PATENTS \& DESIGNS ACTS 1907 to 1932

PROVISIONAL SPECIFICATION

IMPROVEMENTS IN OR RELATING TO THE TRANSMUTATION OF CHEMICALS ELEMENTS.

I LEO SZILARD, a citizen of Germany and Subject of

Hungary c/o Claremont Haynes \& Co., of Vernon House, Bloomsbury Square, London, W. C. I. do hereby declare the nature of this invention to be as follows:-

This invention has for its object the production of radio active bodies the storage of energy through the production of such bodies and the liberation of nuclear energy for power production and other purposes through nuclear transmutation.

In accordance with the present invention nuclear transmutation leading to the liberation of neutrons and of energy may be brought about by maintaining a chain reaction in which particles which carry no positive charge and the mass of which is approximately equal to the proton mass or a multiple thereof form the links of the chain. I shall call such particles in this specification "effecient particles".

An way of bringing about effeciently transmutation processes is to build up transmutation areas choosing the compos-

```
ition and the bulk of the material so as to make chain re-
actions effecient and possible, the links of the chain being
"effecient particles".
    One example is the following. The chain transmutation
contains an element "C", and this element is so chosen that an
efficient particle "X" when reacting with "C" may produce an
efficient particle "y", and the efficient particle "y" when
reacting with "C" may produce either an efficient particle "x"
or another efficient particle which in its turn is directly or
indirectly when reacting with "C" capable of producing "x". The
bulk of the transmutation area, on the other hand, must be such
that the linear dimensions of the area should sufficiently ex-
ceed the mean free path between two successive transmutations
within the chain. For long chains composed of, say, loo links
the linear dimensions must be about ten times the mean free
path.
    I shall call a chain reaction in which two efficient
particles of different mass number alternate a "doublet chain"
An example for a doublet chain which is a neutron chain would be
the following reaction, which might be set up in a mixture of
a "neutron reducer element" (like Lithium (6) or Boron (10) or
preferably some heavy "reducer" element) and a "neutron converter
element" which yields n(2) when bombarded by n(I). An example
```

for such a chain in which carbon acts as reducer and

Beryllium acts as converter would be the following:
$C(12)+n(2)=C(13)+n(1) \quad(" B e(8) "$ need not mean an exist$\operatorname{Be}(9)+n(1)=\| \operatorname{Be}(8)^{n}+n(2)$ ing element, it may break up $\operatorname{Be}(9)+\mathrm{n}(1) \neq " \mathrm{Be}(8)^{n}+\mathrm{n}(2)$ spontaneously).

One can very much increase the efficiency of the hitherto mentioned neutron chain reactions by having a "neutron multiplicator" "O" mixed with the elements which take part in the chain reaction. A neutron multiplicator is an element which either splits up $n(2)$ into $n(1)+n(1)$ or an element which yields additional neutrons for instance $n(1)$ when bombarded by n(I). A multiplicator naed not be a metastable element. Beryllium may be a suitable multiplicator. $\operatorname{Be}(9)+\mathrm{n}(1)=7 \operatorname{Be}(8) "+\mathrm{n}(1)+\mathrm{n}(1)$

An efficient particle disappears (and a chain is therefore interrupted if this happens in a chain reaction), if a neutron reacts with a nucleus in such a way that the neutron disappears and a positive particle for instance a proton or an alpha particle is emitted. I can suppress the production of a positive particle when bombarding the element by neutrons by choosing the element and the neutron energy so that the positive particle, the creation of which has a potential possibility, should not have sufficient energy at its disposal to penetrate in the inverse process the nucleus of that element. In order to avoid such an occurrence in my chain reactions I shall use
as reducers, converters and multiplicators the heaviest elements which are otherwise satisfactory.

In the accompanying drawings figures 1 and 2 show an example for utilising neutron chains for power production and the generation of radio-active bodies. 101 is a high voltage positive ray tube generating fast light ions like diplons or Helium ions which cause by striking diplogen or Beryllium in 102 the emission of a penetrating radiation (neutrons). The radiation emerging from 102 acts on the material 103 which forms a sphere around 102. This material is such that a chain reaction, preferably accompanied by the action of a multiplicator is released. For instance one can have a sphere 103 the dimensions of which are so chosen that the energy liberated in it should be a multiple of the energy input. The pumps 120, 121 and 122 pump a liquid for instance water or mercury through the pipe systems 107, 110111 thereby cooling the transmutation area 103 and driving the heated liquid through the boiler 126. The boiler supplies steam to a power plant. The neutrons l 1 lo emergying from the sphere 103 act on a layer 104 which is composed of an element " T " that will transmute into a radio-active body which is suitable for the storage of energy. The element "T" need not be present as a free element, butcan preferably be present in the form of a compound soluble in water; that makes
it easier to separate the radio active bodies formed in the
b 1 - -60 process. A third bayer 105 contains an element " V " that will absorb the neutrons /n(l)/ under liberation of energy (Ii). 106 is a heat insulating layer. Dated this 28th day of June 1934

Vernon House,
Sicilian Avenue, Bloomsbury Square W.C.I.

Applicant's Solicitors

IMPROVEMENTS IN OR RELATING TO THE TRANSMUTATION OF CHEMICAL ELEMENTS.

LEO SZILARD ESQ.,

PROVISIONAL SPECIFICATION

CLAREMONT HAYNES \& CO.,
Vernon House,
Sicilian Avenue, Bloomsbury Square, W. C. 1.

one or more
 Transmutation of chemical elements by efficient particles.

