GEOSECS EXPEDITION

LEG K

R/V MELVILLE

INFORMAL REPORT AND INDEX OF
NAVIGATION, DEPTH AND MAGNETIC DATA

Papeete, Tahiti (14 May 1974)

to

San Diego, Calif. (10 June 1974)

Chief Scientist - W. Broecker (Lamont)

Resident Marine Tech - Sharon Witherow

Post-Cruise Processing by - S. Smith, U. Albright, O. McConnell, R. Lingley

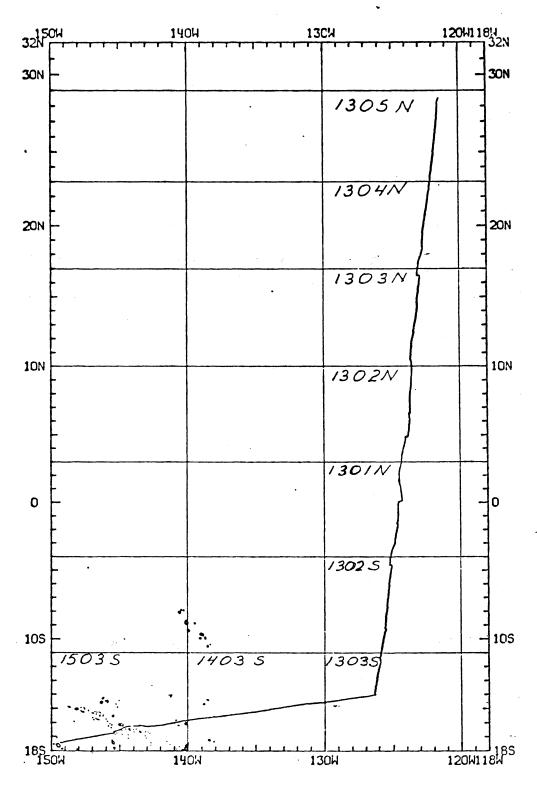
Prepared by

Underway Data Processing Group

S.I.O. Geological Data Center

Scripps Institution of Oceanography

La Jolla, California

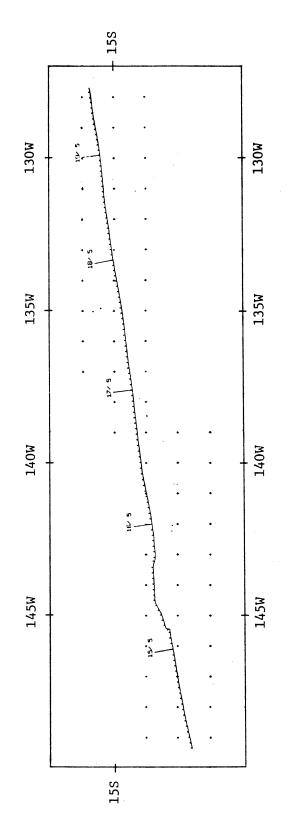

Contents:

- Track Charts annotated with dates (day/month) and hour ticks. The scale (.3"/deg. long) is the same as the index charts of previous SIO cruises published as Report IMR TR-25.
- Profiles Depth and magnetic anomaly vs. distance. Dates (day/month) and positions of major course changes (greater than 30 degrees) are annotated. Sections of track having subbottom profiler (airgun) records have a solid black line along the bottom of the profile.

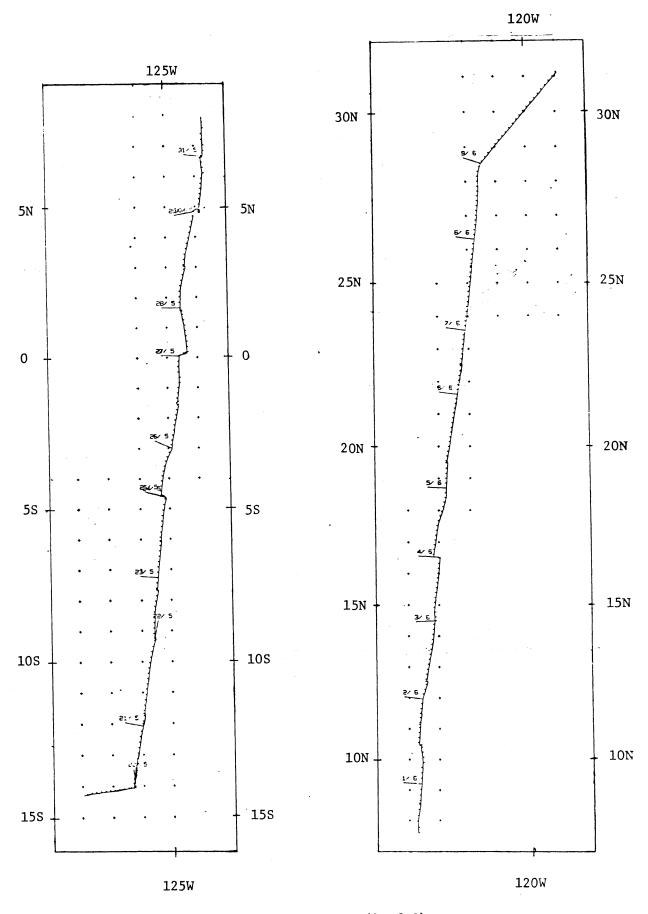
For information on the availability and reproduction costs of data in the following forms, contact T. E. Chase, Curator, Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92037 (714-453-2000, Ext. 1534):

