serving school districts for every property
and their rating. The API calls were implemented in Python and timed according to the
maximum pace allowed by the APl administrator.

Employment related features

We observed that using the raw distance to the employment hubs may not be optimal, because
the hubs have different number of employees and average salary. It made sense to reflect that in
the distance feature. So we engineered a new feature called proximity in the following way:

d
IProximity(zipcode;) = exp (—k—) € [0,1]
Wi

d is the distance from the property to zipcode. k is a scaling constant, set to 2. The weights wi
correspond to the % of the total county payroll that was generated in the zipcode, according to
the following table:

ZIP Community % payroll (wi)
92121 San Diego 15.3
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92123
92101
92008
92108
92037

The figure below shows the proximity values as functions of the distance for each of the

San Diego
San Diego
Carlsbad
San Diego
La Jolla

employment hubs.
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We used the same approach as for the distances to the employment hubs to convert the distances
to proximities. The only difference is that the weight w was set to 1 and the scaling factor k was

1.8.

Crime Feature extraction

The initial use case of crime data on the model was just to get the sum of all crime count for all
categories per zip code and then divide it by the population of the zip code for a given year. We
were not satisfied with the result and crime features didn’t show up on the features importance
graph. The table below shows the result for just 14 sliding windows from 2012 through 2017.

mean

std

min

25%

50%

75%

max

combined

61125.65901

10694.79502

48274.0752

56285.20302

57451.35711

61929.32578

82241.07663

weighted

59783.02979

10570.23738

47353.1661

54822.71686

56524.86967

60643.24356

81190.58214

So we introduced new engineered features by the below formula.
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Where "z is the number of crimes of category c in a given zip code Z and i represent 13
different crime categories. We got the best result for Larceny >= $400 category. The table shows
the result with the new features. We were able to reduce the Mean RMSE by 6%.

count mean std min 25% 50% 75% max
combined 14 57590.76338 9072.110134 47124.22223 52200.75956 54424 51934 60571.50659 77706.02322
weighted 14 56184.53311 9259.66115 45926.19079 50423.02099 53795.19457 58899.15587 76750.05603

5. Analysis Methods

Modeling

Analytic Approach:

We have proposed 4 new factors that determine housing price; particularly we are trying to find
out if the suggested features can improve the performance of the base model. Questions below
are helping us to define our analytic approach.

1. How does distance from coast affect property value?

2. Does distance to employment hubs affect the fluctuation of the home prices over time?

3. Does mortgage rate as one of our macroeconomic factors that change over the years affect the
model?

4. Can crime rate in each zip code help us predict housing price?

We have also introduced Inflation-Adjusted Sold Price as new target feature to use in our
model.

Inflation adjusted sold price was calculated based on San Diego Home Price Index and
Consumer Price Index (CPI). On each iteration, we added one of the introduced features on top
of the baseline features and evaluated the performance.

Model Description:
During our model selection process, we started with the baseline features and model that were
already given to us. The baseline model is using the Sliding Window validation technique. This
technique works as the following:
1. Start the window from the earliest date and pick 12 months of data for training. For
example, data from 1987-01-01 to 1988-01-01 is used for training.
2. Use the next 4 months of data for testing (i.e. from 1988-01-01 to 1988-05-01). Record
the RMSE value, which is used for scoring metric.
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3. Slide the beginning of window for 4 months. For example, the beginning of window will
move from 1987-01-01 to 1987-05-01.
4. Repeat the steps 1-3 until the end of the sliding window exceeds the latest date in the

entire dataset.

With the baseline features, we run 2 baseline regression models (RandomForestRegressor and
GradientBoostingRegressor) and 5 new regressors from sklearn, xgboost, and mixtend libraries
with similar hyperparameters.

Figure 1 and Table 1 below show the RMSE trend graph and statistical values among those
regression models that we tried with the baseline features. GradientBoostingRegressor and
XGBRegressor showed the best results in terms of both mean and median RMSE scores, which
are roughly 75K. Therefore, we decided to continue with the hybrid approach, where the mean
of RMSE values from both GradientBoostingRegressor and XGBRegressor models is used as the

final evaluation metric.

