INDOPAC EXPEDITION

LEG 3

R/V THOMAS WASHINGTON

INFORMAL REPORT AND INDEX OF
.
NAVIGATION, DEPTH AND MAGNETIC DATA

APRA, GUAM (25 MAY 1976)

to

APRA, GUAM (19 JUNE 1976)

CHIEF SCIENTIST - J. Reid

Resident Marine Tech - R. Wilson

Post-Cruise Processing by - S. Smith, G. Psaropulos, R. Lingley

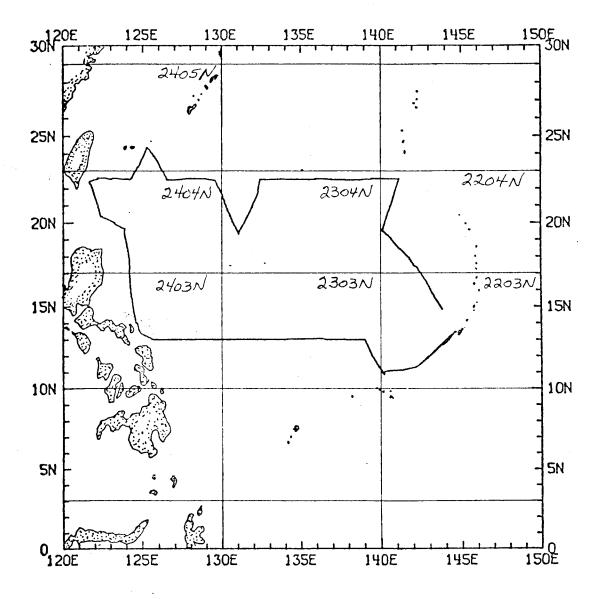
Prepared By

Underway Data Processing Group

S.I.O. Geological Data Center
Scripps Institution of Oceanography
La Jolla, California

Informal Report and Index of Navigation, Depth, Magnetic and Subbottom Profiler Data*

Contents:

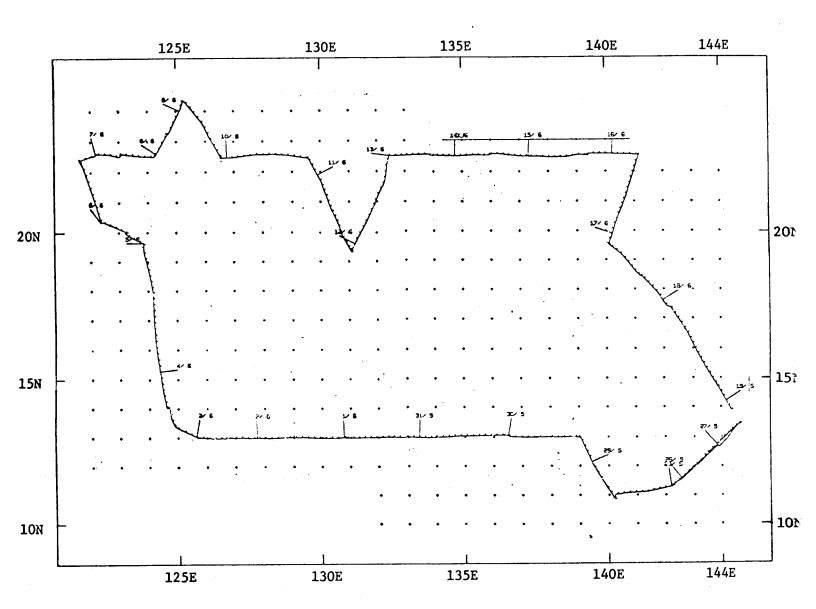

- Track Charts annotated with dates (day/month) and hour ticks. The scale (.3"/deg.

 long) is the same as the index charts of previous SIO cruises published as Report IMR TR-25.
- Profiles Depth and magnetic anomaly vs. distance. Dates (day/month) and positions of major course changes (greater than 30 degrees) are annotated. Sections of track having subbottom profiler (airgun) records have a solid black line along the bottom of the profile.

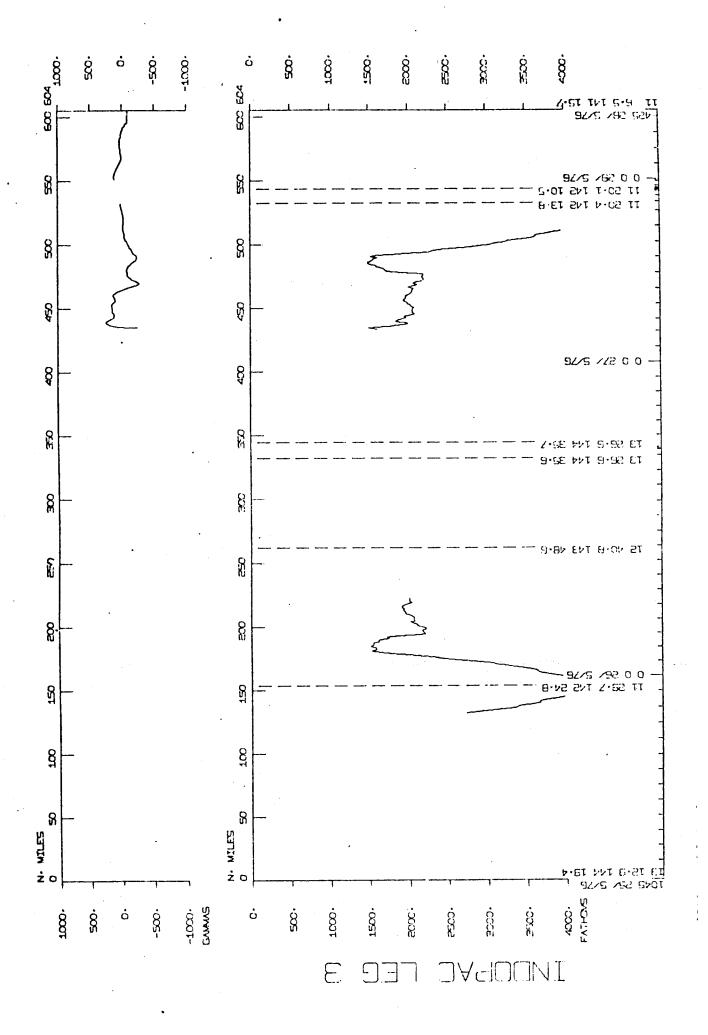
For information on the availability and reproduction costs of data-in the following forms, contact S. M. Smith, Curator, Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92093 Phone: (714) 452-2752.

