INFORMAL REPORT AND INDEX OF

NAVIGATION, DEPTH, MAGNETIC AND SUBBOTTOM PROFILER DATA

(Issued November 1984)

PROTEA EXPEDITION

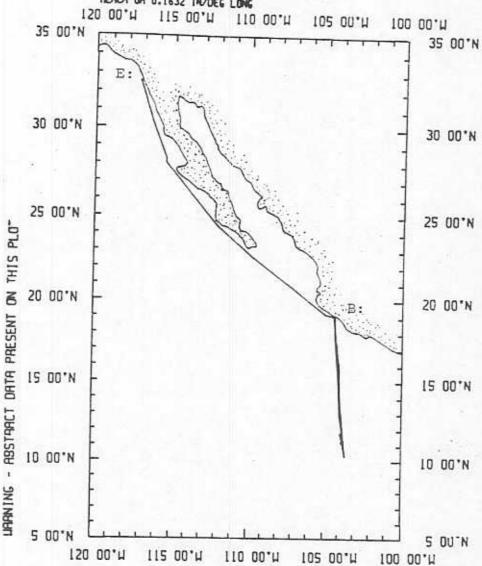
LEG 9

Manzanillo, Mexico (28 April 1984) to San Diego, Calif. (21 May 1984)

R/V Melville

Chief Scientist - R. D. Ballard (Woods Hole Oceanographic Inst.)

Resident Marine Tech - E. G. Pillard


Post-Cruise Processing and Report Preparation by S.I.O. Geological Data Center

Data Collection Funded by NSF Grant Number NSF OCE83-17741 Data Processing Funded by SIA and NSF

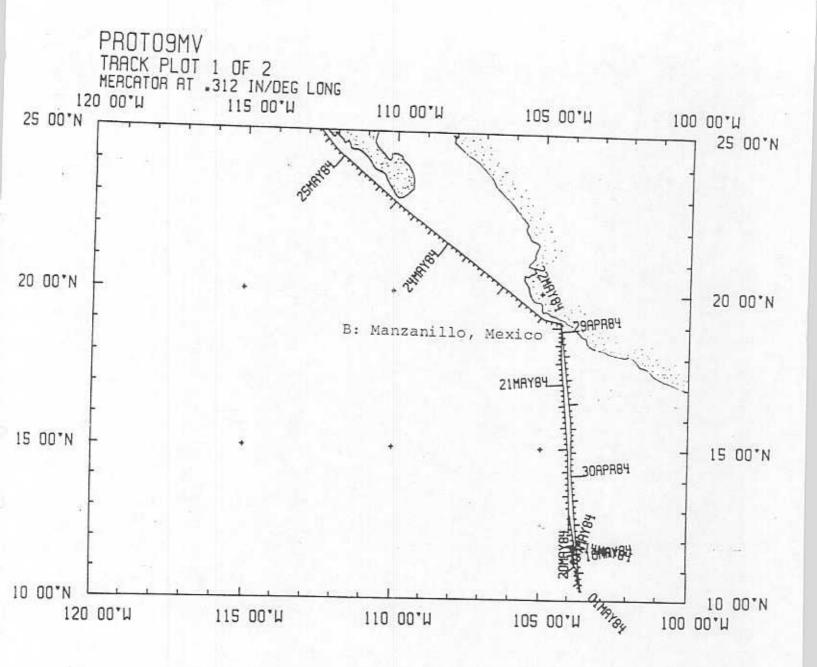
NOTE: This is an index of underway geophysical data edited and processed after the completion of the cruise leg and is intended primarily for informal use within the institution. This document is not to be reproduced or distributed outside Scripps without prior approval of the chief scientist or the Geological Data Center, Scripps Instituiton of Oceanography, La Jolla, California 92093.

