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1 Introduction
The dataset consists of pairs of computationally simulated intracardiac transmembrane voltage recordings and
ECG signals. In total, 16140 organ-level simulations were conducted to create this dataset. Simulations were
performed using Lassen supercomputer at Lawrence Livermore National Lab (LLNL) , concurrently utilizing
4 GPUs and 40 CPU cores. Each simulation produced pairs of 500×ms-by-10 ECG signals and 500×ms-by-
75 transmembrane voltage signals. For convenience, we collect those signals in matrices X ∈ R500×10 and
V ∈ R500×75, respectively. Each of these matrices is then stored as a numpy array. Figure 1 shows the data
generation process. Figure 5 and Figure 6 show the structure of the dataset subfolders with number of files,
memory size and examples of the conventions used for naming the numpy arrays. Given the matrix X, the
standard 12 lead signal are obtained using the following transformation:



X:,1 → RA
X:,2 → LA
X:,3 → LL
X:,4 → RL
X:,5 → V 1
X:,6 → V 2
X:,7 → V 3
X:,8 → V 4
X:,9 → V 5
X:,10 → V 6

and



Lead I : LA−RA
Lead II : LL−RA
Lead III : LL− LA
Lead aV R : 3

2 (RA− V w)
Lead aV L : 3

2 (LA− V w)
Lead aV F : 3

2 (LL− V w)
Lead V 1 : V 1− V w
Lead V 2 : V 2− V w
Lead V 3 : V 3− V w
Lead V 4 : V 4− V w
Lead V 5 : V 5− V w
Lead V 6 : V 6− V w

with the (Wilson Lead) V w : 1
3 (RA + LA + LL). Code to perform this transformation is provided in

notebooks/data_inspect.ipynb. Further details on the simulation settings, such as the mathematical models,
the anatomical geometries, and the parameter variations, are presented in the following section.

2 Simulation details
Cardiac simulations were carried out using Cardioid [17], a multiscale cardiac simulation code developed at
Lawrence Livermore National Laboratory (LLNL). Cardioid uses a finite volume method with explicit timestep-
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Figure 1: Illustration of the data generation process. The cardiac simulation produces 10 ECG signals and 75
transmembrane voltage signals of 500×ms duration. We collect each of those in a matrix and save them as
numpy arrays.

ping to solve the monodomain model [11, 10], a system of reaction-diffusion equations that descibes the spa-
tiotemporal evolution of the transmembrane voltage within the myocardium. These equations are coupled with
cell models that describe the dynamics of ionic species flux through the cell membrane. In this work, the cell
models proposed by Ten-Tusscher [19] were used for endocardial, midmyocardial, and epicardial cells.

The monodomain equations were solved in real bi-ventricular cardiac domains. The patient specific geome-
tries were obtained from the publicly available database made available from Inria [7], in which those geometries
were created using original MR images from the Stacom 2011 challenge [20]. Meshes were preprocessed to make
them compatible with the Cardioid solver and resolved to a 200 µm resolution (see Figure 2). Myocardial fiber
orientations were assigned based on rule-based laplacian-driven algorithms for interpolating fiber geometries in
the absence of DTMRI data [2].

The high resolution simulations of the transmembrane voltages within the myocardium were used to compute
the synthetic ECG signals. The simulation of realistic ECG signals using full organ models of the heart is a very
active field of research [4, 12]. To reconstruct the ECG signal, a full heart-torso coupled problem can be solved
for each time-step [4, 6] or, alternatively, the pseudo-ECG approach [16, 3, 8] can be followed; the latter was
used in this work. The locations of the pseudo-ECG electrodes were chosen based on locations derived from an
existing torso mesh and then normalized to a 100 mm radius around the center of each mesh (see Figure 3b).

The morphology of the ECG signal is sensitive to the initial endocardial stimulus [6]. In this work, activa-
tion patterns were extracted from the literature [9, 5]. In order to retrieve physiological T wave morphology
in the ECG signals, apex-to-base action potential duration (APD) heterogeneity [12], and transmural APD
heterogeneity [19] were included within the ionic models. In addition, heart conductivities were changed near
endocardial and epicardial surfaces to account for the bath loading effects over the surfaces of the heart [3].