 The invention concerns the production of power, the storage of power and the production of radioactive bodies through processes in which neutrons of simple or multiple mass, ox begat 4 we nuclei are genexatac The following bywbole will be used for negative nuclei: $\mathrm{H}^{*}(1)$ for the neçtive proton, H(2) for the negative diplon; similar dy \# (3), He $^{*}(3)$, He (4) ... for negative nuclei the mass and charge of which corresponds to the positive nuclei $\mathrm{H}(3)$, $\mathrm{He}(3)$, Fe (4). Elements the mass number of which is larger than thine the atomic number will be called "overloaded". Wutrons of simple or multiple mass are also considered to be "overloaded" elements. Negative nuclei may be generated by shooting "overloaded" atoms for instance on "overloaded" elements. In order to determine which element yields negative nuclei when bombarded by "overloaded" particles one has to investigate each element by means of a Wilson cloud chamber. If a magnetic field is applied to the sad chamber the curvature of the tracks generated by the bombarded element will show if negative nuclei are present in the radiation of the element under investigation. If inst er is radiated by negative nuclei these can be captured by the positive nuclei without necessarily falling at once into the positive nueleus,i.e. the binding energy can possibly be small at least for a certain period of time after the capture. Bombardment of Hydrogen, H(1), Diplogen 4 (2), Triplogen $H(3)$ by negative protons may lead to the generation of neutrons in which the positive and negative nucleus is possibly only loosely bound for some time after the generation. For instance the binding energybebween a positive and negative proton may at first be betwert ten and twenty thousand volts. Neutrons in which the nuckek are $2008 e l y$ bound will be ealled subsequent $2 y$ pseudo-neutrong and the symbols $\bar{n}(2), \bar{F}(3)$ and $\bar{n}(4)$ to diatinguish thea from the resi neutyons of the same mass aumber for which we shall write \quad (2), $n(3)$ and $n(4)$. Such peeudo-neutrons would sutfor gherey losses if they travel through antter at m-4wen-gfeet which are large as compared to the energy losses for real nuptrons at the ame speed. While peeitive nucley ao not eause tranemutation if they have reached the epa of their range this is the the csee for negat ive protong and other negative nuchei sad for such nuelei which contain inetabiy floosely) botyd negative nueled, for instance pseudowneutrons. They hay be, therefore, equaliy efficient as real neutrons, the range of which is very large and may therefore be used in the processen and in the apparatus whioh is subject to thie
Invention. We shall call them "effieient partieles" under which name we understand neutrons, and celscestive mies sad ngeuto-nucles- (gseudo-nuelel are pseudo-neut ronser positive nueler whtioh oonta in loogely bound negative nuelel and therecore gas euuse transmutation even when at the very and of their range).

The precearing pupt-al the alaentption server onty to define bre scope of the word Heciletent partiele.". The following ehaptere deal with the invention steedt which coneern sethods sad spparatus for the produetion of power, for the storage of power and for the production of radiosetive bodies by means of chain resetions the $12 n k e$ of the ohein being "erficient partieles".

1. we ehoose an elament "C" for our process oo that its mase (pacelne fraction) should be suffictently

If \$eutrons are generated by oombarding a 11 int element in the transmutation chamber 20 with Diplogen, Triplogen, or Helium ione accolerated by electric iields as indicated in Fig, 1 by means of a hich voltage discharge tube as desoribed by Cookroft and weiton, one can get strong penetrating radiation from the transmutation chamber 20 , the active agent of which seens to consist in Neutrons. If the transmutation chamber is surrounded by layer 21 composed
 of the elements $\mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{A}, \mathrm{K}, \mathrm{Ca}, \mathrm{H}, \mathrm{Fi}, \mathrm{V}, \mathrm{Cr}, \mathrm{M}, \mathrm{Fe}, \mathrm{CO}, \mathrm{HS}, \mathrm{Kr}, \mathrm{RD}$,

 ㅍ(2).
negative nuelei, for instance negative protons.or diplons are cenerated in the layer This if anemy due to the action of the freutrons of the mass 1 , though part of the effect may be due to Neutrons of the mass 2 which may be generated by Feutrone of the mess 1 through their interaction with Diplogenf or ferythim be determined for each element separately whether it generates negative nuelei, how much and of what mass and charge by mesns of a wilson CDoùd Onamber, to which a magnetic fich is applied. eeneratef negative nuelei, for instance negative protons, under the influence of the said penetrating radietion, and of ary element "B", which transmutes into a radio-qetive elenent, under the influence of a negative nucleus radiation,
we can efficiently produce a new type of radio-active body

Yt is essential to have the bulk of elenent "A" so large that a asrge proportion of the Weutrons is utilised in nuclear collisions (layers of 10 cm fing to 100 cmor more needed) and it is further essential that elements "A" and "Bn shoukd be so mixed that many of the negative nuelei generated in "A should reach "B" before or when they come to the end of their range. An exauple for a substance "A" which apparently yielas negstive nuelei, presumebly negative protons, when yombarded by Neutrons, is Uran.

Some of the radio-sdive substamees genersted by negative proton bonthrament are of an entirely new type; apparently the fegative proton gete first eaptured in oertain casef by the positive nucleus of the bombarded element without falling at once into the nueleus and subeegi entiy there is a ilberation of enerey following an exponential law corresponding to the negative proton interacting with
silsing inte the nueleus.
(Bombardment of hydrogen, aiplogen, $\mathrm{g}(2)$, triplosen, H(3), by negative protons may lead to the genorttion of pseudo-ncutreas, which may seter a gartain time /tranemute 1nto resi medtrons: Such bomberdment may laad to the generation of peoudoungit rens of the masses 2,3 and 4 respeetively, for his eh we ahall uae the symbole $\bar{n}(3)$, $\bar{n}(3)$ end $\bar{n}(4)$ to distinguish then fros the real neutroas of similar hisss numbers, for which we shall uge the symbols $n(2), n(3)$ and $n(4)$.

Such pseudo-neutrons sufforefrergy losses through ionising metter (through wich they travel) in a harear degree than is the case for Feal neutrons, and their range is therofors smaller. However, they ema osus transmutation even if they have reached the end of thelr range and
are therefore wueh more efricient in eatising transmutations than protons, dipions or othgz ponitive nuelei.) Negutve nucled have a ranese ainflar to positive nucled, but they 2 oan asuse erapothatation even when at the end of their range and agetherefore much more eificient 3 this respect than yyotoas, asplone snd other positive nuelel.

An important way of bxinging about effieientiy
transmuthtion proeasses is to build up transmutation areas choosing the composition anl the buik of the raterial so as to moke chain reactions efficient and poseible, the innea of the chain being "efileient partieles".

