
University of California San Diego
Jacobs School of Engineering

Final Report

Using NLP to Predict the Severity of

Cybersecurity Vulnerabilities
June 4, 2021

Group 1:
Saba Janamian, Bryan Cook, James Logan

Teck Lim, Ivan Ulloa

Advisors:
Dr. Amarnath Gupta, Dr. Ilkay Altintas

Table of Contents

1. Abstract 2

2. Introduction and Question Formulation 2
2.1 The global threat of cyber-attacks 2
2.2 Problem: CVE records with no CVSS scores 3
2.3 VulnerWatch Solution 3
2.4 Related Work 3

3. Team Roles and Responsibilities 4

4. Data Acquisition 4
4.1 Data Sources 4
4.2 Dataset Description 5
4.3 Data Acquisition Pipeline and Storage 5

5. Data Preparation 6

6. Analysis Methods 6
6.1 Model Separation 6
6.2 Word contribution detection 7

6.2.1 Gradient Sensitivity (GS) 7
6.2.2 Gradient Sensitivity times Input (GI) 8

7. Findings and Reporting 8
7.1 Model Accuracy 8
7.2 Integrated Product 10

8. Solution Architecture, Performance, and Evaluation 12
8.1 Scalability & Portability 13
8.2 ETL Pipeline 13
8.3 Training Pipeline 14
8.4 Website and Dashboard 14
8.5 Cost and Right-sizing Computation 14

9. Conclusions 15

10. References 16

11. Appendices 17
11.1 DSE MAS Knowledge Applied to Project 17
11.2 Library Link and Citation 17
11.3 GitHub Link 17

1

1. Abstract

Cyber-attacks continue to be one of the world’s foremost safety and economic threats, and, in recent
years, have become more numerous and severe. MITRE collects and publishes “Common Vulnerabilities
and Exposure” (CVE) records, used by cybersecurity engineers to understand and address known threats.
CVE records should contain a “Common Vulnerability Scoring System'' (CVSS) score, which indicates a
human-determined level of severity. These scores are important to cybersecurity engineers in threat
prioritization. Unfortunately, nearly half of all CVE records have not yet had CVSS scores ascribed to
them. The VulnerWatch product is introduced as a machine learning solution for predicting CVSS scores.
Bidirectional Encoder Representation (BERT) is used on CVE text descriptions to predict eight criteria
that, in aggregate, indicate a CVSS score. VulnerWatch provides the user with a prioritized list of
previously unclassified CVE issues and associated predicted CVSS scores. It also allows the engineer to
manually enter text describing threats and receive a predicted CVSS score in near real-time. The accuracy
of predictions for criteria determining CVSS scores is favorable, averaging close to 0.9, with similar
levels of precision and recall. Resultant CVSS predictions are also favorably accurate (MSE = 1.27, MAE
= 0.5, R2= 0.51). At this level of accuracy, VulnerWatch is deemed to be successful in providing a
valuable tool in combating cyber-attacks.

2. Introduction and Question Formulation

2.1 The global threat of cyber-attacks
Cyber-attacks continue to be one of the world’s foremost safety and economic threats and in recent years
have become more numerous and severe. In May 2021 a ransomware attack was made on Colonial
Pipeline Co., a transport company for gasoline and other fuels. The attack closed its entire pipeline system
leaving many without fuel and causing a state of emergency in the state of Florida. According to
Interesting Engineering [8], an F-35 fighter jet is more likely to be brought down by a cyber-attack than a
missle. Suffice to say, cyber-attacks represent a serious threat to public safety.

Figure 1: Global Cybercrime Damage Costs

2

Additionally, there are very serious ramifications to cyber-attacks. As depicted in Figure 1, according to
Cybersecurity Ventures, cybercrime is a $6T a year problem, a sum larger than the GDP of Japan, the
third largest economy in the world.

2.2 Problem: CVE records with no CVSS scores
The primary means to counteract cyber-attacks are through the effort of cyber security engineers. These
professionals are tasked with identifying risks and preventing cyber-attacks through the application of
tools and patches to network and computer systems. According to a 2020 survey by (ISC2) [9], there are
“879,000 cybersecurity professionals in the U.S. workforce and an unfilled need for another 359,000
workers”, as well as a potential gap of “nearly 3.12 million unfilled positions” globally. Given the severity
of cyber-attacks and the dearth of security professionals professional to combat them, it’s critical to arm
engineers with as many tools as possible.

