INFORMAL REPORT AND INDEX OF

NAVIGATION, DEPTH AND MAGNETIC DATA

(Issued May 8, 1978)

INDOMED EXPEDITION

LEG 5

Pt. Louis, Mauritius (28 January 1978) to Fremantle. Australia (25 February 1978)

R/V Melville

Chief Scientist - R. Weiss (SIO)

Resident Marine Tech - S. Witherow

Post-Cruise Processing and Report Preparation by S.I.O. Geological Data Center

Data Collection Funded by NSF Grant Number OCE76-03936 Data Processing Funded by SIA, NSF and ONR

NOTE: This is an index of underway geophysical data edited and processed shortly after the completion of the cruise leg and is intended primarily for informal use within the institution. This document is not to be reproduced or distributed outside Scripps without prior approval of the Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92093.

GDC Cruise I.D.# 169

Informal Report and Index of Navigation, Depth, Magnetic and Subbottom Profiler Data*

Contents:

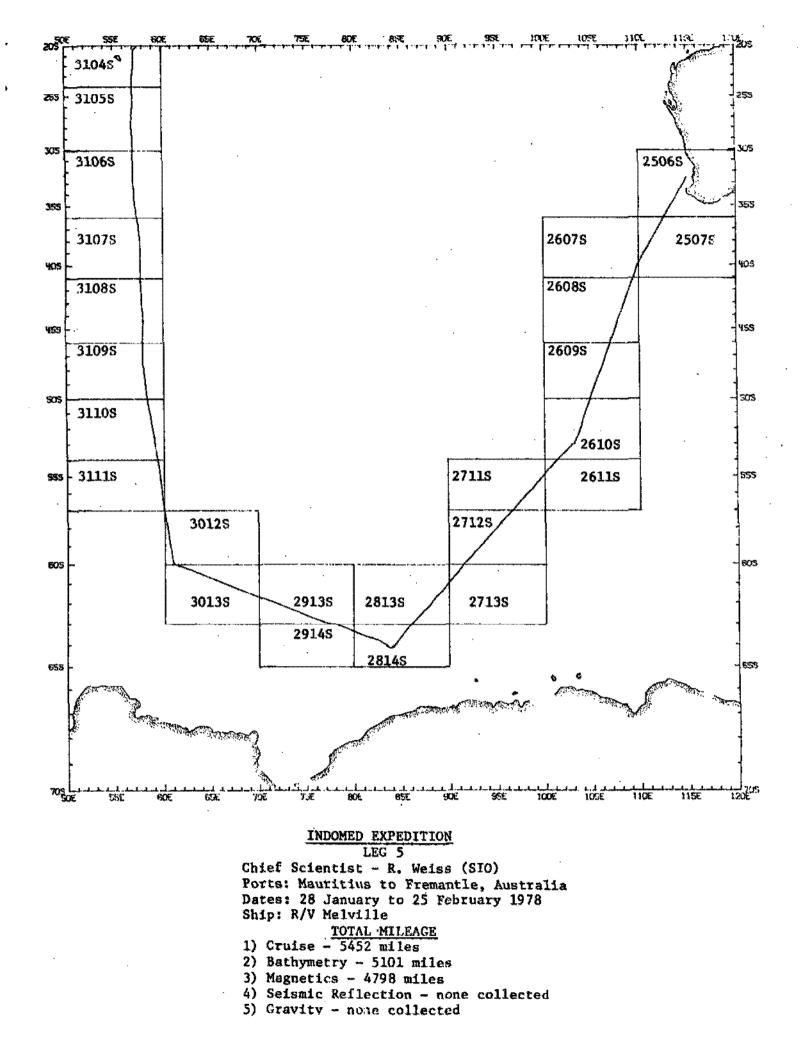
- Index Chart gives track of cruise leg and boundaries of depth compilation plots (see below).
- Track Charts annotated with dates (day/month) and hour ticks. The scale is .3"/deg. long.
- Profiles Depth and magnetic anomaly vs. distance. Dates (day/month) and positions of major course changes (greater than 30 degrees) are annotated. Sections of track having subbottom profiler (airgun) records have a solid black line along the bottom of the profile.

For information on the availability and reproduction costs of data in the following forms, contact S. M. Smith, Curator, Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92093. Phone: (714) 452-2752.

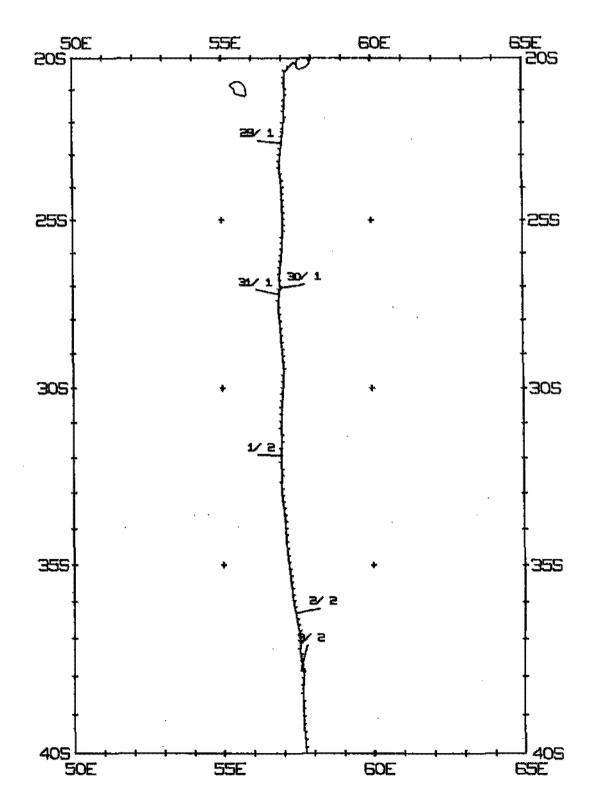
1. Navigation listing of times and positions of course and speed changes, fixes and drift velocity.

