Discussions in two Volumes Cambridge, The Physical Society, 1935.
Vol. I. Nuclear Physics,

Discussion

Prof. J. C. McLennan, Mr L. G. Grimmett and Dr John Read. Szilard and Chalmers* recently reported that when some beryllium was given a surrounding of ethyl iodide and both were irradiated with γ-rays, the iodide became radionctive with a decay half-period of 30 min ., but that when the ethyl iodide was irradiated without the beryllium being present it was unaffected. Szilard and Chalmers suggested that the γ-rays caused the ejection of neutrons from the beryllium atoms, and that the neutrons excited the radioactivity.

At the Radium Institute the experiment of Szilard and Chalmers was repeated by us, but iodine was used in place of ethyl iodide. It, too, became radioactive, and gave 314 Geiger-Müller kicks diminishing to 12 per min . When the iodine without the beryllium was irradiated, it again became radioactive, but to a much less degree, 45 kicks diminishing to 10 per min. being recorded. In both cases the half-period was 30 min . When the beryllium was surrounded by a silver cylinder and irradiated with γ-rays, the silver became radioactive, giving 50 kicks diminishing to 12 per min . with a half-period of two minutes. When the silver alone was irradiated it was unaffected. These half-periods, it will be recalled, were the same as those obtained by Fermi, who used radon plus beryllium as a neutron source. We consider that these results confirm Szilard and Chalmers's conclusion that beryllium ejects neutrons when irradiated with γ-rays.

Experiments are in progress to determine why the iodine becomes radioactive when no beryllium is present.

Dr L. Szilard. The Fermi effect can be used as an indicator for the detection of neutron radiations. It may prove to be of special value for the investigation of neutron radiations in the presence of a strong γ-radiation. One might expect that even slow neutrons will induce radioactivity in elements which, like iodine, transmute in the Fermi effect into their own radioactive isotope, but further experiments are necessary to settle this point. Meanwhile T. A. Chalmers, of St Bartholomew's Hospital, and I have worked out a method of isotopic separation which makes it possible to concentrate chemically the activity in the case of iodine and other elements which show a Fermi effect of this type. We used this method of isotopic separation to search for new neutron sources. By irradiating 25 gm . of beryllium with the penetrating radiation from 150 mgm . radium and exposing 100 c.c. ethyl iodide to the radiation exeted in the beryllimen we could induce radionectivity in iodine, and separate chemically the radio fordine from the echyl iedide in the form of a silver iodide precipitate. 'I'his precipitate showed a stroms activity, deayme with a period of 30 min., the intial activity being more than 15 times stronger in the presence of beryllium than in its absence. About half of the residnal activity in the control experiment may be due to neutrons coming directly from the radium source,

* Nature, 134, 494 (1934).

Artificial radioacticity

the other half represents the natural background effect of the counter. Apparently the γ-rays of radium liberate neutrons from beryllium, which induce a strong Fermi cffect in iodine. The 30 min . and the six hours half-periods of bromine can also be strongly excited by these neutrons, as we have shown in co-operation with E. (:lickauf. I was very much interested to hear just now that Prof. McLennan has repeated some of our experiments and was able to confirm our results. If we determine which elements show a Fermi effect when exposed to neutrons from a γ-ray disintegration we get by means of wery simple experiments some information both regarding the processes involved in the Fermi effect and in the γ-ray disintegration. By using the Fermi effect one could thus supplement in some respects the method of Chadwick and Goldhaber, who were the first to detect a γ-ray disintegration in their pioneer work on heavy hydrogen. I wish to take this opportunity (1) mention that this work has been carricd out in the Physics Department of St Bartholomew's Hospital and was made possible by the very kind co-operation of Prof. Hopwood.
L. Szilard and T.A. Chalmers, "Detection of Neutrons liberated from Beryllium by Gamma Rays: a new Technique for Inducing Radioactivity" Nature 134:494-5, Sept. 29, 1934.
L. Szilard and T.A. Chalmers, "Chemical Separation of the Radioactive

Element from its Bombarded Isotope in the Fermi Effect" Nature 134:462-3
Sept. 22, 1934.
c/o Clarendon Laboratory, Parks Road, $0 \times f 0 \times \mathrm{f}$.