One such tool available to engineers are Common Vulnerability and Exposure (CVE) records. A CVE
record documents a known cybersecurity issue/risk so that engineers can review them and eliminate
issues that may cause systems in their purview to be at risk. CVE records and their management are
overseen by the MITRE corporation, and records themselves are available to engineers via the National
Vulnerability Database (NVD).

In addition to other technical and non-technical data, CVE records contain a Common Vulnerability
Scoring System (CVSS) score, which are human-ascribed values that indicate the level of severity or risk
that a CVE represents. CVSS scores are a useful way for cyber security engineers to prioritize the order in
which CVE records should be examined and addressed. Unfortunately, nearly 50% of CVE records do not
yet contain CVSS scores. Given the importance of quickly addressing cybersecurity issues, the absence of
many CVSS scores provides an opportunity to help engineers make better prioritization decisions.

2.3 VulnerWatch Solution
To address this issue, the VulnerWatch solution was initiated. The primary question put forth is whether
machine learning and natural language processing can be used to predict a CVSS score with sufficient
accuracy to be an effective surrogate tool for cybersecurity engineers. Assuming such a model is possible,
VulerWatch must also provide this functionality to cybersecurity engineers in a convenient interface.

2.4 Related Work
Prior attempts have been made to predict CVSS scores by performing textual analysis of the vulnerability.
Bozorgi et al. [1] used Bag-of-Words and SVM classification to classify vulnerabilities into different
exploitability categories defined by the researchers. The work did not explicitly classify the CVSS vector
metrics, but it showed that textual analysis could be beneficial for measuring the severity of
vulnerabilities. Khazaei et al. [2] further improved the prediction by classifying the numerical severity
score using Bag-of-Words, SVM, Random Forest, and fuzzy system. The predicted result was an integer
number between 0 to 10 without extracting the CVSS metric vector from the result. The research still
showed that there is a potential for predicting CVSS from text mining. Elbaz et al. [3] still used
Bag-of-Word for processing the text, but they improved the explicability of the predicted score by
classifying the metric vectors instead of the numerical score. Yin et al. [4] used transfer learning by
utilizing a pre-trained ExBERT model. The project's goal was to predict if a vulnerability is exploitable or

3

not based on the verbiage used in the description of the CVE. Although they obtained a high accuracy of
91%, their model still did not have the potential to explain the predicted result. The proposed design
model can explain the predicted score by giving a view of each predicted CVSS metrics. The model also
shows which words influenced the classifier's decision with an associated confidence score.

3. Team Roles and Responsibilities

● Teck Lim: Project manager, ETL pipeline engineer
● Saba Janamian: Storyteller, Data engineer
● James Logan: Data engineer
● Ivan Ulloa: Data analyst
● Bryan Cook: Solution architect
● Dr. Amarnath Gupta: Project advisor

4. Data Acquisition

4.1 Data Sources
The majority of the vulnerability intelligence information sources used in this project are publicly
available. Examples include CVE, CWE, CAPEC, CPE and CCE listed in Table 1. These are maintained
mainly by two organizations, MITRE and the National Institute of Standards of Technology (NIST). For
this project the focus lies in the specific use of CVE descriptions to predict the severity of vulnerabilities
also known as their respective CVSS score. CVE records may be obtained directly from both of these
organizations mentioned above. Although only one type of vulnerability record was used, the rest
shouldn’t be discarded as potential data sources to enrich or create new machine learning models such as
the ones used here.

Title Link Description
CVE - Common
Vulnerabilities
Enumeration

https://cve.mitre.org/
https://nvd.nist.gov/

CVE is a list of records—each containing an identification number,
a description, and at least one public reference—for publicly known
cybersecurity vulnerabilities.

CWE - Common
Weakness
Enumeration

https://cwe.mitre.org/ CWE is a community-developed list of software and hardware
weakness types. It serves as a common language, a measuring stick
for security tools, and as a baseline for weakness identification,
mitigation, and prevention efforts.