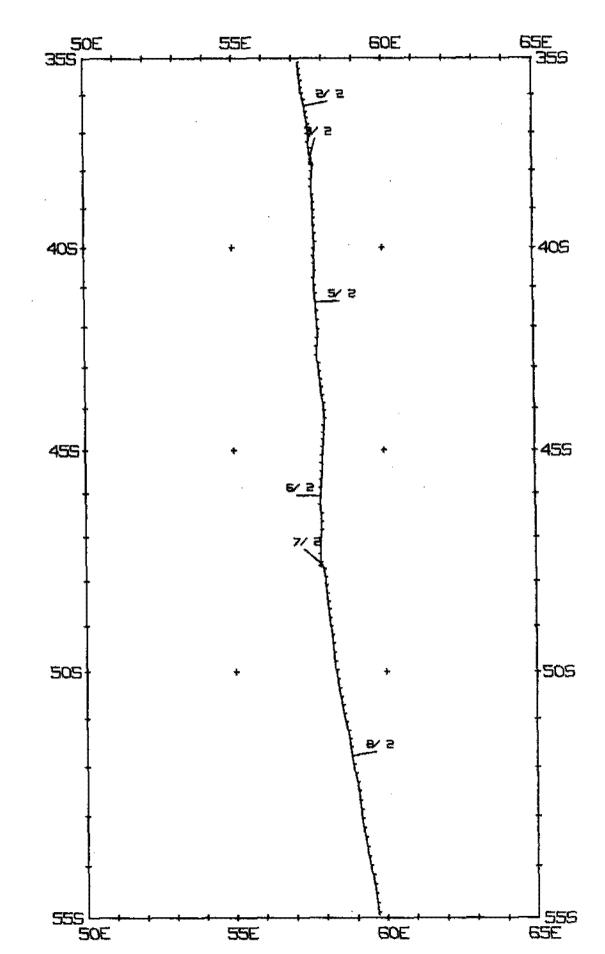
2. Depth compilation plots - in fathoms (assumed sound velocity of 800 fm./sec.) at approximately 1 mile spacing, plotted at 4"/ degree with standard U. S. Navy Oceanographic Office BC series boundaries (see index chart).

3. Plots of magnetic anomaly profiles along track - map scale = 1.2"/degree; anomaly scale between 15°N and 15°S latitude = 500 gamm/inch; anomaly scale north of 15°N and south of 15°S = 1000 gamm/inch; from values retrieved at approximately 1 mile spacing and regional field removed using the 1975 IGRF.

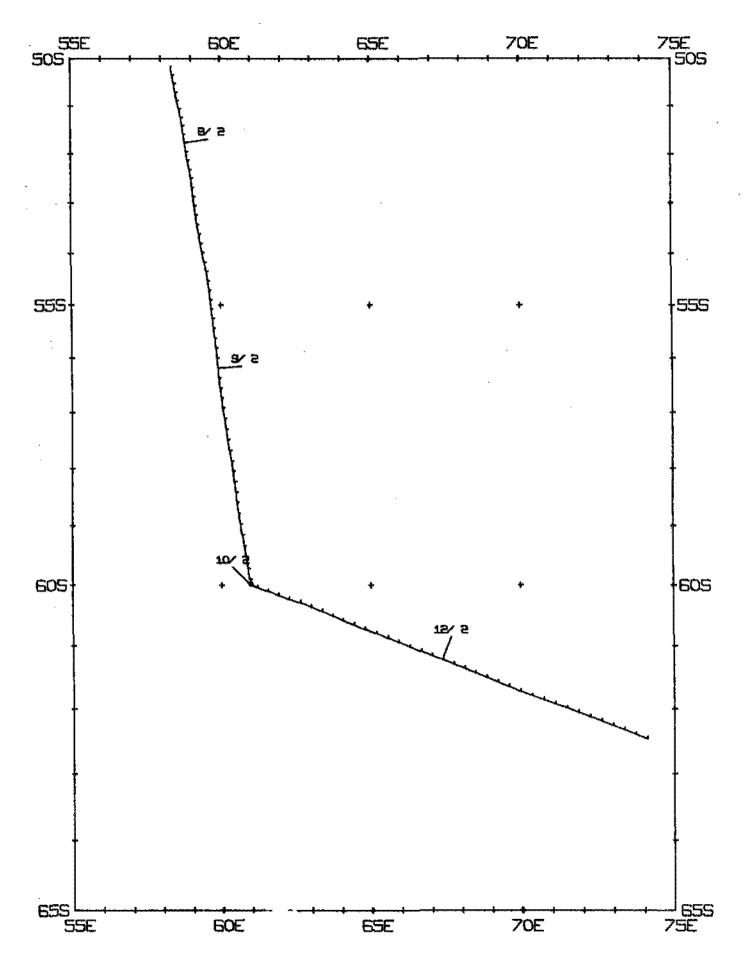

4. Card decks of navigation, depth and magnetics (for specific formats, contact S. M. Smith, Geological Data Center).

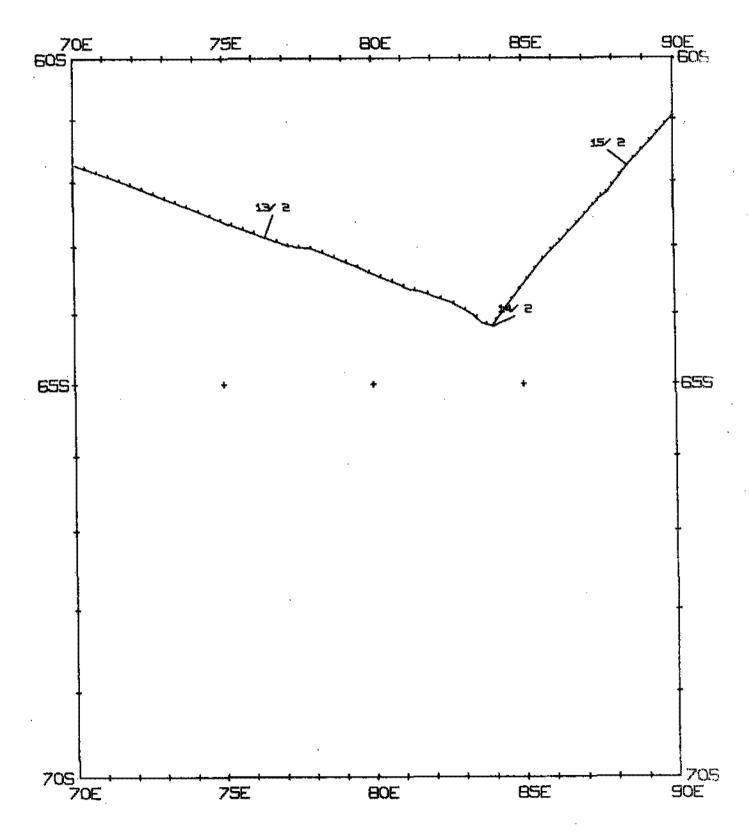
5. S. I. O. Sample Index - list of beginning and end times and positions of all underway records as well as all other samples (geology, biology, physical oceanography, etc.) collected on the cruise leg.

