
Cardiac MRI Image Segmentation for Left Ventricle and
Right Ventricle using Deep Learning

Faculty Advisor: Mai Nguyen <mhnguyen@ucsd.edu>
Domain Experts/Project Advisors: Marcus Bobar, Tony Reina

Contributors: Bosung Seo <boseo@eng.ucsd.edu>, Daniel Mariano
<dmariano@eng.ucsd.edu>, John Beckfield <jbeckfie@eng.ucsd.edu>, Vinay Madenur

<vmadenur@eng.ucsd.edu>, Yuming Hu <yuh385@eng.ucsd.edu>

Abstract

The goal of this project is to use magnetic resonance imaging(MRI) data to provide an end-to-end
analytics pipeline for left and right ventricle (LV & RV) segmentation. The previous cohort successfully
segmented the left ventricle endocardium. Using that as a foundation to build upon, we ran experiments
segmenting the left ventricle epicardium as well as the right ventricle endocardium. Additionally, another
aim of the project was to find a model that would be generalizable/applicable across medical imaging
datasets. In the experiments that we detail later in this paper, we utilized a variety of models, datasets, and
tests to determine which one is well suited to this purpose.

For the left ventricle, we mapped both the epicardium and endocardium surfaces. The endocardium
segment is the area of the left ventricle contained by the inside of the wall of the left ventricle. The left
ventricle epicardium segment is the area contained by the outside of the wall of the left ventricle, and
once the contours of the inside and outside of the wall are known, the contours of the myocardium, the
actual wall, can be calculated. The contours of the myocardium are used in detecting the severity of
damage done by heart attacks. For the right ventricle, we mapped the endocardium surface.

In this work, we implemented three models, 2-D Unet, 3-D Unet, and Densenet. While maintaining a
consistent preprocessing strategy, we tested each model’s performance when trained on both data from
the same dataset as the test data, and when trained on data from a different dataset than the test dataset.
Data augmentation was also used to increase the adaptability of the models. The results were compared to
determine performance and generalizability. Overall, the 2-D Unet proved to be the fastest to train, and
the most generalizable, while the 3-D Unet had the best overall performance. We also found that training
on the Automated Cardiac Diagnosis Challenge (ACDC) dataset, which is quite large and has very high
quality images, performed better when testing the smaller datasets Sunnybrook and Miccai RV,
compared to models trained on those smaller datasets.

Introduction

Currently, the process of manually analyzing cardiac MRI images is time-consuming and labor-intensive.
There is no easy way to segment the LV which is the largest chamber in the heart and plays a critical role
in cardiac function. LV segmentation refers to the task of detecting the LV contour, especially of the

mailto:mhnguyen@ucsd.edu

endocardial surface. LV segmentation using MRI images is a challenging task as difficulties arise from
many sources. The image quality of different parts of the heart varies. The middle of the heart is generally
clear, but the top and bottom slices can be very hard to determine the correct LV contour, even for an
expert. Other parts of the heart may obscure the desired section of heart. Even for an expert, it can take up
to an hour to manually segment the LV for a single patient. There will always be discrepancies between
the various human labelers.

The RV segmentation is challenging due to the fuzziness of the cavity borders due to blood flow and
partial volume effect, the presence of trabeculations (wall irregularities) in the cavity, which have the
same grey level as the surrounding myocardium, and the complex crescent shape of the RV, which varies
according to the imaging slice level. As a consequence, RV functional assessment has long been
considered secondary compared to that of the LV, leaving the problem of RV segmentation wide open.

As such, we would like to see how deep learning can be used to automate some of the steps in this process
to provide faster and more consistent image analysis results. Our inputs will be images from the ACDC,
Sunnybrook, and MICCAI RV, LV-2011 datasets in the DICOM and NIfTI file formats. One thing to
note is that only the images with contours will be normalized as that is what we will be able to train and
verify as predictions against. Our targets will be Tensor arrays with normalized sizes and contrasts. Our
preprocessing will read in the images, convert them to Numpy arrays, and then normalize them by size,
followed by contrast. Last, the Numpy arrays are converted into Tensor arrays, which are ready to use
with Keras. This normalization method will be implemented on the images and contours. The normalized
images will be used in the training and testing of the network model.

There are many variations that can happen from image to image, and from dataset to dataset. There are
different strengths and types of MRI machines. Radiologists have different skill levels. There is a lot of
variation from patient to patient. An MRI image of a patient with a suspected left ventricle problem will
be centered differently than a patient with a suspected right ventricle problem. Even how well patients are
able to hold their breath will affect MRI quality. Due to the extreme variability, a model that performs
very well on one dataset might not perform well on another. We will be testing on multiple datasets to try
to find the models and preprocessing steps that best generalize to a high number of different datasets.

Team Roles

Bosung Seo:
Data Engineer / Analyst - In charge of the data and process the data to prepare for training and modeling.

Daniel Mariano:
Project manager - In charge of task board on Trello as well as communication between team
members/advisor and whoever else we need to contact.