- 1. Navigation listing of times and positions of course and speed changes, fixes and drift velocity.
- 2. Depth compilation plots in fathoms (assumed sound velocity of 800 fm./sec.) at approximately 1 mile spacing, plotted at 4" degree with standard U.S. Navy Oceanographic Office BC series boundaries (see index chart).
- 3. Plots of magnetic anomaly profiles along track-map scale = 1.2"/degree; anomaly scale between $15^{\circ}N$ and $15^{\circ}S$ latitude = 500 gamma/inch; anomaly scale north of $15^{\circ}N$ and south of $15^{\circ}S$ = 1000 gamma/inch) from values retrieved at approximately 1 mile spacing and regional field removed using the 1965 IGRF.
- 4. Card Decks of navigation, depth and magnetics (for specific formats, contact S. M. Smith, Geological Data Center).
- 5. S.I.O. Sample Index list of beginning and end times and positions of all underway records as well as all other samples (geology, biology, physical oceanography, etc.) collected on the cruise leg.
- 6. Microfilm or Xerox copies of:
 - a. Echosounder records 12 and 3.5 kHz frequency
 - b. Subbottom profiler records (airgun)
 - c. Magnetometer records
 - d. Underway Data Log

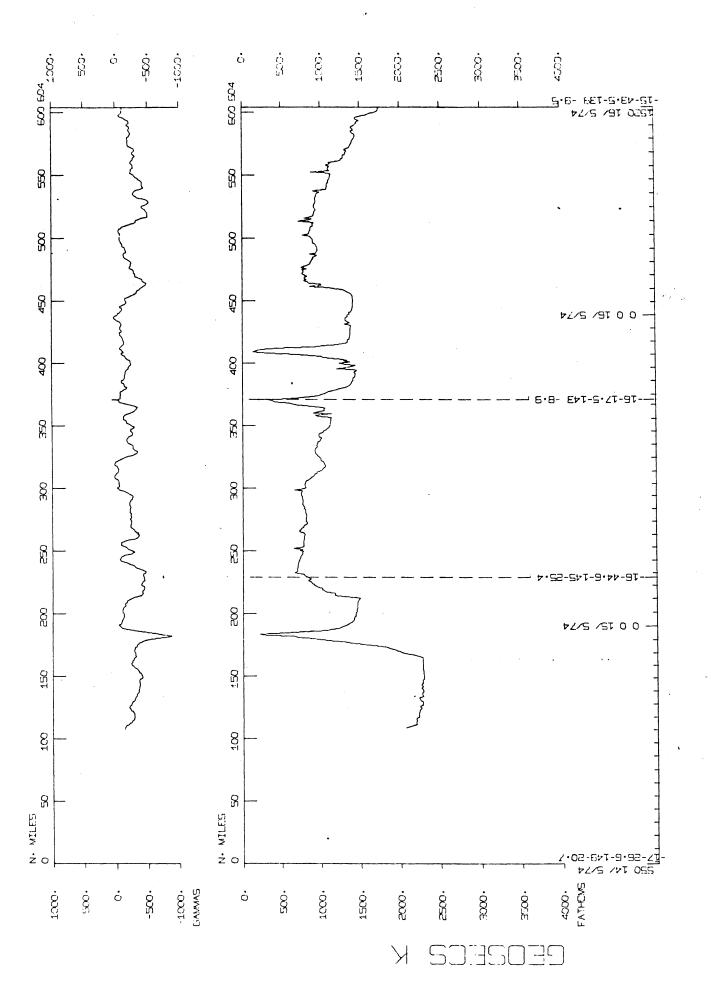
^{*} No Subbottom Profiler Data Taken

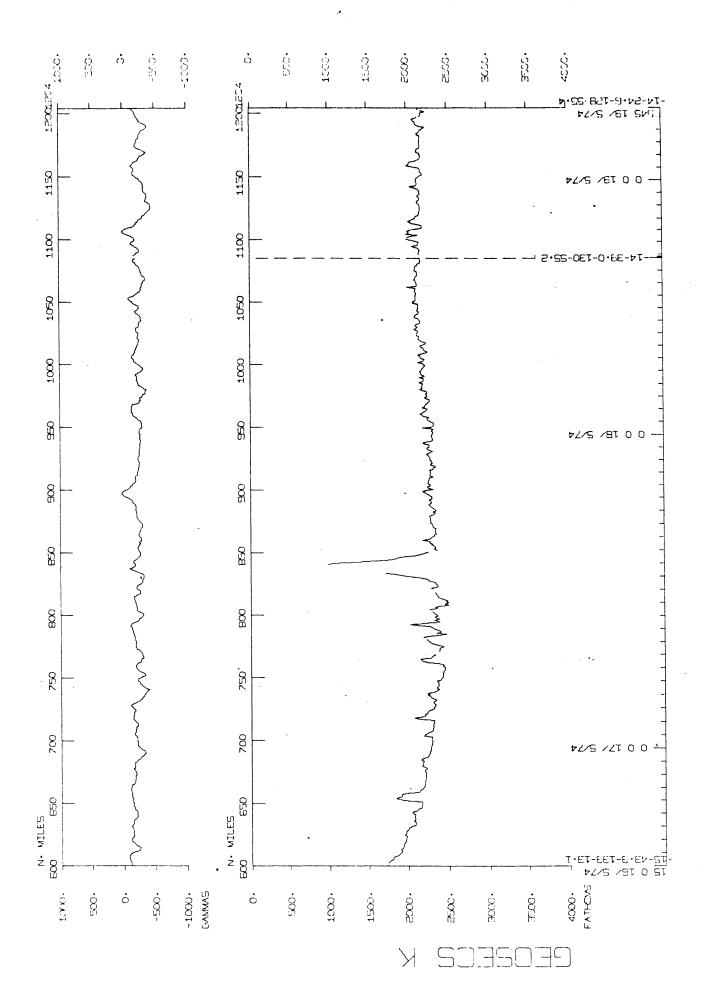


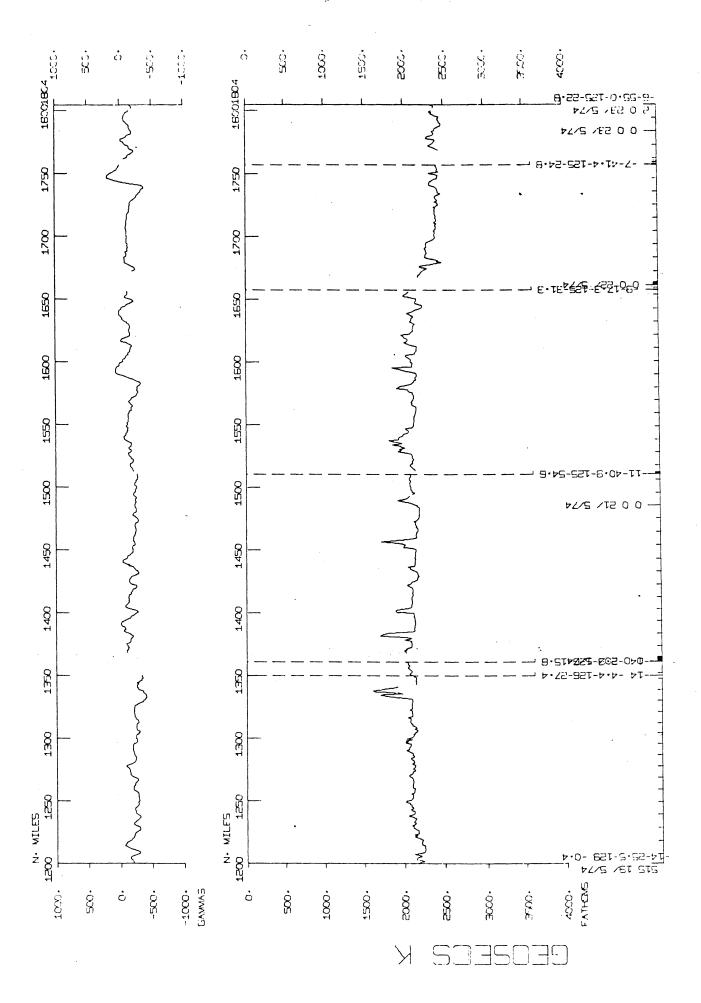
GEOSECS EXPEDITION LEG K R/V MELVILLE

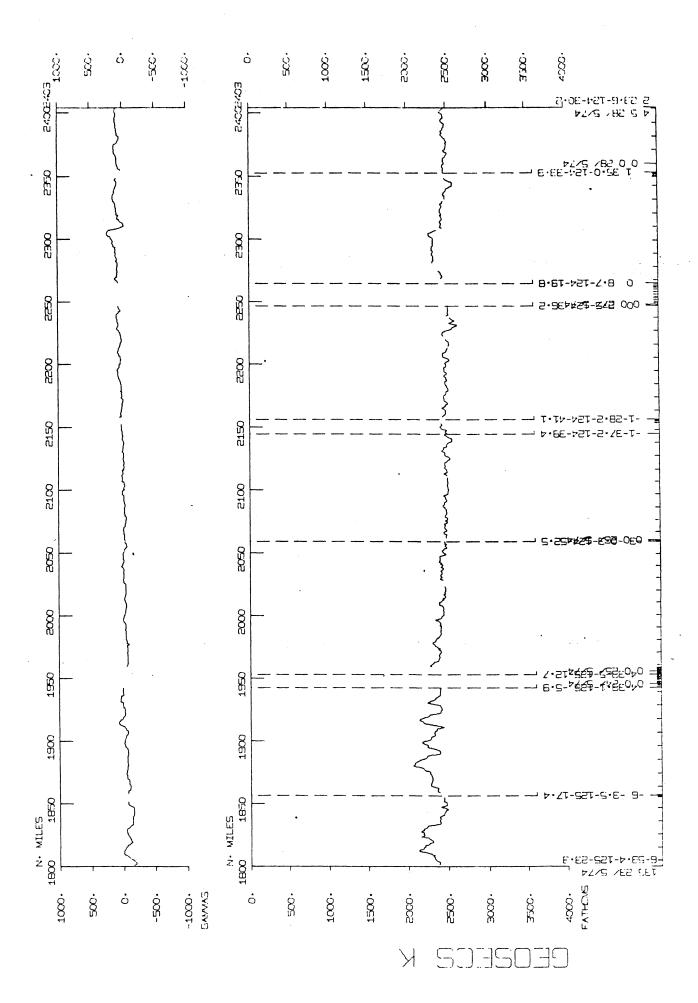

Chief Scientist - W. Broecker (LDGO)
Papeete, Tahiti - San Diego, Calif. (14 May - 10 June 1974)

