
Protein Data Analysis
Group 7: Arjun Dharma, Thomas Waldschmidt, Rahil Dedhia

Advisor: Dr. Peter Rose
Director of the Structural Bioinformatics Laboratory at SDSC

June 5, 2020

Abstract

Deep Learning transformer models such as Bidirectional Encoder
Representations from Transformers (BERT) have been widely success-
ful in a variety of natural language based tasks. Recently, BERT has
been applied to protein sequences and has shown some success in pro-
tein prediction tasks relevant to biologists, such as secondary structure,
fluorescence, and stability. To continue the investigation into BERT,
we examined a new prediction task known as subcellular location, first
described in DeepLoc (2017). Using BERT embeddings from a UC
Berkeley research project titled Tasks Assessing Protein Embeddings
(TAPE) as features for downstream modeling, we achieved a 67% test
set accuracy using a support vector classifier for the 10 class classifica-
tion task, and 89% using a Keras deep neural network for the binary
classification task (membrane bound vs water soluble protein). Next,
we created a containerized Flask app using Docker which is deployable
to AWS EC2 with the ability to run on a GPU. This service allows for
embedding protein sequences using pretrained models, as well as pro-
viding an interface for visualizing the embedding space using principal
component analysis and plotly.

1

Contents
1 Introduction 3

1.1 Challenge and Problem Statement 3
1.1.1 Understanding Proteins 3
1.1.2 Transformer Architecture and BERT 5
1.1.3 Protein Embeddings and TAPE 7
1.1.4 Subcellular Location 8

2 Team Roles and Responsibilities 9
2.1 Assigned Roles . 9
2.2 Major Contributions . 10

3 Methodology 10

4 Data Processing 10

5 Analysis and Modeling 12
5.1 PCA and Visualization . 12
5.2 DeepLoc Modeling . 14

5.2.1 Fine tuning BERT using Deep Learning and TAPE . 15
5.2.2 Sklearn, XGBoost, and Keras Modeling 15
5.2.3 Logistic Regression Q10 and Q2 16
5.2.4 Keras DNN Q2 . 18

6 Evaluation and Findings 18

7 Scalability and Deployment 19

8 Conclusions 21

9 Appendix 22
9.1 DSE MAS Knowledge Applied to Project 22
9.2 Library Link and Citation . 23

2

1 Introduction
1.1 Challenge and Problem Statement
1.1.1 Understanding Proteins

Proteins are a fundamental building block of life. They perform complex
functions ranging from transporting oxygen in the body, detecting stimuli,
providing structure to cells, and even DNA replication. Proteins consist of
a linear chain of 20 possible amino acids connected by covalent bonds. This
sequence of amino acids can be represented as a sequence of discrete tokens,
known as the primary structure. The unique combination of these amino
acids give rise to unique functions which are determined by the protein’s
three-dimensional structure. The local geometry of a protein is known as
secondary structure and describes the behavior of small segments of proteins,
either taking the form of an α -helix or a β -sheet. The three dimensional
geometry of the protein is known as the tertiary structure, and describes
the overall function of the protein. Figure 1 shows a visual representation
of the various levels of protein structure.

Figure 1: Summary of protein structure (primary, secondary, and tertiary) [1]

There has been a large amount of work in sequencing proteins and stor-
ing them within large scale data repositories, such as UniProt [16], which
contains hundreds of millions of protein sequences, a majority of them un-
labeled. Currently, there are about 300,000,000 sequences in UniParc, and
about 160,000 structures in the Protein Data Bank (PDB) [4]. Determining
the structure and functions of proteins are both difficult and costly, where
identifying a single structure takes upwards of $100k [15]. The number of
sequence proteins has significantly outpaced the capacity and resources for

3

those sequences whose structures have been identified, shown in figure 2.