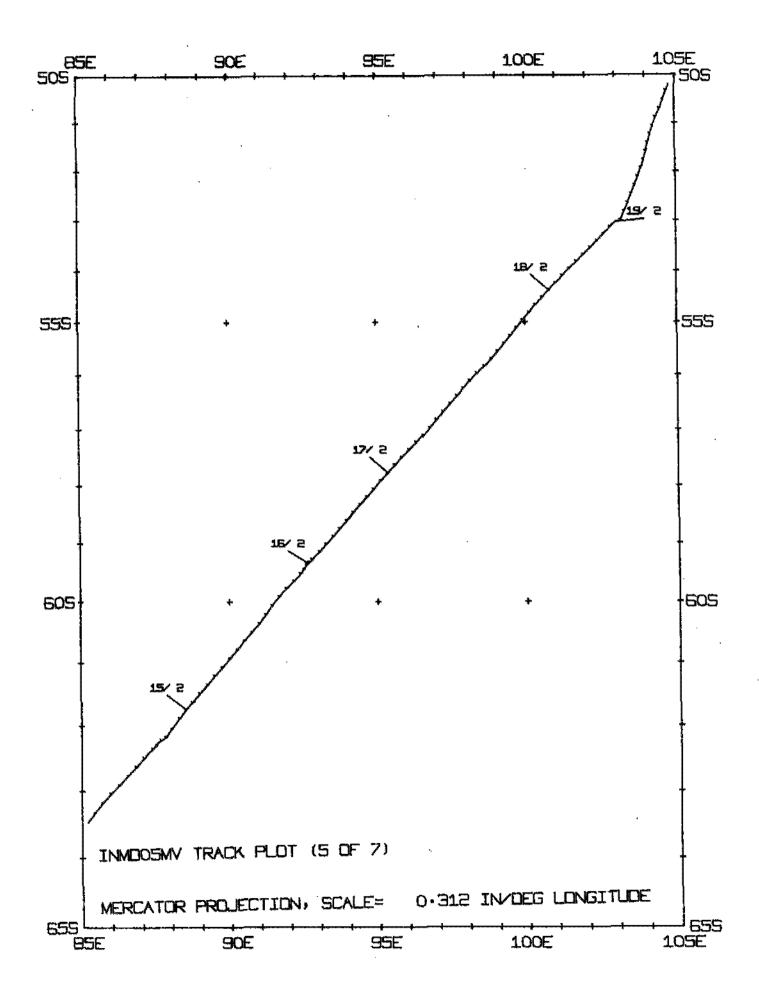

6. Microfilm or Xerox copies of:

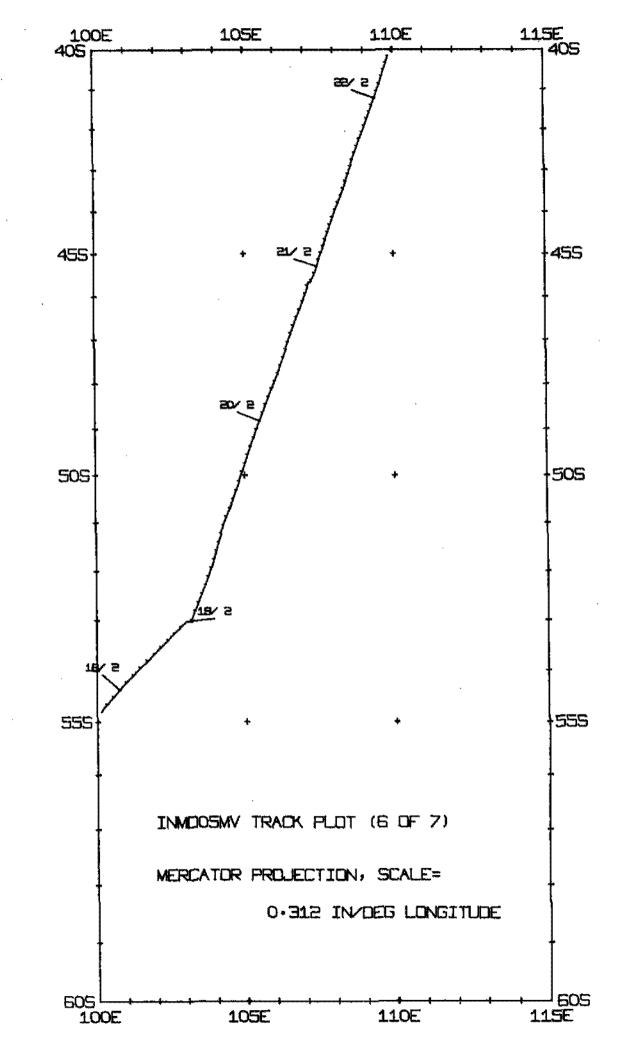

- a. Echosounder records 12 and 3.5 kHz frequency
- b. Subbottom profiler records (airgun)
- c. Magnetometer records
- d. Underway Data Log