John Beckfield:
Recordkeeper - Responsible for keeping track of all document products, and all documentation required to
recreate the project.

Vinay Madenur:
Infrastructure owner & Budget keeper - Responsible for setting up the infrastructure on AWS and also to
ensure that the expenses do not exceed the allocated budget.

Yuming Hu:
Solution Architect: looking into alternative models, potential improvements for 3D UNET, tools could be
used in pipeline, end-to-end solutions, summarize team’s discussion related with solution architect.

Datasets

Each MRI image has been taken on a different patient with a different MRI machine by a different
radiologist. Due to these factors, the MRI images across each dataset are not consistent from one to the
next. Across the datasets, the image’s pixel spacing, image size, and image orientation are different which
is something that we had to consider when figuring out what preprocessing steps we wanted to take.

For our project purposes, the NIfTI images from the ACDC needed to be converted to a similar format as
the DICOM Images. This was accomplished by breaking out the NIfTI images by the slice. These frames
within the slice are then converted into 2-D numpy arrays to be used for preprocessing. The DICOM
images are converted into numpy arrays for preprocessing as well.

In the below figure, is a summary of the properties of the datasets that we used:

Dataset
Name

Number
of
Patients

Total
Number of
Training
Images

Number of
Training
Images
with labels

Number of
Slices per
Patient

Number of
Frames per
Slice with
labels

Size of
Normalized
Images (MB)
- Khened

Size of
Normalized
Images (MB)
- Isensee

SB 45 51545 420 5 - 6 1 - 2 200 150

ACDC 100 25351 1902 6 - 18 2 470 715

Miccai RV 16 3940 243 6 - 11 1 - 2 115 100

LV-2011 100 29086 2522 8 - 24 2 1230 1024
Figure 1: Datasets Summary

ACDC

The Automated Cardiac Diagnosis Challenge(ACDC) dataset consists of Short Axis (SAX) view MRI
Images for 100 patients (3.3 GB) in the NIfTI (Neuroimaging Informatics Technology Initiative) image
format. Each patient directory consists of 4-D NIfTI Format Images. Contour files have been provided for
the End-Systolic and End-Diastolic images for each patient. These contours were drawn to follow the
limit defined by the aortic valve. The expert references are manually-drawn 3D volumes of the LV and
RV cavities as well as the myocardium, both at the ED and ES slices. The acquisitions were obtained over
a 6 year period using two MRI scanners of different magnetic strengths (1.5 T (Siemens Area, Siemens
Medical Solutions, Germany) and 3.0 T (Siemens Trio Tim, Siemens Medical Solutions, Germany)). Cine
MR images were acquired in breath hold with a retrospective or prospective gating and with a SSFP
sequence in short axis orientation. Particularly, a series of short axis slices cover the LV from the base to
the apex, with a thickness of 5 mm (or sometimes 8 mm) and sometimes an interslice gap of 5 mm (then
one image every 5 or 10 mm, according to the examination). The spatial resolution goes from 1.37 to 1.68
mm2/pixel and 28 to 40 images cover completely or partially the cardiac cycle (in the second case, with
prospective gating, only 5 to 10 % of the end of the cardiac cycle was omitted), all depending on the
patient.

Figure 2: An example raw ACDC image

MICCAI RV
The Right Ventricle Segmentation Dataset MICCAI 2012 dataset contains 48 cardiac cine-MR data (1.5
GB) with contours drawn by one cardiac radiologist (16 for training, 32 for testing). The images have
been zoomed and cropped to a 256x216 (or 216x256) pixel ROI, leaving the LV visible for joint ventricle
segmentation, as necessary. The contours consist of delineated endocardial and epicardial borders of the
RV on short axis slices at ED and ES. Trabeculae and papillary muscles are also included in the
ventricular cavity. Cardiac MR examinations were performed at 1.5T (Symphony Tim®, Siemens
Medical Systems, Erlangen, Germany). A dedicated eight-element phased-array cardiac coil was used.
Retrospectively synchronized balanced steady-state free precession sequences were performed for cine

analysis, with repeated breath-holds of 10-15 s. All conventional planes (2-, 3- and 4-chamber views)
were acquired and a total of 8-12 contiguous cine short axis slices were performed from the base to the
apex of the ventricles. Sequence parameters were as follows: TR = 50 ms; TE = 1.7 ms; flip angle = 55°;
slice thickness = 7 mm; matrix size = 256 x 216; Field of view = 360-420 mm; 20 images per cardiac
cycle. Clinical indications were represented by a panel of the currently most frequent cardiac MRI
indications in patients with AHD: myocarditis, ischaemic cardiomyopathy, suspicion of arrhythmogenic
right ventricular dysplasia, dilated cardiomyopathy, hypertrophic cardiomyopathy, aortic stenosis.

