

Protein Data Analysis – Prediction of Enzyme Classification using Protein Sequence
Embeddings

Group 4: Ambika Sundaresan, Breanne Baldino, Cindy Yu, Matteo Pinto, Tahamtan Dokhani

Advisor: Dr. Peter Rose, Director of the Structural Bioinformatics Laboratory at SDSC

Abstract

Biologists work with a multitude of protein sequences represented by strings of letters each
denoting an amino acid. The amino acid sequence of these proteins allows us to leverage various
machine learning Natural Language Processing (NLP) algorithms aimed to predict enzyme
classifications, which are indicative of both protein structure and function. We propose a multi-
level classification solution that is designed to predict the respective class of a given enzyme.
Our approach consists of predicting the classification of an enzyme by applying NLP to a protein
sequence. Our method utilizes BERT (Bidirectional Encoder Representations from
Transformers) models to create embeddings, or feature vectors, and a variety of machine
learning models to predict the respective class of an enzyme.

Table of Contents
1 Introduction and Question Formulation .. 1

1.1 Protein Data Background .. 1

1.2 BERT Models and Natural Language Processing ... 2

2 Team Roles and Responsibilities ... 3

3 Data Acquisition ... 3

3.1 Enzyme Classification Data Sources ... 3

3.2 Data Preprocessing .. 3

3.3 Data Exploration .. 4

4 Data Preparation and Pipeline .. 5

5 Analysis Methods .. 7

5.1 Exploratory Data Analysis .. 7

5.2 Model Analysis ... 8

 5.3 Web Application Analysis .. 8

6 Findings and Reporting ... 9

7 Solution Architecture, Performance, and Evaluation ... 12

8 Conclusions ... 13

9 Appendix ... 14

a. DSE MAS Knowledge Applied to the Project .. 14

b. Link to the Library Archive for Reproducibility ... 14

c. References ... 14

1

1 Introduction and Question Formulation

1.1 Protein Data Background

Proteins are essential to life. They are molecules made up of long strings of amino acids, denoted
by one of twenty letters of the alphabet, such as:

GCTVEDRCLIGMGAILNGCVIGSGLVAAGLITQ

The sequence of these strings determines its shape, function, or role.

Just as proteins are essential to life, enzymes are essential proteins in the human body that aid in
the regulation of biological processes. Enzymes are divided into seven functional classes:
oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases, and translocases. It’s
valuable for scientists to know the classification of an enzyme, as its respective class indicates
which type of reaction the enzyme will aid in catalyzing, for example, Ligase: Synthetase.

Figure 1: Enzyme Classes and Descriptions

Currently, protein data discovery is outpacing the rate at which enzymes are classified, thus
creating a demand for timely and efficient enzyme classification. The methods available for
classifying enzymes can be both time and resource intensive. Our goal is to determine enzyme
classes of respective protein strings in a time and cost-efficient manner. As mentioned, there are
seven different types of enzymes and several additional subclasses per each enzyme class. Based
on the data available, we will be performing predictions of enzyme classes for the first six
enzyme classes. Because of the hierarchical structure of enzyme classes, our multi-class
classification approach will first perform a binary classification to determine if the sequence is an
enzyme first, then if the protein is an enzyme, perform a six-class classification to complete the
prediction.

2

Figure 2: Example of Hierarchical Class Structure

1.2 BERT Models and Natural Language Processing

The amino acid sequence of proteins, denoted by a chain of letters, allows us to leverage various
Natural Language Processing (NLP) algorithms to perform enzyme classification predictions –
which we pair with Bidirectional Encoder Representations from Transformers (BERT) to predict
enzyme classifications in an accessible and affordable way. The pinnacle technique that we have
chosen to leverage, BERT, is a semi-supervised model that works by masking certain words in a
string, or in our case individual amino acid letters, and aims to predict what those words are by
using the context of surrounding words. The output is an embedding which in return, can be fed
as input to other machine learning algorithms to perform predictions such as our focus, enzyme
classification.

