
Neural Correspondence Mapping
Advisor: Bradley Voytek ​https://voyteklab.com/

Team Members: Adita Zeqollari, Arlens Zeqollari, Erik Hoye, Robert Reeves
MAS DSE Cohort 5, 2020 - Group 4

Github: ​https://github.com/voytek/NCM

Abstract

The analysis and comparison of modern neuroscience data is prohibitively diverse, leading
to challenges in aggregation, verification, and collaboration as a whole in the neuroscience
research community. These challenges make hypothesis generation difficult since findings
from one study are not easily ingested by other studies with different processing techniques,
sampling, and brain atlases. Within this paper, we propose a method to aid neuroscience
research discovery by facilitating semi-automatic hypothesis generation with the creation of
a flexible and extendable open-source Python library that merges disparate neuroscience
data into a common coordinate system. The package interfaces with the commonly used
MNI-XYZ and MRI-voxel coordinate system and allows for mapping to any broader parcel
scheme defined by an atlas provided in a Nifti file. Data points are processed and mapped
to other coordinate systems using a custom weighting algorithm. The package is also
designed to perform single or dual hemisphere analysis. The package can be utilized locally
or deployed in a cloud computing service. We demonstrate herein usage of the package in
AWS leveraging S3, AWS Sagemaker, and Papermill. To demonstrate the value proposition
of the package, the Allen Brain Atlas dataset of gene expressions was processed and
modeled using xgBoost with Bayesian hyperparameter optimization in AWS Sagemaker.
The model results were visualized using nilearn and pysurfer to generate visualizations
representing potential physical or functional gene expression associations between parcels.
Ultimately, this package can serve as a common platform for analyzing diverse
neuroscience data to support neuroscience data research and collaboration.

Introduction and Question Formulation

Modern neuroscientists have been exploring the brain for decades performing countless
studies and testing numerous hypotheses. George H. W. Bush even claimed that the 1990s
was to be the “decade of the brain”. This would lead one to believe that our understanding
of the brain and the study of neuroscience itself is growing at an unprecedented rate.
Unfortunately, this is not the case. Despite numerous publications, acquiring data utilized in
these experiments to further investigate and learn more about the brain is highly difficult if
not impossible. There is no single location where the data is stored and these unique
datasets are often stashed away for private use or even lost over time. Even if these

1

https://voyteklab.com/
https://github.com/voytek/NCM

datasets can be acquired, comparing them is highly difficult due to their diversity and
variances is sampling.

One big issue for comparison between various datasets is the coordinate systems utilized in
each study. Initial measurements are often taken on the brain in very precise methods such
as MNI-XYZ or MRI-Voxel coordinates and then a broader parcel or sub-section
measurement of the brain is derived from these more precise measurements.
Unfortunately, instead of neuroscientists utilizing a common atlas, parcel scheme for
dividing the brain into subsections, studies often involve the generation of their own atlas in
order to best fit their data or utilize one of the numerous pre-existing ones. This makes it
incredibly difficult to compare different studies.

In order to allow for comparison between these heterogeneous datasets generated by
countless studies, we aim to provide a platform that not only allows them to be compared
but also preserves the accuracy of the initial measurements and studies. This is where the
problem becomes more of a data science issue than a neuroscience one. We propose that
we can aid neuroscience research discovery by facilitating semi-automatic hypothesis
generation with the creation of a flexible and extendable open-source python library that
merges disparate neuroscience data into a common coordinate system.

Although this approach seems like a necessity in the field, studies have only taken this
approach for either smaller subsections of the brain or in a very specific manner for their
datasets. UCSD’s own PHD student Richard Gao’s investigation into Neuronal timescales
performed initial investigations into such techniques and provided us with a starting point to
explore and expand upon. Some Python packages exist as well that perform some
capabilities necessary for this endeavor such as nilearn and nibabel, but they miss most of
the functionality in order to perform the task. Our goal is to put together these packages
and techniques done by pre-existing studies, expand upon them, and create a single pipeline
that performs the mapping automatically so that neuroscientists can focus on
understanding the brain instead of learning the intricacies of these various packages and
methods.

Team Roles and Responsibilities

The project team’s roles and responsibilities followed the guidelines provided, while
adjusting throughout the course of the project to meet project requirements and provide
the entire team exposure and experience to the various areas of expertise required.

The team met at least once a week to discuss all aspects of the project and all team
members met with the advisor regularly. The team’s project manager, ​Robert Reeves​, took
the lead on coordinating meetings with the team members and project advisor, ensuring all

2

project requirements were met and submitting the reports and presentations on time.
Robert also ensured that the project advisor had access to all the deliverables of the project
by providing the advisor with the submitted materials and soliciting his feedback throughout
the course of our project. Robert was also instrumental in creating a collaborative
environment for the team.

Arlens​ ​Zeqollari​ took the lead on implementing the package architecture while ​Erik Hoye
took the lead on developing the Python code for the package with all team members
contributing with preprocessing work, planning, and ensuring the package met all the
requirements. ​Erik Hoye ​also spent time investigating and implementing different methods
for visualizing spatial data on the brain as both parcels and coordinate points.

