$$
\text { Additional Material for page } 121 \text { (third paragraph) }
$$

re: "I ENLISTED THE HELP OF H.C. UREY..."
"Third Approach to the Navy, May 1940"
from COMPTON MEMO
Nov. 12, 1942
"Memorandum for Professor Urey" by L.S.
May 30, 1940
"Memorandum for Dr. Sachs" by L.S.
May 30, 1940

Turd Approach to the Navy, May 1940

The second meeting held under the chairmanship of Dr. Briggs on April 27, 1940, represented some progress, insofar as I was now requested to delay the publication of my papers, whereas, up until then, my request to the Physical Review to hold up the publication of my papers was an arbitrary action on my part, and was open to criticism on the part of some of my colleagues. Wo general recommendation to hold up the publication of dangerous papers was however made by the Uranium Committee. Enclosed is a copy of my letter to Physical Review.

Soon afterwards, Professor Turner in Princeton wrote a paper, which, if it were allowed to publish, would have drawn attention to the importance of element 94. Fortunately Turner showed his manuscript to Wigner, and, on his advice, sent me a copy, asking the whether I saw any objection to its publication. I wrote Turner that I have, in the meantime, approached Urey with the request of bringing about tao general policy of withholding publication and asked Turner to delay the publication of his paper.

I suggested to Grey that some committee should be formed under his chairmanship to deal with the requirement of secrecy, and that this committee should include G. Breit, in order to secure the adherence of the Physical Review to the policy of secrecy which may be worked out.

In order to have government sanction for Urey's committee, I
introduced Urey to Dr. Sachs, and asked Dr. Sachs to introduce Urey to hart hukeal
Admiral Bowen, who, in the meantime, took/over the Naval Research Laboratory. Urey and Sachs visited Admiral Bowen, and Urey's appointment an the chairman of a committee followed.

The committee met under Urey's chairmanship in Washington on June 13, 1940. A general policy of withholding publication was formulated at fhis meoting in whioh G. Breit participated. Broit arranged with the Physical Review a practical mothod for establishing a sort of censorship in execution of the policy formulated at the meeting. Arter Wune 13, 1940 papers dealing with uranium were subject to "censorship".

I enclose copies of my letters to Turner and Breit, and a copy of Urey's letter to me, in which he reports of the result of his contact with Admiral Bowen: Urey's letter is a form letter sent with identical texts to some seven men, the members of one of the project comalttees.

2. Acmiral Bowon suggested at a mooting held under tho chairmansip of Dr.o Briggs at tho Buroalu of Standards on Apriz 27,1940 , that the eo1cmetate worlesig oa uranlum should form sort of voluntary association and smposo upon thomeolvos auch limitations cocnooming the publioation of posults as eppoars to bo nocussary

Whaile at the timo, this sueyosvion was mado 1 seomod to bo diersioult to got the cooperation of the majorlty of selentists the invasion of Kolland and Belgium has brought about a dhange of attitudo so that now wo may hope to succood if wo aot on the suggestion of Admiral Bowon.

It is proposed that a cormittoe for the "coordination of nuoleas rosoaroth" bo Somod under wour chalmanght and the this commttoo formulato from time to time the policy which is to bo adoptod with regared to prolioatiomo If this comaltte日 woro composod of fournelfs Pogrem, ilgners, Boams, Iuvo, Toller, Fermi, and myself, it woulc be easy to moet once a wonth and to dal with all problems whech may ariso. for this roeson no names heve beon Inciuced srom the Midalo-west or the West ooest. Sinco, howevere the Physical Sciences Division of the Wational Research Council has unas appolmtod a. comstioe for the purpose of looking into the ouestion of urantum and shetrusametitem which conelste on Boams, Breit, and regrem, you might fool that you want to aske Breit to join the committoo so that all members of tho group zepresentine the Wetional Researoh Council. should be includod in your coumittoo.

Your committoo could have a sub-comittoo for wnseparatod urenium and a subwcomittoo for tho separation of uraniun 1sotopos. Fomi and I would be siad to aot as socretarios to the sub-oormittoo for unsoparatod uranivm and I suppose you and Boams mizat bo wlilins b act as seorotaries for tho sub-cominttoo for the separation of uranium fsotopos.

The scope of the committoo could bo enlargod 1 mmodiately aftor its
formention by including the non-governmental mombors of the spooinl divisory

Coumitteo which has beon meeting under the chaismanship of Deo Bricgse Those roa-governmontal nembers are Profossoy Pegram, Dro Alorondas Secheo and Prosossos Albert minutoin. Theyo togother with joureele, sould thon form the 1 Inik between your committeo and tho goverment shd could aot as a nuclous for a board of twaetooes such a board of trostoos will bo zoquipod 11 Iunds aro to be bbtatnod or solfofted from alther govosmo rantal or private sourcesp

In ordor to bo able to maintain tho neooseary socreoy and at tho same timo to preserve tho poasibility of swoe diseusston among thoso scientiets who wish to cooperate whth oach others it is proposed thas Jour committoe after ita fommotlono shoula draw up a 11 at of namos ane tinat there abould bo free Aiscraston arong thoso who aro included In this regiatero dit the same times, an uncontrolled dirfaston of esformaticn would bo provented by plodgiag all thoso swantentut to bo Ineludod se thes register to refrain from dischesiag the subjeet of urenttem with angono else. Now names could be sdisod to tho 11st srom timo to tine ins order to inciude all those, who aro trustworthy and who may wish active2y to collaboratoo Separate lluts of names may be drave up for the varloua branobes of sranium reserch in accordance with the fact that the naod for wocrees is grontot for nome branches then for otherso

Reouspoment For Pundss

Forms and I wourd desire to carry out a lasso soalo oxporimont which would 2avoive the use of about 200 toms of graphite and 20 to 20 tons of motal2lo uremirm. Besoro setrally pracing ordass for such am exporimant whioh w212 Invo2ve conplderablo erpend!turb we proposo so go threough a preparators stago Involvsing an oxponditure of 850,000. Tho suosesmsul complotlon of this propasatory otogo would mko it posmiblo to carry out tho largo soalo orporimont in a conparetivoly ohost timo
and with an Incroasua asmumos of sweoess.
a are looking forvard to obtaining from the Govemmont tho sum of $\$ 50,000$. Whith is reoulpod fior this preperatury stege. We fools bowever, that a fow wocke on months may pass bofore we w111 bo actual1y In the position of maxine finenci ol commetacmes on tho basis of the sepeots sction by the apommont. Unloss wo are able to make buch cormituonts within the nost two weokn up to tho amount of $12.5,000$.
 oonza bo spegsily carrise out turing the sumer and durfing tho nezt
 Valumble time. If thes amount coule bo orialnoo without delay feom a privato youree, for Arsibnce, from tho Gamegie Instltote through Dr. Bush, it woulid ssprosont is vory gront help at this functures It could be ettho refundod is and ing Govemment frollitios bocome avallabio or it could bo landed over to your commition emmarked for vorth on unsepurated uranium and ueod for such oxcond ture es wll2 not bo provided rop by tho Covarmasmt.
 assuring the coz2aboretore whose help wo nood adeowate salarlen for a persod of a yoar. Wo propose to keop tho salarios somewi at highor than usual in order to componsato our colluboratore for tho damago whatela the thok copeoss will surcor by tholv boing provontod from gublishing eny papore.

VIallo undorbcodis a sund of $\$ 25,000$. would bo presorebio inacmuch as 2t wousd 2molude an 26om of h7000. Sop buying mintoriala such as usanitus osido and urantum moteq. In quantition poguinca within tho nost aia months and anothor 1 tcm of $\mathrm{BS}_{5} 000$. For bullaing appapatue o wo Zook that in wo could bo ouro pight awey that wo can 80 ahoad and mato

Do oursicient to briage tho gep provided that we recolvo a plodgo by the ooverament concaming tha budget of $\$ 50,000$. by the ond of sozt ombors.
 May 30, 1940

MEMORANDUM for Dr. Sachs

Please find enclosed memorandum for Dr. Urey of hay 30, 1940. In addition to the items included in the above-mentioned memorandum the following points seem to require attention.
a. It is important that Dr. Urey and the non-govemmental members of the Special Advisory Committee be authorized to investigate whether there is a possibility of mining uranium ore in the Belgain Congo and transporting it to this country under the present conditions. If it is considered premature for the Government to buy any uranium ore perhaps some arrangement could be made with Dr. Sengier, the managing director of the Union Miniere who is at present in New York, or through the Belgian Government in exile that uranium ore be brought to the United States with the assistance of the United States Government, the Belgian company retaining the title of this ore but committing itself not to reexport it without special permission. It is impossible to know whether such and other alternative solutions are feasible, unless a preliminary inquiry is made, and it is not advisable to make such an inquiry without proper authorization.
b. It appears necessary that some experimentation be started at once by industrial firms who are willing to supply 10 to 20 tons of uranium metal at about six months notice. It is necessary that the non-governmental members of the Special Advisory, Committee and Dre Urey should be in a position of approaching daskial firm on this subject and should feel authorized to do so.
c. It would be desirable that Dr. Urey and the non-governmentail members of the Special Advisory Committee should form the nucleus for a board of trustees and work out the
for some non-profit organization which would argonemephys
 Government and the $/$ laboratories. If such an organization were formed the physicists ought to be encouraged to take out patents for their inventions which gould be assigned either to this nonprofit organization or to the Government. In any case the Govemmont would thus be safeguarded against having to pay royalties for the use of such inventions, which otherwise might be patented by industrial firms whose research employees begin to show increasing interest in this field of development.

In this connection the question has to be raised whether it is possible to keep such patents secret. In order to do so in an adequate way it mist be advisable to modally the present lay. Such a modification of the present law ought of course not to be made exclusively with a view to inventions concerning chain reactions but also with a view to all inventions which have important applications in national defense. The 参 physicists and engineers ought not to be deprived of the stimulus arising out of the possibility of patenting the ir inventions and at the same time collabothe rating with the Government in thrive effort to keep certain of these inventions secret.

Additional Material for page 121 (fourth paragraph) (continued)

"Memorandum Report on Proposed Experiments with Uranium" Aug. 14, 1940 eby Pegrams 18 pp. Marked "Copy."
"Excerpt from bottom of p. 6 to bottom of p. 8" Marked in Szilard's hand: "Pegrams Memo dated Aug: 14. 1940. Exhib. D." Includes the sentence: "After full discussion, the recommendation of 'the group to the Uranium Committee was that funds should be sought to support research on the uranium-carbon experiment." Only a very few documents have been marked by Szilard as "Exhibit." We don't know for what presentation they were prepared, but they show fundamental contributions.

Additional Material for page 121 (fourth paragraph)

MEEETING OF THE URANIUM GROUP IN WASHINGTON ON JUNE 13 th, 1940 AND ITS RESULTS:

1) Recommendations for going forward with the uranium-carbon system.
2) The search for uranium supplies.
3) General policy of withholding information.

Letter, Lyman J. Briggs to L.S. Invitation to meeting.

Form letter, Urey to L.S. June 7, 1940 Invitation, with detailed organization of Advisory Committee on Nuclear Research.

Letter, Pegram to Admiral H.G. Bowen (5 pp.) June 19, 1940 Recommends: Going forward with isotope separation (Urey's group) Survey of nuclear constants of uranium \& carbon\} (Fermi-Szifard Intermediate scale experiment, U-C system

Letter, L.S. to Fermi (Not Sent)
June 19, 1940
Szilard urges the semi-large scale experiment. He then discusses in detail his relations with Fermi and Pegram at Columbia。He evidently decided against putting this much in writing, and in the letter actually sent (July 4, 1940) is more general on this matter.

Letter, Gregory Breit to L.S. Recommends intermediate scale experiment.

Letter, L.S. to Fermi.
July 4, 1940
See note above on letter to Fermi of June 19th. Szilard summarizes events following the uranium group meeting.

Letter, L.S. replies to Breit. July 6, 1940
Letter, L.S. to Wigner Encloses letter, Polanyi to Lis. June 18, July 6, 1940
Letter, Fermi to L.S. July 9, 1940
Letter, L.S. to Gustav LeChien of Radium Chemical Co. July 10, 1940 Szilard wants information on uranium supplies "for submission to colleagues of the Committee and coordinating authorities." He finally succeeds in working through official channels, rather than personally.

USS. DEPARTMENT OF COMMERCE
 NATIONAL BUREAU OF STANDARDS
 WASHINGTON

ADDRESS REPLY TO NATIONAL BUREAU OF STANDARDS

IN YOUR REPLY REFER TO FILE

D

Dr. Leo Szilard, Columbia University, New Yonks, \mathbb{N}. Yo

Dear Dross Szilard:
I should like very much to have you accept membership on an advisory committee on nuclear physics to guide the Government in supporting necessary work in this Field. This Committee is being organized under the leadership of Prof. Urey and the fact meeting is being called at the National. Bureau or Standards on Thursday morning, June luth, in the South Building Conference Room at mine ololock. The members of the Committee are Messes. Urey, Breit, Pegram, Tuve, Fermi, Szilard, Wigner and Teller.

Please use the enclosed transportation request in securing your railroad and Pullman ticirets. A subsistence allowance of $\$ 5.00$ per diem will be made for the time you are absent from your official suation.

