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Abstract 

 
The analysis and comparison of modern neuroscience data is prohibitively diverse, leading 
to challenges in aggregation, verification, and collaboration as a whole in the neuroscience 
research community. These challenges make hypothesis generation difficult since findings 
from one study are not easily ingested by other studies with different processing techniques, 
sampling, and brain atlases. Within this paper, we propose a method to aid neuroscience 
research discovery by facilitating semi-automatic hypothesis generation with the creation of 
a flexible and extendable open-source Python library that merges disparate neuroscience 
data into a common coordinate system. The package interfaces with the commonly used 
MNI-XYZ and MRI-voxel coordinate system and allows for mapping to any broader parcel 
scheme defined by an atlas provided in a Nifti file. Data points are processed and mapped 
to other coordinate systems using a custom weighting algorithm. The package is also 
designed to perform single or dual hemisphere analysis. The package can be utilized locally 
or deployed in a cloud computing service. We demonstrate herein usage of the package in 
AWS leveraging S3, AWS Sagemaker, and Papermill. To demonstrate the value proposition 
of the package, the Allen Brain Atlas dataset of gene expressions was processed and 
modeled using xgBoost with Bayesian hyperparameter optimization in AWS Sagemaker. 
The model results were visualized using nilearn and pysurfer to generate visualizations 
representing potential physical or functional gene expression associations between parcels. 
Ultimately, this package can serve as a common platform for analyzing diverse 
neuroscience data to support neuroscience data research and collaboration.  
 
 
Introduction and Question Formulation 

 
Modern neuroscientists have been exploring the brain for decades performing countless 
studies and testing numerous hypotheses.  George H. W. Bush even claimed that the 1990s 
was to be the “decade of the brain”.  This would lead one to believe that our understanding 
of the brain and the study of neuroscience itself is growing at an unprecedented rate. 
Unfortunately, this is not the case.  Despite numerous publications, acquiring data utilized in 
these experiments to further investigate and learn more about the brain is highly difficult if 
not impossible.  There is no single location where the data is stored and these unique 
datasets are often stashed away for private use or even lost over time.  Even if these 
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datasets can be acquired, comparing them is highly difficult due to their diversity and 
variances is sampling. 

 
One big issue for comparison between various datasets is the coordinate systems utilized in 
each study.  Initial measurements are often taken on the brain in very precise methods such 
as MNI-XYZ or MRI-Voxel coordinates and then a broader parcel or sub-section 
measurement of the brain is derived from these more precise measurements. 
Unfortunately, instead of neuroscientists utilizing a common atlas, parcel scheme for 
dividing the brain into subsections, studies often involve the generation of their own atlas in 
order to best fit their data or utilize one of the numerous pre-existing ones.  This makes it 
incredibly difficult to compare different studies. 
 
In order to allow for comparison between these heterogeneous datasets generated by 
countless studies, we aim to provide a platform that not only allows them to be compared 
but also preserves the accuracy of the initial measurements and studies. This is where the 
problem becomes more of a data science issue than a neuroscience one. We propose that 
we can aid neuroscience research discovery by facilitating semi-automatic hypothesis 
generation with the creation of a flexible and extendable open-source python library that 
merges disparate neuroscience data into a common coordinate system. 

 
Although this approach seems like a necessity in the field, studies have only taken this 
approach for either smaller subsections of the brain or in a very specific manner for their 
datasets.  UCSD’s own PHD student Richard Gao’s investigation into Neuronal timescales 
performed initial investigations into such techniques and provided us with a starting point to 
explore and expand upon.  Some Python packages exist as well that perform some 
capabilities necessary for this endeavor such as nilearn and nibabel, but they miss most of 
the functionality in order to perform the task. Our goal is to put together these packages 
and techniques done by pre-existing studies, expand upon them, and create a single pipeline 
that performs the mapping automatically so that neuroscientists can focus on 
understanding the brain instead of learning the intricacies of these various packages and 
methods. 
 
 
Team Roles and Responsibilities 
 
The project team’s roles and responsibilities followed the guidelines provided, while 
adjusting throughout the course of the project to meet project requirements and provide 
the entire team exposure and experience to the various areas of expertise required.  
 
The team met at least once a week to discuss all aspects of the project and all team 
members met with the advisor regularly. The team’s project manager, ​Robert Reeves​, took 
the lead on coordinating meetings with the team members and project advisor, ensuring all 
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project requirements were met and submitting the reports and presentations on time. 
Robert also ensured that the project advisor had access to all the deliverables of the project 
by providing the advisor with the submitted materials and soliciting his feedback throughout 
the course of our project. Robert was also instrumental in creating a collaborative 
environment for the team.  
 