The modeling aspect of the project was shared by ​Arlens Zeqollari​ (xgBoost) and ​Adita
Zeqollari​ (Adaboost). The team experimented, discussed and considered various models
and inputs to the model before arriving at the optimal solution. The best performing model
(xgBoost) was then migrated to AWS Sagemaker to perform modeling on additional
parcels. Migration to AWS involved refactoring to the Sagemaker xgBoost API (​Arlens
Zeqollari​) and integration with S3 (​Erik Hoye​).

The team’s efforts in AWS were facilitated by ​Adita Zeqollari​’s and ​Robert Reeves​’ work on
creating S3, Sagemakes, and EC instances in AWS. The team also kept track of the budget
and was successfully able to complete the requirements of the project within the AWS
budget provided by the DSE program.

Brief Description of Data Pipeline

Figure 1: Solution Pipeline

3

Figure 1 above, shows the overall data pipeline for testing and demonstrating the entire
project's capabilities. The pipeline takes us through the initial preprocessing of our desired
datasets beginning at the far left, the transformations provided by the package visualized
within the center, and then the final model and testing implementations visualized on the far
right. The pipeline is intended to demonstrate our use of the classic ETL pipeline and that
our process can be implemented both locally and in AWS for faster preprocessing and
modeling on larger datasets. In the following sections we will breakdown each leg of our
pipeline explaining the process and how it was implemented to satisfy the overall project
design.

Data Acquisition

For testing our overall pipeline and the package itself, we first gathered well known
neuroscience datasets to be utilized to test the package. Since our overall goal is to provide
generic methods for analyzing neuroscience data, instead of focusing on designing a
specific section of our pipeline for pulling the datasets from the web, we merely provided
links and steps to download them so that if one desired to utilize these datasets in their own
investigations they would have no problem doing so. The three major datasets we utilized
were:

● Allen Brain Atlas (ABA)​ - Gene expression data taken from the brains of 6 donors.

Each individual’s dataset provides multiple readings for over 21,000 genes, the
significance over mean gene representation for each gene, and the probe’s
coordinate location in both mni-xyz and mri-voxel coordinates.

● NeuroSynth (NS) Data​ - Word correlation to specific regions of the brain (ex.
Alzheimer). Data was initially gathered from NIH neuroscience articles utilizing
natural language processing and then smoothed into single value correlations(tf-idf)
for over 3,200 words for each article and coordinate location.

● ECoG data​ - Dataset generated by fooof 0.1.3, a Python library/model developed by
the advisor’s team to parameterize neural power spectra, characterizing both the
aperiodic ‘background’ component, and periodic components as overlying peaks,
reflecting putative oscillations.

For more statistics about the preceding datasets please reference Figure 2.

Raw Data
Sources

Source Location Features Feature Size Coordinate
System

NeuroSynth
Data

https://github.com
/neurosynth/neuro
synth-data

Neuroscience
Terms

3200 terms for 1430
articles

MNI-XYZ

Allen Brain
Atlas

http://human.brain
-map.org/static/do

Gene
Expressions

Over 21,000 genes
with multiple

MRI Voxel and
MNI-XYZ

4

https://github.com/neurosynth/neurosynth-data
https://github.com/neurosynth/neurosynth-data
https://github.com/neurosynth/neurosynth-data
http://human.brain-map.org/static/download
http://human.brain-map.org/static/download

Data wnload readings for each
probe for 6 human
brains

ECoG data https://github.com
/rdgao/field-echos
/blob/master/data
/df_human.csv

Neural power
spectra
features

1723 electrode
locations for time
series data

MNI-XYZ

Figure 2 - Datasets Table

Data Preprocessing

Our next step and the initial section in the data
pipeline was the data pre-processing phase.
Although the specific preprocessing methods taken
for each dataset are unique, it was included in the
pipeline in order to demonstrate the necessity of
performing this task. Our package does not solve
any inconsistency within datasets, but instead takes clean preprocessed data and
transforms it to a common spatial frame to compare with other clean preprocessed data.
Working with all these datasets at first was daunting due to the fact that as data scientists
cleaning neuroscience data is not only trickery but requires deep research in order to make
sure it is done correctly. Luckily for us, only one dataset required a substantial amount of
cleaning.

ECoG data ​- We were able to acquire a clean preprocessed dataset from our advisor’s PhD
student, Richard Gao’s open source Github page. In the ECoG dataset, each row represents
one electrode reading, across all 110 patients.

 To visualize the x, y, z coordinates for each row, a 3D plot was constructed.

Figure 4 - ECoG Data Visualization

The only preprocessing necessary was to manipulate the dataset into the corresponding
feature and coordinate numpy arrays to be utilized by the package.

5

http://human.brain-map.org/static/download
https://github.com/rdgao/field-echos/blob/master/data/df_human.csv
https://github.com/rdgao/field-echos/blob/master/data/df_human.csv
https://github.com/rdgao/field-echos/blob/master/data/df_human.csv
https://github.com/rdgao/field-echos/blob/master/data/df_human.csv

NeuroSynth data -​ ​The latest NeuroSynth data file is stored in current_data.tar.gz. The
current dataset is version 0.7, released July, 2018. The archive contains two files:
database.txt and features.txt. The database.txt file contains activation data for 14,371
publications. The features.txt file contains feature information for 3,228 term-based features.
Feature.txt contains term-based features derived only from the abstracts of articles in the
Neurosynth database, and not from the full publication text. This data set is relatively clean
as it has been processed to generate the two files we used for Input data.