I shall greatly appreciate your cooperation ... this matter

Sincerely yours,

Lyman Jo Briggs, Direuour.

Con lumbar anturusity

Dr. Leo Szilard

Putin Laboratories
Dear Dr. Szilard:
At the suggestion of Admiral Bowen, and with the approval and suggestions of De. Briggs, I have been organzing a committee to be called the "Advisory Committee on Nuclear Research." This is to be an advisory committee to the Prealdent's Committee on Uranium, which Conelsta of Dry. Briggs, Pogram, Says end EInstein. The commttoo as suggested at present has bon chosen tromamong easterners in order to decrease the expense of meetings and to permit more frequent conferences. It is proposed that the comm witter shall consist of the following

In the second place, another advisory commttoo on the separation of uranium isotopes has been proposed. to consist of the following men:
H. O. Urey, Cher man
J. Wi. Beams
R. Gun
E. Perms
G.B. KIstiakonsky

My colleagues here have been responsible for working ta into the position of chairman of both committees. I do not know that I em the best man, but at least I am near to the center of work in this field and have the virtue of
being an American citizen; which is probably advisable in this case.

We should Ink to have you serve on the erst committee, for we believe that your advice on problems dealing with uranium mission would ba valuable. It is proposed that the first complete shall have Its first meeting next Thursday, the $20 t h$, in wablangtong at the Bureau of Standards at D. Wo. and I hope very mach that you w111 be there and be prepared to discuss these problams.

Te should 1 ire to Rep the existence of these committees e relatively little publicized matter for one of our objectives is to prevent the dissemination of too much discussion of points which might have military value and if the committees ane not mow to exist there will be less inquiry about them.

Hoping to see you in Washington. sincerely, yours. Wariddoc. They
harold o. Urey

June 19, 1840

Reap datral: E. G. Bown United States Wavy
Raval Research Laboratory Anacostia Stetion Washtreton, D. O.

Dear Acmural Bowens
In repponse to your lettes of Junc 25 the following +9 subnitted:

Profossor Uroy has boon dwey from You Lows stnce we were in Washington 1 set weck. On mectint of your letter Saturday I confepred ith Profasnon luralitr, the he say no reason for any change in the flearent thet I Geve yo on June 12 as tentative Ciguros for bao contrifugat sonsmbton eroerLrent to be coto hore unco prafersor Unoy ts ditection. The procedure you oupgostoll ns to a woporal uncor which these exporinenta could bo curst dout, manoly: thet it bu a proposal from Columbia Univerelty of from tho Pu uertmont of Chenistry of Columbia Univarilty to the Haval Rosetroh Laboxatory to carry out cort ift oxperiments and report rowults that the Havn Rosmaren Labuts tomy moula probably preter to enploy the persomel drectiy on recomendetion of Propessor Oreys that the llaval Rescarch Loboratory would probably orafor to provide all larger itcas of ompmont that heod to be purchased, that only mino itens of unavotenble miscellancous expenses should be put Into the sum uet to be peid to the Departmeat of Chemstry: and An goneral thet the whole proposal be as detailed as possible.

In the sbsence of Propossor Urey, Profeswor Kareltta has already urtten out in considareblo dotril propomal as to tho mechenical part of the apparatus. Profeesor urey wll have that on his retum to Non Yozle tomprow na can stert st once to work out a propostl. The overall firures as they stand at present for those contrifugal exportamter exe:

A. Experiments to detemmine mose accupstely tho fundanontal phyedeal constants of uran土m and cavbon that bear upon the etratn getctions.

In our mamoraz fum of Hay g, 2000 , tt mas proposed to perform cexteln experiments thet might bo compoted plthm in tmelve months wad wope ostimuth to cost 42.000 poz shLarles of physidetsta anct 415,000 for eppasature plus the cost of purchosing on renting one grom of suchun manod檽th beryiliuna
 cussion gevan to the pobler. The sotontifle ommitree appotutec by Br. Botese spont five hours in diseuseton

 experimentat means that huve os yot been denimod to ovaluate the phystori gometurbs involved wtta Gnough accuracy to cnabla 3 valid calatuntion to be mote of the motants of urantum and cambon thet will bs neanod In oweder to eustuin a chatr rewation. Irdoed wy ques-
 amounte of matemisin $1 t$ vili bo dtaflcult to poove definitely the the chain metetion com be mego to go, and still more difildult to prove that it canet be nade to go. Oux present ostum to on sarios ot sevan exocriments now runs the 11 gureg wh to the sallowing oettmate:

6 physloksts salampes * S13,000 Bculpment and supplies *. * 2rg000 One gram of redtum alxed whth
 Uranium oxide, tro to pous tons." 10,000 to 60,000
 sroo of chaveg for these expomments.)

Ronta? of two grems of radium in ordex to expedito work by aving strong

(Agein tho protucers of rearmm ounht to fumbsh this tree of chasge on at a nommin rete for these experinents.
Fous tons of graphtbo ***.... $\mathrm{E}_{5} 000$
B. An intemealeter exocutromt.

Tho thes has begn dovelootng that mintrmediete pryerviment on a coelo kager than pxpervments under A precedsnes, but not laree erouch to cive a chaln reaction, could probabzy be usec to obtatn measurements beaming etwectly uperx tho chain penction she the mount of matorial to be uros to takntath such a reaction, and thet thes would 2 th sona be m mothod of short-akroultirge, so to soens, gove of the tenkous experiments for nerountng the conatorts on wammum. In 古ta contexened Lnsto Thuredoy, tho sotentiote committee came to the cancluston that it voula recommend that an bxacrinont be cono rifht avey waing mor jess than onc-ilfth of tra matorich stot youId be ostumoted as necessary for maintaining o chain mosotion.
 mant would be:

$$
\begin{aligned}
& 50 \text { to } 100 \text { tons on grayhite *..... 255,000 to \$30,000 } \\
& 5 \text { to } 10 \text { tons of wanalus motel }
\end{aligned}
$$

Tho ingures just given are loubtless too hagh. The carbon has bean mi $u x a d$ at 3300 a tor, the mato pald for the graphite we hove at prosent. It can probably Gasily be obtatned fos 400 a ton 1 Less. The figure of $\$ 0.00$ a 10 . Car moto 2110 uramtua 15 the lorres Rigure glven hore 3 ast weets by $2 \times$. G1axanders, who thought thet In ton lots it mould not bo dzpetcoult to rumat sh
 Q8.00. Chemical opinton sooas to be'trat it ought to be posalble to purchaso uremiun at 55.00 a 2 b .9 but perhops thet is a $11 t+1 e^{e}$ too optimistie*
rt is believed that this intamediate expertment wht ch would be on the way of the faraz expoulmemt might well furnish wesults that woule wake pensllale a telriy accurate caloulation of the amount of urontua and envon necessary to suctoan the chain rocethon 2 ho same matorials could, of course, bo ured as Pat as they voule go In settrng up tho simal oxpeminomt.

If the intermedrate expersmont is to bo cone the oucction w121 artsa as to mhoblan it woule be boterer to do 1 t here or to io 1 t. In mome pisce where it can be more entegrally gucmetot.

C\& The fult acole cunotiment.
The estim te on tho cotresilis meculra for thit is still fatmy fuchacindth. Probebly an outatco onthathe wonle be to say?

200 tons of ertontte *. . 2100,000
 Other expenses "LTPHeazt to egtimete but
sma11 by compurison with the mein itema
 be Femernbered In the fisst aloee that the material will cortasnly be by no moms worthless. ©von in tha exponyw
 may indreate that a consisexably smallez amount of netresal would supaice gon tho cadin reactan.

I hope the the ebove rill be superctent to anames your Imedrete purposen. Fa, shal woris on a more Gatcined tote-
 Wo to be at tho meeting of the prystcth hociety in Pittaburgis tomomow end Fridez. Foml Ieft Mondey nighe to keop a long standing engagement of 4 month at tho Tnfverstity of Chicagon ond we shall need to exchmes correspondence with mim bofoxe putting in a derinitzve proposed.

I art sorry that I aid not make 1 t clean that I was reforming to uranium metal in saying that it would be procurable at $\$ 2.00$ to $\$ 15.00$ a 1 b . Fortunately the price of uranium oxide is only about 3.50 a $13 *$

In cloning lot me say that there has ban one very hopeful devolopaent about which I shall not attempt to verite now but which we shall be glad to oxylaln to you at an espy opportunity.

$$
\begin{aligned}
& \text { Very guneeroly yours, } \\
& \text { George D. Popgun }
\end{aligned}
$$

GBP:Z

> 420 West 116th Street New York City June 19, 1940

Dear Fermi:

I saw Professor Pegram yesterday and discussed with him the situation. He had a latter from Admiral Bowen which he wanted to answer right away.

I told Professor Pegram that in my personal opinion the semi large scale experiment for which you have suggested using 5 tons of uranium metal anght to have the right of way before everything else and that we should not hesitate to place an order for this and amount of metal; perhaps as much as 50 tons of graphite. I have no doubt that this material will be needed in any case and will have to be ordered sooner or later. Clearly, it will be impossible for us to say with certainty oven if we succeed in measuring all nuclear constants involved rather accurately within a year that a chain reaction with slow neutrons can not be made to work. Consequently, if we defer ordering this material we would only lose time but not save any money.

Since it is conceivable that 10 tons of uranium metal and perhaps 100 tons of graphite might be sufficient to make a chain reaction work, the ordering of such amounts should also be taken under considertion. Finally, 200 tons of graphite and perhaps 25 tons of uranium metal would give us all the scope for a large scale experiment which we might desire to have.

Assuming that an order will be placed for perhaps 5 tons of uranium metal and 50 tons of graphite we would consider the performance of
a semi large scale experiment(which can not be expected to give a divergent chain reaction)as our most important task; but while waiting for the arrival of this material and in our spare time we would gradually organize the measurement of all nuclear constants involved. While it is impossible to say how long such a survey of the nuclear constants would take it is possible to estimate the cost as amounting to about $\$ 50,000$. The mon who would carry out this survey would be also available for the performance of the semi large scale experiment and the preparation of a large scale experiment so that these experiments would not require additional salaries and the expenditure involved would be mainly the cost of material and perhaps some expenditure for manual labor and apparatus. As to the survey of the nuclear constants for which an expenditure of $\$ 50,000$. has been envisaged, it seems to me that such a survey has to be carried out whether the semi large scale exp riment shows a favorable result or not. Clearly, if the semi large scale experiment has a negative result we must know the value of the nuclear constants in order to be able to determine the optimum conditions for a chain reaction and the knowledge of these optimum conditions is even more important and an urgent necessity if the semi large scale experiment has a positive result.

Enclosed you will find an estimate for the survey of the nuclear constants; the experiments which will actually be carried out may be different from those which we are at present envisaging since in the meantime we might be able, perhaps, to think of imporved methods, but I do not belleve that auch changes will greatly affect the total expenditure.

While discussing with Professor Pegram, it became evident that it will be necessary to define my own status with respect to the work
on the uranium chain reaction in such a way that all those who are immediately concerned with this work should have the same conception © 1t. Otherwise, difficulties might arise later. I told Professor Pegram that I explained my conception of this status to you early In March of this year and again a few days ago just before you left for Chicago and that I had the impression that you accepted this conception. However, our conversation referred to the work on making a chain reaction work in general and not any detalls of the work to be carried out within the Physics Department in particular, concerning which you would, of course, not want to make any commitments. Moreover, I realize that I may have misinterpreted your attitude and that it is preferable that this point should be rediscussed both with Pegram and Urey.

In the conversation which I had with Professor Pegram I defined my conception in general terms saying that you and I would, accorda ing to this conception, fointly be responsible for the task of taking all necessary steps to make a chain reaction with slow neutrons work if it can be made to work at all. This means that all experiments would be carried out under joint direction with such division of labor as appears expedient to us. In practice, this may lead to some overlapping of work, insofar as you may prefer one method for measuring some important nuclear value and I might prefer another method. I would not consider such overlapping a disadvantage, in particular since, if we are unable to agree on a single method to use, then, in all probablility, none of the proposed methods are entire satisfactory and accordingly, a oross checking is desirable.

In practice, this would mean that, while we may carry out jointiy certain experiments there will be other experiments for which you, and again other experiments for which I will have to bear the responsi

Correspondingly, probably some of those who collaborate with us will primarily work with you and others primarily with me, but I do not see any reason for any rigid coordination of collaborators to either of us. The question arose in the conversation with Professor Pegram what to do if we two should be unable to agree on some such thing as the method of carrying out a large scale experiment; i.e. an experiment which is so expensive that we can not afford to have an overlapping. In my opinion, in such a case, we would have to appeal to a small group of scientists composed of men who, in the opinion of both of us, are capable of balanced judgment and we would have to abide by the verdict to which they arrived, after having carefully studied the issue. I hardiy think that such a disagreement between us is likely to arise but the question raised by Pegram may serve as an example to illustrate a certain spirit which I would be glad to see uniformly recognised by all those concemed. It seems to me that one may say the following in order to enter into the merits of the case. It is probably a fair statement to make that if we had soparated in April last year and worked independently of each other on this problem both of us would have been quite capable, if given the necessary facilities, of making a chain reaction work by now, provided it can be made to work using an element like carbon. For us to work jointiy in this matter has both its advantages and disadvantages and we may at this juncture leave the question open whether the advantages outweigh the disadvantages from the point of view of obtaining speedy results. We may leave this question open because I feel that we are not as free to decide this issue as we have been, in April of last year or even in March of this year. I should certainily feel at a loss to know what to do if it proved impossible now
to find a satisfactory arrangement. However, I feel that if I allowed myself to be influenced by this fact into accepting an arrangement which I would inwardiy, rightly or woongly, not consides as falr and just in the circumstances, this would put a strain on our collaboration. I think it would be useful if you defined your attitude in this matter in a letter addressed to Proiessor Pegram; and if you would be kind enough to send me a copy I would show it to Urey and perhaps to others who have a legitimate interest.

