PRELIMINARY REPORT AND INDEX 0F #### NAVIGATION, DEPTH, MAGNETIC AND SUBBOTTOM PROFILER DATA # IGUANA EXPEDITION R/V E. B. SCRIPPS Leg 1 San Diego - Acapulco (1 April 1972 to 7 April 1972) Leg 2 Acapulco - Guayaquil (9 April 1972 to 17 April 1972) Leg 3 Guayaquil - Punta Arenas (21 April 1972 to 30 April 1972) Leg 4 Punta Arenas - Acapulco (2 May 1972 to 11 May 1972) Leg 5 Acapulco - San Diego. (15 May 1972 to 22 May 1972) Chief Scientist - G. G. Shor Airgun Tech. - M. Barth Resident Marine Tech. - W. E. Keith Data Processed by - W. Keith, U. Albright, S. Smith, M. Henry 98 O. McConnell, I. Bustillos, J. Anfossi # Geological Data Center T. E. Chase - Curator S. M. Smith - Data Processing Coordinator Scripps Institution of Oceanography La Jolla, California #### Contents: - Index Chart gives track of cruise leg and boundaries of depth compilation plots (see below). - Track Charts annotated with dates (day/month) and hour ticks. The scale (.3"/deg. long) is the same as the index charts of previous SIO cruises published as Report IMR TR-25. - Profiles Depth and magnetic anomaly vs. distance. Dates (day/month) and positions of major course changes (greater than 30 degrees) are annotated. Sections of track having subbottom profiler (airgun) records have a solid black line along the bottom of the profile. For information on the availability and reproduction costs of data in the following forms, contact T.E. Chase, Gurator, Geological Data Center, Scripps Institution of Oceanography, La Jolla, California 92037 (714-453-2000, ext. 1534): - Navigation listing of times and positions of course and speed changes, fixes and drift velocity. - 2. Depth compilation plots in fathoms (assumed sound velocity of 800 fm./sec.) at approximately 1 mile spacing, plotted at 4"/degree with standard U.S. Navy Oceanographic Office BC series boundaries (see index chart). - 3. Plots of magnetic anomaly profiles along track-map scale = 1.2"/degree; anomaly scale between 15°N and 15°S latitude = 500 gamma/inch; anomaly scale north of 15°N and south of 15°S = 1000 gamma/inch) from values retrieved at approximately 1 mile spacing and regional field removed using the 1965 IGRF. - 4. Card Decks of navigation, depth and magnetics (for specific formats, contact S.M. Smith, Geological Data Center). - 5. S.I.O. Sample Index list of beginning and end times and positions of all underway records as well as all other samples (geology, biology, physical oceanography, etc.) collected on the cruise leg. - 6. Microfilm or Xerox copies of: - a. Echosounder records 12 and 3.5 kHz frequency - b. Subbottom profiler records (airgun) - c. Magnetometer records - d. Underway Data Log IGUANA LEG 3, track chart ## IGUANA EXPEDITION ### LEGS 1-5 ## R/V E.B. SCRIPPS ## CHIEF SCIENTIST- G.G.SHOR - Leg 1 San Diego Acapulco (I April 1972 to 7 April 1972). - Acapulco Guayaquil (9 April 1972 to 17 April 1972) Leg 2 - Leg 3 Guayaquil - Punta Arenas (21 April 1972 to 30 April 1972) - Punta Arenas Acapulco (2 May 1972 to 11 May 1972) Leg 4 - Leg 5 Acapulco - San Biego (15 May 1972 to 22 May 1972) #### TOTAL MILEAGE - 1) Cruise 7217.5 miles - 2) Bathymetry 7070 miles3) Magnetics 6850 miles - 4) Seismic Reflection 4540 miles É LISTED 13 SEPTEMBER 1972 | ٠ | | | | | | |---|--|---------------|------------|----------|-------------|----------|-------------|----------|-----------|-------------|---|---------------|----------|-----------|-----------------|-------------|------------|-------------|--------------------|-------------------------|---|------------|---|---------------|----------|------------|----------|----------------|---------------|-----------------------|----------|----------|-----------|-------------|-----------|------------|-----------|-----|----------------------------|-----------|----------|------------| | | iguaoieb
Iguaoieb | %) | 16UA 01 EB | IGUAGIEB | I GUA OI ER | 16040168 | I CUA OI EB | TGUAOLER | 2000 | 1 GUA 02 EB | | 10040255 | 100a020a | TOUR OZEB | 93704051 | 22704007 | 16940228 | 1 GUA 02 EB | J GUA 03 EB | ICUA03EB | - | IGUA OBEB | 000000000000000000000000000000000000000 | TCHAOSER | TOURDSER | 16UA 03 EB | TGUAGSFR | 160A03EB | I GHA OGER | IGUAGGES | TGUACAFB | 160404EB | IGUA 04EB | 1641/104 68 | 16UA 04ER | ICHA 04 EB | IGUA 34EB | | 16UA 05EB | IGUA 05EB | IGUAOSEB | 1 COA COES | | 785 | សល | | | | | | | | | ı vı | | | | | | | | | W | | | | | | | | | | | S | | | | | | | | | n va | | | | | LISTED | 109W | | ö | 망 | 9 | O. | 뜽 | ₽. | • | 36.12 | ě | 5 | 5 | 2 | 3 5 | 2 6 | 9 | 8 | 3614 | 485K | | 9 5 | 3 6 | 9 5 | 3 5 | 3 8 | i c | 99 | 4685 | \$33K | Ö | S | OE | Ö | 30 | Ö | ö | . 2 | 200 | | 88 | | | #
#
| 117 | . • | 0 | O | a | ٥ | 0 | Ö | 0 | 800 | • | > (| 9 | 0 (| 3 4 | 3 (| φ, | • | 80 | ž | | 0 | 3 (| > < |) C | 9 0 | · C | 0 | ď | 66 | C | C | ٥ | 0 | O | 0 | ٥ | 6 | 711 | 0 | 0 | 3 | | LONG11-JDE | 36 7N
48 7N | | õ | S | Š | នី | 73 | 3 | 747.8.7 | 3875 | é | 5 6 | 3 | 5 | 5 8 | Š | 5 | ž | 3875 | 5724 | i | \$ 8 | ž | Š | 5 5 | ទីខី | ä | Ē | 5771 | 48:12 | ä | õ | E | õ | ត | 8 | 3 | • | 26 di | ä. | | ! | | 2
2
2 | 32 | | Q | 0 | ٥ | O | 0 | ¢ | 4 | ? ⊳; | • | 3 (| 5 | 9 |) | 3 .6 | 3 | 0 | Ŋ | Φ. | | 0 | > < | 9 0 | 9 0 | 0 | c | 9 | 0 | 10 | C | 0 | 0 | 0 | 0 | Ç | ٥ | . , | 98 | 0 | 0 | 3 | | | | | X P | ** | GRD | SRG | e
E | X
Z | | | i | E 4 | S KD | (A) | 2 4 7 |
E : | | <u>၂</u> | | | | 7. P. | 3 0 | 4 4
7 0 | 2 6 | | 2 | 500 | | | ŭ, | GRD | SRG | SRC | d. | 5.
30. | GDC | | | GRD | S 2 6 | Z. | | TIME ZOWES AND MINUTES OF LATITUDE AND IN TENTHS (E.G. 10.6 IS LISTED AS 106) | LGOL & SAN DIEGD, CAL. LGOL & ACAPULCO, NEX. | *** | 6. | 4 | # LI | M. SAR | ī. | | | 35 | | | 1. F. KE | ± | PEAT R. BUNGARD | ĸ. | D. MCGOHAR | | GO3 & GUAYAQUIL, E | LGOS E PUNTARENAS, CTR. | | G. G. SHOR | , ti | E o | 2 | | ć | PE D' NELTOUNE | R DINTABENAS. | LGO4 E ACAPULCO, MEX. | | . L. | M. BARIH | œ | * | Ġ | | 4 | LGOS E SAN DIECO, CAL. | x | BONGARD | ¢ | | T *** SION *** | 1120 31 372
1958 7 472 | *** PERSONNEL | 0 | Ö | 0 | 000 | 0 | 0 | 7,000,376 | 1300 17 472 | ! | 9 | 0 | 0 | 0 i | 9 | 0 | Ö, | 715 21 47 | 1954 30 472 | | 0 |)
() |)
(| 3 6 | 3 6 | 2 6 | | C R.7 | 1453 11 572 | c | 0 | 0 | 0 | 0 | | 000 | | 2365 15 572
2260 22 572 | o
c | 0 | . | *** 106 BOOKS *** | | | | | | | | • | | | | | | | | | | | | |----------------------------------|----------------------------|------------------------------------|----------------------------|------------------|--------------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--| | ·.