Data Set
Name

Input data Sets Processing Scripts Final_Size*6

NeuroSynth ● datatbase.csv
● feature.csv

● NSData_Pre-processing.ipynb
● Parcellation_Exploratio_NSDa

ta.ipynb

Final Dataframe
507,891 NMI
locations × 3228
term values
(tf-idf)

Figure 5 - NeuroSynth Preprocessing

Below is an image of all points plotted and single terms points plotted using matplotlib.

Figure 6 - NeuroSynth Plots of Different Neuroscience Terms - Notice density difference

One issue was that each publication could discuss multiple locations on the brain. Due to
this the data set has 507,891 rows. Each row has corresponding 3228 term values. The data
set created has over 1.6 billion cells. This large data frame is very cumbersome in python. In
some cases it would error out due to lack of memory on both local and cloud environments.
To deal with this the preprocessing was designed to work on only one term at a time. As a
result the annotation file remains the same at 507,891 rows of x, y, z coordinates but the
features data is reduced to a more manageable 507891 rows x single term column. This
also seems to make sense as most research is likely done on a few terms. Also the
preprocessing notebook was parameterized to take as an input a term variable. Then using
python package Papermill the preprocessing notebook can be executed from a script for as

6

many terms as a researcher requires. Below is an example of a papermill command for the
term ‘serotonin’:

papermill NSData_Pre-processing.ipynb NSData_Pre-processing_output.ipynb -k
papermill-tutorial -p selected_feature 'serotonin'

The result of preprocessing is NS_Coordinates.csv and NS_Term_<my_term>.csv. The files
are then used by a Notebook Example_NCM_package_NS.ipynb using the NCM package to
map the data to a parcelization schema and plotted for analysis by the researcher.

Allen Brain Atlas data​ - The ABA data was the one dataset that required a substantial
amount of cleaning and discussions with our advisors. The ABA dataset includes gene
expression data taken from six brain donors for ~50,000 probes ranging from 900 to 400
mni-xyz locations on the brain. The data for each brain donor is located in five separate
tables that require merging and dealing with several inconsistencies. These issues include:
brain donor data containing only left side brain probes while others contain data from both
sides of the brain, differences in probe location per brain donor, and significant differences
in number of probes per gene. The following preprocessing steps were taken from
Hierarchy of transcriptomic specialization across human cortex captured by structural
neuroimaging topography​. Through discussions with our advisors we decided to only
implement 4 out of the 10 steps provided by the literature. Many seemed redundant and
provided very little cleaning on the dataset.

Data Set
Name

Input data Sets * 6 donors Processing Scripts Final_Size*6

ABA
Data

● MicroarrayExpression.csv
● Ontology.csv
● PACall.csv
● Probes.csv
● SampleAnnot.csv

● ABA data
pre-processing.ipynb

● ABA_data_pull.ipynb
● Parcellation_Exploratio

n.ipynb

Final
Dataframe
20787 genes ×
449-900
probe
locations

1. Gene probes without a valid Entrez Gene ID were excluded. This was done due to
genes without Entrez Gene ID not having ​genomes that have been completely
sequenced, and they do not have an active research community to contribute
gene-specific information.

2. Samples whose coordinates did not originate in the left hemisphere of the brain
were then removed. This was done because research indicated there was not a
significant difference in gene expression between the left and right side of the brain
and because the last 4 donors did not have any probes in the right side of their brain.

7

Figure 7 - Removing probe samples from the right hemisphere

3. Samples whose measured expression level was not well above background, as
provided in the ABA dataset, were excluded. Samples remained if they (i) belonged to
a probe whose mean signal was significantly different from the corresponding
background, and (ii) had a background-subtracted signal which was at minimum 2.6
times greater than the standard deviation of the background.

4. Finally we performed one last transformation in order to reduce measurements to
include only one measurement for each gene.

A. For those genes that contained more than one measurement in the
same location which passed the preprocessing of phase 3, we took
their mean expression

B. For those which included only one measurement in the same location
which passed the preprocessing of phase 3 and others which didn’t, we
took the measurement which passed

C. Finally, for those which contained no measurement in the same
location which passed the preprocessing of phase three, we labeled
their gene expression as 0.0

After these four steps were applied to the six individual datasets for each brain donor, two
final pandas dataframe were created, one containing gene feature data and one containing
coordinate values in both MNI-XYZ and MRI-voxel.