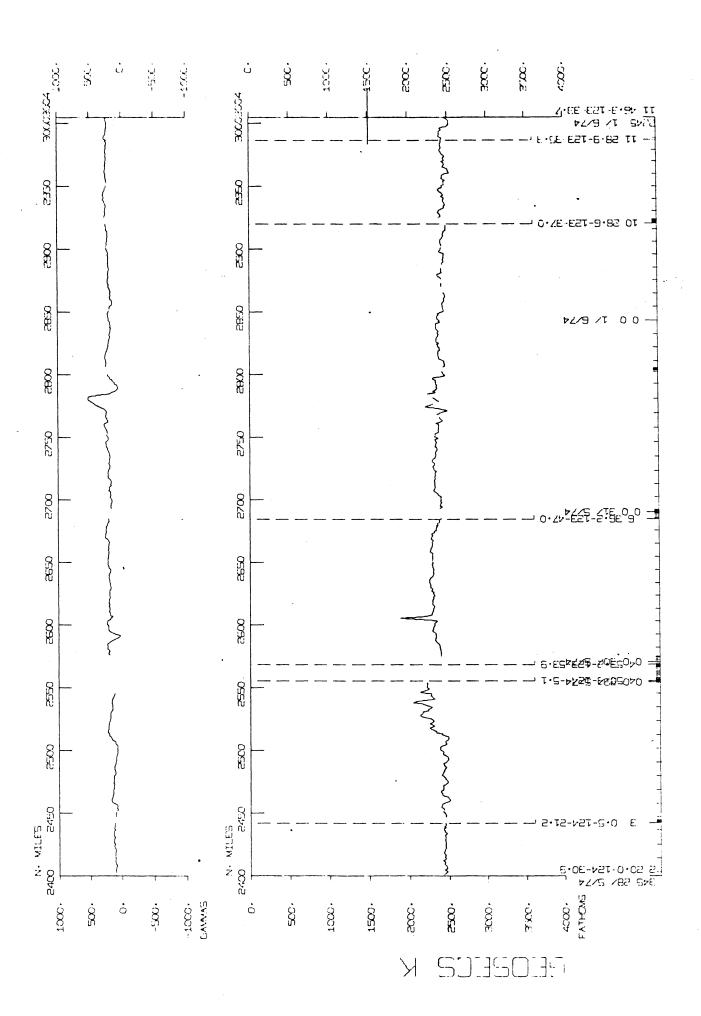
TOTAL MILEAGE

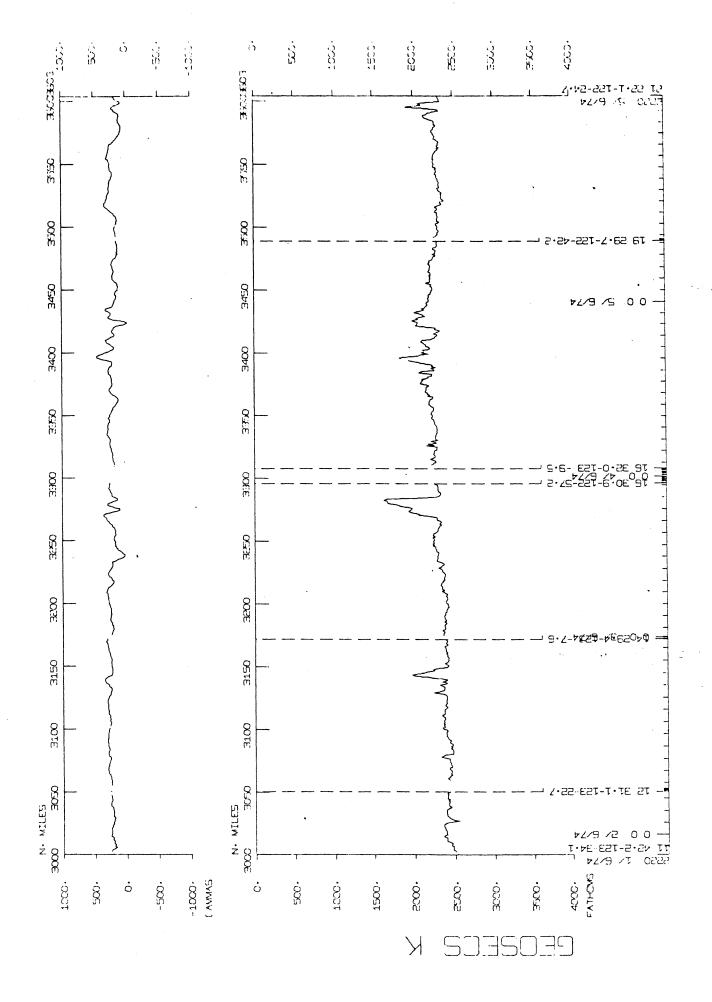

- 1) Cruise 4247 miles
- 2) Bathymetry 3709 miles
- 3) Magnetics 3767 miles
- 4) Seismic Reflection none taken

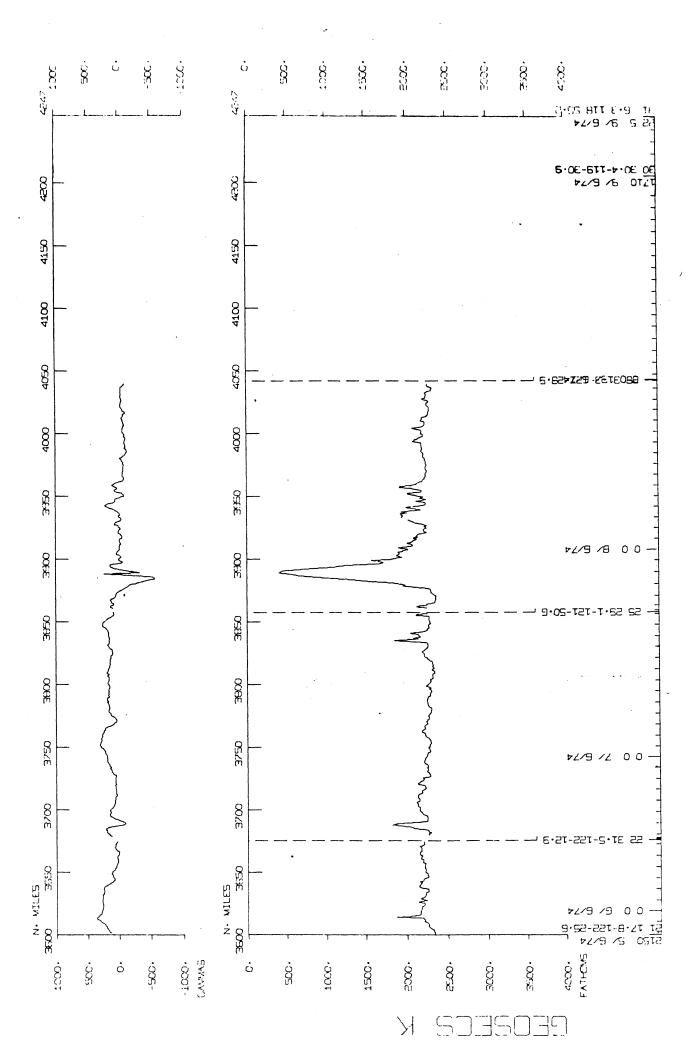



GEOSECS LEG K TRACK PLOT (1 Of 2)




