ON THE MOLECULAR BASIS OF MEMORY

by Leo Szilard
The Salk Institute for Biological Studies La Jolla, California

The subject matter of this paper is a hypothetical molecular process on which the capability of the Central Nervous System to record and to recall an experience might conceivably be based. It may be open to doubt whether one knows enough about the biological processes which can take place in living cells to be able to say anything with reasonable assurance about the molecular processes that the brain employs. Still, with luck, one might perhaps guess the general nature of these processes. To what extent we may have succeeded in doing so, remains to be seen. a. aron d

In nether paper we shall discuss to what extent a simple neural network could account for Pavlov's experiments on the conditioning of the salivary reflex
of the $\operatorname{dog},(1)$ on the basis of the molecular processes here postulated that discussion moretrext

will cover the establishment weaner find extinction of the conditioned
responspe/and also the phenomena whieh-Paviov budedesmated as conditioned inhibition,
 differentiation, and negative induction
Henervarumúnomar
We assume that the neurons in the Central Nervous System which respond
 preferentially to different stimuli differ from each other in their "chemical specificity". We divide the neurons of the Central Nervous System into two broad classes. The class of "congenitally determined" neurons and the class of "memory" neurons.
(1) I.P. Pavlov, Conditioned Reflexes, Oxford University Press, 1927.
an 1 the efficacy of the synapse bridging the two neurons reduced by the same factor. Accordingly, such a transprinted neuron E may be caused to fire in spite of gi
the inhibitory signals which it may
The transprintable neurons E get depepressed if the inhibitory neuron \bar{E}^{*} is
inhibited as a result of signals sent out by a neural network which we designate as "herenessor. This well fore cater ct as the repressor. (the Derepressor sends out signals which are sufficiently strong to excite the inhibitory inter-neuron E**, which in turn will Inhibit the inhibitory neuron $\bar{E} \%$ and will the believe the repression of the tnansprintable -neuronswis

The Derepressor network may receive an input signal from the neuron F and it may also receive an input signal from neurons E, (via the inter-neuron \bar{F}. $)$ These two input signals inhibit each other however/ within the Derepressor/f and they cancel out if the intensity of both input signals is about the same. Accordingly, the Derepressor will $\frac{\text { send out strong signals only if the intensities of these two input signals differ from }}{\text { a. (I) several }}$
 which in this fashion.
(1) Footnote: The function we are attributing to the Derepressor network is somewhat similar to that which has been ascribed to certain neurons, located in the superior olive, that receive signals from both ears. It seems to be the peculiarity of these neurons that they send out a signal if they receive a signal from one ear alone, whereas contemporaneous signals from both ears cancel out. It is believed that one may detect the directionality of sound by such a cell network and may thus be able to pick out what one hears in one ear, despite the large common background of noise in both ears. meg be send out strong signals if
As may be seen later, the Deprepressor network send out strong signals if HEPE food is introduced into the mouth of an unconditioned dog and send out strong signals also when a dog, whose salivary reflex has been fully conditioned,

We assume that the same holds also for the synapses of
inhibitory neurons, except that in this case the "transmitter substance" which diffuses across the synaptic gap into the post-synaptic neuron lowers, rather than raises, the level of excitation of the postsynaptic, excitatory or inhibitory, neuron.

Importance of the threshold".

In our models of neural networks one neuron may receive simultaneously input signals from a number of different excitatory neurons, which contact the neuron through one or several synapses each. Were we to assume that the intensity of the signal sent out by a post-synaptic neuron is a linear function of the intensities of the input A-puwarng signals, then our model would bemuable to account for the ability of the dog demonstrated by Pavlov - to learn to discriminate (differentiate) in the conditioned salivary reflex between the compound stimulus component/ and its components. (This point will be discussed in our second paper.)

In etremeantime, we shall in any assume repeater that the intensity of the output signal of a post-synaptic neuron is an S-shaped function of the sum, extended over all synapses, of the "'excitatory inputs of the individual synapses. If we designate anymosite

If we designate this sum as the "integrated excitatory input", then we may say that the intensity of the output signal of a post-synaptic neuron is an S-shaped function of the "integrated
excitory input", then watery gay y that the intensity of the output signal of the post-
 yperkin-y me mat rat dat that
also say the roughly speaking the post-synaptic neuron has folio A A A A threshold " which the "integneaded excitatory input/ must exceed in order to evoke an output signal of
substantial intensity.