Package Implementation and Mapping

Now that we have successfully explored the first phase of our
data pipeline, let's take a closer look at phase two: package
implementation and spatial mapping. Once again, the goal of the
package is to take sparse coordinate data provided in either
MNI-XYZ or MRI-voxel and map it to a broader more general
parcel scheme so that disparate datasets can be compared to each other. An example can
be visualized in Figure 9 below. The package itself converts around 700 lines of code and

8

various functions into four simple lines of code that can easily be implemented by any
neuroscientists as long as they have their data in the correct format. The package follows a
class based architecture which means it first needs to be initialized and then various
functions can be run on the stored data. This style of modularization allows for easy
package addition and modifications in the future without breaking the entire package. Our
goal was to make this package extremely easy to use, but also allow for it to be easily
modified if desired in the future for advanced mapping and smoothing techniques. Below
we will take a closer look at the data shape and format the package requires for use, how to
utilize each specific function, the possible additions and modifications for specific functions,
and the possible extensions that could be added to the package for improvement.

MRI- Voxel
MNI - XY

Figure 9 - Mapping from Precise to Broad

Step 1 Package Initialization

In order to utilize the package, you must first provide information about both the atlas you
wish to map your data to, and the data itself. The first two inputs for initialization require the

9

file locations for both a nifti file and an annotation file. A nifti file format dictates a file
followed by either .nii or .nii.gz and it is a very common format utilized by neuroscientists to
store images that provide parcel identifications within voxel space. It also provides details
on translating voxel coordinates to MNI space. One may also provide an annotation file
which is utilized to provide parcel identifiers, but the package will still work if instead of
providing the file you specify “None”. Both these files must be stored in the specified nifti file
folder within the NCM package location to work properly.

The next three input files required are your feature data, which is the experiment or study
data that you want to map, the coordinate data file, which provides the coordinates or
locations where your measurements were taken, and the source coordinate type in either
MNI-XYZ or MRI-voxel. The package requires that one utilizes these two coordinate
measurements because they are the most accurate, and preserving accuracy is one of the
main goals of the package. Implementing transformations from a broad parcel definition to
another broad parcel definition is not recommended because you would likely need to
identify parcel values by averaging shared surface areas with the other parcel definitions
which would have already been averaged themselves. Taking the average of averages is a
good way to lose accuracy.

Lastly you must provide the axis in which the feature data and coordinate data correlate.
For example if your feature data is stored in numpy array formatted (features,
location_identifiers) and your coordinate date is formatted (location_identifiers,
coordinates) then you would provide axis = 0. On the other hand, If your feature data was
transposed, (location_identifiers, features), then you would provide axis = 1. Axis is defined
as 0 unless otherwise specified.

An example of the initialization function is provided below where NCM is the package, and
spatial mapping is the class utilized for mapping sparse coordinate data to parcels.
Initialization Function:

Figure 10 - Initialization Function

Once the package has been initialized, it first extracts the image from the nifti file and
identifies all parcels within the image. Then it determines whether or not converting parcel
voxel coordinates to mni space for mapping is necessary by checking the coordinate type
input, and then finally it checks to make sure data is in correct shape for transformations.

10

Step 2 Hemisphere and mirror input

The next step in mapping the data from precise coordinate data to broader parcel data is to
identify what type of analysis you want to perform. The package allows the user to identify
whether they want the analysis to be dual hemisphere, or single hemisphere defined by left
or right. Allowing the user to choose is especially significant for datasets such as the ABA
dataset because all probes utilized in the last 4 brain donors are only on the left side of the
brain. Analyzing both sides of the brain would likely skew results allowing for
misinterpretation of correlations between datasets. Below is an example of using
left-hemisphere:

Figure 11 - Use Hemisphere Function

Although choosing which side to perform your analysis on is important, even more
significant is identifying whether or not the atlas provided is mirrored or not. Although not a
common neuroscience term, we utilize this term to identify whether every parcel defined by
the atlas has been “mirrored” from one side to the other. We identified this difference while
observing parcel structures of the HCP-MMP atlas and the Talairach atlas, and it is
extremely significant when performing mapping on either style atlas when utilizing parcel
centers for calculations. Below in Figure 12 and 13 you can observe the difference between
mirrored parcel schemes and non-mirrored.

Figure 12 - Mirrored Parcel Figure Figure 13 - Un-mirrored Parcel Figure

11

Step 3 Mapping Method

Figure 14 - identifying mapping method

After choosing the hemispheres we plan on using, our next step is to decide how we want to
calculate parcel values. In order to calculate the feature expression in each parcel there are
several different methods we can take. One method would entail mapping each
measurement point for your inputted feature data to the closest individual parcel and then
calculating the average expression in each parcel if multiple measurements have been
mapped to it. One drawback for this method is that some parcels might not have any
measurements mapped to them. This can be remedied by calculating the surface area
shared by these parcels lacking any measurements and those of surrounding parcels, and
then taking a weighting of their gene expression based on the shared surface area. The
drawbacks for this method is over-generalization for parcels lacking data and that it would
take an extremely long time to perform. We initially explored this method and realized it
would take too long if one wanted to run the analysis locally.

Another option is to instead calculate the centroid of each parcel, and then calculate the
likely parcel expression by weighting each sample feature data based on the distance to the
center of the parcel, or perform gaussian smoothing. This also has a downside regarding
the correct way to determine the weighted distribution for each parcel and the awkward
shape of certain parcels which can lead to some generalization. The upside however is that
it is quite a bit faster.