A program of work of the scope which is at present envisaged would, (if all the work is carried out in the Physics Dopartment at Columbia) no doubt, strain the department to some extent and represent a not negligible encroachment upon the available space and other facilities of the department. The strain is perhaps somewhat lessened by the fact that the number of our collaborators would increase only Very gradually since both you and I realize that it will be a slow process to find the right collaborators and neither of us has the desire to rush into a large number of now experiments simultaneousiy. Nevertheless, if it becomes certain that in addicion to these limitations there are other Iimitations within the Physics Department which make it impossible to carry out the proposed survey within a year, then it seems to me it is our duty to see if some of the experiments can not be started in some other laboratory either under the supervision of one of us or under the supervision of somebody else whose Judgment can be irusted. This is a point which I think ought to be carefully considered upon your return in connection with a list of experiments which may be set forth in detail.

Yours sincerely,

Dr. Leo szilard
Department of Physics
Columbia University
New York City

Dear Szilard:

I should like to thank you for the many discussions we have had in New York and for your hospitality. It seems to me that matters would be helped along very much if the intermediate experiment could be performed and if the set up could be kept flexible. My impression is that in work of this type practical success in a limited tidy may depend considerably on detailed planning regarding the ease of assembley and flexibility. I still think that more rapid progress will be achieved by arranging an intermediate or full scale experiment rather then by careful measurement.

Sincerely yours,

Gregory Breit
G. Breit

Dear Fermi:

I think I ought to write you about the following ovents which took place after you lefts

1. Lawson, after carefully consideration, decided that he would prefer to go to the University of Pennsylvania next fall as proviously arranged. Since I told him that I would try to get a salary of 3000 . per year for him, his decision was not due to a lack of financial inducement.
2. Wigner told me during the last meeting which we jointiy attended in Vashington that he intends to withdravifrom further cooperation with the Govemment repesentatives on the subject of uranium. At my request he refrainod from saying anything about this during the mealing but I understand that he wrote a letter to this effect a few days lator to Urey and Briggs. I do not think that we ought to worry unduly about this since I am sure that if a proper frame-work is eventually created for carrying out moink on uranium it will be possible to get Vigner's coopemation. For the present though his resignation is one of several disturbing elements.
3. Bowen has shifted his grounds insofar as ho now prefers to give the university a lump sum rathor then pay salaries and everything else as much as possible directiy to the recipient. Loweover, according to the present plans, Bowen will support isotopic separation rather than the work we contemplated and oun project is supposed to recelve suppori through another Govermment committee which is headed by Bush. I assume that Prosessor Pegram will write you about this in greater detall so I neod not go into this for tho present.
4. I compiled an estimato of cost for a complete survey of the nuclear constants involved which you will find enclosod. Though the experimonts eventually carried out may be very different from those which I have listed the changes will hardiy affect the concluaion that about $\$ 50,000$. W111 have to be spent by the time the survey is carried out. I believe that you share my opinion that such a survey has to be carried out whether or not the intermediate experiment shows a positive result. According to present plans, Y90, 000. Would be requested for buying materials fon the intarmediate experiment and I believe our policy should be to give the intermediate experiment the right of way berore the general survey of nuclear constants. I feel that this will be a somewhat academic statement since we may have to wait for quite a long tine before we get materials for the intermediate experiment.
5. Enclosed you will find a copy of a letter which I sent to Gunn which speaks for itself.
6. Sachs and Urey saw the Delgians. From what Sachs tells me we have probably "missed the bus" as far as Belgian ore is concerned. As far as uranium oxide is concerned he has the impression that the Belgians will treat it merely as a business matter andif they are not handied skillfully they will charge an exaggerated price for the amounts which we need for the large scale experiment. In these circumstaces, it appears essential to ind out from the Canadians just how much they are able to do for us and Professor Pegram is look ng after this end of the matter.
7. During the last fortnight I was considerable worried by adubts orc exning the possibility of realizing my concention of our collaboration within the frame-work of the Physics Department. Having disaussed with you my concention of ur proposod collabosetson quate extensively in March and also shar tly beiore you left for Chicago I considered this point setthed and it was mot my intention to raise in this connoction any questions of principle. However, it so happened that the question came up more or leas accidentally in a convorsetion with Professor pegram and was rat sed by him rather than by me.

Having explained to Professor pegram what I hod previously explained to you I believe he has now a clear pictive of the stand which I propose to take with regand to the question of principle which is involved. At first I thought that we might legve the metter onen until. vour return though this did not appear necossary since there are no uestions of detail which will require being discussed. On further consideration I felt that it may be better to ask Professor Pegram to teke any decision which may be recuired in this matter as soon as possible, and no doubt he will want to consult you before doing so. You may therefore expect to hear from him in the course of the next few days in this connection.

Whth kind regards.
Yours,

(Leo szilard)

420 West 116th Street Nev Yonk City July 6, 1940

Dear Breit,
Many thanks for your lottar. Following the conversation we had on our way from Waskington to Now York. I have given some thought to the issue mentioned in your letter and I am now entirely oonvinded to your point of view. Consequently, I am taking a strong stand in favor of an experiment on as large a scale as posifble. This large scele experiment, or some intermediate experimont, operating with at least five tons of uranium ought to have the right-ofway before the generai survey of the nevclei values involved. Nevertheless, this general survey will also havo to be carried out.

There is another point about, which I became converted to your opinion. I now think that steps should be taken to prevent certain publications in Nature and the procedings of the Royal Sociaty of London. With the collapse of France there is an fmmediate danger that joliot and his co-workers will start publishing something of thoir previous work in these poriodicals.

On the other hand I feal oven more strongly than before thet your attempt to prevent publicetion will break dom unless we create a setisfactory substitute in the form of some private publiestion. If the is not dne there will be a groping tondency towerds indulcence and finally practically everything will be publishod as it has been in the past. I wonder whether you have given tha matter further thought since your return to Madison.

With kindest regards.
Yours,
(Leo Srilaza)

420 West 116th Street New York City July 6, 1940

Professor E. WiEner c/o Physics Dopartinent University of filchigen Ann Arbor, Michigan

Deas Wigner:
I am end osing a letter which I just had from Polanyi and which does not sound very cheerful. I am embarassed about answering his question since I believe that no information should be sentiabroad. However. I shall porhaps try to write up somothing and give it to Urey with the renuest of passing it on if Urey is willing to take the responsibility.

I now believe that your resignation was exactly the right thing to do and that it will have some bonoficial effect. Usey did not understand your lettor but Briega did. I hope that eventually some framework will be set up for the work on uranium and that I shall then be in the position of persuading you to collaborate, but for the time boing there is an increasing amount of contusion and a constant change of the personnel of committees concorning uranium and a growing dissatisfaction on my part as mell as on the pare of Sachs. I almost reabbdd the point of following your example. I had a growing suspleion during the last fortnight that Fegram's conception concerning the role which I am goint to play in the work is very far from my own concention. Finally I decided to explain to him the stand Waich I propose to take in conection with the principle which is involved and ask him to take any decision which may be required In this connection as soon as possible. Naturally he will consult Fermi before doing so. I am writing you on this in order to keep you informed but I do not think that you ought to intervene in any way. Sachs is very much aroused by the way in winch matters are treated in Washington on the part of Briggs and for the present I heve to restrain him from taking the natter up with the white House. As far as Wheoler is concemed I do nct thinir that Breit or you noed to worry abrue this aspect for tho present. I am keeping him constantiy in mind and I believe I can convince Pogram very soon that only part of the necessary experiments can be dono ot Columbia and that a collaboration with other universities is essontial. I am entebshgg a copy of a letter I wrote to Wheeler some time ago to show you the Iine which I an taking in the meantime.

I shall be very glad to see Dr. Torda if I hear from
her.

Yours,

THE UNIVERSITY OF MANCHESTER.

DEPARTMENT OF CHEMISTRY

FROM

PROFESSOR M. POLANYI
June 18th 1940.

Chicago July 91940
Dear Szilard:
thank you for your letter
of July 4 .
1: Lawson - I am sorry that he canst stay with us, but I done think that we can do anything about it.

2: Wigner - I can perfectly well see the reasons of his withdrawing from the collaboration. Aud I am suse that if and when we shall need his helf he will be willing to help.

3: I am waiting to know no re about this point. But perhaps the proposed arrangement might work better.

4: The experiment that you suggest will certainly cost a sum of the order of magnitude that you suggest; my mupression is that your estimate is some what too large (not very much); but ${ }^{2}$
it depends of course to a large extent on what program is carried out. I share your view that we shall have plenty of time for this part of the pro graver, no matter whether we whish it or not.

5: I read your letter to Gum and I agree with it entirely.

6: II had for a long time the impression that we could not expect munch eospe ration from the Belgians. I hope that the Canadians will appreciate the situation somewhat better.
7: I think that a frank explanation between Pegrame and yourself would be very desirable. This would be belped, however, if you conked express in a clear way what you consider as a satisfactory arrangment. This, however. unght be difficult. I expect to hear
from Pegram about this matter. I had a very extensive discussion of all the situation with Teller, who stopped in Chicago on his way to the mountains.

Yours superbly \{. Fermi

$$
J: 12010,2040
$$

Dear wro Le Chiens
In furtherence of on then phone cu......ion, in the
 With you on June R1st, I should Itice to aute wore preckes the tro sets of cueations on thich i. sjowl like an anemar for bubuiesion co colleagues of the Comatitee and coordinating euthorities:

The finte set is concermed Bith urentua owide as dism tingulehed Srou the ore, and the quantities ere en Smot.... whout of, sey, ten tons, fien oh oncion on another Forty,
 prosent commerciel price rolul. -.pply to tho totol quantity.

The secons ect of questions is concmera with the 1mportetion of uraniua ore froa tho telctaz Conegs on condition thet treneportation and atorsge onaryos are psid, is
 gission and the rigat of the potontial buyg to "ake mp to the total amount thas Lmpoted. This, preoumably, will require your setting forth and reaching en understamaing as to the conditions and as to the prices for varying amourts of the thas optioned imports urch the terms of rem newal of the imported ore that way not be taken up within speciried initial periods.

In comection with the available 2,000 tons of 65 尔-pure $^{\text {a }}$ ore to be thus inported, questions will be put no us on whick: further light end information fron you wouk be os .-ctat halp, namelys (1) Uto arrongements that wo undowstane you co plaming to make for gractiog fin this coumudy as agemen whe fownor Belgian arrengement, ard (e) potentizi output and product conparisons with Cansda. Finalyy, while rewote, a gueation may elso arise as to what further eusentitios of ore on e rontoly or guruteray bugis could be mined in tho Gongo for inclusion in as ouplemention errangement.

With kind regurds.

> Lours sincerely,

Wr. Gustav Le Chieng Ladiun Chemicsl Company. 570 Lexington Avmue, New Sariz City.

Pegram's Memo (\mathbb{N}, W)

8 A I

ON PROPOSED EXPERIMENTS WITH URANIUM

Objective of the Experiment

To get, if possible, energy from uranium through nuclear fission by means of a self-sustaining nuclear reaction without the necessity of separating the uranium isotopes. Such reaction would supply:
(1) Power - through heat developed in the reaction and utilized by means of a heat engine, e.ge, a steam turbine;
(2) Neutrons in large amount usable for
(a) Production of artificial radioactive substances;
(b) Blological and therapeutic uses.

Primarily the reaction would involve only the uranium 235 isotope which constitutes about $1 / 140$ th part of ordinary uranium, most of the rest being uranium 238. By a secondary reaction uranium 238 will also becone involved and there is a good possibility that part, at least, of the uranium 238 oan be made to contribute to the fission with very obvious advantages. Stages of the Research

Immediately upon the discovery, early in 1939, in Europe and in this country of the large amount of energy liberated in the fission of uranium nuclei after capturing neutrons, it became concelvable that if, as seemed plausible, a sufficient number of free neutrons are released in the splitting of a uranium nucleus,
-2-
the new suppiy of neutrons from fissions might be picked up by other uranium nucloi causing new fissions, and so on cumulatively, or in a so-called "chain reaction". The release of energy in such nuclei reactions could be onormous since the energy released per atom of uranium is about 200 million electron volts, while the energy of the strongest chemical union is only about five electron volts per atom of one of the substances combining.