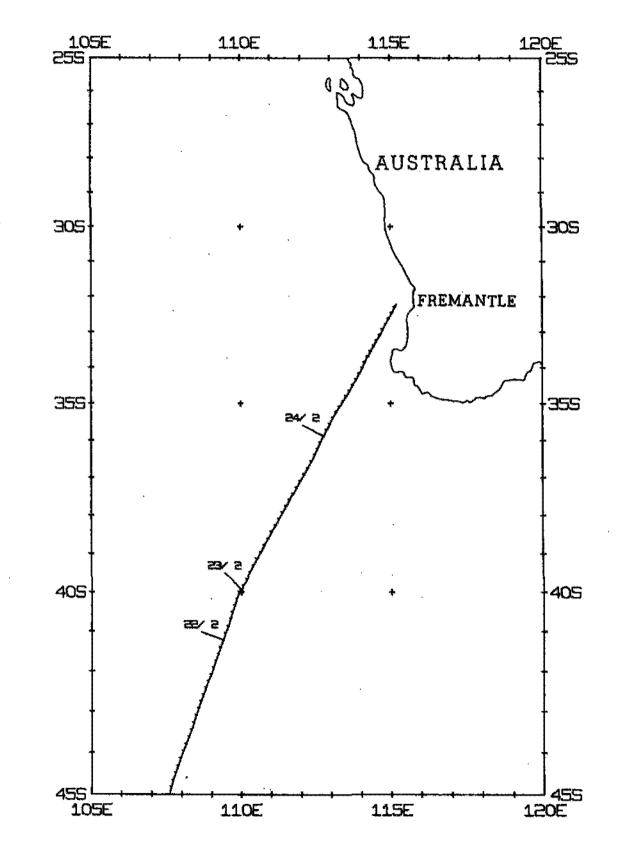
* NO SUBBOTTOM PROFILER DATA COLLECTED

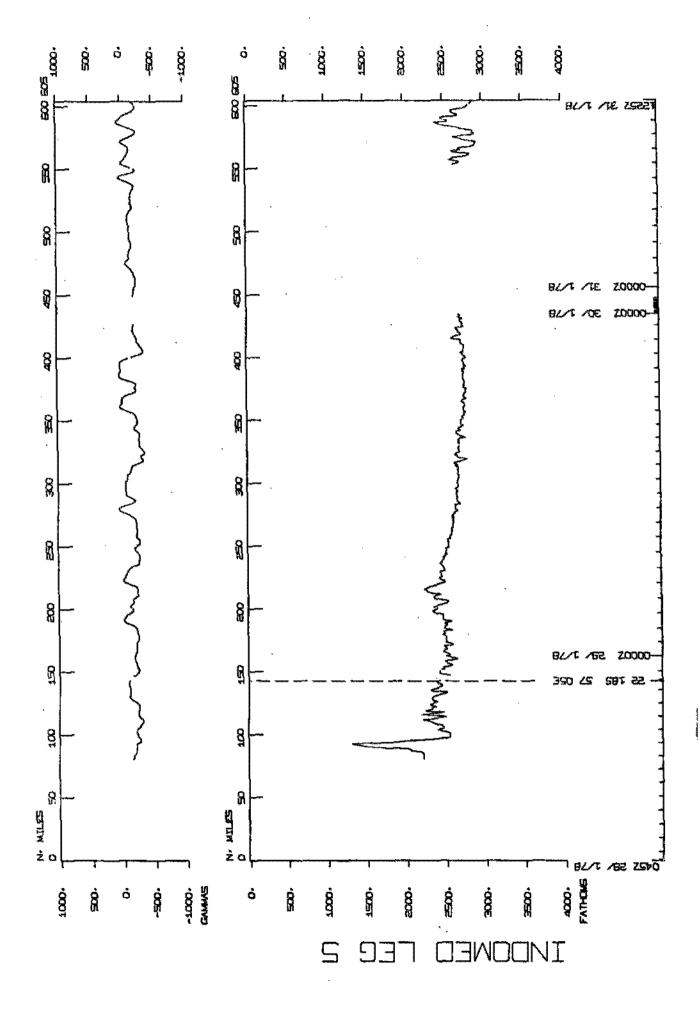


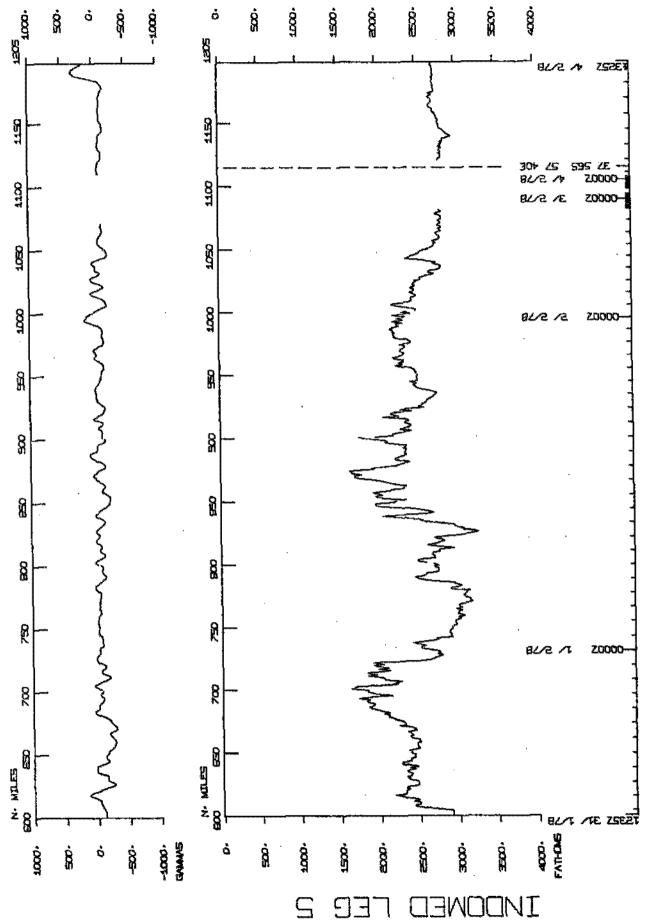

INMOOSMV TRACK PLOT (1 OF 7)