12

The numerous possibilities for defining the generalized parcels values was one of the major
reasons why we wanted to design an open-modularized package. This allows any future
developers to implement and add to the package any different techniques they plan on
implementing. We ended up implementing method two due to our desire for the package to
be capable of running either locally or in AWS at an acceptable speed. We tested the
package on all three of our datasets and here are some examples mapping from precise
measurements to broad parcel definition in the HCP-MMP atlas utilizing the package
pysurfer and nilearn for visualization.

Visualizing Package Transformation

Observing the visualizations below we can immediately identify some significant variances
between our three datasets. Gene expression for gene 729 from the ABA dataset in Figure
17 contains a small spread ranging from 4.6 to 8.4, while the knee_freq extracted from the
ECoG dataset in Figure 18 ranges from 2.6 all the way to 36 a massive difference between
parcels.​ ​On the other hand, Figure 19 shows data from the neurosynth dataset visualizing
that most parcels have no correlation to the investigated terms and only just a few parcels
are significant.

13

Figure 17 - Gene 729 Expression for Left-Hemisphere of HCP-MMP Atlas

Figure 18 - Knee_freq from ECoG data for Left-Hemisphere of HCP-MMP Atlas

Figure 19 - NeuroSynth Terms for Left-Hemisphere using HCP-MMP Atlas

14

Further Investigations into Side Cases

After successfully building the initial package, the team spent a substantial amount of time
attempting to deal with the numerous side cases that the package would face. In no way
have we identified all of them, but we took our best shot in identifying as many as we could
with the various datasets and atlases we investigated. This is another reason why creating
an open-source package allowing for updates on specific use cases was significant to our
project. Below are specific cases we investigated and how we dealt with each.

Dual Hemisphere analysis on Mirrored Atlas - Performing a mapping by Identifying parcel
center when the parcel is defined on both the left and right side leads to calculation errors.
Meaning the parcel center is calculated to be at the middle of the brain regarding the x-axis.
In order to deal with this, when performing a dual analysis on a mirrored atlas, parcels are
divided in half and labelled according to their parcel identity and hemisphere. Then
calculations begin regarding parcel center and feature representation for parcel.

Ex: parcel ​V1_ROI​ from HCP-MMP atlas split into two parts labelled left_​V1_ROI and
right_V1_ROI indicating the specific hemispheres they are located on.

Figure 20 - Single parcel labelled above

converted to two unique parcels

Single Hemisphere analysis on Non-Mirrored Atlas - Performing single side mapping for a
mirrored atlas is easy because you simply remove each parcel definition coordinates that
are on the opposite hemisphere. For un-mirrored atlases we can’t take such a simple
approach since any parcel defined along the center of the brain is unique and cannot simply
be divided in two. In order to deal with this, when performing any single side analysis on a
non-mirrored atlas we remove parcels which contain no values on the interested side but
maintain the entire parcel definition if some portion is on the hemisphere we are interested
in. Most of the parcels appear to remain on their respective sides, but in some cases they do
not.

15

Figure 21 - Entire parcel kept for centroid calculations
despite partially being in wrong hemisphere

Smoothing calculations​ - One of the most significant investigations of this project involved
variations in the smoothing calculations. After calculating the parcel center and identifying
the distance from each point to the parcel center, one must then determine how to weigh
the feature data based on that distance. This was challenging as there is not necessarily
any “right” way to approach the problem. The package currently applies a distance-based
gaussian weighting function which utilizes the size of each parcel. This means that the
gaussian function utilized is modified for each parcel for parcel feature representation
calculations. Although this was effective for ABA MNI-XYZ data mapping to the HCP-MMP
atlas, finding one method that will work for all data or atlases is unlikely. For sparse data
which requires more generalization, or robust data, which requires more precision in parcel
definitions, it is likely that the user would prefer to modify this function or even add their
own. We allow for modifications allowing for constant gaussian smoothing regardless of
parcel size, but attempting to create a robust function was not feasible. Once again, the
class-based package developed by the team should allow for users to apply modifications
or create their own functions they wish to apply to their own data. Figure 22 illustrates the
possible weighting that could be applied to features based on various distances to parcel
centers.

Figure 22 - Gaussian based weighted distance function

16

Some of the more minor investigations and implementations added to the package involved
allowing for a lack of annotation files, variances between single hemisphere analysis
regarding MRI-voxel vs MNI-XYZ, exclusion of parcels in output when they were not in the
correct hemisphere, and replacement of NaN values to 0.0 for parcels where all precise
measurements are too far away for proper generalization.

Modeling

Now that we have fully walked through package implementation, we can examine how
modeling can be applied to the results. Although our project and data sources did not lend
themselves well to modeling and extensive modeling efforts did not align with our project’s
overall goal to build a package for merging disparate neuroscience data into a common
coordinate system, we saw modeling as a method for utilizing the results and capabilities
that the package provides. After discussions with our advisor, the team was able to
formulate interesting modeling questions and identify the ABA dataset as input to answer
the question: “Given parcel gene expressions for all other parcels, can we predict all gene
expressions for a specific parcel?”