5th December, 1935.

Dear Goldhaber,
Enclosed you find my manuscript to "Nature ", please read it caref́ully and make suoh oorrections as you think neoessary and send it back to me to Oxford. I am serding you a second copy to be kept by you or by any of your friends in the Cavendish Laboratory.

The absorption experiments in boron to which
the last paragraph refers, have in the meantime been carried out. If we assume that the Fermi, Bethe, Perrin and Elsasser theory holds for boron and lithium, though it does not hold for elements which show a strong radiative oapture, we can onnolude that indium has a selective absorbing region at a neutron energy of the oxder of magnitude of three volts.

With kind regards to all,

Tours sincerely,

Hst, J

coo Clarendon Laboratory
Park Road, oxford.

16th June, 1935.

Dear Professor singer,
Then I last saw you I told you about a plan to start research in a direction which may or may not be the starting point of a new industrial revolution. I thought that it might be possible to get financial support for such work, but abandoned any attempt in that direction after a few tentative discussions with you and a Low others. I plunged into experimental work instead in which I was very lucky, and you see the results from the enclosed reprints. In the course of this work. I observed certeis anomalies, the implications of which I did not realise until shout four weeks ago.

There is no doubt left that these observations settle one of the two cmeial points which determine whether or not the develoment, will lead to a sort of industrial revolution in the near Suture, and settle it in a affirmative sense. The second crucial point is still unsritled but leaves the way open for only two altematives. So we may fairly say of having somethine like a $50 / 50$ chance for getting an answer in an affirmative sense. This; I believe, has to be constiored a very hiph chance in view of the issue which is involved, and even if this chance were less wo would have every reason to take action on it. In March

the recent discoveries in the field of nuclear physios mient enable tis to liberate cmrey in a large soale and to store energy through the whole-sale production of radio-actiec bodies. At that time, I didnot see my way for a direct experimental attock but, soeing the outlines and the importance of the trisocmot points. which I mentiones above, I applied for a number of patents dealing with methods and apraratus involvod in the prospective industrinal. application. These patents were very Iucky in foreshadowing the subsequent development. The first afthese protents, for instance, protects the production of radio-active bodies throurh neutron bombrdement and can be considered as a basic patent. A month or so, after this patent had been filed Fermi discoverd that radioactive bodies can be produced throuph neutron bombardement and a ranid develoment started thenthese radio-active bodies were used as a tool for further research. I mysele got in August last year permission to use the radium in St. Bertholomew's Hospital during the holidays, and jumpodto experimentel work. This work went so well that I extended it beyonothe holidays until the end of the year and went thon, after a six weeks visit to oxford, to New Yorl. Mot until. I wos in Anerica did I realise the full sionificance of my Inndon observotions. About the sme time, I reacived a definite offer of an appointment for three years from the Clarenion Laboratory and so I came to Ioricond a lortnisits ago.

Here I informed Prof. Indeman, who is in cherce of the Clarendon Iaboratory of the situation which has arisen and raised the question of fitting in my plans with the other work. I told him that I wish to keep the experimens in my own hands andtoo have all the freedom of movernent whion is necessery at this juncture. Prof. Lindemann promised me his support and all the factlitios which were previously ccanted for my work in 0xford, the biggest itom of which is the use of $\$ 15000$ worth radium.

In adjition ot the facilities which are svailable right now in oxford? I should require for the work a budpet between $\$ 600$ and I I 200 a yesr and should aitempt to raise in the first instance I 600 per year f or three years, hefore actually startine the work. I thought it better not to ask Indemenn to take the initiative in the matter and so, once more, I am looking Ior a Maecenas.

While I am fully aware of the difficulties to raise such a sum, I an inclined to think that ultimately it will be possible to find somebody who has sufficient imagination to grasp the situatior and who is, at the same time, in a Pinancial position to help in this matter.

Should you be able to think of somebody whom you know personally and of whom you think that he could be approached? Please, do let me lnow. I am very anxious though to keep this matter quiet and this letter is only intended for your information.