Our goal is to predict protein functional features incorporating pretrained models. The particular
BERT models that we are leveraging here are pretrained models known as Tasks Assessing
Protein Embeddings (TAPE) and Evolutionary Scale Modeling (ESM-1b). TAPE is a BERT
model pre-trained on 31 million protein sequences, developed by researchers at UC Berkeley.
ESM-1b is another BERT model trained on 250 million protein sequences by researchers at
Facebook AI Research. Their model outperforms all tested single-sequence protein language
models across a range of structure prediction tasks. Both research groups used embeddings
(weights) as feature vectors derived from their models for downstream Machine Learning
models. Feature vectors were then used for prediction tasks such as protein function, protein
properties, and structural features.

As such, we will be leveraging the embeddings derived as general feature vectors in our own
downstream models. This will be advantageous in that there are no custom feature vectors that
need to be designed, and due to the large semi-supervised models, the predictions will be more
generalizable than those created from smaller supervised models.

3

2 Team Roles & Responsibilities

Ambika Sundaresan, Project manager- SME/Visualization developer

Breanne Baldino, Business analyst - Storyteller/coordinator

Cindy Yu, Solution architect - Scalability and operations expert

Matteo Pinto, Solution architect - ML Models and dashboard developer

Tahamtan Dokhani, Data analyst - Visualization and dashboard content

3 Data Acquisition

3.1 Enzyme Classification Data Sources

Our data originated from two main research papers, ECPred: A tool for the prediction of the
enzymatic functions of protein sequences based on the EC Nomenclature (ECPred) and DEEPre:
Sequence-based enzyme EC number prediction by Deep Learning (DEEPre). Both publications
detailed methodologies regarding the same enzyme classification we attempted here; the
DEEPre method utilized a 5-fold cross-validation classification, while the ECPred approach
leveraged a hierarchical method with a collection of binary classification models. DEEPre’s
dataset contained 22,168 enzyme data and 22,168 non-enzyme data (19 MB) - providing us with
a perfect split of enzyme and non-enzyme protein strings alike. While the ECPred data contained
249,996 protein sequences with only identifiers for the proteins.

3.2 Data Preprocessing

The DEEPre Enzyme Data, Non-Enzyme dataset we started with required minimal data
cleaning. Preprocessing the data included splitting the text into enzyme label and protein
sequence, then inserting these new columns into an empty data frame. For the non-enzymes, we
set the labels as “0” for distinction from any of the other classes. We continued to split “label”
into enzyme class and enzyme subclass, adding these as additional columns to the data. We
wanted to start by processing the data this way so that we had a starting point with accurate
labels to classify the enzymes. For data exploration, we experimented with plots to evaluate the
most populous enzymes and respective distributions of their class and subclass.

We leveraged two scripts for the DEEPre dataset to split the label column into class and
subclass. Mirroring the ECPred data, we performed a similar split of the label column to
organize the data. What differed with this data, as previously mentioned, was that the protein
sequences which we required to perform our training were missing. In order to gather the protein
sequences for this dataset, we utilized an API call to the fasta file hosted on UNIPROT to obtain
each protein id within the data, and extracted a matching protein string. Originally, we called the
API sequentially for the 250,000 protein id’s to retrieve their respective amino acid chain
sequence, but because the data was so large this process was too time intensive. Instead, we
modified the pre-processing script to perform the API calls in parallel using multithreading with

4

eight threads. This allowed us to receive around 8X boost in time performance for retrieving
these amino acid chains for the dataset.

3.3 Data Exploration

In the DEEPre dataset, the total counts of enzymes and non-enzymes are balanced. The amino
acid (AA) lengths in each category range from 50 to 4,900, with a median length of 382 for
enzymes and 286 for non-enzymes. Less than 5% of the dataset had sequence lengths of greater
than 1,000 AA. Considering this, we acknowledged that in the event we face performance or
scaling issues, some data exclusions might be necessary. Our first candidates for any data
exclusions to mitigate performance issues would be the data of longer lengths (greater than 1000
AA) which would result in exclusion of approximately 5% of the data in DEEPre.