• | ÷ | | | | | | | | | | | | | | | - | | | | CRUISE
LEG-SHIP | IGUAGLEB
IGUAGSEG | 1 GUA OI EB
I GUA OSEB | IGUAOLEB
IGUAOSEB | 34) | | CRUISE
LEG-SHIP | IGUAOI EB
IGUAOI EB | IGUADLEB
IGUADLEB | I GUÁ OZ EB
I GUA OZ EB | IGUA OZ EB
I GUA OZ EB | IGUA OZ EB
IGUA OZ EB | IGÚA OSEB
I GUA USEB | 16UA 03EB
16UA 03EB | 1GUA03EB
1GUA03EB | ICUACSES
IGUACAES | IGUAD4EB | 16UA 04 E3
16UA 04 E3 | IGUA O 4 E B
I GUA O 4 E B | | LONG. | 117 109W 5 | 117 109W S | 117 109W-S | 1UH (EXT.15 | • | LONG. | 116 324W S
109 536W S | 109 544H S
99 533H S | 99 533# S | 90 291H S
84 95H S | 84 62W S
80 361H S | 80 190% S | 83 33 W 5 | 83 247W S
84 48H S | 84 47W S | 90 599W S | 97 38W S | S MEES 66: | | DISP
CODE LAT. | GDC 32 367N
GDC 32 367N | 60C 32 367N
60C 32 367N | 60C 32 367N
60C 3Z 357A | FLOOR AQUAR | | DISP
CODE LAT. | GDC 30 491N
GDC 22 53-N | GDC 22 527N
GDC 16 487N | GDC 16 487N
GDC 7 217N | 605 7 207N
605 1 67N | 60C 1 27N
65C 2 387S | 600 2 410S | 600 1 58
600 4 255N | GDC 4 357N
GDC 7 505N | 000 7 519N | 600 9 47N
600 13 186N | 60C 13 184N
60C 15 765N | 600 15 2
600 16 4 | | SEQ. | | • | | ASE 2ND | | SEO. | , ^
pa pa | ~~~ | m m | ** | in in | 44 | , h- h- | வ ஷ | • • | 10 | | 22 | | SAMPLE IDENT. | S SCIENTIFIC LOG | B U/W WATCH LOG
E U/W WATCH LOG | B X81 LOG | CURATOR T.E. CHA | • | SAMPLE IDENT. | B GDR 12KHZ-ROLL
E GDR 12KHZ-ROLL | 8 GOR 12KHZ-ROLL
E GOR 12KHZ-ROLL | GOR 12KHZ-ROLL | B GDR 12KHZ-ROLL
E GDR 12KHZ-ROLL | B GOR 12KHZ-ROLL
E GOR 12KHZ-ROLL | 8 GDR 12KHZ-ROLL
E GDR 12KHZ-ROLL | 8 GOR 12KHZ-ROLL
E GOR 12KHZ-ROLL | 8 GDR 12KHZ-ROLL
E GDR 12KHZ-KOLL | B GOR 12KHZ-RÜLL
E GOR 12KHZ-ROLL | 8 GDR 12KHZ-ROLLIG
E GOR 12KHZ-ROLLIG | B GOR 12KHZ-ROLLII
E GOR 12KHZ-ROLLII | B GUR 12KHZ-KOLL1
E GDR 12KHZ-ROLL1 | | E TZ SAMP
C LOC CODE | 3 3587
1882
1882 | 2 3587
8 3587 | 22 | DERWAY DATA - (| ** | E TZ SAMP | DPRT B | DPAT 8 | OPRT 8 | OPAT B | DPAT A | DPAT E | DPAT I | DPRT 8 | DPAT B | OPRT 6 | DPRT B | DPRT (| | TIME DATE TIME
GMT D.M.Y. LOC | 1120 31 372
2200 22 572 | 1120 31 372
2200 22 572 | 120 31 372
200 22 572 | UNDER | **FATHDGRAKS | IME DATE TIME
GMT D.M.Y. LOC | 545 1 472
536 4 472 | 710 4 472
958 7 472 | 244 9 472 | 759 13 472
135 15 472 | 214 15 472
300 1:7 472 | 2125 21 472
1003 23 472 | 013 23 472
833 26 472 | 854 26 472
515 29 472 | 624 29 472
53 4 572 | 54 4 572
1515 1 572 | 517 7 572
549 11 572 | 5 1 572
45 1 572 | | ; ; | H 0 | -2 | 11 | | | F-0 1 | , m | 17 | | 217 | Nime | NH | 4 | | ñ | ** | ,,, | 🎢 | | TIME 72
100 LOC | SAMP | į | SAMPLE | TE IDENT. | | SEO. | P.1SP