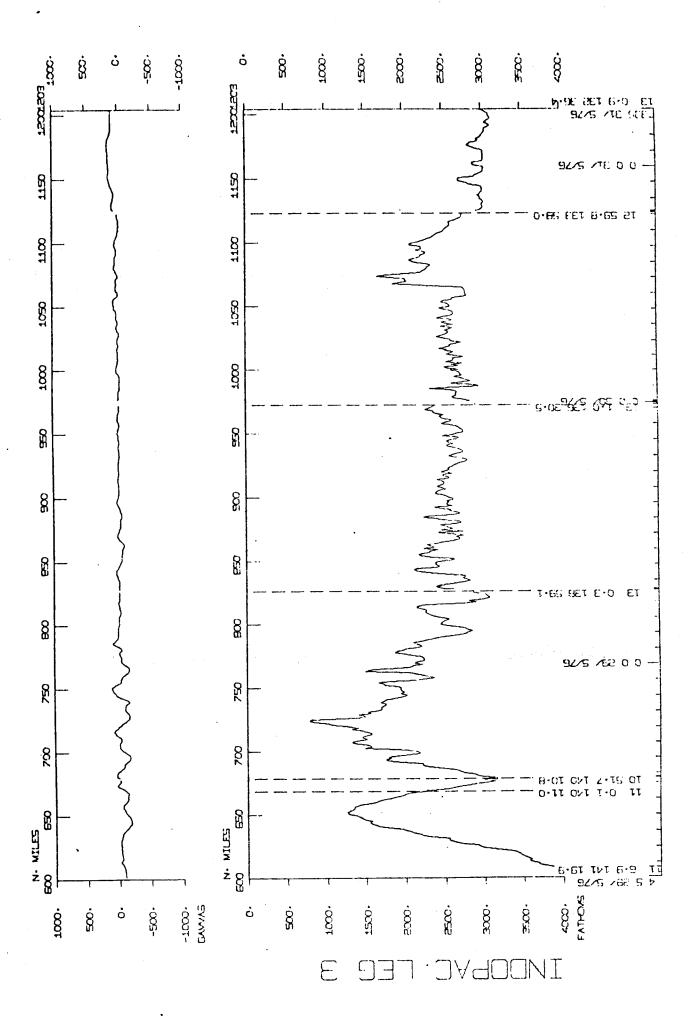
- 1. Navigation listing of times and positions of course and speed changes, fixes and drift velocity.
- 2. Depth compilation plots in fathoms (assumed sound velocity of 800 fm./sec.) at approximately 1 mile spacing, plotted at 4" degree with standard U.S. Navy Oceanographic Office BC series boundaries (see index chart).
- 3. Plots of magnetic anomaly profiles along track-map scale = 1.2"/degree; anomaly scale between 15°N and 15°S latitude = 500 gamma/inch; anomaly scale north of 15°N and south of 15°S = 1000 gamma/inch) from values retrieved at approximately 1 mile spacing and regional field removed using the 1965 IGRF.
- 4. Card Decks of navigation, depth and magnetics (for specific formats, contact S. M. Smith, Geological Data Center). Phone: (714) 452-2752
- 5. S.I.O. Sample Index list of beginning and end times and positions of all underway records as well as all other samples (geology, biology, physical oceanography, etc.) collected on the cruise leg.
- 6. Microfilm or Xerox copies of:
 - a. Echosounder records 12 and 3.5 kHz frequency
 - b. Subbottom profiler records (airgun)
 - c. Magnetometer records
 - d. Underway Data Log