Figure 2: The relationship between the total number of sequences available versus the number of
sequences that have been examined for structure [4]

A fundamental challenge of biochemistry is the prediction of protein
structure and function given an input primary sequence. Existing research
methods include comparing protein sequence families, or evolutionary simi-
lar proteins responsible for a unique function and require a large amount of
sequences that must be labeled to be evolutionary similar. This method is
not generalizable and isn’t applicable to novel proteins. Additionally, this
analysis is limited to proteins with a large number of family members. A
significant amount of research has been done recently in applying AI and
deep learning to study protein sequences and achieve success in a variety
of protein prediction tasks. Instead of using a labeled subset of protein
sequences, these methods aim to leverage large corpuses from UniProt in
order to derive meaningful insight. One such endeavor is AlphaFold [2] by
Google’s DeepMind, where they built a system to predict protein structure
and generate 3D images using large genomics datasets. Similarly, researchers
have been applying state of the art natural language processing techniques
to primary protein sequences in order to gain insights into common protein
prediction tasks such as secondary structure, contact prediction, stability,
and fluorescence. One NLP model that has received recent attention is
the transformer architecture BERT (Bidirectional Encoder Representations
from Transformers), which has demonstrated success in forming deep un-
derstanding of unlabeled texts through pretraining.

4

1.1.2 Transformer Architecture and BERT

Natural language processing (NLP) is a field concerned with how comput-
ers understand and process large amounts of data in every day language.
Some challenges in NLP include speech recognition, language generation,
translation, and language understanding. Traditional methods were based
on complex sets of hand-written rules; however, since the 1980s many have
turned to machine learning as an approach to language processing. In the
early 2010s, deep learning style machine learning methods began to be ap-
plied to traditional natural language processing techniques due to an increase
in data and compute power. [3]

Many techniques have been developed in order to represent natural lan-
guage in a machine readable form. Embeddings, a vectorized representa-
tion of language in the form of words, sentences, or documents are useful
tools in turning sequences of text into features. Embeddings capture sta-
tistical relationships between words or phrases in a body in text to form
a high dimensional feature space which can then be input as a numerical
representation for NLP tasks. Embeddings can be generated through cre-
ating a co-occurrence matrix, or neural networks in the form of models like
word2vec, ELMo, and BERT. Neural networks trained on large corpuses
of texts create language models which have been widely successful in well
known NLP benchmarks described in the General Language Understanding
Evaluation (GLUE), a collection of resources for training, evaluating, and
analyzing natural language understanding systems [5]. These tasks include
question answering, semantic similarity, paraphrasing, and sentiment. Re-
cently, these tasks have been dominated by variations of BERT, a type of
transformer model.

First introduced in 2017, the Transformer is a deep learning model which
has achieved wide spread success in NLP. The Transformer architecture
consists of an set of encoders and decoders, each with their own attention
mechanism and feed-forward neural network. Attention allows a model to
understand a sentence as a whole and provides information on tokens farther
away from a given word. Transformers leverage the power of this attention
mechanism to provide large gains in both compute performance and down-
stream task performance. These models can be trained on large bodies of
unstructured text to gain a deep understanding on a variety of tasks.

BERT, or Bidirectional Encoder Representations from Transformers is
a method of pretraining language models on large corpuses of text such as
Wikipedia for downstream NLP tasks such like question answering or sum-
marization. BERT is both unsupervised and bidrectional in its pre-training.

5

While context-free models such as word2vec or GloVe generate an embedding
for a given word, BERT generates a representation of a word or sequence
based on the words in either beginning or end of a sentence. BERT also lever-
ages a semi-supervised form of pretraining, where some tokens are masked
in the input when passed through the bidirectional Transformer encoder and
are asked to predict the masked words [6]. Additionally, some BERT models
use next sentence prediction as a way to understand relationships between
input sequences. Using BERT consists of two stages, pretraining and fine-
tuning, shown in Figure 3. The pretraining step is computationally intensive
and requires large amounts of data, but the model can then be used as an
encoding layer for later fine tuning. Fine tuning is a supervised task where
BERT is adapted to the task at hand. The base pretrained model provides
knowledge and insight from the large corpuses it is trained on and can be
used as a base embedding layer for the fine tuning.