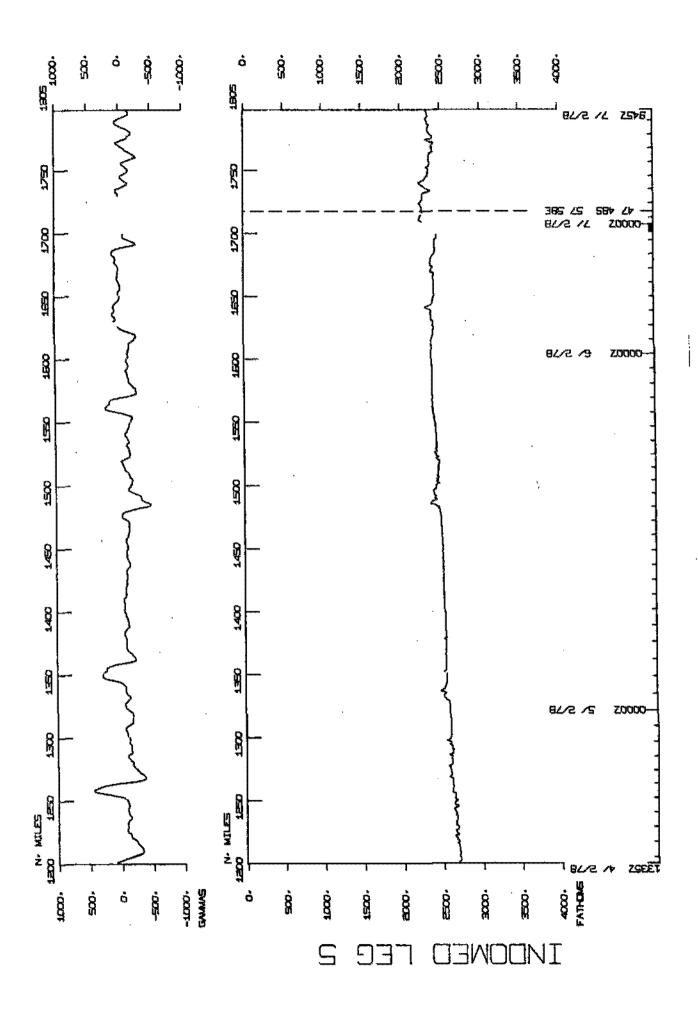


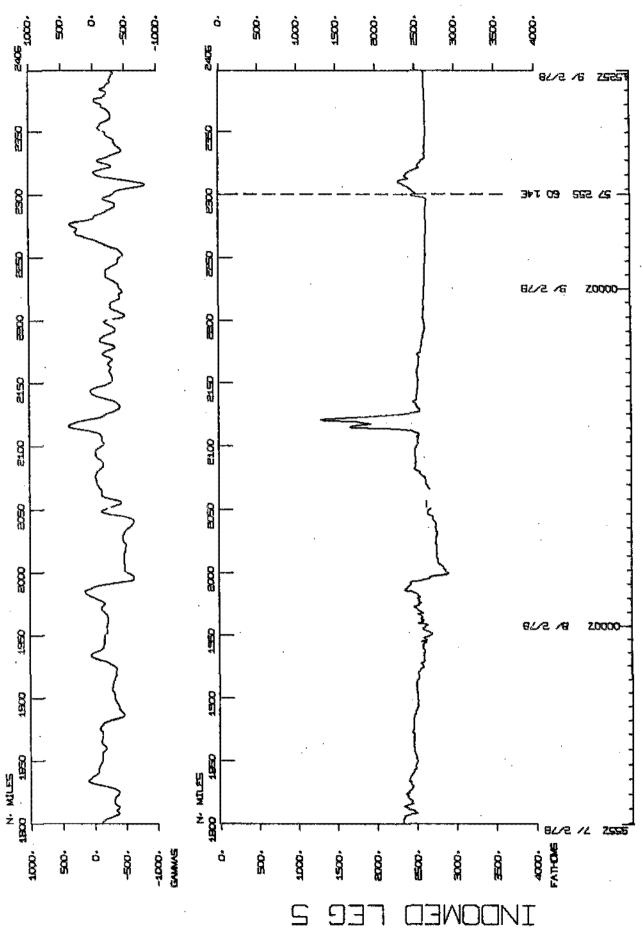


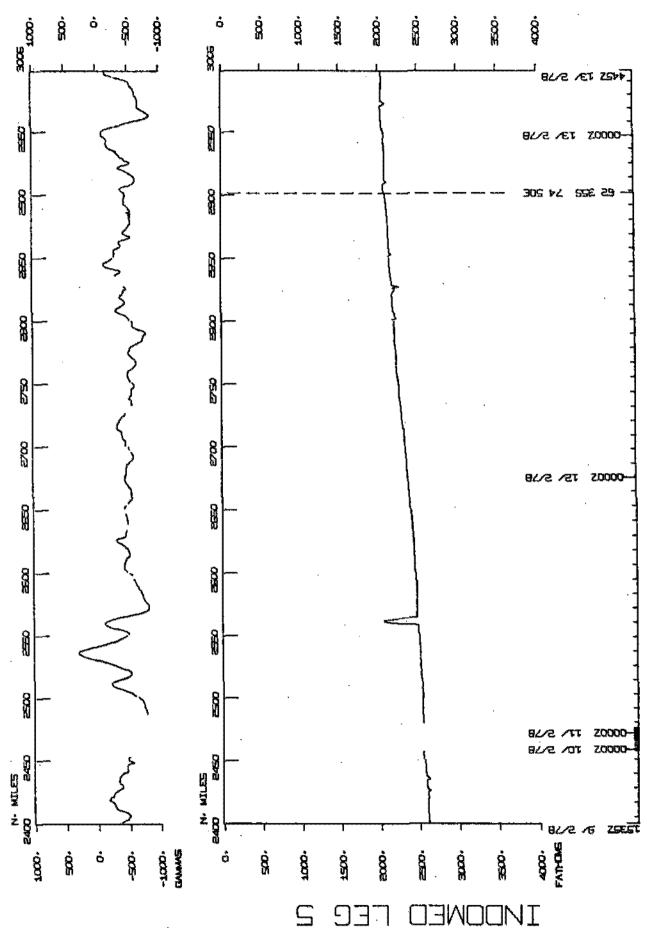

INMOOSINV TRACK PLOT (3 OF 7)