Arlens​ ​Zeqollari​ took the lead on  implementing the package architecture while ​Erik Hoye 
took the lead on developing the Python code for the package with all team members 
contributing with preprocessing work, planning, and ensuring the package met all the 
requirements.  ​Erik Hoye ​also spent time investigating and implementing different methods 
for visualizing spatial data on the brain as both parcels and coordinate points. 
 
The modeling aspect of the project was shared by ​Arlens Zeqollari​ (xgBoost) and ​Adita 
Zeqollari​ (Adaboost). The team experimented, discussed and considered various models 
and inputs to the model before arriving at the optimal solution. The best performing model 
(xgBoost) was then migrated to AWS Sagemaker to perform modeling on additional 
parcels. Migration to AWS involved refactoring to the Sagemaker xgBoost API (​Arlens 
Zeqollari​) and integration with S3 (​Erik Hoye​).  
 
The team’s efforts in AWS were facilitated by ​Adita Zeqollari​’s and ​Robert Reeves​’ work on 
creating S3, Sagemakes, and EC instances in AWS. The team also kept track of the budget 
and was successfully able to complete the requirements of the project within the AWS 
budget provided by the DSE program. 
 
 
Brief Description of Data Pipeline 

 
Figure 1: Solution Pipeline 
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Figure 1 above,  shows the overall data pipeline for testing and demonstrating the entire 
project's capabilities.  The pipeline takes us through the initial preprocessing of our desired 
datasets beginning at the far left, the transformations provided by the package visualized 
within the center, and then the final model and testing implementations visualized on the far 
right.  The pipeline is intended to demonstrate our use of the classic ETL pipeline and that 
our process can be implemented both locally and in AWS for faster preprocessing and 
modeling on larger datasets.  In the following sections we will breakdown each leg of our 
pipeline explaining the process and how it was implemented to satisfy the overall project 
design.  
 
Data Acquisition 

 
For testing our overall pipeline and the package itself, we first gathered well known 
neuroscience datasets to be utilized to test the package.  Since our overall goal is to provide 
generic methods for analyzing neuroscience data, instead of focusing on designing a 
specific section of our pipeline for pulling the datasets from the web, we merely provided 
links and steps to download them so that if one desired to utilize these datasets in their own 
investigations they would have no problem doing so.  The three major datasets we utilized 
were:  

 
● Allen Brain Atlas (ABA)​ - Gene expression data taken from the brains of 6 donors. 

Each individual’s dataset provides multiple readings for over 21,000 genes, the 
significance over mean gene representation for each gene, and the probe’s 
coordinate location in both  mni-xyz and mri-voxel coordinates.   

● NeuroSynth (NS) Data​ - Word correlation to specific regions of the brain (ex. 
Alzheimer). Data was initially gathered from NIH neuroscience articles utilizing 
natural language processing and then smoothed into single value correlations(tf-idf) 
for over 3,200 words for each article and coordinate location. 

● ECoG data​ - Dataset generated by fooof 0.1.3, a Python library/model developed by 
the advisor’s team to parameterize neural power spectra, characterizing both the 
aperiodic ‘background’ component, and periodic components as overlying peaks, 
reflecting putative oscillations. 

For more statistics about the preceding datasets please reference Figure 2.   

Raw Data  
Sources 

Source Location  Features  Feature Size  Coordinate  
System 

NeuroSynth 
Data 

https://github.com
/neurosynth/neuro
synth-data  

Neuroscience 
Terms 

3200 terms for 1430 
articles 

MNI-XYZ 

Allen Brain 
Atlas 

http://human.brain
-map.org/static/do

Gene 
Expressions 

Over 21,000 genes 
with multiple 

MRI Voxel and 
MNI-XYZ 
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Data  wnload  readings for each 
probe for 6 human 
brains 

ECoG data  https://github.com
/rdgao/field-echos
/blob/master/data
/df_human.csv 

Neural power 
spectra 
features 

1723 electrode 
locations for time 
series data 

MNI-XYZ 

Figure 2 - Datasets Table 

 

Data Preprocessing 

Our next step and the initial section in the data 
pipeline was the data pre-processing phase. 
Although the specific preprocessing methods taken 
for each dataset are unique, it was included in the 
pipeline in order to demonstrate the necessity of 
performing this task.  Our package does not solve 
any inconsistency within datasets, but instead takes clean preprocessed data and 
transforms it to a common spatial frame to compare with other clean preprocessed data. 
Working with all these datasets at first was daunting due to the fact that as data scientists 
cleaning neuroscience data is not only trickery but requires deep research in order to make 
sure it is done correctly.  Luckily for us, only one dataset required a substantial amount of 
cleaning. 

ECoG data ​- We were able to acquire a clean preprocessed dataset from our advisor’s PhD 
student, Richard Gao’s open source Github page.  In the ECoG dataset, each row represents 
one electrode reading, across all 110 patients. 

 To visualize the x, y, z coordinates for each row, a 3D plot was constructed. 