Figure 3: DEEPre Summary Statistics

The ECPred dataset (approximately 253,000 AA) included some sequences of longer lengths, up
to a maximum of approximately 35,000 AA. Despite these outliers, the median length was 346
AA and the 75th percentile was 472 AA. As in the case of the DEEPre dataset, we
acknowledged that the AA sequences of a length greater than 1,000 could likely be excluded in
our final model.

5

Figure 4: ECPred Summary Statistics

In addition to the features created in the preprocessing step, our approach for feature engineering
and data modeling was to take the sequence data available and load it into our BERT models
containerized and deployed on Expanse. The output from our respective models, TAPE and
ESM-1b was a 768-dimensional vector and 1,280-dimensional vector, respectively, of pretrained
features which were then used to predict the enzyme class and subclass.

The data environment that we developed consisted of flat files that were loaded into the models
accordingly, then deployed within a singularity container environment. This allowed for our
solution to be more portable and accessible as the flat files were made available through our
GitHub repository.

4 Data Preparation and Pipeline

To preprocess the data, we split the protein string text into an enzyme label and an associated
protein sequence, then inserted these newly created columns into an empty dataframe. We began
processing the data this way so that we could leverage a starting point with accurate labels to
classify the enzymes.

Both BERT models provided us with specific constraints that required further data manipulation.
Both TAPE and ESM-1b ran into CPU memory limitations due to the models’ design of loading
the entire input file. Because of both of these constraints, we wrote a script to split the data into
smaller partitioned files that we would leverage to obtain our embeddings from both models. For
ESM-1b, the data was split into 4 sequences per file, while for TAPE, the data was split into
1,500 sequences per file. In addition to that, ESM-1b had a sequence length limit of 1,024. To
mediate that issue, the dataset was reduced and the sequences that were longer than 1,024 AA
were removed. The table below details the final dataset utilized per each model:

6

TAPE ESM-1b

Dataset Entries # Dataset Entries #

ECPred 249,996 ECPred 140,584

DeepPre 44,336 DeepPre 26,335

Figure 5: Dataset utilized per each BERT model

The entire dataset was able to be leveraged with TAPE, while exclusions were made for ESM-1b
due to sequence length constraints as well as limited compute resources. Specifically, the CPU
limitations for ESM-1b required us to further down sample the sequences to 140,584 and 26,335
respectively.

Our data pipeline began with consolidating and preprocessing the enzyme data. After loading
fasta files into the singularity container, we utilized the .npz output file for additional
downstream tasks. We then performed a binary classification to segment the data into non-
enzymes and enzymes. The enzyme data was subsequently used to predict the first level of
respective enzyme classes.

 Figure 6: Data Pipeline utilized to achieve results

7

5 Analysis Methods

5.1 Exploratory Data Analysis

Exploratory data analysis led us to anticipate and resolve two identified potential data
hindrances. First, our protein data did not have inherent features to start, as such, we utilized an
n-gram word embedding to generate a simplified feature and used Principal Component Analysis
to estimate preliminary model performances and confirm that our data would form expected
clusters. Second, our data was not symmetric, in example, each class of an enzyme did not have
an equal amount of protein strings contained within it. Through visualizations and descriptive
statistics, we identified the amounts of data in each class and subclass and evaluated the
distribution.

Ultimately, exploratory data analysis showed us there was a problem with data distribution, each
enzyme class had varying amounts of data. As an example, the Isomerases class only contained
15,000 protein strings while the Transferases class contained 90,000 protein strings.

Figure 7: DEEPre and ECPred Enzyme Class Distribution

We explored resolving this imbalance by applying Synthetic Minority Oversampling Technique
(SMOTE) to our downstream modeling. SMOTE resolves imbalances in data through
synthesizing new examples for minority data classes. This method does this by selecting samples
that are close in the feature space, drawing a line between them, and then creating a new sample
on a point along that line. Ultimately, our results were not improved with SMOTE and this was
not implemented in our end product.