4

CAPEC - The
Common Attack
Pattern
Enumeration and
Classification

https://capec.mitre.org The Common Attack Pattern Enumeration and Classification
(CAPEC) effort provides a publicly available catalog of common
attack patterns that helps users understand how adversaries exploit
weaknesses in applications and other cyber-enabled capabilities.

"Attack Patterns" are descriptions of the common attributes and
approaches employed by adversaries to exploit known weaknesses
in cyber-enabled capabilities. Attack patterns define the challenges
that an adversary may face and how they go about solving it. They
derive from the concept of design patterns applied in a destructive
rather than constructive context and are generated from in-depth
analysis of specific real-world exploit examples.

CPE - Common
Platform
Enumeration
Dictionary

https://nvd.nist.gov/pro
ducts/cpe

CPE is a structured naming scheme for information technology
systems, software, and packages. Based upon the generic syntax for
Uniform Resource Identifiers (URI), CPE includes a formal name
format, a method for checking names against a system, and a
description format for binding text and tests to a name.

CCE - Common
Configuration
Enumeration

https://nvd.nist.gov/co
nfig/cce/index

The Common Configuration Enumeration, or CCE, assigns unique
entries (also called CCEs) to configuration guidance statements and
configuration controls to improve workflow by facilitating fast and
accurate correlation of configuration issues present in disparate
domains.

Table 1: Examples of cybersecurity datasets available publicly. Here the Common Vulnerabilities
Enumeration (CVE) type was utilized to determine the CVSS score.

4.2 Dataset Description
The CVE dataset consists of over 150,000 records each containing specific information for the
vulnerability such as: CVE ID, date added, date modified, text description, CVSS score (when available),
related CWEs, among others. As of the beginning of 2021, the file size for all CVEs combined can be
expected to reach over 180MB in JSON format and expected to continue its growth. From these 150,000
records only about 80,000 have been classified with CVSS scores where the remaining are still pending or
simply do not have enough information available to be classified.

4.3 Data Acquisition Pipeline and Storage
As mentioned above, CVE records are downloaded directly from the MITRE or NIST database. The
VulnerWatch product makes use of separate docker containers to host and prioritize different tasks in
each. One of these containers hosts a PostgreSQL database to store the downloaded CVE entries.
VulnerWatch makes use of the MITRE API to download new CVE raw data where only specific fields of
information about the CVEs are stored in the PostgreSQL database.
The process for the acquisition, storage and access of records is shown in Figure 2. Data stored for each
of the CVEs consists of: CVE ID, publish date, CVSS v3 score, confidence of prediction, method used to
classify the CVE, and lastly the full text description of the CVE. Note that the CVSS score, confidence,
and method used to classify the CVE may be missing depending on the classification method for the
CVSS score.

5

Figure 2: VulnerWatch data acquisition, storage, and access pipeline for CVE records.

Records stored in the VulnerWatch database may be accessed through the VulnerWatch data explorer
which provides tools to sort, filter, and search for keywords. The acquisition cycle may be executed by the
user manually or set to periodically search for new CVE records on the MITRE database.

5. Data Preparation

All the datasets used were created using human expertise and are therefore less susceptible to noise and
contain high quality textual data. Using a data source such as Twitter, in contrast, would require much
more processing and effort to extract value. But using human-generated data is not without consequence.
machine-generated data tends to accumulate with ease but when humans create a dataset they also become
a bottleneck. Data augmentation was therefore required when generating a comprehensive text dataset
focused on cybersecurity vulnerabilities.

When constructing a cybersecurity text corpus many curated data sources were utilized. CVEs each have
a text description but this field can be short, even only 1 sentence sometimes. Other data sources such as
CAPEC, CWE, etc. help add more high quality data but do not contribute relatively much data when
compared to CVEs. Thankfully, CVEs have existed long enough to be incorporated into the workflows of
major corporations and open source projects. These entities regularly output information about new or
updated CVEs relevant to their day-to-day activities. This information is embedded in CVE records as
web links and can be therefore scraped for additional data. Each CVE contains many links, most of which
point to common websites. These common endpoints can be scraped to augment the cybersecurity corpus.