CCGE | [| LAT | 3 | LDNG. | • | CRUISE
LEG-SHIP | |--------------------|---------------------------------------|-------------|---------------------|----------------------------------|-------------------|-----------|-------------------|------------|----------------|------|---------------|-------|--------------------------| | | DPRT | ं की ध | COR 1 | 12KHZ-ROLLI
12KHZ-ROLLI | 113 | | 500 | 90 | NE ST | 107 | 576H
12H | S | IGUAOSEB
IGUAOSEB | | | DPRT | uz us | COR 1
GOR 1 | 12KHZ-ROLL14
12KHZ-ROLL14 | | · | 2 203 | 90 | 194N
51 CN | 107 | *0 % CE. | vs vs | 16UA 05E8
16UA 05E8 | | | DPRI | म्ब्रा स्था | COR 1 | 12KHZ-ROLL15
12KHZ-ROLL15 | 113 | | 200 | 13 CF | 512N
367N | 2112 | 1,98W | so so | IGUAOSEB
IGUAOSEB | | 2 | 2 | 按 | REFLECTION PROFILES | * | | | | | | | ٠ | | | | 2007
2007 | SAMP | ł | SAMPLE | LE IDENT | . ! | SE D. | 0 15 P | ŧ | L.A.T., | 2 | LONG. | _ ! | CRUISE
LEG-SHIP | | 20.50 | SPRF
SPRF | ் கூடி | AIRGU | AIRGUN-RF-ROLL
AIRGUN-RF-ROLL | - 11 | | 200 | 50 | 402N
286N | 35 | 26 BM
565W | us us | IGUAO1EB
IGUAO4EB | | SS | SPRF
SPRF | EG LLF | AIRGU | AIRGUN-RF-ROLL
AIRGUN-RF-ROLL | 1 5 5 EE 5 | | 900
900
900 | o o | 235M
109N | 921 | 76.5%
1.9% | us us | 16UA 04 EB
16UA 05 EB | | R. P. | SPRS | 40 | A IR GU | airgun-as-aoll
Airgun-as-aoll | ==.
==: | | 200 | 40 | 109N | 116 | 26 8¥ | us us | TOUA OLEB | | * | | | | | | | | | | | | | | | 12 SA
10C CO | SAMP | Ì | SAMPLE | LE IDENT | | SE O. | D IS P
CODE | إنسا | LAT. | 3 | LONG. | _ | CRUISE
LEG-SHIP | | 菱菱 | MC N | ರ್ ಚ | MA GRE | ma chet –roll
Ma gnet–roll | پ سر بادیر | | 999 | 33 | 42.98
57.98 | 116 | 2 99¥
407¥ | S | IGUA ÖLEB
IGUA ÖZEB | | X X | # # # # # # # # # # # # # # # # # # # | 100 Miles | MA GNE | ka gne t–roll
Ka gne t–roll | ~ ~ | | 300
300
300 | 3 9 | 57 LN | 93 | 394H
592H | אי גע | 1GUAO2EB
1GUAO3EB | | žž | MGR | 25 124 | MA GNE
MA GNE | na gnet-roll
na gnet-roll | es es | | 200 | 52 | 242N
354N | 109 | 7K
42.64 | S | IGUA OSEB
IGUA OSEB | | XX | X CX | का मा | MA GNE | MA GNET-ROLL
MA GNET-ROLL | 44 | | ၁၀၀ | N 03 | 362N
205N | 109 | 44.0W
52W | (2.03 | igua oseb
Igua oseb | . | * | |---------| | ã | | * | | | | Š | | 드 | | Ξ | | 5 | | ₹ | | EFRACTI | | Ľ. | | 뿔 | | ٠. | | u | | - | | Œ. | | S | | <u></u> | | いたいいかい | | | | .1. | | | | | | ٠ | | | , | \$ | | ٠ | | | | | | | |------------------------|--------------------------|--------------------------|-----------------------|------------------------|--------------------------|------------------------|----------------------|----------------------|------------------------|--------------------------|------------------------|------------------------|--------------------|------------------|------------------------|--| | | | | | | | | · | | | | | | | | | | | CRUTSE