 
Figure 4 - ECoG Data Visualization 

The only preprocessing necessary was to manipulate the dataset into the corresponding 
feature and coordinate numpy arrays to be utilized by the package. 
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NeuroSynth data -​ ​The latest NeuroSynth data file is stored in current_data.tar.gz.  The 
current dataset is version 0.7, released July, 2018. The archive contains two files: 
database.txt and features.txt. The database.txt file contains activation data for 14,371 
publications. The features.txt file contains feature information for 3,228 term-based features. 
Feature.txt contains term-based features derived only from the abstracts of articles in the 
Neurosynth database, and not from the full publication text.  This data set is relatively clean 
as it has been processed to generate the two files we used for Input data. 

Data Set 
Name 

Input data Sets  Processing Scripts  Final_Size*6 

NeuroSynth  ● datatbase.csv 
● feature.csv 

 

● NSData_Pre-processing.ipynb 
● Parcellation_Exploratio_NSDa

ta.ipynb 

Final Dataframe 
507,891 NMI 
locations × 3228 
term values 
(tf-idf) 

Figure 5 - NeuroSynth Preprocessing 

Below is an image of all points plotted and single terms points plotted using matplotlib.  

 

Figure 6 - NeuroSynth Plots of Different Neuroscience Terms - Notice density difference 

One issue was that each publication could discuss multiple locations on the brain.  Due to 
this the data set has 507,891 rows.  Each row has corresponding 3228 term values.  The data 
set created has over 1.6 billion cells.  This large data frame is very cumbersome in python.  In 
some cases it would error out due to lack of memory on both local and cloud environments. 
To deal with this the preprocessing was designed to work on only one term at a time.  As a 
result the annotation file remains the same at 507,891 rows of x, y, z coordinates but the 
features data is reduced to a more manageable 507891 rows x single term column.  This 
also seems to make sense as most research is likely done on a few terms.  Also the 
preprocessing notebook was parameterized to take as an input a term variable.  Then using 
python package Papermill the preprocessing notebook can be executed from a script for as 
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many terms as a researcher requires.  Below is an example of a papermill command for the 
term ‘serotonin’: 

papermill NSData_Pre-processing.ipynb NSData_Pre-processing_output.ipynb -k 
papermill-tutorial -p selected_feature 'serotonin' 

The result of preprocessing is NS_Coordinates.csv and NS_Term_<my_term>.csv.  The files 
are then used by a Notebook Example_NCM_package_NS.ipynb using the NCM package to 
map the data to a parcelization schema and plotted for analysis by the researcher. 

Allen Brain Atlas data​ - The ABA data was the one dataset that required a substantial 
amount of cleaning and discussions with our advisors.  The ABA dataset includes gene 
expression data taken from six brain donors for  ~50,000 probes ranging from 900 to 400 
mni-xyz locations on the brain. The data for each brain donor is located in five separate 
tables that require merging and dealing with several inconsistencies. These issues include: 
brain donor data containing only left side brain probes while others contain data from both 
sides of the brain, differences in probe location per brain donor, and significant differences 
in number of probes per gene.  The following preprocessing steps were taken from 
Hierarchy of transcriptomic specialization across human cortex captured by structural 
neuroimaging topography​.  Through discussions with our advisors we decided to only 
implement 4 out of the 10 steps provided by the literature.  Many seemed redundant and 
provided very little cleaning on the dataset. 

Data Set 
Name 

Input data Sets * 6 donors  Processing Scripts  Final_Size*6 

ABA 
Data 

● MicroarrayExpression.csv 
● Ontology.csv 
● PACall.csv 
● Probes.csv 
● SampleAnnot.csv 

● ABA data 
pre-processing.ipynb 

● ABA_data_pull.ipynb 
● Parcellation_Exploratio

n.ipynb 

Final 
Dataframe 
20787 genes × 
449-900 
probe 
locations 

 

1. Gene probes without a valid Entrez Gene ID were excluded.  This was done due to 
genes without Entrez Gene ID not having ​genomes that have been completely 
sequenced, and they do not have an active research community to contribute 
gene-specific information. 

2. Samples whose coordinates did not originate in the left hemisphere of the brain 
were then removed.  This was done because research indicated there was not a 
significant difference in gene expression between the left and right side of the brain 
and because the last 4 donors did not have any probes in the right side of their brain.  
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Figure 7 - Removing probe samples from the right hemisphere  

3. Samples whose measured expression level was not well above background, as 
provided in the ABA dataset, were excluded. Samples remained if they (i) belonged to 
a probe whose mean signal was significantly different from the corresponding 
background, and (ii) had a background-subtracted signal which was at minimum 2.6 
times greater than the standard deviation of the background. 

4. Finally we performed one last transformation in order to reduce measurements to 
include only one measurement for each gene.   