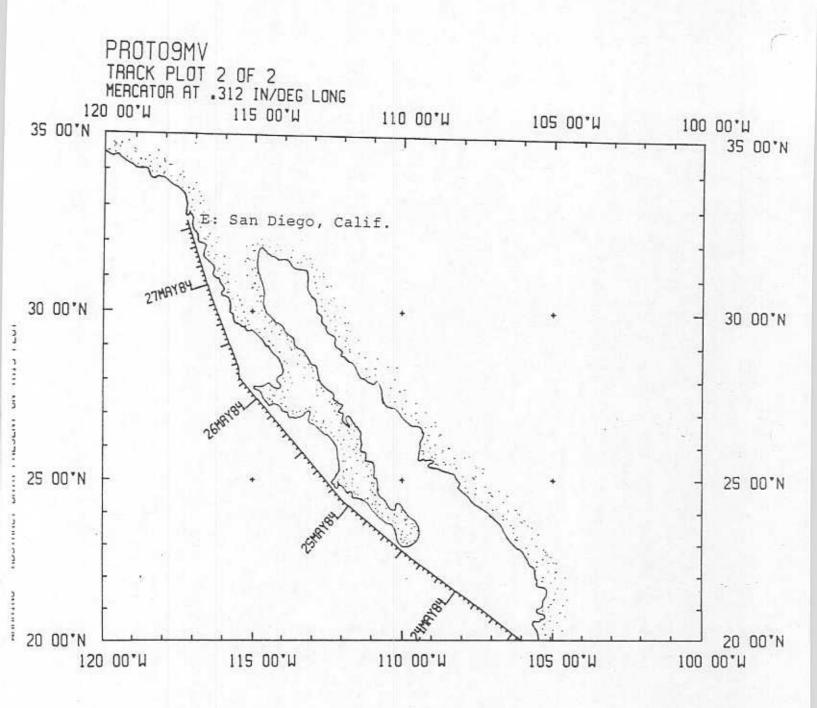
GDC Cruise I.D.# 212

PROTER - LEG NINE TRACK

PROTEA EXPEDITION LEG 9

CHIEF SCIENTIST: R. D. Ballard


PORTS: Manzanillo, Mexico - San Diego, California


DATES: 28 April - 21 May 1984

SHIP: R/V Melville

TOTAL MILEAGE OF UNDERWAY DATA COLLECTED

- 1) Cruise 2677 miles
- 2) Bathymetry collected but not processed
- 3) Magnetics collected but not processed
- 4) Seismic Reflection none collected
- 5) Gravity none collected
- 6) SeaBeam (on R/V Thomas Washington only)

S.I.O. SAMPLE INDEX (Issued November 1984)

PROTEA EXPEDITION

Leg 9

Manzanillo, Mexico (28 April 1984) to San Diego, Calif. (21 May 1984) R/V Melville

Chief Scientist - R. D. Ballard (WHOI)

Post-Cruise Processing and Report Preparation by S.I.O. Geological Data Center

Index Encoding Funded by NSF Grant Number OCE80-22996 Index Processing and Report Preparation funded in part by SIA

The Sample Index is a first level interdisciplinary listing of time, position, sample identification and disposition of all samples, records and measurements collected on this cruise leg. The index data are encoded at sea by the resident marine technician and processed on shore by the S.I.O. Geological Data Center shortly after the completion of the cruise leg.

Positions are interpolated on the basis of sample time by comparison to a single, edited navigation file. Samples beginning at one time and position and ending at another are entered on two consecutive lines. Disposition and sample type are represented by three and four character codes to permit future computer searches on these parameters. (Listings defining these codes are available from the Geological Data Center.)

GDC Cruise I.D. #212

PROTEA LEG 9 SAMPLE INDEX

PROTOSHV

PORTS

2208 28 484	I COT P W	
1200 01 = 1	LGPT E Manzanillo, Mexico LGPT E San Diego, Calif.	15 05 N 104 20 W F PROTOSHV
	Dan Diego, Calif.	32 43 N 117 11 W F PROTOSHV