Figure 1: RMSE trend comparison among various Regression models

count

XGBRegressor 92.0
GradientBoostingRegressor  92.0
RandomForestRegressor 92.0
StackingRegressor 92.0
LinearRegression 92.0
MLPRegressor 92.0

AdaBoostRegressor 92.0

mean
75213.572819
75096.252763
76060.323682
79066.542259
97062.507576

99266.807139

std
16754.435765
16508.824114
16446.948297
16988.555862
19543.156414
24223.620808

147657.602618 45694.948340

min
43516.733908
43245.447823
43500.743871
44835.230743
51893.758575
55163.235403
81062.765626

25% 50%
65019.967021 75308.035192
64803.558600 75446.330772
65131.476693  77126.408516
68105.282520 79456.621284
86561118824  96824.881145
81786.804371 98203.340816
111382.050637 142738.436473

75%
85160.677337
83736.771507
85272.560812
88979.897804
110370.358243
112810.449531

177304.234276

max
111967.635834
116564.006235
113730.920556
124921.582483
152224.669862
151354.678991
318223126933

Table 1: RMSE statistics (sorted by median value) among various Regression models

Model Improvement:
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To improve our model, we first modified the Sliding Window technique by adding various
intermediate steps. The following is a pseudocode for our technique:

RMSE Trend Comparison Among Various Regression Models

-~ RandomForestRegressor
GradientBoostingRegressor
~ XGBRegressor

300000 —— AdaBoostRegressor
MLPRegressor

- LinearRegression
StackingRegressor

250000

200000

150000

100000

50000 \_A/

o 2

°

& 2
Q! oY s

.
o® 2 o

v

date

For each sliding window

Separate the dataset into 3 segments based on property type

For each segment
Apply Anomaly Removal method called Isolation Forest
Apply different Hybrid model (GB, XGB) on normal data

Calculate per-sliding-window RMSE score in 2 different ways
Combined: Combine the predictions from all 3 segments and then
calculate the RMSE between those predictions and actual values.
Weighted: First calculate the RMSE for individual segments and then
take the weighted sum of all 3 RMSE values. Weight is proportional to the
segment’s sample points in each sliding window.

Figure 2 below illustrates the modified Sliding Window technique. For 12-month training, 4-
month testing, and 4-month sliding window configuration, there are 89 complete iterations for
the dataset from 1987-01-01 to 2017-10-24.
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Sliding iterations

| Technique applied at each sliding iteration:
Train (12 months) Test (4 months)
1. Separate dataset into 3 segments based on “property type”.
2. For each segment:
2 I‘H"’I_H-I_HH_I"_H" a.  Apply anomaly removal algorithm.
| b.  For each model expert chosen for the segment:
sliding (4 months) Train (12 months)  Test (4 months) * Train for 12 months
. Test for next 4 months.
C. Take an average of RMSE values from all model experts.
T |\ | | | | | | | | | | | | | | | | 3. Take a weight sum of RMSE values for all segments.
Sliding (4 months) Train (12 months)  Test (4 months)
\
Sliding (4 months) Train (12 months)  Test (4 months)
v L |
I |
1987-01-01 2017-10-24

Figure 2: lllustration of the Sliding Window technique

Model Performance:

With the improved Sliding Window technique and newly introduced features, the model
performance has improved significantly. Figure 3 below shows the RMSE trend graph for the
evolution of our model.

Blue line represents the baseline model performance (GradientBoostingRegressor).
line represents our model with segmentation technique.
Green line represents our model with segmentation and anomaly removal techniques.
Red line represents our model with segmentation and anomaly removal techniques on top of
newly introduced features.
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RMSE Trend Comparison

120000 e
base_seg
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— base_seg_iso_feat
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80000
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Figure 3: RMSE trend comparison

Looking at the statistics in Table 2 below, we can see that the mean of RMSE score improved at
every intermediate step. Our final model show roughly 34% improvement over the baseline
model.

count mean std min 25% 50% 75% max

base 89.0 75103.094299 16768.222789 43282.739302 62828.242971 75715.425544 84152.224004 117088.924162
base_seg 89.0 70243543722 15588.967656 39448.205525 59251.942569 70925911033 79322.227780 109141.987261
base_seg_iso 89.0 51174.045681 8817.052736 32906.607677 45005.647952 50647.023818 58192.740298  71737.515975

base_seg_iso_feat 89.0 49755.015625  8484.091174 32620.367846 43974.843717 48434.887237 54820.289882  73118.140873

Table 2: RMSE statistics for the baseline and improved models

6. Findings and Reporting

Key findings

By looking at the RMSE trendline in Figure 3, we observe that each additional refinement step of
our model resulted in the RMSE reduction. The largest portion of the improvement is attributed to
the removal of outliers using the isolation forest model. This testifies to the fact that careful data
preparation, preprocessing and outlier removal is a key element of a successful model.
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We further observe that simple adjustment of the model to the dataset, namely: segmentation of
the dataset based on the property type (condo, SF, MF), can yield substantial improvement.