The Transprinting of Neurons
We divide neurons of the central nervous system into two broad classes: the "congenitally determined" neurons and the "memory" neurons. The neurons which attain their full chemical specificity of their cell membrane during the development of the

We assume that the same holds also - mutatis mutandis - for the synapsefof inhibitory neurons, except that in this case the "transmitter substance" which diffuses across the synaptic gap into the post-synaptic neuron lowers, rather than raises, the level of excitation of the post-synaptic, excitatory or inhibitory, neuron.

In our models of neural netwroks one exeitetory neuron may receive simultaneoulsy input signals from a number of different excitatory neurons, which contact the neuron through one or several synapses each. Were we to assume that the intensity of the signal sent out by a post-synaptic neuron is a linear function of the intensities of the input signals, then our model would be unable to account for the ability of the dogdemonstrated by Pavlov - to learn to discriminate (differentiate) in the conditioned salivary reflex between the compound stimulus, that a
 of a post-synaptic neuron is an S-shaped function with the summation of the sum extended over all synapses, of the excitatory inputs of the individual synapses. If we designate this sum as the "integrated input", then we may say that the intensity of the output signal of post-synaptic neuron is an S-shaped function of the /integrated excitory input", then we my say that the imtensicymof the outputwsignal of the pest-synaptie neutron is an smshaped function of the integrated excitatory input.
 axe $2+x+x$
like a threshold which the integrated input must exceed in order to evoke an output signal of substanital intensity.

We assume that there is a class of "congenitally-determined" neurons which are capable of participating in the transprinting of a memory neuron and that /a 'congenit-ally-determined" neuron of this class fires, then those parts of its cell membrane (covering the boutons of the branch fibres of its axon), which form the active zones the of the pre-synaptic membranes become permeable for ts e specific membrane proteins. We also assume that when a memory neuron fires, then those parts of the cell membrane, (covering its cell body and its dendrites) which constitute the active zones of the post-synaptic membranes, become permeable for the specific membrane proteins. Accordingly, if a "congenitally-determined" neuron of this class contacts a memory neuron through a synapse and if both neurons fire "simultaneously" so that for a period of time both the pre-synaptic and the post-synaptic membrane is permeable for the

 proteins of the pre-synaptic congenitally-determined neuron will diffuse through the pre-synaptic and the post-synaptic membrane into the post-synaptic memory neuron. We postulate that if a specific membrane protein penetrates in this fashion into a memory neuron it induces in the memory neuron the complementary specific membrane protein -- just as an antigen induces its antibody, if it penetrates into certain lymphatic cells of the rabbit.

Insert on P. 6.

Like congenitally-determined neurons, transprinted neurons may also particpate in the transprinting of a transprintable neuron.

Insert on P. 6.
Like congenitally-determined neurons, transprinted neurons may also particpate in the transprinting of a transprintable neuron.

We assume that there is a class of "congenitally-determined" neurons which are capable of participating in the transprinting of a memory neuron and that if a "congenitally-determined" neuron of this class fires, then those parts of its cell membrane (covering the boutons of the branch fibres of its axon), which form the active zones of the pre-synaptic membranes become permeable for the specific membrane proteins. Finz C weytay vue.程 assume that when a memory neuron fires, then those parts of the cell membrane, (covering its cell body and its dendrites) which constitute the active zones of the post-synaptic membranes, become permeable for the specific membrane proteins. Accordingly, if a "congenitally-determined" neuron of this class contacts a memory neuron through a synapse and if both neurons fire "simultaneously", so that for a period of time both the pre-synaptic and the post-synaptic membrane is permeable for the specific membrane proteins, then the specific membrane proteins of the pre-synaptic "congenitallydetermined"neuron will diffuse through the pre-synaptic and the post-synaptic membrane into the post-synaptic memory neuron. We postulate that if a specific membrane protein penetrates in this fashion into a memory neuron it induces in the memory neuron the complementary specific membrane protein --just as an antigen induces its antibody, if it penetrates into certain lymphatic cells of the rabbit.

Refercuce $\overline{t o}$ di Brecuashis twork in this see fion -p. P. 4 \qquad
810 ang 18 1964

We assume that in the Central Nervous System the neurons which respond preferentially to different stimuli differ from each other in their chemical ! specificity. We may divide the neurons in the Central Nervous System into two
 broad classes; the class of the congenitally determined neurons and the class of the memory neurons. The congenitally determined neurons attain their full chemical specificity through differentiation which they undergo during the development of the individual, either during embryonal life or at the latest during the early postnatal period. The memory neurons may attain their full chemical specificity anytime during the life of the adult, through a process that may be regarded as a kind of differentiation, induced by congenitally determined neurons on occasions when they are activated by some sensory or mental stimulus. We shall refer to this process of mentally-induced differentiation as transprinting. Accordingly, X we will, refer to these memory neurons before they attain their full chemical specificity as transprintable neurons and after they me rate realer ehemieapspecricity as transprinted neurons.