A. For those genes that contained more than one measurement in the 
same location which passed the preprocessing of phase 3, we took 
their mean expression 

B. For those which included only one measurement in the same location 
which passed the preprocessing of phase 3 and others which didn’t, we 
took the measurement which passed 

C. Finally, for those which contained no measurement in the same 
location which passed the preprocessing of phase three, we labeled 
their gene expression as 0.0 

After these four steps were applied to the six individual datasets for each brain donor, two 
final pandas dataframe were created, one containing gene feature data and one containing 
coordinate values in both MNI-XYZ and MRI-voxel.  

 
Package Implementation and Mapping 
 
Now that we have successfully explored the first phase of our 
data pipeline, let's take a closer look at phase two: package 
implementation and spatial mapping.  Once again, the goal of the 
package is to take sparse coordinate data provided in either 
MNI-XYZ or MRI-voxel and map it to a broader more general 
parcel scheme so that disparate datasets can be compared to each other.  An example can 
be visualized in Figure 9 below.  The package itself converts around 700 lines of code and 
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various functions into four simple lines of code that can easily be implemented by any 
neuroscientists as long as they have their data in the correct format.  The package follows a 
class based architecture which means it first needs to be initialized and then various 
functions can be run on the stored data.  This style of modularization allows for easy 
package addition and modifications in the future without breaking the entire package.  Our 
goal was to make this package extremely easy to use, but also allow for it to be easily 
modified if desired in the future for advanced mapping and smoothing techniques.  Below 
we will take a closer look at the data shape and format the package requires for use, how to 
utilize each specific function, the possible additions and modifications for specific functions, 
and the possible extensions that could be added to the package for improvement.   

MRI- Voxel 
MNI - XY 

 
Figure 9 - Mapping from Precise to Broad 

Step 1 Package Initialization 
 
In order to utilize the package, you must first provide information about both the atlas you 
wish to map your data to, and the data itself.  The first two inputs for initialization require the 
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file locations for both a nifti file and an annotation file. A nifti file format dictates a file 
followed by either .nii or .nii.gz and it is a very common format utilized by neuroscientists to 
store images that provide parcel identifications within voxel space.  It also provides details 
on translating voxel coordinates to MNI space.  One may also provide an annotation file 
which is utilized to provide parcel identifiers, but the package will still work if instead of 
providing the file you specify “None”.  Both these files must be stored in the specified nifti file 
folder within the NCM package location to work properly.   
 
The next three input files required are your feature data, which is the experiment or study 
data that you want to map, the coordinate data file, which provides the coordinates or 
locations where your measurements were taken, and the source coordinate type in either 
MNI-XYZ or MRI-voxel.  The package requires that one utilizes these two coordinate 
measurements because they are the most accurate, and preserving accuracy is one of the 
main goals of the package. Implementing transformations from a broad parcel definition to 
another broad parcel definition is not recommended because you would likely need to 
identify parcel values by averaging shared surface areas with the other parcel definitions 
which would have already been averaged themselves.  Taking the average of averages is a 
good way to lose accuracy.   
 
Lastly you must provide the axis in which the feature data and coordinate data correlate. 
For example if your feature data is stored in numpy array formatted (features, 
location_identifiers) and your coordinate date is formatted (location_identifiers, 
coordinates)  then you would provide axis = 0.  On the other hand, If your feature data was 
transposed, (location_identifiers, features), then you would provide axis = 1.  Axis is defined 
as 0 unless otherwise specified. 
 
An example of the initialization function is provided below where NCM is the package, and 
spatial mapping is the class utilized for mapping sparse coordinate data to parcels. 
Initialization Function: 
 

 
Figure 10 - Initialization Function 

 
Once the package has been initialized, it first extracts the image from the nifti file and 
identifies all parcels within the image. Then it determines whether or not converting parcel 
voxel coordinates to mni space for mapping is necessary by checking the coordinate type 
input, and then finally it checks to make sure data is in correct shape for transformations.   
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Step 2 Hemisphere and mirror input 
 
The next step in mapping the data from precise coordinate data to broader parcel data is to 
identify what type of analysis you want to perform.  The package allows the user to identify 
whether they want the analysis to be dual hemisphere, or single hemisphere defined by left 
or right.  Allowing the user to choose is especially significant for datasets such as the ABA 
dataset because all probes utilized in the last 4 brain donors are only on the left side of the 
brain.  Analyzing both sides of the brain would likely skew results allowing for 
misinterpretation of correlations between datasets. Below is an example of using 
left-hemisphere: 
 

 
Figure 11 - Use Hemisphere Function 

 
Although choosing which side to perform your analysis on is important, even more 
significant is identifying whether or not the atlas provided is mirrored or not.  Although not a 
common neuroscience term, we utilize this term to identify whether every parcel defined by 
the atlas has been “mirrored” from one side to the other.  We identified this difference while 
observing parcel structures of the HCP-MMP atlas and the Talairach atlas, and it is 
extremely significant when performing mapping on either style atlas when utilizing parcel 
centers for calculations.  Below in Figure 12 and 13 you can observe the difference between 
mirrored parcel schemes and non-mirrored.   