Figure 3: BERT’s pretraining and fine-tuning steps. Pretrained models can be exported to quickly
do fine tuning for unique tasks. [7]

BERT and the Transformer’s ability for self supervised pretraining in
natural language has drawn attention to the immediate analogy for protein
sequences. With the recent availability of large amounts of protein sequences
in databases such as Unirep, these unlabeled sequences can be used to train
language models like BERT to learn features that transfer to downstream
tasks relevant in biochemistry and evolutionary biology. If trained on a
sufficiently large corpus, can BERT learn the underlying grammar or lin-

6

guistic structure of protein sequences, formed over generations of biology
and evolution? Can this knowledge be used to better predict the structure
and function of these proteins?

1.1.3 Protein Embeddings and TAPE

A primary sequence for a protein is represented as a sequence of tokens,
such as

GCTV EDRCLIGMGAILLNGCV IGSGSLV AAGALITQ

Each amino acid can be one of 20 different types represented by the set
[ARNDBCEQZGHILKMFPSTWYV]. These sequences can be ”tokenized”
by breaking up the sequence into its individual amino acids, similar to how
sentences are tokenized into individual words or phrases. Traditionally,
these sequences have been encoded using methods such as one-hot encod-
ing, where a sequence is converted into a matrix that shows which amino
acids exist at a given position by assigning it a value of 0 or 1. Paired with
sequence alignment, a method of comparing sequences from evolutionary
relationships, this method of encoding has achieved decent success when
fed through neural network systems. Other methods of encoding evolu-
tionary features can be found in techniques such as Blosum62, a method
to score alignments between evolutionary divergent protein sequences [17].
Word2vec, another method mentioned before, has also provided a context-
free representation of protein sequences on an individual amino acid level.
Sequence specific encodings of amino acids have ranged from techniques like
position specific scoring matricies (PSSM) and profile hidden Markov mod-
els (pHMM). Embedding representations generated by neural networks in
the form of LSTMs, or residual neural networks have also been successful
within downstream tasks.

Variations of BERT and the transformer architecture have been applied
to protein sequences with some success [8] [9]. Different models leverage
different datasets and are tested in different downstream tasks, making it
slightly difficult to compare the quality of these embeddings. Similar to
GLUE, mentioned in the previous section, Tasks Assessing Protein Embed-
dings (TAPE) is a collection of resources created by researchers at UC Berke-
ley that provide corpuses for pretraining, supervised downstream tasks, as
well as benchmarking code. The five downstream tasks TAPE provides
are secondary structure, contact map prediction, remote homology detec-
tion, fluorescence, and stability. The pretrained models they provide are
a BERT base model, a deep representation model called UniRep, another

7

deep learning model known as trRosetta [10], as well as infrastructure to
train a ResNet, LSTM, and a one-hot encoded model.

Since pretraining a BERT model from a given corpus is computation-
ally expensive, we leveraged the pretrained BERT model from TAPE to
embed our data and conduct further analysis. Based on initial results, the
BERT model achieved good results when benchmarked against other models
on tasks such as secondary structure prediction, fluorescence, and stability.
This shows that pretraining a BERT model on a large training corpus of
unlabeled sequences provides base knowledge for a variety of tasks.

1.1.4 Subcellular Location

To further the exploration of their pretrained BERT model, we chose to
focus on a new task not mentioned in TAPE, known as subcellular loca-
tion. Subcellular location is a well-studied topic in bioinformatics research.
Subcellular localization prediction involves predicting where a protein specif-
ically resides in a cell, such as the nucleus, endoplasmic reticulum, or other
organelles, shown in Figure 4. Predictions of these locations is an impor-

Figure 4: Diagram of subcellular location types[13]

tant component of bioinformatics to predict protein function and genome
annotation, as well as identification of drug targets. Many machine learn-
ing techniques have been applied to this task, but most of them rely on
annotations of similar proteins in a knowledge database.