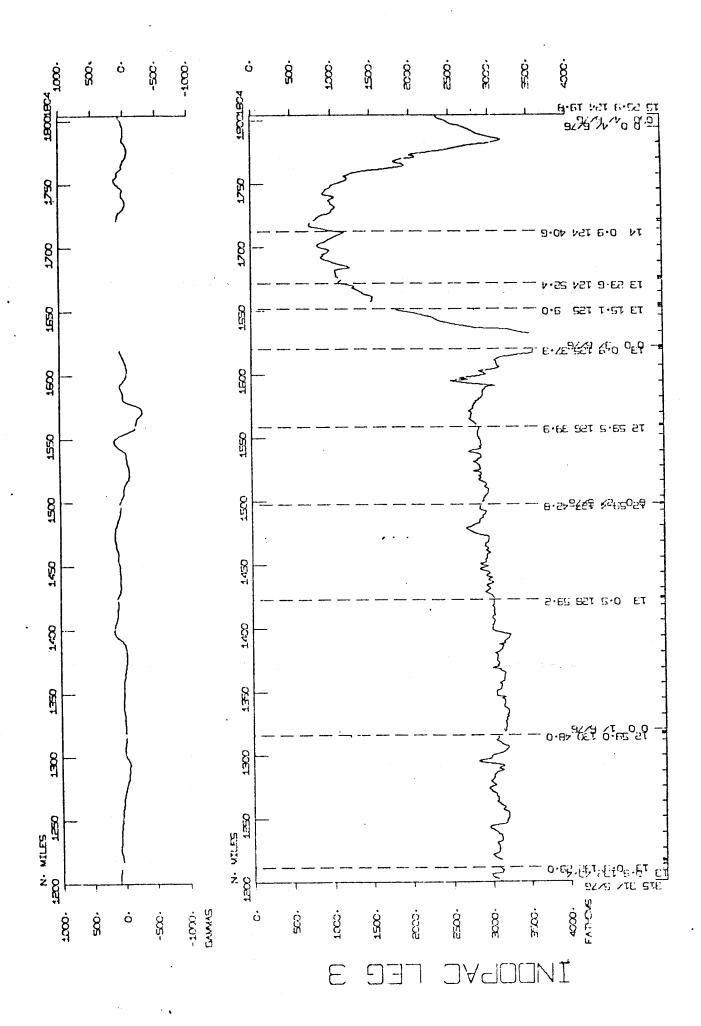
^{*} No subbottom profiler data collected.