It was soon realized that in ordinary uranium there are two different types of fission, (a) fission upon capture of a noutron with negligible kinetic energy (slow neutron capture) and (b) fission on entrance of a high energy neutron into the uranium nucleus (fast noutron capture). It is with fission of the first type of "slow neutron capture" that these proposed experiments have to do. It was surmised by Bohr and Wheeler and others, and proven early this year by Nier, Booth, Dunning and Grosse that it is the uranium isotope of atomic weight 235 present to the extent of only about one part in one hundred forty in ordinary uranium which gives fissions upon capture of slow noutrons. Nearly all of ordinary uranium is uranium 238, which gives fission only when hit by fast neutrons having energy of the order of one million electron volts.

The general arrangement to obtain slow neutron ohain reaction would be to have uranium 235 distributed through a mass of some substance that would slow down the neutrons shaken off in a fission, which neutrons are of pretty high speed when first emitted so that they would stand a good chance of being captured by uranium 235 before traveling too far
away or entirely out of reach of the uranium 235. Ordinarily hydrogen is the best substance with which to slow down neutrons, but if ordinary uranium even in pure metallic form were mixed with a hydrogen compound such as water as a slowing-down agent a chain reaction could not result, for hydrogen has a rather large capture cross-section for slow neutrons and the uranium 238 present has a high cross-section for neutrons of about ten electron volts energy, and would capture a large number of neutrons before they got slowed down to normal slowmeutron velocity, corresponding to about $1 / 40$ th of an electron volt. On the other hand the uranium 235 isotope, if it could be separated in sufficient quantity, should, when mixed with water, sustain a chain reaction if the mass used is made large enough.

The factors that are favorable for a chain reaction are (1) an average number of neutrons emitted in one fission considerably greater than one, so that after allowing for the capture of neutrons by the slowing down material and other substances present there would be more than one neutron free to bring about, in tum, the fission of another nucleus; (2) a sufficiently low probability of capture of noustrons by any uranium isotope present in a way that does not produce fission; (3) the slowing down material to bring the neutrons emitted in fission dow to normal molecular speed in a short distance - the shorter this distance the smaller the volume of the mixture that would be required for a chain reaction if otherwise possible; (4) a low probability of capture (small capture cross-section) of neutrons, slow or fast, in the slowing-down material; (5) a sufficient mass of uranium
and slowing-down material to make the peripheral escape of neutrons relatively small, and an appropriate geometrical distribution of the uranium in the slowing-down material; (6) a high probability of captire of slow neutrons (large fission cross-section) of the uranium 235; (7) the absence of materials other than the necessary uranium and the slowing-down material, since other materials would capture some nevtrons.

Professor E. Fermi and Dr. Leo Szilard ${ }^{2}$ at Columbia University 1. Enrico Fermi, formerly professor in the University of Rome, since 2938 professor of physics in Columbia University. 2. Leo Szilard, a native of Hungary by birth, who had resided in Vienna, in Berlin, and latterly, until the fall of 1938, at Oxford Univerity in England, since early in 1939 a research guest in the Departmont of Physics, Columbia University.

In the summer of 1939 came to the conclusion that it might be possible to obtain the desired chain reaction by the use of metallic uranium (ordinary uranium containing both U_{235} and U_{238}) with carbon in dense graphite form as the slowing-cown material. At that time knowledge of the nuclear properties of uranium and carbon was quite inadequate to support any sound prediction as to the possibility of obtaining a chain reaction by the use of uranium and carbon. Measurements of the number of neutrons released per fission had been made at Columbia University and in Paris
without close agreement and without much precision in either case. No reliable measurements had been made of the capture cross-section of carbon for slow neutrons. Additional measurements were required. It was realized that better measurements of the factors involved might give a definitely negative answer as to the possibility of a chain reaction they might give a definitely positive answer, or the results might still have so large a margin of error that they would give no definite answer, in which case they would probably give valuable information on which to design further experiments to test the possibility of the chain reaction. It was believed that the possibility of achieving the release of nuclear energy from uranium was large enough to justify the expenditure of a considerable sum of money on further research, and that because of the possiblemilitary significance of uranium energy, the Federal Government would be quite justified in supporting such research.

The first approach to government officials on this subject was made in March, 1939, when, through arrangements made by Prof. George B. Pegram of Columbia University, with the office of Mr Charles Edison, Assistant Secretary of the Navy, Prof. Fermi conferred with certain officers of the Navy, indicating the possibility of the energy to be derived from uranium becoming a matter of military importance. The naval officers were interested and requested that the Navy be kept informed of any developments. In the fall of 1939 , through a letter from Prof. Albert Einstein and through personal representations of Dr. Alexander Socks ${ }^{\text {l }}$, the desirability of supporting research on the prob-

1. Dr. Alexander Socks is an economist with the firm of Lehman Bros., New York.
lem of power from uranium was presented to President Roosevelt. The President appointed a committee, composed of Dr. Lyman J. Briggs, director of the National Bureau of Standards, chairman, Col. Adamson, Ordnance Department, U.S.A., and Commander Hoover, U.S.N., to do something about supporting research on this problem. Funds to the extent of $\$ 6,000$ were provided by the Amy and the Navy. Partly by allotments from these funds the Uranium Committee supplied four tons graphite, costing about $\$ 2,000$, and amounts of sheet cadmium and of paraffin costing a few hundred dollars, and also about $\$ 1,200$ worth of measuring apparatus to enable experiments to be done at Columbia University in the spring of 1940 by Proi. Fermi, Dr. szilard, Mre Anderson and certain other assistants. No government money was expended for salaries or any general laboratory equipment.

From these experiments better measurements than had been previously available were obtained for the capture cross-section of carbon for neutrons, of the resonance absorption of neutrons by uranium 238 and of the slowing down of neutrons in carbon.

It is not easy to measure these quantities with accuracy without the use of very large amounts of material. The net results of these experiments in the spring of 1940 were that the possibility of the chain reaction was not definitely proven, while it was still further from being definitely disproven. On the whole, the indications were more favorable than any conclusions that could have been fairly clained from previous experiments.

The whole question of an uranium-carbon chain reaction in
the light of the 1940 experiments of Fermi and Szilard was the subject for discussion by a special advisory group assembled by Dr. Briggs to advise the Uranium Committee. This group, composed of Nesses. Briggs, Urey, Tube, Wigner, Breit, Fermi, Szilard and Pegram, met at the Bureau of Standards on June 13, 1940. After full discus-. sion, the recommendation of the group to the Uranium Committee was that funds should be sought to support research on the uranium-carbon experiment along two lines: (A) further measurements of the nuclear constants involved in the proposed type of reaction; (B) experiments with amounts of uranium and carbon equal to about onemifth to onequarter of the amount that could be estimated as the minumum in which a chain reaction could sustain itself. It was estimated that about $\$ 40,000$ would be necessary for the further measurements of the fondamental constants and that approximately $\$ 100,000$'s worth of metallic uranium and pure graphite would be needed for the "intermediate scale" experiment.

The desirability of the measurements of the nuclear constants is obvious. It should be remarked that the 1 mediate value will be to enable the "intermediate experiment" recommended as "B "above, and, subsequently, a full-scale experiment, to be designed with more knowledge than would be possible without the measurements under reccommendation "A" above.

As to recommendation " B ", the "intermediate experiment", the argument in its favor is the following. As nearly as can be astimated at present the smallest amount of materials necessary to secure
a chain reaction with uranium and carbon would be 25 tons of uranium metal and 60 tons of graphite. This would represent an expenditure of perhaps $\$ 500,000$. However, even if this rather large amount of material were in hand it would be advisable to proceed only by stages to set up the mass of material presumed nocessary for the chain reaction. Measurements taken on the behavior of neutrons in intermed1ate amounts of the uranium-carbon mixture will not only be of the greatest value in prodicting the total amount of material necessary, but will be absolutely essential, from the standpoint of safety, to the persons who are working on the experiment. since the amount of material required for the chain reaction is certainly not in hand, and since it would cost a large sum of money, it is obvious that progress should be attempted by stages, and it is believed that the first stage should make use of not more than onewquarter of the amount which, so far as present knowledge goes, would be the minumum required for sustaining a chain reaction. It is not believed that there would be any danger in working with this intermediate amount of material, particularly since even this amount of material would not be put together all at once but would be assembled in stages and measurements taken at the several stages. Some question has been raised as to whother this intermediate experiment should be carried out in a university laboratory or in some more isolated spot. Prof. Fermi thinks there would not be the slightest hazard in carrying out the experiment in any laboratory. After the formation of the National Defense Research Committee, the Uranium Comnittee appointed by the President was informed that it
would become a sub-comittee of the National Defense Research Committee. The chairman of the Uranium Cominittee transmitted to the National Defense Research Committee on July , 1940, a recommendtion that the proposed experiments on the uraniura-carbon reaction should be supported by an allotmentof $\$ 140,000$.
Proposed Experiments at Columbia University
Obviously the question of how much expenditure on the proposed experiments is justifiable will depend, in part, on the sciontiflc knowledge gained in the researches, but much more upon the value, from the standpoint of power production, to be attached to the accomplishment of release of nuclear energy from uranium. As indicated above, it is likely that an uranium-carbon setup that will actually produce power through a chain reaction, will cost something of the order of half a million dollars. It would be a very concentrated source of a very large amount of energy, that is, very concentrated as compared with existing power plants and fuel piles. The most obvious application would be for the powering of a ship. It would probably be well worth the investment.

It is proposed that the National Defense Research Committee contract with Columbia University through George B. Pegram, professor of physics and dean of the Graduate Faculties, for researches on the uranium-carbon chain reaction problem to be made in the Department of Physics at Columbia University, and for reports on results, with suitable arrangements for the payment to Columbia University of appropriate amounts for the expenses of the experiments. The following is a brief
outline of the proposed investigations, together with an estimate of cost.

At the present state of development of the technique we cannot hope to obtain a sufficiently accurate knowledge of the interactions of neutrons with uranium and carbon as to permit a mathewmatical prediction of the success of a chain reaction experiment. However, it seems worth while to continue and improve our study of these properties, not so much in order to make such a prediction possidle, , but rather to permit a rational planning of the best arrangemont to be used. In order finally to decide whether a mixture of carbon and uranium of a certain size can give a chain reaction it will be necessary to perform an intermediate experiment on a sample of the mixture of about one-quarter or one-fifth of the estimated tan amount necessary to sustain a chain reaction. Accordingly, it is proposed to divide our program into two parts.
A. Study of the interaction of neutrons with uranium and carbon; determination of the important nuclear constants.
B. "Intermediate experiment" with the appropriate mixture of uranium and carbon.

PART A
It is proposed to carry out the following measurements:
(1) To determine more accurately the number of now nevtrons emitted per thermal neutron captured by uranium, and resulting in a fission. An approximate value was obtained by Anderson, Fermi and Szilard (Phys. Rev., Vol. 56, p. 284, 1939). A method for this
measurement consistsin comparing the activity produced by neutrons slowed dow in water or carbon with or without masseshf uranium of suitable geometrical disposition spread through the slowing-down material. The accuracy of these measurements can be increased by using larger amountaff uranium oxide than were available in the above quoted research, and by using strong sources of neutrons.
(2) To measure the fraction of neutrons absorbed by uranfum in the resonance band during the slowing-down process. This fraction is largely dependent upon the geometry used. We plan to vary the geometry so as to got an estimate of this magnitude for different configurations. One possible method requires the knowedge of the self-absorption curve of the uranium resonance neutrons. Such a curve has been determined by Anderson (Phys. Rev. in print). It is not possible, however, to measure this curve for very thick absorbers on account of the scattering. We shall attempt, therefore, to get an estimate of this fraction by measurements of the intensity of neutrons having energies above and below that of the resonance band.
(3) Study of the slowing-down of neutrons in carbon. This research, which is already in progress, has as its purpose to determine the length of diffusion of the neutrons during the slowingdown process. The method consists essentially in the determination of the activity of a detector sensitive to neutrons. just above the thermal energies in masses of carbon of a shape suitable for calculation.
(4) Absorption of thermal neutrons in carbon. A measuremont of the absorption cross-section of carbon for thermal neutrons was made last spring, using about four tons of graphite. With larger amounts of graphite available the experiment could now be repeated under more favorable conditions. Since a very precise knowledge of this cross-section is very essential in planning the final experiment it might also be desirable to repeat this experiment, using an essentially different geometrical arrangement.
(5) Tests of what would essentially be a single unit of the large-scale experiment, namely a single sphere of uranium metal, approximately 10 cm . In diameter, surrounded by a graphite mass of approximately 60 cm . In diameter. Measurements of the density of nevtrons at various distances from the uranium sphere mould have to be performed, placing sources of neutrons outside of the graphite mass.
(6) Measurements of scattering absorption and fission cross-sections of uranium with improved accuracy. Measurements of the absorption and fission process already in progress will be performed by comparing these cross-sections with those of manganese and gold. A new measurement of the total cross-section of uranium for thermal neutrons is desirable since the samples used by various investigators in previous measurements have proved to be contaminated by considerable amounts of hydrogen.
(7) Measurements of neutron absorption by other elements which might be present as impurities or which might be introduced for mechanical purposes, as, for example, in order to form a really fusible alloy of uranium.
-13-
An estimate of what would be needed for carrying out Part A above is the following: Besides the general laboratory equipment which would be made available by Columbia University, this Part A of the program would require:
(a) Special measuring instruments which have already been constructed under contract with the National Bureau of Standards (Uranium Committee).
(b) All of the experiments require strong sources of neutrons and the stronger the sources the more accurate and more read11y attained will be the results of the experiments. A source consisting of one gram of radium mixed with beryllium powdor will be sufficient for some of the experiments. It is hoped that a gram of radium already ordered by the Navy Departnent will be available for this nettron source. For the cost of making up the source and mixing the radium with beryllium and for separating the radium again after the termination of the research an allowance should be made of about
(c) For some of the experiments still stronger neutron source will be needed and can
probably be rented. Photoneutron sources, consisting of one to three gramsfo radium inserted in a beryllium cylinder can be used and can probably be rented for $\$ 2,000$.
(d) Two tons of uranium oxide for experiments 1 and 2 - estimated cost

10,000.
(e) A sphere of uranium metal, about 10 cm . in diameter for experiment 5 - estimated cost 2,000.
(f) Four tons of pure graphite, in addition to four tons already in hand - estimated cost 2,000.
(g) Experimental constructions, such as containers for the various materials - allowance 2,000.
(h) Mizcollanoous expenses for supplies, small apparatus, shop work, etc. - \$1,000 a month for twelve months 12,000.
(1) Salaries of research assistants for one $\begin{array}{ll}\text { year } \\ \text { Total for Part A } & 10,750 . \\ \$ 40,000 .\end{array}$

PART B

The research assistants allowed for under Part A can also work on Part B with no additional item for salary proposed within the year.