One example is the following, The ohain transmutation contains an element "C", and thie elemant is so chosen that an efficient particle "x whan reacting with "g" way produee an efficient particle " y^{*}, and the erfieient partiele " y ", when reacting with "C" may produce either an efifolant particie " x " or another efficient particle whioh in ite turn is direetly or indirectly when reaeting with ${ }^{3} \mathrm{C}^{\text {" }}$ cagable of producing n_{x}. . The bulk of the transmuta. tion area, on the other hand, sust be guch that the i1near dimensions of the area should sufficiently exeaed the mean Iree path between two suceessive transmatations within the ohain. For long chains sorposad off, say, 100 Linke the J.Lnear dimensions must be sbout ten times the mean free path. An example of such a chain reaetion in which the effielent pastioles sue neutrons and in whieh the element ${ }^{4} \mathrm{c}^{\prime}$ is diplogen, mify be the following: *

$$
\left.\begin{array}{l}
H(2)+n(2)+n(2)+\pi(1) \\
H(2)+n(3)+n(3)+4 \cdot 5 \cdot M \cdot E . V .)
\end{array}\right\}+4 .
$$

In order to bring sbout sueh a chain reaction a largo bulk of aiplogen must be exposed to a neutron radiation senerated as deseribed above in 1 E . I. The dipiogen my be mixed with an olement " D_{p} " ehosen so that a neutron

In the above mentioned chain reaction an energy of abont $4.5 \mathrm{M} \cdot \mathrm{E}, \mathrm{V}$. is 2iborated while two atoms $\mathrm{H}(2)$ disappear and one atom $H(3)$ and one atom $H(1)$ are produced. We shail call a chain reaction al in whtion two officient particles of aifferent mass muber or atomic muber alternate a "doublet chain. If botir-pasicios-ave-neutrone He shait cati It a neutwor chuin. An etample for another doublet chain which is a neutron chain is the following reaction, which can be set up in a mixture of a "neutron reducer zeocifrer olement"(2ike Lithium (6) or Boron (20) or preferably somo of the heavy "peducirer" elements menternes "neutron a/converter elenent ${ }^{\text {t }}$ which $\mathrm{y}^{2} \mathrm{elds} \mathrm{n}(2)$ when bouberded by n(1). An example for such a chain in which corbon acts as ueduch and Beryllium acts as converter would be the following:

$$
\begin{aligned}
& C(12)+n(2)=c(13)+n(1) \quad\left({ }^{(} \mathrm{Be}(8)^{n}\right. \text { need not moan an ex- } \\
& \mathrm{Be}(9)+n(2)={ }^{n} \mathrm{Be}(8)^{n}+n(2) \quad \text { isting element, it may brealk }
\end{aligned}
$$

> "neutron
> Diplogen seact as a seceiver as well as a/converter", we have a chain reaction in which only one kind of. erpiefent particle takes part we call the chain a"singulat chain.

We shall now give an example for a noutwon singulet chatn. A singulet chain can only be maintainod in the presence of a metastable element i.e. on element which has sufficient energy to disintegrate into parts thef of the mass number of which is equal to its mass number or to treanmute into an isomar under liberation of exorgy, when freating an efficient particle. An example for such a metastable element is Berylifum. When exposed to a neutron radiation, Beryllium transmutes and increaser the energy of the neutron with which it seacts:
$\mathrm{Be}(\mathrm{g})+\mathrm{n}(2)=\mathrm{BBe}_{\mathrm{Be}}(0)^{\prime \prime}+\mathrm{n}(2)+\mathrm{Bnorg}$
"B $\phi(9)$ " would be if it were stable an isomer of Beryllium
but it need not be stable, it may aisintogzate spontanoously Into parts.

One can very much Increase the efflciency of the hatherto mentioned noutron chein reactions by having a "neutra " ${ }^{10}$ multiplicator ${ }^{n} /$ nixed with the elements which take part in the chain reaction. A/multiplicator is an element which either splits up tukn n (2) into $n(2)+n(1)$ or an element for instance which yields additional neutrons $/ n(1)$ when bombarded by n(1). A multiplicator noed not be heoasansilt a metastable element out mothstanwerements end
 θ suitable multiplicator turytelementions unter 1tberation 9f-

 chains, we shail now taik about "mized chains" in which we have two efrletent particles, one being a neutron, the ouslon othor one boing a nogative proton 1 forming the 1 iniks of the chain:

$z^{\prime \prime} R^{n}+{ }^{*}(1)=z_{z-1}^{z+1}+n(1)+$ Energy
It is essential to chose the element "R" so as to second have enorgy ilberation in the/process, whereas it is not necessary to have energy liberation in the firgt process. In order to be able to produce energy for power production and to store onergy by producing radio-active bodies to be usod as accumalators it is necessary to wrom maintain a chain reaction (if the chain peaction is a noutron chain Of a mised chain) in a lamge bulk of material. This Is due to the fact that the mean fred path of the neutrons is large. The situation is entirely different for pure negative ohains with which we deal funther below. A mixed chain in which $n(1), n(2)$ and N $^{*}(1)$ talce part (a triplet reaction) could be maintained in mixture
of H(8), H(2) and LA (7)

IS (7) End other reetufer elements tentioned further below chains mandmed chaina for power production and the generation of radio-active bodies. 101 is a high voltage positive ray tube generating fast light ions like diplons or Helium tons whtch cause by striking diplogen or Berylitum in 102 the omission of a ponetrating radiation (neutrons). The radiation emerging from 202 acts on the material 103 which forms a sphere asound 202. This material is such that a chain reaction, proferably accompanied by the action of a mitiplicator is released.

20w, the dimenstions of whit, oh are so chosen that the Lt energy 21 beratod in the peryaliwayshould be a multiple of the energy input. The pramps 220, 121 and 122 pump a liquid for instance water or mercury through the 107, 110, 111
 103 thereby cooling the transmutation area end driving the heated 1iquid through the boiler 126. The boiler supplies xuyzty stean to a power plant. The neutrons emerging from the sphere 103 act on a layer 104 which is composed of an element/that will trensmute into a radio-active body which is sultable for the storage of energy. XThe element "rgh noed not be present as a free element but can preferably be present in the rorm of a compound solupble in water; that makes it easter to separate the radio-/podies formed in the process. A third layor 105 contalns an olement " V " that will absorbl the neutrons $/ \mathrm{n}(1) /$ under Iiberation of energy (hil7) or ((12) some other "heceiver" element).

Is a heat insulating layer.

This paragraph deals with chain reactions
In which negative protons or negative diplons or both are engaged.

Negative protons can be generated by shooting neutrons on one of the elements mentioned on page 3 . In order to determine which element or which isotope of a given element is most efficient in yielding negative protons (or negative diplons) when bombarded by neutrons, one has to Investigate each element or each isotope respectively by beans of a Wilson Cloud Chamber to which a magnetic field 1 s applied. Instead of the wilson Cloud Chamber one dan also use an ionization chamber in connection with an amplifyer and an oscillograph and use a magnetic field to deflect the "protons" before they enter the chambers

If one exposes mixture of Diplogen and another element which acts as a "reducer ${ }^{\text {ron }}$. such as for instance Lithium (6) or Preytatax Boron (10) or Carbon (12) to the action of negative protons or diplons, chain reactions of the following type may be maintained:
$\mathrm{LI}(6)+\underset{\mathrm{H}(2)}{*}=\mathrm{Li}(7)+\underset{\mathrm{H}(1)}{*}+$ Energy
$H(2)+\underset{H}{H}(1)=H(1)+\underset{H}{H}(2)$
As we see energies liberated in the first reaction, but there is no liberation of energy in the second reaction. The latter fact makes this second reaction objectionable for the following reason: if we have a pure neutron chain which is a doublet chain reducer
it is not/ important that both the weesmaz/and the wax converter
/ayer mention reaction should yield energy, but if we use a pure negative chain which is a doublet chain it is reducer
important that both the racersura/reaction and the converter reaction should yield energy.
d. Diplogen itself can act as a "reduce""

The are- mentioned seediusus had thenar better te effed in combination with another "comete"" Shan dislofyes. proton recitation.