 
Figure 12 - Mirrored Parcel Figure         Figure 13 - Un-mirrored Parcel Figure 
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Step 3 Mapping Method 

 

Figure 14 - identifying mapping method 

After choosing the hemispheres we plan on using, our next step is to decide how we want to 
calculate parcel values.  In order to calculate the feature expression in each parcel there are 
several different methods we can take.  One method would entail mapping each 
measurement point for your inputted feature data to the closest individual parcel and then 
calculating the average expression in each parcel if multiple measurements have been 
mapped to it.  One drawback for this method is that some parcels might not have any 
measurements mapped to them.  This can be remedied by calculating the surface area 
shared by these parcels lacking any measurements and those of surrounding parcels, and 
then taking a weighting of their gene expression based on the shared surface area.  The 
drawbacks for this method is over-generalization for parcels lacking data and that it would 
take an extremely long time to perform.  We initially explored this method and realized it 
would take too long if one wanted to run the analysis locally. 

 

Another option is to instead calculate the centroid of each parcel, and then calculate the 
likely parcel expression by weighting each sample feature data based on the distance to the 
center of the parcel, or perform gaussian smoothing.  This also has a downside regarding 
the correct way to determine the weighted distribution for each parcel and the awkward 
shape of certain parcels which can lead to some generalization.  The upside however is that 
it is quite a bit faster.   
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The numerous possibilities for defining the generalized parcels values was one of the major 
reasons why we wanted to design an open-modularized package. This allows any future 
developers to implement and add to the package any different techniques they plan on 
implementing.  We ended up implementing method two due to our desire for the package to 
be capable of running either locally or in AWS at an acceptable speed.  We tested the 
package on all three of our datasets and here are some examples mapping from precise 
measurements to broad parcel definition in the HCP-MMP atlas utilizing the package 
pysurfer and nilearn for visualization. 

Visualizing Package Transformation 

Observing the visualizations below we can immediately identify some significant variances 
between our three datasets.  Gene expression for gene 729 from the ABA dataset in Figure 
17 contains a small spread ranging from 4.6 to 8.4, while the knee_freq extracted from the 
ECoG dataset in Figure 18 ranges from 2.6 all the way to 36 a massive difference between 
parcels.​  ​On the other hand, Figure 19 shows data from the neurosynth dataset visualizing 
that most parcels have no correlation to the investigated terms and only just a few parcels 
are significant.   
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Figure 17 - Gene 729 Expression for Left-Hemisphere of HCP-MMP Atlas  

 

Figure 18 - Knee_freq from ECoG data for Left-Hemisphere of HCP-MMP Atlas  

Figure 19 -  NeuroSynth Terms for Left-Hemisphere using HCP-MMP Atlas 
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Further Investigations into Side Cases 

After successfully building the initial package, the team spent a substantial amount of time 
attempting to deal with the numerous side cases that the package would face.  In no way 
have we identified all of them, but we took our best shot in identifying as many as we could 
with the various datasets and atlases we investigated.  This is another reason why creating 
an open-source package allowing for updates on specific use cases was significant to our 
project.  Below are specific cases we investigated and how we dealt with each. 

Dual Hemisphere analysis on Mirrored Atlas - Performing a mapping by Identifying parcel 
center when the parcel is defined on both the left and right side leads to calculation errors. 
Meaning the parcel center is calculated to be at the middle of the brain regarding the x-axis. 
In order to deal with this, when performing a dual analysis on a mirrored atlas, parcels are 
divided in half and labelled according to their parcel identity and hemisphere.  Then 
calculations begin regarding parcel center and feature representation for parcel. 

Ex: parcel ​V1_ROI​ from HCP-MMP atlas split into two parts labelled left_​V1_ROI and 
right_V1_ROI indicating the specific hemispheres they are located on. 

 
Figure 20 - Single parcel labelled above  

converted to two unique parcels 
 

Single Hemisphere analysis on Non-Mirrored Atlas - Performing single side mapping for a 
mirrored atlas is easy because you simply remove each parcel definition coordinates that 
are on the opposite hemisphere.  For un-mirrored atlases we can’t take such a simple 
approach since any parcel defined along the center of the brain is unique and cannot simply 
be divided in two.  In order to deal with this, when performing any single side analysis on a 
non-mirrored atlas we remove parcels which contain no values on the interested side but 
maintain the entire parcel definition if some portion is on the hemisphere we are interested 
in.  Most of the parcels appear to remain on their respective sides, but in some cases they do 
not. 
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Figure 21 - Entire parcel kept for centroid calculations  
despite partially being in wrong hemisphere 