This intermediate experiment will need 12 tons of pure graphite, more than half of winch will be already on hand. the cost
of the remainder should not be more than $\$ 3,000$. The chief expense will be for five tons of uranium metal in spheres or blocks, whose size will be better determined after results have been obtained from Part A of the program. It is impossible to predict accurately what uranium metal in the proper form will cost. It is proposed that an allotment of $\$ 100,000$ for this intermediate experiment be made and that as much uranium metal and other materials will be purchased as this amount will provide. An amount up to $\$ 5,000$ should be at once available for preliminary metallurgical experiments to determine how uranium metal best suited to the purpose can be obtained. It may be pointed out that the materials used in this experiment will form part of those required for the final experiment on a scale sufficiently large to obtain a chain reaction if this full-scale experiment should ultimately be performed. Otherwise these materials - uranium and graphite - will have some salvage value either on the marizet or for use in other lines of experimentation.

Proposed Personnel

It is proposed that Prof. Pegram represent the University officially in connection with this research and that Prof. Fermi should be directly engaged in the research itself. Profs. Pegram and Fermi will, of course, receive no salary. Dr. Szilard, as one of the originators of the project, should be engaged with Prof. Fermi in the immediate directin of the research. It is proposed that a salary be paid to Dr. Szilard at the rate of $\$ 4,000$ a year. It is proposed that Mr. Herbert L. Anderson, a recent Ph.D. graduate of Columbia University, who is well known in this field through his work for the past year with Prof. Fermi,
be one of the research assistants at a salary of $\$ 2,400$ a year. It is not possible definitely to propose the names of additional assistants at the present time. If the University is assured of this contract it is likely that efforts will be made to induce Dr. Walter Kin, of the Department of Physics of the Colloge of the City of New York, who has been engaged in research in this field for the past few years at Columbia, to try to secure leave of absence from his City College post in order to work on this problem. In any case, in addition to Dr. Kin and Dr. Andorson, two more men will be needed. It is, of course, desirable that the personnel for this research should consist of physicists who have already worked in this field.

Suggestions as to Contract with Columbia University

The following suggestions are made as to items of the contract between the National Defense Research Committee and Columbia University:
(1) The contract should be for researches to be made under the direction of appropriate members of the University staff, in general accordance with the experiments proposed in the precedeing section, and for the reporting of results to the National Defense Research Committee.
(2) The contract should specify that the University will provide the direction of the experiments, the necessary laboratory space and the general equipment of a physics laboratory such as the University already has available.
(3) The contract should specify that the University should be reimbursed for all the direct expenses of the research, including:
(a) The cost of materials.
(b) The cost of supplies and apparatus necessary for the prosecution of the research.
(c) Salaries paid to research assistants.
(d) Such minor and incidental outlays on the part of the University as the prosecution of the research may necessitate.
(4) The contract should specify that the results of the research should be kept confidential and reported only to the National Defense Research Committee.
(5) The contract should specify that all personnel employed in connection with the research should be subject to the approval of the National Defense Research Committee.
(6) The contract should provide for interim reports on the research at intervals of two or three months and a complete report at the end of one year.
(7) The term of the contract should probably be for one year.
(8) The contract should specify that all important quantties of materials purchased for those researches should become the property of the National Defense Research Committee.
(9) The contract should specify that all apparatus and supplies purchased or constructed for this research should become the property of Columbia University after the termination of the contract. This would constitute a small return to the University for what it supplies in the contract. If it should, for any reason, not be desirable to have the apparatus become the property of the University, provision should be made for payment of a small sum to the University - say, $\$ 300$ to $\$ 1,000$ for the inevitable cost to it of services, such as clerical work, which it would be difficult to itemize.
(10) The contract may provide that in the case of materials or apparatus of which the cost is large, purchase may be made through the University, with subsequent reimbursement, or the materials may be purchased through an appropriate government agency and supplied a to the University. the light of the 1940 experiments of Fermi and Szilard was the subject for discussion by a special advisory group assembled by Dr. Briggs to advise the Uranium Committee. This group, composed of Messrs. Briggs, Urey, Tuve, Wigner, Breit, Fermi, Szilard and Pegram, met at the Bureau of Standards on June 13, 1940. After full discussion, the recommendation of the group to the Uranium Committee was that funds should be sought to support research on the uranium-carbon experiment along two lines: (A) further measurements of the nuclear constants involved in the proposed type of reaction; (B) experiments with amounts of uranium and carbon equal to about one-fifth to onequarter of the amount that could be estimated as the minimum in which a chain reaction could sustain itself. It was estimated that about $\$ 40,000$ would be necessary for the further measurements of the fondamental constants and that approximately $\$ 100,000^{\prime} s$ worth of metallic uranium and pure graphite would be needed for the "intermediate scale" experiment.

The desirability of the measurements of the nuclear constands is obvious. It should be remarked that the immediate value will be to enable the "intermediate experiment" recommended as "B" above, and, subsequently, a full-scale experiment, to be designed with more knowledge than would be possible without the measurements under recommendation " A " above.

As to recommendation " B ", the "intermediate experiment", the argument in its favor is the following. As nearly as can be estimated at present the smallest amount of materials necessary to secure a chain reaction with uranium and carbon would be 25 tons of \checkmark
uranium metal and 60 tons of graphite. This would represent an expenditure of perhaps $\$ 500,000$. However, even if this rather large amount of material were in hand it would be advisable to proceed only by stages to set up the mass of material presumed necessary for the chain reaction. Measurements taken on the behavior of neutrons in intermediate amounts of the uranium-carbon mixture will not only be of the greatest value in predicting the total amount of material necessary, but will be absolutely essential, from the standpoint of safety, to the persons who are working on the experiment. Since the amount of material required for the chain reaction is certainly not in hand, and since it would cost a large sum of money, it is obvious that progress should be attempted by stages, and it is believed that the first stage should make use of not more than one-quarter of the amount which, so far as present knowledge goes, would be the minimum required for sustaining a chain reaction. It is not believed that there would be any danger in working with this intermediate amount of material, particularly since even this amount of material would not berput together all at once but would be assembled in stages and measurements taken at the several stages. Some question has been raised as to whether this intermediate experiment should be carried out in a university laboratory or in some more isolated spot. Prof. Fermi thinks there would not be the slightest hazard in carrying out the experiment in any laboratory.

Additional Material for pages 117 to 121.

Miscellaneous 1940-41 documents.
re: SZILARD'S CONTINUING SEARCH FOR OUTSIDE HELP.

Letter, L.S. to Strauss. Jan. 30, 1940 "Memorandum" attached. Both marked "Not sent".

Letter, L.S. to Howard A. Poillon, President, Research Corp. - Feb. 26, 1940
"Memorandum" by L.S.
June 24, 1940
(It is not clear for whom this was written)

Thitut Onmmitutal

OPPOSITE COLUMBIA UNIVERSITY
January 30, 1940

Lewis I. Strauss

52 William Street
New York City
Dear Mr. Strauss:
This is to remind you that about a week ago we thought it might be a good plan for me to talk to Godowski and others. If you wish to arrange something for me I could keep appointments this week at twenty-four hours notice. If your secretary telephones the King's Crown Hotel the clerk will tell him if I am in town or at Princeton, and in the latter case, I can be reached there at the Nassau Tavern.

I have looked more closely into the question of driving naval vessels with an atomic engine and I am enclosing a memorandum on the subject which we might use as a starting point for further deliberations.

Is it possible for you to see me some time during the second half of this week or early next week?

Yours very sincerely,
nutfenk
Leo Szilard

NOT MANAGEMENT

OPPOSITE COLUMBIA UNIVERSITY

MEMORANDUM

I have found a way to maintain a chain reaction and ways to use it producing a power, for instance, for the purpose of driving naval vessels. The crew of of the vessel can be protected against irradiations emanating from the atomic engine by means of water tanks of rather moderate size. About ten tons of uranium might be used for auch an engine.

Whether it is a rather rare isotope or the abundant isotope of uranium which is possible for the reaction is not known. If it is the rare isotope then ten ton of uranium would supply as much power as about fifty thousand tons of coal before the atomic engine gets . If it is the abundant isotope which splits then ten tons of uranium will supply as much power as five million tons of coal and even then would use up only about one fifth of the uranium so that the rest could be reconditioned.

The question could be decided after investigating a small sample of isotopes.

February 26: 1940

Mr. Hownd A. Po1110n
Presiaent, Research Corporation 405 Lexington Avenze
New Yurk City
Dean Mr. Poillon:
I worader whetnex you wili semenber that I visited you in the spring op 1935. I velieve I was introduced to you then by G. Degram while on a visit to Tow Vork shorty vezore my return to Oxford, Encland. At that rime I talked to you about the potential possibilitice ol producing pover by libexatine mueletry energy on a large seale and you told me that you did not propose at that time to support any experiments exeent those in berkeley and kindy subsested that I get in touch with Ogien in Engieda. By now you heve perhaps ompletely torgothen this incident.

Is Jou can soe prom the enclosed reprints, I bave been recently doing some work along the lize which I proposed to follow in 1935. Nore ogn be said on this subject than would be wise to say ja publications whion are printed in periodicals and I should very much appreciste having your comments on a number of questions which arise out of the prescat situation. If you are iree this weak perhapa you ronld be whad emough to have your secretary telephone me at University 4-2\%00, Extension 302.

Yours very truly,
(Leo Szilara)

MEMORANDUM

In the memorandum which was submitted in the course of a meeting held under the chaimanship of Dr. Briggs on April 27, 1940, I discussed the possibility of using uranium as a source of power for the purpose of driving naval vessels. In the case of a chain reaction maintained in a system composed of carbon and uranium a conservative estimate leads to the prediction that one ton of uranium will be equivalent to about 3,000 tons of Oil. Certain recent developments make it appear conceivable that the conditions can be so chosen as to obtain from 1 ton of uranium as much power as from about a few sinilhion tons of oil. Professor Louis A. Turner of Princeton sent me a manuscript in which this possibility is discussed. In discussions which Dr. Turner had with Dr. Wigner and myself he expressed his willingness to have the publication of his paper delayed if required. Certain observations made by Macmillan and Abelson which were published in the June lith issue of the Physical Review opened up the way for investigating the potential possibility discussed by Dr. Turner. By following up the work of Macmillan and Abelson and by carrying out the contemplated general survey of the nuclear constants it will be possible to decide whether 1 ton of uranium "burned" in a system composed of uranium and carbon is capable of supplying as much power as a few million tons of oil or whether it is only capable of supplying as much power as 3,000 tons of oil, the previously given conseryative estimate.

Miscellaneous 1940-4l documents.
re: SZILARD'S PATENTS, APPLICATIONS, AND DISCLOSURES, IN NUCLFAR PHYSICS

Letter, L.S. to Wigner. April 30, 1941
(re page 1) For further information on Szilard's English patents, see Note 8 on page 102.
(re page 2, first paragraph) For Szilard's letter to Fermi, see: Additional Material for page 102.
(re page 2, second paragraph) The American patent is entitled: "Process of Producing Radio-active Elements." It was filed on March 11, 1935 (Serial No, 10,500) and issued on June 13, 1939 as U.S. Patent No. 2,161,985.
(re page 2, third paragraph) See Communication from U.S. Patent Office, below.
(re page 2, fourth paragraph) Szilard's German cyclotron patent is described in both the text and note, Section 4, Berlin 19201933 cpage 7 of typed version..

Communication, U.S. Patent Office to L.S.
April 29, 1941
Abandonment of patent application for "Apparatus for Nuclear Transmutation," filed in 1939.

Disclosure. "MEMORANDUM" mailed to himself by Szilard.

Dated
Postmarked

July 4,1940
Nov. 14, 1940
The memo suggests using beryllium in the uranium system.