Next, we observe that our feature engineering provided visible improvement, albeit not as much
as the other refinements we made.

Finally, we observe that the model performance varies substantially over the time period between
1988 and 2017. In particular, the RMSE increases between 1996 and 2004 and then again between
2009 and 2012. The former time period corresponds to the housing market that ended in the
housing bubble burst in 2006. In this time period, there was a significant amount of “irrationality”
in the market, reflected in the readiness of buyer to pay prices above the market value. The latter
time period corresponds to the recession, when buyers or banks were selling properties below the
market value, again exhibiting “irrational” behavior. We suspect that this “irrationality” in the
market, which cannot be modelled by the features that we used in our model, is the main reason
for the spike in the RMSE during these two periods. Looking at the raw % error trend in Figure 4,
we observe that, indeed, the model has difficulties tracking the market between 1998 and 2006,
which is reflected in the rising amplitudes of the error spikes. The model attempts to understand
the market, using the moving average/sliding window mechanism, which is reflected in frequent
zero crossing of the error, but the “irrationality” in the market escapes it. Similar observations can
be made for the time between 2008 and 2012.

Percentage Errors between 1988 and 2017
combined

10 l weighted

4 | ]

N

=
Q0 )

=
o© )

®
o® o)

ol
S Q

7

date

N

Figure 3: raw % error trend

23



Reporting and presenting the findings

The RMSE is the key performance measure for our model. So we focused on the presenting the
RMSE and its trends. We made sure that we exhibit the impact of the different improvement
steps we undertook.

It is also important to demonstrate the performance of our model on specific properties and
compare it to the commercial tools, such as Zillow. We developed two dashboards to showcase
how our model works on a random property and how it performs compared to Zillow.

) Adjusted
Property | parcel 1p | Address | 2P Sold
Type Code Price/
Date
i 8131
SIngl® | 5772021800 | Brennan | 92114 | ¥432:3%°
ey St. Sep, 2017
i 4911
SIndle | 1604914100 | Kalamis | 92056 | 2171928
i Way Nov, 2009
4435
Condo | 3451420803 | Nobel Dr | 92122 | $316:842
Unit #3 Sep, 2017
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Multi

5490732900

635 Stork
St.

92114

$419,503
Nov, 2016

$386,121

$420,565

-7.96%

0.25%

Sold Date
September 2

City

PIN

Address
Property Type

(All)

Property Type

u
M condo
n

Multi

Property

Chula Vista

ss: 1854 Birch Ave, Escondido, CA 92027
2340500500

1,742

2
3

$459,931
$464,622
1.02%

Bathrooms
(All

Bedrooms
(Al

Square Foot

The dashboard below shows the number of transaction on a given year (background
color) while the radius of circles represents the Mean absolute percentage error for each
zip code. The color shows the percentage error indicator as well.
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(an)

Property Type
[ (an)

[¥] Condo
V] Multi

[V] singie

ESCONDIDO
92027
15,351
ge Error: -0.16%

Number of Transactions

31,952

Percentage Error Indicator

@ Negative

7. Solution Architecture, Performance and Evaluation
Performance measure

The key performance measure was the RMSE. We were able to reduce the RMSE w.r.t. The
baseline by 34%. Additional performance measures of interest are:

- Standard deviation of the RMSE, which was reduced by ~50% compared to the baseline
- Maximum RMSE, which was reduced by ~40% compared to the baseline

In addition to the improved performance in terms of RMSE, we also improved the performance
in terms of the time needed to run and tune the model, as described in the subsequent sections.