LEG-SHIP | IGUADI EB
IGUADI EB | 16UA 01 EB
1CUA 01 EB | 16UA03E8
16UA03EB | 16U403EB
16U403EB | 16UA 03 EB
16UA 03 EB | IGUA 03EB
IGUA 03EB | IGUA04EB
IGUA04EB | IGUAD4EB
IGUA04EB | IGUÁ O4EB
IGUA O4EB | IGUA 04 EB
ÍGUA 04 EB | 100404EB
160404EB | 16U404E8
16UA04EB | *********** | | CRUISE
LEG-SHIP | 16UAO1E8
16UAO1E8
16UAO1E8
16UAO1E8 | | LONG | 106 460W S
106 242W S | 103 004# S
102 538# S | 82 2084 S
83 294 S | 83 364H S
62 332H S | 83 256H S | S MOS 78 | 89 454W S | 91 2W.S
91 159W S | 91 6W S
92 355W S | 95 128W S | 96 583W S
97 261W S | 5 M785 66
5 M795 66 | 135) | | LONG. | 1112 56 7W 5
1111 102% 5
108 24 8W 5
106 533W 5
106 533W 5 | | 9 m | 20 531N
20 651N | 17 556N
17 553N | 1 1175
1 95 | 0 2525
0 70N | 4 230N
5 212N | 0 131N
7 484N | 9 214N
9 134N | 8 582N
9 126N | 8 555N
9 202N | 11 569N 1 | 13 223N
12 581N | 12 434N
13 377N | (E XT . 1 | | | 24 53 33 33 33 34 54 54 54 54 54 54 54 54 54 54 54 54 54 | | SEQ. DISP
NUM. CODE | afn
Afn | X X
X X | X X | Z Z | A A A | A A | RAN | e
RFR | RFR | 3 | X X | A A A | ROB INSON | | SEQ. DISP
NUM. CODE | 88888888888888888888888888888888888888 | | IDENT. | 51
51 | 522 | 3-1-1+2 | 2-1+2+3 | 3-1THRU8
3-1THRU8 | 4-1THRUS | 4-51 | 25 | 5-17HRU10
5-17HUR10 | 61
61 | 7-1,2,3 | 8-1THRU11
8-1THRU11 | OR MARGARET | ٠ | IDENT. | | | SAMPLE | IGUA 2- | IGUA 2- | 1611A
1602 | IGUA 3- | 16UA 3- | IGUA 3- | 16UA
16UA | 16UA 4- | IGUA 4- | 15U4 4- | ISUA 4- | IGUA 4- | - CURATOR | | SAMPLE | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | | TZ SAMP
LOC CODE | SRUR B
SRUR E | SAUR 8 | SRRV B
SRRV E | SRRV B
SRRV E | SRAN'B
SRAN E | SRAN B | SRUR B
SRUR E | SRUR B
SRUR E | SRAN B | SRRV B | SRRV B
SRRV E | SRAN S | BATHY THERMOGRAPHS | (APH #### | TZ SAMP
LOC CODE | XXXXX
AAAAA
AAAAA
AAAAA
AAAAA | | TIME
LOC | . 22 | N.V. | 22 | 22 | 22 | 472 | \$72
\$72 | 572
572 | \$72
\$72 | 572
572 | 22 | 22 | 3ATHY THE | Bathythermograph | 717E | 412
412
412
412 | | DATE
D.M.Y. | 5 5 472 | + 6 472
 7 472 | 3 22 472 | 3 23 472 | 3 26 472
1 28 472 | 28
29 | ம் ம | 44 | 4 0 | 9 1 | 5 7 572
4 8 572 | 8 8 572
1 10 572 | | ВАТНҮТ | DATE D.M.Y. | መ ፋ የ የ የ የ የ የ | | TIME
GMT | 1945 | 2324
27 | 1448
942 | 1848 | 745 | 1922 | 1518
1930 | 201 | 958 | 2235
302 | 1406
154 | 1733 | | ት | TI WE | 1720