In order to get a multiplicating action a third element "太" cen be mixed to the two element mixture which maintain the chang, the eloneat "\% "Melding the following reaction:
${ }_{z} E^{\prime}(m)+H^{*}(2)={ }_{1 z} F^{\prime \prime}(m)+H^{*}(1)+H^{*}(1)+E_{n}$. In order to determine which element $F_{k}^{i s}$ cepable of this reaction a source which yield nfcetive diplons can be surrounded subseçently by thin/ sheets of the elements mentioned on pace 3. and fy monas of a Wilson cloud Chamber or an ionisation chap per of the
type, i_{n} combination with magnetic field one can determine which of the waif elements yields sufficiently large number of negative protons when bombarded by segative aivions. Any element" E "will he called an undrechayged multiplicator.

We thill call sul/ecuently two elements which have the same mes number foobar pare of the first order if their atomic number differs by one. Such isobar pairs are for instance

The mass of the two elements romaine an isobar pair is not exactly fuad. In certain cases the mass of the element of the lower atomic number io larger than the mace of the gpa element with the higher atomic number. If the mess difference is sufficiently large a negative di_ ion strip. Res the element with the lover atomic number con get Qp) up into two negative protons (also in the case
for dithontine kinetic energy of the negative diplon
isobar pair of the first order end in gs undercharged
number of the two element o forming the pets may be a
suitable sultiplicator in a chain reaction in which
gin much censes we shad coli the element of wee lower atomic number an"undercherged examens of the fix Lb order."
negetive diplons end negative protons niternate. An underonerged elument of the firat order foth be gashed en undercherged multisdbeetor if its. ases is

 aegestave of eneres if the diplon 45 at remb. The mane eifform anes between bae nogetave diplon any bwo acgative pre.0015 to 0.002 tone beins .00m, the mese dirrercned betwpes the two aleaente forming the isobas pais bo the firet order thust be at 2 veset as tuch) 。

If we use the word "undercharged element"
hwewer mecersurily We do not neeosgetity moen an lement which belongs to cull so
an usobor paly (doublet) but fre ween ary element which can transmute under 2iberation of energy while its charge (atomic mamber) increeses (or nore preessely while the the sum of the chargas of the perts into which $1 t$ may rall in th process incrossos). We shall talk of underchafged elements of the first, second or any higher forder nccordingly whothor energy Is 11 borated while the charge increases by zy one, two of more units, Evidentiy en undercherged olement can be both of tye rirst and second orcler ote. An example of as undercharged element is for instance potesstran (\$). Thu madivatetive isutope uf putkmen As we gell all elements motastable which zunxe or suiftutentiv terge sumx have a sufficient energy to transmute punder 3 isberation of energy while the mess number fait respithe tum does not change (thaxsyt of the mass numbere aftsthe parts Into why (ch it may ferm doos not change).

and the sum of the mass numbers of the parts | ser equal to |
| :--- |
| nemiains |
| the ghiginal mass munber. |

Hecocsentig ennter a.2 unileschasgod olononto
metastable. Trasmion fos motestable olempnts are the radionctive Asotope of

If we hive un saobes doubset of the feerid order, A(40), Cal40); ere.
and/the mass of the elemont whth tho/smaller atomic number te larger than the mats of the partnor in the doublots the forver ono ta necearperdy an undorehesced praticio of the second order.

and it the mass of the elempt wich has the lowest abomic mumber is amales thon the mass of the olement donblex viateh has tho intehost offute mumber in the trefplet the forves one is necopassidy an undowoharged element of the freth ordor.

We sha12 nov fore bnelk to alscuss the ahruyg ohain wonetions if which nogative asplons ond notative psotons eltomathe We hevo den2t vith such moactions In mixtures os ASplogen and some othor elenent (LilC), $\mathrm{B}(20)$, $\mathrm{N}(24)$ In thitch the partnos of tho explogen hes boen seleotpa anong thoso elemonts of which ve elready mow that fluey yle3a fast protons whon bonberded by Fast Atyures atpions (positive diplons) unier 2sboration

 onores nogetivo protons whan boxbourded by necative asphons "soducos" elonents, and it is oasy to find out by expertmont whieh of the eloxonts mentionod on page

to-ntim aloments whioh ytele nogativo asplond whon bowberdod by nogative protons without swe kipoing moh onergy 2nthe process. Suoh elomonts wigh be celled "convorterw" olemonts, and in the ohntin penction deacsibed fusthos above aspiogen piayod the sole of tho eonvostes elanont. Diplogon dooss not ave2iow onoricy in tho proooss of corvaztiong but nesthes doos It riberato enorgy in the psocoss A convertior elonent whith libosutea onergy if the process of Jielaing negative diplona when boabiatiod by negetive protons, v121 bo cel20ed nn "atrundent cofovertos". Suoh an

It is an a dvantrige to aeloet that zututer two elowente, A "pedueos" and an "abruday corrvortas" to fown the mitrture in which a olvainfeenetion is produced, possibly in the presonce of an yheoreharged mutiplicetos colenent " E^{6})
we cen use forpanatance tisthtum (6), Boron (30), 129Fogen (24) ote. fs "geducer" in combination vith Bery213ug (Inatong of asplogen) as "abundinnt oonverter". It we fro
bearding fo mitcheac tixe abovonentioned elenents
 reections of fhe followine types

O\& course Be(3) need not be steble but can Sal2 at onee Into parts or trangmte after somo time.