6. Analysis Methods

6.1 Model Separation
The main objective of the project was to design a heuristic model with sufficient explicability. Prediction
of CVSS score without explanation of the factors influencing the prediction was not desired in this
project. As described above, most of the prior works on this problem aimed to predict the final numerical
score of the CVSS without showing the contribution of underlying metric vectors. To improve the
explicability of the output eight separate models were fine-tuned on a BERT uncased model. For this
project, we assumed that the result of each CVSS sub metric is mutually exclusive from other sub metrics.
Therefore, there was no need to create a multi-class labeling system. Figure 3 shows a high level
overview of model separation structure.

6

6.2 Word contribution detection
To further improve the explicability of the model, the project adapted two algorithms proposed by Wu et
al. [5] that could extract words that have the most influence on the sequence classifier of the model.
These techniques helped shed light on how BERT made the classification and which words contributed
the most to the model's decision-making. The extracted words could also help users better understand the
result and decide on the output's validity.

Figure 3: Metric values are predicted independently by different sub-models

6.2.1 Gradient Sensitivity (GS)
The GS method relies on gradients of inputs with respect to each embedding. The algorithm is inspired by
the backpropagation algorithm in vision [6]. GS measures how much each input word contributes to the
final decision by measuring the first derivative of the input embedding. To formally describe the idea,
consider a classification model in which an input with embedding is classified with a golden class𝐸 𝑐
using a scoring function . The GS model aims to find which i-th dimension of embedding𝑆

𝑐
(𝐸) 𝐸

contributed to the scoring which resulted in the decision of class label .𝑆
𝑐
(𝐸) 𝑐

𝑅
𝑖
𝐺𝑆(𝐸) =

∂𝑆
𝑐
(𝐸)

∂𝐸
𝑖

Where the derivative is with respect to the i-th dimension of embedding .𝐸
For clarification the Python implementation of the code is provided in the following:

def backward_gradient(sensitivity_grads):

classifier_out = func_activations['model.classifier']

embedding_output = func_activations['model.bert.embeddings']

sensitivity_grads = torch.autograd.grad(classifier_out, embedding_output,

grad_outputs=sensitivity_grads,

retain_graph=True)[0]

return sensitivity_grads

7

6.2.2 Gradient Sensitivity times Input (GI)
The GI method builds on top of the GS method by multiplying the i-th dimension of input embedding by
the GS output [7]. This method will measure how much the output would diverge when the input is
changed.

𝑅
𝑖

𝐺𝐼(𝐸) = 𝐸
𝑖
 · 𝑅

𝑖
𝐺𝑆(𝐸

𝑖
)

def backward_gradient_input(sensitivity_grads):

embedding_output = func_activations['model.bert.embeddings']

return backward_gradient(sensitivity_grads) * embedding_output

7. Findings and Reporting

Per Section 1, the VulnerWatch initiative set out to answer two key questions: 1) whether CVSS scores
could be predicted with sufficient accuracy to be of use to cybersecurity engineers, and 2) whether these
predictions could be integrated into a cohesive and useful product.

7.1 Model Accuracy
As was mentioned previously, the CVSS score is determined by the combination of eight independently
determined metrics where each of these may consist of 2-4 classes. Below are accuracy results and mean
confidence of the model categorizing these sub-models. Accuracy, Matthews Correlation Coefficient
(MCC), and F1 metrics are used to measure model performance. Per Figure 4, all submodels performed
exceptionally well, with only minor fine tuning and minimal hours of training time required. Accuracy
and mean confidence are consistently high in all eight trained models, but MCC and F1 suffer when the
ground truth of the label is biased towards one class. When the model performance is measured with only
high mean confidence predictions, by discarding low confidence predictions, the overall accuracy, MCC
and F1 score improve significantly.