626
626
1804 | | CRUISE
LEG-SHIP. | GUA 02 | <u> </u> | I GUA OZ EB | × | \approx | \simeq | \simeq | \sim | 8 | 8 | 1 GHA OZ EB | 2 | 8 | 2 2 | 2 | : 2 | 3 . | 3 8 | 8 | I GUA 03 EB | Ω | 2 | | | | 8 | 8 | 1GUA 03EB | - | 100000 | | 3 6 | 3 6 | 1004000
1004000 | 5 | 16UA O4EB | č | ã. | ŏ | 8 | ž | Z | č | ž | ă | ã | ă | ă | ŏ | ŏ | Š | 5 | ä | Č | 5 | 100 A CO | 0 | ä | | |-------------------------------|---------------|------------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|----------------------|--------------------|--|---|------------------|------------------|------------------|------------------|---------------------|---|------------------|---|------------------|------------------|-------------|--|---|---|--|---|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------------------|------------------|------------------|---|--------------------|--|-------------------|------------------|---| | | • | | S | | | | | - | - | | | | | | | | | | | | | | | | - | 4 i | | | | | . ONG | . w | . • | 213W | 43 | " | | * | 14 | Œ1 | • | | uı | | | - | . 4 | • | 1 | | | 1 17 | u | | 4 1 | ٠, | | ~~ | ** | - | • | | | • | • | | • | _ | | | (4) | ŗ.J. | t, j | 4 | 'n | 4 | ~ | 'n | E.) | ~ | 2 | 'n | S | i in | • | - u | | , | pr3 | | | | · | 6 | 93 | ç | 6 | <u></u> | 6 | 6 | 8 | 8 | 5 | 83 | æ | . 60 | 4 | ā | 9 4 | ŏ | 55 | ф
М | 85 | 23 | ď | 20 | ŝ | 83 | | 40 | α | 2 0 | 3 2 | | à | | | | | | | | | | | | | | | | | | | , | - | | ٠, | ٠, | • | _ | | | LAT. | NE/Z | 4 C 3 N | 271N | 32 ON | 416N | 2000 | W (+ | 4 98N | C. 1.34 | 254 | 334% | NG ST | F.3. | S 03N | 20.00 | 100 | 400 | 200 | 725 | 5775 | 2323 | 3 G.7N | 7 C | | 200 | 7.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10 | 436N | 25/25 | 2 | 777 | 10 to | | 2 : | 2 7 | 2007 | 3403 | 22.22 | Z (m. | 5427 | 2.
 | 1.74 N | 1 93N | 255K | 1968 | 之代に | 5.00 | 56.1N | N5-5 K | となると | 3092 | 41 ON | | 46.73 | Z C 2 N | | 200 | 21 43 | 13.6% | • | | CL U2 | - | , m | 2 | ,-4
,-4 | 0 | G | Φ | <u></u> | ! ~ | 4 | 4 | ĺψ | • 10 | ; 0 | | ۰ د | بر ق | - | | Ġ | 0 | * | | ** | + | * | * | 4 | 4 | - 4 | 3 4 | a l | - (| . (| | <u> </u> | Ġ. | G. | ده | 5 | 0 | Ç. | ķ | 2 | (**)
 | ~ | 2 | 2 | () | m | r~e | 7.6 | , L- | | 4 6 | | 7 | (4) | | | 5.13
CO3 | i 1 | - | E 7.5 | - | - | - | - | - | - | - | - | - | . | - | | - - | - ¥ | - 1 | - | - | - | - | ٠. | • • | 1 | - | • | _ | | سز ه | | . , | | - ; |) | | - | - | - | | , , | • | - | , | - | • | - |)ee | 3~ | } | • | , | | | - } | → } | - , | } | | | \$50.