Figure 3: An example raw Miccai RV image

Sunnybrook
The Sunnybrook Cardiac Data(SCD) dataset consists of 45 cardiac cine-MRI images (1.6 GB) from a
mixed group of patients and pathologies: healthy, hypertrophy, heart failure with infarction, and heart
failure without infarction. The MRI images are in the DICOM (Digital Imaging and Communications in
Medicine) image format that consists of several metadata parameters about the patient and the image. For
each patient record, there is a set of hand drawn contours (one for the endocardium and one for the
epicardium) for End Diastolic (ED) and End Systolic (ES) slices. The contours were drawn by Perry
Radau from the Sunnybrook Health Science Centre. The contours are available in text files that consist of
the contour points. Cine steady state free precession (SSFP) MR short axis (SAX) images were obtained
with a 1.5T GE Signa MRI. All the images were obtained during 10-15 second breath-holds with a
temporal resolution of 20 cardiac phases over the heart cycle, and scanned from the ED phase. Six to 12
SAX images were obtained from the atrioventricular ring to the apex (thickness=8mm, gap=8mm,
FOV=320mm320mm, matrix= 256256).

Figure 3: An example raw sunnybrook image

LV
The 2011 LV Segmentation Challenge Dataset dataset is of one hundred patients randomly selected from
the DETERMINE cohort (Defibrillators To Reduce Risk by Magnetic Resonance Imaging Evaluation)
(Kadish et al., 2009). DETERMINE is a prospective, multicenter, randomized clinical trials in patients
with coronary artery diseases and mild-to-moderate left ventricular dysfunction. The primary objective of
the study is to test the hypothesis that implantable cardioverter defibrillator (ICD) therapy in combination
with medical therapy, in patients with myocardial infarct greater than or equal to 15% of the left heart
muscle mass (as measured by CMR), improves long term survival compared to medical therapy alone.
One hundred were made available as training data, with manual segmentation, and the other hundred were
reserved for validation. The DETERMINE study comprises of patients with coronary artery disease and
regional wall motion abnormalities due to prior myocardial infarction. This is a clinically important
patient group since mass and volume are important diagnostic and prognostic indicators of adverse
remodeling. Studies were acquired at multiple sites using multiple scanner vendors. The data were made
available through the Cardiac Atlas Project (Fonseca et al., 2011). The CMR images were based on the
steady-state free precession (SSFP) pulse sequence. CMR parameters varied between cases giving a
heterogeneous mix of scanner types and imaging parameters. MR scanner systems were GE Medical
Systems (Signa 1.5T), Philips Medical Systems (Achieva 1.5T, 3.0T, and Intera 1.5T), and Siemens
(Avanto 1.5T, Espree 1.5T and Symphony 1.5T). Typical short-axis slice parameters were either a 6 mm
slice thickness with 4 mm gap or 8 mm slice thickness with 2 mm gap. Image size was ranging from 138
× 192 to 512 × 512 pixels. The temporal resolution was between 19 and 30 frames. Long axis images in
the four and two chamber orientations were also available.

Figure 4: An example raw LV-2011 image

Data Pipeline

Figure 5 : Data Pipeline

The figure 5 illustrates the prediction pipeline. The raw images (dicom and nifti format) are first
converted to numpy arrays. Then a bunch of preprocessing steps like cropping and contrast normalization
are performed on the data. The processed data is then fed into the various trained models to generate the
predictions. Finally using the predictions and ground truth, the various metrics like Dice coefficient &
Hausdorff value are calculated and uploaded to AWS S3.

Figure 6: Infrastructure Pipeline

The training of all the models was done on AWS. The AWS Deep Learning AMI was used to launch EC2
instances with GPU (e.g. p3.2xlarge & p3.8xlarge). In order to leverage the advantages of the GPU you
need to satisfy some criteria:

1. You need to have GPU drivers setup correctly.
2. You need to have libraries that can leverage all the GPU power during the training of the neural

network. The libraries need to be compatible with the drivers.
3. You need to have neural network framework that have been compiled with the libraries that you

have.

AWS Deep Learning AMI is an Amazon Machine Image which comes pre-configured with NVIDIA
drivers, as well as the latest releases of the most popular deep learning frameworks like Keras,
Tensorflow etc. All the data was stored on AWS S3 and was copied to the EBS volumes attached to the
EC2 instances before training of the models started. The final results were copied back to S3 and were
used in Tableau visualizations.

Preprocessing Experiments

During the course of our project, we first attempted using the same preprocessing steps as the previous
cohort. If the image is from the ACDC dataset, it will be flipped by 180 degrees to match the orientation
of other datasets. Next, the image will be rescaled based on the image’s pixel spacing so we get each pixel
representing the same amount of area, 1mm x 1mm. After the image is rescaled, it will be resized/cropped

from the center of the image to be 176 x 176 pixels. Then, Contrast Limited Adaptive Histogram
Equalization (CLAHE) will be applied to each 1 x 1 tile of the image. This normalizes the contrast of the
image. Last, the pixel intensity of the image will be normalized using Min-Max normalization.

Results and Evaluation: Model validation, techniques used, Performance graphs, etc. as
In order to assess how the images were altered from their original form and if similar results were
produced, viewing the images is the best way to identify the changes. In Figures 7 & 8, one can see two
images from two different datasets where normalization was applied. Each stage of the preprocessing
steps are shown below.