Figure 23​ uses parcel gene expressions from the ABA data as features and the genes as
samples. The values are the weighted averages from the six brains in the dataset.

Figure 23 - ABA Dataset for Modeling

The team explored the ensemble methods outlined below.

Figure 24 - Models evaluated for Gene Expression prediction

17

For the ​Random Forest​ model, we achieved an MSE of .019 with a 80/20 train test split.
For the ​Adaboost​ model, we achieved an MSE of .07 and RMSE of .27.
For the ​xgBoost​ model, we achieved an MSE of .02.

The xgBoost model performed the best and was the fastest to train, as the library is able to
make use of parallelization locally and the usage of GPUs locally as well. This allowed for
better optimization of hyperparameters. We suspect that the regularization also helped
achieve better performance and generalizability. Furthermore, AWS SageMaker support for
xgBoost, makes the choice of models easy when considering local and cloud environments.

We suspect that the regularization also helped achieve better performance and
generalizability.

Model (Type) Best Model
Parameters

Cross-Valid
ation

Train / Val /
Test (%) GridsearchCV Parameter Space

xgBoost Regressor
(Gradient Boosted
Ensemble Method)

'gamma'​: 0.25
'learning_rate'​: 0.05
'max_depth'​: 10
'n_estimators'​: 400
'subsample'​: 0.75

3-fold CV 56/24/20

'N_estimators'​:[50, 100, 400],
'Max_depth'​:[3, 5, 10],
'Learning_rate'​:[0.05, 0.1, 0.5],
'Subsample'​:[0.5,.75, 1],
'gamma'​: [0.25, 0.5, 1, 3],

Figure 25: Predicted vs Actual for xgBoost on ABA data

AWS Pipeline implementation

This project used the AWS Sagemaker Studio for cloud services. AWS Sagemaker Studio is
an integrated machine learning environment where you can build, train, deploy, and analyze
your models and Notebooks, all in the same AWS cloud application. Sagemaker provides
experiment management and tracking. Users can organize their experiments and artifacts

18

in a centralized location using a structured organization scheme. The Sagemaker
environment provides full visibility into the model training process by enabling the inspection
of all the training parameters and data throughout the training process, all with in-depth
logging at every step. Sagemaker also creates a domain for the team. The domain includes
an Amazon Elastic File System (Amazon EFS) volume with home directories for each user.
Notebook files and data files are stored in these directories. Sagemaker also supports Git
repository integration. The project intrated GitHub allowing for seamless pulling of project
resources. Overall, the Sagemaker Studio is a good solution to enable ETL, Python package,
and model development. The solution’s automation and scalability are very straight
forward with quick deployment, providing a complete automated pipeline with monitoring
and debugging capabilities at any scale.

Figure 26 - ​AWS Sagemaker Dashboard

The Sagemaker Dashboard shown in the figure above illustrates some of the resources
used for this project. The Notebook Instance, Training jobs and Hyperparamter tuning jobs.

Figure 27 - ​AWS Sagemaker - Git repositories

Not shown in the Dashboard but also used by this project was integrated Git repositories
shown in the figure 27 above. This integration shared a public key with GitHub and the
private key kept in Sagemaker so no login required when pulling and committing code to
and from Sagemaker notebooks. All three Notebooks used this integration to pull and push
changes.

19

Figure 28 - ​AWS Sagemaker - Lifecycle configurations

Another feature used but not shown in the Dashboard was the Notebook Lifecycle
configuration seen above in figure 28. The Lifecycle configuration was used for both the
test and final notebooks. The main function of Lifecycle configurations is to provide a shell
script that runs when the notebook instance is started. The script we used configured the
Notebook environment including the kernel, pulling from GitHub and running a notebook
using Papermill. This allowed for automation in testing changes to the NCM package. The
complete details of the script used are documented in the GitHub readme.md file.

AWS Sagemaker Modeling

After initial investigations into modeling on local machines, we decided to investigate further
into the capabilities of deploying models in AWS as well to test integration with larger
datasets. The implementation of xgBoost algorithms using AWS’s Sagemaker allowed for
comprehensive machine learning training and hyperparameter optimization. The models
were refactored into AWS’s custom xgBoost library, which is designed to quickly build, train,
and deploy machine learning models. The Sagemaker user interface provides helpful
diagnostics and progress reports showing the results of each job with respect to the
objective metric as the jobs are being trained (see figure 29 below).

Figure 29 - Hyperparameter tuning jobs

20

The training jobs feature of Sagemaker was also used. Our failed training jobs can be seen in
the image below.

Figure 30 - ​Training Jobs with AWS Sagemaker

Sagemaker training jobs are an iterative process used to teach our model to make
predictions by presenting examples from our Gene expression training data. The training
algorithm writes metrics from jobs to logs, which Amazon Sagemaker monitors and sends
to Amazon CloudWatch. The logs allow the developer to pick the best results from their
experiments. Below in Figure 31 is an example of a CloudWatch log for notebook execution.