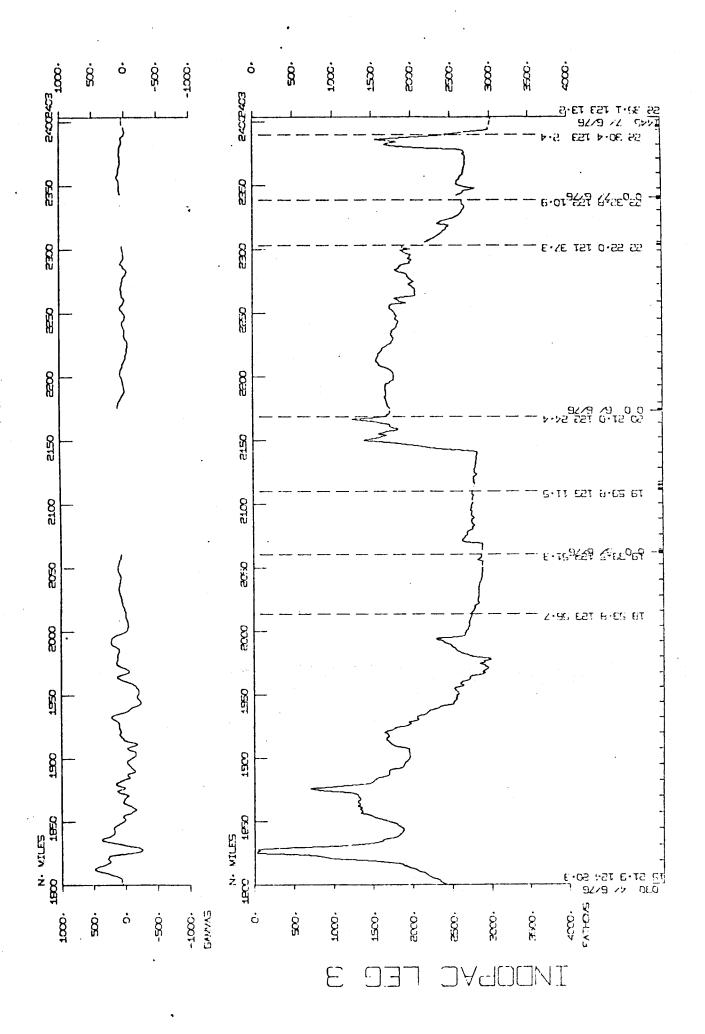


INDOPAC EXPEDITION LEG 3

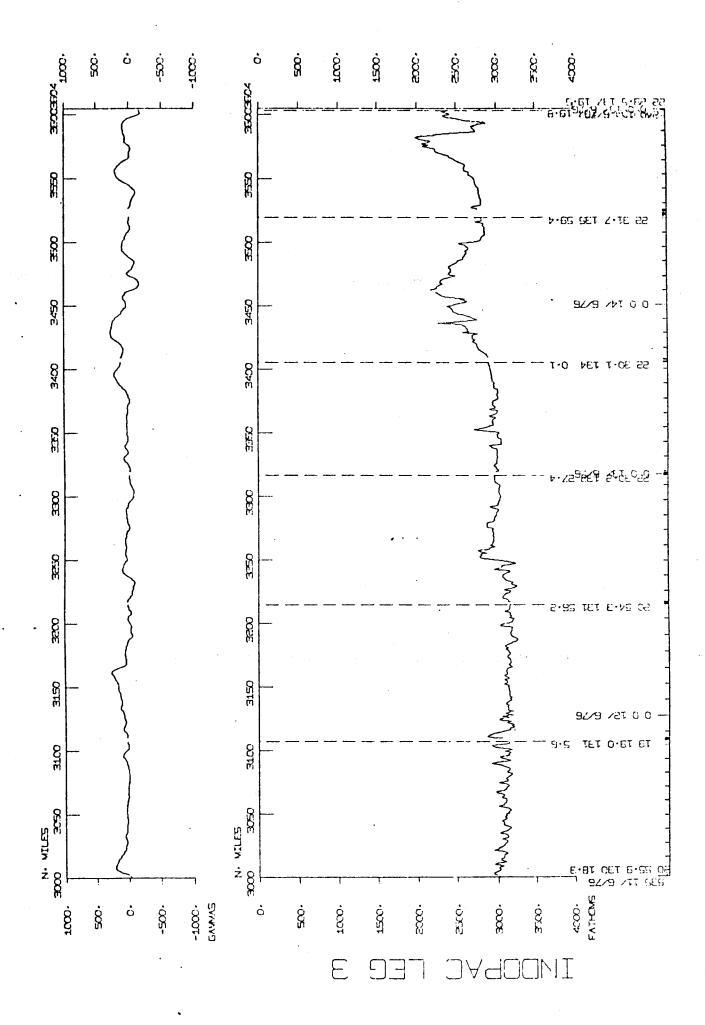

Chief Scientist - Joe Reid Ports: Apra - Apra, Guam (25 May - 19 June 1976)

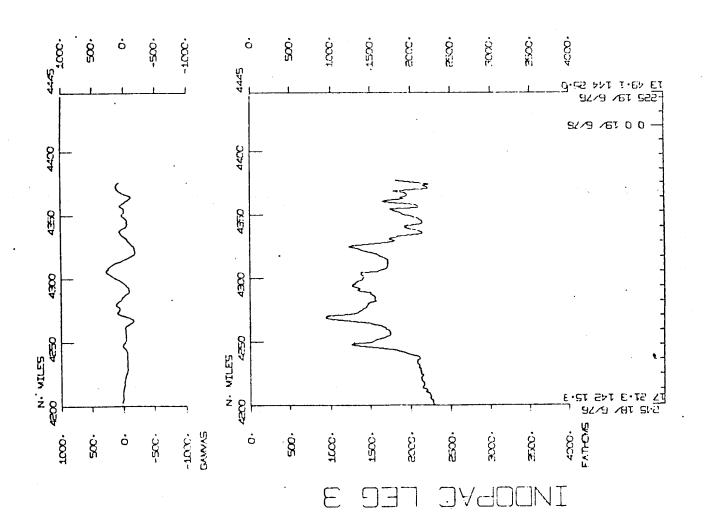

TOTAL MILEAGE


- 1) Cruise 4449 miles
- 2) Bathymetry 3895 miles
- 3) Magnetics 3903 miles
- 4) Seismic reflection none collected



INDOPAC EXPEDITION LEG 3 Track Plot





20JUL76 PAGE 1

SAMPLE INDEX
INDUPAC EXPEDITION, LEG 3

PURTS

807 25 576 445 19 676 LGPT & APRA HARBOR, GUAM LGPT & APRA HARBUR, GUAM 13 246N 144 343E F INDPOSHT

13 246N 144 343E F INDPOSWT

***PERSONNEL ***

PECS	REID. J.	sin Half-	INUPOSWT
PERT	WILSON, R.	GTG	INDPOSWT
PECT	ELSTUN, M.	SCG	INUPO3WT
PEET	KAYE. R.	DCP	INDPO3WT
PEET	SINGLETUN, J.	DCP	INDPO3WT
PEMT	MUUS, D.	DC P	INDP03WT
PEMT	COSTELLO, J.	DCP	INDPO3WT
PEMT	HESTER, A.	DCP	INDPO3HT
PEMT	PATLA, S.	DCP	INDPO3WT
PΕ	CONWAY, C.	TIC P	INDPO3WT
PΕ	MANTYLA A.	DCP	INUPOSWT
PΕ	MCKINNEY, B.	510	INDPO3WT-
Pt.	CULLINS, K.	NSF	INDPO3WT

*** NOTE *** TIME ZONES AND MINUTES OF LATITUDE AND LONGITUDE ARE LISTED IN TENTHS (E.G. 10.6 IS LISTED AS 106)

٠,

NAVIGATION PLUTS ### 800 25 576 NVCP & COMPUTER DR PLOT 01 GDC 13 130N 144 195E S INDPOSHT 1500 29 576 NVCP & COMPUTER DR PLOT 01 GDC 13 2N 137 484E S INDPOSHT NVCP & COMPUTER DR PLOT 01 GDC 13 2N 137 484E S INDPOSHT