GEOSECS LEG K TRACK PLOT (2 of 2)





LISTED 28 AUGUST 1974

(1

()

0

05 00 14 05 74 14 00 1 0 0 6 74	LG B	PAPELLE, TAHITI SAN DIEGU, CALIF.	17N 149W 32N 119W	GECS KMV GECS KMV	
*** THNNUS ##*					
•					
	PECS	BRUFCKFK, W.	L116		
	PFRT	WITHERDM, S.	GRD	GECS KMV	
••	PECT	WYRCIKNEY, G.	(511(,	GECS KMV	
	PERT	CUMPINGHAM, L.	606		
	TMTG	WALDUKE, B.			
	PEET	BRADEK, U.	900	GECS KMV	
	ΡF	BRFFZE, C.	9119		
	PF	BREWNEN, B.	DC P	GPCS KMV	
	ΡE	GALL ARIGER . C.	(306)		
	T. T.	GILEFET, A. '	909	GECS KMV	
	- Fi	HESTER, A.	(3116)		
•	T.	HOROPITZ,R.	. (511)		
	7. F.	JAIN, J.	(5116)	GECS KMV	
	Ŧ	JAEES, E.	(311(5)		
	PE	MAMIYLA, A.	6116		
	T. T.	MATHIE-U, 6.	106	GECS KEV	
	E E	MYFRS+K.	DSO.		
	PF	PRICH, W.	(3)1(5)		
	1-	RAGAN, P.	6.06		
	J Ti	SATIBLIEN, K.	. 606	GECS KMV	
	r F	SLATER, E.	(3116)		
	P.	WARD, K.	909		
	ΡE	WELLS, J.	NPX	GECS KMV	
	ΡĿ	YATES, H.	. 909	GECS KMV	

GALLACHER=NSF, GUG CAMERAMAM, WASHINGTON, D.C. WARD=NSF, GUG WRITER, FREELANCE

UNDERMAY DATA - CURATUR: 1.E. CHASE 2ND FLOOR AGDARIUM (EXT.1534)

*** NAVIGATION PLUTS ***

						•	•								1	
			٠			•										
	•									•						
3.E 5H I P	× × × × × ×	X X X X X X X X X X X X X X X X X X X	X X X X X	V X X X V X	X X X X X	X X X X X	X X X X X X X X X X X X X X X X X X X	K w V K m V	X W X		3H 1P	X X 5 5 5 5	× × Σ Σ > >	자 X 5 호 5 >	Х Х У У У У	Χ Χ > Σ > >
CRUISE LEG-SHIP	GECS	GECS	GECS	GECS	GECS	GFCS	GECS	GECS KMV	GECS		CRUISE LEG-SHIP	GECS	GECS	GECS	GECS	GFCS
1	s s	s	\sim \sim	SS	$\sim \sim$	$\sim \sim$	s s	န န	SS			s s	S S	$\infty \infty$	$\infty \infty$	s s
L UN 6.	207W 506W	506W 469W	46.9W 68W	68W 222W	223W 392W	392W 10W	10w 85w	85W 264W	264W 548W		LONG	275W 180W	154W 32W	9W W244	973W	341W 158W
1	14.9	137	175 125	125 124	124 123	123 123	123	122 120	120 118			147	145 136	136 130	130 126	126 126
٠١٠	2665 351S	3518 3018	3018 3478	347S 19N	25N 124 280N 123	280M 304N	304N 168N	168N 338N	33KN 67N		\ \ \	44S 361S	354S 221S	218S 390S	3918 598	54S 29S
	17	15	0 K	m	بر 5 آت	10	17	23	29 31			17	16 15] 5 14	14 14	14 14
DISP	209 209	309 209	3019 3019) (3) (3)	3(19) 3(19)	3(19) 2(19)	309 309	309 309	209 209		DISP	309 309	3d9 3d9	209 209	309 309	309 209
1				•	•			•			1					
.						•		•			:					
• - -	01	20 20	03	04	05 05	90	0.7	0.80	60 60		• 1- 2-	R-01 R-01	R-02	R-03 R-03	R-04 R-04	R-05 R-05
IDENT	PLOT PLOT	PL0T PL0T	PLOT PLOT	PLOT PLOT	PL07 PL07	PLOT PLOT	PLOT PLOT	PLUT PLUT	PLOT PLOT		- 10EM	12KHZ R 12KHZ R	12KHZ R 12KHZ R	12KHZ R 12KHZ R	12KHZ R 12KHZ R	12KHZ R 12KHZ R
SAMPLE	16 E	10E)(se)GE 16E	36E 36E)GE 16.E	16.E	16E 16E	390 390		SAMPLE					121
SAR	RR I DGE BR I DGE	BRIDGE BRIDGE	BRIDGE BRIDGE	BRTDGE BRTDGE	РК 10 GE ВК 10GE	BRIDGE BRIDGE	8RTDGE BRTDGE	BR I DGE BR I DGE	BR IDGE BR IDGE		SAR	610R	6DR 6DR	GDR GDR	GUR	GUR
į	≈ ⊔	фщ.	æ ±	- x2 ±	1 11	æπ	ж п	æ 11	ж ш -		į	± :::	र ग	± ±	ж ш	ж ш
SAMP	NVRP	NVRP NVRP	NV X P	NVRP	NVKP NVKP	NVK P	NVX P	NVKP	NVRP NVRP		SAMP	DPRT DPRT	DPRT DPRT	LPR1 DPRT	DPR1 DPRT	UPKT UPKT
17 71 71										*c	12 100 100			•		
DATE TIME D.M.Y. LOC										*** SW	DATE TINE		-			
DATE O.M.Y.	574 574	574 574	574 574	574 574	574 674	674 674	674 674	674 674	674 674	6.R.A	DATE J.M.Y.	574 574	574 574	574 574	574 574	574 574
0 · 1	14	16	21 25	25 28	28 1	4	4 4	9	9	THU	A	14	15 17	17 18	18 19	61 19
TIME GMT	0500	2240	1417	14 09 1 024	1134	1254 1554	1554 2156	2156 922	525 1460	***FATHUGRAMS	TIME		6 15 F32	845 1400	1750 2009	2630