Typed memo (2 pp.) entitled "PATENT"
Dec. 9, 1940
Paragraphs headed: "Method of Cooling!" Uses liquid bismuth. "Heating up."

420 Weat 210 5月vert

AD221 30, 2041

Prosocoson 2.2. Wismon
N2ne Lav1
Wxim cton Universtey
Zesncoton, Now Jorsey
Dear Yigner"
 those patonts taicen oxt by wo wach have wowo connoction with nuclear bixysies.

I have taken out threo buch potentas two in mnginad, nad one in Howide 427 on thoso Datomes aro Dasod

Gus of the tro Tngish putonta hav ta ite oubjoct tho

 astignou to tio Dhetinh Mavy in 2030 knd how boon gemdou secret and wowaine ungrabituche

The othes \#ngian patent containo oscentially two 1nventhons, the ganomation of sadlonctive olomonta by moans of nowtrong zad tho ohomiont pepaxatron of rad ometive

 Todine Erow

The relevant provisional English patent application was filed before Fermata discovery of the production of radioactive elements by means of neutrons. Apter Fermi's discovery became known and after the issue of my patent I wrote Fermi and others and suggested that all patents in this field should be pooled and given to some scientific foundation or bona other non-propit organization. Wo solution of this typo materialized, however. Later I gave an exclusive License agreement for the chemical separation part of the patent which I considered as ry own con-. tribution to the art, but reserved the right of letting the rest of the patent be used by third parties free of royalty should this appear to bo justified.

The American patent filed in the United States in March, 1935, is eqsentially along the lines as the above-mentioned British patent and falls under the same license acreement.

None of the other patent a plications which I have filed at one time or another have been kept alive and they have all become abandoned. Consequently, there is at present no patent application on Pile which may load at a later dato to the issue of a patent.

One of these abandoned applications was Riled in 1928 in Gemma and described the invention of the cyclotrone.

I hope this statement covers everything that might be of interest to you. With beat wishes,

Yours.

Leo Szilard

DEPARTMENT OF COMMERCE UNITED STATES PATENT OFFICE WASHINGTON
Copy sent attorney.
Please find below a communication from the EXAMINER in
charge of this application.

-7. 11-8028
Commissioner of Palerds,

Loo Szilard, 420 W. 116 th St.. Now York, N. Y.

Applicant: Loo Szilard.
Ser. No. 263,017. Filed War. 20, 1939.
For Apparatus For Nuclear Transmutation.

A letter of abandonment signed by applicant has been recoived in this application on April 26, 1941 and is hereby acknowledged. The application is accordingly herewith forwarded to the abandoned files.

$$
\begin{aligned}
& \text { L. Silaid } \\
& 420 \text { W } 116 \text { for. } \\
& \text { N.Y.C. }
\end{aligned}
$$

If this small scale experiment gives an encouraging result then we ought to attempt to obtain plates of beryllium metal, for instance plates of sizes $5 \times 15 \times 15 \mathrm{~cm}$ and other plates $5 \times 5 \times 10 \mathrm{~cm}$. Such plates used in confunction with a cube of uranium metal can be so arranged as to have a cubic layer of beryllium 5 cm thick surrounding the uranium cube. Each uranium cube would require four of the smaller and two of the larger type beryllium plates. The use of beryllium might be of marked advantage wen if the cross-section for the knock out process were as low as $10^{-25} \mathrm{~cm}^{2}$ for uranium fission neutrons.
(Leo Szilard)

$$
\text { July 4, } 1940
$$

MEMORANDUM

If we used in the chain reaction experiment uranium spheres of 5 cm . diameter surrounded by $2 \frac{1}{2} \mathrm{~cm}$. layer of beryllium metal we would have about six times as much volume of beryllium as uranium and taking into consideration the ratios of the densities about $\frac{1}{2}$ as much berfllium as uranium. dssuming that beryllium metal may be bought at a price of $\$ 10.00$ per lb. and uranium metal at a price of $\$ 5.00$ per lb., 10 tons of uranium lmetal will be about $\$ 100,000$, and 5 tons of beryllium would be $\$ 100,000$. making a total of $\$ 200,000$.

Method of Cooling.

1. No cooling liquid inside the graphiteuranium system.
2. Cooling by liquid bismuth, the bismuth surrounding the uranium spheres; the bismuth flowing in Graphite channels and not in iron pipes.
3. Cooling by some cooling liquid, for instance a bismuth-lead compound containing 60% of bismuth, melting at 226°, flowing inside a uranium tube inside a uranium cylinder. This method can be used only if cylindrical bodies of uranium are embedded in graphite. In this arrangement liquid meroury could be used instead of liquid bismuth or bismuth alloyss also perhaps water. Note: melting point of bismuth 3220; melting point of lead 326°. A Pb-Sn alloy containing 70\% Sn melts at 185 . There may be suitable $\mathrm{Sn}-\mathrm{Pb}-\mathrm{Bi}$ alloys. Boiling point of bisrath is at 1470°. Boiling point of lead is at 1613°.

Heatingun.

If the cooling medium is used which becomes solid at rodm temperature it may be necessary to heat up the carbon-uranium system in order to start the machine. Another reason for heating up may lie in the fact that the graphite used contains impurities which have an appreciable thermal absorption. In the case of an appreciable thermal absorption in the graphite, whether due to impurities of a certain kind or to the carbon itself, the efficiency of the arrangement for the chain reaction increases with x increasing temperatures within the range between room temperature and the highest temperature which is practicable in such machines. This in itself may be a reason for heating up the carbon-uranium system in order to gtart the chain reaction, and the temperature will then be maintained at a high level, perhaps at 800° during the operation of the machine by the heat which
is liberated in the chain reaction.
In order to heat up the graphitemuranium system heating elements may be pushed into cavities in the graphite and these elements mast then be withdraw in order to start the chain reaction, otherwise their theremail neutron absorption may interfere with the chain reaction.

Additional Material for pages 121-122

Miscellaneous documents from Szilard's folder marked "1940" butnot directly mentioned in the REMINISCENCES.
Letter, Placzek to L.S. May 9, 1940
Memorandum, Placzek to L.S. "On the Diffusion of Neutrons in Air" The title page of this Memorandum reads "Confidential. Memorandum sent by G。Placzek to Dr. L. Szilard. April 1940." This title page was probably added later by Szilard. (It is on plain Macadam Bond, whereas the Memorandum itself is on paper with the Cornell Univer- sity watermark.) The Memorandum may well have been sent in May, after the May 9th letter.
Letter, Placzek to L.S. July 25, 1940
Letters, L.S. to Wigner Sept. 29, 1940
and Nov. 3, 1940
9. Mra 1440.

Lialue Stilard,
Paten Dant tir dus Manuskript. Sive Kriegen dus tusutoproduky, qobald es qetipnt ist. Das Reswetat. st seler linfars: Die A azale der vern einem sedwarsen Detektor rro see. and Feaicles eirhert absabbiestes Nentrouen *ist:
L of

$$
I=\frac{1}{\rho_{\pi}} \frac{0 l_{f}}{\varrho_{6} \rho^{3}}\left\{1-\varphi\left(\frac{\rho}{L}\right)\right\}
$$

Dieflunktive $\varphi\left(\frac{\rho}{L}\right)$ Fin' hue liee hive Karrser helounten, int Noll fuit $\frac{P}{L}=0$ and 2. B. 0,6 fun $\rho=L$, and $\&$ gelt dam solwell qeven 1. List etwa 1 km , l_{f} bekanathid on 140 m . Für I Lre Genamigkent veetzen Sive aho hinfuls fïr mälsiqe Abstazade ρ mut

$$
I \sim \frac{1}{\delta_{\pi}} \frac{Q l_{f}}{\rho^{3}}
$$

*) er zewigt von Q welle $n^{\text {h her }}$ fressenclem Boden.

Dus ist Inven hottenthif ciztast 9 lueng. Viel scheint es ia micht in sein. Id weirs midt wie ICu Mordplu"me sind, ahar Soe sehen dass ches un eiven Fullter $\frac{e_{A}}{\rho}$ wenivu ist ah der Eltelt enzu Q welle ik Vakumo alme jele Dilkinvon.

Peste Gor aize
ras

$$
\text { (coriginal in 36, } 6 \text {) BK.f. } 84
$$

Memorandum
sent by Dr. G. Placzek to Dr. L. Szuilard April 1940.

On the Diffusion of Neutrons in Air

The diffusion of neutrons in air has been recently discussed by Bethe, Korff and Placzek ${ }^{1}$, the average energy distribution has been derived by Placzek ${ }^{2}$, and the spatial distribution of neutrons in air over a water surface has been derived by Bethe ${ }^{3}$ for the case of production of neutrons in air homogeneous in a horizontal plane.
§ 1. Diffusion of neutrons in free air. We first discuss the diffusion in free air. The results will hold if the distance of the neutron source from the ground is larger than the diffusion path (see below) of the neutrons produced by the source.

The average energy distribution is approximately given by 4 , 2 $N(v) d v=M Q l_{s}(v) \frac{d v}{v^{2}} e^{-M} \int_{v}^{v_{1}} \frac{l_{s}\left(v^{\prime}\right)}{l\left(v^{\prime}\right)} \frac{d v^{\prime}}{v^{\prime}}$

Here $N(v) d$ is the number of neutrons of velocities between v and $v+d v$ for initial velocity $v_{1}, M=14.4$ the mean atomic weight of air, Q the number of neutrons produced per second (with velocity v_{1}) and $\ell_{S}(v)$ and $\ell_{c}(v)$ the mean free path of neutrons in air for scattering and capture respectively, as functions of the velocity.

[^0]From a discussion of (1), together with the available experimental material about scattering and capture cross sections in nitrogen and oxygen it can be concluded (cf. ref. 1), that capture effects will probably not change the neutron density by orders of magnitude for all energies down to 1 ev . In the following, we shall neglect these effects, they can be roughly accounted for by multiplying all neutron densities with the reduction factor $\exp \left\{-M \int_{v}^{v_{1}} \frac{l_{s}(v)}{l_{c}\left(v^{\prime}\right)} \frac{d v^{\prime}}{v^{\prime}}\right\}$ as soon as the respective cross sections have been measured.

At energies considerably below 1 ev the capture due to the $n-p$ reaction in nitrogen will come into play and remove most of the neutrons before thermal energies are reached. $\sqrt{\text { In }}$ the following table, we give approximate numerical values for some of the characteristic lengths, important for the study of the diffusion process in air.

These are: The mean free path for scattering l_{s} for fast and slow neutrons, the mean free path $\ell_{c t}$ for capture of thermal neutrons, the diffusion path for thermal neutrons λ defined by:

$$
\begin{equation*}
\lambda=\left(\frac{l_{s} l_{c t}}{3}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

and the root mean square distance of diffusion $\sqrt{\left(r^{2}\right)_{A V}}$, for neutrons produced $\underbrace{\text { at energid }}$, $\underbrace{E_{1}}$ and captured at energy E_{c}.

$$
\begin{align*}
\left(r^{2}\right)_{A V}^{\left(E_{c}\right)}=M_{\text {eH }} & \int_{E_{c}}^{E_{1}} l_{s}^{2}(E) \frac{d E}{E} \tag{3}\\
M_{\text {eH }} & =15,6
\end{align*}
$$

E_{c} lies slightly above thermal energies.

The most inaccurate of these figures is $\left(r^{2}\right)_{A r}$, because of insufficient data about the energy variation of the mean free path. (see ref. 1) The spatial distribution of the neutrons can be found approximately by assuming that the time spent in the slowing down process from the original energy E_{1} to any energy E_{2} is the same for all neutrons, so that the energy is a function of the "age" of the neutron. Then the problem can be treated by the standard methods of diffusion theory. Actually, the assumption is not quite correct, since to every energy belongs an age distribution of neutrons, but it can be shown that the use of this idealization is a good approximation as long as capture is unimportan.