The DeepLoc [14] dataset consists of labeled protein sequences for two
subcellular prediction tasks. The first task consists of a ten class classifi-
cation problem where a sequence is categorized as belonging to either the
nucleus, cytoplasm, mitochrondrion, extracellular, cell membrane, endoplas-
mic reticulum, plastic, golgi apparatus, lysosome/vacuole, or peroxisome.

8

The second task consists of a binary classification task to denote if the pro-
tein is soluble or membrane bound, shown in Figure 5. In the original paper,

Figure 5: Example embedding space of DeepLoc using t-SNE [13]

the researchers leverage deep neural networks using an RNN as well as an at-
tention mechanism trained on raw labeled protein sequences from UniProt.
After hyperparameter optimization and adding information on protein pro-
files, they achieved a 78% accuracy on the 10 class task, a 92% accuracy on
the binary classification task.

In this project, we aimed to benchmark BERT against existing models
tested on DeepLoc. Using both deep learning methods as well as traditional
machine learning methods, we use the TAPE pretrained BERT model for
our analysis on subcellular location. Based on BERT’s success in both NLP
as well as protein prediction tasks, we hypothesized that BERT will also
show success in subcellular localization.

2 Team Roles and Responsibilities
2.1 Assigned Roles

• Arjun Dharma - Record Keeper

• Rahil Dedhia - Project Manager

9

• Thomas Waldschmidt - Treasurer and Project Coordinator

2.2 Major Contributions
• Arjun Dharma- Sequence embedding, PCA visualizations, applying

transformer model to subcellular location, flask app for embedding
and visualization.

• Rahil Dedhia - Applying transformer model to subcellular location,
multitask learning, Dockerized flask app for EC2 deployment

• Thomas Waldschmidt - Applying sklearn and Keras models to TAPE
embeddings, model analysis with an emphasis on ROC curves

3 Methodology
We took two approaches in benchmarking our DeepLoc models against the
state of the art. First, we leveraged the training capabilities of TAPE in
order to add the DeepLoc dataset as a task in order to run against their
BERT model, as well as to benchmark it against other models they have
available. This system leverages the deep learning framework pytorch and
involves training over GPUs. Next, we used the embedding capabilities of
TAPE to embed the DeepLoc dataset to use to train less computationally
intensive machine learning models like logistic regression and XGBoost. We
discuss the findings of both the deep learning model for the 10 class classi-
fication task as well as the results from various models for the 10 class and
binary classification tasks.

4 Data Processing
The DeepLoc dataset is composed of a total of 14404 sequences in fasta
format, a format common to biological researchers. The file itself is only 7.7
MB and can simply be stored on disk. The original fasta file is transformed
into formats useful for our later models. A diagram depicting the Data flow
is shown in figure 7.

Each sequence has a unique protein ID, a label denoting if it is in the
train or test set, and labels for the 10 class and binary classification tasks.
The raw data set was passed through a notebook that parsed out these
labels and generated individual fasta files for the train and test sets. The
class distributions for the train and test sets are shown in figure 7.

10

Figure 6: Data Flow from the raw fasta files into lmdb files and npz (numpy array) files for
downstream modeling.

Figure 7: Class distributions of the train(left) and test(right) set after filtering.

During the parsing step, we removed an ambiguous class for Cyto-
plasm/Nucleus, reducing our number of sequences to 13858. Next, we fil-
tered out sequences larger than a max sequence length depending on our
downstream analysis. For the 10 class deep learning model, we filtered out
sequences larger than 1024 amino acids due to memory constraints on the
GPU, resulting in 12704 sequences in our dataset. For the other models, we
filtered out sequences larger than 6000 amino acids, removing only 2 of the
sequences resulting in 13856 entries. After splitting the train and test sets,
we generated a validation set from 10% of the train set while preserving
class balances.