We may as well state at this point jest exactly what we mean when we 16
use the term chemical specificity.
In the fruit fly the amount of DNA per somatic cell is just about enough to account for 10,000 genes.

In mammals the amount of DNA per somatic cell is about 100 times larger. We assume that each gene is capable of producing a specific protein molecule and aram mane that as arresult of the differentiation which a somatic cell which the central Nervous System undergoff Curing development by the end of the early postnatal

period, the neurons in the Central next mas staten which differ from each other

In the fruit fly the amount of DNA per somatic cell is just about enough to account for 10,000 genes. In mammals the amount of DNA per somatic cell is about 100 times larger.

We assume that somatic cells differ from each other because a different set of the genes they contain produces ane act bose hot set of the genes they contain produces in them their specific protein Re molecules at a high rate. We assume in particular that, as result of the differentiation, which the neurons of the Central Nervous System undergo during development, those congenitally determined neurons which differ from each other inasmuehas they respond preferentially to different
 sensory signals, contain a different set of genes which produce -their
in those neurons \hat{y} a

- precifir protein molecules at ire. in those neurons, ha different set of neuro-specific proteins will be maintained at a high level of

concentration.

If we were to assume, as we could

without losing to which are elevated is the same in all the congenitally determined neurons and in we designate this number with n, then the number of possible congenitally determined neurons which differ from each other in their chemical specificity would be given by the binomial coefficient $(\mathrm{N}=\mathrm{N})$, where N designates the number of neuro-specific genes. For $n=30$ and $N=40^{4}$, the binomial would amount to areas

This number would far exceed the total number of neurons in the human brain, which is generally estimated to be about 10^{10}. This overlap Humber to disappears, however, when we konsiden that many of these would have a number of elevated neurofspeeific proteins in common.

If we were to assume, as we could without losing too much flexibility elevated
at this point, that the number of neuro-specific proteins were the same in all congenitally determined neurons, the number of different congenitally-determined neurons would be given by the binomial (N) where N designates the number of neuro-specific genes and n designates the number of neuro-specific proteins which are elevated in the congenitally determined neuron.

For $\mathrm{N}=1,000$ and $\mathrm{n}=30$, the binomial would amount to about which would far exceed the total number of neurons in the human brain which is generally estimated to be about 10^{10}.

We shall designate as the overlap number of two neurons the number of elevated neuro-specific proteins which are contained in the set of elevated of flaw neuro-specific proteins of both aron.
// As we shall see below, according to the notions here adopted, the signals coming from two congenitally determined neurons can be confused by the Central Nervous System if their overlap is a substantial fraction of the number of neuro-specific proteins which are elevated in the congenitally determined neurons.
 binomial quoted, abrave would be dressy cut down if we limitouredverer dennwor now ene that no two neurons shall have an overlap number m which exceeds a

n

As we shall see below, according to the notions here adopted, the signals coming from two congenitally determined neurons can be fane
es confused if the number of the neuro-specific proteins which their sets of elevated neuro-specific proteins have in common is substantial.

Let us then define the number of neuro-specific proteins which the sets of elevated neuro-specific proteins of two neurons have in common, as the overlap number m, of the two neurons. We shall assume that the overlap number, om, of two congenitally determined neurons which respond to two different sensory signals between which the individual can easily discriminate does not exceed

determined neurons for which the overlap number does not exceed some such [mo $/ 1 /$
limitkas being substantially different, then we can ask how many substantially
different neurons are possible for say a

follows: Lex

Sf ed there be n different objects, how many different sets composed of n objects are there, if no two sets must have an overlap number of m or larger than m ?
(A) nests 4 de

At Ce
This problem, which does not seem capable of trivial solution has been rotvect

> by Dr. Bruno Bronowski, of this Institute, and will be reported elsewhere.

$\ldots \rightarrow=$
The overlap of (activated) genes in cells
Or hove a set of N genes (bay $\left.10^{3} \leqslant N \leqslant 10^{4}\right)$, of which 1 wile call one particular gene g.

Ar cider cells in which n of then genes have been actives; surg, $n \simeq 30$.
hr ask shat is the number $\{N, n, k\}$ of the target set of sinh cells sunk that no two cells han more than k activated genes in common; ser, $k=3$.

