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Abstract ​— The American Gut Project (AGP)​ ​[1] is the 
largest citizen crowd-sourced collection of gut 
microbiome samples available today.  Knowledge of 
the microbiome is in its beginning stages and the 
enormous amount of organism and gene effects that 
are ill-understood makes accurately interpreting 
results difficult.  Reducing this high dimensional space 
with fundamentally different embedding techniques 
can be effective in capturing different aspects of the 
microbiome data to aide in research.  Dimensionality 
reduction techniques like Word2Vec, Hyperbolic 
Embeddings, and Principal Coordinates Analysis 
(PCoA) were used to reduce a single sample’s 
dimensionality and explore their different strengths. 
Embeddings were validated by using them as features 
for a supervised machine learning model that classifies 
microbiome body sites (e.g. sebum, feces, saliva). 
Competing against the state of the art of PCoA using 
underlying phylogeny distances, the different 
embeddings kept the baseline logistic regression 
model’s F1 score within acceptable margins at +/- 0.1. 
These reduction comparisons included actual 
dimension sizes, metrics of the model prediction, and a 
representation of samples’ clusters.  This paper will 
discuss the analysis, architecture, and visualization of 
the project that approached this main technical 
challenge of gaining a better understanding of 
microbiota. 

I. INTRODUCTION & QUESTION 

 
     The study of the human ​microbiome is a relatively new 
focus in health research.  Valid findings through research 
in this realm have great potential to improve quality of 
life and understanding of human bodies for all.  The 
human body contains thousands of human genes but also 
millions of human microbiome genes, dwarfing our own 

gene makeup [9].  As discussed, this large crowd-sourced 
repository of microbiome data has been collected by the 
American Gut Project (AGP) [1], and is the main source 
of data for this project.  A major challenge in microbiome 
data studies is the pure amount of microbial imprints 
found within the gut, sebum, saliva, and other body sites 
where these organisms live. These imprints are hereby 
referred to as operational taxonomic units (OTUs) which 
for this study are 100 nucleotide truncated V4 regions of 
the 16S SSU rRNA gene referenced using the Greengenes 
taxonomy database [15].  From a data science perspective, 
these large amounts of diverse microorganisms makes it 
difficult to interpret and model for underlying research. 
In its post-sequenced OTU form this challenge becomes 
especially difficult in studies with small sample sizes even 
for the AGP that has tens of thousands of samples. 
Providing alternative solutions to this problem can aide 
future interpretability of the microbiome for biological 
researchers to unveil more of what comprises our human 
microbiome makeup.  The team’s approach throughout 
this paper will support this main hypothesis, that different 
embedding techniques can be used in symphony to allow 
further research to discover new unknowns about our 
microbiomes than before.  

B. Related Work 

     ​Although fundamentally different to the approaches 
described in this study previous research have utilized 
embeddings such as word2vec as a dimensionality 
reduction technique for body site classification. In 2018 
Woloszynek​ et al.​ described a method for using 
skip-gram word2vec to embed k-mer sequences of 16S 
amplicon data for the purpose of body site classification. 
[2] Using this method body site classification 
performance was shown to be comparable to using 
unprocessed OTU abundances. The implementation of 
word2vec and hyperbolic embeddings in this study take a 

 



 

different approach where the embedding techniques are 
generated using OTU co-occurrence information rather 
than raw nucleotide sequence data.  
     Microbiome studies leveraging next generation 
sequencing have revealed an important relationship 
between microbes and their environment. This close 
relationship between environment and microbiome 
composition means that more variation is seen between 
environments, e.g. mouth or skin, than is seen from 
person to person. Utilizing this information classification 
of body site based on prevalence of OTUs can be 
accomplished at high accuracy. In the context of our 
research we use this classification task to validate the 
quality of the generated embeddings to ensure that the 
important semantics of a given microbiome are retained 
after undergoing dimensionality reduction.  