Tho above mentlonod resction between $\mathrm{Be}(\theta)$ gha $H(2)$ oan also be writtion in another sora in order to Indicate that the netertive proton ray be on turgea by the
 Intigrete subsequontiy with a cortain halr poriod. In ordes to indicate this possibility we oanverte the reaction in the rozkowing fomm

In order to get a chain rpaction in which H(2) and苚(2)altempate we have to use as zontioned above a converter end a roduces. Apart from tho seducens montioned above suttable reducers cen be foung among the olomonts wich heve an even a torate mubes and hove at the sense bine an atonsic veight close to a thole munber. The lattor fact Indicetes that the elenomt is meinly composed of one 1sotope. Such elonente are (iby Wla(20), Mg(24), S1(28), $\mathrm{S}(38), \mathrm{Cr}(52), \mathrm{A}(40), \mathrm{Fi}(48), \mathrm{Ba}(338), \mathrm{Ge}(240), \mathrm{Th}(232)$ U(230). Kapecialiy futtable are of these olements those which have a wealk trotope of an atonate number which exceeds by one tho atomic number of the main isotopes such elements ard $\mathrm{O}_{3} \mathrm{No}_{3}$, H , $\mathrm{Si}, \mathrm{S}_{3}$, and Cr 。

Wo ahen/on call chain reactions in which two efrielent purticies alternate (roy instence two negative hydyogon isotopes) doublet chains. As a mule a nixture or at lenst two olenontis is noodod to maintatn a doublyt chain unioas one and the seme elament acts as converger as well as reducer. It is preferable vo use a metagnable olemont as convertor, and ossontin to use a methatablo elemont as mutiplicator (if we wish to havo a mpleiplicator acting in the process) if we vant to split notyelve
ap a/tyycrogon isotope. This is essential for the following

Foasons the negative hydrocon Asotope for instanco (it (2) requires onorgy in ordor to be able to split up in two negative protons. This oneres may be suppized by the fetnotio enorgy of $H(2)$ itself, but in view of the fact that the pange of H (2) is smal2 only smogy fent maxtitutam
 oen split wo in this wey befose the ond of the range is reachod. Onoe theli(2) partiole joges its kinetic enovey 26 can only bo splat up whon muliny motesteble elenont ${ }^{\mathrm{E}_{\mathrm{B}}}$. In order to indicate thet 10 may sirst cot captured by that oloment and sphat up subseguentiy vith a cortain hais poriod wo starta/witte the poaction (which hes already boen mentionga above) in the following forma

In thoce equations \% moand the atomic maiber and m moans the mass munber of the uphersharged miltiplicator " g^{\prime}. Berylztun san act both fa a convortoe and an undercharged multapleator.

Thowe are not many motastable olemonts anong the anght elenonts whigh cen act as converters or maltiplieators os both, but such/olenents mey be fouhd anomg the notals which have a mage nuriver above 220 and an atomte nunber above 50. Of such olenents those are the nost sultable which have of atomite weight elose to a wholo number, a faet whan andscates that the olement contains mainly one 2sotope. Such elanonts amo Urantun (V) Thorlum (Th), which aye known to be metastable, furthos tratun (Ir) Tentay (Sa), Blamuth (BS), gold (Au), Co, Ba, Cs.

In a matrure of a recolvor and a metnatable olonont an/witch ve wish to maintain a coublot chain the motaptable elanont will have to be present in abundence, 1.e.
(recelver elesont.

We shall now sey a rew words about fingulet chains which enn be induced in motabtable olononts; for instance in Berylilus ar nogative protons or atptone are sating on Bory2ilum. These are ohains in whtch onergye is 2iborated by anerriolont partilele phitah does not disappoes in the process, nos doos 44 ohanco its mass or ตมรง
charge (mtente/number of efonto mumber). Such a chein can be mantainod in Bery2livug, the 3 intre of the ohain belng necutive protons:

$$
\begin{aligned}
& { }_{4}^{B e}(9)+H^{x}(2)={ }_{3} t \dot{e}(10)^{n} \\
& { }_{3}^{n} L \dot{e}(20)^{n}={ }_{4}^{3} B e(9)^{n}+H^{x}(2)+\text { Enorey. }
\end{aligned}
$$

We see that the negative proton which has been oaptured by Boxylilun nuelous is rolessea under 1abespation of energy white the Beryziaus bransmates into "Be fontoh in 2te turn mey broalz u spontenocosiy) ena the releesed netgativo proton is froe to reect with anothes Beryllium molous.

A simizh ainculet ohnin can be maintained in Bery 214 un valy nogative asplons instend of nogative protons.
otheof motastable elements may taleo the role of Bery22ium of such singuiot chains, in which ofthor negative protons of one of the negative hyclrogon Isotopes form the 2inize of the chatns
${ }^{n} 2^{3(n)}(n)^{n}+\pi^{x}(2)=\frac{2}{x-2(2 n+2)^{n}}$

In this equation moans the mese nuiber of the metestable elemont thy which trenamutes under 22 beretion of energy into an/2sonos "Th (which nay or may not assintigrate spontgneonszy in tte (umn). productaik of powers, the atorace of zotroy by mouns of radio-active bodies, and the froduction of radioective bodies in serompal by hoons of ehen poactions in which the innis of whe diain are romod by negative muclei fow instunce necutive protons or negattve aiplons os both.
2. Steruiot ohalns. the exposure of netastable element to negative proton, nogrtive alplom source or to a noutrot gource, the flasation of which wil2 genomate olther in wre porastable element ttsels or in elonent "A" miseg wth the notestabio elenent, nogatave protong low othes noghtavo nucles.) Fow instence the esposury os a Boryiliun hayev to a necetivo proton sousce. Weans to cool the layer of the motestable olought and moans to utsise the hoet kivelned for polvos psoduotion.
2. Doublet chains. The exposure of a subgtance to nogative protoh op negative aiplon cotion as in case of polnt 2. but the quberlance being ohoaen so that $2 t$ should be a yocosver ande oonvertos, for Instanco a mitriuye of two evonontes, ono of whibh is a receiver, thg othor a converters. lineane to ytilise the heat obtained Izke in the oese of sinculet chains. for instance Berylisum as The vse of a metratable elemont as/convertes.
3. Chatns with matiplieating setion. tho exposure of a sumatance to a nogative protone for other nogative nuclet ros thatance negative (fiplons) the aubstance belnc so chosen thits it should act as an uncerchargod matiplscatos. The use of a substance broth as a muatiplicatos as well as a convopter end a recetverg fos inntance the use of a msature of three eloments aech of whth hes ono of the thentionod aetrons.

Hoans for uspveyting and uthitetng the hoat javoreted in the Layer in 4 ich the chain regotion talkes place
 olement "g" whth transmates tnto e reatsometive body under the action of hegative nueler gonerated in the transuatition hayes to those nuezet by surwounding the twensmutabion 3 eyos wt th suoh an elenent or minting such on oloment to the trongmubitition leyos.

