
Problem Statement

Biologists work with a multitude of protein sequences represented by 
strings of letters each denoting an amino acid. The amino acid sequence 
of these proteins allows us to leverage various machine learning Natural 
Language Processing (NLP) algorithms aimed to predict enzyme 
classifications, which are indicative of both protein structure and 
function. We propose a multi-level classification solution that is designed 
to predict the respective class of a given enzyme. Our approach consists 
of predicting the classification of an enzyme by applying NLP to a protein 
sequence. Our method utilizes BERT (Bidirectional Encoder 
Representations from Transformers) models to create embeddings, or 
feature vectors, and a variety of machine learning models to predict the 
respective class of an enzyme.

Currently, protein data discovery is outpacing the rate at which enzymes 
are classified, thus creating a demand for timely and efficient enzyme 
classification. The methods available for classifying enzymes can be both 
time and resource intensive. Our goal is to determine enzyme classes of 
respective protein strings in a time and cost-efficient manner. As 
mentioned, there are seven different types of enzymes and several 
additional subclasses per each enzyme class. Based on the data 
available, we will be performing predictions of enzyme classes for the 
first six enzyme classes. Our multi-class classification approach will first 
perform a binary classification to determine if the sequence is an 
enzyme first, then if the protein is an enzyme, perform a six-class 
classification to complete the prediction.

Final Solution

In designing the solution architecture, our multi-class classification solution developed into a two-fold pipeline. 
The first pipeline (BERT models) produced the features from our text or amino acid chain of letters, while the 
second pipeline (downstream models) performed the predictions.

Our solution architecture incorporated the use of San Diego Supercomputer Center’s (SDSC) Expanse. All of the 
BERT models and feature engineering scripts were migrated into a singularity container in order to seamlessly 
run on the Expanse infrastructure. This was key not only in training our model, but also enabling an endpoint 
for the end user to leverage their own training data by giving them access to this container. The singularity 
container contained the environment files written in YaML, so that the environment could be recreated, as well 
as easily duplicated in the event the container is no longer leverageable. The environment files improved the 
setup time for the environment within the container in addition to keeping every workspace synchronized with 
the packages and libraries utilized. Two separate singularity containers were created for our use by Martin 
Kandes at the San Diego Supercomputer Center, one for TAPE and another for ESM-1b to be utilized in Expanse. 
This allowed for the models to run in their own environments, as each model contained separate and unique 
requirements, specifically the PyTorch package version differed for the two models.

Once these features or protein embeddings are produced, they were fed into our downstream models in the 
second step of our pipeline, the classification process. These downstream models absorbed the features as 
input and returned the enzyme classification of the respective amino acid.

The algorithms that we’ve utilized for our downstream models include SVM, KNN, MLP Classifier, Random 
Forest, and Naive Bayes. All of these algorithms are used in order to yield the optimal accuracy for our enzyme 
classifications. With the combination of the feature engineered model and the downstream model, we were 
able to produce accurate enzyme classifications for our amino acids. 

Below is a description of our data product flow that enabled us to achieve our results:
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Data Science Pipeline

We utilized data from two different sources to train our models, DEEPre and ECPred datasets. The 
DEEPre dataset consists of roughly 44,000 protein strings in which the total counts of enzymes and 
non-enzymes are balanced. The amino acid (AA) lengths in each category range from 50 to 4,900, 
with a median length of 382 for enzymes and 286 for non-enzymes. Less than 5% of the dataset 
had sequence lengths of greater than 1,000 AA. Considering this, we acknowledged that in the 
event we face performance or scaling issues, some data exclusions might be necessary. Our first 
candidates for any data exclusions to mitigate performance issues would be the data of longer 
lengths (greater than 1000 AA) which would result in exclusion of approximately 5% of the data in 
DEEPre. The ECPred dataset (approximately 253,000 AA) included some sequences of longer 
lengths, up to a maximum of approximately 35,000 AA. Despite these outliers, the median length 
was 346 AA and the 75th percentile was 472 AA. As in the case of the DEEPre dataset, we 
acknowledged that the AA sequences of length greater than 1,000 could likely be excluded in our 
final model.

Our data pipeline began with consolidating and preprocessing the enzyme data. After loading fasta
files into the singularity container, we utilized the .npz output file for additional downstream tasks. 
We then performed a binary classification to segment the data into non-enzymes and enzymes. 
The enzyme data was then used to predict the first level of respective enzyme classes.
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Also exploratory data analysis led us to anticipate 
and resolve two identified potential data 
hindrances. First, our protein data did not have 
inherent features to start, as such, we utilized an 
n-gram word embedding to generate a simplified 
feature and used Principal Component Analysis 
to estimate preliminary model performances and 
confirm that our data would form expected 
clusters. Second, our data was not symmetric, in 
example, each class of an enzyme did not have an 
equal amount of protein strings contained within 
it. Through visualizations and descriptive 
statistics, we identified the amounts of data in 
each class and subclass and evaluated the 
distribution. 

Key Insights and Conclusion : EINSTEIN

In pulling together our end-to-end solution, we discovered findings relating to a range of items 
consisting of: most accurate downstream models, feature engineering, and training data optimization. 
In sum, MLP proved to be the most accurate downstream model, followed by KNN; TAPE & ESM-1b 
combined embeddings yielded the best downstream results. In trialing options to improve our 
models, we experimented with feature engineering and learned that, other than incorporating the 
word embeddings derived from BERT models, incorporating additional features did not improve the 
accuracy of our downstream models. We also discovered that the embeddings carried such significant 
weight in our model, that incorporating any additional feature engineering had little to no impact on 
the results. Instead of focusing on a narrow picture of the data, we wanted to broaden the lens and 
provide the user with as much data findings as possible. We also aimed to present insights about our 
training data within our application. This included PCA, t-SNE, UMAP and K Nearest Neighbors. These 
four modalities were leveraged to provide the end user with background as to what data our model 
was trained with. We also added F-1 scores to reflect accuracy values. Ultimately, we chose to present 
these results and related data points through discovery interviews with our end user and advisor. 
Following the direction of a domain knowledge expert allowed us to focus on presenting what results 
mattered as they pertained to enzyme classification.
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We relied on visualizations to capture a complete picture of 
the data for the end user. Visualizations allowed us to 
communicate details about the training data we worked with 
to develop this model and also communicate details about a 
user’s predictions. To inform the user about the data the 
model was trained on, we developed a dashboard that 
demonstrates the distribution of the enzyme classes. We also 
incorporated PCA, t-SNE and UMAP visuals to capture an 
estimate of the model performance and confirm that the data 
forms accurate clusters. 
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