II. TEAM ROLES 

     The Capstone project’s team structure was taken from 
advisor guidance and divided among the four student 
team members.  The four roles were Treasurer, Project 
Coordinator, Record Keeper, and Rotational Support of 
Roles. B. Westerberg was the Treasurer who maintained 
the Amazon Web Service (AWS) credits and in summary 
was a principal investigator of the hyperbolic 
embeddings, drug clustering, drug integration, and body 
site classification lead.  R. Inghilterra was the Project 
Coordinator who kept the team up to date on milestones, 
meetings, and deliverables.  In summary, he was the 
principal investigator of the QIIME [6] library usage, 
drug permanova testing, PCoA analysis, and lead on 
visualizations.  S. Rowan was the Record Keeper who 
submitted reports and deliverables, and in summary also 
was investigator of word2vec embeddings, pipeline data 
integration, and model hyperparameter execution/tuning. 
R. Conrad was the Rotational Support of Roles and aided 
in each role if a member was unavailable or ill.  In 
summary, he also investigated data imputation, data 
cleaning, pipeline execution/scalability, and experimental 
metadata modeling. 

III. DATA ACQUISITION 
A. Data Sources and Sizes 

     The data sources for the project and project 
experiments contained in the source code repository are 
illustrated in Table 1. 
 

Ref.  # Dataset Name Data Size 

1 American Gut Project 
Drug Questionnaire 

200 MB 

2 XML Drugbank 
Database 

1.3 GB 

3 American Gut Project 
Metadata & Vioscreen 

Diet Data 

150MB 

4 Raw Microbiome 
Sample Data 

101 GB 

Table. 1. Data Sources 
 

     The main problem statement and results illustrated in 
this paper solely use dataset #4, the Raw Microbiome 
Sample Data ultimately used to make embeddings.  This 
data contains 19,762 samples of  raw 16S rRNA genomic 
data sequences. The rest of the data is pulled into an 
integrated pipeline for the final product that visualizes 
patient drug, diet, survey, and microbiome data in one 
view, as well as appearing in other experiments not 
reported. 

B. Data Collection 

        The data sources #3 and #4 were made available 
under study 10317 in the Qiita [5] web portal that allows 
easy downloads of files and ingestion into a storage bank 
like AWS S3 buckets.  The #1 set of drug questionnaires 
was supplied privately by advisors and #2 was 
downloaded from the Drugbank [8] web pages into .csv 
files.  All of this data was uploaded to an S3 AWS bucket 
as pickle files for accessibility from the luigi  python 1

pipeline using boto3  libraries. 2

D. Data Setup and Pipeline 

     All of the teams data was stored in the cloud on AWS 
to be either run locally or remotely on more powerful 
servers using a data integration pipeline powered by luigi. 
There were no databases used in the processing, 
modeling, or visualizations of the project.  All data was 
downloaded and streamed into memory for processing 
which had checkpoints to have results loaded back onto 
S3.  For instance, clean debloomed and rarefied 
Greengenes OTUs were saved to S3 after their laborious 

1 luigi: ​https://luigi.readthedocs.io/en/latest/ 
2 ​boto3: 
https://boto3.amazonaws.com/v1/documentation/api/latest
/index.html 

https://luigi.readthedocs.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html


 

conversion from raw sequences.  Additionally, the team 
could save embedding runs of Word2Vec or Hyperbolic 
into S3 for inclusion in the pipeline at anytime.  The data 
pipeline below in Figure 2. and later sections describe this 
in more detail. 
 

 
Fig. 1. Abstract Data Integration and Execution Pipeline using Luigi 

IV. DATA PREPARATION 
A. Microbiome Gene Sequences 

     The raw 16S data sequences are converted to the 
OTUs in this study via “​97% pairwise identity using as 
reference the latest release of the GreenGenes (GG) 
taxonomy” aided by the use of the QIIME libraries. As 
noted in Section I, these OTUs​ are 100 nucleotide 
truncated V4 regions of the 16S SSU rRNA gene using 
the Greengenes taxonomy database as reference ​[1]​. ​ ​The 
preprocessing of these OTUs involves removing blooms 
and using rarefactions at 1000 sequences/sample.  The 
resulting feature size of OTUs used at 1000 seq/sample 
was 19,105 per sample. 

     i. Bloom Removal 

     ​Blooms are bacterial growths which can appear on 
room temperature DNA samples even in sterile 
environments. Recent work on the American Gut Project 
has been done to help identify the DNA sequences 
(OTUs) that correspond to these bloom bacterias. Studies 
from the American Gut Project show that these blooms 
can affect the alpha and beta diversity of microbiome 
samples significantly in some cases. Code was added to 
our data pipeline to identify any bloom OTUs and remove 
them from our microbiome dataset.  See reference for 
more details on blooms [11]. 

