$$
\begin{aligned}
& \begin{array}{l}
d x=x y N \frac{\text { munhosine }}{}=12 \\
\Delta \frac{x}{x+1}=12 x-x x y+x x y-\frac{1}{2} \lambda y
\end{array} \\
& 4 \frac{x}{x+y}=\frac{1}{4} 2 x y-x x y+x x y=\frac{1}{2} \lambda y \\
& \frac{1}{2} \alpha y N=2 \sqrt{ }(1-x) \\
& r=\frac{N^{2}}{32} \frac{1}{f}\left\{x^{2} y^{2}+x^{3} y\right\} \\
& \operatorname{sinacx} x ; y=2 \\
& N N=2 J=2 \frac{N^{2}}{32} \frac{1}{f} X^{2} 4=\frac{N^{2}}{4} \frac{1}{f} X^{2} \\
& \sqrt{4 \alpha f}=x \\
& R=10^{-4} ; x=20 \% \\
& \frac{1}{2} R(2-x)=\frac{1}{1} \frac{2}{32}(1-x)\left\{x^{2}(2-x)^{2}+x^{3}(2-x)\right\} \\
& \frac{1}{2} \cdot 2=(1-x)\left\{x^{2}(2-x)+x^{3}\right\} \frac{x}{1} \frac{1}{8} \frac{1}{8} \\
& \text { for } x=0.2 \\
& N=0.8\left\{\frac{4}{100}(1.8)+\frac{8}{1000}\right\} \frac{1}{f} \frac{1}{8} \\
& k \approx 10^{-4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { … } \quad d x=x y-k x \text { Mnhabreas } 3 \\
& \Delta \frac{x}{x+y}=\frac{1}{4}(2 \Delta x-x \Delta x-x \Delta y) \\
& =\frac{1}{4}(21 y-24 x)-2 x y+4 x^{2}+x+4 x \\
& =\frac{1}{2}(\lambda y-k x) \\
& \frac{1}{2}(6 y-k x)=2 \delta(1-x) \\
& \text { 㭏 } \% N(2-x)-k x\}=4 \int(1-x) \\
& \sharp k-\frac{x(k+k)}{2}=2 \sqrt{(1-x)} \\
& \text { Sta } \\
& K=2 \times 2 \delta(1-x)+K x \\
& \lambda=4 \times \frac{N(2-2 x)}{2-x}+\frac{k x}{(2-x)} \\
& K=2 \times 2\left(\frac{x-1}{x}\right)+\frac{k y}{x} \\
& S=\frac{1}{32} \frac{1}{x}\left\{x^{2} y^{2}+x^{3} y\right\} \\
& \left\{\begin{array}{l}
\operatorname{ton}\left[\frac{y=0.2}{}=2\right. \\
k \approx \frac{1}{8 \cdot} \frac{1}{f}\left\{(1.8) \frac{4}{100}+(1.8)^{3} \frac{2}{10}\right\}+\frac{k y}{x} \\
k \approx \frac{1.5}{800}
\end{array}\right. \\
& \operatorname{Lor} y=\frac{200}{100} \quad K=\frac{1}{8} \frac{1}{A}\left(41 n+8 \frac{2}{100}\right) \approx 210^{-4} \\
& y=\frac{1}{100} \\
& \left.K \approx 10^{-4}\right)
\end{aligned}
$$