	:		٠																
	; ·									•					ŧ				
	•								•							•	;		
	•			:						•									
						•													
SHIP	X X Σ Σ > >	X X X V X X	X X X X X	×× ≥ ≤ ≤	X X X X X X X X X X X X X X X X X X X	X X Y Y	KEV KEV	X X X X X X X X X X X X X X X X X X X	X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X V	X X X X X X X X X X X X X X X X X X X	X X Σ Σ > >	X X ∑	X X X X X X X X X X X X X X X X X X X	Kr.V.	X E V	X X Σ Σ > >	
CRUISE LEG-SHI	GECS	GECS	GECS	GECS	GECS	GECS	GECS	GECS	GECS	GECS	GECS	GECS	GECS	6 + C S	GECS		7 5	GECS GEC\$	
1	S S		× × ×	SS	SS	SS	SS	2 Z	S S	SE	SS	S S	SS	र इ.इ	3 Z	S S	S S	N S	
LUNG.	193W 546W	564W 324W	350W 248W	271W 172W	180W 62W	166W 527W	532W 406W	402W	411W 362W	194W 316W	327W 212W	233W 48W	35W 470W	425W 379W	380W 371W	349W 265W	Z62W Z27W	250W 76W	•
=	126 125	125 125	125 125	125 125	125 125	125 124	124 124	124	124 124	1.24 1.24	124 124	124 124	124 123	123 123	123 123	123 123	123 123	123 123	
. I A	365 4098	4045 1845	139S 416S	387S 54S	328 4058	3638	5884 4395	422S 301S	277S 25M	85N 311N	346N 5N	27N 494N	517N 362N	412N 310N	346N 286N	273N 181N	191N 311N	322N 294N	
	11	11 9	6		4 4	- m	~-		- 0	2	3 1	ж 4	4 0	رت این	¥ 01	10 12	12	12	
UTSP CODE) 19 20 20 20 20 20 20 20 20 20 20 20 20 20	3(19) (3) (1)	309 309	309 209	0.15 0.15	309 309	009 000	600 600	909 909	30.9 30.9	2019 2019	. GDC 3H5	3H9	30.5 30.5	309 309	309 309	309 309	30.9 20.9	
							.•			•									
•	~ ·		ar m	J- C-	8.0		2 2	6 H	4 4	77 T	9	7	æ æ	arar	0.0		N A.	~~	
DENT	R-06 R-06	R-07 R-07	R-08 R-08	R-09 R-09	R-10 R-10	R-11	× × - 1	⊼ - 1 - 1	R-1	Σ : - : - : - : - : - : - : - : - : - :	R-16 R-16	R-17 R-17	R-18 R-18	K-19	R-20 R-20	R-21 R-21	R-22 R-22	R-2	
i	12KHZ 12KHZ	12KHZ 12KHZ	12КН2 12КН2	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KHZ 12KHZ	12KH 2 12KH 2	12KHZ 12KHZ	12КН 2 12КН 2	
SAMPLE	GUR	GDR GDR	GDR	GOR	GUR GUR	GUR	GUR GUR	GUR	GDR GDR	GDR	GDR GDR	GDR GDR	GDR GDR	GUR	GUR	GDR	GDR GDR	GDR GDR	
	ж п Э С	ж л Э С	≄ு	ж п Э	ω п	æш	Σ Ti	ъ ш 2	æ :::	ж ш	ஆ π	z = 1	æ π 0 è	ж п 0 0	æ π Э)	æ .n	∓ m	x =	
SANP	UPRT UPRT	DPRT DPRT	UPRT UPRT	DPRT DPRT	UPRT UPRT	UPRT	UPRT	UPRT UPRT	UPRT UPRT	UPRT	DPRT DPRT	DPRT DPRT	UPRT UPRT	DPRT DPRT	UPRT UPRT	UPR1 UPRT	UPRT UPRT	UPPT UPRT	
1.2							•									•			
TIME							•						1			,			
	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574 674	674 674	674 674	6.74 6.74	
DATE D.M.Y.	20 2	21 2	22	22.	23	25	26 26	26 2	2.6	27.	27	2 H 2	30	31	31	7 2	2.0	~ ~	
Ω Σ Σ	1210	720	ь15 1700	2150 645	1123 1968	730	30 800	.810 .530	1420 2255	1142 1930	2335 728	1246 2300	620 1651	453 1450	2034	14 09 212	218 335	825 2(45	
												-				•			
	•											, 1							