     ii. Rarefaction 
     As part of the microbiome data processing, rarefaction 
is applied to the microbiome OTU data. Rarefaction 
randomly samples the data we get after sequencing a 
patient’s sample.  This is done because ​the more you 
sequence the more you will observe​.  ​If in one sample 
you sequence a lot, you are more likely to observe 
organisms at a 1:100000 relative ratio for instance.  This 
problem is analogous to sampling a forest for example. 
Counting the number of different types of plants in a 
square mile of a forest and comparing that to the number 
you would observe if you were operating at ten square 
miles. Rarefaction helps to keep the sampled space onto a 
similar playing field.  This ​rarefaction can be run at 
different sampling depth levels where different sampling 
levels will change the number of OTUs produced in the 
end microbiome dataset [13]. This rarefaction sampling 
depth level in a sense is a hyperparameter that can be 
optimized, so our data processing workflow is generic 
enough to easily pass in different rarefaction levels with 
the ability to generate new datasets from these different 
rarefaction scenarios. 

     iii. Alpha Diversity 

     Alpha diversity has been shown to be a metric of 
interest in recent microbiome related research as it helps 
capture the amount of different observed OTU’s that 
occupy each sample.  This can be a basic microbial metric 
to show differences of ‘counts’ between samples.  We 
calculated the alpha diversity of each microbiome sample 
by taking the number of unique operational taxonomic 
units (OTUs) found in each sample OTU (Observed 
OTU).  This number was integrated into the finalized data 



 

collection and shown for each sample in a visualization 
among other patient information. 

     iv. Pythonic Organization 

     ​Additional processing included creating ‘OTU_ids’ 
for our microbiome dataset and exporting a dictionary of 
OTU identifiers linked to the raw unique DNA sequence 
of each OTU. Previously the raw DNA sequences were 
being used as the ids which was making our dataset larger 
than necessary and slowing down our analysis work in the 
python pipeline. 
     The final format exported after processing the 
microbiome is a Pandas Sparse Dataframe. This worked 
well for our large dimensional sparse nature of the OTU 
data, allowing for storage in a pickle file and easy 
transportation and ingestion by our other python scripts. 
Logic was required in our processing steps to convert the 
microbiome data from qiime2 libraries ‘BiomTable’ 
format into a correctly formatted Pandas Sparse 
Dataframe format. 

B. Sample’s Survey Metadata 

     ​The sample metadata comprises about 350 columns of 
vast and varying information about a person’s life, living, 
and well-being.  The metadata additionally includes 250 
columns that comprise Vioscreen diet questionnaires.  A 
subset of this information like age, Body Mass Index 
(BMI), country of residence, latitude, longitude 
accompanied patient microbiome and drug data in the 
final visualization.  There are times that survey answers 
were not filled out and resulted in missing information, 
showing ‘null’.  For the most part, the above metadata 
features have a high percentage of appearance for all 
samples. 

C. Drug Data 

     ​In the scope of our research the drug survey data was 
primarily used to enrich the data visualization aspect of 
the project. Initial exploratory analysis was able to 
reproduce some of the widely established correlations 
between antibiotic use and alpha diversity.  In total there 
were 1,500 logged supplements or drugs used by sample 
providers.  In other experiments, a hierarchical cluster of 
drugs was produced using the Drugbank database, as well 
as Omeprazole analysis using permanova tests. 

V. ANALYSIS METHODS 

     ​The size of all AGP sample submittals at publication 
of this paper was 19,762, and the feature dimension was 
19,105.  To make classifiers and principal component 
interpretation more approachable for this data the 
techniques to be used as experiments against raw OTU 
abundances were PCoA, Word2Vec, and Hyperbolic 
embeddings. 