Figure 7: ACDC Image Preprocessing Steps

Figure 8: Sunnybrook/Miccai RV Image Preprocessing Steps

Our results found that from frame to frame, there was not much variation, but slice to slice was very
different at the first and last slice. From the other papers regarding segmentation over MRI, it was
indicated that most of the Convolutional Neural Network(CNN) based techniques produce erroneous
segmentation at basal and apical slices due to the following two major issues, namely:- (i) Uncertainties in
the ground truth at valve level due to limited long-axis resolution of MRI, and (ii) Difficulty in exactly
defining the apex and also presence of trabeculations near apex.

Figure 9: An end slice (slice 1) compared to a center slice(slice 5)

The pixel depth of MRI images in our dataset is 16 bits. However, the images have very low dynamic
range with pixel intensities between 0 and 4000. Since applications include images with poor contrast due
to glare or other reasons, normalization is done to bring the image, into a range that is more familiar or
normal to the senses. Looking at Figures 3 & 4, it is evident that pixel intensity normalization will
improve the segmentation results. From the images, we can also determine that we are able to preserve the
ROI containing the LV/RV region even after images are cropped to 176x176 pixels. We chose 176x176
because other approaches we studied used a smaller image size and will be much faster to train the model.
Eventually, we ended up applying the preprocessing steps for the papers we took inspiration from, Isensee
for the 3D Unet model we used and Khened for the 2D Unet/Densenet.

Models

Our project’s approach was to segment MRI results using the short-axis (SAX) slices. There are three
models under consideration. The first is a 3D Unet, as described by Isensee[1] to segment brain MRI
images. We modified the Isensee 3-D code to work with 2-D data, and made changes to perform better
with our cardiac data. Another model we are looking at is a densenet as described by Khened et al. [2],
modified to work on the preprocessed data we created. Finally, we modified the previous cohort’s 2-D
unet to make multiple class predictions.

Figure 10: Final Project Preprocessing

2D

We used U-Net, a deep learning model that was originally created for image segmentation in biomedical
applications but has been successfully applied to other domains as well. The U-Net architecture combines
low-level feature maps with high-level feature maps for precise pixel-level positioning. On each
downsampling layer, the image size becomes 1/2 of the original, and the number of features becomes 2
times the original. On each upsampling layer, the image size becomes 2 times the original size, and the
number of features is cut in half. In the upsampling operation, each output feature is merged with the
features of the phase-contracted contraction network to complement the intermediate lost boundary
information. Our version of the previous cohort’s Unet uses one-hot encoding to differentiate the classes
from each other, then uses categorical cross entropy as a loss function. The first 2D convolution has 16
filters and a 176 X 176 pixel image. Each step has two 2D convolutions, then a max pooling. After the
max pooling, the number of filters doubles, and the size of the image is cut in quarters, so a 176 X 176
image becomes an 88 X 88 image. This continues until there’s an 11 X 11 image with 512 filters. From
there, the model up samples back to 22 X 22 and 256 filters, using nearest neighbor interpolation. This is
merged with the filters produced by the 2D convolution of the same size from the downward half. This is

continued until the result is the same size as the original image. Overall, there are 7,815,268 trainable
parameters.

The below figure is an overview of the general UNet Structure.

Figure 11: Unet Structure

3D Unet

The difference between 3D Unet model and 2D Unet model is how the convolution is performed. 3D
Unet performs 3D convolution over x,y and z axis (i.e. over a cubic) while 2D Unet works on only x and
y (i.e. plane or single image). For ACDC dataset, under each patient, there are two frames which includes
multiple slices (i.e. images) of each. 3D Unet can perform 3D convolution over entire frame (i.e. all
included slice images) at a time to learn context between slices when training while 2D Unet runs 2D
convolution on each slice one by one. For other datasets (e.g Sunnybrook), raw image files are structured
as slice by slice under each patient (i.e. each slice is a DICOM image file or NIfTI image file). So
additional data preprocessing is required to combine all the slices belonging to the same frame together to
turn into a single frame image file (i.e. a frame including 8-17 slices), then feed into pipeline for normal
data preprocessing, training and predicting.

For the 3D Unet model, the following image preprocessing/normalization steps were used:

● Center Cropping
○ 176 x 176 pixels

● Zero mean normalization
○ contrast normalization

● Bias field correction

Below is a visualization of a preprocessed MRI image and the model prediction compared to the ground
truth:

Figure 12: 3D Model ACDC Single Image Output Results

Densenet

The Khened model utilizes a fully convolutional multi scale residual densenet for semantic segmentation.
This architecture seen in the left figure below is comprised of a down sampling path as well as a
upsampling path. The modular blocks that the architecture is comprised of are shown in more detail in the
right figure below. From the Khened paper, “The input spatial resolution is recovered in the up sampling
path by transposed convolutions,dense blocks and skip connections coming from the down sampling
path”(10). For the up sampling operation, feature maps were added element wise with skip connections.
Last, to generate the final label map of the segmentation, “the feature maps of the hindmost up-sampling
component was convolved with a1×1 convolution layer followed by a soft-max layer”(10).