8

Figure 4: Sub-Model Prediction Performance with 61k train data, 15k test data

Of paramount importance and relevance is the notion of whether the model suggests promise in its use as
an industry solution. The intention is that cybersecurity engineers will be provided with predicted CVSS
scores for uncategorized CVEs, and, in this way, can prioritize addressment of issues with high severity or
risk. In combating cybersecurity, time is of the essence, and engineers must focus their time on addressing
high profile issues. Industry experts suggest that most successful cybersecurity attacks are the result of
unaddressed issues, and not previously unencountered attacks. The engineer is generally faced with more
available data than available time, so efficiency is key. As such, the model must yield what should be
deemed as a “sufficient” level of accuracy so as to be of value to the engineer. While the accuracy of
submodel predictions is vital, in terms of assessing model efficacy, ultimately, the predicted CVSS score
is the most important factor.

Figure 5: CVSS V3 Scores Prediction Performance

9

Figure 6: CVSS Base Score Error Distribution

Given that the mean absolute error for all scores is much less than 1.0, this alone suggests value in raising
the awareness of CVEs that are labeled as high risk. It also provides reasonable assurance that the
cybersecurity engineer won’t be inordinately distracted by false positives, e.g. a level 1 issue would, on
average”, still be marked as an inconsequential CVSS severity. This would be similarly true for issues of
high severity; on average high profile CVEs would still raise the awareness of the engineer. And R2 over
0.5 suggests a favorable overall fit.

7.2 Integrated Product
As was discussed previously, the purpose of the data explorer is to provide the cybersecurity engineer
with a single portal for reviewing CVE records, their descriptions, and relative severity. At present, the
proof of concept for this portal has been implemented in Tableau, as it allows for a fast implementation.
Moving forward, it is intended that this will be re-implemented as a web-based application. While the
proof of concept does provide all of the requisite features, it does not have acceptable performance, nor
does it offer the same portability that a web application would provide.

Figure 7: VulnerWatch Data Explorer

10

As depicted in Figure 7, a list of CVEs and the data elements described in section 3.1 are present in the
portal. In the top right corner, a data range selector is provided, as well as a selector to view CVE records
with human-applied CVSS scores, machine predicted scores, or both. Also, a search box is provided to
search both the CVE ID list and the CVE descriptions.

The purpose of the “text entry” portal is to provide a means by which the engineer can manually enter text
describing a new cybersecurity issue. Once entered, the portal will provide a predicted CVSS score and a
confidence level for that score in near real-time. This portal is implemented as a web application with a
REST API served by Flask. The functionality and performance requirements of this product were a good
fit for this approach, and the implementation was straightforward.

Figure 8: VulnerWatch API Sandbox

11

Figure 8 depicts the interface in which the engineer can paste text for analysis. This text is evaluated
using the models meant for predicting CVSS score, to produce an estimated CVSS score as well as a
confidence value. This process runs significantly faster when given access to specialized hardware,
namely a GPU. Without access to a GPU the prediction takes 6-7 seconds to complete, but a decent GPU
(eg: Tesla K80) speeds up the operation by 10 folds to 0.6-0.7 seconds.

The dashboard providing metadata insights into all of the data is implemented in Tableau. This allowed
for a speedy implementation and an appealing, feature-rich user experience that would be difficult to
implement as a web-based application. Some of the diagrams are affected by selection of human-applied
vs. machine predicted CVSS scores, and performance of these configuration changes is generally poor.
However, usage of the dashboard should be relatively rare, and modifying its configuration even more so.

Figure 9: Metadata Dashboard

As depicted in Figure 9, the metadata insights described in section 3.2 are present in the portal. Most of
the visualizations were best suited for histogram data, while the mix of human vs. machine CVSS scores
was best shown as a pie chart. Color was used for a variety of purposes, e.g. to separate new yearly CVE
records into their respective quarters. The portal is deemed to convey key points of interest about
predictions made by VulnerWatch, as well as generally insights about CVE records and cybersecurity.

8. Solution Architecture, Performance, and Evaluation

VulnerWatch solution architecture is designed with scalability and portability in mind. The eight
sub-models used in the metric predictions can easily be retrained or replaced individually to continuously
improve the overall product performance.