A. Word2Vec Embeddings 

     The first embedding technique applied to the dataset 
leverages a technique commonly used in NLP, Word2Vec 
[14]. This model attempts attempts to learn the contextual 
meaning of words from a training corpus. Once the model 
is trained, the model outputs a vector, typically ranging 
between 50 to 1000 dimensions, corresponding to each 
word. Similar words should be closer in proximity in 
vector space. For example, the distance between “dog” 
and “cat” in this vector space should be smaller than the 
distance between “dog” and “mountain.” 
     Since the OTU occurrence in each sample is sparse, we 
hypothesized that a corpus could be created from the 
OTUs within each sample. Each sample could be seen as 
a sentence and the value of the OTU as the number of 
times the word appears in the sentence. In process to 
create the embedding from the sample is the following: 
sum the word vector for each word in the sentence and 
divide by the number of words in the sentence.  
     Hyperparameter search was performed in order to 
optimal embedding. The luigi data pipeline made it easy 
and efficient to parallelize the execution of the 
hyperparameter search. A few hyperparameters were 
number of dimensions, epochs, and minimum amount of 
times a word appears in the corpus. These embeddings 
also used the continuous bag of words (CBOW) 
implementation of Word2Vec. Training a logistic 
regression model to classify body site and comparing the 
test F1 score was how we determined the effectiveness of 
the embedding. 
     ​PCA was run on the embedded samples in order to 
visualize the data in both two and three dimensions in 
order to examine the embeddings. It is clear by the 
separation of body site clusters in Figure 2 that 
Word2Vec is able to construct logical embeddings using 
only OTU data.  



 

  

 
Fig. 2. Word2Vec Embeddings 

B. Hyperbolic Embeddings 

     The goal of embeddings is to describe data in a low 
dimensional space that maintains the original semantic 
information contained in the data’s uncompressed form. 
For data that comes in the form of a tree, graph, or any 
other structure with a latent hierarchy embedding in a low 
dimensional space, it becomes challenging to do this 
while faithfully representing the structure of the original 
data. In 2017 Maximilian Nickel and Douwe Kiela of 
Facebook AI Research proposed an embedding function 
to overcome this challenge [12]. Their solution to the 
problem of representing hierarchical data was to project it 
into hyperbolic space rather than Euclidean space. The 
negative curvature of hyperbolic space with its inherent 
nonlinearity lends itself to effectively representing 
hierarchical data that contain several layers of edges and 
vertices. Nickel and Kiela propose several variants of this 
technique known as Poincare and Lorentz embeddings, 
which differ in implementation details, both work by 
projecting data into hyperbolic space. 
     As originally described by Nickel and Kiela, this type 
of embedding is highly effective at representing large 
scale taxonomies in low dimensional space and a prime 
candidate for describing the taxonomy of each OTU in a 
way that could be consumed by a machine learning 
model. Using the Greengenes database that maps OTUs to 
their estimated taxonomic description we were able to 
generate a ten dimensional embedding that described the 
full taxonomy, i.e. kingdom, phylum, class, order, family, 
genus, species, of each OTU. To create a final embedding 

for each sample a log weighted average of all OTU 
embeddings were averaged together to create a final ten 
dimensional vector describing a sample. 
     Construction of the embedding was done using the 
open-source library, poincare-embeddings, published by 
Facebook Research. To exploit the native GPU support of 
the library an g3.4xlarge EC2 instance from AWS was 
used to fit the embedding.  
     This embedding similarly to the Word2vec one was 
validated by using the product embedding vectors as input 
features to supervised body site classification. The 
embedding was also qualitatively validated by visualizing 
it in two and three dimensional space using principal 
component analysis. Despite the different shape of the 
bodysite clusters it was clear from the visualization 
exercise that the embedding was highly effective at 
representing the data using only taxonomic information 
associated with each OTU.  

 
Fig. 3. 2D projection of  hyperbolic embeddings obtained from 

Greengenes taxonomy data 

C. PCoA Embeddings 

     Principal Coordinates Analysis (PCoA) is an 
extensively researched and powerful dimensionality 
reduction technique to identify factors explaining 
differences among microbial communities [7]. PCoA is 
similar to PCA with the only difference being that the 
input matrix is a distance matrix instead of a covariance 
matrix. PCoA has shown to be most effective when used 
with a UniFrac distance metric [7]. UniFrac is a 
β-diversity measure that uses phylogenetic information to 
compare samples. β-diversity was measured between all 



 

of the samples using the Unifrac distance metric with the 
result being a matrix containing beta diversity similarity 
measurements between each sample. PCoA was then 
applied to the matrix, which gave a 3-dimensional 
embedding of all samples, as well as the percent 
explained variance of each of these top three dimensions. 
    The same body site classification and qualitative visual 
inspection process used on the other embeddings was also 
used on the PCoA results. From visualizing the top two 
principal components, it was clear from the distinct 
separation in body sites why using PCoA with Unifrac is 
currently the de facto standard for dimensionality 
reduction in microbial analysis.  
 

