Physio Al Companion

Your Al Guide to Physical Rehab

hukla

Vaaruni Desai Sagar Jogadhenu

Images generated by Copilot

© Physio Al Companion ST Oracovot: J | Uconeat. ] | dbooenedons: | ? T 2.2



Advisory Team

Brian Richardson Kevin Duenas Malerie Franco Benjamin Ochoa
MS Kinesiology MS Exercise Physiology DPT, PT Ph.D. Department of
Computer Science and

_ Engineering
© Physio Al Companion



Speed to Recovery - Three Use Cases
Where Automation Could Help
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Data Collection

Capture Video

Recommend using a phone to capture video in portrait mode. Once
the Red button is pressed to start recording, a 10 second timer
starts to allow user to position entire body within the red frame.
Actual recording starts after the 10 second timer expiry. Recording
automatically stops after 15 seconds. Stay in the position until

recording ends.
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https://docs.google.com/file/d/19Dlb8Vd0ToX_pHRXMDuUISh3x-a3eL9j/preview
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Data Capture Demonstration
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Biomechanics example
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Model to Achieve Hypothesis
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Product Architecture
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AWS Solution Architecture

Capture Video

Recommend using a phone to capture video in portrait mode. Once
the Red button is pressed to start recording, a 10 second timer
starts to allow user to position entire body within the red frame.
Actual recording starts after the 10 second timer expiry. Recording
automatically stops after 15 seconds. Stay in the position until
recording ends.
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Preliminary Data Analysis
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Frequency

Histogram of Number of Reps per Video

Rep count

120 ]
100
80-;
60
40
20
1
5 0o 15 20 ° ¥ 4

250

200

150

100

50

Data Labeling

Distribution of Camera Angles

140

Count

15
Number of Reps Camera Angle

Data labeling for each key point for Incorrect (0), Correct (1) and Indeterministic (-1)

t f t t T f t T f t f i — T t * T f

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

ankle_inversion_| ankle_inversion_r knee_angle_| knee_angle_r hip_rotation_| hip_rotation_r
Kev point




Preprocessing

Goal:Reduce storage, compute requirements and improve model execution time

Pose Scorin
) | D 5

| Preprocessing Estimation Engine

# % e Remove audio and color
e Reduce Resolution (480px min)

Storage reduction 80% All videos
Execution time improvement  92% A subset of 6 videos

Model accuracy improvement 39% A subset of 6 videos
Domain advisor’s labels are “Ground truth”
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What are Poses?

Orientation of an object "
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Pose Estimation in Real World

® Images or videos contain limited
information of the scene

e To understand and analyze poses in

the real world (3D space), we C
harnessed the power of Deep learning ‘

e We employ a state-of-the-art model,
World-grounded Humans with
Accurate 3D Motion (WHAM), to
perform 3D pose estimation and
derive accurate measurement of joint
angles and rotations
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https://wham.is.tue.mpg.de/

3D Pose Estimation - WHAM
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Pose Estimation Model Output

e After processing, WHAM

o Produces pixel-aligned 3D human
motion

o Provides detailed tensors that
encapsulate pose, shape, and joint
information

e We utilize the joint coordinates to
visualize the Incorrectness in a video
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Repetition Identification

Smoothed data with line, peaks, and valleys

e Repetition identificationis - —— Smoothed data
important for score A \P/:::;:EZIVO‘;”E;
computation —

e Frame-by-frame datafrom a
Keypoint processed to identify 80 -

repetitions "

e Allframes included within 60 -
valley-peak-valley identify as a e
repetition 40 -

20 -

| |

0 50 100 150 200 250 300
X

© Physio Al Companion



Repetition Identification Steps

Preprocessing o Pose A JN | >coring

Estimation Engine

e Used pose estimation model output of the left and right knee angle measurements
e Signal smoothing computational approach to find peaks
e Filtered out peaks below the threshold (y mean)

Data smoothing with splines Smoothed data with peaks and valleys

140 Smoothed data with line, peaks, and valleys
’ ®  Original data 140 -
. —— Smoothed data 140 s—
—— Smoothed spline & st Smoothed data
120 A n ® Peaks above line
® 120 1 o \afleys 120 4 ® Valleys below line
100 A
80 |
" 80 .
> > __ & __ 0y cx % §F 4 3 &8 1B 1
60 - |
60 60 -
40 -
N L\J -
20 - 1 v ﬂ L’\J
20 \\j \J tl ki 20 - \\j \J &l kl
0 1 1 ! 1 1 1 I 1 1 T T T T T T T T T
0 100 200 300 :?O 500 600 700 800 0 100 200 300 :?0 500 600 700 800 0 100 200 300 400 500 600 700 800

X
Number of peaks: 11 N

umber of peaks: 7
Number of valleys: 11 Number of valleys: 11
© Physio Al Companion



Incorrectness Score Measurement

e Final scoreisbased on the type of
exercise monitored

e For overhead squats, the
important things to look for -
o Knee bend
o Ankle inversion/eversion
o Hip rotation

e These measures needtobeina
given specific range to classify
them as safe
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https://docs.google.com/file/d/18oDDdhcTBjA5Qqv87ugH6Is0HZQhHEI2/preview
https://docs.google.com/file/d/1x6a9qkDMA8V5XyqHcT-9lKjcscUIiE4P/preview

Score Calculations

Pose

Preprocessing ——— Estimation

Scoring

Correctness
Score

Correctness
Score

Correctness
Score

Correctness
Score

© Physio Al Companion

140

120

100

80

60

40

Engine

PHUSIO

Al COMPANION

Joint Measure Correctness Condition
Right Knee *Norm® 75 < “Norm® =< 90

Left Knee *Norm' 75 < “Norm™ < 90

Right Hip g -5 LY £45

Left Hip X -79<F 245

Right Ankle 2 -15£'p- <35
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http://www.youtube.com/watch?v=dRzYtt8c2kQ
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We cannot say how “correctly” you performed your exercise, only how “incorrectly” you did it

Disagreement between model output and advisors when it comes to KNEE (left and right)

Key Point Summary
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Scalability To Other Applications

Physio Al Companion can easily be extended and deployed to various other applications

1. Sports performance enhancements through posture monltorlng & correction - e.g., golf,
gymnastics

Generalize the solution to other type of exercises
General monitoring & assessment

Injury prediction & injury prevention

Assist in localized rehab targeting injured body part
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Summary

Physio Al Companion will support your physiotherapy journey with the
following capabilities

e |everage the power of Al
e Automatically identify the part of your body incorrectly performing

an exercise
e Easytouse tool that conveniently captures and shows your exercise

mechanics

Domain advisors stated the website to be a useful tool as is

Al COMPANION

“This is pretty cool!” “It’s looking awesome!!”
- Malerie, DPT,PT -Brian, MS Kinesiology

© Physio Al Companion