 
Smoothing calculations​ - One of the most significant investigations of this project involved 
variations in the smoothing calculations.  After calculating the parcel center and identifying 
the distance from each point to the parcel center, one must then determine how to weigh 
the feature data based on that distance.  This was challenging as there is not necessarily 
any “right” way to approach the problem.  The package currently applies a distance-based 
gaussian weighting function which utilizes the size of each parcel.  This means that the 
gaussian function utilized is modified for each parcel for parcel feature representation 
calculations.  Although this was effective for ABA MNI-XYZ data mapping to the HCP-MMP 
atlas, finding one method that will work for all data or atlases is unlikely.  For sparse data 
which requires more generalization, or robust data, which requires more precision in parcel 
definitions, it is likely that the user would prefer to modify this function or even add their 
own.  We allow for modifications allowing for constant gaussian smoothing regardless of 
parcel size, but attempting to create a robust function was not feasible.  Once again, the 
class-based package developed by the team should allow for users to apply modifications 
or create their own functions they wish to apply to their own data.  Figure 22 illustrates the 
possible weighting that could be applied to features based on various distances to parcel 
centers. 
 

  
Figure 22 - Gaussian based weighted distance function 
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Some of the more minor investigations and implementations added to the package involved 
allowing for a lack of annotation files, variances between single hemisphere analysis 
regarding MRI-voxel vs MNI-XYZ, exclusion of parcels in output when they were not in the 
correct hemisphere, and replacement of NaN values to 0.0 for parcels where all precise 
measurements are too far away for proper generalization.  
 
Modeling  
 
Now that we have fully walked through package implementation, we can examine how 
modeling can be applied to the results.  Although our project and data sources did not lend 
themselves well to modeling and extensive modeling efforts did not align with our project’s 
overall goal to build a package for merging disparate neuroscience data into a common 
coordinate system, we saw modeling as a method for utilizing the results and capabilities 
that the package provides.   After discussions with our advisor, the team was able to 
formulate interesting modeling questions and identify the ABA dataset as input to answer 
the question: “Given parcel gene expressions for all other parcels, can we predict all gene 
expressions for a specific parcel?” 

 
Figure 23​ uses parcel gene expressions from the ABA data as features and the genes as 
samples. The values are the weighted averages from the six brains in the dataset.  
 

 
Figure 23 - ABA Dataset for Modeling 

 
The team explored the ensemble methods outlined below.  
 

 
Figure 24 - Models evaluated for Gene Expression prediction 
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For the ​Random Forest​ model, we achieved an MSE of .019 with a 80/20 train test split.  
For the ​Adaboost​ model, we achieved an MSE of .07 and RMSE of .27. 
For the ​xgBoost​ model, we achieved an MSE of .02. 
 
The xgBoost model performed the best and was the fastest to train, as the library is able to 
make use of parallelization locally and the usage of GPUs locally as well. This allowed for 
better optimization of hyperparameters. We suspect that the regularization also helped 
achieve better performance and generalizability. Furthermore, AWS SageMaker support for 
xgBoost, makes the choice of models easy when considering local and cloud environments. 
 
We suspect that the regularization also helped achieve better performance and 
generalizability.  
 
 
 
 

Model (Type) Best Model 
Parameters 

Cross-Valid
ation 

Train / Val / 
Test (%) GridsearchCV Parameter Space 

xgBoost Regressor 
(Gradient Boosted 
Ensemble Method) 

'gamma'​: 0.25 
'learning_rate'​: 0.05 
'max_depth'​: 10 
'n_estimators'​: 400 
'subsample'​: 0.75 

3-fold CV 56/24/20 

'N_estimators'​:[50, 100, 400], 
'Max_depth'​:[3, 5, 10], 
'Learning_rate'​:[0.05, 0.1, 0.5], 
'Subsample'​:[0.5,.75, 1], 
'gamma'​: [0.25, 0.5, 1, 3], 

 

 
Figure 25: Predicted vs Actual for xgBoost on ABA data 

 
 

AWS Pipeline implementation 
 
This project used the AWS Sagemaker Studio for cloud services. AWS Sagemaker Studio is 
an integrated machine learning environment where you can build, train, deploy, and analyze 
your models and Notebooks, all in the same AWS cloud application. Sagemaker provides 
experiment management and tracking. Users can organize their experiments and artifacts 
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in a centralized location using a structured organization scheme. The Sagemaker 
environment provides full visibility into the model training process by enabling the inspection 
of all the training parameters and data throughout the training process, all with in-depth 
logging at every step. Sagemaker also creates a domain for the team. The domain includes 
an Amazon Elastic File System (Amazon EFS) volume with home directories for each user. 
Notebook files and data files are stored in these directories. Sagemaker also supports Git 
repository integration.  The project intrated GitHub allowing for seamless pulling of project 
resources. Overall, the Sagemaker Studio is a good solution to enable ETL, Python package, 
and model development.  The solution’s automation and scalability are very straight 
forward with quick deployment, providing a complete automated pipeline with monitoring 
and debugging capabilities at any scale. 
 