														•	
800 1500	25 29	576 576			COMPUTER COMPUTER				GDC GDC						INDPOSHT
1500 2230	-				COMPUTER COMPUTER										INDPO3WT
2230 -2350					COMPUTER COMPUTER										INDPO3WT
2350 230	-				COMPUTER COMPUTER		_								INUPO3WT
300 1200					COMPUTER COMPUTER										INDPO3WT
1301 800					COMPUTER COMPUTER						-	_	_		INDPOSWT
		676 676			COMPUTER COMPUTER								_		INUPOSWT
1850	26	576	NVBP	Б	BRIDGE PI	.ot	01								
1350		576	NARA	E	BKIDGE PL	-01	01		GDC	13	2N	134	144E	S	INDPO3WT
		576 676			BRIDGE PL	-									INDPOSWT
1356 300		676			HRIDGE PU BRIDGE PL		-		GDC	_					INUPO3WT
300			IN A D b		DKIDGE PL	. 01	05		GIJC	21	229N	130	116	5	INUPOSWT
152	_				BEIDGE PL	-									I NUPO3WT
642	9	676	иляь	t	RRIDGE PL	.01	04		enc	24	11N	125	3396	S	INDPO3WT
258 420		676			BRIDGE PE			. . .							TWDPO3WT
429		676	NVBP	ь	BRIDGE PL	OT	,06	•	GDC	22	29 IN	137	194E	S	INDPOSWT
449	18	676	NVKP	Ł	BRIDGE PI	LOT	06		GDC	17	212N	142	153E	S	INUPO3WT

TIME GMT	DATE TIME TZ D.M.Y. LOC LUC	SAMP CUDE SAM	PLE IDENI.	DISP CODE LAT.	LONG.	PAGE 3 CRUISE LEG-SHIP		
	ATHIGRAMS ***		•					
2155 1555	25 576 28 576	DPR3 B GDR DPR3 E GDR	3.5KHZ R-01 3.5KHZ R-01	GDC 11 404N GDC 10 520N	142 390F 140 105E	S INDPOSWT S INDPOSWT		
1603 1 505	28 576 30 576	DPR3 & GDR DPR3 E GDR	3.5KHZ R-02 3.5KHZ R-02	GDC 10 520N GDC 12 598N	140 105E 133 597E	S INUPOSHT S INUPOSHT		
2118 2030	30 576 2 676 .	DPR3 B GDR DPR3 E GDR	3.5KHZ R-03 3.5KHZ R-03	GDC 12 591N GDC 13 13N	133 566E 125 374E	S INDPOSWT S. INDPOSWT		
244 2145		DPR3 8 GDR DPR3 E GDR	3.5KHZ R-04 3.5KHZ R-04	GDC 12 592N GDC 19 395N				
514 1622		DPR3 & GDR DPR3 E GDR	3.5KHZ R-05 3.5KHZ R-05	GDC 19 382N GDC 22 324N	123 524E 123 340E	S INDPOSHT		
	8 676 10 676	DPR3 E GDR DPR3 E GDR	3.5KHZ R-06 3.5KHZ R-06	GDC 22 384N GDC 22 262N	124 209E 129 334E	S INDPOSWT S INDPOSWT		
	10 676 13 676		3.5KHZ R-07 3.5KHZ R-07	GPC 22 222N GPC 22 3U1N	129 376E 134 1E	S INUPOSHT S INUPOSHT		
			3.5KHZ R-08 3.5KHZ R-08					
632 2007	17 676 18 676	DPR3 & GDR DPR3 & GDR	3.5KHZ R-09 3.5KHZ R-09	GDC 19 299N GDC 14 491N	140 83E 143 486E	S INUPOSWT S INUPOSWT		
2144 1609	25 576 28 576	DPRT 6 GDR DPKT E GDR	12KHZ R-01 12KHZ R-01	GDC 11 419N GDC 10 520N	142 407E 140 105E	S INDPOSWT S INDPOSWT		
1618 1305	28 576 30 576	DPRT & GDR DPRT E GDR	12KHZ K-02 12KHZ R-02	GDC 10 519N GDC 13 7N				
1423 2030	30 576 2 676	DPRT B GDR DPRT E GDR	12KH7 R-03 12KHZ K-03	GDC 13 1N GDC 13 13N				
251 2145	2 676 4 676	DPRT & GDR	12KHZ R-04 12KHZ R-04	GDC 12 593N GDC 19 395N	127 391E 123 513E	TWEOQUMI 2 TWEOQUMI 2		
2345 1945	4 676 7 676	DPRT 6 GDR DPRT E GDR	12KHZ R-05 12KHZ R-05	GDC 19 392N GDC 22 324N	123 523E 124 168E	S IMDPOSHT S IMDPOSHT		
	8 676 11 676	DPRT H GDR DPRT E GDR	12KHZ R-06 12KHZ R-06	GDC 22 372H GDC 21 219N				
		DPRT E GOR DPRT E GOR	= == :	GDC 21 201N GDC 22 301N				