I may add that it is not intended to onnroach industrial companies and that, thourh every effort will be made, to set pates protection and that, though these patents may be exploited, on a profit basis it wouldbe misplaced to apply in this matter primari commercial considerations. The patents misht be handed over toaa body which would administer them alone commercinl lines, but woul use the oroift for constructive purposes. A preoedent for this, t though on a small scale, is the Research Comoration in New York, which was created in 1911 for the administration of the patent rights handed over to them by \mathbb{F}.G. Cottrell and which has since prown into an active business organisation. Thile it is premature to discuss these things at present it is bestary to mention them 1 : order to explain that it is not possible to offer the patent righ to private persons or to draw up any commercial agreements about thern, though an adequate for invested funde need not be excluded.

I have also to add, in order to give you a complete picture, that the disaster to which this development can lead may he more. imminent than the industrial revolution which it may bring about, and that, from this point of view, an attempt will hove to be made to keep the patents secret and madually to brine about some. thing like a conspiracy of those scientists who work in this fjeld.

Dear Professor Singer，

I should be very pleased indeed to see you again，and perhaps you and your niece would care to have lunch with me some time in the second half of dune．Please let me know alter you have settled in London which day would suit you best． I have just arrived from America and may settle in Oxford where I have been offered a three years＇appointment in the clarendon Laboratory．I can tell you more about these personal things which have Honked out fairly well when I see you，but I had better write to you now about a matter of great eamestness in which you may or may not be able to help．

When I last saw you I fold you about a plan to start re－ search in a direction which be the starting point of a new industrial revolution．I thought that it might be possible to get financial support for such work，but abandoned any attempt in that direction after a few tentative discussions with you and a few others．I plunged into experimental work instead in which I was very lucky，and you see the results from the enclosed reprints．In the course of this work I observed certain anomalies，the implications of which I did not realise until about four weeks ago．To－day the position is this：I can demonstrate the crucial points on which I based my expectation that an industrial revolution may be brought about in the imme－ diate future．Other points remain to be settled before we can say anything with certainty，but it may be fair to say that there is a fifty－to－fifty chance that these other points will work out alright．Even if these chances are smaller than I anticipate，they are certainly large enough to get excited at this juncture．

The disaster to which all this may lead is gore imminent than the pleasant changes it may bring about，since applications for purposes of war are closer at hand than anything else and go beyond anything one is likely to conceive．An attempt to control this development will have to be made，however small the chances of success may be，and the most essential question in this respect is whether it will be possible to get the physicists in America and England to take precautions about publishing observations which fall into this dangerous zone，at a time
Thais mon the tho ur
when such precautions necessarily seem to be premature. Unfortunately it will appear to many people premature to take some action until it will be too late to take any action. It will take some time until one can see what practical steps have a chance of being put across.

In the meantime I shall make an attempt to make further experiments in order to settle as quic ly as possible those questions which are still open. I informed yesterday Professor Lindemann who is in charge of the Clarendon Laboratory in Oxford of all this, and suegested that ${ }^{\perp}$ should devote my time and the facilities which I have been previously promised in Oxford, to this task, that the limitations which would interiere with my Ireedom of action in this matter, should be removed, and told him that I should make an attempt to get further Pacilities from outside-sources. I know from my friends that the budget of the Clarendon Laboratory has been strained, and it would not be wise to embark on this venture without having the necessary equipment. I should rather not ask professor Lindemann to appoach government institutions or private individuals, and i I should rather see what I can do in this respect myseli. As far as Oxtord is concerned the path is clear. I should think that facilities of about £1000.-.,- per year will be required for one or two years. This money would be used in two ways. For salaries of two men of the order of £200.- to £ 300.- a year each, who would be required to assist this work, and the rest would be used for buying equipment. There is already some equipment for this work in Oxiord, the biggest item being \&15.000.- worth of radium.

I am fully aware of the difficu ty of getting hold of a pr vate person who has some vision and who is able to provide part or the whole of the required sum. On the other hand I cannot believe that it should be impossible to find somebody in Great Britain. Should you be able to think of anybody whom you think one could approach and whom you happen to know personally, I should appreciate very much if you could let me know.