1 divide this set of cells into two subsets: the saber of culls which contain (actively) the particular gone g, whose夌 number is $\{N-1, n-1, k-1\}$; \& the sitsiof ails. whit do x t contain (actively) the gene f, shit numbers $\{N-1, n, k\}$. Therefor

$$
\{N, n, k\}=\{N-i, n-1, k-1\}+\{1-1, n, k\}
$$

that is

$$
\begin{equation*}
\{, n, k\}-\{N-1, n, k\}=\{N-1, n-1, k-1\} . \tag{1}
\end{equation*}
$$

I now use the basie recurrence formula (1), chines from $k=0$ to any k in patiiuler, of $k=3$.

Firit, then, $\{N, n, 0\}$ is the legerteiniger in $\frac{N}{n}$, obrionsty; thar is,

$$
\{N, n, 0\}=\left[\frac{N}{n}\right] \simeq \frac{N}{n} \quad \text { (2) }
$$

Next, for $k=1$, from (1)

$$
\left.\begin{array}{l}
\text { Next, for } k=1, \text { from (1) } \\
\{N, n, 1\}-\{N-1, n, 1\}=\{N-1, n-1,0\} \simeq \frac{N-1}{n-1} \\
\{N-1, n, 1\}-\{N-2, n, 1\}=\{N-2, n-1,0\} \simeq \frac{N-2}{n-1} \\
\cdots \cdots \cdots
\end{array}\right\} \begin{aligned}
& \{2 n, n, 1\}-\{2 n-1, n, 1\}=\{2 n-1, n-1,0\} \simeq \frac{2 n-1}{n-1} \\
& \&\{2 n-1, n, 1\}=1
\end{aligned}
$$

whence, by adition, $i=N-1$

$$
\begin{aligned}
&\left\{\begin{aligned}
& \text { Iy adition }, i=N-1 \\
&\{N, n, 1\}=\sum_{i=2 n-1}\{i, n-1,0\}+1 \approx \frac{1}{n-1}(\overline{N-1}+\overline{N-2}+\ldots \\
&+2 n-1)+1
\end{aligned}\right. \\
& \simeq \frac{1}{2} \cdot \frac{1}{n-1} \cdot(N+2 n-2)(N-2 n) \\
& \simeq O\left(\frac{N^{2}}{n}\right) \text { of } N>n \text {, as hese }-(3)
\end{aligned}
$$

Nect, for $k=2$, fumm ', it foxems by the sames procedurs that

$$
\begin{aligned}
\{N, n, 2\} & =\sum_{i=2 n-2}^{i=N-1}\{i, n-1,1\}+1 \\
& \simeq \frac{1}{2}\left(N-2 n+1, O\left(\frac{N^{2}}{n}\right)\right.
\end{aligned}
$$

$$
\cong O\left(\frac{N^{3}}{2}\right) \text { if } N \gg n \text {, as here__(t) }
$$

Finilly, by he sume perrecedure, it frelars from the basice recumenes formula (1) thut for $k=3$,

$$
\begin{aligned}
\{N, n, 3\} & =\sum_{i=2 n-3}^{i=N-1}\{i, n-1,2\}+1 \\
\simeq & \frac{1}{2}(N-2 n+2)
\end{aligned}
$$

The gromel firmenia $\simeq O\left(\frac{N^{4}}{n}\right)$ if $N \gg n$, as her-(5)

$$
\begin{equation*}
\{N, n, k\}=\sum_{i=2 n-k-\{ }^{i=N-1}\{i, n-1, k-1\} \tag{6}
\end{equation*}
$$

The estimate (3) must be mighley xight: the extimutis (4) \& (S) need t h checked mov carfully -I haw thetiked the metton aitinit the detail, anting in harte as 1 do.

The msit of $(1) s(6)^{x}$ the mectal is, f courn. thar ltay allor exat calculation for diffent N, \ldots \& k very $\operatorname{sim} f l y$. Note thet the whe of \underline{N} is inpontent; the exact umbe of n seams unimpreint capart from its ords, ; \& the procise value of k is for more imporitant then the ratio m / k.

H2amormi : 9 Apil 64
8.

We may designate as the efficacy of a synapse the magnitude in the rise of acetylcholine concentration which results from a given rise in signal intensity. The efficacy of the synapse thus defined is then inversely proportional to the "cholinesterase" concentration prevailing at the post-synaptic membrane and this means that the efficacy of the synapse is proportional to the overlap fraction, $\sqrt{6}$, of the pre-synaptic and postsynaptic neurons.
The Transprinting of Neurons

According to the notions here adopted, an adult can remember he Lu a
Teat because then are present in his Central Nervous system neurons which have not attained their full chemical specificity as yet. and These " memory "neurons can attain their full chemical specificity during lifetime/ through the process of "transprinting". Thusu/transprinting may be regarded as a certain kind of belated differentiation through which a memory neuron attains its full chemical specificity.