									•							•		
																•		
																		. •
	i t	:	•															
1 P	X X X X X X X X X X X X X X X X X X X	> > > > > > > > > > > > > > > > > > >	KFIV KMV	> > \ \(\overline{\text{\psi}}\)	X X X X X X X X X X X X X X X X X X X	>>: >:		I I B	X Z Z X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X		Х Х ? ? > >	х х 5 <u>5</u> 5 > >	X X X X X X X X X X X X X X X X X X X	X X Σ Σ > Σ	X X Z Z > >	× × × × × × × × × × × × × × × × × × ×
CRUISE LEG-SHIP					S S	KC (C)		CRUISE Leg-shíp 		GECS K	:c vc			SOS	GECS K	vs vs	GECS K	GECS
CR	s GECS	S GECS	S GECS	S GECS S GECS	S GEC	S GEC		C C F	S GECS	S GE S GE	S GEC:		S GECS	S GFC	S GE S GE	S GEC	S GE S GE	S 6E
	79W S	95W S	37W S	144W 5	354W S	M54W 8			2	WE 9	2 Z		324W 3	362W 198W	4.8W 35W	371W 3	30W 3	294W
LUNG.		3 . 9	2 43 2 13			1 35 1 29		LONG.	6 15 6 19	5 6 5 16	2 57 3 9		5 37 5 35 5 35	4 36 4 19	4.4	3 37	2 13 2 14	
	123	12	12 12	122	121	12	٠.	1	126	12	12		2 2	12	12	12 12	12	12
	NG08	320N 297N	304N 313N	302N 291N	307n 98n	102M 302M		LAT	295 365	410S 363S	309M 320M		1848 1398	758 858	494N 517N	286N 272N	314N 302N	302N
!	14	16 19	19	22	25 8	28 28		1	14	5 \$	16 16		⊕ ⊅	SS	4 4	10	22	× 0
CUDE	2019 2019	60C	2019 2019	309 209	60C 60C	30.9 20.9		CODE	909	606 606	909		600 600	909	600 600	606 606	606 606	909
1	•								•	•								
, <u> </u>	-24	25 25	26. 26	-27 -27	-28	29		•	326 326	31	343		328. 328	334	337	340 340	345 345	347
0.EM	≃ ∝	* *	2 R-26	$\propto \propto$	x x	국 士	***	IDENT	STA 3 STA 3	STA 3 STA 3	STA 3	*	SIA 3	STA 3	STA 3	STA 3 STA 3	STA 3 STA 3	STA 3
41	12KH 2 12KH 2	ZKHZ ZKHZ	2KHZ 2KHZ	2KHZ 2KHZ	12KHZ 12KHZ	12KHZ 12KHZ	H-10					U.E.		ر د د د				
SAMPLE IDENT	GDR 1 GDR 1	GUR 1 GUR 1	GUR 1 GUR 1	GUR 1 GUR 1	GUR 1 GDR 1	GUR 1 GUR 1	VOL	SAMPLE	GEOISEC GEOISEC	GEUSEC GEOSEC	GEOSEC GEOSEC	ALL VOLUME**	SEUSEC SEUSEC	GEOSEC. GEOSEC	GEOSEC	GEOSEC GEOSEC	GEOSEC GEOSEC	GEUSEC
	8 E 6	F F G	8 G E	В 6 Е 6	8 H	æ 3 5	1R GE	1	8 E 6	æ	я 6 Е 6		2 L	ж Э	ж ш С О	æ ਜ ਹ ਹ	Н 6 Е 6	±:
SAMP	DPRT DPRT	DPRT DPRT	DPRT DPRT	UPRT UPRT	UPRT UPRT	DPRT DPRT	11N-L	SAMP	7729 7729	GCLV GCLV	0.109 0.109	1S-M()	6C.SV 6C.SV	GC SV GC SV	6C.SV	6C SV	6C SV	SCSL SCSL
7.2 LOC							TAT	1.2 LUC				TATI						
IME					ž.		***GFOCHEMICAL STATIOM-LARGE VOLUME**	DATE TIME TZ SAMP			•	*≎*GEOCHFMICAL STATIU™-S™						
D.M.Y. LOC	674 674	674 674	674 674	674 674	674 674	674 674	FM IC	<u> </u>	574 574	574 574	674 674	FM1 С	574 574	574 574	574 574	674 674	674 674	674
AG	ω ω	4 %	.6 5	6.7	7	αχ	H)U -	ν C C	1 <i>9</i> 20	23 25	w 4	HOUE	21 22	26 27	28 29		\$ 4	œ
11ME	120 1409	93 0 5 06	935 615	1633 1310	1810 1305	1308 1532	* * * CF	TIME GMT	23 00° 1210	1505 730	14 09 93 0	***GF	2120 815	2255 1142	23.00 62.0	730	616 1633	1532
					;		:	;								:		