\$0% | | | ٠ | ٠ | | | | | | · | | | | | | ٠ | ٠ | | • | | | | | | | | നമ്. | • | \$ *1#301 | | | | | | | | | - | • | | | | • | | | | | | | | | | • | | | | | | | | | | | | | | | 128301 3 | | 10 | | . 21 | £. | 41 | . 52 | . 91 | | 18 | 51 | . 20 | | 22 | , m | 7 4 | | | | . 22 | 28 | 5.5 | | 3 - | | 32 | w. | 34 | 4 | ž 42 | 7.0 | - (| 2 ⁽ | <u>ب</u> | . 5 | | 27 | 43 | 44 | S + | . 94 | | 10.7 | 64 | 50 | | 52 | | . 54 | 55 | 56 | 20 | 59 | | 20. | ~ · | 20 | 63 | | | IDEMI. | • | | XBT 11 | - | ~* | | *** | , 4 | | *** | اسه | N | ١^ | 2 PV | 'n | a r | 40 | 4 | N | ~ | 6.7 | 2 | ł K | 9 6 | J. | 'n | m | m | • |) tr | ì | 4 (| 9 (| u . | σ, | 1 | 2 | • | 4 | 1 | 4 | 4 | | 4 | 'n | ist. | ĸλ | w | w | e. | ŝ | r. | ı KO | . 4 | Ç. | 0 | • | 40 | | | AMPLE IDEMT. | XRT | XIII | - | XBT. 1 | XOT 1 | X81 1 | XBT 1 | Xer | XBT 1 | X87 1 | XBT | XBT 2 | XRT | XET 2 | - E - E - A | | 707 | 70-1 | X 19X | XBT 2 | XB1 | XBT 2 | , K | 7 C | AD A | X61 3 | XBT 3 | X81 3 | KRT 3 | *** | 7 e | 4 6 | n c
- p c
- p c
- p c | n - 65 | \$ - D | XB+ | XBT | XBT 4 | X81 4 | * _ 8X | X67 4 | XET 4 | XBT 4 | X87 4 | XBT S | XELS | XBI 5 | XGT 5 | XRT 5 | XBT S | XBT 5 | XBX | X87.5 | | - 122 | 70× | 18% | XBT 6 | | | SAMPLE IDEMT. | XRT | XIII | 181 | XBT. 1 | XOT 1 | X81 1 | XBT 1 | Xer | XBT 1 | X87 1 | XBT | XBT 2 | XRT | XET 2 | - E - E - A | | 707 | 70-1 | X 19X | XBT 2 | XB1 | XBT 2 | , K | 7 C | AD A | X61 3 | XBT 3 | X81 3 | KRT 3 | *** | 7 e | 4 6 | n c
- p | 9 - CK | T T X | XB+ | XBT | XBT 4 | X81 4 | * _ 8X | X67 4 | XUX 4 | XBT 4 | X87 4 | XBT 5 | XELS | XBI 5 | XGT 5 | XRT 5 | XBT S | XBT 5 | XBX | X87.5 | | - 122 | 70× | 18% | XBT 6 | | | TIME IZ SAMP SAMPLE IDEMI. | RTX XRT | BIX XII I | BIX XBI 1 | BIX XBT.1 | BIX XBI | 81x x81 1 | BIX XBI | I TAX XPH | BIX XBI 1 | BIX XBT 1 | BTX XBT | BIX XBT 2 | RTX XBT > | BIX XEI 2 | 0 10% X10 | 4 + Ct | 7 107 7 10 0 C 10 C 10 C 10 C 10 C 10 C | 2 104 Y 2 | SIX XBI Z | SIX XBT 2 | SIX XBI 2 | BIX · XBT 2 | t hay wha | 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | SIX ABI | BIX XEL 3 | BIX XBI | BTX XBT 3 | A TRA XTR | 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 7 104 210 | 4 - Q4 - 4 - Q4 - Q4 - Q4 - Q4 - Q4 - Q | 7 - C - C - C - C - C - C - C - C - C - | 0 - CK - R-C | TOX XIN | 7 19X X19 | BTX XBT. 4 | TEX XEL 4 | BIX XBI 4 | # 18X X18 | 81X X61 4 | BIX XBI 4 | BIX XBI 4 | 4 18X XB1 4 | BIX XBI 5 | BIX XBI S | 5 TAX XBT 5 | STX XBI S | BTX XBT 5 | S 18X X18 | BTX XBT 5 | BIX XBI 5 | BTX X31 | ***** | 0 - 22 | O TOX XIN | 9 18% ×18 | BTX XBT 6 | | | TE TIME TZ SAMP SAMPLE IDEMT. | ZTS RTX XBT | 472 BIX XBT 1 | 472 BTX XBT 1 | 472 BTX XBT 1 | 472 BIX XBI 1 | 472 BTX XBT 1 | 472 BIX XBI I | 472 BIX XET 1 | 472 BIX XBT 1 | 472 BIX XBI 1 | 472 BTX XBT 1 | 472 BIX XBT 2 | 477 RTX XBT 2 | 472 BIX XET 2 | C TRY NIR CTA | 2 107 210 . 