PERSONNEL

PESP WHO BOWEN, M.F. RESEARCH ASST. PESP WHO BRYAN, W.B. SCIENTIST PECT MTG CHARTERS, J.S. COMPUTER TECH. PESP WHO CROOK, T. RESEARCH ASST. PEVL SIX GARY, J.N. VOLUNTEER PESP WHO HAMURO, K. GUEST SCIENTIST PESP WHO HAMDY, R.E. RESEARCH ASST. PESP WHO MARQUET, W.M. SR. RESC. ASSOC. PEVL SIX PELZ, E.A. VOLUNTEER PERT MTG PILLARD, E.G. RESIDENT TECH. PESP WHO SULANOWSKI, M.M. RESEARCH ASSOC. PESP WHO YOUNG, E.M. SR. RESC. ASSOC.	WOODS HOLE OCEAN. IN. WOODS HOLE OCEAN. IN. WOODS HOLE OCEAN. IN. SCRIPPS INSTITUTION WOODS HOLE OCEAN. IN. SCRIPPS NON-EMPLOYEE WOODS HOLE OCEAN. IN. WOODS HOLE OCEAN. IN. SCRIPPS NON-EMPLOYEE SCRIPPS NON-EMPLOYEE SCRIPPS INSTITUTION WOODS HOLE OCEAN. IN.	*CRUISE* PROTO9MV
---	--	--

NOTES

AN 'X' IN THE (B)EGIN/(E)ND COLUMN FOLLOWING THE SAMPLE CODE INDICATES NO SAMPLE OR DATA RECOVERED. A 'C' INDICATES CONTINUATION OF DATA COLLECTION FROM BEFORE THE BEGINNING OR AFTER THE END OF A PARTICULAR LEG. (MOORED BOTTOM SAMPLES, FOR EXAMPLE.) THE NUMBER APPEARING IN THE COLUMNS BETWEEN THE SAMPLE IDENTIFIER AND THE DISPOSITION CODE, FOR MANY SAMPLE ENTRIES, IS THE WATER DEPTH IN CORRECTED METERS.

TIME DATE		YY SAMP SAMPLE E CODE IDENTIFIER					DISP CODE LAT.			LON	IG.	CRUISE LEG-SHIP			
								SMITH EXT				7.7.7			
		OGRAMS													
65															
2255	28	484		DPRT	В	12KHZ	U/WAY	R-01 R-01	GDC	10	224	104	1000	_	
1600	1	584		DPRT	E	12KHZ	U/WAY	R-01	GDC	10	1951	100	136M	5	PROTO9N PROTO9N
1620	1	584		DPRT	В	12KHZ	ANGUS	/DREDGE	MHO	10	100N	103	350W	2	PRUTO9N
1318	19	584		DPRT	E	12KHZ	ANGUS	/DREDGE	WHO	11	476N	103	470W	S	PROTO9N
CA	ME	RA===													
127	1	584		CATB	В	ANGUS	T-205	EPR	MHO	10	1078	100	2520		DDOMAGN
241	2	584		CATB	E	ANGUS	T-205	EPR	MHO	10	200N	103	3538	0	PROTOSH
519	2	584		CATB	В	ANGUS	T-206	EPR	MHO	10	1000	103	3528	0	PRUTUSH
16	3	584		CATB	E	ANGUS	T-206	EPR	MHO	10	201 N	103	3218	0 0	PROTOSM
930	4	584		CATB					MHO	10	271 N	103	379W	0	PROTO9N
800	4	584						EPR	MHO	10	370M	103	373W	0	PROTOSH
910	5	584		CATB	В	ANGUS	T-208	EPR							PROTOSH
605	5	584		CATB	E	ANGUS	T-208	FPR	MHU	10	417N	103	300H	0	PROTOSN
348	6	584		CATB	B	ANGUS	T-209	FPR	MHU	10	536N	103	4000	5	PROTO9N
229	7	584		CATB	E	ANGUS	T-209	EPR	WHO	10	596N	103	424W	2	PROTOSH
121	8	584		CATB	B	ANGUS	T-210	FDR	MHO	10	501W	100	4100		DDOMAGN
427	8	584		CATB	E	ANGUS	T-210	EPR	MHO	10	544N	103	4000	2 0	DEUTOON
013	9	584		CATB	В	ANGUS	T-211	EPR	WHO	11	187N	103	4600	9	PROTOSH
034	10							EPR							PROTOSH
232	10							EPR							PROTOSH
931	11			CATB					WHO	11	159N	103	451W	S	PROTOSH
401	12	584		CATB											PROTOSH
556	12	584		CATB	E	ANGUS	T-213	EPR							PROTOSH
628	13	584		CATB	В	ANGUS	T-214	EPR							PROTOSH
125	13	584		CATE	F	ANGUS	T-214	EDD	MUO	11	260W	103	477W	2	PROTOSH
148	14	584		CATB	В	ANGUS	T-215		MHU						PROTOSKY
149	15	584		CATB	E	ANGUS	T-215	EPR	WHO	11	476N	103	510₩	5	PROTOSHV
706						ANGUS									PROTO9H
905						ANGUS									PROTOSHY
030						ANGUS									PROTOSHY
106		1000000				ANGUS		10.000000							PROTOSHY
603		in things				ANGUS									PROTOSHV
200						ANGUS									PROTOSHV

