NEURAL CORRESPONDENCE MAPPING

Adita Zeqollari, Arlens Zeqollari, Erik Hoye, Robert Reeves / Advisor: Bradley Voytek Github: https://github.com/voytek/NCM

PROBLEM STATEMENT

The analysis & comparison of modern neuroscience data is prohibitively diverse, leading to challenges in aggregation, verification & collaboration in the neuroscience research community. These challenges make hypothesis generation difficult since findings from one lab are not easily ingested by other labs with different processing techniques, sampling & brain atlases.

The NCM Python package was developed to aid neuroscience research discovery by facilitating semi-automatic hypothesis generation with the creation of a flexible & extendable open-source Python library that merges disparate neuroscience data into a common coordinate system.

DATA

- · Allen Brain Atlas
- mni-xyz & mri-voxel
- Gene expressions (>21,000 genes; 6 donors)

NeuroSynth

- Word correlations from published research to regions of the brain

• ECoG

ETL Branch

- Neural power spectra, characterizing both the aperiodic 'background' component & periodic components as overlying peaks, reflecting putative oscillations

Branch NCM Package Source Code NCM Package Source Code NCM Package Source Code S3 Output Notebooks AWS SageMaker xgBoost AWS SageMaker xgBoost Transformed Data

NCMPYTHON PACKAGE

- Modular, class-based architecture to support future development and enhancement
- Interfaces with common coordinates systems such as MNI-XYZ & MRI-voxel
- Allows for mapping to a broader parcel scheme defined by an atlas provided in a Nifti file
- Custom weighting algorithm is used to process & map data points to other coordinate systems
- · Single or dual hemisphere analysis is supported
- · Local or cloud deployment can be utilized

MODELING OVERVIEW

- xgBoost modeling of gene expressions from the ABA data was performed using AWS Sagemaker.
- Bayesian hyperparameter tuning jobs were spun up to parallelize & improve model training and tuning accuracy & speed.

Model Performance:

Mean squared error: 0.02

Accuracy was robust across different parcels & distributions of gene expression values.

KEY INSIGHTS & CONCLUSIONS

- VOYTEK ET AL.

- A package could be developed in Python to ingest, transform & visualize disparate neuroscience data.
- The package could be utilized to perform modeling of gene expressions in the ABA dataset. This modeling showed that gene expressions can be predicted accurately.
- AWS computing could be leveraged to expand the functionality & efficiency of the package.
- Interesting and unintuitive associations between parcels for a given gene can generate hypotheses about physical or functional interactions.
- Modularity & scalability of the package supports further enhancements & collaborative development.

"...THE WORK YOU'VE DONE IS REALLY AWESOME, AND I HOPE MY LAB CAN PICK IT UP AND RUN WITH IT."