617 | 7 107 210 017 7 10 10 10 10 10 10 10 10 10 10 10 10 10 | 2 10 Y | 472 BIX XBI Z | 472 81X XBT 2 | 472 81X XBI 2 | 472 BIX XBT 2 | ATO RIK YET A | 0 H22 212 217 | Aft DIA Abi 3 | 472 BIX XET 3 | 472 BIX XBI 3 | 472 81X XBT 3 | E TAX XTR | 1.1
1.10
1.10
1.10
1.10
1.10
1.10
1.10 | 7 104 710 717 | 4 107 Y 10 214 | 0 107 710 715
0 107 710 715 | n max man unt | 572 BIX XIII 9 | 572 BTX XBT 4 | 572 BTX XBT, 4 | 572 BTX XBT 4 | 572 BTX XBT 4 | 572 BTX X8T 4 | 572 BIX X8T 4 | 572 BIX XBI 4 | 572 BIX XBI 4 | 572 61X XB1 4 | 572 BIX XBI 5 | 572 BIX XBI 5 | 572 6TX XBI 5 | 572 8TX XBT 5 | 572 BTX XBT 5 | 572 ' BTX X3T 5 | 572 . BTX XBT 5 | 572 BIX XBI 5 | 572 BTX X81 5 | 1 + 6 2 2 5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 102 Y 10 210 210 | 572 81X X61 0 | . 572 BTX XBT 6 | 572 BTX XBT 6 | | | Y. LOC LOC CODE SAMPLE IDEMT. | TAX XIA C17 B | 10 472 BIX XHI 1 | BIX XBI 1 | 11 472 BTX XBT-1 | 11 472 BTX XBT 1 | 12 472 STX XBT 1 | 12 472 BTX XBT 1 | 13 472 BTX XPT 1 | 13 472 BTX XBT 1 | 14 472 BIX XBT 1 | 14 472 BTX XBT 1 | 15 472 BIX XBT 2 | 15 477 RTX XRT 2 | 6 472 BIX XET 2 | 1 15% ALB 11. 227 71 | 2 102 210 . 217 71 | 10 1/4 Div Apr Apr A | 2 10V VIQ 2/4 22 | 23 472 BIX XBI 2 | 23 472 BIX XBT 2 | 24 472 81X XBT 2 | 25 472 BIX XBT 2 | 25 470 PT 25 427 32 | 0 HOX 2 HO | CO 44C OIA ABI 3 | 26 472 BIX X61 3 | 27 472 BIX XBT 3 | 26 472 BTX XBT 3 | S ATR YRT A | 00 770 015 015 00 017 00 015 015 015 015 015 015 015 015 015 | 20 416 CT | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 17 11 01 01 V VO P | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 5 272 XIS 572 5 | 3 572 BIX XBI 4 | 3 572 BIX XBT, 4 | 4 572 BIX XBI 4 | 4 572 BIX XBI 4 | 5 572 BIX X8I 4 | 5 572 BTX X6T 4 | 6 572 BIX XBI 4 | 6 572 BTX XBT 4 | 7 572 61X XB1 4 | 7 572 BIX XBI 5 | B 572 BIX XBI 5 | 8 572 ETX XBT 5 | 9 572 8TX XBI 5 | 9 572 BTX XBT 5 | 10 572 ' BTX X8T 5 | 10 572 . BTX XBT S | 16 572 BTX XBT 5 | 17 572 BTX X8T 5 | 1 + 62 2 2 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 | 17 7/2 614 ACT 0 | 13 572 813 615 | 18. 572 BTX XBT 6 | 19 572 BTX XBT 6 | | END SAMPLE INDEX