Figure 13: Densenet Overview

For this model, segmentation of images was achieved by performing voxel wise classification where the
output of the soft max layer gave the posterior probabilities for each class. The loss function used for
training the network was a combination of cross entropy and dice loss. The network parameters were
optimized to minimize both the loss functions in tandem. Additionally, an L2 weight decay penalty was
added to the loss function as regularizer.

For the densenet model the following image preprocessing steps were used:

● Orientation
○ ACDC images flipped to match format of other datasets

● Center Cropping
○ 176 x 176 pixels

● Z-Score
○ contrast normalization

Based on Khened’s default model config settings, the following network hyper parameters were fixed and
utilized by us:

● Number of max pooling operations(3)
● Growth rate of dense blocks(16)
● Max number of initial feature maps generated by the first convolution layers(3 times the growth rate)
● L2 weight decay(5e-6),
● Dropout rate(0.2)

Data Augmentation:

In order to be more generalizable, data augmentation was added to each model during training to better
adapt to variations that might occur in other datasets. Data augmentation also allows the models to train
on smaller datasets by simulating a larger dataset. Our current settings for augmentation have it
alternating randomly by a coinflip for each image that gets passed through training so roughly 50% of all
training images per epoch will be augmented. The following transformation parameters represent what
augmentations are possible for each image(rotation,translation, zoom, flip):

 'rotation_range': (-5, 5),
 'translation_range_x': (-5, 5),
 'translation_range_y': (-5, 5),
 'zoom_range': (0.8, 1.2),
 'do_flip': (True, True)

For each augmentation with ranges indicated, a certain number will be picked randomly for the image to
be augmented by. For example, for rotation range, an image might be randomly chosen to rotate -2
degrees altering it counterclockwise. ‘Do_flip’ refers to horizontal/vertical flips of a given image.

Metrics

For our preprocessing process, we collect and record several metrics. The most important and most basic
criteria is that our preprocessing does not lose data. To evaluate that, we record the number of patients
and slices both before and after our preprocessing to confirm that both numbers are unchanged.
Furthermore, we wanted to confirm that our preprocessing does what we expect it to. We crop to 176 X
176 and normalize the values. We collect before and after metrics on the image size and pixel values. As
expected, all the files after preprocessing are 176 X 176, and all values are between 0 and 1.0.

The Dice similarity coefficient is used as a statistical validation metric to evaluate the performance of
both the reproducibility of manual segmentations and the spatial overlap accuracy of automated
probabilistic fractional segmentation of MR images.

Dice Coefficient metric is defined as

C D = |A| + |B|
2|A ∩ B|

, where A is the first set and B is the second set of images. T From the equation, DC is always between 0
to 1. When it is closest to 1, the images are the most similar. As this fits well for our segmentation project,
we use Dice Similarity Coefficient as one way to measure the performance of models.

Hausdorff distance is a symmetric measure of distance between two contours and is defined as:

(P ,) max(h(P ,), h(G, P)) H G = G
(P , G) max min h = pi∈P gi∈G pi gi|| − ||

Where P and G are the set of voxels enclosed by the predicted and ground truth contours delineating the
object class in a medical volume respectively. A high Hausdorff value implies that the two contours do
not closely match. The Hausdorff distance is computed in millimeter with spatial resolution and yet
another metric we use to measure the performance of our predictions.

Scalability

Scalability requirements for cardiac image analysis project are defined as follows:

1. Model scalability
a. Scalability in extending model prediction classes: The model should be easily scalable

when the scope is extended to perform multi-class predictions.
b. Scalability with image size: The model should work with different size of images without

having to redesign the architecture.
c. Scalability with pixel spacing: The model should work with different pixel spacing of

images without having to redesign the architecture.

d. Scalability with volume of training data: The model should meet acceptable performance
even with limited training data.

e. Scalability in adding datasets: Ensure that adding a new dataset is easy without modifying
the models.

2. Scalability with execution environment
a. CPU and GPU Execution environment: Ensure that the training and validation of the

model can be done on either CPU or GPU environment.
b. Execution parallelism: It is required to run several experiments in parallel to evaluate the

performance of the model with different preprocessing techniques and also to tune the
hyper parameters of the model. The model should be able to be trained on multi GPUs.

3. Scalability with programming platform
a. Scalability across multiple ML frameworks: Select a programming platform that provides

abstraction for the model implementation. The platform should be able to run on various
proven backend numerical computation libraries, machine learning libraries such as
tensorFlow, Theano, CNTK etc.

The robustness requirements are captured in following areas :
1. Various backup options to save/restore the information

a. Saving and restoring of execution environment (EC2 AMIs).
b. Saving and restoring data (backups in S3, EBS volume snapshots).

2. Data storage formats optimized for specific data types
a. The outputs of each stages are stored either using Image formats, or numpy arrays to

minimize the processing overhead and storage memory.
3. Accuracy across datasets

a. We removed any dataset specific features so that the models would get good results
regardless of which dataset it is run against.