If it is not possible to get the facilities here, I shall have to make an attempt in America, but I can hardly do so bofore september, since everybody is leaving New York at this time of the year.

Yours sincerely

Leo Szilard

(Hist-J) $\langle R-46$

Clarendon Tabarotory
Parks Road
Ox cord
Telephon:3545

16th June, 1935.

Dear professor Singer,
I believe I have not seen you since I, had lunch with you and your niece sometimes in June last year. Many things have happened since then.

I arrived from America a fortnight apo and I move settle in oxford where I have been offered a three years appointment in the Clarendon Laboratory.

I shuold be very pleased if you and your niece would care to have lunch with me if you happen to be in town. Please let me know which day would suit you best. I am in london once or twice a week and if so, I am staying at the Harewood Hotel, 74/8 Gower Street, Telenhone:iruseum 3941.

Today I should like to write to you about mother matter and I do this by a sepresate letter. I wish it would be as easy as that to keep private and public life in watertight compartments. With kindest regards,

Yours sincerely,

ELECTRIC \& MUSICAL INDUSTRIES LIMITED

BLYTH ROAD,

HAYES.
MIDDLESEX,

12th February, 1935.
031898

By Hand.

Dr. Leo Szilard,
Strand Palace Hotel, Strand,
London, W.C. 2.
Dear Dr. Szilard,
I have to acknowledge receipt of your letter of the loth inst., enclosing our letter to you of the loth January 1935, embodying an agreement between us in regard to your invention for the reproduction of books, duly countersigned by you.

In reply to the points raised by you in your letter of the loth February, I have to reply as follows:-

1. The final paragraph, beginning with the words "alternatively, this licence agreement" is not intended to affect the minimum royalty referred to in paragraph (b) of Clause 2, in our letter of the loth January 1935.

It was certainly not our intention when drawing up paragraph $2(f)$, to ask that you give us the first offer of refusal only on those of your future patents which fall under the claims of the patents mentioned in paragraph (I) of our letter of the loth January. The intention of this paragraph was that you should give us the first offer of all your future inventions having any relation or bearing on the broad subject of the "Wicrobook". You are interpreting the words "relating to the invention, the subject of this agreement" in too narrow a sense.

There cannot be any hardship to you whatever in making us the first offer, in accordance with paragraph (f), nor will there be any difficulty in your remembering this condition in future, seeing that this agreement about the "Microbook" is the only one that can come into question between us.

We will, without any liability for inadvertence or oversight, take care of the British patent application forthwith, and bear all costs in connection with its prosecution until grant, irrespective of whether this is during the optional period or the period of the licence.

As regards corresponding applications in other countries, we will bear the cost of filing those cases which have been submitted to us by you beforehand, and in regard to which we have decided to file such application or applications, and (again without liability for inadvertence or oversight) will take care of the prosecution of such cases.

I will have the counterpart of the letter of agreement signed on behalf of the Company as soon as possible, and shall be glad if you will let me know the address to which it should be sent (as well as the cheque for $\{30$ to yourself), in case, as seems probable, it cannot reach you before you leave England.

Yours very truly,

$\mathrm{AB} / \mathrm{VT}$.

Strand Palace Hotel, Strand, London W.C.2.

14th February, 1935.

Your Ref. 031898.

A. Benjamin, Esq.
Electric \& Musical Industrious Ltd.,
Blyth Road,
Hayes, Middlesex.

Dear Afr. Benjamin,
I had your letter of the 12th instant.
I regret not to be able to accept your interpretation of paragraph 2 (f), since the first paragraph of tho agreement clearly defines the scope of the agreement as limited to one patent application, and those further applications which can be derived in following up this application.