If we define a symbolic time \mathcal{f} by

$$
\begin{equation*}
f(v)=\frac{1}{6}\left(r^{2}\right)_{A v}(v)=5,2 \int_{v}^{v_{1}} l^{2}\left(v^{\prime}\right) \frac{d v^{\prime}}{v^{\prime}} \tag{4}
\end{equation*}
$$

the diffusion equation reads

$$
\begin{equation*}
\frac{\partial F}{\partial v}=\nabla^{2} F \tag{5}
\end{equation*}
$$

where F is the neutron density. If Q neutrons of velocity v_{1} are produced per second at $\mathrm{r}=0$, the solution of (5) is

$$
\begin{equation*}
F(v, r) d v=M Q l_{s}^{(v)} \frac{d v}{v^{2}} \frac{e^{-\frac{r^{2}}{4 v(v)}}}{\left(4 \pi v(v)^{3 / 2}\right.} \tag{6}
\end{equation*}
$$

with (11) This is correct
Or, if we introduce the diffusion path $L(v)$ by

$$
\begin{gather*}
L(v)=2 \sqrt{v}=\sqrt{\frac{2}{3}\left(r^{2}\right)_{A v}} \tag{7}\\
F(v, r)=M Q \ell_{s}(v) \frac{d v}{v^{2}} \frac{e^{-\left(\frac{r}{L(v)}\right)^{2}}}{\pi^{3 / 2} L^{3}(w)} \tag{ba}
\end{gather*}
$$

If we have a source of thermal neutrons, their density F_{t}
is determined by the equation:

$$
\begin{equation*}
\nabla^{2} F_{t}-\frac{F_{t}}{\lambda^{2}}=\frac{Q_{t} \tau \delta(r)}{4 \pi r^{2}} \tag{8}
\end{equation*}
$$

where τ is the lifetime of thermal neutrons in air (about $1 / 100 \mathrm{sec}), f$ and λ is given by (2). (7) is solved by

$$
\begin{equation*}
F_{t}=Q_{t} \tau \frac{e^{-r / \lambda}}{4 \pi \lambda^{2} r} \tag{9}
\end{equation*}
$$

$f Q_{t}$ the number of thermal mentrons produced per see.
the number of thermal neutrons produced per sec.
§ 2. Diffusion of neutrons above ground. We now consider the following problem: The space of air is limited by a plane. infinite boundary $z=0$ (ground). At an altitude z_{0} we have a point source of neutrons of velocity v_{1}. We ask for the neutron density in air as a function of velocity and coordinates. Obviously, the neutron density will depend on the capture and scattering properties, and hence the chemical composition of the material forming the ground. However, we will get lower limit for the neutron density by assuming that every neutron reaching the ground is captured. This leads to the boundary condition $F=0$ for $z=-\frac{l_{s}(v)}{\sqrt{3}}$.

The solution of the diffusion equation with this boundary condition is;
$F(z, \rho ; v) d v=M Q l_{s} \frac{d v}{v^{2}} \cdot 2 \pi^{-\frac{3}{2}} L^{-3} e^{-\frac{p_{2}^{2}}{2}+\left(z+\frac{l_{s}}{\sqrt{3}}\right) L^{2}+\left(z_{0}+\frac{l_{s}}{\sqrt{3}}\right)} /^{2} / 2 \pi h \frac{2\left(z+\frac{l_{s}}{\sqrt{3}}\right)\left(z_{0}+\frac{l_{s}}{\sqrt{3}}\right)}{L^{2}}$
z is the altitude and ρ the distance of the projections of source point and field point on the plane $z=0$. If the source is at $z_{0}=0$ and we are interested in the spatial dependence of the neutron density on the ground, (10) becomes approximately, for $L(v) \gg \ell_{(v)}$:
$F(0, \rho, v)=M Q l \frac{d v}{v^{2}} \frac{e^{-(\rho / L)^{2}}}{\pi^{3 / 2} L^{3}} \frac{4}{3}\left(\frac{l(v)}{L(v)}\right)^{2}$
Comparing (10a) with (Ga), we see that the neutron density at the ground is reduced by the factor $\frac{4}{3}\left(\frac{\ell}{4}\right)^{2}$ with respect $\frac{1}{3} v$
to the case of free air. This reduction factor does not depend on the distance ρ.
If the ground is formed by a substance the neutron constants of which are sufficiently well known, as for instance water, the above treatment can be refined by calculating the probability $\mathscr{\varphi}\left(\mathrm{v}, \mathrm{v}_{\mathrm{o}}\right)$ that a neutron hitting the surface with velocity v_{0}, re-emerges from it with velocity v , and then using the product of the current of the density ($6 a$) as function of v_{0} times the function $Y\left(v, v_{0}\right)$ as a new source in the diffusion equation (5). This procedure can be applied again to the new result, and in this way a well converging series of positive terms is obtained. The physical meaning of this procedure is that one considere successively the neutrons which have entered and emerged from the boundary once, twice, three times, and so on. The most important difference of this solution compared to the first approximation (6a) in the case of water is the presence in air of a certain amount of thermal neutrons, which have been slowed down in the water and emerged from it. The further diffusion of these thermal neutrons can then be treated in a single step by solving a differential equation of the type (8), with a simple boundary condition which is obtained from albddo considerations.

§ 3. Total effect on small black detector.

We now calculate the total number of neutrons above velocity v absorbed by a black detector of dimensions small compared to the mean free path.

The number of neutrons above velocity $\stackrel{v}{\sqrt{b b s}}$. second and unit surface of the detector can be shown to be (for a convex detector)

$$
\begin{equation*}
I(v)=\frac{1}{4} \int_{v}^{v_{0}} v F(v) d v \tag{11}
\end{equation*}
$$

For constant mean free path, the integration gives in the case of the free atmosphere (fa):

$$
\begin{equation*}
I(v)=\frac{3}{16 \pi} \frac{a}{r l}\left\{1-\Phi\left(\frac{r}{L}\right)\right\} \tag{12}
\end{equation*}
$$

and in the case of source near capturing ground (10a):

$$
\begin{equation*}
I(v)=\frac{1}{\rho_{n}} \frac{Q l}{\rho^{3}}\left\{1-\varphi\left(\frac{\rho}{L}\right)\right\} \tag{13}
\end{equation*}
$$

where Φ is the error function and φ is related to the incomplete Γ-function of order $3 / 2$ by

$$
\varphi(x)=\frac{2}{\sqrt{\pi}} \Gamma_{3 / 2}\left(x^{2}\right)
$$

If the distance from the source is small compared to L,
ϕ and φ can be neglected. Fig. 1 gives the dependence of $1-\Phi$ and $1-\varphi$ on r and ρ.

Actually, in air, the mean free path is not constant,
but varies from about 140 m for fast neutrons to about 20 m for slow neutrons. The transition probably takes place in the region between 150.000 and $10.000 \mathrm{ev.(cf}$. ref. 1). We may roughly describe this behavior by putting

$$
\begin{align*}
& l=l_{f}=120 \mathrm{~m} \text { for } E>E_{i} \\
& l=l_{s}=20 \mathrm{~m} \text { for } E<E_{1} \tag{14}
\end{align*}
$$

where E_{1} lies between 150.000 and 10.000 ev . With (14) we get instead of (12) and (13)
$I(v)=\frac{3}{16 \pi} \frac{a}{r l_{f}}\left\{1-\Phi\left(\frac{r}{L_{f}}\right)+\frac{l_{f}}{l_{s}}\left(\Phi\left(\frac{r}{L_{f}}\right)-\bar{\varphi}\left(\frac{r}{L}\right)\right)\right\}_{2 a}$
$I(w)=\frac{1}{\delta_{\pi}} \frac{Q l_{f}}{\rho^{3}}\left\{1-\varphi\left(\frac{\rho}{L_{f}}\right)+\frac{\ell_{s}}{l_{f}}\left(\varphi\left(\frac{f}{L_{f}}\right)-\varphi\left(\frac{\rho}{L_{f}}\right)\right)\right\}$
where L_{f} is the diffusion path from the initial energy to energy E_{1}. With the values (14) for l, L_{f} has,
a. value between about 0.75 km and 1 km depending on the value of.
E_{1}. Because of the small mean free path for slow neutrons, the total diffusion path L is not very different from L_{f}. For energies in the neighborhood of E_{c} (at. which capture becomes important), $\frac{L-L_{f}}{L_{f}}$ is of the order of 5 per cent.

In spite of this, the slow neutron contribution to I is still important in the case of the free atmosphere and can be derived from fig. 1 (for $r=L_{f}$ it is of the same order of magnitude as the fast neutron contribution). For capturing ground, however, it is in general negligible because of the
small factor $l_{s} /\left.l_{f}\right|_{\text {, so that (13a) may be replaced by (13) }} ^{13\left(1 ?_{a}\right)}$ with $\ell=\ell_{f}$.

ITHACA, NEW YORK

Dear SzBCand,
Enclosed witt in y thanks yous undremuqeal HiS. I do sat need it at present, but it may he practical if I could refer to it at several passages of one of my future papers.
you know how bad my memory is. There tore I would be qratetile if I cowl dispose of yous paper again when I cone tor the westing as of the fassaqes in question. In arden tr avoid extralegal procechuce, we may consider it as this time sot us paper any lose, but as. aidememoire.'夕

Please let me know about Teller. Best research Yous G.P.

September 29, 1940

Professor E. P. Vignaz Fine Hall
 Princeton University Princeton, N.J.

Dear Wigner

You have asked me if I had any innome, the source of which is in Germany.

Prior to March 1933 I had an income from the German Genaral Electric Co. (A. E. G.), Berlin, consisting in royalties and consultant's fee amounting to about $\%$ 3000,- per annam. The agreement from which this income was derived was terminated before March 1933, and I received no payments from the A. E. G. after that date.

After larch 1933 the only source of income which could perhaps be considered as fromgermon origin was an agreement concluded with the Bering office of Phillips, a well-known Dutch industrial corporation, before March 1933. This agreement proTided for the payment of royalties to me in the amount of about $\$ 250 .-$ per annum. The agreement was terminated in or before 2938, and no income from this source was forthcoming after 1938. Yours sincerely,

November 3, 1940

Professor E.P. Wigner Fine Hall Princeton, N.J.

Dear Wigner:
You have aske d me whether I have any income from German sources.

Previous to 1933 I had an annual income from the Allgemeine Elektricitaets Gesellschaft-AEG (German General Electric Company) amounting to about three thousand dollars. The agreement out of which this income was derived gave the company the rights to use certain joint inventions of Professor Einstein and myself, but this agreement was terminated by the AEG before I left Germany in March 1933. I have at present no income whatsoever from Europe.

Yours sincerely,

Leo Szilard

Additional Material for page 122 (section 6)

re: "AFTER REORGANIZATION IN WASHINGTON..."

With this brief phrase Szilard lightly covers the efforts of himself and of Sachs.

In his letter to Wigner of July 6, 1940 (included with the page 121 material) Szilard writes, "...there is an increasing amount of confusion and a constant change of the personnel of committees concerning uranium and a growing dissatisfaction on my part as well as on the part of Sachs."

Later came:

Letter, L.S. to Sachs Aug. 28, 1940 enclosing
Draft, by Szilard for Sachs's use. Untitled. Aug. 27, 1940 9 -page memo, somewhat inclined towards the Navy; it summarizes the history of uranium chain reaction research, and gives in detail Szilard's recommendation: formation of a non-profit organization with scientists included in the executive, in direct touch with government representatives.

Another version of above draft, probably by Sachs, undated. Marked in L.S. hand: "sent Octr". (It is unclear to whom it was sent - KW) This version covers substantially the same material, but in altered form. The recommendations are similar but vary slightly.

```
Dro Alexander Bachas
```

Dear Dro Sachā
Znolosed you will isnd a roueh cratt whelch

I am ocxucin you wizh want to ghange in mony places
I at serdsing it to jow int dithaco of my vistu

Whata ts schoduleh fow G Pmo , wo that you mey
bo tole to rounctate it in Jut wish to do oo borome
Fo disconat it urezzy.

$$
\begin{aligned}
& \text { Yours veny stnocreags } \\
& \text { (200 skin2ati) }
\end{aligned}
$$

In seat ember last year I was approached by a group of scientists with the request of helping them to enlist the support of the Government, for a line of work which might be of great importance for the U.S. Navy. After -haring studied the matres the attention of the Administration was drawn to this line of research and tuts potential possibilities by a letter written by Professor Albert Einstein, which was addressed to the President and which i transmitted to him in a personal interview.

According to the scientists who work in this field it will be possible to liberate energy in uranium by means of a chain reaction, and it appears likely that it will be possible to utilize the energy liberated in the chain reaction for power production. It has yet to be demonstrated though that a chain reaction can in fact be maintained in a mass of about 30 tons of ordinary uranium of such purity as can be obtained by apply ing methods of ordinary chemical engineering. A conservative estimate shows that we may expect one ton of uranfurn to supply as much power as about 3000 tons of oil. but pending the outcome of certain newer experiments there is a. 50:50 chance that one ton of uranium may supply as much power as would correspond to 1 million tons of oil.

If one ton of uranium sup lies as much power as 3000 tons of oil then a power plant of this type could be installed on warships of the larger type and serve ac reserve driving power to be used in War time, which would soom to be of part-
icular significance for the United. States in case of a war with Japan. This can be seen from the following consideration; The naval base at Rarraii is at a distance of 3400 miles from Japan. A capital warship mhioin carries a maximum load of about 4000 tons of oil will use about $\frac{1}{2}$ ton of oil per mile if cruising at a satisfactory speed. It has therefore to be refueled after traveling 8000 miles. In the circumstances such Cakiving in well a ship, if it is refueloà at Hawaii could cruise only for a very short tirane in the vicinity of Japan proper f Assuring that it may be possible for the Navy to obtain 300 tons of uranium per year it might be possible, to equip six boats every year With a plant oompxiving 50 tons of uranium and representing an 011 reserve of 150.000 tons. This would enable these boats to have in war time a cruising range which is no longer linted by the necessity of refueling. Moreover, k-opuntiecable increase in speed may be achieved by reducing the oil load from 4000 tons to perhaps 1000 tons, resulting in a reduction of Weight which is only partially compensated by the weight of the additional equipment of the uranium power plant. Assuming that one ton of uranium corresponds to only 3000 tons of oil, it Would not seem likely that uranium can replace oil as a driving power for capital ships, but we may expect it rather to play the role of a reserve driving power to be used only in war time and at manoeuvres. Should furthers experiments, however, show that one ton of uranium can supply as much pores as I million tons of oil, then capital ships could be equipped with this new source of power exclusively and do way with oil altogether.