Figure 4 shovs an extangle of inducing and utilistry such chnin rasctions. 202 ka a layor forming a hollow spirare, the trensmatation leyer in wifich the chain renction talres $\frac{p l n c e}{202}$. We have $4 y$ the miacle of the sphere a source/or negettive protons or turk/souree 202 of a penotrating tratetion for insjance noutrons wint m121 produce notetiva protons yhon ponetrating the trensmutation lavez zon yhigh may contein an olomont "A A^{*} that yioles negative protoms when bombarded by neturons, The aphowe wtthin thg leyer goz is not onig hollow but a soduced gas progrure (vacuxi) is metntainod in $4 t$ so that negatiyo muclei emitted by the layer 201 towards the intortge of the sphere should strike the layer egain at sone formpoint of the inner surfaco. The outer surtgeo of the layor 201/kay bethme formod warnm in the upper right quadrent af the aross section shown in PIEser 4. This has the purpose to atgbelise the chein reaction trepe have to deel with the ohain renction in Whoh mitipiscothen ection yn involvea, so as to be able to roach a hich ruatipljeraing factor witiout danger of explosion. Layge 203 absorbes the nocetive nuclei. emorgtng from hayer 202 and cen be fostract by substance "B" which wily trensmute into a rallomentive boterg, thereby sborsin. onerey. The 20 . upper quadrant shows nother form of the outer surface of layer 201 whioh serves the
sane praypose ns the rom ahown in the uppos richt guadrent. $\quad 204$ is a hidh voltrge positive Fhy tube which is used to accelerate atplogon or holium tons whsch produce neistrons when thoy jett the tasget 205 conststang of aiplogot or bery211um. These noutrons Itberate nogetive protors tron the Inyor 200 (substance " A ") when roach through the vacuus the 1 mnes anernce of Layor 201. Ie Zayer 202 contains a substance "A" further fogetive protons may bo 23berated in tho 2ayoz 201 stagre.

Tt Ae also possable to prad negetive protons or negativo asplons mangathan hatytum by shootinc positivo protons os positivo atplons on uncereharged olamonts of the secong omder. xt is rinoged thet tho radiomactive 100 tape of potessivin is an uncorcharged eloriont of the second order. It 1 s also posaible to procuco pognttve protong on asplons by shooting positswo twip Cor i (2, por hes or hatim sons) or one of the elemopes montloned on page 3 with noed not be an underennrgea olenent. for inirlunce by phowfing

thorefore dsappoass (nd a chain $2 s /$ intermaptod 15 this hrypons (n Co no In a ohyin renction) whon a nogativampetenge a noutron
 reacts with a ravain muclove in such a yoy that the negaiswa-motome the noutwon assapponss and a positive particie for inatance a yuroton ge an alphe papticle are
 zegrutire by noutron beplogrdment of oogtenti elomonts we ean auppreas suoh en gocrubtice bot boribarding hoavy elenonts with slow frations. Srom neutrons cen De produced ros pist purpose by disintigretint di logen (by shgetine alplogen tons on $1 t$ os by heutind up to asployeg). Pe-meve proodeeh6 con surpisess the prodycoton of a positive parti 30 when bonbasalng tho elemon
by neutarons by chojeing the eloment and the noutron energy so that the positive perticiolwot of wich hae possibilaty should not hove suffictent energy at 2 ts aisposel to penetrate in the invorse process the moleus
 of negatstve protons eccompansec by the creation or a positave paxtiote. In order to avola such an occurance In ous chain roaotions we shain use as roducesrs, converters
 ohatign matatalnme the heaviest olemonts wisioh are otherwise satiafactory.

Form P. Ack. 4.

No. 19157

THE PATENT OFFICE,

 2.5, Southampton Buildings,Chancery Lane, London, W.C.2.

$\mathbb{R e c e i v e d}$ documents purporting to be the Application and Provisional Specification of

which have been numbered and dated as above,
M. F. LINDLEY,

Comptroller-General.
N.B.-Unless a Complete Specification is left on an Application for a Patent within TwELVE MONTHS from the date of application (or with extension fee, 13 months), the Application is deemed to be abandoned. The investigation as to novelty prescribed by the Patents Acts, 1907 and 1932 , is made only when a Complete Specification has been left. Heie number and date of this Application must be quoted on the Complete Specification 2 me and Drawings (if any), as well as in any correspondence relative thereto.

Trausmen ba hàn Nl eturnembs bey uno or nerre efreisiknt proticles.

Patents Form No. 3.

According to this invention, neutrons of a higher mass number (I have reason to believe that such multiple neutrons which carry no charge and have a mass roughly equal to a multiple of the proton mass, exist) are generated in a chain take part reaction in which neutrons of different mass number/and energy or radio-active bodies or both, are generated either in the process of the chain reaction itself or by the radiations arising out of the chain reaction.

There are several radiations arising out of chain reaction which may generate radio-active bodies, for instance, radiation consisting of neutrons of mass number l; radiation consisting of neutrons of mass number higher than 1 (multiple neutrons) and gamma radiation. I wish to make it clear that methods and apparatus for the generation of radio-active bodies by means of neutrons of mass number 1 , without chain reactions, in itself is not claimed, and does not form part of the subject matter of this specification. It forms part of the specification and is claimed in my application of letters patent No. $7840 / 1934$.

In the chain reactions to be described below, energy is liberated in the form of heat and can be utilized for power production by making use of the heat liberated in the chain reaction. Through the generation of radio-active bodies energy is being stored and gradually liberated in the form radiations which can easily be transformed into heat, which can be utilised for power production. Furthermore, the energy stored in the form of radio-active bodies can also be more directly utilised for the generation of electricity since radio-active bodies emit electrically charged particles and thereby may directly generate electrical energy.

In the following I shall deal with methods and apparatus for the production of energy and the generation of radio-active
bodies by means of chain reactions. In order to maintain such a chain an initial radiation of neutrons my be generated, for instance by one of the methods described in may Specification and Application for letters Patent No. 7840/1934. If the neutrons enter a space which has the proper shape and size and is filled with the proper combination of elements the energy or the number of the neutrons, or both, can be greatly increased through their interaction with the substance which fills the chain reaction space. The interaction of a neutron with matter can lead to the liberation of a multiple neutron this multiple neutron liberates in its turn one or more neutrons of mass number 1 which in their turn liberate again multiple neutrons. In this way we can maintain a chain reaction in which a large number of neutrons and multiple neutrons are liberated, the total number being determined by the geometry of the arrangement.