8

5.2 Model Analysis

In addition to exploratory data analysis, we evaluated our two BERT model approaches TAPE
and ESM-1b. To analyze the utilization of ESM-1b, we converted our json data to tuples to make
the data compatible with the model. We identified early on that ESM-1b required far fewer
libraries to run than TAPE, making it more readily available and accessible. ESM-1b was also
touted to have a higher learning rate and learned positional embeddings, potentially making it
superior in tasks such as enzyme classification. As noted during our data preparation, ESM-1b
possessed a sequence length constraint, making TAPE more versatile in that regard. TAPE was
able to utilize GPU to compute embeddings, while ESM-1b was only able to leverage CPU. Both
models proved to provide successful word embedding outputs utilized through downstream
tasks.

In analyzing how to further improve our model, we attempted to create additional input features
for our downstream models. Initially, our model’s only input was sequence embeddings and
when utilizing a sample of the data, we were only able to obtain about 45 - 65% accuracy for our
enzyme class classification. We experimented with feature engineering, such as adding the ratio
of how often a character occurs in comparison to the entire length of the amino acid. Since there
are 20 various characters that together make up the amino acid chains this gives us about 20
additional features to work with which is a large increase from just the base word embeddings.
These new features also provided a more holistic characteristic of the amino acid. After this
attempt at feature engineering however, we recognized that additional engineered features could
not outweigh the weight that the sequence embeddings held and did not proceed with their
utilization.

5.3 Web Application Analysis

Beyond exploratory data analysis, model analysis and tuning, we developed workflows while
implementing our Flask application to ascertain we could achieve our desired
result.

Figure 8: Workflow developed to build Flask Application

Creating a workflow allowed us to adhere to the logic we designed, and thereafter implement it
into our application.

9

Ultimately, analysis methods led us to develop success criteria. We would consider our model
successful if our desired end user could successfully obtain embeddings from the singularity
container via TAPE or ESM-1b, then bring their embeddings to submit to our Flask Application
and obtain predictions derived from the protein sequence embeddings. On top of obtaining
embeddings and prediction results, we strived to benchmark these results, leveraging accuracy
metrics. We aimed for classification accuracies from our downstream models of above 60%.

6 Findings and Reporting

To validate the performance of our BERT models that produced the protein sequence
embeddings, as a first step, we utilized a Principal Component Analysis (PCA) plot to verify that
the protein sequence embeddings are separable within the vector space. In addition to using
PCA, we also leveraged two other dimensionality reduction algorithms to view the clusters in a
two-dimensional perspective, t-SNE and UMAP. We leveraged 2 components and 50
components, respectively, when implementing PCA. While utilizing t-SNE, we leveraged two
components on top of both two component and 50 component PCA. Finally, with UMAP we
utilized two components. The plots differ in that PCA utilizes the location of features to separate
the classes while t-SNE incorporates the probability calculations to predict the classes next to
one another. UMAP relies on a weighted graph with weighted edges, representing the likelihood
that two points are connected, to segment the classes. t-SNE and UMAP are more successful in
clustering the data points because of these techniques.

Figure 9: t-SNE plot - DEEPre, TAPE

10

Figure 10: PCA & UMAP plot - DEEPre, TAPE

Subsequent to the BERT models, we used the following machine learning algorithms to perform
the multi-class classification: Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
Multi-Layer Perceptron Classifier (MLP), Random Forest, and Naive Bayes. All these together
are strong classifiers that perform predictions in unique ways. They were all hyper parametrized
to achieve the most optimal result. Notably, MLP was hyper-parametrized with 300 epochs and
100 layers in the neural network classifier. To obtain hyperparameter optimization throughout all
our downstream models, leveraging Python in a Jupyter notebook, we performed a grid search
across our test data and selected the best model parameters to use in our final settings.