12

8.1 Scalability & Portability
There are seven major components in the product. They are (1) Postgres relational database, (2) Data
downloader module, (3) Predictor module, (4) Trainer module, (5) Flask Web service, (6) Eight fine-tuned
BERT models, and (7) Tableau dashboard. These components are encapsulated in four logical docker
containers, which are (1) Database container, (2) Database agent container, (3) User Interface container
and (4) Trainer container (See Figure 10). They are based on the OpenSUE Leap Distribution image.
Containers can be hosted together on a single machine or distributed on multiple machines since
containers are designed to communicate with each other through IP addresses. The flexibility of this
design allows the performance of each container to be scaled individually. For example, an additional
GPU can be added to the Database agent container to speed up prediction time. On the other hand, the
Trainer container can be started and stopped at any time to save cost when models are not actively
training with new data.

Figure 10:: Solution architecture

8.2 ETL Pipeline
The ETL data pipeline continously ingest CVEs data from NVD. Every hour, the Downloader module is
invoked to call standard NVD REST API to download new or modified CVE records. The data is then
extracted, transformed and loaded into the Postgres database. The Predictor module, which is preloaded
with eight fine-tuned BERT models, continuously checks against the database and predicts unassigned V3
base score CVEs that just came in.

Figure 11:: ETL pipeline

13

8.3 Training Pipeline
The training pipeline is designed to be inactive most of the time for the purpose of saving cost. The
container will only need to be fired up to retrain or fine-tune BERT models as needed. Once the trainer
container is started, it partitions CVEs data in Postgres database into train, validation and test datasets.
Then use the datasets accordingly to fine-tune and replace existing models.

Figure 12: Training pipeline

New cybersecurity vulnerabilities are found and reported to MITRE frequently. The vulnerability
descriptions are found to be evolving and changing over time. All models have the highest efficacy in the
first year after they are fine-tuned, then they slowly decay each year (See Figure 12). To maintain high
performance and robustness of all models, all models are recommended to be re-trained and fine-tuned
every twelve months at minimum.

Figure 13: Yearly Decay of Model Efficacy

8.4 Website and Dashboard
A Flask web service runs and reads the latest data from the Postgres database to provide a user interactive
web interface. A separate dashboard providing metadata insights into all of the data is implemented in
Tableau. As discussed in the previous section, the website provides comprehensive access to CVE data as
well as user-describe vulnerability prediction. Currently, VulnerWatch is hosted on an AWS EC2 instance.
The product is accessible and available to the public.

8.5 Cost and Right-sizing Computation
Fine-tuning of BERT requires intense computation. Approximately sixty-one thousand CVE records with
minimally two epochs are required to fine-tune each sub-model. To achieve reasonable training time,

14

GPUs were leveraged. Specifically, the ml.p3.8xlarge AWS instance was used for this training. This
product features one Tesla K80 GPU and four vCPUs, and provides total fine-tuning of each model in less
than two hours. The cost for this computation is non-trivial, it is estimated to incur approximately $235.01
USD (2 hr/model x 8 models x 14.688 USD/hr instance cost) to fine-tune all 8 models every time. While
the cost is in the low hundred of dollars, this is deemed wholly acceptable in the context of high-stakes
cybersecurity risks. On the other hand, ETL pipeline cost is relatively affordable to operate on AWS. A
t2.xlarge EC2 instance with no GPU provides reasonable horsepower for one to two users accessing the
website simultaneously. It costs approximately $82.80 USD (24 hr x 30 days x 0.115 USD/hr instance
cost) a month to be operational 24/7.

9. Conclusions

The conclusions drawn from the VulnerWatch initiative are as follows:

● As stated in Section 1, the primary question put forth is whether machine learning and natural
language processing (NLP) can be used to predict a CVSS score with sufficient accuracy to be an
effective surrogate tool for cybersecurity engineers. BERT demonstrated strong accuracy in
predicting submodels with precision and recall in the 0.90 range. Moreover, resulting CVSS
scores were predicted with a high-degree of accuracy such that they are deemed highly useful by
cybersecurity engineers for field work.

● The constituent components included in the VulnerWatch product offer a flexible, high-utility
interface for engineers to access CVSS predictions and related metadata. The product is highly
portable and its economics are well within the range of viability.