Figs. 1 and 2 show such a chain reaction apparatus. A neutron radiation, the initial radiation, is generated by the high voltage canal ray tube $1, F i g$. This tube generates fast deuterons which strike the target 28 which contains deuterium. The neutron radiation emerging from 28 acts on the matter 3 which fills the spherical transmutation space. The composition of this matter 3 will be discussed further below and is such that a chain reaction is released by the neutrons. The pumps 120, 121, and 122, Fig 2 pump a liquid for instance water or mercury through the pipe systems 107, 110, 111, Figs 1 and 2 thereby cooling the transmutation area 3, Fig I, and driving the heated liquid through the boiler 126 Fig 2. The boiler may supply steam to a power plant. The neutrons emerging from the sphere 3 act on a layer 9, Fig. 1 which is composed of an element that will transmute into a radio-active body.

An essentially different way of introducing the initial radiation into the chain reaction chamber is the arrangement shown in Fig 3. 1 is the cathode ray tube 402 is a sheet or heavy element for instance Pb , or U in which penetrating radiation hard (X-rays) is generated with good efficiency if the electrons have a voltage of over one million volts. This efficiency inereases very rapidly with the voltage, and is much higher than could be expected from the experience based on ordinary X-ray work. The thickness of the sheet 402 is such as to enable the generated penetrating radiation to penetrate through this sheet and act on the transmutation chamber consisting of the layers 407 and 3 (for the cooling of this chamber and the utilisation of the heat generated in it I refer to Fig. 2, 106 in Fig 3 is to be identified with 106 in Fig. 2.) Nevertheless the sheet can be sufficiently thick to utilize more than half the energy of the cathode rays. The X-rays emerging from sheet 402 penetrate the layer 3 and can liberate neutrons either from the layer 3 or from a substance 407 placed in the interior of the layer 3. For instance, if beryllium is present in 407 or in 3, neutrons will be liberated by X-rays. These neutrons can then maintain a chain reaction as discussed further above and further below. The advantage of using X-rays as an initial radiation is the following: The X-rays penetrate through a perfectly closed layer 3 into the interior of the layer and therefore a leak of neutrons from the interior can be avoided.

I shall demonstrate in the following the importance of the shape and the size of the transmutation space. I assume that the chain reaction takes place in a closed spherical layer of material the inner radius (r.) of which is large compared with the mean free path (a) of the neutrons (or other particles which are involved in maintaining the chain). In the simplest
case the density (s) of the neutrons will with good approximation be given as a function of the radius (r) by the following equation:

$$
\text { D. } d(r s) / d r+\text { A. }(r s)=0
$$

D and A are determined by: the mean free path (a) of the neutrons; the mean velocity of the neutrons w; the factor of the multiplicating action f which says how many collisions of a neutron are needed in the average in order to produce one new neutron.

$$
A=w / a f \quad ; \quad D=a w / 3 \quad ; \quad \sqrt{\frac{D}{A}}=\frac{a \sqrt{f}}{\sqrt{3}}
$$

I am interested in the critical thickness of the spherical layer for which the gradient of the density s vanishes for the internal radius (r.). If the thickness of the spherical layer $\left(r_{2}-r_{1}\right)\left(r_{2}\right.$ and r_{1} are the external and internal radii respectively) approaches a certain critical thickness L one can maintain with a very weak source of initial radiation in the interior of the inner surface of the spherical layer a very strong chain reaction and one can easily get one thousand or more times more neutrons emerging from the Chain reaction layer than the number of the neutrons forming the initial radiation. If the outer surface $\left(r=r_{2}\right)$ of the spherical layer were to stand free in space the density s would be zero for that surface and the critical value L would be given by $L=\pi / 2 \sqrt{P / A}$ If the outer surface is covered by some material, for instance if the transmutation layer is immersed into water or covered by lead the critical value L is reduced. This is due to the back scattering by water or lead and also to the fact that the neutrons are slowed down in the water and their mean free path is thereby reduced.

It is important to prevent neutrons from escaping out of the interior of the inner surface of the spherical layer and also from being absorbed in the interior. If the initial
radiation is generated by apparatus placed in the interior of the sphere the material used should be so selected as to lead to a minimum of absorption.

If the thickness of the layer is larger than the critical thickness I the number of neutrons would go on increasing indefinitely and auch an increase is only stopped when the heat which is liberated in the process causes the spherical layer to explode.

The differential equation which I have given above and from which we have derived the value for the critical thickness L does not give the correct description of the density of the neutrons in a chain reaction, nor does it give the correct value for L. In order to get the correct equation we have obviously to distinguish between the mean free path a, of the neutron for a collision and its factor f , which says how many collisions of a neutron are needed in the average in order to produce a multiple neutron on the one hand, and on the other hand between the mean free path a_{2} of the multiple neutron and its factors f_{2} and f_{3} of its multiplying action which says how many collisions on the average of the multiple neutron are needed in order to produce one or two new neutrons respectively etc. The only purpose of putting down the above simplified equations was to demonstrate the general type of behaviour of chain reactions with multiplying action and to sow the existence of a critical thickness L. The eimplified equation is an approximation of the correct equation if many collisions of the neutron are needed to generate a multiple neutron but few collisions of the multiple neutron are needed to generate two neutrons

I shall now discuss the composition of the matter in which the chain reaction is to be maintained. It is essential that two different heavy non-positive particles should take
part in the reaction in order to obtain the chain. (Heavy non-positive particles are particles which have a mass roughly equal to the mass of the proton or a multiple thereof and Which carry no positive charge. The neutron is such a particle, its mass being roughly equal to the mass of the proton, and its charge being 0. I have reason to believe that heavier isotopes of the neutron exist, the mass of which is a multiple of the proton mass and the charge of which is 0.)

A mixture of two elements "E" and "pH can be so chosen that element "p" (the converter element) when it reacts vith a simple neutron should transmute into an element the mass number of which is lower and generate a multiple neutron; on the other hand element "E" (the reducer element) should when it reacts with a multiple neutron transmute into an element the mass number of which is increased and generate a simple neutron. In order to have a chain reaction in which the number of neutrons increases it is necessary that apart from the converter and the reducer element there should be present a multiplicator element that is to say one from which neutrons are liberated by neutrons in a process in which the interacting neutron is not captured or alternatively a multiplicator element which generates four neutrons from a multiple neutron.