•

-

•

GMT		CUDE	SAMPLE IDENT.	DISP CODE LAT.	20JUL76	PAGE 4 CRUISE LFG-SHIP	
2029 2151	13 676 16 676	DPRT DPRT	b GDR 12KHZ R-08 E GDR 12KHZ R-08	GDC 22 310N GDC 20 166N	134 28E 140 207E	S INDPOSWT	
2156			В GUR 12КНZ R-09 Е GDR 12КНZ R-09				•
***	MAGNETOMETER ***	*					en de la companya de La companya de la co
225 705	27 576 7 676	MGR MGR	H MAGNETICS R-01 E MAGNETICS R-01	GDC 12 261N GDC 22 339N	143 268E 123 61E	S INDPOSWT S INDPOSWT	
1413 2009	070676 180676	MGR MGR	H MAGNETICS R-02 E MAGNETICS R-02	GDC 22 26 0N GDC 14 486N	123 70E 143 489E	F INDPOSWT	
***G	RAVIMETRIC RECOR	(1)5 ***	CURATOR L.M. DORMAN (EXT.2406)	•		
807 5 05	25 576 30 576	GVR GVR	b GRAVITYMETER R-01 E GRAVITYMETER R-01	LMD 13 130N LMD 13 38N	144 195E 136 43E	S IMUPO3WT S IMUPO3WT	. ,
700	<u>4</u> 676	GAK *	E GRAVITYMETER R-02	LMD 13 37N LMD 16 437N	136 33E 124 111E	S INDPOSWT S INDPOSWT	• • • • • • • • • • • • • • • • • • •
706 845	4 676 9 676	GVR GVR	B GRAVITYMETER R-03 E GRAVITYMETER R-03	LMD 16 449N LMD 23 405N			
	14 676	GVR T	b GRAVITYMETER R-04 E GRAVITYMETER R-04	LMD 23 400N LMD 22 324N	125 506E 135 592E	S INDPOSWT S INUPOSWT	
0700 0445	140676 190676	GVR GVR	b GRAVITYMETER R-05 E GRAVITYMETER R-05	LMD 22 324N LMD 13 246N	135 592E 144 343E	F INDPOSWT	
***H	YUROGRAPHIC CAST	***				~ · · · · · · · · · · · · · · · · · · ·	
1255 1944	27 576 - · · · · · · · · · · · · · · · · · ·	HCFV HCFV	B FREE VEHICLE10920M E FREE VEHICLE10920M	DCP 11 193N DCP 11 199N	142 121E 142 95E	S INDPOSWT S IMUPOSWT	
			CURATUR ABRAHAM FLFMING				
	75 676 ***	DNIV DNIV DNIV	DIPNET SAMPLE 1 DIPNET SAMPLE 2 DIPNET SAMPLE 3	MIC 19 393N MIC 19 386N MIC 19 382N	123 527E	S IMDPOSWT	

1094M S18

660M 516

97 3200M 516

DCP 19 59HN 123 141E S INDPOSWT

DCP 20 198N 122 208E S INUPO3WT

DCP 20 210N 122 21ZE \$ INDPOSHT

4

5 676

6 676

6 676

TUUT

TODT

TOOT

36 SH

37 DF

37 SH

96

98

1451

24

TIME DATE TIME TZ GMT D.M.Y. LOC LOC		SAMPLE IDENT.	DISP CODE LAT.	20JUL76	PAGE 6 CRUISE LFG-SHIP	. .
1322 6 676 1709 6 676 2042 6 676	TODT TODT TOOT	38 DP 99 3770M S18 38 SH 100 555M S13 39 DP 101 4820M S18	DCP 22 218N DCP 22 219N DCP 22 3276	121 371E	S INUPOSHT	
140 7 676 717 7 676 1313 7 676	TOOT TOOT TOOT	39 SH 103 525M S14 40 DP 104 5620M S20 40 SH 105 745M S17	DCP 22 353N DCP 22 344N DCP 22 355N	123 65E	S INDPOSHT S INDPOSHT S INDPOSHT	
257 8 676 745 8 676 1236 8 676	TUUT TUUT TUUT	41 DP 106-5750M \$20 41 SH 107 950M \$19 42 DP 108 6000M \$20	DCP 22 363N DCP 22 368N DCP 23 144N	124 191E 124 196E	S IMDPO3WT S IMDPO3WT	· · · · · · · · · · · · · · · ·
1839 8 676 151 9 676 344 9 676	TOUT TOUT TOUT	42 SH 109 850M S16 43 110 1500M S22 43 112 1500M S 0	DCP 23 144N DCP 24 200N DCP 24 202N	124 439E 125 153E	S INDPOSWT	· · · · · · · · · · · · · · · · · · ·
1521 9 676 2131 9 676 1329 10 676	TUUT TUUT TUUT	44 114 5950M S20 44 SH 115 1005M S17 45 OP 116 6000M S20	DCP 22 292N DCP 22 273N DCP 22 260N	126 330E 126 316E	S INUPOSWT S INUPOSWT	. .
1843 10 676 1533 11 676 2116 11 676	TUDT TUUT TUUT	45 SH 117 800M S16 46 DP 118 5875M S19 46 SH 119 855M S16	DCP 22 261N DCP 19 19 UN DCP 19 203N	129 342E 131 57E		
. 703 12 676 1211 12 676 2142 12 676	TUDT TUDT TUDT	47 OP 120 5920M S20 47 SH 121 900M S16 48 DP 122 5500M S20	DCP 20 544N DCP 20 554N DCP 22 302N	131 562E 131 562E	S INDPOSWT S INDPOSWT	
258 13 676 1238 13 676 1850 13 676	TOOT TOOT TOOT	48 SH 123 980M S18 49 DP 124 5400M S20 49 SH 125 750M S16	DCP 22 304N DCP 22 302N DCP 22 306N	132 270E 134 2E	S INDPOSWT	
608 14 676 1147 14 676 2335 14 676	TOOT TOOT TOOT	50 DP 126 5225M S20 50 SH 127 610M S17 51 DP 128 4460M S17	DCP 22 319N DCP 22 326N DCP 22 295N	135 594E 135 581E	S INDPOSWT	
335 15 676 1647 15 676 1856 15 676	TOUT TOUT TOUT	51 SH 129 620M S16 52 OF 131 4450M S16 52 SH 132 855M S16	DCP 22 291N DCP 22 319N DCP 22 327M	137 193E 139 245E	S INUPOSWT	
434 16 676 232 17 676 1451 17 676	TOOT TOOT TOOT	53 DP 133 4000M S16 54 134 4705M S24 55 136 4500M S24	DCP 22 315N DCP 19 305N DCP 18 254N	141 108E 140 54E	S INDPOSMT S INDPOSMT	
215 18 676	TOOT	56 138 4100M S24	DCP 17 214N			
***HYDROGRAPHIC CAS	T * * *			· ••• • · · ·		الم المحمد المعادية المارية
1500 27 576 1806 27 576 2310 27 576	HCNA HCNA HCNA	TSON 21 MD TSON 21 DP TSON 21 SH	DCP 11 198N DCP 11 200H DCP 11 176M	142 98E	S INUPOSWT	· · · · · · · · · · · · · · · · · · ·
1034 28 576 1527 28 576 625 29 576	HUNA HUNA HUNA	TSON 22 DP TSON 22 SH TSON 23 DP	DCP 10 517N DCP 10 520N DCP 12 596N	140 108E 140 107E	S IMUPOSWT S IMDPOSWT	
855 29 576 2344 29 576 239 30 576	HENA HENA HENA	TSUN 23 SH TSUN 24 UP TSUN 24 SH	DCP 12 598N DCP 13 26N	138 583E 136 292E		
1759 30 576 2037 30 576 423 31 576	HUNA HUNA HUNA	TSON 25 DP TSON 25 SH TSON 26 DP		133 577E 132 288E	S INDPOSMT S INDPOSMT	
823 31 576 1935 31 576 2320 31 576	HUNA HUNA HUNA	TSON 26 SH TSON 27 DP TSON 27 SH	DCP 13 10N DCP 12 541N DCP 12 548N	130 477E		· · · · · · · · · · · · · · · · · · ·

