
Problem Statement

Biologists work with a multitude of protein sequences represented by
strings of letters each denoting an amino acid. The amino acid sequence
of these proteins allows us to leverage various machine learning Natural
Language Processing (NLP) algorithms aimed to predict enzyme
classifications, which are indicative of both protein structure and
function. We propose a multi-level classification solution that is designed
to predict the respective class of a given enzyme. Our approach consists
of predicting the classification of an enzyme by applying NLP to a protein
sequence. Our method utilizes BERT (Bidirectional Encoder
Representations from Transformers) models to create embeddings, or
feature vectors, and a variety of machine learning models to predict the
respective class of an enzyme.

Currently, protein data discovery is outpacing the rate at which enzymes
are classified, thus creating a demand for timely and efficient enzyme
classification. The methods available for classifying enzymes can be both
time and resource intensive. Our goal is to determine enzyme classes of
respective protein strings in a time and cost-efficient manner. As
mentioned, there are seven different types of enzymes and several
additional subclasses per each enzyme class. Based on the data
available, we will be performing predictions of enzyme classes for the
first six enzyme classes. Our multi-class classification approach will first
perform a binary classification to determine if the sequence is an
enzyme first, then if the protein is an enzyme, perform a six-class
classification to complete the prediction.

Final Solution

In designing the solution architecture, our multi-class classification solution developed into a two-fold pipeline.
The first pipeline (BERT models) produced the features from our text or amino acid chain of letters, while the
second pipeline (downstream models) performed the predictions.

Our solution architecture incorporated the use of San Diego Supercomputer Center’s (SDSC) Expanse. All of the
BERT models and feature engineering scripts were migrated into a singularity container in order to seamlessly
run on the Expanse infrastructure. This was key not only in training our model, but also enabling an endpoint
for the end user to leverage their own training data by giving them access to this container. The singularity
container contained the environment files written in YaML, so that the environment could be recreated, as well
as easily duplicated in the event the container is no longer leverageable. The environment files improved the
setup time for the environment within the container in addition to keeping every workspace synchronized with
the packages and libraries utilized. Two separate singularity containers were created for our use by Martin
Kandes at the San Diego Supercomputer Center, one for TAPE and another for ESM-1b to be utilized in Expanse.
This allowed for the models to run in their own environments, as each model contained separate and unique
requirements, specifically the PyTorch package version differed for the two models.

Once these features or protein embeddings are produced, they were fed into our downstream models in the
second step of our pipeline, the classification process. These downstream models absorbed the features as
input and returned the enzyme classification of the respective amino acid.

The algorithms that we’ve utilized for our downstream models include SVM, KNN, MLP Classifier, Random
Forest, and Naive Bayes. All of these algorithms are used in order to yield the optimal accuracy for our enzyme
classifications. With the combination of the feature engineered model and the downstream model, we were
able to produce accurate enzyme classifications for our amino acids.

Below is a description of our data product flow that enabled us to achieve our results:

Prediction of Enzyme Classification using
Protein Sequence Embeddings

Ambika Sundaresan, Breanne Baldino, Cindy Yu, Matteo Pinto, Tahamtan Dokhani
Advisor: Dr. Peter Rose

Data Science Pipeline

We utilized data from two different sources to train our models, DEEPre and ECPred datasets. The
DEEPre dataset consists of roughly 44,000 protein strings in which the total counts of enzymes and
non-enzymes are balanced. The amino acid (AA) lengths in each category range from 50 to 4,900,
with a median length of 382 for enzymes and 286 for non-enzymes. Less than 5% of the dataset
had sequence lengths of greater than 1,000 AA. Considering this, we acknowledged that in the
event we face performance or scaling issues, some data exclusions might be necessary. Our first
candidates for any data exclusions to mitigate performance issues would be the data of longer
lengths (greater than 1000 AA) which would result in exclusion of approximately 5% of the data in
DEEPre. The ECPred dataset (approximately 253,000 AA) included some sequences of longer
lengths, up to a maximum of approximately 35,000 AA. Despite these outliers, the median length
was 346 AA and the 75th percentile was 472 AA. As in the case of the DEEPre dataset, we
acknowledged that the AA sequences of length greater than 1,000 could likely be excluded in our
final model.

Our data pipeline began with consolidating and preprocessing the enzyme data. After loading fasta
files into the singularity container, we utilized the .npz output file for additional downstream tasks.
We then performed a binary classification to segment the data into non-enzymes and enzymes.
The enzyme data was then used to predict the first level of respective enzyme classes.

• FASTA files

User Input -
Expanse

• TAPE/ESM Word
Embeddings

• NPZ file

Features
• Downstream

models

• Classifications

Model Prediction –
Flask Application

• Predicted Class

• Probabilities

• Visualizations

Results

Flask Application

Scrape and
preprocess

protein data

Transform text
data to fasta
files, capture
labels in json

file

Load fasta
files into

TAPE/ESM-1b

Utilize NPZ
output
file for

downstream
tasks

Binary
Classification

Non-enzyme

Enzyme

Partition data by class

DEEPre Data

ECPred Data

Predict Enzyme
Class (1-6)

Also exploratory data analysis led us to anticipate
and resolve two identified potential data
hindrances. First, our protein data did not have
inherent features to start, as such, we utilized an
n-gram word embedding to generate a simplified
feature and used Principal Component Analysis
to estimate preliminary model performances and
confirm that our data would form expected
clusters. Second, our data was not symmetric, in
example, each class of an enzyme did not have an
equal amount of protein strings contained within
it. Through visualizations and descriptive
statistics, we identified the amounts of data in
each class and subclass and evaluated the
distribution.

Key Insights and Conclusion : EINSTEIN

In pulling together our end-to-end solution, we discovered findings relating to a range of items
consisting of: most accurate downstream models, feature engineering, and training data optimization.
In sum, MLP proved to be the most accurate downstream model, followed by KNN; TAPE & ESM-1b
combined embeddings yielded the best downstream results. In trialing options to improve our
models, we experimented with feature engineering and learned that, other than incorporating the
word embeddings derived from BERT models, incorporating additional features did not improve the
accuracy of our downstream models. We also discovered that the embeddings carried such significant
weight in our model, that incorporating any additional feature engineering had little to no impact on
the results. Instead of focusing on a narrow picture of the data, we wanted to broaden the lens and
provide the user with as much data findings as possible. We also aimed to present insights about our
training data within our application. This included PCA, t-SNE, UMAP and K Nearest Neighbors. These
four modalities were leveraged to provide the end user with background as to what data our model
was trained with. We also added F-1 scores to reflect accuracy values. Ultimately, we chose to present
these results and related data points through discovery interviews with our end user and advisor.
Following the direction of a domain knowledge expert allowed us to focus on presenting what results
mattered as they pertained to enzyme classification.

TAPE/ESM-1b (PyTorch) Model

Python Script

= Expanse

We relied on visualizations to capture a complete picture of
the data for the end user. Visualizations allowed us to
communicate details about the training data we worked with
to develop this model and also communicate details about a
user’s predictions. To inform the user about the data the
model was trained on, we developed a dashboard that
demonstrates the distribution of the enzyme classes. We also
incorporated PCA, t-SNE and UMAP visuals to capture an
estimate of the model performance and confirm that the data
forms accurate clusters.

Protein Sequence Embeddings Plot