			•											
dII	Х У У У У	X X X X V X V	X	X X X X X X	X X 2. 5 2 >	X 7	X X X X X X X X X X X X X X X X X X X	> > × × × ×	X	X	X	지 X 2 전 X 2 전 V	X X X X X X X X X X X X X X X X X X X	X الا
CRUISE LFG-SHIP	6ECS 1	GECS P	GECS 1	GECS	GECS	GECS	GECS	GECS	GECS P	GECS	GECS H	GECS	6FCS 1	GECS
1	SS.	SS	SS	s s	SS	s s	ss	s s	s s	s s	SS	$\infty \infty$	s s	S
LONG	552W 558W	547W 564W	248W 271W	172W 180W	527W 535W	437W 411W	316W 327W	212W 233W	4709 4258	379W 380W	227W 227W	76W 80W	422H 437W	506W
) i	130 130	125 125	125 125	125 125	124 124	124 124	124 124	124 124	123 123	123 123	123 123	123 123	122 122	121
L ^ T •	390S 391S	408S 404S	416S 387S	548 328	6.5 5.5	3018 2828	311N 346N	5 M	362M	31014 346N	311N	294N	297N 304N	291N
] 4 I 4	11	~ ~	6	to se			ar ar	çς	¤ ¤	22	14 14	19	2.5
CODE	9119 9119	909 909	6016 6016	9119 9119	9H9	909	909	909 909	6116 6116	6006	606 600	6006 6006	909	606
									. •					
- I	325 325	327 327	329 329	330 330	332 332	333 333	335 335	336 336	338 338	33,9 33,9	341 341	342	344 344	346
IDENT	STA	STA STA	STA STA	STA	STA	STA	STA	ST'A STA	STA	STA	STA	STA	STA	STA
SAMPLE	GEUS EC GEUS EC	GEOISEC GEOISEC	GEOSEC GEOSEC	GEOSEC GEOSEC	GEUSÆC GEUSEC	GEUSEC	SEUSEC GEUSEC	GEUSEC GEUSEC	GFOSEC GFOSEC	GENSEC GENSEC	GERSEC GERSEC	SEUSEC GEOSEC	6E08EC	GEUSEC
	zΨ	= -	жu	1 0	ж ж	æ ±	± 11	≃ u	ΣT	≄्म	エー	ىد ئ	# J	x
SAMP	6CTD 6CTD	6CTD 6CTD	6CTD 6CTD	6CTD 6CTD	6CTD 6CTD	6C TD 6C TD	6CTD 6CTD	60 TU 60 TU	GCT ^D GCTD	6C1D 6C1D	6CTD 6CTD	66.1D 66.1D	6CTD 6CTD	60.70
12 LOC														
TIME LOC	4 4	44	4 4	4 4	4 4	4 4	4 	4 4	44	,	• • •	4 4	*	. 4
DATE 1	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574 574	574	574 574	674 674	674 674	674 674	674
- 1	18 18	21 21	22	23 23	25.	26 26	27 27	28 28	30 31	31	2 <	$\sim \kappa$	re re	7
114E	14 00 1750	244 720	1760 2150	645 1123	18 00	93.0 14.15	1930	728 1246	1651 453	1450	335 235	2(45	5 06 93 0	1310
						,							:	

*** RATHYTHEKMUGKAPH ***

TIME CHT	DATE TIME	TIME TZ LOC LOC	SAMP	SAMPLE IDENT	1) EM T .	CHISP		. L V	100	.0NG		CRUISE LEG-SHIP	F I I P	
	17 6 77		± +	-	70-34 10-98	1		7976	0 % (32.02	9	: :	7.	
=	1		<			5 - 5		000		M 103	- -, .	0.7.	-	
=	15 574		χΞ×	NI. SAFFL	FS=12	51.5	<u></u>	5125	146	241	s,		Υ Σ	
C	16 574		×L×		ES=12	RTS	ح ـ	1148	141	メンカル	S	RECS	Y ₹	
0	17 574		×Lx	NU. SAMPL	SAMPLES=12	RTS	۲.	3348	137	36 lw	S	GECS	× ۲	
C	18 574.		нТх		SAMPLES=10	8.T.S	14	57×3	133	193W	S	GECS	KN/	
J	19 574		χĽΥ		ES=12	X L X	7.	3345	129	538W	S	GECS	KFV	
၁	20 574		кТХ		ES=03	RTS	5 !	338	126	157W	S	GECS	KEV	
0	21 574		X I Z		FS=0]	3 I S	12	513	1.25	Wくいく	s	GECS	X : Ν	
ာ	22 574		. XTX	_	ES=01	RTS	5	1658	125	345W	S	SOF	Κr.v	
C	23 574		нТх	NU. SAMPL	SAMPLES=04	RTS	<u>~</u>	1615	125	248W	S	GECS	ХMХ	
0	25 574		ΥLY	MU. SAMPL	SAMPLES=02	RTS	†	3488	125	1434	S	GFCS	X % \	
O	26 574		E J.X		FS=02	818	۴	5.5	124	M486	S	SECS	Κ _Σ ∨	
၁	27 574		ьТХ	MIN. SAMPL	SAMPLES=02	HTS	Ξ	3.j.v.	124	3541	s.	GECS	Κ ΜV	
0	28 574		хТх		ES=03	BTS		. M.C.6.K	124	326W	S	SOAS	ΚMV	
С	29 574		xTx		ES=00	∑. 	寸	·NOCT	124	M64	S	GECS	K F.V	
С	30 574		ъ1×		ES=01	818	4	51.2M	123	538W	S	GFCS	Κ Μ ∨	
၁	31 574		нтх	_	SAMPLES=02	HTS	ح	NORE	123	M625	S	SHUS	ΚMV	
0	1 674		нтх	NU. SAMPL	SAMPLES=03	RTS	6	1212	123	M668	S (GECS	X ₹ V	
C	7 674		XTX	_	SAMPLES=03	RTS	=	NUL	123	375W	s.	SHCS	ΚM.V	
=	3 674		нТх	•,	SAMPLES=02	818		N957	123	35 W	s.	GECS	× Σ Λ	
0	4 674		яТХ		SAMPLES=02	RTS		317N	123	MAZ	s,	SECS	Κ Μ V	
0	5 674		кľх	NU. SAMPL	ES=03	н 18		4]4N	122	M4474	S	GECS	××	
5	6 674		кТX		SAMPLES=03	нТS	2	365N	122	225W	S	SECS	メドン	
0	7 674		нтх	HU. SAMPL	ES=03	BTS	т. С	245N	122	62W	s	SECS	Y ₹.	
C	8 674		нтх	_	SAMPLES=03	HTS	5.6	184N	121	443W	S	SECS	Υ ΜΥ	
					•									

END SAMPLE FNDEX