For the binary classification task, there were three possible classes in the
dataset, S (soluble), M (membrane bound) and U (unknown). We removed
entries corresponding to U to reduce the classification to purely binary in
one model, but also explored using a masked loss function in a multiclass
classification model that ignored those ambiguous classes. The resulting
dataset for the binary task before embedding was 8,660. This reduced set
was used for the Keras deep neural network as well as the multitask classifier
described previously.

The TAPE deep learning training infrastructure required the fasta files

11

to be in lmdb format, a data structure that provides high performance reads
in the form of a key-value store. This required further processing to generate
these lmdb formats, which then could be ingested into TAPE.

Next, the original dataset and the train/test/validation files were em-
bedded with pretrained BERT features using the BERT model provided by
TAPE. The embedded files are output as numpy array files which can be
used for modeling using sklearn, xgboost, and keras. A given input sequence
is embedded into a 768 dimensional vector of pretrained features generated
from BERT. The embedding step also allowed us to explore the embedding
space generated by BERT using principal component analysis (PCA) and
visualization.

5 Analysis and Modeling
5.1 PCA and Visualization
Using principal component analysis, we were able to embed the BERT pre-
trained features by projecting the 768 dimensional data down to 3 dimen-
sions. Principal component analysis is done by projecting the data onto its
basis vectors, known as principal components. In these dimensions, the data
is distributed to maximize variance. By embedding the full DeepLoc data
set, we were able to visually verify the ability of BERT to represent these
sequences in the feature space. The explained variance as a function of the
number of components preserved is shown in figure 8.

Figure 8: Explained Variance as a function of PCA components for DeepLoc

In two dimensions, only 20% of the variance is explained although the
data shows clustering and segmentation. We see that around 150 dimen-
sions, the explained variance is above 90 percent. The two dimensional PCA
projection of the 10 class classification task is shown in figure 9

12

Figure 9: PCA in 2 dimensions of DeepLoc for the 10 class classification task.

For the 10 class task, the PCA projection contained 28% of the explained
variance in 3 dimensions. However, the resulting visualization proved to be
very insightful in depicting how well segmented and clustered the labeled
sequences were in the resulting feature space. Two angles of the 3D visual-
ization are shown below in figure 10. For the binary classification task, the
embedding space is visualized in 2d in figure 11.

Figure 10: PCA in 3 dimensions of DeepLoc for the 10 class classification task.

13

Figure 11: PCA in 2d of DeepLoc for the binary classification task

The PCA visualizations using BERT features outline’s the model’s abil-
ity to understand novel tasks that it has not been exposed to. Additionally,
visually seeing how well the data was segmented in both 2 and 3 dimensions
provided us with confidence that simple modeling approaches other than
deep learning classifiers would work in this context.

5.2 DeepLoc Modeling
The full results of all the models used are shown in the table below. A more
detailed description of the models and their parameters are explained in the
following sections.

Model Q10 Test Accuracy Q2 Test Accuracy
Logistic Regression 66.2% 87.2 %

Support Vector Classifier 67.5%
XGBoost 63.8%

Keras Deep Neural Network 64.5 % 89.6 %
Multitask Deep Neural Network 66.2 % 72.6 %

Transformer(BERT) 61%

14

5.2.1 Fine tuning BERT using Deep Learning and TAPE

After adding DeepLoc as a task to TAPE, we were able to benchmark the
BERT transformer model against other models available in TAPE. We only
evaluated the 10 class classification task for this step. The transformer
model was trained on a p3.8xlarge EC2 instance on 4 GPUs. We used a
batch size of 64, a learning rate of 7e-5, 1000 warm up steps, 20 epochs,
and 4 gradient accumulation steps. For the other deep learning models,
not enough sufficient hyper parameter optimization was made in order to
maximize test accuracy. Further investigation into these models using TAPE
will be useful in later research.