I wish to give the following indication of which elements may be used as converter "Fw: The fact that on element ejects a multiple neutron, for instance a tetra neutron (a neutron of mass number 4), when bombarded by simple neutrons, can be revealed by the fact that it becomes radio-active through neutron bombardment, and that the generated radio-active element is an isotope of the bombarded element itself. For instance, if indium is bombarded by fast neutrons (of less than $8 \mathrm{M} . \mathrm{i}_{\mathrm{E}} \cdot{ }^{\mathrm{i}_{\mathrm{V}}}$. energy, but more than $100,000 \mathrm{E} . \mathrm{V}$. energy) a radioactive isotope of indium is generated, which decays with a $4 \frac{1}{2} h$.
period. This indicates that one stable indium isotope captures a neutron, and a multiple neutron is ejected, leading to a radio-active indium isotope of mass number 112. Probably the stable indium isotope 115 captures the neutron and ejects a tetra neutron. Another example is bromine from which very slow neutrons generate three radio-active bromine isotopes, two of these can be accounted for by radiative capture of the neutron, but one of them probably arises from the stable bromine isotope of mass number 81 which captures a simple neutron, ejects a tetra-neutron leading to a radioactive isotope of bromine of mass number 78. Only very few elements will eject a tetra neutron when bombarded by very slow neutrons. The number of elements which can eject a tetra neutron increases with the kinetic energy of the bombarding simple neutron. Not all the elements reveal this fact by an appreciable radio-activity, therefore a more general method can be employed to investigate each element separately. This more general method is based on the detection of the ejected tetra neutron. The ejected tetra neutron can be detected through the transmutation which it causes in various elements which are exposed to it. Such transmutations reveal their presence in two different ways; either through radioactivity induced in the element which is exposed to the tetra neutron, or through the ejection of charged particles (proton or alpha-particle etc.), from the element which is exposed to the tetra neutron. The ejection of such charged particles can be observed by means of an ionization chamber, a wilson cloud chamber or a photographic plate which contains the element, which transmutes when exposed to the tetra neutron.

I further wish to give some indication as to which elements may be used as reducer element " E ", from which a multiple neutron liberates a simple neutron, and as multi-
plicator element, fron which a multiple neutron liberates two simple neutrons.

A lower limit for the mass of the tetra neutrons can be deduced from considering two radio-active elements, of which the lighter one arises from the heavier one, through two beta transformations and one alpha transformation. If the mass of the tetra neutron were smaller than the mass differences of these two radiomactive elements, the heavier elements would spontaneously have to eject the tetra neutron, and would thus spontaneously transmute into the lighter element.

By applying this consideration to the known radio-active elements, we obtain as a lower limit for the mass of the tetra neutron about 4.014. While the slow neutron will eject a tetra neutron from only few elements, a tetra neutron having such a high mass will eject a neutron from most of the elements and will eject two neutrons from a number of elements. In order to determine fron which elements it ejects two neutrons (multiplicator elements) we have totake each element in its turn, bombard it with tetra neutrons and either observe the number of simple neutrons which emerge, or observe the radioactivity induced in the bombarded element, and thereby identify the nature of this transmutation. An example for a multiplicator element of this type might be beryllium, and many elements heavier than beryllium. Heavy multiplicator elements are as a rule preferable since they will emit no, or few, positively charged particles, and we can thereby avoid interruptions of the chain.

The value of the critical thickness "I" previously referred to, can be estimated for a spherically symmetrical body as follows: The mean free path for an elastic collision of the neutron is in many elements of the order of 5 ams. Every hundredth elastic collision may lead to the
ejection of a tetra neutron, and every collision of the tetra neutron (mean free path of the order of 5 cms) may lead to the ejection of two simple neutrons. In these circumstances "L" will be of the order of magnitude of 50 cm .

By maintaining chain reaction in combination with means away
for leading/and utilizing the neat set free in the transmutation process energy can be produced and utilized for power production.

Having now particularly described and ascertained the nature of my said invention and in what manner the same is to be performed, I declare that what I claim is :-

1. A method for the generation of uncharged particles the mass of which is roughly equal to the proton mass or a multiple thereof, which generated neutron isotopes generate radio-active elements or energy or both, characterised by the maintenance of a chain reaction in a body in which neutron isotopes of different mass number take part.
2. A method according to Claim 1 characterised by a chain reaction in which a neutron of mass number 1 and a heavier neutron isotope take part.
3. A method according to Claim 1 or 2. characterised by the generation of an initial radiation which can consist of neutrons of mass number 1 , and the exposure to this initial radiation of a body so composed that a chain reaction is caused by the initial radiation.
4. A method according to Claims 1, 2 or 3 characterised by the said body containing a converter element and a reducer element.
5. A method according to Claims 1, 2 or 3 characterised by the said body containing a converter element and a multiplicator element.
6. A method according to Claims 12 or 3 characterised by the said body containing a converter, a reducer and a multiplicator element.
7. A method according to Claims 12 or 3 characterised by the said body containing beryllium.
8. A method according to Claim 12 or 3 characterised by the exposure of an element to the radiations generated in the said body which element transmutes into a radioactive element under the influence of the radiations generated by the chain reaction.
9. A method according to Claims 12 or 3 characterised by the use of a hydrogen containing substance, for instance water, for scattering the neutrons, for instance using water and surrounding the whole body in which the transmutation takes place by water.
10. Improvements in or relating to the transmutation of chemical elements by means of a chain reaction as hereinbefore described and illustrated in the accompanying drawings.
11. An apparatus for carrying out the methods claimed in any of the Claims 1 to 9 as hereinbefore described in the specification and shown in the accompanying drawings, or any other apparatus which is substantially equal thereto.

Dated the 9th day of April 1935.
CLAREMONT HAYNES \& CO.
Vernon House, Sicilian Avenue, Bloomsbury Square, W.C.

Applicants Solicitors.

IMPROVEMENTS IN OR RELATING TO THE TRANSMUTATION OF CHEMICAL ELEMENTS.
DR. LEO SZILARD

COMPLETE SPECIFICATION.

20 fun

(Fig 2of oinginal 7840 ?)

Fig. 4.

28 Oun
4

Fig. 3
few, positively charged particles, and we can thereby avoid interruptions of the chain.

Other examples for elements from which neutrons can liberate multiple neutrons are uranium and bromine .

The value of the critical thickness "L" previously referred to, can be estimated for a spherically symmetrical body as follows: The mean free path for an elastic collision of the neutron is in many elements of the order of 5 cms . Every hundredth elastic collision may lead to the ejection of a tetra neutron, and e very collision of the tetra neutron (mean free path of the order of 5 cms) may lead to the ejection of two simple neutrons. In these circumstances "L" will be of the order of magnitude of 50 em .

By maintaining chain reaction in combination with means for leading away and utilizing the heat set free in the transmutation process energy can be produced and utilized for power production.

