
DSE 260B: Group 3
Time Series Forecasting
Capstone Project, June 4th, 2021
Akash Shah, Aparna Gupta, Daniel Roten, Kevin Lane, Raul Martinez
Advisor: Dr. Rose Yu

Agenda

1. Introduction

2. Data Pipeline and Environment

3. Findings through EDA

4. Modeling methods

a. Autoregressive Model

b. Seq2Seq model

c. PDE-based model

d. DCRNN definition (Modeling Product)

5. DCRNN challenges and scaling

6. Model interpretation and model comparison

7. Visualization Dashboard

8. Demo

Library Development

• Project manager & integration lead: Kevin

• Classical time series model: Aparna

• Deep seq2seq: Raul

• Spatiotemporal forecasting: Akash

• PDE + deep learning: Daniel

Team Roles and Responsibilities

Data Analysis

• Project manager: Kevin

• Budget manager: Raul

• Record keeper: Akash

• Solution architect: Daniel

• Visualization & dashboard developer: Aparna

• Why deep learning for time series?
• Broad application in many domains including finance, health, etc.

• Traditional models rely on strong modeling assumptions

• Deep learning can leverage rise in large-scale sensor data

• Improve forecasting of multivariate data and data with spatial characteristics

• Library Development
• Develop open-source deep learning library for time series forecasting in PyTorch

• Existing libraries statsmodels and sktime are limited to traditional models

• GluonTS is a deep learning time series forecasting library based on MXNet

https://github.com/Rose-STL-Lab/torchTS

Why create a deep learning library for time series?

https://github.com/Rose-STL-Lab/torchTS

Introduction

• Traffic patterns have changed as a result of the COVID-19 pandemic

• Models relying on historical data will perform poorly as a result

• Models that account for changing patterns (additional features,

online learning, etc.) will outperform these models

• Build a deep learning library for time series forecasting

Data Sources - Traffic

Traffic - CalTrans PeMS

● Traffic observations recorded over 30 second windows

● Multiple rollups available (5 min, 1 hour, etc.)

● 40,000 sensors installed on freeways across California

● No bulk download option provided by Caltrans
● Python script using Beautiful Soup web scraper retrieves

data by district level, date range, file type

● Frequency: 5 minute interval (new data published daily)
● Size: ~70 MB/day (San Diego), 12.5 MB/day (Bay Area)
● Data Link: PeMS Data Clearinghouse

Image credit: Caltrans

http://pems.dot.ca.gov/?dnode=Clearinghouse

Data Sources - COVID-19 and USDOT

COVID-19

● U.S. county cases and deaths
● Provided by Johns Hopkins as Github repository
● git pull to refresh
● Frequency: Daily
● Size: ~7.6 MB

● Data Link: Johns Hopkins COVID-19 Repository

USDOT (U.S. Department of Transportation)

● Road network
● Categorical road layer data in form of shapefiles
● Provided via web interface at County level
● Frequency: One Time
● Size: ~36 MB for Santa Clara county
● Data Link: USDOT Tigerline Roads

https://github.com/CSSEGISandData/COVID-19
https://www2.census.gov/geo/tiger/TIGER2019/ROADS/

Data Pipeline

Acquiring Caltrans traffic data

• Data cleaning and storage

• Scraped Caltrans PeMS website and saved daily files to S3

• Read raw files from S3, clean data, and insert to RDS database

• Data preparation

• Read traffic data for stations and time period of interest from RDS

• Prepare data for model (order stations, create sliding window, etc.)

• Available features at each station (per lane and across all lanes):

• Metadata (ID, location, freeway number/direction, postmile)

• Timestamp

• “Total flow” (number of vehicles)

• Average speed

• Average occupancy

Image credit: Amazon Web Services, PostgreSQL

Acquiring COVID-19 cases

Data cleaning and storage

• Directly cloned from Johns Hopkins Github repository

• Stored on AWS S3

Available features at each COVID-19 reporting location

• Metadata (UID, coordinates, county name, FIPS, population)

• Datestamp

• Number of confirmed cases, number of fatalities

Data Environment

• Amazon Web Services (AWS)

• Simple Storage Service (S3)

• Relational Database Service (RDS)

• Elastic Compute Cloud (EC2)

• PostgreSQL

• Open-source data sources

• Nautilus cluster - Kubernetes deployments

Image credit: Amazon Web Services, Kubernetes, PostgreSQL

Intro: Problem Definition

• Traffic is noticeably lighter during the COVID pandemic

• Increase in average speed

• Decrease in amplitude between weekday/weekend fluctuations

• Can we build a traffic forecasting model that is sensitive to external factors?

• Combine with spatiotemporal characteristics of traffic data

Findings through EDA: COVID-19 changed traffic patterns

EDA Findings on the Traffic Dataset dataset during 2020:

• Top figure Shows “Average Daily Speed” (vehicles/5 min) over
the course of an average day for the same time frames. It
shows a dramatic reduction in average speed variation.

• Bottom figure Shows “total flow” (vehicles/5 min) over the
course of an average day for the same time frames. It conveys
a large decrease in the number of vehicles on the road,
particularly after roughly 5:30 AM (left).

Findings through EDA: COVID-19 COVID Cases by County

• COVID-19 Cases Trend in California
(Top 6 Counties by Total Cases)

• New COVID cases steadily increased

till Aug with a subsequent dip

• Cases spike again starting Oct,

reaching an all time high between Dec

2020 and Jan 2021

• Autocorrelation for the number of
COVID Deaths (bottom left) and
COVID Cases (bottom right) in San
Diego

Proposed Solution and Approach

Approach for forecasting COVID-19’s impact on Traffic
● Gather, clean and store traffic and COVID-19 data into Amazon RDS.