Scalability

As usual in any Machine Learning project, the hyperparameter tuning process was the most
compute intensive stage for this project. We wanted to try 1632 different configurations of
hyperparameters for each of 3 segments and for each of 90 sliding windows. That would be 1632
* 3 * 90 = 440,640 unit time. Let’s assume that the function calls (fit, predict,
mean_square_error, sqrt) take only 2 minutes on average for each segment given the size of our
dataset. If we were to run the tuning on a single core, it would take 440,640 * 2 = 881,280
minutes = 612 days = 1 year 8 months 1 week. Since we didn’t have that much time for this
project, we had to find an alternative solution for this problem. Our solution was data and task
parallelism.
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Data Parallelism:

We split the entire dataset into 10 chunks. Each chunk contains data for 48 months. There is a
12-month overlap between consecutive chunks because first 12-month for each chunk will be the
starting data for training.

Figure 4 below shows how we split the entire dataset for a massively parallel hyperparameter
tuning.

iteration 1 iteration 9
L )

next test begin

1987-01 1987-05 1987-09 1988-01 1988-05 1988-09 1989-01 1989-05 1989-09 1990-01 1990-05 1990-09

1990-01 1990-05 1990-09 1991-01 1991-05 1991-09 1992-01 1992-05 1992-09 1993-01 1993-05 1993-09 1994-01

1993-01 1993-05 1993-09 1994-01 1994-05 1994-09 1995-01 1995-05 1995-09 1996-01 1996-05 1996-09

LR

1996-01 1996-05 1996-09 1997-01 1997-05 1997-09 1998-01 1998-05 1998-09 1999-01 1999-05 1999-09

8

1999-01 1999-05 1999-09 2000-01 2000-05 2000-09 2001-01 2001-05 2001-09 2002-01 2002-05 2002-09

[

2002-01 2002-05 2002-09 2003-01 2003-05 2003-09 2004-01 2004-05 2004-09 2005-01 2005-05 2005-09

g

2005-01 2005-05 2005-09 2006-01 2006-05 2007-05 2007-09 2008-01 2008-05 2008-09

g

2008-01 2008-05 2008-09 2009-01 2009-05 2010-01 2010-05 2010-09 2011-01 2011-05 2011-09

2011-01 2011-05 2011-09 2012-01 2012-05 2012-09 PIER R 2013-05 2013-09 2014-01 2014-05 2014-09

PEREREREEE

18

2014-01 2014-05 2014-09 Pl R 2015-05 2015-09 2016-01 2016-05 2016-09 2017-01 2017-05 2017-09

2018-01

Figure 4: Dataset splitting for a massively parallel hyperparameter tuning

Task Parallelism:

Each data chunk was offloaded with a separate “Job” to different nodes in the Kubernetes cluster
at the same time. Kubernetes nodes were carefully selected among those that have higher number
of CPU cores so that we could utilize the most of them. For example, if a particular node has 48
cores, there will be 48 different models’ task that runs on exactly the same subset of data on a
given sliding window.

Table 3 below shows the names of Kubernetes node that we selected for each job. All except two

nodes had 48 or more cores. At each node, we used CoreCount - 8 cores. In other words, if a
particular node had 64 cores, we used 54 of them (64 - 8).
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_ Node Selected at Launch Cores Used (a) | RAM in GB Node Restarted m

Job_01
Job_02
Job_03
Job_04
Job_05 (b)
Job_06
lob_07 (c)
Job_08
Job_09 (d)
Job_10

knuron.calit2.optiputer.net
fiona8.ucsc.edu
maserati.sciencedmz.nps.edu
ucm-fiona0l.ucmerced.edu
patternlab.calit2.optiputer.net
kubeO1l.engr.ucr.edu
fiona8-2.calit2.uci.edu
dtn-gpu2.kreonet.net
k8s-ravi-01.calit2.optiputer.net

kube02.engr.ucr.edu

Hyperparameter tuning completion:
As shown in Table 4 below, with the massively parallel computation, entire hyperparameter
tuning process took only 4546 minutes = 3 days 4 hours. That was only 0.5% of our initial
estimate. In other words, with the data and task parallelism approach, we increased the

hyperparameter tuning process by 200 times in speed.