 
Fig. 4. 2D projection of  PCoA  embeddings 

 

D. Body Site Classification Model  

     ​To provide a baseline of comparison against PCoA 
embeddings and no embeddings, a linear regression 
model was implemented at the end of the pipeline to 
predict the body site locations of where the microbiome 
OTU’s occurred.  These sites are sebum (skin), saliva, and 
feces.  The total sample size was 19,762 and was split into 
train and test sets as 66% and 33% respectively.  All of 
the embeddings were run through the same linear 
regression model that used L2 penalty, the solver 
algorithm Limited Memory (LM) ​Broyden-Fletcher- 
Goldfarb-Shanno (BFGS)​ [lbfgs], and C or ​inverse of 
regularization strength parameter of 1e​-3​.  This allowed 
comparisons of F1 scores and accuracy of prediction in 
the next section. 

VI. FINDINGS 

A. Model Metrics 
     The final results shown in Table 2 are the F1 scores of 
the body site classification model run with 19,762 row 
samples.  This used a balanced F1 score metric, which can 
be interpreted as a weighted average of the precision and 
recall, where an F1 score reaches its best value at 1 and 
worst score at 0. The relative contribution of precision 
and recall to the F1 score are equal. The formula for the 
F1 score is: ​F1 = 2 * (precision * recall) / (precision + 
recall).  Since this model predicted multi-class of body 
sites (i.e. sebum, saliva, feces), a weighted ​average of the 
F1 score of each class is the final result. 
 

Embedding Dimensions Trainin
g Acc. 

% 

Test 
Acc. % 

Test 
F1 

Score 

No 
embedding 

19105 99.0 98.3 .982 

PCoA 3 95.5 95.8 .958 

Hyperbolic 10 96.6 96.2 .961 

Word2Vec 80 88.9 88.7 .848 

Table. 2. Body Site Classification with Embeddings Test Results 
 

     These findings show that the neural embeddings 
perform well compared to the current state of the art 
which is PCoA.  Hyperbolic embeddings for this 
particular model slightly outperform the PCoA 
embedding in F1 score, but it also has 7 more dimensions 
available and could be seen as equal or even slightly less 
powerful because of this fact.  The Word2Vec 
embeddings, which are most divergent in terms of 
function from the other embeddings, performs 
approximately 0.1 less than the other F1 scores.  The 
word2vec model, despite its dimensions size of 80, was 
not able to capture as much informative data compared to 
the other embeddings.  This is most likely a factor of 
having no taxonomic information, but makes this 
approach even more interesting.  As seen in the 
embedding clusters of body site results in Figure 2, the 
reduction appears to capture different structures of the 
microbiome data than PCoA and Hyperbolic. The model 
classification accuracy of word2vec trails behind the other 



 

models with at test accuracy of 88.7%.  These are all 
compared against the pure feature set, which 
understandably outperforms them all in F1 score and 
accuracy because of the vast amount of features available 
for the model to utilize.  

A. Embeddings Explained Variance 

 

Embedding PC1 
Explained 

Variance % 

PC2 
Explained 

Variance % 

PC3 
Explained 

Variance % 

No embedding 40.1 5.0 4.3 

PCoA 18.4 19.4 4.4 

Hyperbolic 65.8 12.8 4.2 

Word2Vec 39.7 23.0 9.3 
Table. 3. Embeddings PCA Explained Variance 

 
     PCA was performed on each of the embeddings to 
evaluate the explained variance captured in the top three 
eigenvectors. The hyperbolic and word2vec embeddings 
yielded a higher total explained variance in the first three 
eigenvectors compared PCoA. However this difference in 
explained variance was uncorrelated to classification 
accuracy and emphasises the point that capturing high 
explained variance does not imply high classification 
accuracy. To see how the embedding results for samples 
were visualized see Section VII Part C. 

VII.TECHNICAL SOLUTION 

A. Model Evaluation 

     The word2vec and hyperbolic embedding models were 
compared against the control method of PCoA. PCoA 
represents the gold standard dimensionality reduction 
technique as it excels at showing distinct separation 
between body site locations in low dimensions.  