Model Accuracy of Enzyme-NonEnzyme
Classes (Binary)

Accuracy of Enzyme Classes (6 class
classification)

Tape ESM-1b Combined
TAPE-ESM-1b

Tape ESM-1b Combined
TAPE-ESM-1b

K-Nearest
Neighbors

80.8% 95.2% 96.9% 64.8% 98.6% 96.9%

Random
Forest

77.6% 88.5% 96.4% 46.3% 97.8% 96.8%

SVC 81.2% 91.0% 97.6% 57.5 % 97.2% 96.5%

Naive Bayes 75.6% 85.7% 86.3% 44.6% 62.1% 60.7%

MLP
Classifier

84.1% 94.2% 98.4% 66.1% 99.2% 98.9%

Figure 11: Performance of 5,000 embeddings using various downstream models

11

There are various methods that we used to validate the performance of our downstream models
that ingested the BERT model protein sequence embeddings. The first method we leveraged to
validate the downstream models was model accuracy, which in our case was the percentage of
accurate classifications by our downstream models. We also leveraged a confusion matrix to
provide insights on how the model performs regarding classifying a particular enzyme class. The
confusion matrix was key in allowing us to understand which classes our particular model was
weak in predicting. As well as providing insight on the enzyme classes that need additional
iterations in order to improve their accuracy. The values within the confusion matrix are a count
of classified enzymes - for each class, the matrix displays how many enzymes were classified
correctly and how many were classified incorrectly.

Figure 12: Confusion matrix leveraged to assess model performance on 5,000 TAPE
embeddings with the downstream KNN model

In addition to accuracy and the usage of a confusion matrix, we also leveraged F-1 scores
through scikit learn to further gauge accuracy. F-1 scores are precision ratings, ranging from 0-1,
that measure a model’s accuracy through the below formula:

Figure 13: F-1 Score Formula

Combining both TAPE and ESM-1b embeddings derived the highest accuracy results from our
downstream prediction models. We witnessed a significant increase in improvement leveraging

12

both model’s embeddings in comparison with each model on their own. Additionally, MLP
performed best in classifying enzymes throughout all instances.

Based on the classification results from the downstream models, we identified that the user can
gain significant insight on what the most probable enzyme class the sequence belongs to. The
downstream model predictions also provided insight on what classes are most distinct and easily
identifiable. With the given percentage of confidence for each enzyme class of the sequence, the
user can determine how definitive the model was able to identify the class. This also allowed the
user to understand the possible confusions between various enzyme classes, as the percentages
will indicate how accurate the model was at identifying the correct class. This accuracy data was
also valuable in benchmarking how well the embedding inputs perform for each enzyme class
identification.

7 Solution Architecture, Performance and Evaluation

In designing the solution architecture, our multi-class classification solution developed into a
two-fold pipeline. The first pipeline (BERT models) produced the features from our text or
amino acid chain of letters, while the second pipeline (downstream models) performed the
predictions.

Our solution architecture incorporated the use of San Diego Supercomputer Center’s (SDSC)
Expanse. All of the BERT models and feature engineering scripts were migrated into a
singularity container in order to seamlessly run on the Expanse infrastructure. This was key not
only in training our model, but also in enabling an endpoint for the end user to leverage their
own training data by giving them access to this container. The singularity container contained the
environment files written in YaML, so that the environment could be recreated, as well as easily
duplicated in the event the container is no longer leverageable. The environment files improved
the setup time for the environment within the container in addition to keeping every workspace
synchronized with the packages and libraries utilized. Two separate singularity containers were
created for our use by Martin Kandes at the San Diego Supercomputer Center, one for TAPE and
another for ESM-1b to be utilized in Expanse. This allowed for the models to run in their own
unique environments, as each model contained separate requirements, specifically the pytorch
package version differed for the two models.

Once these features or protein embeddings were produced, they were utilized as input in our
downstream models in the second step of our pipeline, the classification process. These
downstream models absorbed the features as input and returned the enzyme classification of the
respective amino acid. Below is a description of our data product flow that enabled us to achieve
our results:

13

 Figure 14: Data Product Flow - Outlines high level steps of Data Solution

In addition to the singularity container hosting the models and feature engineering embeddings,
our final component to the solution was our Flask application. We built a web server that
allowed the user to access the classification model through a web browser as a better alternative
to the command line method. With the Flask application in the architecture, it allowed the server
to expose certain endpoints that accessed the models directly. The application had additional
endpoints to train the model on certain datasets and utilize different weights to adjust the model
for better performance. This web application contained a front-end web user interface which was
exposed to our API. Our API allowed users to provide amino acid chain data, and in return our
application provided classifications for those chains.