GHT TIME	D	DMMYY DATE	SAMP SAMPLE CODE IDENTIFIER				DISE		AT. LON		NG.		CRUISE LEG-SHIP		
9 8 8 [RE	DGES***													
635	. :	1 584	DRRC) E	B EPF	ROCE	DREDGE	D-47	HUC	10	2021				
1723	1	L 584	DRRC) E	EPR	ROCK	DREDGE	D-47		10	1028	103	338	1 5	PROTO9NV
632	1	2 584	DRRC) E	EPR	ROCK	DREDGE	D-48	0.30307-57	10	1338	103	330	. 5	PROTO9MV
810		2 584	DRRO) E	EPR	ROCK	DREDGE	D-48	MHU	10	216	103	3454	2	PROTOSHV PROTOSHV
336		584	DRRO	B	EPR	ROCK	DREDGE	D-49	MHU	10	2108	103	355%	5	PROTOSHV
457	3	584	DRRO	E	EPR	ROCK	DREDGE	D-49	MHO	10	2088	103	3564	5	PROTOSHV
937	3	584					DREDGE		MHO	10	1041	103	334	5	PROTO9NV PROTO9NV
1040	3	584					DREDGE		MHO	10	1008	103	346	2	PROTO9NV
2230	3	584	DRRO	В	EPR	ROCK	DREDGE	D-51	MHO	10	254W	103	350W	2	PROTOSHV
15	4	584	DRRO	E	EPR	ROCK	DREDGE	D-51	MHO	10	379N	103	2706	20	PROTOSHV
334	4	584	DRRO	В	EPR	ROCK	DREDGE	D-52	MHU	10	2048	103	3/3W	0	PROTOSHV
520	4	584	DRRO	E	EPR	ROCK	DREDGE	D-52	MHO	10	254N	103	303W	5	PROTOSHV
29	6	584					DREDGE		MHO	10	397N	103	3718	2	PROTOSHV
132	6	584					DREDGE		MHU	10	280M	103	3/38	0	PROTOSHV
537		584					DREDGE		MHO	10	498N	103	4038	0	PROTOSHV
715	6	584	DRRO	E	EPR	ROCK	DREDGE	D-54	MHO	10	4928	103	4058	0	PROTOSHV
1541	7	584					DREDGE		MHO	10	SOSH	103	4214	2	PROTO9HV
1705	7	584					DREDGE		MHO	10	589W	103	4230	0	PROTO9HV
1950	7	584					DREDGE		MHO	10	572N	103	4170	0	PROTO9NV
2117	7	584					DREDGE		MHO	10	SCON	103	41 OU	5	PROTOSHV
1735	8	584					DREDGE		MHO	10	550N	103	410W	5	PROTOSHV
1900	8	584					DREDGE		MHO	10	554W	103	413W	0	PROTOSHV
1507		584					DREDGE								
1630		584					DREDGE		MHO	11	1504	103	459W	5	PROTO9HV
1413		584					DREDGE		MILO	11	1479	103	456W	5	PROTO9MV
		584		F	FPR	ROCK	DREDGE	D-59	MHO	11	1408	103	451A	5	PROTOSMV
1836	10	584	DRRO	B	FPR	ROCK	DREDGE	D-60	MILO	11	176W	103	455W	2	PROTOSHV PROTOSHV
		584		E	EPR	ROCK	DREDGE	D-60	MHO	11	170M	103	460M	0	PROTOSHV
1627	11	584	DRRO	R	FPR	BOCK	DREDGE	D-61							
1829	11	584	DRRO	E	EPR	ROCK	DREDGE	D-61		11	2659	103	4016	5	PROTOSHV PROTOSHV
1924	12						DREDGE		MHO	11	250H	103	475H	2	PROTO9NV
2152							DREDGE			11	2561	103	470W	0	PROTOSNY
145							DREDGE								
322							DREDGE		AHO	11	2741	103	481W	50	PROTOSHV PROTOSHV
712							DREDGE								PROTOSHV
818							DREDGE		MHU	11	4221	103	5109	0	PROTOSNV
532							DREDGE								PROTOSHV
628							DREDGE	TOUR TOUR ARTHUR							PROTOSHV
1032		0.000,000					DREDGE								PROTOSHV
1156							DREDGE								PROTO9NV
			De thockey,	11100	never too	anistro California	No. Parente Control	emocnino de						_	