5.2.2 Sklearn, XGBoost, and Keras Modeling

Using the embedded train, test, and validation files, we generated numpy ar-
rays to load into various downstream models. The XGBoost model’s 63.1%
accuracy was achieved with a 0.25 eta, a max depth of 10, a softprob ob-
jective for multi class. Our most successful model was a support vector
classifier for Q10 in sklearn. This model was optimized using the Grid-
SearchCV function in sklearn, resulting in a C value of 500, 100000 max
iterations, and a polynomial kernel function.

For the binary classification task, our most successful model was a Keras
Deep Neural network. The Keras DNN for the 10 class task consisted of 2
hidden layers of 32 nodes with relu activation. The output node had a
softmax activation functoin with the adam optimizer and a categorical cross
entropy loss function. For Q2, we had the same 2 hidden layers of 32 nodes
but output nodes with sigmoid activation and binary cross entropy loss
function.

The Multitask Keras DNN also had 2 hidden layers of 32 nodes, each with
relu activation, 2 output nodes with softmax activation, Adam optmizer, and
a categorical cross entropy loss function with a masked loss function for the
Q2 task to ignore the unknown labels.

Logistic regression was fairly consistent between both the binary task as
well as the 10 class task. The best Logistic regression model was optimized
as well using GridSearchCV resulting in a C value of 1.0 and an l2 penalty.
We will analyze and compare Logistic Regression and Keras DNN in the
following sections.

15

5.2.3 Logistic Regression Q10 and Q2

The confusion matrix and classification report for Logistic regression for the
10 class task is shown in figure 12. Looking at the confusion matrix, we see

Figure 12: The classification report, confusion matrix and ROC curve for DeepLoc Logistic Re-
gression Q10

16

that Cytoplasm and Nucleus were mislabeled with one another most often,
and classes with low representation such as Golgi apparatus, Peroxisome,
and Lysosome/Vacuole had very low precision and recall.

The ROC curve for the Logistic Regression model is shown in figure 12.
A ROC curve is a performance measurement for classification problems and
represent how much a model is able to distinguish between classes. A model
that guesses randomly will produce an AUC (area under the curve) of 0.5,
and directly follow the dashed line. Even though the AUC ranges from 0.80
to 0.98 across the different classes, this ROC curve indicates that even the
worst performing classes which do not have as many samples significantly
outperform random chance.

The confusion matrix and classifcation report for Logistic Regression for
the binary task is shown in figure 13. Both the precision and recall is con-
sistent between both classes, with an overall f1-score of 0.85 for membrane
bound and 0.89 for soluble.

Figure 13: The classification report and confusion matrix for DeepLoc Logistic Regression Q2

17

5.2.4 Keras DNN Q2

The confusion matrix and classification report for the Q2 Keras DNN is
shown in figure 14. Over 50 training epochs the model was trained to achieve
a slightly better f1 score as well as precision and recall for both membrane
and soluble. The Keras model was better at predicting both classes.

Figure 14: Classification report, training validation, and confusion matrix for DeepLoc Keras
DNN

6 Evaluation and Findings
The benchmarks of existing models against the DeepLoc dataset are shown
in figure 15. Looking at these results, we see that the DeepLoc researchers
scored the highest with a 78 percent accuracy on the test set, whereas the
next model iLoc-Euk achieves a 68 percent accuracy.

Looking at these results, we see that our support vector classifier out-
performed 6 out of the 8 existing models on the DeepLoc test set, where
our best model scored 67.5%. For the binary classification task, we achieved
89% with the Keras DNN, which is 3 percent lower than the result found
by DeepLoc which was 92%. This result is substantial since we were able

18

Figure 15: Evaluation metrics for DeepLoc dataset [14]

to achieve better results than most models benchmarked in DeepLoc with
an off-the-shelf BERT model provided by TAPE. While the deep learning
training didn’t provide the best results, it still scored better than half of the
other models described in DeepLoc.