56
64
56
32
40
40
40
24
40

32
64
32
32
32
32
32
32
32

fiona8-2.calit2.uci.edu 7

fiona8-2.calit2.uci.edu 1

Table 3: Kubernetes nodes selected for a massively parallel hyperparameter tuning
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Job Completion Time

Job_01 (a) | 240 7323

Job_02 | 603 T TEETEEN s 300 302

Job_03 ’ 307 [203 18301720 165 176 191

291

ob04 | 324 SIS
Job_05 (b) ’ s aes TR
sob_06 | 305 [zEE IS e

sob_07 221" [HTENESO 9958125116129

Job_08 ylssmﬁi 9590 171 174 176

sob_09(c) (178 BT 202 152 178

sob_10 |17 AR 200 207 168
|

0 500 1000 1500 2000 2500 3000
ELAPSED TIME IN MINUTES

lteration1 mlteration2 mlteration3 m Iteration4 Iteration 5 Iteration 6 Iteration 7 Iteration 8 Iteration 9

Table 3: Kubernetes jobs completion time

Scalability solution:

If we were to scale this project to State (aka. California) and maybe to Country level, we could
solve the Big Data problem with the similar data and task parallelism approach. Dataset will vary
significantly from state to state. Therefore, each state may require different model. That will
make data parallelism easier. As long as we have enough resources in Kubernetes clusters, task
parallelism shouldn’t be a problem.

Budget management

Since we did not use Amazon Web Services on our project, Budget management was not our
concern. However, we spent 10% of our budget for SchoolDigger API and also updating latitude
and longitude features on the dataset.

8. Conclusions:
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The initial goal was to get a better RMSE (10% or better) than the baseline work, however we
were able to improve RMSE by 34%. Based on our observation, during normal market (1994-
2000) and (2013 -2017), the percentage error is almost zero, but during the bubble and crash
markets, the error spikes up to 5.25% on the weighted version. Basically, the model attempts to
converge on the changes in the market gradually. All in all, we may have reached a ceiling by
improving the model and adding more features.

Appendices
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A. DSE MAS Knowledge Applied to the Project

Almost every skill learnt as part of the program was utilized in designing and implementing the
project. Python for Data Analysis was key as all our code and analysis used Python and the
associated modules and packages for database(sglalchemy), file loading and parsing (numpy,
pandas) and scikit-learn were used heavily. Matplotlib was used to create plots and graphs.
Postgres was used as the database management system. We used Materialized views heavily to
materialize the data so our queries could run in an optimized manner. Once data was loaded,
ETL was performed and clean data was ingested in other tables which were later referred by the
MAT views and used for EDA and Analysis. Tableau and Matplotlib were key to do all analysis
and really helped with feature engineering. Key evaluation metrics like RMSE , Standard
deviation, mean absolute error were used as a comparison with baseline work to determine the
improvement our work achieved. Various machine learning algorithms were used to model the
data. XGB, GB, RandomForest to name a few. Others like Adaboost were experimented with but
did not perform well on our data. Lastly, for visualization Tableau was key to create a real life
demonstration of predicted values of the properties that our model generated. Overall, every
course in the curriculum was essential to get the project done.

B. Data and Software Archive for Reproducibility

Project Links
1. Digital Object Identifier (DOI): https://doi.org/10.6075/J0891459.
Dataset: https://drive.google.com/open?id=1Pbtbdz_P3eFnlUstv4AjZuE1bArbmZ0g
Main Google drive: https:/drive.google.com/open?id=11Kc6LpmMBrBAQe00BWa3CbPSovx_MY5e
Output Result: /cephfs/housing/mas19/ on https://housing-jupyter.nautilus.optiputer.net
Dataset description: https://github.com/alexyanw/dse_capstone/tree/master/data

2. Report, notebooks and source code.
All source code and notebooks are uploaded to github project, the project folder is well
structured, refer to README: https://github.com/vvural/Housing/blob/master/mas19/readme.txt
Python notebooks: https://github.com/vvural/Housing/blob/master/mas19/runner.ipynb
Python source code: https://github.com/vvural/Housing/tree/master/mas19/src
Report and presentation:_https://drive.google.com/open?id=1pXIVXnfCCadUIAqoH3x-DOCsUIf CXzO

Tools Set Up

1. PostgresSQL
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PostgreSQL 9.6 and below extensions installed

CREATE EXTENSION postgis;

CREATE EXTENSION fuzzystrmatch; --needed for postgis_tiger_geocoder
CREATE EXTENSION address_standardizer;

CREATE EXTENSION address_standardizer_data_us;

CREATE EXTENSION postgis_topology;

CREATE EXTENSION postgis_tiger_geocoder;

2. Tableau Workbook

Tableau workbook is located at the path below named “V1.twb”; all datasource needed are saved
in the same location in a csv file called “df pred new lat lon.csv”

https://drive.google.com/open?id=1XVzun13-4437xd8ceW65HXFUOCQ7f0Fc
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