For the recording of the transmembrane voltages within the myocardium, 30 points were selected by hand for
each mesh — 17 endocardial points were selected in the left ventricle (LV), corresponding to standard AHA17
segment locations [15], and 13 points were selected in the right ventricle (RV), according to an equivalent
segmentation of that ventricle [21]. See Figure 3a for a schematic representation of the points over a Bull’s-eye
display of the heart. From these 30 points, 20 exterior wall points were programmatically identified based on
minimum distances from the hand-selected endocardial points, and 25 mid-myocardial points were then found
through interpolation. For each simulation performed, simulated transmembrane voltages were recorded for
each of the 75 epicardial/midmyocardial/endocardial points.

2



Figure 2: Bi-ventricular cardiac geometries.

Human ventricular activation and ECG data exhibit a high level of morphological variability depending on
physiological and pathophysiological factors [1]. In order to reproduce this variability and enrich the dataset of
activation-ECG pairs, the following combinations of parameters were explored:

• A suite of 15 clinical bi-ventricular geometries was considered to model inter-subject variability in anatom-
ical morphology and ventricular thickness. See Figure 2.

• A library of 29 clinically-inspired activation patterns was designed to account for variations across pa-
tient Purkinje systems. For each activation pattern, activation times over the previously identified 30
endocardial points were chosen according to the distributions presented in the literature [9, 5].

• A set of 3 different combinations of tissue conductivities (longitudinal, traversal and normal) was consid-
ered. Starting from the original values reported in [14], the library was designed to obtain 3:1, 4:1 and
6:1 ratios between longitudinal and transverse conduction velocities. These parameters were tested and
exhibited conduction velocities that where within the physiological ranges reported in literature [10].

• In addition to the original value of the maximal conductance GKr of the rapid delayed rectifier current
proposed in [19] for the cell model, two variations were considered: 0% (blocked) and 50% original value.
This parameter is known to affects APD [13, 18].

• Basic Cycle Lengths (BCL) of 600 ms and 1000 ms were considered to produce different initial states for
the cell models. The choice of initial BCL states affect APD [18].

• Randomized samples over the space of inner activation points (75 points inside the myocardium) were
considered to capture early activation and pathological scenarios.

All simulations were performed for 500 ms of simulation time with 200 µm resolution meshes and a time-step
of 5 µs. The ECG and transmembrane voltages were recorded at a resolution of 1 ms. All variations in the cell
models parameters (apex-to-base and transmural APD heterogeneity, GKr and BCL) were pre-simulated with
100 beats in a single cell simulation in order to reach dynamic steady-state.

3 Data inspection
The data consists of simple pairs on numpy arrays. It can be loaded and displayed using the code below to produce
Figure 4. In the repository, we provide Jupyter and Mathematica Notebooks, notebooks/data_inspect.ipynb
and notebooks/data_inspect.nb respectively, to inspect the data.
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(a) (b)

Figure 3: Recording points. (3a) Location of 30 manually selected endocardial points. (3b) Location of the
pECG electrodes (red) and transmembrane voltage recording points (blue).

import numpy
import matplotlib.pyplot as plt
pECG = np.load(pECGData_hearts_dd_0p2_volunteer.v10_pattern.0.npy)
Vm = np.load(VmData_hearts_dd_0p2_volunteer.v10_pattern.0.npy)
plt.figure(figsize=(20, 5))
plt.subplot(1,2,1)
plt.plot(pECG)
plt.subplot(1,2,2)
plt.plot(Vm)
plt.show()

Figure 4: Example of processed numpy arrays.

4 Aacronyms and abbreviations
Here, we describe the aacronyms and abbreviations used in table headings or other data descriptors. The name
conventions for the numpy arrays are

{pECGData_,VmData_} + subfolder_name_ + {volunteer.#,pattern.#,bcl.#,gkr.#,innerindex.#}

with

File Flag Description Range for #
volunteer.# Cardiac geometry {v1,v2,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,v16}
pattern.# Activation pattern 0, 1, 2, . . . , 28

bcl.# Basic cycle lengths {600,1000}
gkr.# Variation on GKr {000,050}

innerindex.# Inner activation point 0, 1, 2, . . . , 74
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The structure of the dataset subfolders with global parameters, number of files and memory size is presented
in Figure 5. Examples of the name conventions for the numpy arrays inside each subfolder is shown in Figure 6.
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Figure 5: Name of dataset subfolders with golbal parameters, number of files and memory size.
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Figure 6: Name of dataset subfolders with examples of numpy arrays (for name convention clarification).
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