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Library Development

• Project manager & integration lead: Kevin

• Classical time series model: Aparna

• Deep seq2seq: Raul

• Spatiotemporal forecasting: Akash

• PDE + deep learning: Daniel

Team Roles and Responsibilities

Data Analysis

• Project manager: Kevin

• Budget manager: Raul

• Record keeper: Akash

• Solution architect: Daniel

• Visualization & dashboard developer: Aparna



• Why deep learning for time series?
• Broad application in many domains including finance, health, etc.

• Traditional models rely on strong modeling assumptions

• Deep learning can leverage rise in large-scale sensor data

• Improve forecasting of multivariate data and data with spatial characteristics

• Library Development
• Develop open-source deep learning library for time series forecasting in PyTorch

• Existing libraries statsmodels and sktime are limited to traditional models

• GluonTS is a deep learning time series forecasting library based on MXNet

https://github.com/Rose-STL-Lab/torchTS

Why create a deep learning library for time series?

https://github.com/Rose-STL-Lab/torchTS


Introduction 

• Traffic patterns have changed as a result of the COVID-19 pandemic

• Models relying on historical data will perform poorly as a result

• Models that account for changing patterns (additional features, 

online learning, etc.) will outperform these models

• Build a deep learning library for time series forecasting



Data Sources - Traffic

Traffic - CalTrans PeMS

● Traffic observations recorded over 30 second windows

● Multiple rollups available (5 min, 1 hour, etc.)

● 40,000 sensors installed on freeways across California

● No bulk download option provided by Caltrans
● Python script using Beautiful Soup web scraper retrieves 

data by district level, date range, file type

● Frequency: 5 minute interval (new data published daily)
● Size: ~70 MB/day (San Diego), 12.5 MB/day (Bay Area)
● Data Link: PeMS Data Clearinghouse

Image credit: Caltrans

http://pems.dot.ca.gov/?dnode=Clearinghouse


Data Sources - COVID-19 and USDOT

COVID-19

● U.S. county cases and deaths
● Provided by Johns Hopkins as Github repository 
● git pull to refresh
● Frequency: Daily
● Size: ~7.6 MB

● Data Link: Johns Hopkins COVID-19 Repository

USDOT (U.S. Department of Transportation)

● Road network 
● Categorical road layer data in form of shapefiles
● Provided via web interface at County level
● Frequency: One Time
● Size: ~36 MB for Santa Clara county
● Data Link: USDOT Tigerline Roads

https://github.com/CSSEGISandData/COVID-19
https://www2.census.gov/geo/tiger/TIGER2019/ROADS/


Data Pipeline



Acquiring Caltrans traffic data

• Data cleaning and storage

• Scraped Caltrans PeMS website and saved daily files to S3

• Read raw files from S3, clean data, and insert to RDS database

• Data preparation

• Read traffic data for stations and time period of interest from RDS

• Prepare data for model (order stations, create sliding window, etc.)

• Available features at each station (per lane and across all lanes):

• Metadata (ID, location, freeway number/direction, postmile)

• Timestamp

• “Total flow” (number of vehicles)

• Average speed

• Average occupancy

Image credit: Amazon Web Services, PostgreSQL



Acquiring COVID-19 cases

Data cleaning and storage

• Directly cloned from Johns Hopkins Github repository

• Stored on AWS S3

Available features at each COVID-19 reporting location

• Metadata (UID, coordinates, county name, FIPS, population)

• Datestamp

• Number of confirmed cases, number of fatalities



Data Environment

• Amazon Web Services (AWS)

• Simple Storage Service (S3)

• Relational Database Service (RDS)

• Elastic Compute Cloud (EC2)

• PostgreSQL

• Open-source data sources

• Nautilus cluster - Kubernetes deployments

Image credit: Amazon Web Services, Kubernetes, PostgreSQL



Intro: Problem Definition

• Traffic is noticeably lighter during the COVID pandemic

• Increase in average speed

• Decrease in amplitude between weekday/weekend fluctuations

• Can we build a traffic forecasting model that is sensitive to external factors?

• Combine with spatiotemporal characteristics of traffic data



Findings through EDA: COVID-19 changed traffic patterns

EDA Findings on the Traffic Dataset dataset during 2020:

• Top figure Shows “Average Daily Speed” (vehicles/5 min) over 
the course of an average day for the same time frames. It 
shows a dramatic reduction in average speed variation.

• Bottom figure Shows “total flow” (vehicles/5 min) over the 
course of an average day for the same time frames. It conveys 
a large decrease in the number of vehicles on the road, 
particularly after roughly 5:30 AM (left). 



Findings through EDA: COVID-19 COVID Cases by County

• COVID-19 Cases Trend in California 
(Top 6 Counties by Total Cases)

• New COVID cases steadily increased 

till Aug with a subsequent dip

• Cases spike again starting Oct, 

reaching an all time high between Dec 

2020 and Jan 2021

• Autocorrelation for the number of 
COVID Deaths (bottom left) and 
COVID Cases (bottom right) in San 
Diego



Proposed Solution and Approach

Approach for forecasting COVID-19’s impact on Traffic
● Gather, clean and store traffic and COVID-19 data into Amazon RDS.

● Represent data as graphs or adjacency matrices to incorporate spatial information from external factors.

● Implement below forecasting methods and evaluate how including COVID-19 data at county level and spatial 

information improves traffic predictions around certain areas. 