Scalability with image size
One of the key advantages that Unet model has over regular convolution networks, is the scalability with
image sizes. Unet model does not have a Fully Connected Layer at the end. This makes the model flexible
to work on images of different sizes. In other words, the model can be trained with different size images
without redesigning the convolution layers inside the model. There is a requirement that the images be the
same size, and that size has to be divisible by 2 a certain number of times, but that size can be changed by
modifying a single configuration variable. Similarly, for the densenet model, image size can be changed
as a config file property.

Scalability with volume of training data
One of the challenges in medical image analysis is that very limited data is available for training.
Conventional CNNs require large amount of training data to reach acceptable performance. Several
studies have shown that Unet model performs well even with limited training data. We will be using four
different datasets: Automated Cardiac Diagnosis Challenge (ACDC), Sunnybrook (SB), LV 2011

Segmentation Challenge (LV) and MICCAI RV (RV) and verifying if increasing the volume of training
data improves the model.

Scalability in extending model for multi-class predictions
The scope of the previous cohorts’ project was to identify left ventricle in each SAX image, so the
prediction task has only two classes (LV contour, background). However, the cardiac image analysis can
be extended to locate other parts of heart such as right ventricle and myocardium, as in the case of ACDC.
The goal of this project is to extend the model to handle multi-class predictions with very minimum
changes to model design.

Scalability across datasets
We are unlikely to ever get more data from the datasets we already use. To add more data, we would have
to add another dataset. The datasets we already have show a lot of variation already. They are stored in
different file formats, have different image sizes, different file spacing, different orientations, and have
different ground truths. If the models weren’t dataset agnostic, then adding a new dataset would require a
lot of little changes in each of the three models. Instead, we developed a preprocessing step that would
normalize the file size and spacing, and change the file format to numpy arrays. A new dataset would
likely require updating that script to account for that dataset’s idiosyncrasies, but updating that
information once in a centralized location is better than letting each model try to handle it separately.

Scalability with Execution Parallelism
We are using Keras with Tensorflow with GPU support as our backend for high performance numerical
computations. Using GPUs will speed up training the model. Using 4 GPUs increases the training speed
by upto 75 times when compared to using a CPU. Keras can execute using multiple GPUs.

The GPU data parallelism works in the following manner:

1. First the batch is divided into sub batches (the input to the model) based on the number of GPUs
available.

2. Model copy will be applied to each GPU.
3. The results are then aggregated as a single output using CPU.

The below considerations need to be kept in mind while executing multi-GPU [2] :

1. Speed does not scale linearly as the number of GPUs increases, as synchronization between GPUs
is required.

2. Batch size will be further divided based on the number of GPUs available. Hence this needs to be
carefully chosen as it affects the model weights and each sub-batch needs to fit the memory
available on each GPU.

3. It is important to feed all the GPUs with data. It can happen that the very last batch of the epoch
has less data than defined (because the size of your dataset can not be divided exactly by the size
of your batch). This might cause some GPUs not to receive any data during the last step.

4. The allow_growth and per_process_gpu_memory_fraction Tensorflow options are strongly
recommended for configuring when multiple jobs occupy the same GPU device. These two
options are only available when running the jobs in multi-gpu mode.

5. CUDA_VISIBLE_DEVICES environment variable is set to make the GPU devices available. In
addition, the gpus parameter passed into multi_gpu_model in keras has to be equal or less than
the visible GPU devices specified.

6. At model and weights saving steps, the template model should be referenced rather than the
model returned by multi_gpu_model function.

Our pipeline allows the same model to be executed on single GPU and multi GPUs instances. In our
experience, we saw that using 4 GPUs decreases the training time by up to 3.5 times compared to using a
single GPU.

In terms of our model performance training methods, we trained the 2D UNET and Densenet models
trained on a single GPU (1 Tesla V100 and 16 GB memory) instance. For 3D UNET, we trained on 4
GPUS (4 Tesla V100 and 64 GB memory) instance due to the extra computational power needed.

In terms of each models time taken to train for the experiments we ran: 2D UNET took 3 to 58 minutes,
Khened Densenet took 20 to 185 minutes, and 3D UNET took 25 minutes to 7 hours 45 minutes.

Scalability with Programming Model

Scalability across multiple ML frameworks
Keras is a high-level neural network library, written in Python. It is capable of running on top of several
Machine Learning and numerical computation libraries such as TensorFlow, PyTorch, CNTK, or Theano.
Keras hides the interface details of each of these backend libraries through abstraction. This will enable
users to switch the backends without changing the implementation. For this project we have experimented
only with tensorflow backend. Keras provide rich documentation about how to change the backend in the
following document https://keras.io/backend/.

Dataset Experiments

Going off the below experiment tables, we carried out the appropriate training/predictions for each of the
three models, Densenet, 2D Unet, and 3D Unet. This was done utilizing Khened preprocessing for the 2D
Unet and Khened models whereas Isensee preprocessing technique will be used by 3D Unet model.
Additionally, both preprocessing techniques will be cropped the images to 176 x 176 pixels.