To obtain results, the end user submits their protein data on our application, and of the enzymes
included in the user’s dataset, our downstream models predict the respective enzyme
classification and provide probability confidence per class prediction. To start, the user runs a
batch job on Expanse to convert a fasta file to protein sequence embeddings captured in an .npz
file. If the user does not have an account, they are directed to access XSEDE User Portal. The
user is provided scripts to run either BERT models, TAPE or ESM-1b. Success will be defined
by user accessibility as well as accuracy metrics.

8 Conclusions

In pulling together our end-to-end solution, we discovered findings relating to a range of items
consisting of most accurate downstream models, feature engineering, and training data
optimization. In sum, MLP proved to be the most accurate downstream model, followed by
KNN; TAPE & ESM-1b combined embeddings yielded the best downstream results.

14

In trialing options to improve our models, we experimented with feature engineering and learned
that other than incorporating the word embeddings derived from BERT models, incorporating
additional features did not improve the accuracy of our downstream models. We also discovered
that the embeddings carried such significant weight in our model, that incorporating any
additional feature engineering had little to no impact on the results.

As a last step to improve our model, we wrote a script to merge our protein sequence
embeddings from both BERT models, TAPE & ESM-1b. Merging our embeddings significantly
increased our accuracy results - improving our scores from the 60-80th percentile to 90th
percentile. Though this step required additional steps to obtain results, it ultimately proved to be
the most successful and promising for future trials by end users.

As a component to communicate results, we incorporated an option to download enzyme
classification predictions and class probabilities results as a csv. This provided the user with
tangible results relating to their protein data. In addition to this download option, we relied on
visualizations to capture a detailed picture of the data of the enzymes contained within their data.
Visualizations allowed us to communicate details about the training data we worked with to
develop this model as well as key data points for a user’s predictions. With this in mind, we
developed a dashboard that demonstrates the distribution of the predicted enzyme classes.

Instead of focusing on a narrow picture of the data, our goal was to broaden the lens and provide
the user with as much data findings as possible. We also aimed to present insights about our
training data within our application. This included PCA, t-SNE, UMAP and K-Nearest
Neighbors. These four modalities were leveraged to provide the end user with background
relating to enzymes found within the training data. Ultimately, we chose to present these results
and related data points through discovery interviews with our target end user and advisor.
Following the direction of a domain knowledge expert allowed us to focus on presenting what
results mattered as they pertained to enzyme classification.

9 Appendix

a. DSE MAS Knowledge Applied to the Project

Knowledge applied to this project from DSE ranged from PCA - learned in the first quarter of
our first year, to machine learning course - learned in the third quarter of our first year to data
visualizations learned in the winter quarter of our final year. All of these components worked
together to allow us to achieve our end result.

b. Link to the Library Archive for Reproducibility

Baldino, Breanne; Dohkani, Tahamtan; Pinto, Matteo; Sundaresan, Ambika; Yu, Cindy; Rose,
Peter (2021). Prediction of Enzyme Classification using Protein Sequence Embeddings. In Data
Science & Engineering Master of Advanced Study (DSE MAS) Capstone Projects. UC San
Diego Library Digital Collections. https://doi.org/10.6075/J0736QSX

c. References

15

“GitHub Repository of TAPE.” GitHub, github.com/songlab-cal/tape.

Facebookresearch. “GitHub Repository of ESM-1b.” GitHub, github.com/facebookresearch/esm.

Dalkiran, Alperen, et al. “ECPred: a Tool for the Prediction of the Enzymatic Functions of
Protein Sequences Based on the EC Nomenclature.” BMC Bioinformatics, BioMed
Central, 21 Sept. 2018, bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
018-2368-y.

Li, Yu, et al. “DEEPre: Sequence-Based Enzyme EC Number Prediction by Deep Learning.”
OUP Academic, Oxford University Press, 23 Oct. 2017,
academic.oup.com/bioinformatics/article/34/5/760/4562505.