Due to the success of the embeddings, we created a web interface for
researchers to take protein sequence files and encode them with a desired
pretrained model from TAPE such as BERT. This embedding step only
requires a single GPU for training, and can be executed in a Google Colab
notebook we also made available.

7 Scalability and Deployment
In order to achieve scalability, we leveraged AWS EC2’s compute resources,
specifically their Deep Learning AMIs, shown in figure 16. Additionally, we
created a Dockerized flask app that could be deployed to EC2 using Cloud-
Formation, a tool meant to deploy AWS services. Using BERT’s pretrained
model to embed input protein sequences for further modeling proved to be
useful, both in visualization and testing of computationally simpler models
other than the deep learning method. Based on this fact, we decided to
create a web service deployable on EC2 that provides an interface for em-
bedding raw fasta files, as well as visualizing embedded files using PCA in
2 and 3 dimensions.

The landing page of the flask app is shown in figure 17. The embedding
endpoint leverages the Nvidia Cuda docker base image for full GPU sup-
port and scales to any number of GPUs you have on a given instance. It
is essentially a wrapper over the TAPE embedding function, but provides
an intuitive interface from a web browser to select models and other hyper-
parameters. The embedding endpoint outputs an npz file, which then can
be input into the visualization endpoint with an accompanying labels file.

19

Figure 16: Architecture diagram of our data and compute infrastructure

Both the visualization and embedding endpoints can be exposed externally
from EC2 and provided an easy interface for us to embed fasta files as well
as visually inspect the embedding space.

The docker image isn’t restricted to EC2, but can be run locally on a
CPU as well, although embedding sequences using BERT or other pretrained
models on CPU are very memory intensive.

Figure 17: Landing page for the dockerized flask app

20

8 Conclusions
Our project aimed to investigate BERT and its application to protein se-
quences. Our methodology showed that using an off-the-shelf BERT model
trained on a large amount of sequences provides an easy way to embed pro-
teins to then be used in other modeling systems. When applied to protein
sequences, BERT proves to be successful in protein prediction tasks defined
in TAPE, as well as novel tasks shown by our tests with DeepLoc and sub-
cellular location. These transformer based models leverage unsupervised
pretraining of large amounts of data to understand the underlying structure
and relationships of proteins. BERT and other transformer models continue
to gain success in the NLP space, and continued research into training these
models on protein sequences is necessary. For example, training BERT on
a larger corpus of protein sequences may improve the quality of the embed-
ding, thereby increasing the value of the methodology we have previously
described.

Our results are substantial for two reasons. First this methodology
was significantly less resource intensive and allowed us to train classifiers
in frameworks such as sklearn, xgboost, and keras. Compared to deep
learning frameworks that require expensive GPUs for large training, this
pipeline makes modeling raw protein sequences with machine learning much
more accessible to researchers. Additionally, while we knew that BERT
was successful in tasks like fluorescence, stability, and secondary structure,
we showed that its pretrained features contained knowledge for subcellular
location, a novel task that it had never been exposed to.

The success of the off-the-shelf pretrained BERT model led us to create
a web interface for embedding and visualization. The goal of this inter-
face is to provide users an easy way to embed protein sequence files, then
follow a similar method in using less computationally intensive frameworks
like sklearn, xgboost, and keras. This service is built in Docker and can be
deployed on any server to perform the embeddings and visualize the em-
bedding space in PCA. We hope that this service can reduce the barrier to
entry for most protein prediction tasks when it comes to pretraining.

In conclusion, our investigation into BERT proved insightful and mean-
ingful. Further research into Transformer models using different corpuses
and pretraining techniques can result in better quality embeddings, thereby
increasing accuracy in downstream tasks. As more pretrained models are
released, protein sequence modeling becomes more accessible to general re-
searchers and machine learning engineers.