However, while I should like to interpret paragraph $2(\mathrm{I}$) so as to lop it within the scope, I am quite willing to mot your wishes insofar as I herewith agree to the following:

If I file any patents, the primary object of
which is the 'lificrobook' in England in 1935 or 1936
I shall let you have the first offer in the same way as patent
if these/applications matin came under paragraph 2 (i)
of our agreement. In consideration of this you may,
if for legal reasons you think it advisable, pey me $1 /-$. Tours very truly,
 Dear Goldhaber,

I came back to-day from Oxford for the weekend and heard from Professor Hopwood over the telephone that he wishes that a letter should be sent/to immediately
" Nature "/ about our heavy water experiments. I told him that as far as I know, you did some work about this which you intend to publish in the Cambridge Proce and that I should not like to rush in with a letter to " Nature ". He seemed to insist on the matter - all over the telephone - (a letter which he wrote to me on the subject did not reach me in oxford) and it seemed advisable for me to go as far as I can go, considering that I am a guest of his department, in saying that I am not prepared to sign such $a^{\prime \prime}$ letter" and $\not \subset$ should appreciate it if my name were not mentioned in the "letter", if they decide to send one. I do not know what they will decide in the circumstances, in any case, I will not be a party to it. I shall see Hopwood tomorrow morning; perhaps he will see my point of view

I got the advice note for 1 gramme of
indium and you will have the stufi at the latest on Wednesday. I hope you are able to look at it at once
I may need the indium in ten days or so and shall let you know in advance.


```
-eret snt reva boowqon Tonaotom9 moriz Breeri bors brevoem
```



```
                        \forallI`むs Lbemm{
```



```
        ffB - rsedgra gnij do vefamf of bomooe ofl ." omutsth"
ab on bu. gjomw on noinm xejter & - mmongeled ontu-revo
```



```
        Wbiv 20 wnfog ym eva Initu on agscreg ; grfarohr woxromov
```



```
        To pmms>3 I rot ejon goiv5s ent.voz I 
```


Dons Gohonebors

 ank 2me Chntrors aont a zotkor to phaturo ebont tho diambogration of bonvy vatoz by carma raya os modirn
 1nvom you of tho fomzownez

Chm2mono and I Obeorvod sn ootobon of kovonduos von' wools offecte with gourcon whion woso not 2200 som
 un tho matton i ppoponoc to 2ot tt atome ovor and tenk Lt ve ogaln an ooon as wo hevo nottiton 1 1roo sourgoo. Whon I Loand thoourh o visthes that you ara mo. Ohnemiots dad alrazar vamy on hoavy vatos thono soonot wo bos mucs podnt in gosms on with thono oxpowtronta srom ino posnt of viow of thononesine oum inoriodec. flowovors. I cocicod in tho. esrcimstancos to camy on juat tho
 nown? conseo of cut woxis at a tarso whon youz bovo not yot Nobssainos, mo onn exanco trans rotetwos of us outo in an Tiont or tho othop. the mophonot that no noworon. swoo gompoos wowo avashevio ant2 tho thro wh on I movod
to omposd in Jonuary. Thas co woll na somo othon porit
 sopt of arrangocont as to thich of wh shory conve 46 on Is wo da not chooso to onsy $4 t$ on joincily
is fer an thes wort wha conoemod frosossos Toproon grito pichty nawnod that z woutd not como to 60 on whth it mysole whorons I know thet he had Ealion groat 3 ntorost $2 n$ 2t from tho bockinsing and comperatod
 hoer that tho orporymonta have boon ropontod aith tho old gonreos ond that a lattor wis about to bo sont to Btaturo ebout thon. I was askod whother I vantod to sicn it or to bo montionod in it in sone whor moy. it nnsworod thas atnco you hovo conp Zotod your mont man - oamzors and havo chomon a siowor way of bubzishzne vo mase noo ont an an frome or you by a zootar do Theture and that ros this ronson I could not portheipato in any
 It 10 bont menout ry consont. I toza prokossor mopmod, the. Benm ont is. Chatmors then 1 n apte of tho minor matoried typortance of the 2 sous $\overline{1}$ whahod to trico tho strongost poasible stand on 14 by writine youm- 2 s 20ttos of whinh I an hotezne thon have coptoo.

Potary Kennore Aidoiny PR hanchesq
Aniscalculated Temperature yesterday by Taking 4 instead $\% 10000$ as eponent of 2 Stop Temperature about Thousand to Fen thousand milhon centigiades

teme information overlear will interest you.
thind regands
Sizilard