In that case the present capital ships may be considered as obsolete.

2. Present Status.

The above-mentioned line of development is pursued by Dree Fermi and Die Szilard in the Laboratories of Columbia Universeity. Another line of research, which is followed up by Dee Urey at Columbia University and also at several other places in the United States, represents an entirely different approach and aims at extracting from ordinary uranium a substance called uranium 235. There is no doubt thatoif this substance can be extracted on a sufficiently large scale at a reasonable price, it could be used as a source of energy for purposes such as besscribed above. I understand that this second line of research is at present adequately supported both by the Army and Nary, whereas the first line of research, which promises practical resuIts in a much nearer future, is at present not adequately organized. The state of affairs with respect of this first lIne is at present as follows:

Dree Fermi and Dree Szilard are proposing to carry out cert. ain experiments at Columbia University. It is assumed that Dr. Bush's committee will meet the expenses of these experiments. A Special Advisory Committee headed by Dree Briggs. which comprises representatives of the Army and Navy as well as Provessou Pegram, Professor Einstein and myself. has concerned itself With various aspects of the Work of Due Fermi and Dree Szilard, including the necessity of its support. A committee of scientists headed by Dr. Urey is supposed to advise the Special Advisory Committee. The relationship of all these committees to
each other and to Dr．Briggs＇committee is rather unclear．
3．Shortcomings of the present status conceming the or－ ganization of the line of Work fomerculd by Dr．Fermi and Dr． Szilard

The production of a chain reaction in uranium in circum－ stances which are suitable to be utilized in an engine capable of driving a naval vessel is a task of considerable complexity． This task cannot be carried out by a loose cooperation of various committees and universities．It requires planning，the prepare－ ation of experiments six months and occasionally one year ahead， the gathering of a group of physicists prepared to collaborate for a number of years，whose loyalty has to be with this work rather than with the individual teaching institutions with which they happen to be associated．At present we may assume that the work carried out at Columbia University will be supported by Dr．Bush＇s committee，but it is inains－bouberseen how much of this complex task can be carried out at a single university where the available space and the necessity of maintaining the row－ tine work carried out by the department will naturally limit the应 speed at which the work should be carried out．Lur loose com operation between various universities can be anticipated and may to some extent remedy the situation，but surely this is no way of obtaining quickly the desired results．The existing committees both by virtue of their composition and by virtue of their structure con hardy be expected to futsiaz the function Which is required．This is fully borne out by the experience gathered during the pact－year．Fou tits reason the histonyon the past year is summarized in the following：－

In order to test the possibility or maintaining a chain reaction in ordinary uranium Da. Szilard proposed last year to carry out an experiment using 200 to 200 tons of graphite and 20 to 30 tons of uranium metal. A successful conclusion of such an experiment may ultimately involve expenses up to hall a million dollars, and in octover last year I made an appeal to the Government for its moral and material aid in carrying out this project. In response to a letter received from Professor Einstein the President appointed a committee, with Dr. Briggs as chairman, and I submitted the matter to this committen jointly with Dress Szilard, Dree Wigner of Princeton Universeity and Dr. \mathbb{H}. Teller of George Washington University, Washington, D. C. We emphasized the urgency of deciding the question whether a chain reaction could be made to work with ordinary unspparated uranfum, so that in case of a favorable result, steps might be taken to secure an adquate supply of rich uranium ore from tho Belgian Congo. It was also pointed out that the matter haik been discussed extensively with Professor \mathbb{H}. Perm and Dean Go Bo Pegram of Columbia University, that their collaboration could be counted upon, and that certain preliminary experiments were being prepared at Columbia

The Government representatives expressed their interest and their desire to help at this meeting, and various Govemment departments represented on the committee promised material aid towards the preliminary experiments (which have since been carrie out to their completion at Columbia with as deftutcons encouracting result)。A Favorable report was sent by Dr. Brigs' committee to the President in October.

A number of meetings, with constantly varying membership, have taken place between October of last year and a July this year, at Which the Government representatives showed a steadily increasing desire that the proposed project be combed out With Govemment funds rather than private funds. The representatives of Columbia Universeity - Dr. Fermi. Dean Pegram and Professor J. C. Urey - played an increasingly prominent part in these conferences, as tel as Admiral Bowen of the Naval Research Laboratory.

In spite of the increasing favor mable reaction of the Government representatives little ko np- was de during the past ton months, either towards organising and financing the nessecary experiments or towards securing an adaquate supply of uranium ore fore the futuace from the Belgian Kongo, which is the most important source of highgrade uranium

At ar esent it may be assure that the experiments which will be carried out at Columbia University will find financial support trough Dr. Bush "s committee, but fir each neawacary step requites ten months of deliberation thar abviously it will not be possible to carry out this development efficiently. Since April of this year it has been known the t work on uranium is proceeding in Germany in seat secrecy and on a very large scale in two of the Kaiser Wilhelm Institutes under the auspices of the German Govemment. This when t precisely what was predicted bet Prof. Einstein in his above mentioned letter of September last year

5. Suggestions:

In order to insure that the task before us is carried out with the efficiency of a going enterprise it is proposed that it be entrusted to a non-profit organisation which is formed for the purpose. The scientists responsible for devising th is project and who are familiar With the various aspects of this complex t material ought to be included. In the executive and ought to be in direct torch With Dis. Bush and sa ch other government representatives as are interested in fine details of the project. Large scale experiments ought to be carried out as a joint enterprise of this organisation and Columbia University and such other universities as may be willing to collaborate and to put up required space and other facilities. It would be the responsibility of this organisations
1.) to see to it that aIn necessary expertise nits be carried out at one place on another and
2.) to see to th that all necessary materials be available for such experiemtns in the required quantity and quality.
3.) to Bind out in what form if any collaboration with industrial organisations such as for instance Westinghouse, General Electric and Dupont is desirable and possible, and. If desirable to estabitsh such morcranticter collaboration 。
4.) To maintain contact with the Canadian and U.S. producers of uranium and to stimulate in necessary an expansion of the production.
5.) To advise the govemment in general and the Secretary of the Navy

 to the Nary auk at the appropritite tiro

It may be mentioned that this form of organisation hes been repeatedly discussed at previous meetings and an opinion strongly in favours of it has been expressed by Prof. Einstein in a letter addressed to Dree Briggs, a. copy of which is enclosed.

It is proposed that the seat of the organisation be in New York City, that the board of trustees include the names of Pros. Pegram, Prop, Urey, Prof. Iatrence, Prof. Du Bridge. Dr. Sachs and il govemment employees be included the names of Dr. Briggs and Adminct. Dower. It is proposed that Prop. Pegram be chair mans of the board and Dree Sachs act as treasure er.

TH is proposed that the executive be composed of Dree Pegram. Dree Urey, Thorax
Dree Danio Dross Szilard and Dross Sachs all of New York City and that a committee of scientists be responsible for supervising all the works which omaittee includes the names of


```
Modo Tuve
G.Bre尤
G.B.Poympatn
#. Pemy
I. Smocimati Szilavod
#.P.Wigner
#.Teller
```

It is proposed that a fund oe of 20.000 be put at the disposal of the trustees of tricilorganisation 。
-n September of last year I was acivaed b, ryofessor 2. P. Wigner and Professor Albert Einstein of Prumeton. UnsEt Dr. Suilard ad devised a method for maintaining a chain Ionction in a system composed of uranium and carbon, and that the energy liberated in such a system could be effectively used for producing power. A conservative estimate shows that one can expect one ton of wrantun to supply as much power as 3,000 tons of 011 and, in the circumstances, uranium might bo used as a full reserve in warships of the larger t_{j} pes. I understand that there is at present a 50-50 chance that vases cain roaction could also be maintained under conditions in which one ton of uranium tight supply as much power as would correspond to the bumping of one Jillion tons o: oil. If this favorable alternative cast be realized, thea the larger naval units built according to the present naval program would nave to be considered obsolete in the near future.

In order to test the method propose d by Dr. Szilard, ... experimeat using 100-200 tons of graphite and 10-30 tons oi uranium coral would have to be carried out. Such an experiment may involve expenses which ultimately may aggregate half a million dollars, and in Uctober of last year I made an appeal to the Government for its moral or material aid in carrying out this project. In response to a letter received from Professor -instein the President appointed a committee, with 4 - Frigs as chairman, and I submitted the matter to unis committee jointly with Db Dr. Szilard, Prefoscon-fop. Wigner of Princeton University and Lr. E. Teller of George Washington U.Zvursity, hasnington, D. C. ... emphasized the urgency of deciding the giestion whether a chain section could be made to work with ordinary unseparated uranium, so that in case of a

Savorable result, steps might bo taken to secure an adequate apply of rich uranium ore from the Belgian bongo. th was also pointed out that D_{r}. Szilard had discussed the matter extmsivaly with Foofessor Z. Semi and Dean G. B. Pegran of Columbic University, that thais collaboration could be count ta upon, and that certain preliminary experiments were being prespared at Columbia.

The Government representatives expressed their interest and their desire to help at this meeting, eau various Government departments represented on the committee promised. maturial aid towards the preliminary experiments (which have since been carried out to their completion at columbia with a definitely encouraging result. A favorable report was gent to the Ererident in October.

A number of meetings, with constantly varying mecubusciip, have taken place between october of last year and july this year, at which the Government representatives showed a steadily increasing. desire that the proposed project be carried out with Government funds ratoon wuhan private funds. The representatives of Columbia University - Dree Ecrini, -can Pegram and Professor H. U. Urey - played an increasingly prominent part in these conferences, as well as Admiral Bowen of the Havel research -iburatory. The opinions of scientists from other univertilies, such as Ir. Erect or the University o: "isconsin and Dr. . Wiener, wore heard and were favorable. A consensus of opinion developer to the effect time a furn of $2+20,000$, if it could be spent freely with no shrines or red tape attached, <compat>...jont be sufficient to bring the project to a glace at mica the whin en success Of the whole enterprise could a conoid rad as establish as beyond doubt.
In spite oi the favorable opinion and manifest aesir to alp
of all those concerned, the project has railed to make any headway since Its introduction last Uctobir. Is has become known during this period that work on uranium is proceeding in "unary in wrest secrecy and on a very large scale in two of tho Kaiser Wilkal.. Inotituwes under the auspices of the terman Government. The increasing degree of inturuet shown by the Government representatives in this country has so for only resulted in dissuading Dr. Fermi and Dr. Szilard from seeking assistance from private sources and in establishing a constantly changing syston of committees, none of which seems to possess any clearly dafinod authority.

The present state o: a:"airs in this respect is as follows: Dis. Fermi, Szilard, Wigner and feller are now supposed to act as unofficial advisors to six other scientists who form an official scientific advisory committee to the special advisory committee headed b, Dr. Erises. This latter committee is supposed to be a sui-vommittee of Lr. bush' advisory committee. I understand that Dr. Burn's comintitee has now decided to appropriate 840,000 for the proposed project, if and when it will have funds at its disposal, and is also recommending that $\$ 100,000$ worth of material be purchased inrough some purchasing agency or tine wovernment for the requirements of the project. I understand that $L \mathrm{r}$. Bush's coumttee has no funds at present at its disposal. It decision to provide the material required through a Government purchasing agency was made without having heard either Dr. Fermi or Dr. Szilard, and does not solve the problem, since the bulk of the materiel recited cannot bo jouchet but has to be procured by methods other than straight purchase.

The task of establishing a chain reaction in unseparated uranium under conditions in which the energy liberated can be efficiently used for power production is of considerable complexity. It cannot successfully be carried out unless those who are familiar with all its aspects and who are supposed to carry out the work are given the authority necessary to effectuate the task. It is therefore proposed that (1) a fund of 1140,000 should be entrusted without restriction to a board of trustees comprising Dr. Briggs, Dean Pegram, Professor Urey and Mr. Sachs; (2) that the seat of the board be in New York City; (3) that Drs. Pegram, Sachs, Fermi and Szilard should act as executives; (4) that a board of scientists, - namely Prs. Pegram, Urey, Wigner, Tube, Teller, Belt, Fermi and Szilard - supervise the work and coordinate the work conducted at universities outside of New York. An estimate of the cost for the measurement of nuclear values which will have to be carried out is enclosed. This will leave $\$ 90,000$ of the total of $\$ 140,000$ to be used for buying. materials required for an experiment with large quantities of material for the purpose of deciding the issue. The largest item, as far as materials are concerned, is an amount of $5-10$ tons of uranium metal. It is not possible at present to buy uranium metal in the required quality and quantity. It is therefore proposed to approach two or three firms with a fixed offer to buy one ton of uranium metal of a apecified quality at a price of about 35 per pound, and thereby to induce these firms to carry out such experiments as they find necessary in order to be able to accept such an order or to be able to paleo a bid of their own. If the firms find that they have to charge a higher price; we would then be free to place an order for a quantity of 5-10 ton is with the firm which mutes the lowest bid.

[^0]: $\mathrm{l}_{\text {Bethe, Corf }}$ and Placzek, Phys. Rev. 57, 573, 1940 $2_{\text {See }}$ 3_{S} See n
 $"$, ref. 30
 " , ref. 31