AWS CloudWatch​ ​allowed developers to debug execution of the Sagemaker notebook
instances, lifecycle configurations, and model execution. These interactive outputs provide a
comprehensive view of the environment, setup, and step-by-step execution of all AWS
components involved in this project. This is essential for troubleshooting and optimizing
scaled computing resources. An example output of the logs that are generated by executing
Papermill in a lifecycle configuration at the startup of a notebook instance is shown below:

Figure 31 - ​AWS CloudWatch Execution Log

From Figure 31 above, one can view the cell-by-cell execution of the Jupyter notebook,
which includes any errors, execution time, and progress. CloudWatch also allows queries and
filtering to allow efficient methods enabling scalability.

21

Findings & Reporting

Now that we have fully investigated the individual sections of our overall pipeline, let's take a
closer look at our findings and tools utilized for reporting. Overall, our project demonstrates
that it is possible to develop a platform that allows disparate neuroscience data to be
compared by mapping data to the same spatial frame. The modularized NCM package
allows for ingesting spatial data in both MNI-XYZ and MRI-voxel and has been tested to map
data to both the HCP-MMP atlas and Talairach atlas. We discovered that mapping from
MRI-voxel and MNI-XYZ space are the only mapping schemes where accuracy can be
preserved through testing. Further inquiries into atlas intricacies also allowed our package
to perform mapping on either the full brain or on just one hemisphere. Investigations also
led to the discovery of how significant the feature weighting based on distance to parcel
center was for parcel representation, especially with large variances in atlas parcel
definitions and dataset sizes. In order to test package outputs, we were also able to develop
several xgBoost models which helped demonstrate the potential physical or functional
associations between different parcels, and can be valuable for hypothesis generation. For
visualizations and reporting, we utilized both Nilearn and Pysurfer. Nilearn plotting allowed
us to easily visualize individual datasets and parcel center calculations for verification of our
results. Pysurfer provided us with a platform that allowed us to demonstrate the results of
the mapping performed by the package. Finally, for additional reporting we utilized tools in
AWS to automate the NCM package testing, notebook execution with scalability, and debug
logging. Altogether, the package and work herein demonstrates that an extendable
package can be developed to support neuroscience data analysis and hypothesis
generation.

Solution Architecture

Figure 32 - Solution Architecture

22

As initially demonstrated in the beginning of this paper, the overall solution and pipeline for
this project is shown again in figure 32. This structure takes us through initial preprocessing,
package implementation for data mapping, and eventual result investigations for
hypothesis generation on neuroscience data. The architecture works in both cloud and local
environments. For the local environment the AWS pieces of the above solution are removed
and S3 is replaced by local storage. The use of Jupyter notebooks allows for easy
development and portability and the addition of papermill allows for automation and
scalability. A great feature of papermill is when the notebooks are remotely executed an
output notebook is stored as a log or record of the notebook execution. This can serve both
as debug information as well as reports without manually running the notebook. The
architecture is simple and powerful that allows for easy expandability in the future.

Performance & Evaluation

The use of the operational models of cloud and local has proven to be a great model
allowing speed, flexibility, simplicity, scalability, and maintainability of the development of
the NCM project. If utilized within a scientific or business domain, one would only need to
run the unit test notebook to make sure that the package is working correctly before
proceeding with implementation on their own datasets. Since this project was not severely
compute-intensive, the AWS budget was a negligible concern; the team spent approximately
25% of the allocated budget.

The models were accurate and demonstrate that gene expression values in other parcels of
the brain can be used to accurately predict the gene expression in a specific parcel of
interest. The team demonstrated that the technique generalizes gene expressions well to
other parcels of the brain with similar accuracy.

The target of this package is not a prediction, but rather another dataset/visualization that
is able to elucidate further analysis by neuroscientists, data scientists and researchers.
These can also include aggregations/summaries of the datasets, akin to profiling of the
dataset where highly expressed genes, number of parcels, density of data, etc. are
summarized and can be exported.

Conclusion

This project demonstrated that a package to transform neuroscience data could be
developed, scaled, and lead to actionable hypothesis generation and exploratory data
analysis for neuroscience data specialists. We hope that our findings can be expanded on
and utilized in the neuroscience field in order to generate hypotheses about physical or
functional interactions. While the package is open to all potential collaborators, the primary
audience for this project involves the community of neuroscience data specialists and
developers. These include researchers and software developers that are interested in
developing scalable pipelines or methods for analyzing neuroscience data. The project

23

demonstrates the transformation of several popular neuroscience data formats and
parcellation schemes, which is a foundational technique in this field. The creation of the
package repository, including the documentation, package setup, and ability to share with
others via GitHub allows the audience to organically expand if interest is generated. The
team focused not only on the depth required to perform one specific task or functionality,
but also the breadth in how such functionality can be integrated into scalable cloud
solutions and extended with tools and techniques such as Papermill, CloudWatch, logging,
cloud machine learning/training, parallelization, and deployment. In a modern
implementation and usage of this package, the team theorizes that such functionality will be
crucial to long-term sustainable development of the package.

24

Appendices

A. DSE MAS Knowledge Applied to the Project
The knowledge acquired in the DSE program was instrumental in the design and
implementation of the project.

Python for Data Analysis​ taught us the skills required for preprocessing and exploratory
analysis of our 3 data sets.