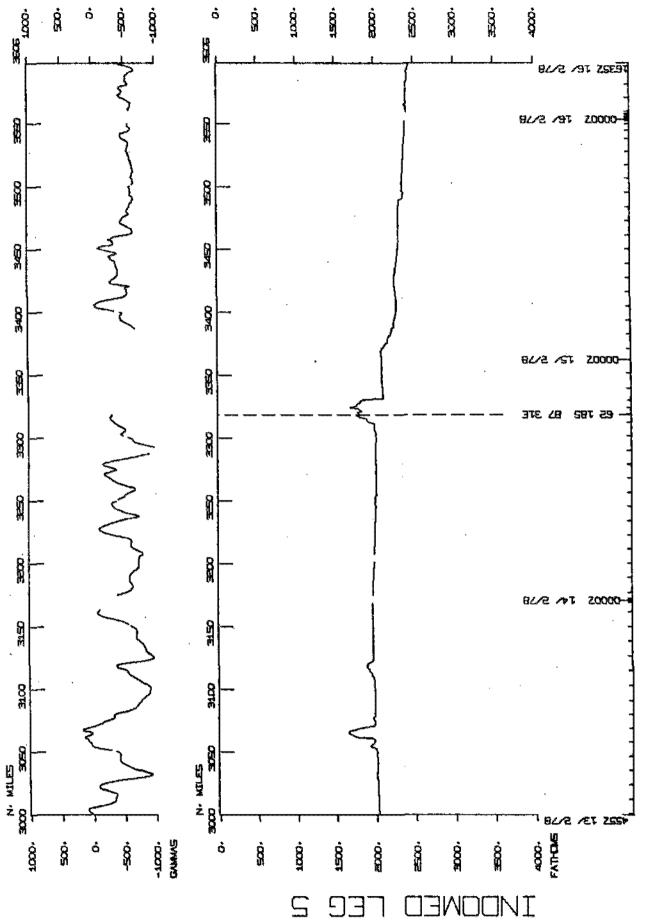


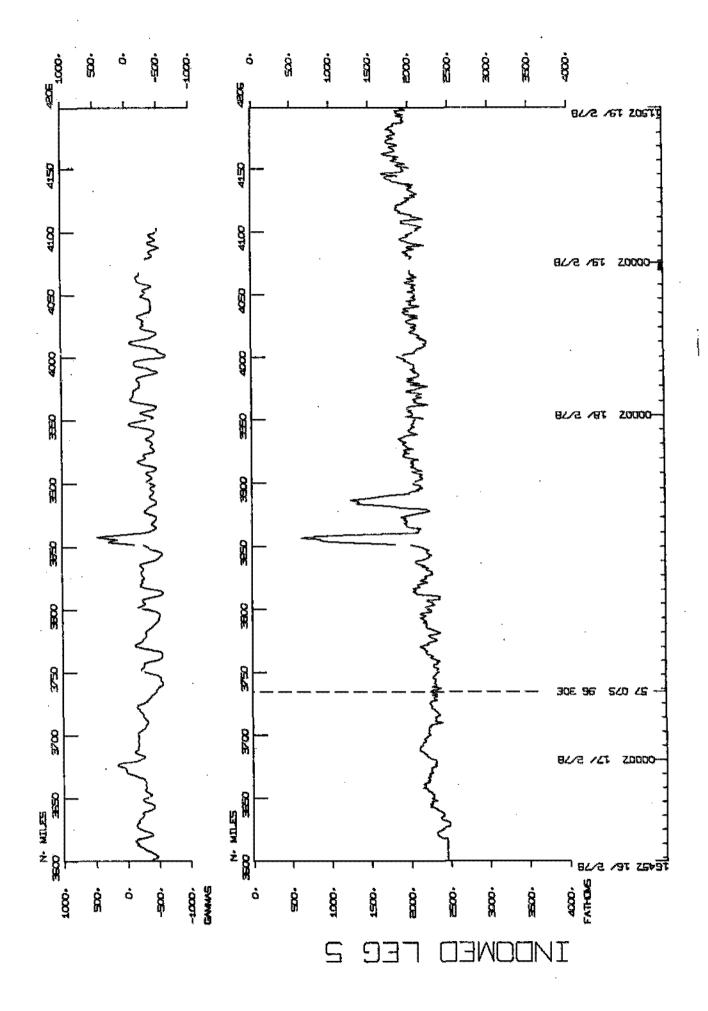


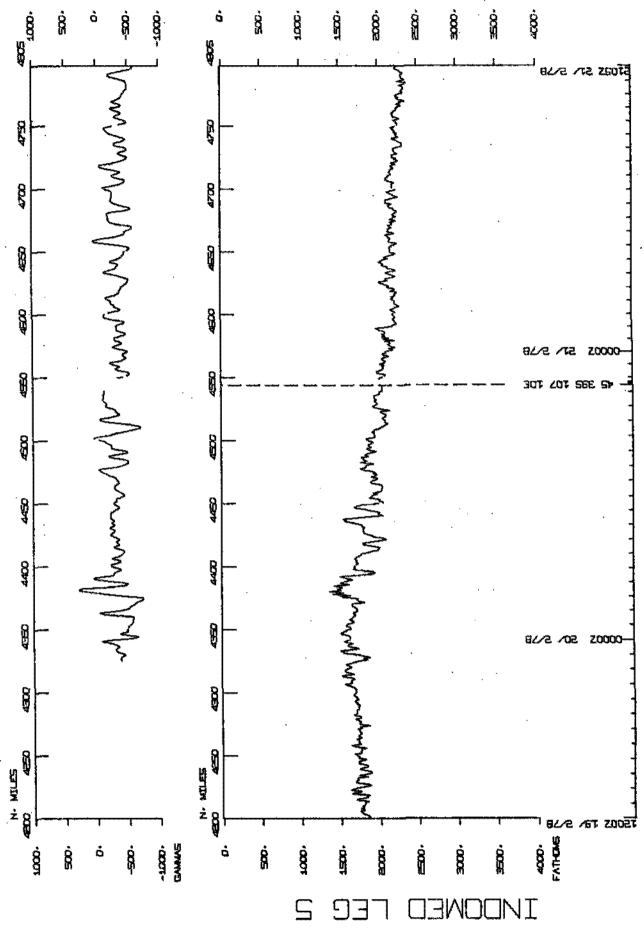




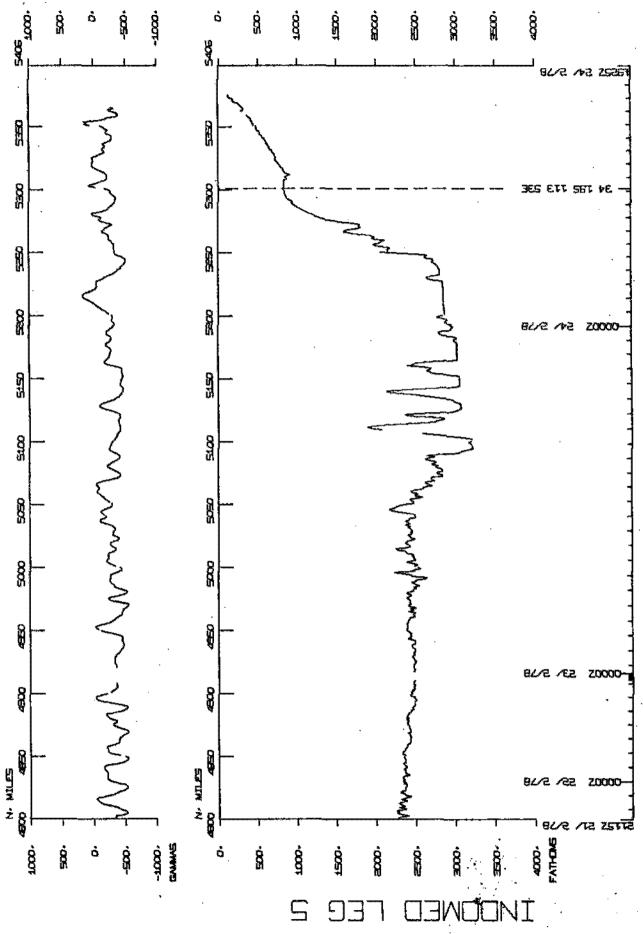








an-fair and a second second



.

.