● Transfer learning, Language models, Attention weights, and Bidirectional Encoder
Representation from Transformers (BERT) are state-of-the-art and cutting-edge technologies used
in industry and academia. BERT models have a deeper understanding of language context than
traditional single-direction language models. The transfer learning technique also has provided an
opportunity to train a general knowledge source and fine-tune it, with significantly less effort, to
be used in specific domains. BERT still has many areas for improvement, including reducing the
model size, shortening the pre-training time, and making the model less computationally
expensive. The use of BERT in this project was a successful approach. The performance of the
model outperformed any traditional NLP and classification models. The BERT also provided
better explicability and a better view into the decision-making of the neural networks.

15

10. References

[1] Bozorgi, Mehran, et al. “Beyond Heuristics.” Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining - KDD '10, 2010, doi:10.1145/1835804.1835821.

[2] Khazaei, Atefeh, et al. “An Automatic Method for CVSS Score Prediction Using Vulnerabilities Description.”
Journal of Intelligent & Fuzzy Systems, vol. 30, no. 1, 2015, pp. 89–96., doi:10.3233/ifs-151733.

[3] Elbaz, Clément, et al. “Fighting N-Day Vulnerabilities with Automated CVSS Vector Prediction at Disclosure.”
Proceedings of the 15th International Conference on Availability, Reliability and Security, 2020,
doi:10.1145/3407023.3407038.

[4] Yin, Jiao, et al. “Apply Transfer Learning to Cybersecurity: Predicting Exploitability of Vulnerabilities by
Description.” Knowledge-Based Systems, vol. 210, 2020, p. 106529., doi:10.1016/j.knosys.2020.106529.

[5] Wu, Zhengxuan, and Desmond C. Ong. “On Explaining Your Explanations of BERT: An Empirical Study with
Sequence Classification.” 2021, doi:arXiv:2101.00196.

[6] Li, Jiwei, et al. “Visualizing and Understanding Neural Models in NLP.” Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
2016, doi:10.18653/v1/n16-1082.

[7] Kindermans, Pieter-Jan, et al. . “The (Un)Reliability of Saliency Methods.” 2017, doi:arXiv1711.00867.

[8] Interesting Engineering, “Cyber Attacks More Likely to Bring Down F-35 Jets Than Missile”, Fabienne Lang,
Feb 25, 2021

[9] PRNewsWires, “(ISC)2 Survey Finds Cybersecurity Professionals Have Increasing Level of Concern About
SolarWinds Incident”, Mar 29, 2021

16

11. Appendices

11.1 DSE MAS Knowledge Applied to Project
Every skill learned as part of the DSE program was utilized throughout the capstone project, from python
notebook for EDA to user interactive web design. Various python modules and packages, especially
numpy, pandas, scikit-learn, were used extensively at the early stage of data exploratory. Matplotlib was
used to create simple plots and graphs for visualization and understanding of collected data. Machine
learning concepts and algorithms, including NLP, KNN, word2vec, word embedding and more, that were
learned as part of the program were invaluable to understand the inner workings of transfer learning and
the BERT model. Evaluation metrics such as MSE, MAE, R2, F1, etc that were taught as part of the
program were heavily utilized to assess the models efficacy and performance. Besides model building and
evaluation, ETL pipeline and database design knowledge helped building an end-to-end product. The
visualization concepts and Tableau BI tool completed the final product to commercial-ready standard.

11.2 Library Link and Citation
Cook, Bryan; Janamian, Saba; Lim, Teck; Logan, James; Ulloa, Ivan; Altintas, Ilkay; Gupta, Amarnath
(2021). Using NLP to Predict the Severity of Cyber Security Vulnerabilities. In Data Science &
Engineering Master of Advanced Study (DSE MAS) Capstone Projects. UC San Diego Library Digital
Collections. https://doi.org/10.6075/J0TX3F89

11.3 GitHub Link
https://github.com/twlim1/260_capstone

17

https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.6075_J0TX3F89&d=DwMGaQ&c=-35OiAkTchMrZOngvJPOeA&r=bE7DR58kN_FkhHP6xZv6g382e_qX1KOPAAz3YScFQC0&m=IB-sfphqswicpCi-8GKqSTzXwr8txS_3IqIbP_Zigc0&s=xKJn81YWdpkrsIAbQYuTuLIL6KQeuue5oOR3UoIcfpg&e=
https://github.com/twlim1/260_capstone