21

References
[1] Protein Structure: https://en.wikipedia.org/wiki/Protein_structure

[2] AlphaFold: https://deepmind.com/blog/article/AlphaFold-Using-AI-
for-scientific-discovery

[3] Natural Language Processing: https://en.wikipedia.org/wiki/Natural_language_processing

[4] https://bair.berkeley.edu/blog/2019/11/04/proteins/

[5] GLUE benchmarks: https://gluebenchmark.com/

[6] BERT github: https://github.com/google-research/bert

[7] http://jalammar.github.io/illustrated-bert/

[8] https://www.biorxiv.org/content/10.1101/622803v2

[9] https://www.biorxiv.org/content/10.1101/589333v1

[10] TAPE Repository: https://github.com/songlab-cal/tape

[11] TAPE: https://arxiv.org/abs/1906.08230

[12] Pfam: https://pfam.xfam.org/

[13] https://www. genecopoeia.com/product/subcellular_localization

[14] DeepLoc: https://academic.oup.com/bioinformatics/article/33/21/3387/3931857

[15] RCSB Protein Database: https://www.rcsb.org/

[16] Uniprot: https://www.uniprot.org/

[17] https://en.wikipedia.org/wiki/BLOSUM

9 Appendix
9.1 DSE MAS Knowledge Applied to Project
Throughout the course of the project we use much of the knowledge gained
from the program. The lion’s share of our project was carried out using
Jupyter notebooks and the command line interface, which we learned about
in depth in the first quarter of the program. Our PCA visualizations are
driven by the materials learned in probability and statistics and carried out

22

https://en.wikipedia.org/wiki/Protein_structure
https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://en.wikipedia.org/wiki/Natural_language_processing
https://bair.berkeley.edu/blog/2019/11/04/proteins/
https://gluebenchmark.com/
https://github.com/google-research/bert
http://jalammar.github.io/illustrated-bert/
https://www.biorxiv.org/content/10.1101/622803v2
https://www.biorxiv.org/content/10.1101/589333v1
https://github.com/songlab-cal/tape
https://arxiv.org/abs/1906.08230
https://pfam.xfam.org/
https://www. genecopoeia.com/product/subcellular$_$localization/
https://academic.oup.com/bioinformatics/article/33/21/3387/3931857
https://www.rcsb.org/
https://www.uniprot.org/
https://en.wikipedia.org/wiki/BLOSUM

by the learnings gained from the course on data visualization. Machine
learning was the backbone for our modeling and model evaluation tasks.
Most importantly the program has taught us how to successfully implement
and think about a data science project from end to end.

We would like to extend thanks and appreciation to the entire MAS
faculty and team. It has been a pleasure and privilege to learn from you
all. We wish you all the best and look forward to our alumni emails in the
future.

9.2 Library Link and Citation
Dharma, Arjun; Dedhia, Rahil; Waldschmidt, Thomas B.; Rose, Peter
(2020). Protein Embedding Analysis. In Data Science & Engineering Master
of Advanced Study (DSE MAS) Capstone Projects. UC San Diego Library
Digital Collections. https://doi.org/10.6075/J0KS6Q2H

23

https://doi.org/10.6075/J0KS6Q2H

	Introduction
	Challenge and Problem Statement
	Understanding Proteins
	Transformer Architecture and BERT
	Protein Embeddings and TAPE
	Subcellular Location

	Team Roles and Responsibilities
	Assigned Roles
	Major Contributions

	Methodology
	Data Processing
	Analysis and Modeling
	PCA and Visualization
	DeepLoc Modeling
	Fine tuning BERT using Deep Learning and TAPE
	Sklearn, XGBoost, and Keras Modeling
	Logistic Regression Q10 and Q2
	Keras DNN Q2

	Evaluation and Findings
	Scalability and Deployment
	Conclusions
	Appendix
	DSE MAS Knowledge Applied to Project
	Library Link and Citation