S.I.O. SAMPLE INDEX

(Issued May 8, 1978)

INDOMED EXPEDITION

LEG 5

Pt. Louis, Mauritius (28 January 1978) to Fremantle, Australia (25 February 1978)

• , •

R/V Melville

Chief Scientist - R. Weiss (SIO)

Resident Marine Tech - S. Witherow

Post-Cruise Processing and Report Preparation by S.I.O. Geological Data Center

Index Encoding funded by NSF Grant Number OCE76-80618 Index Processing and Report Preparation Funded in part by SIA

The Sample Index is a first level interdisciplinary listing of time, position, sample identification and disposition of all samples, records and measurements collected on this cruise leg. The index data are encoded at sea by the Resident Technician and processed on shore by the S.I.O. Geological Data Center shortly after the completion of the cruise leg.

Positions are interpolated on the basis of sample time by comparison to a single, edited navigation file. Samples beginning at one time and position and ending at another are entered on two consecutive cards. Disposition and sample type are represented by three and four character codes to permit future computer searches on these parameters. (Listings defining these codes are available from the Geological Data Center.)

NOTE: This document is intended primarily for informal use within the institution and is not to be reproduced or distributed outside Scripps without prior approval of the Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92093.

S.I.O. SAMPLE INDEX

. .

GENERATED 02MAY78

(INMD05MV) ***

.

,

*** INDOMED LEG 5 SAMPLE INDEX

.