 
 

Figure 26 - ​AWS Sagemaker Dashboard 
 

The Sagemaker Dashboard shown in the figure above illustrates some of  the resources 
used for this project.  The Notebook Instance, Training jobs and Hyperparamter tuning jobs.  
 

 
 

Figure 27 - ​AWS Sagemaker - Git repositories 
 

Not shown in the Dashboard but also used by this project was integrated Git repositories 
shown in the figure 27 above.  This integration shared a public key with GitHub and the 
private key kept in Sagemaker so no login required when pulling and committing code to 
and from Sagemaker notebooks.  All three Notebooks used this integration to pull and push 
changes. 
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Figure 28 - ​AWS Sagemaker - Lifecycle configurations 
 

Another feature used but not shown in the Dashboard was the Notebook Lifecycle 
configuration seen above in figure 28.  The Lifecycle configuration was used for both the 
test and final notebooks.  The main function of Lifecycle configurations is to provide a shell 
script that runs when the notebook instance is started. The script we used configured the 
Notebook environment including the kernel, pulling from GitHub and running a notebook 
using Papermill.  This allowed for automation in testing changes to the NCM package.  The 
complete details of the script used are documented in the GitHub readme.md file. 
 
AWS Sagemaker Modeling 
 
After initial investigations into modeling on local machines, we decided to investigate further 
into the capabilities of deploying models in AWS as well to test integration with larger 
datasets.  The implementation of xgBoost algorithms using AWS’s Sagemaker allowed for 
comprehensive machine learning training and hyperparameter optimization. The models 
were refactored into AWS’s custom xgBoost library, which is designed to quickly build, train, 
and deploy machine learning models. The Sagemaker user interface provides helpful 
diagnostics and progress reports showing the results of each job with respect to the 
objective metric as the jobs are being trained (see figure 29 below).  
 

 
 

Figure 29 - Hyperparameter tuning jobs 
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The training jobs feature of Sagemaker was also used.  Our failed training jobs can be seen in 
the image below. 

 
Figure 30 - ​Training Jobs with AWS Sagemaker 

 
Sagemaker training jobs are an iterative process used to  teach our model to make 
predictions by presenting examples from our Gene expression training data.  The training 
algorithm writes metrics from jobs to logs, which Amazon Sagemaker monitors and sends 
to Amazon CloudWatch.  The logs allow the developer to pick the best results from their 
experiments.  Below in Figure 31 is an example of a CloudWatch log for notebook execution. 
 
AWS CloudWatch​ ​allowed developers to debug execution of the Sagemaker notebook 
instances, lifecycle configurations, and model execution. These interactive outputs provide a 
comprehensive view of the environment, setup, and step-by-step execution of all AWS 
components involved in this project. This is essential for troubleshooting and optimizing 
scaled computing resources. An example output of the logs that are generated by executing 
Papermill in a lifecycle configuration at the startup of a notebook instance is shown below: 
 

 
Figure 31 - ​AWS CloudWatch Execution Log 

 
From Figure 31 above, one can view the cell-by-cell execution of the Jupyter notebook, 
which includes any errors, execution time, and progress. CloudWatch also allows queries and 
filtering to allow efficient methods enabling scalability. 
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Findings & Reporting 
 
Now that we have fully investigated the individual sections of our overall pipeline, let's take a 
closer look at our findings and tools utilized for reporting.  Overall, our project demonstrates 
that it is possible to develop a platform that allows disparate neuroscience data to be 
compared by mapping data to the same spatial frame.  The modularized NCM package 
allows for ingesting spatial data in both MNI-XYZ and MRI-voxel and has been tested to map 
data to both the HCP-MMP atlas and Talairach atlas.  We discovered that mapping from 
MRI-voxel and MNI-XYZ space are the only mapping schemes where accuracy can be 
preserved through testing.  Further inquiries into atlas intricacies also allowed our package 
to perform mapping on either the full brain or on just one hemisphere.  Investigations also 
led to the discovery of how significant the feature weighting based on distance to parcel 
center was for parcel representation, especially with large variances in atlas parcel 
definitions and dataset sizes.  In order to test package outputs, we were also able to develop 
several xgBoost models which helped demonstrate the potential physical or functional 
associations between different parcels, and can be valuable for hypothesis generation.  For 
visualizations and reporting, we utilized both Nilearn and Pysurfer.  Nilearn plotting allowed 
us to easily visualize individual datasets and parcel center calculations for verification of our 
results.  Pysurfer provided us with a platform that allowed us to demonstrate the results of 
the mapping performed by the package.  Finally, for additional reporting we utilized tools in 
AWS to automate the NCM package testing, notebook execution with scalability, and debug 
logging. Altogether, the package and work herein demonstrates that an extendable 
package can be developed to support neuroscience data analysis and hypothesis 
generation. 
 