	DATE TIME TZ D.M.Y. LUC LUC	SAMP CUDE	SAMPLE IDENT.	DISP CODE LAT.	20JUL76 LONG.	PAGE 7 CRUISE LEG-SHIP	
828	1 676	HUNA	TSON 28 DP	DCP 13 5N	128 592E	S INUPOSWT	
319	1 676	HCNV	TSON 28 SH	DCP 13 13N	128 585%	S INUPOSWT	
556	1 676	HUNA	TS0N 29 DP	DCP 12 595N			
211	2 676	HUNA	TSON 29 SH	DCP 12 592N	127 4215	S INUPOSHT	
742	2 676	HUNA	TSON 30 DP	DCP 12 5966			
220	2 676	HCNA	TSON 30 SH	DCP 12 589N			•
32	2 676	HUNA	TSON 31 DP			S INDPOSET	
37	3 676	HCNA	TSON 31 SH	DCP 13 2 CN	125 363E	S INDPOSHT	
333	3 676	HCNA	TSON 32 DP	DCP 13 153N			
723	3 676		TSON 32 SH	DCP 13 159N		S INDPOSWT	
200	3 676	HUNA	TS 33.	DCP 13 259N		•	
530	3 676	HUNA	TSON 34			S IMDPOSWT	•
10	5 676	HUNA	TSON 35 DP	DCP 19 391M			
28	5 676	HUNA	TSON 35 SH	DCP 19 378N			•
)47	5 676 5 474	HUNA	TSON 36 DP	DCP 19 598N			
51	5 676	HUNA	TSON 36 SH	DCP 19 598N			
13	6 676	HUNA	TSON 37 DP	DCP 20 203N			
808	6 676	HUNA	TSON 37 SH	DCP 20 212N			
128	6 676	HUNA	TSON 38 DP	DCP 22 218N	121 3758	S INDPOSHT	
115	6 676	HCNA	TSDN 38 SH	DCP 22 219N	121 3706	S IMDPO3WT	
23	6 676	HUNA	TSON 39 DP	PCP 22 336N	122 110E	S INUPOSHT	
03	7 676	HCNA	TSON 39 SH	DCP 22 357N	122 116E	S INDPOSWT	
17	7 676	HCNA	TSON 40 DP	DCP 22 344N	123 658	S IMUPOSWT	
16	7 676	HCNA	TSON 40 SH	DCP 22 355N	123 625	S INDPOSWT	-
48	8 676	HUNA	TSON 41 DP	DCP 22 365N	124 1932	S INDPOSHT	
17	8 676	HCNA	TSON 41 SH	DCP 22 369N	124 199E	S IMDPOSHT	•
43	H 676	HUNA	TSON 42 DP	DCP 23 144b			
43	8 6 7 6	HCNA	TSON 42 SH	DCP 23 144N	124 439E	S IT DP 03WT	•
45	9 676	HUNA	TSON 43	DCP 24 200K	125 155E	S IMUPOSHT	
33	9 676	HUNA	TSON 44 DP	DCP 22 292N	126 329E	S IMOPOSWT	
37	9 676	HUNA	TSON 44 SH	DCP 22 273N	126 3 1 6E	S INUPOSHT	
	10 676	HUNA	TSON 45 DP	DCP 22 263N	129 346E	S INDPOSHT	
09	10 676	HUNA	TSON 45 SH	DCP 22 2615	129 3428	S IN:UPO3WT	
	11 676	HCNA	TSON 46 DP	DCP 19 14 UN	131 578	S INDPOSHT	-
	11 676	HLNA	TS()N 46 SH	DCP 19 204N	131 51E	S INUPOSHT	
	12 676	HLNA	TSON 47 DP	DCP 20 548N	131 563E	S IMUPOSWT	· · · · · ·
43	12 676 •	HC NA	TSON 47 SH	DCP 20 557N	131 563E	S INUPOSHT	
		HUNA	TSON 48 DP	DCP. 22 302N	132 274E	S INDPUSHT	<u> </u>
05	13 676	HUNA	TSON 48 SH	DCP 22 304N	132 269E	S INUPOSWT	
38	13 676	HCNA	TSON 49 DP	DCP 22 307N			
27	13 676	HLNA	TSON 49 SH	DCP 22 304N			
14	14 676	HCNA	TSON 50 DP	DCP 22 321N			
	14 676	HUNA	TSON 50 SH	DCP 22 326N			
	15 676	HUNA	TSON 51 DP	DCP 22 292N			* *
	15 676	HUNA	TSUN 51 SH	TICP 22 292N			
	15 676	HCNA	TSON 52 DP	DCP 22 309N			
	15 676	HUNA	TSON 52 SH	DCF 22 327N			
	16 676	HCNA	TSON 53 SH	DCP 22 314N			•
	16 676	HUNA	TSON 53 DP	DCH 22 316N			
	17 676	HUNA	TSON 54	DCP 19 305N			
	17 676	HUNA	TSON 55	DCP 18 263N			
	18 676	HCNA	TSON 56	DCP 17 214N			
,	20 010		10/114	DUT 11 214N	145 133E	3 1006 (134)	