· · · · · ·

1

					1.		
	60E	120E	180	120W	60W	OM	
	************	*********	**********	*******************	*******	*******	
85N		*X* = SH1	PIS TRACK BY	5 DEGREF SQUARE			85N
80N					0 00	00	8 O N
75N		0		0 0000		0000	75 N
70N		000000000000		0000 0 0	0 0 0 0000	0000	70N
65N		000000000000000000000000000000000000000		000000000000000000000000000000000000000	000 000	00	65 N
60N	000000000000000000000000000000000000000			000000000000000000000000000000000000000	00 00		60N
55N		000000000000000000000000000000000000000		0 00000000	000	0	55 N
50N	000000000000000000000000000000000000000			00000000	0000	00	50N
45N	0000000000 000	00000000000000000000000000000000000000	0.00	0000000	0000 0		45N
40N	0 00 00 000	300000000 00000	0	0000000	0000		40N
35N	0 00000 00	0000000000000000000	0	000000	00	0	35 N
30N			0	000000	0	00	30N
25N	000000000 000	000000000000		0000	0	000	25 N
ZÜN	0000 000000	000 0000		0 0	00	000	20N
15N	00000000 00	0 00 0		00	0	000	15N
1 U N	000000000	0 0 0		C	ļ.	000	LON
5N	0000000000	0			00000	000	5 N
ÛN	0000000	00 00			000000		ON
5 S	000000	000	00	-	0000000		5 S
10\$	00000	0	00		00000000	0	105
155	00000		0 0		0000000		155
20S	0000 00 0	00	000		000000		205
25S	000 0 0 X	- 000	0000		000000		255
305	00 X	000	00000		0000		30 S
35S	00 X	XO0	000 0		00000		355
40S	Х	XX	00 0	-	000		40 S
45S			0		00		45S
50S	X	X			00		50S
555		X			0		555
605	X	X					60S
65S	X	Х					65 S
705	00	0.000000	000		0		705
755	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000	0	00000	0000	755
805	000000000000000000000000000000000000000	00000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	0000000	0000000	805
855	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000000	855
905	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000000	00000000000000000000000000000000000000			905
	**********	**********		*************	********	. * *	
	60E	120E -	180	120W	60W	0 W	
•	· .	28 JAN	178 - PT	. LOUIS, MAURITI	15		
		~~~ <b>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</b>	TO	* CAA*34 UMAU4117	1 <b>- 4</b>		
		25FEB		EMANTLE, AUSTRALI	A		
		CHIEF SCIE	NTIST - WEIS	s, R. (	RD		
		SHIP - P	V MELVILLE	(\$10)			

## PRODUCED BY GEOLOGICAL DATA CENTER, SCRIPPS INSTITUTION OF OCFANOGRAPHY, LA JOLLA, CALIFORNIA 92093

.

NUMBER OF SAMPLES OF CLASS 'TYPE' GOING TO DESTINATION 'DISP'

DISP				TYP	E		Ţ	OTAL
		DP	GC	LB	MG	PE		
GOC	1	7		1	4		I	12
GRO	I					2	I	2
GSX	I		9			15	I	24
LDD	I					2	I	2
MTG	I					2	I	2
BRD	I					1	I	1
SIO	I					1	I	1
SIX	I					4	I	4
TOTAL	I	7	9	1	4	27	I	48

DP = DEPTHGC = GEOCHEMICAL SAMPLING

LB = LOG BOOKS

_____

MG = MAGNETICS (TOWED VEHICLE, SURFACE, TOTAL FIELD)

PE = PERSONNEL IN SCIENTIFIC PARTY

SAMPLE 'DISP' CODES USED ABOVE

GUC = GEOLOGICAL DATA CENTER -- S. SMITH (EXT. 2752)

GRD = GEOLOGICAL RESEARCH DIVISION (EXT. 3360)

GSX _= GEOCHENICAL OCEAN SECTIONS STUDY (EXT. 4420)

LDD = LAMONT-DOHERTY GEOPHYSICAL DBSERVATORY, COLUMBIA UNIVERSITY MTG = MARINE TECHNOLOGY GROUP (EXT 4194)

ORD = OCEAN RESEARCH DIVISION SID = SCRIPPS INSTITUTION OF OCEANDGRAPHY, LA JOLLA, CAL. 92093 SIX = SCRIPPS INSTITUTION NON-EMPLOYEE -(CONTACT DORCAS UTTER EXT. 2356)

INMOOSMV

*** PORTS ***	÷.
---------------	----

830 28 178 300 25 278		PT. LOUIS, MAURITIUS FREMANTLE, AUSTRALIA		10 03	57 115		INMDO5MV INMDO5MV
***PERSONNEL***							
***rtx>UNNEL***	PECST PEECS PEECS PEECS PEEEEEEEEEEEEEEEEEEEE	WEJSS, R. WITHEROW, S. HENRY, A. BORDLE, D. BEAUPRE, M. BOS, D. CHRISTIANSON, M. DIGRE, T. FIELD, T. FIELD, T. FINKEL, B. GOBAT, D. HESTER, A. JAEGER, E. KIM, K. LUPTON, J. LUPTON, J. LUPTON, K. MORRIONE, M. RAGAN, P. RICHTER, W. SAIGH, D. SANBORN, K. SARIN, M. SCHECHTMAN, N. SLATER, E. WEISS, P. WELLS, J.	GRDG MTG SIX GSX GSX GSX GSX GSX GSX GSX GSX GSX GS				I NMD05MV I NMD05MV
	PE	WILLIAMS, B.	GSX				INMDOSMV

*** NOTE *** TIME ZONES AND MINUTES OF LATITUDE AND LONGITUDE ARE LISTED IN TENTHS (E.G. 10.6 IS LISTED AS 106)

*** NOTE *** AN 'X' IN THE (B)EGIN/(E)ND COLUMN FOLLOWING THE SAMPLE CODE INDICATES NO SAMPLE OR DATA RECOVERED

TIME DAT GMT D.M.	E TIME TZ Y. LOC LOC	SAMP CODE	SAMPLE	IDENT.	DISP CODE	L	AT.				E 1 UISE G-SHIP
	ı	JNDERW/	Y DATA CU	RATOR - STUA	RT M.	ŚMI	.TH (E	XT•2	(752)		
*** LDG B	00KS ***										
1600 28 1	.78	LBUW (	UNDERWAY	WATCH LOG	GOC	21	1885	57	78E	S IN	IMDO5MV
1715 24 2	!78	LBUW (	UNDERWAY	Watch Log		33	1285	114	349E	S IN	IMDO5MV
*** FATHO	IGRAMS ***										
1600 28 1	. 78	DPR3 (	EDR 3.5	KHZ R-01	GDC	21	1885	57	78E	S 11	MDO5MV
2324 29 1	. 78	DPR3 (	EDR 3.5	KHZ R-01	GDC	27	575	56	574E	S 11	MDO5MV
2324 31 1	178	DPR3 (	EDR 3.5	KHZ R-02	GDC	31	480S	56	582E	S II	NMOOSM V
830 2 2	278	DPR3 (	EDR 3.5	KHZ R-02	GDC	37	393S	57	383E	S IN	IMDOSM V
614 4 2	278	DPR3	B EDR 3.5	КН <b>Z R-03</b>	GDC	37	539S	57	406E	S II	NMDO5MV
830 6 2	278	DPR3	EDR 3.5	КНZ R-03	GDC	47	400S	57	517E	S II	NMDO5MV
137 72	278	OPR3	8 EOR 3.5	КНZ R-04	GDC	47	3995	57	554E	s II	NMDO 5M V
1950 92	278	DPR3	EDR 3.5	КНZ R-04	GDC	59	5265	60	586E	s In	IMDO 5M V
700 11 2	?78	DPR3	B EDR 3.5	KHZ R-05	GDC	60	24S	61	143E	S 11	NMDO5MV
1730 15 2	?78	DPR3	EDR 3.5	KHZ R-05	GDC	59	247S	92	336E	S 11	NMDO5MV
1256 16 2	278	DPR3	B EDR 3.5	КН <u>г</u> R-06	GDC	59	1775	92	465E	S 11	NMD05MV
450 18 2	278	DPR3	EDR 3.5	КН <mark>г</mark> R-06	GDC	53	4245	101	531E	S 11	VMD05MV
454 18 2	278	DPR3	8 EDR 3.5	КНZ R-07	GDC	53	4185	101	540E	5 11	NMD05MV
1715 24 2	278	DPR3	EDR 3.5	КНZ R-07	GDC	33	1285	114	349E	5 11	NMD05MV
*** MAGN	ETOMETER **	*	<b>1</b>								
1600 28 1 1030 31 1	178 178	MGR MGR	B MAGNETIC E MAGNETIC	CS R-01 CS R-01	GDC GDC						NMDO5MV NMDO5MV
1032 31 1 1530 9 2				CS R-02 CS R-02							NMD05MV NMD05MV
1540 9 2 1412 15 2		MGR MGR	B MAGNETIC E MAGNETIC	CS R-03 CS R-03							NMD05MV NMD05MV
1418 15 2	278	MGR	B MAGNETI(	CS R-04	GDC	59	445S	91	597E	S I	NMDD5MV
1600 15 2	276	MGR	E MAGNETI(	CS R-04	GDC	59	316S	92	241E	S I	NMD05MV

.

``

GMT D.M.Y.	TIME TZ SAMP LOC LOC CODE	SAMPLE	IDENT.	DISP CODE		LONG.	B PAGE 2 CRUISE LEG-SHI	
*≠≠GEOCHEM	ICAL STATION -	LARGE VOI	LUME***					
2355 29 178	GCLV E	3 GEOSECS	STA 427	GSX ;	27 285	56 5841	E S INMDO5M	1∨
2317 30 178	GCLV E	E GEOSECS	STA 427	GSX ;	27 785	56 5561	E S INMDO5M	MV
857 2 278	GCLV E	GEOSECS	STA 428	GSX :	37 4295	57 3958	E S INMDO5M	4 V
535 4 278	GCLV E	GEOSECS	STA 428	GSX :	37 4805	57 4071	E S INMDO5M	4 V
830 6 278	GCLV E	3 GEOSECS	STA 429	GSX	47 400 <u>s</u>	57 5176	E S INMDOSM	4 V
113 7 278	GCLV E	E GEOSECS	STA 429	GSX	47 387s	57 5481	E S INMDOSM	4 V
2026 9 278	GCLV H	GEOSECS	STA 430	GSX	59 <b>591</b> 5	61 76	E S INMDOSM	4V
635 11 278	GCLV H	GEOSECS	STA 430	GSX	60 105	61 68	E S Inmdosi	MV
1932 13 278	GCLV 8	3 GEOSECS	STA 431	GSX	64 1075	84 71	E S INMDOSM	₩V
550 14 278	GCLV 8	E GEOSECS	STA 431	GSX	64 675	84 54	E S INMOOSM	MV
1810 15 278	GCLV 8	B GEOSECS	STA 432	GSX	59 213S	92 3801	E S INMDOSM	4 V
1250 16 278	GCLV 8	E GEOSECS	STA 432	GSX	59 182S	92 4561	E S INMDOSM	M V
1650 18 278	GCLV I	B GEOSECS	STA 433	GSX	53 145	103 341	E S INMDOSM	MV
100 19 278	GCLV I	E GEOSECS	STA 433	GSX	52 5985	103 109	E S INMDOSM	MV
1725 20 278	GCLV GCLV	B GENSECS	STA 434	GSX	45 401S	107 1051	E S INMDO5M	M V
2130 20 278		E GEOSECS	STA 434	GSX	45 397S	107 149	E S INMDO5M	M V
710 22 278	GCLV I	B GEOSECS	STA 435	GSX	39 579S	109 5771	E S INMDOSM	M V
20 23 278	GCLV I	E GEOSECS	STA 435	GSX	39 562S	110 13	E S INMOOSM	M V

•.

· · · · ·

.