B. Performance and Scaling 

     The UCSD Knight Lab had granted the team usage 
rights on its datacenter cluster called `barnacle`.  These 
servers have many different options of configuration if 
running within a Jupyter context or from a job submission 
on the command line (using PBS [​Portable Batch System] 
qsub).  The Jupyterhub instances offer up to 32 cores and 

64 GB of RAM for 12 hours, otherwise you can use the 
`barnacle` datacenter and submit jobs for larger needs. 
     Due to the modular nature of Luigi it is extensible, 
flexible, and offers idempotence with checkpointing. 
This allowed the team to take the Luigi python pipeline 
and load it onto barnacle as a library.  The pipeline was 
able to run instances of raw data preprocessing and model 
execution fast and in parallel when spinning up a 32 core 
and 64 GB RAM instance on barnacle’s Jupyterhub.  This 
was much for efficient than using commodity local 
hardware or computers.  The team had used this capability 
to scan through many hyperparameter variables at once to 
capture low hanging fruit of optimizing models, even in 
some experiments we did not report in this paper. 
     The team also extensively used the checkpointing 
feature of Luigi and saved post-processed data onto the 
S3 buckets, like embeddings for example.  This allowed 
the team to focus on iterative improvements of particular 
parts of the entire execution and therefore resulted in 
runtime performance not being as challenging compared 
to the other aspects of the project. 

C. Reporting Results Interface 

     An interactive dashboard for visualizing the different 
types of embedding results was created using Plotly’s 
Dash framework, with the full implementation done 
using Python. A user can select the embedding type, a two 
or three dimensional scatterplot, and the principal 
components/coordinates of the embeddings are plotted for 
all samples, with the points colored by body site. 
Zooming, rotating, and information-on-hover are all 
supported, providing a powerful exploratory experience to 
the user. Additionally, a user can select a specific sample 
from a dropdown menu, and the dashboard will 
dynamically update the grey section of the user interface 
with additional sample information such as Alpha 
Diversity, BMI, medications taken, etc. When a sample is 
selected from the dropdown, that sample is highlighted 
with a red marker in the embedding scatter plot, allowing 
for visual analysis of the sample relative to the samples.  
     Plotly allows for rendering scatter plots using ‘webgl’, 
a highly scalable rendering solution for web browsers. 
‘Webgl’ rendering was used for the dashboard’s 
scatterplot, allowing for quick and scalable rendering of 
over 17,000 points. 



 

 
 

Fig. 5. 3D scatterplot  of  PCoA embedding 
 

     In order to visualize the taxonomic breakdown of each 
sample a sunburst plot was included in the dashboard to 
complement the 3D embedding scatter plot. The sunburst 
plot shows the top two levels of the taxonomy breakdown 
for a selected sample, i.e. phylum and class. This helps 
recapture the native structure of the data that was lost 
during the embedding process and helps highlight the 
power of the hyperbolic embedding when it comes to 
transforming hierarchical data into a low dimensional 
continuous space. Like the rest of the visualization 
dashboard the sunburst plot was created using Plotly. In 
its current implementation only two taxonomy levels are 
shown due to the challenges associated with plotting 
hierarchical data that contains significant depth. The 
sunburst supports interactivity meaning certain levels of 
the tree can be collapsed if the user deems there to be too 
much information being shown. Overall, we found the 
sunburst plot to  be an expressive and effective tool for 
communicating the taxonomic breakdown of each sample. 
 

 
 

Fig. 6. Sunburst plot showing  relative abundances of bacteria found in 
sample_id: 1042,  broken down by phylum and class 

 

VIII.CONCLUSION 

     The goal set out for the original problem statement was 
successful.  The OTUs from one of the largest available 
collections of microbiome data was reduced in size by 
multiple magnitudes by current and experimental 
embedding techniques that ended up fundamentally 
capturing different structures of information.  These low 
dimensional vector space features were tested in 
comparison with the state of the art and comparably 
performed.  The true semantics of these embeddings are 
most likely not currently appreciated, and future work 
could shed light on the items they highlight within the 
microbiome. 
     An AGP applicable ingestion pipeline that can 
drastically scale, speed up performance, and allow 
iterative data analysis of models, features, and data was 
set up.  This pipeline could integrate varying sources of 
data easily and resulted in a rich dashboard for citizen 
scientists, researchers, and hobbyists to explore and add to 
for years to come.  Users can view the difference of 
embeddings at a granular scale, even down to a single 
sample and its microbiome taxonomy makeup. 
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