These below figures denote what experiments we carried out on the model regarding what datasets we
trained and predicted on which changed from our last reported plan.

Experiment
Number

1a 1b 1c 1d 2a 2b 2c

https://keras.io/backend/

Training
Data

ACDC LV RV SB ACDC ACDC

ACDC

Test Data
ACDC

LV

RV

SB

LV

RV

SB

Experiment
Number

3.1a 3.1b 3.1c 3.2a 3.2b 3.2c

Training
Data

ACDC
LV

ACDC
RV

ACDC
SB

ACDC
LV

ACDC
RV

ACDC
SB

Test Data ACDC ACDC ACDC LV RV SB

Experiment Number 4a 4b 4c

Training Data ACDC
LV
SB

ACDC
LV
SB

ACDC
LV
SB

Test Data ACDC LV SB

Figure 14: Experiments Summary

Our results spreadsheet from our experiments can be seen in the below link.

https://docs.google.com/spreadsheets/d/1ZbZLzIDAXPIlJhghx8FixvGPiXQpNALSS-6dQbvxY0Q/

The above spreadsheet contains info for the number of trainable parameters each model used,
preprocessing time, training time, inference time, and dice/hausdorff scores for each of the relevant heart
parts. Note that for where it was applicable, we separated dice/hausdorff scores into ED/ES frames to
attempt to gain further insight into the results and how ED versus ES affects predictions. For each of the
dice/hausdorff scores, an average was reported for all of the predictions followed by the standard
deviation of all the prediction scores in parenthesis. Any blank boxes for a given row/experiment were
due to not being applicable. For example, we were unable to predict RV scores for the Sunnybrook
dataset as it does not contain the needed truth values for that.

The below images indicate what models contained the highest scoring records for certain metrics/datasets
to help give an idea where each model performs best:

https://docs.google.com/spreadsheets/d/1ZbZLzIDAXPIlJhghx8FixvGPiXQpNALSS-6dQbvxY0Q/

Figure 15: Overall model results with number of top placings

Figure 16: Model Results separated by dataset

Based on the results below, it’s clear to see how generalized the various models are. It can be seen that 2D
model loses the least performance when trained on ACDC compared to being trained on the same dataset
as the test set.

Figure 17: Model generalization experiment results

The other experiments aimed to determine the impact of training data volume on the model performance.
We observed that in general adding more data results in a better trained model.

Figure 18: Left Ventricle Dataset Size Improvements Experiments

Figure 19: Right Ventricle Dataset Size Improvements Experiments

The 2D model performed better on RV data when both ACDC and RV data was used to trained the
model. But that was not true for the other two models.

Training the 2D and Khened models took relatively less time when compared to training the 3D model.
The 2D and Khened models were trained on single GPU EC2 instance (p3.2xlarge) which consists of 1
Tesla V100 GPU with 16GB memory. Since it takes a very long time to train the 3D model on this
instance, more than a day when combining the datasets, we used 4 GPUs EC2 instance (p3.8xlarge) to
train the 3D model. This instance has 4 Tesla V100 GPUs with 64GB memory. The training times for the
various models are shown in the figure.

Figure 19: Model Training Times across dataset experiments

Post-Processing

Three post processing steps were tested against the results of the 2D unet. The first was to find
any images that had multiple Left Ventricle Cavity (LVC) segments, and only keep the largest segment.
There weren’t many predictions that had multiple LVC segments, but it improved the dice performance
by about 1%. This treatment was rejected for Left Ventricle Myocardium (LVM) segments because they
are very thin, so breaks in continuity were not uncommon. For the RV, we eliminated any predictions that
were too far away from the LVC or LVM. This didn’t help our dice score at all, but it significantly
improved our Hausdorff distances. This isn’t unexpected, since there were very few images this applied
to, and the images it did apply to had unusual RVs. These images had very little overlap, so modifying the
denominator didn’t affect the dice very much. However Hausdorff distance is much more sensitive to bad
predictions, as it is a measure of how far away the worst predicted pixel is, making deleting bad
predictions an effective way to raise the score. There is one experiment where the dice score was
significantly impacted. The train on ACDC + RV predict on RV experiment dropped precipitously from
.63 to .41. Some good predictions are being deleted. We believe this is due to the RV dataset not having
labels for the LV, which means the LV predictions are affected negatively. Since we delete RV
predictions based on their proximity to the LV predictions, bad LV predictions will make this post
processing step undesirable. The final step of preprocessing is to take any small islands of predicted 0,
and filling them in with the nearest neighbor. We noticed that for the 2D Unet, it would often predict a
ring of 0s in between the LVM and LVC. While we don’t know which it is, dice is calculated in such a

way that guessing with 50% accuracy will help the dice score. This did improve the dice score, but it is an
effect lower than 1%, and is often lost to rounding in our results.