Solution Architecture 

 
Figure 32 - Solution Architecture 
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As initially demonstrated in the beginning of this paper, the overall solution and pipeline for 
this project is shown again in figure 32.  This structure takes us through initial preprocessing, 
package implementation for data mapping, and eventual result investigations for 
hypothesis generation on neuroscience data.  The architecture works in both cloud and local 
environments.  For the local environment the AWS pieces of the above solution are removed 
and S3 is replaced by local storage.  The use of Jupyter notebooks allows for easy 
development and portability and the addition of papermill allows for automation and 
scalability.  A great feature of papermill is when the notebooks are remotely executed an 
output notebook is stored as a log or record of the notebook execution.  This can serve both 
as debug information as well as reports without manually running the notebook.  The 
architecture is simple and powerful that allows for easy expandability in the future. 
 
Performance & Evaluation 
 
The use of the operational models of cloud and local has proven to be a great model 
allowing speed, flexibility, simplicity, scalability, and maintainability of the development of 
the NCM project.  If utilized within a scientific or business domain, one would only need to 
run the unit test notebook to make sure that the package is working correctly before 
proceeding with implementation on their own datasets.  Since this project was not severely 
compute-intensive, the AWS budget was a negligible concern; the team spent approximately 
25% of the allocated budget. 
 
The models were accurate and demonstrate that gene expression values in other parcels of 
the brain can be used to accurately predict the gene expression in a specific parcel of 
interest. The team demonstrated that the technique generalizes gene expressions well to 
other parcels of the brain with similar accuracy. 
 
The target of this package is not a prediction, but rather another dataset/visualization that 
is able to elucidate further analysis by neuroscientists, data scientists and researchers. 
These can also include aggregations/summaries of the datasets, akin to profiling of the 
dataset where highly expressed genes, number of parcels, density of data, etc. are 
summarized and can be exported. 
 
Conclusion 
 
This project demonstrated that a package to transform neuroscience data could be 
developed, scaled, and lead to actionable hypothesis generation and exploratory data 
analysis for neuroscience data specialists.   We hope that our findings can be expanded on 
and utilized in the neuroscience field in order to generate hypotheses about physical or 
functional interactions.  While the package is open to all potential collaborators, the primary 
audience for this project involves the community of neuroscience data specialists and 
developers. These include researchers and software developers that are interested in 
developing scalable pipelines or methods for analyzing neuroscience data. The project 
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demonstrates the transformation of several popular neuroscience data formats and 
parcellation schemes, which is a foundational technique in this field. The creation of the 
package repository, including the documentation, package setup, and ability to share with 
others via GitHub allows the audience to organically expand if interest is generated.  The 
team focused not only on the depth required to perform one specific task or functionality, 
but also the breadth in how such functionality can be integrated into scalable cloud 
solutions and extended with tools and techniques such as Papermill, CloudWatch, logging, 
cloud machine learning/training, parallelization, and deployment. In a modern 
implementation and usage of this package, the team theorizes that such functionality will be 
crucial to long-term sustainable development of the package. 
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Appendices 
 
A. DSE MAS Knowledge Applied to the Project 
The knowledge acquired in the DSE program was instrumental in the design and 
implementation of the project.  
 
Python for Data Analysis​ taught us the skills required for preprocessing and exploratory 
analysis of our 3 data sets.  
 
Machine Learning ​was a great foundation for the team to build and evaluate machine 
learning models and tune hyperparameters. 
 
Case Studies in Data Science ​was very beneficial for our capstone because Bradley 
Voytek’s presentation to the cohort made us aware of the work he was doing and served as 
our original introduction. In general, this course was beneficial because it exposed us to the 
data science work happening in a variety of fields and industries different from the 
industries we currently work in. The presentations also served as a model for how to best 
present to large groups and create content suitable for different audience types.  
 
Probability and Statistics with Python​ gave us an understanding of how to evaluate the 
significance of our results and how to apply sound statistical methods to assess our models. 
 
Data Analysis Using Hadoop & Spark ​served as the foundation for implementing our 
solution as scale. 
 
Data Visualization​ helped inform our approach on how to best visualize data, create 
effective and captivating visualizations tailored for the intended audience, and the various 
tools available. It also made us aware of considerations such as color blindness and color 
theory.  
 
 
B. Data and Software Archive for Reproducibility 
 
Github: ​https://github.com/voytek/NCM 
 
UCSD Libraries:  
 

Zeqollari, Adita; Zeqollari, Arlens; Hoye, Erik; Reeves, Robert; Voytek, Bradley 
(2020). Neural Correspondence Mapping. In Data Science & Engineering Master of 
Advanced Study (DSE MAS) Capstone Projects. UC San Diego Library Digital 
Collections.​https://doi.org/10.6075/J06M35B6 
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