Machine Learning ​was a great foundation for the team to build and evaluate machine
learning models and tune hyperparameters.

Case Studies in Data Science ​was very beneficial for our capstone because Bradley
Voytek’s presentation to the cohort made us aware of the work he was doing and served as
our original introduction. In general, this course was beneficial because it exposed us to the
data science work happening in a variety of fields and industries different from the
industries we currently work in. The presentations also served as a model for how to best
present to large groups and create content suitable for different audience types.

Probability and Statistics with Python​ gave us an understanding of how to evaluate the
significance of our results and how to apply sound statistical methods to assess our models.

Data Analysis Using Hadoop & Spark ​served as the foundation for implementing our
solution as scale.

Data Visualization​ helped inform our approach on how to best visualize data, create
effective and captivating visualizations tailored for the intended audience, and the various
tools available. It also made us aware of considerations such as color blindness and color
theory.

B. Data and Software Archive for Reproducibility

Github: ​https://github.com/voytek/NCM

UCSD Libraries:

Zeqollari, Adita; Zeqollari, Arlens; Hoye, Erik; Reeves, Robert; Voytek, Bradley
(2020). Neural Correspondence Mapping. In Data Science & Engineering Master of
Advanced Study (DSE MAS) Capstone Projects. UC San Diego Library Digital
Collections.​https://doi.org/10.6075/J06M35B6

25

https://github.com/voytek/NCM
https://urldefense.com/v3/__https://doi.org/10.6075/J06M35B6__;!!Mih3wA!TQJiiW21fgnWRJ39h9KqswSLPjoPUbqtKCbRxrp7r4FMCq88Ay86FmG0i3HJDrG2uT6y$

C. Related Publications

1. Burt, J.B., Demirtaş, M., Eckner, W.J. et al. Hierarchy of transcriptomic specialization
across human cortex captured by structural neuroimaging topography. Nat Neurosci
21, 1251–1259 (2018). https://doi.org/10.1038/s41593-018-0195-0

2. Adolescent consolidation of human connectome hubs

Kirstie J. Whitaker, Petra E. Vértes, Rafael Romero-Garcia, František Váša, Michael
Moutoussis, Gita Prabhu, Nikolaus Weiskopf, Martina F. Callaghan, Konrad Wagstyl,
Timothy Rittman, Roger Tait, Cinly Ooi, John Suckling, Becky Inkster, Peter Fonagy,
Raymond J. Dolan, Peter B. Jones, Ian M. Goodyer, the NSPN Consortium, Edward T.
Bullmore

Proceedings of the National Academy of Sciences Aug 2016, 113 (32) 9105-9110; DOI:
10.1073/pnas.1601745113

3. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated

synthesis of human functional neuroimaging data. Nat Methods. 2011;8(8):665‐670.
Published 2011 Jun 26. doi:10.1038/nmeth.1635

4. Spatial analysis and high resolution mapping of the human whole-brain
transcriptome for integrative analysis in neuroimaging

Gregor Gryglewski, René Seiger, Gregory Miles James, Godber Mathis Godbersen,
Arkadiusz Komorowski, Jakob Unterholzner, Paul Michenthaler, Andreas Hahn,
Wolfgang Wadsak, Markus Mitterhauser. Siegfried Kasper, Rupert Lanzenberger

https://doi.org/10.1016/j.neuroimage.2018.04.068

5. Voytek JB, Voytek B. Automated cognome construction and semi-automated
hypothesis generation. J Neurosci Methods. 2012;208(1):92‐100.
doi:10.1016/j.jneumeth.2012.04.019

6. Cole S, Voytek B. Cycle-by-cycle analysis of neural oscillations. J Neurophysiol.
2019;122(2):849‐861. doi:10.1152/jn.00273.2019

7. Parameterizing neural power spectra
Matar Haller, Thomas Donoghue, Erik Peterson, Paroma Varma, Priyadarshini
Sebastian, Richard Gao, Torben Noto, Robert T. Knight, Avgusta Shestyuk, Bradley
Voytek
bioRxiv 299859; doi: ​https://doi.org/10.1101/299859

26

https://www.sciencedirect.com/science/article/abs/pii/S1053811918303884?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S1053811918303884?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S1053811918303884?via%3Dihub#!
https://doi.org/10.1016/j.neuroimage.2018.04.068
https://doi.org/10.1101/299859

8. Neuronal timescales are functionally dynamic and shaped by cortical
microarchitecture
Richard Gao, Ruud L. van den Brink, Thomas Pfeffer, Bradley Voytek
bioRxiv 2020.05.25.115378; doi: https://doi.org/10.1101/2020.05.25.115378

D. Acknowledgements

We are immensely thankful for the support and guidance from our advisor, Bradley Voytek
and his colleague Richard Gao. They provided excellent feedback and guidance despite
Richard having to worry about his own dissertation. We would also like to thank the entire
DSE staff for excellent mentorship and classes over the past two years. We have learned
an incredible amount and are excited to leverage this knowledge in the real world. We are
also grateful for Professor Ilkay Altintas and her support throughout the capstone project.

27