GHT DDMMYY TIME DATE	PATE CODE IDENTIFIER					DISP	L	LAT.		LONG.		CRUISE LEG-SHIP			
		-													
	16 58		DRRO	В	EPR ROC	K D	REDGE	D-67	WHO	11	344N	103	493W	S	PROTOSH
		4	DKKU	E	EPR ROC	K D	REDGE	D-67	WHO	11	351N	103	499W	S	PROTO9H
1625	17 58	4			EPR ROC				₩H0	11	511N	103	510W	S	PROTO9HV
1830	17 58	4	DRRO	E	EPR ROC	K D	REDGE	D-68	HUO	11	500N	103	505W	S	PROTOSHY
559	19 58	4	DRRO	В	EPR ROC	K D	REDGE	D-69	WHO	11	451N	103	473W	S	PROTOSHY
711	19 58	4	DRRO	E	EPR ROC	K D	REDGE	D-69	WHO	11	445N	103	471W	S	PROTOSHY
1109	19 58	4	DRRO	В	EPR ROC	K D	REDGE	D-70	WHO	11	486N	103	472W	S	PROTOSMY
1318	19 58	4	DRRO	E	EPR ROC	K D	REDGE	D-70	WHO	11	476N	103	470W	5	PROTOSHY
• • • HE	AT FL	08***													
910	5 58	4	HFXX	В	ANDREA	HEA	T PRO	BE	WHO	10	371N	103	376W	S	PROTOSHV
1605	5 58	4	HFXX	E	ANGUS T	-20	8								PROTOSHY
2348	6 58	4			ANDREA			BE							PROTOSHY
1229	7 58	4			ANGUS T				WHO	10	596N	103	424W	5	PROTOSHY
121	8 58	4			ANDREA			BE							PROTOSMY
1427	8 58	4			ANGUS T										PROTOSHY
2013	9 58	4	HFXX	В	ANDREA	HEA	T PROP	BE							PROTOSHY
1034	10 58	4	HFXX	E	ANGUS T	-21	1								PROTOSHY
2232	10 58	4	HFXX HFXX HFXX	В	ANDREA	HEA	T PROE	BE							PROTOSHY
931	11 58	1	HFXX	E	ANGUS T	-21	2								PROTOSHV
401	12 58	1	HFXX	В	ANDREA	HEA'	T PROP	F	WHO	11	282N	103	481W	5	PROTOSHV
1556	12 58	1	HFXX	E	ANGUS T	-21	3	352- 14	WHO	11	265N	103	477W	5	PROTOSHY
628	13 58	1	HFXX	В	ANDREA	HEA'	T PROP	F	WHO						PROTOSHV
	13 58	1	HFXX	E	ANGUS T	-21	4	_							PROTOSHV
148	14 58	1	HFXX	В	ANDREA	HEA'	T PROP	F							PROTOSHV
149	15 58	1	HFXX	E	ANGUS T	-21	5	-							PROTOSHV
706	15 58		HFXX					F							PROTOSHV
905	16 584	1	HEXX	F	ANGUS T	-216	5		MHO						PROTOSHV
2030	16 58	1	HFXX	В	ANDREA	HEA'	T PROP	E	MHO						PROTOSHV
106	17 584	1	HFXX	E	ANGUS T	-21	7		WHO						PROTOSHV
603	18 584	1	HFXX	В	ANDREA	HEA'	T PROP	E	MHO						PROTOSHV
200	19 584		HFXX	E	ANGUS T	-21	В	-	WHO						PROTOSHV
2900		~		1	FND SAM	DIF	THOEY				20011	100	1004		PROTOSHV