١,

		TIME TZ		SA	MPLE IDE	N T.	21n nno		LAT.		JU L 76 DN G .		PAGE 8 CHUISE LFG-SHIP		•		-
***H	ATHYT	HE RMUGRAPH:	·** (URATO:	י ראטטו	C ONI W A 1	V /EXT 32	 481		-					.		
_				OKA TO	K CARIJE	CONTA	, (6),	007							- - ·		
O	25 5	76	втх	Nf1 -	SAMPLES	= R	הרפ	12	1200	144	1055	c	INDPOSWT	-			
	26 57		втх		SAMPLES								INDPOSWT				
	27 5		BTX	-	SAMPLES				-			-	INDPOSMT				
	28 5	4 -	нТх		SAMPLES								IMDPO3WT				
0	29 5	76	втх		SAMPLES		DCP						IMUP 03WT			-	
Ō	30 5	76	вТх	_	SAMPLES		DCP						IMPO3MI	•			
O	31 5	76	BTX	NO.	SAMPLES	= 8	_						INDPOSWT	-			1
0	1 6	76 '	HTX		SAMPLES								IMUPO3WT				
O	2 6	76	BTX	NO.	SAMPLES	= 9							INDPOSWT	-			
0	3 6	76	BTX	MU.	SAMPLES	= 10	DCP	13	1.70	125	368E	S	INUPO3WT				
0			BTX	NO.	SAMPLES	= 10	DCP	15	158N	124	21CE	S	INDPOSWT	-			
0	5 6	76	вТХ	N().	SAMPLES	= 13	DCP	19	39 IN	123	523E	S	TWDP03WT				
0			BTX	NO.	SAMPLES	= 12	DC P	20	197N	122	207E	S	INDPOSWT	•		+	
0		_	ьтх		SAMPLES		DCP	22	344N	122	112E	S	INDPOSWT				
0		•	нTх	NO.	SAMPLES	= 12	DC P	22	348N	124	186E	S	INUPO3HT		• •		
0			втх		SAMPLES	-	DCP	24	44	125	83E	S	INUPO3WT				
	10 6		HTX	NO •	SAMPLES	= 16	DCP	22	272N	.126	458E	S	INUPO3WT				
	11 6		BTX		SAMPLES		nce	21	524N	129	545E	S	IMUPO3WT				
-	15 6.		втх	MO •	SAMPLES	= 7	DCP	19	368N	131	132E	S	INUPOSWT				
	13 6		ьTХ	NO.	SAMPLES	= 5	DCP	22	305N	132	268E	S	INUPOSWT				
	12 6		RIX		SAMPLES		DC P	١'n	368N	131	132E	S	INDPOSWT			-	
_	15 6		НĪХ	NO.	SAMPLES	= 13	DCH	22	295N	137	198E	S	INUPO3WT				
_	16 6		BTX		SAMPLES		DCP	22	336N	140	139E	S	IMDP03WT				
	17 6		HTX		SAMPLES		DCP	19	54 ZN	140	132E	S	INUPO3WT				
O	18 6	76	втх	NO.	SAMPLES	= 18	DC P	17	374N	141	579E	S	IMDP03WT	•			
			•	-											-		
99				EnD	SAMPLE	INDEX				•							
		•			•							•	-		•	•	

the control of the co

والمستنين كوفر والمنافي والمنافي والمنافر والمنافر والمنافر والمنافر والمنافر والمنافر والمنافر والمنافر والمن

and the second of the second o

and the control of th

والمتاز والمتعلق والمتناز والمتاز والمتاز والمتاز والمتناز والمتاز والمتناز والمتناز والمتناز