Approach for Deep Learning Library - TorchTS
●  Classical Time series (AR,MA,ARIMA)

●  Seq2Seq methods (Encoder - Decoder)

●  Spatiotemporal methods - Graph Convolutional Networks (GCNs)

●  Partial Differential Equation based Deep Learning.



Autoregressive - Classic Time Series Model

• The autoregression (AR) method models the next step in the sequence as a linear function of 
the observations at prior time steps. 

• The  AR model created has been trained using the traffic sensor measurements at five min. intervals 
for 320 stations in the Bay areas for the time period Jan’20 to Jun’20. The Mean Absolute Error 
calculated for 1 hour horizon is 2.2905 

• The dataset contains each input as a scalar value of 12 values(lag) representing the average speed of 
the vehicles in 5 min interval, depicting the 60 min lag. 



Autoregressive - Performance and Results

• Autoregressive neural network implementation is inspired by AR-Net paper
• Left: AR(12) model successfully predicts next traffic measurement
• Right: AR(20) model fit on AR(3) process correctly determines model coefficients



Seq2Seq model 

• Maps the input sequence to a fixed-sized vector with 

an encoder to the target sequence with a decoder. 

• RNNs are used to retain the sequential information in 

the time series.

• LSTM  (Long Short Term Memory): Designed for 

problems with long term dependencies, addresses the 

vanishing gradients issue.

X test Y test + 
Predictions



ODE-based neural network:
• COVID-19 forecasting using compartmental model:

● Discretize in time, integrate numerically (RK4)

● Optimize values for β, γ, σ using Adam 

Physics-Informed COVID-19 Prediction



ODE/PDE-based neural networks
• COVID-19 forecasting using compartmental model:

● The basic reproduction number can be derived from 

contact rate β and recovery rate 𝛾:

● R
0
 was elevated during two waves with peaks in July 

and December 2020, but decreased sharply in early 

2021

Physics-Informed COVID-19 Prediction



Physics-Informed Traffic Prediction

Numerically solves 
Lighthill-Whitham-Richards 
macroscopic traffic model 
for jam density k

j
 and free 

velocity v
f
.



DCRNN (Modeling Product)

• Diffusion Convolutional Recurrent Neural Network

• Network of 320 traffic stations represented as an adjacency matrix.

• Events at a given location propagate downstream

• Graph convolutional RNN architecture

• Spatial Dynamics - Diffused Convolutions on Graphs

• Temporal- Stacked RNN (GRU)

Image credit: Li, Yaguang, et al. “Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting.” ICLR, 2018.



Model Hyperparameters

PARAMETER DESCRIPTION VALUE USED

Batch size Size of input values used in one forward pass 64

Filter type The type of Graph Convolution Dual Random Walk

Number of RNN layers The number of stacked RNN layers to use 2

Maximum diffusion step Maximum steps of random walks K = 3

Optimizer Optimizers used to calculate Gradient Descent Adam

Learning Rate Rate at which the takes optimizer takes steps 0.01

Curriculum Learning Method to learn an encoder decoder network True

Scheduled sampling rate Probability of row being ground truth or prediction 0

~300,000 model parameters



Model Training challenges

Seq2seq Spatio-Temporal

Recurrent Neural 
Network (RNN) 
Mechanism

Long Short-Term Memory 
(LSTM)

Gated Recurrent Unit 
(GRU)

Number of 
Parameters

399,617 372,353

Estimated 
number of 
training hours

1.5 hr/epoch 1 hr/epoch

Execution Time
(original EC2 
threshold)

~150 hrs ~100 hrs

• Computational Challenges

• Long training times and heavy 

computational resources needed

• Resolved using larger AWS resources 

g4.dn xlarge and the Nautilus cluster for 

batch jobs

• Model training challenges
• Loss value: 0.0000
• NULL Values in the data points at certain 

stations
• Resolved using rolling average imputation

Image credit: Amazon Web Services, Kubernetes



Scalability

Data Scalability 
● Varying dataset sizes by using 

different subsamples of the 

traffic graph, 25%, 50%, and 

75%.

● MAE increases as we increase 

the number of nodes

Model Scalability 

● Compute time for different 

architectural changes

● Average Epoch time increases with 

increase in model parameters

Compute Scalability

● Wrap the library around PyTorch 

Lightning library

● Reduction in training time , from 1.4 

hours to 4 minutes



Model Interpretation

• MAE of 1.02 across all of the 320 sensors for the test set.

• Lower than the MAE reported in the paper for 2017 traffic data.

• Attributed to simpler data patterns and also a robust DCRNN model



Model Comparison



High level traffic predictions for the general public

• Draw inspiration from  Google Maps

• Ubiquitous route planning service

• Color speed by categorical encoding

• Provides familiar view for users

• Displays forecasted instead of current traffic

• Forecasts based on “current” traffic instead of 

historical averages

• Not currently connected to live traffic data



Detailed traffic predictions for traffic engineers & data scientists

• User provided with scatter plot 

of clickable traffic stations

• Clicking a station location brings 

up time series for that station

• Time series controls

• Date Range Picker

• Range slider 

• Multi-drop down for 

horizon selection



Detailed traffic predictions for traffic engineers & data scientists

• Color freeways by average error for the selected period

• Identify regions where model underperforms relative to rest of network

• Select corresponding stations to investigate further



Refine spatial distribution for smoother visuals

• PeMS stations are rather coarse
• Connecting with straight lines does not follow freeways
• Unable to distinguish between freeway directions

• Interpolate onto finer coordinates obtained from Department of Transportation



Demo



Questions?