Figure 20:
Above: An image showing all 3 post processing steps. There is a yellow (LVC) island that is deleted as the main LVC is larger.
The blue RV is deleted as it is too far away from the LV, and the gaps between the LVC and LVM are filled in. Also of note is the
green LVM island is not deleted, as the LVM isn’t subject to the rule that deletes islands.

Findings

The first finding we had was that it is possible to get good results for segmenting the left and right
ventricle using any of 3D Unet, 2D Unet or Densenet. When trained and tested on ACDC, all the dice
scores were good. The models had some variation, but all of the scores for the inner surface of the LV
were in the low 90s, and the more irregular outer wall of the LV and the RV had scores in the high 70s or
low 80s. Running through the different experiments showed some more distinctions between the models.
For example, Densenet requires the most, best data. When it trained on ACDC, it had the best score for
the right ventricle, but when it trained on MICCAI RV, a very small dataset, it had the worst score.
Similarly, Sunnybrook is a midsize dataset with relatively low image quality, and Densenet had the worst
performance when training on Sunnybrook alone. Training on ACDC and Sunnybrook together helped
every model compared to Sunnybrook alone, but the effect was the most pronounced in Densenet. The
LV Segmentation challenge is a large dataset with high quality images, and Densenet has the best score in
every category. 2D Unet shows the opposite characteristics. It does not win very many categories where
the training and test dataset are the same, but does do very well when the training dataset is a combination
of multiple datasets, suggesting that it is very generalizable. Ideally, a hospital or other consumer will be
able to predict without training a model on their own data, and an ability to train and test on different
datasets without degrading performance is important to that goal. 3D Unet has the most overall dice score
wins. The 3D Unet uses the context of the slice’s position and neighbors to improve the prediction, but it
takes the most dataset specific work, and the most training time.

The findings can be summarized as follows:

● 2D
○ Generalizes well
○ Adding more data samples helps
○ Better segmentation results for LV dataset

● Khened
○ Does not perform well on SB dataset (dark images)
○ Performance decreases if trained and tested on different datasets
○ Adding more data samples helps for SB, but not RV dataset
○ ED phase predictions better than ES

● 3D
○ Have to be able to align the different slices for each frame to get correct results
○ Adding more data samples helps for LV, but not for ACDC
○ Doesn’t generalize well
○ Takes a very long time to train on a single GPU (upto a day)

References

1. Isensee, Fabian, et al. “Brain Tumor Segmentation and Radiomics Survival Prediction:
Contribution to the BRATS 2017 Challenge.” ArXiv.org, Cornell University, 28 Feb. 2018,
arxiv.org/abs/1802.10508.

2. Khened, Mahendra, et al. “Fully Convolutional Multi-Scale Residual DenseNets for Cardiac
Segmentation and Automated Cardiac Diagnosis Using Ensemble of Classifiers.” Medical Image
Analysis, Elsevier, 19 Oct. 2018,
www.sciencedirect.com/science/article/pii/S136184151830848X.

3. Previous cohort code: https://gitlab.com/words-sdsc/mas-medical-2018
4. Previous cohort report: https://arxiv.org/ftp/arxiv/papers/1809/1809.06247.pdf
5. https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
6. Cardiac CINE MRI process: https://www.youtube.com/watch?v=yZXfvXiJwLc
7. Cardiac MRI tutorial: http://www.vhlab.umn.edu/atlas/cardiac-mri-tutorial/index.shtml
8. http://blog.datumbox.com/5-tips-for-multi-gpu-training-with-keras/
9. https://github.com/ellisdg/3DUnetCNN
10. U-Net: Convolutional Networks for Biomedical Image Segmentation:

https://arxiv.org/pdf/1505.04597.pdf
11. Fully Convolutional Multi-scale Residual DenseNets for Cardiac Segmentation and Automated

Cardiac Diagnosis using Ensemble of Classifiers : https://arxiv.org/abs/1801.05173
12. Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain

Specific Features
https://arxiv.org/abs/1707.00587

http://www.sciencedirect.com/science/article/pii/S136184151830848X
https://gitlab.com/words-sdsc/mas-medical-2018
https://arxiv.org/ftp/arxiv/papers/1809/1809.06247.pdf
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://www.youtube.com/watch?v=yZXfvXiJwLc
http://www.vhlab.umn.edu/atlas/cardiac-mri-tutorial/index.shtml
http://blog.datumbox.com/5-tips-for-multi-gpu-training-with-keras/
https://github.com/ellisdg/3DUnetCNN
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/abs/1801.05173
https://arxiv.org/abs/1707.00587

Appendices

DSE MAS Knowledge
Many classes in DSE emphasized data cleaning as the most important aspect. With images, there aren’t
Nan values to deal with, but data cleaning was still very important. The preprocessing steps we took were
designed to make outlier data more uniform. The machine learning class was helpful for learning to use
deep learning, and the ETL class introduced ideas we used for the final product pipeline. The
visualizations for the project was created using Tableau, which we were introduced to by the
Visualizations class.

Link to the Library Archive for Reproducibility

Our DOI link is https://doi.org/10.6075/J0D21VXP

https://doi.org/10.6075/J0D21VXP