We know very little about how the differentiation of the "congenitally determined neurons comes about during development. I
© For all we know, differentiation might have something in common with enzyme induction in bacteria. In both cases a gene which is potentially capable of producing an enzyme, either does not produce that enzyme, or produces it at a very low rate --until something happens that causes the formation of the enzyme Thus, we know for instance, that in bacteria the level of the enzyme β-galactosidase can be raised about a thousandfold by adding lactose to the growth medium and there is -reason to tenemercan to he think that lactose the natural inducer of this enzyme.

However, the changed rate of enzyme production will persist in the growing bacterial culture, only as long as the inducer remains in the growth medium. As elimuiss a tat
soon as the inducer is roved the rate of enzyme production reverts to normal, i.e. in a bacterial culture, the bacteria do not remember for long having been exposed to the inducer.

In contrast to this when somuch undergoes differentiation during embryonic development, there appear in the cell a number of specific proteins raised to a high level of concentration and theresfer thepefore the cell, as well as its decendants, will contain these specific proteins at a high concentration.

In order to account for this phonomenon of persistence - which is absent in enzyme induction in bacteria - one may assume that once a axnmotyle def a concentration of such a protein molecule is raised in mueh accelenation above the threshold, thereafter the rate of production of this protein molecule remains high and its concentration is maintained at a high level. This implies the operation of some sort of a locking mechanism. It implies that a specific protein molecule must be able to maintain its concentration at a high level, acting either directly or through the intermediary of certain key compounds, where each key compound would have to be specific for a transmission specific protein. H. S. Anker suggested in 1960 that this kind of locking mechanism might be the biochemical basis of memory .f.. H. S. Anker, NATURE, 188 p. 9381960 We do not know what these key compounds might be in the case of the transmission specific proteins of the congenitally determined neurons, and for all we know there might be the transmission of specific proteins themselves. Mumente But the only thing we need to assume about these key compounds here, is that in a congentially determined neuron in which certain transmission-specific proteins are maintained at a high level of concentration, the corresponding key compounds are also maintained at a high level of concentration.

According to the notions here adopted, "/1
According to the notions here adopted, the unit of recorded memory laureates which may be within one neuron is not a bit but something that contains considerably more information than a bit. There is a class of dreams, first described by Freud and discussed by him in great detail, which is centered on what he calls a "Traumgedanke." In a dream of this particular type the same Traumgedanke appears in a number of different representations, and if within one night, several dreams of this type follow each other the same Traumgedanke is likely to be represented in every one of them.

Plloonding po an muting a month lramifiotenpe
It is conceivable that a Freudian dream is generated because one
single neuron gets excited during the night and remains excited for an
dumim the mich \neq extended period of time. If the individual wakes up, hecomestonschqus, and The dream enters his consciousness, the neuron involved may cease to be excited.

We consider a Traumgedanke to be a Gestalt in terms of the concept We assume fun initially introduced by Wertheimer and Koehler and, according to our notions, it is a most complex Gestalt that can be stored in a single neuron. Our model cannot account for a greater capacity of storage than one Gestalt

per neuron and one may ask whether this limitation might not get us into trouble from the start.
by the wu if face pan an
If an individual were able to retain information of the complexity of a Traumgedanke conveyed to him every few seconds, 24 hours a day, over a period of one hundred years, then units of recorded memory stored by such an individual would irreversably tie down just about 10^{9} neurons of his brain. This would still be times less than the number of neurons in the brain of When ${ }^{\text {which }}$ is usually quoted to be 10^{10}.

Introduction

The subject matter of this paper molecular process on which the capability of the Central Nervous System to record and to recall an experience might be based. The chances are that we do not know enough about the biological processes which may take place in the living cell to be able to guess what molecular process the brain may employ, But if we might// with luck, we rel/ succeed in presenting a model that-would be ar " ${ }^{\prime \prime}$ capable of accounting for highly efficient system of recording and recalling an experience, on the basis of a mechanism which living cells might conceivably employ.

Such a model may be regarded as "efficient if the number of neurons which a unit of recorded monernle which a unit of recorded memory would tie down, is amparativety small and if the neural networks required for the recall of an experience in the right circumstances, would be comparatively simple.

I propose to present here a hypothetical molecular process and I believe that the model which it represents is "efficient" in the meaning of the term defined above. If it should turn out that the neural networks that one would need to postulate in order to account for the higher mental functions are in math ely of man, then --even if otherwise worse came to worst, the final verdict cant still be "se non e vero ben trovato" and this is more than could be said for many of the other models which might be concocted.