● Represent data as graphs or adjacency matrices to incorporate spatial information from external factors.

● Implement below forecasting methods and evaluate how including COVID-19 data at county level and spatial

information improves traffic predictions around certain areas.

Approach for Deep Learning Library - TorchTS
● Classical Time series (AR,MA,ARIMA)

● Seq2Seq methods (Encoder - Decoder)

● Spatiotemporal methods - Graph Convolutional Networks (GCNs)

● Partial Differential Equation based Deep Learning.

Autoregressive - Classic Time Series Model

• The autoregression (AR) method models the next step in the sequence as a linear function of
the observations at prior time steps.

• The AR model created has been trained using the traffic sensor measurements at five min. intervals
for 320 stations in the Bay areas for the time period Jan’20 to Jun’20. The Mean Absolute Error
calculated for 1 hour horizon is 2.2905

• The dataset contains each input as a scalar value of 12 values(lag) representing the average speed of
the vehicles in 5 min interval, depicting the 60 min lag.

Autoregressive - Performance and Results

• Autoregressive neural network implementation is inspired by AR-Net paper
• Left: AR(12) model successfully predicts next traffic measurement
• Right: AR(20) model fit on AR(3) process correctly determines model coefficients

Seq2Seq model

• Maps the input sequence to a fixed-sized vector with

an encoder to the target sequence with a decoder.

• RNNs are used to retain the sequential information in

the time series.

• LSTM (Long Short Term Memory): Designed for

problems with long term dependencies, addresses the

vanishing gradients issue.

X test Y test +
Predictions

ODE-based neural network:
• COVID-19 forecasting using compartmental model:

● Discretize in time, integrate numerically (RK4)

● Optimize values for β, γ, σ using Adam

Physics-Informed COVID-19 Prediction

ODE/PDE-based neural networks
• COVID-19 forecasting using compartmental model:

● The basic reproduction number can be derived from

contact rate β and recovery rate 𝛾:

● R
0
 was elevated during two waves with peaks in July

and December 2020, but decreased sharply in early

2021

Physics-Informed COVID-19 Prediction

Physics-Informed Traffic Prediction

Numerically solves
Lighthill-Whitham-Richards
macroscopic traffic model
for jam density k

j
 and free

velocity v
f
.

DCRNN (Modeling Product)

• Diffusion Convolutional Recurrent Neural Network

• Network of 320 traffic stations represented as an adjacency matrix.

• Events at a given location propagate downstream

• Graph convolutional RNN architecture

• Spatial Dynamics - Diffused Convolutions on Graphs

• Temporal- Stacked RNN (GRU)

Image credit: Li, Yaguang, et al. “Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting.” ICLR, 2018.

Model Hyperparameters

PARAMETER DESCRIPTION VALUE USED

Batch size Size of input values used in one forward pass 64

Filter type The type of Graph Convolution Dual Random Walk

Number of RNN layers The number of stacked RNN layers to use 2

Maximum diffusion step Maximum steps of random walks K = 3

Optimizer Optimizers used to calculate Gradient Descent Adam

Learning Rate Rate at which the takes optimizer takes steps 0.01

Curriculum Learning Method to learn an encoder decoder network True

Scheduled sampling rate Probability of row being ground truth or prediction 0

~300,000 model parameters

Model Training challenges

Seq2seq Spatio-Temporal

Recurrent Neural
Network (RNN)
Mechanism

Long Short-Term Memory
(LSTM)

Gated Recurrent Unit
(GRU)

Number of
Parameters

399,617 372,353

Estimated
number of
training hours

1.5 hr/epoch 1 hr/epoch

Execution Time
(original EC2
threshold)

~150 hrs ~100 hrs

• Computational Challenges

• Long training times and heavy

computational resources needed

• Resolved using larger AWS resources

g4.dn xlarge and the Nautilus cluster for

batch jobs

• Model training challenges
• Loss value: 0.0000
• NULL Values in the data points at certain

stations
• Resolved using rolling average imputation

Image credit: Amazon Web Services, Kubernetes

Scalability

Data Scalability
● Varying dataset sizes by using

different subsamples of the

traffic graph, 25%, 50%, and

75%.

● MAE increases as we increase

the number of nodes

Model Scalability

● Compute time for different

architectural changes

● Average Epoch time increases with

increase in model parameters

Compute Scalability

● Wrap the library around PyTorch

Lightning library

● Reduction in training time , from 1.4

hours to 4 minutes

Model Interpretation

• MAE of 1.02 across all of the 320 sensors for the test set.

• Lower than the MAE reported in the paper for 2017 traffic data.

• Attributed to simpler data patterns and also a robust DCRNN model

Model Comparison

High level traffic predictions for the general public

• Draw inspiration from Google Maps

• Ubiquitous route planning service

• Color speed by categorical encoding

• Provides familiar view for users

• Displays forecasted instead of current traffic

• Forecasts based on “current” traffic instead of

historical averages

• Not currently connected to live traffic data

Detailed traffic predictions for traffic engineers & data scientists

• User provided with scatter plot

of clickable traffic stations

• Clicking a station location brings

up time series for that station

• Time series controls

• Date Range Picker

• Range slider

• Multi-drop down for

horizon selection

Detailed traffic predictions for traffic engineers & data scientists

• Color freeways by average error for the selected period

• Identify regions where model underperforms relative to rest of network

• Select corresponding stations to investigate further

Refine spatial distribution for smoother visuals

• PeMS stations are rather coarse
• Connecting with straight lines does not follow freeways
• Unable to distinguish between freeway directions

• Interpolate onto finer coordinates obtained from Department of Transportation

Demo

Questions?

