Reprinted from Science, January 12, 1951, Vol. 113, No. 2924, pages 34-35.

Virus Strains of Identical Phenotype but Different Genotype

Aaron Novick and Leo Szilard
Institute of Radiobiology and Biophysics, University of Chicago

Virus Strains of Identical Phenotype but Different Genotype

Aaron Novick and Leo Szilard
Institute of Radiobiology and Biophysics, University of Cbicago

Delbruck and Bailey (1) noticed an anomaly in the lysate of bacteria which was obtained by mixedly infecting the B strain of coli with the bacterial viruses T2 and T4. Subsequently, Luria (2) found this anomaly to be even more pronounced when he repeated Delbruck's experiment-using, however, virus T2 that had been exposed to ultraviolet irradiation.

When we undertook experiments in an attempt to understand this anomaly, we were led to the following result: If we infect a culture of the B strain of coli mixedly with the bacterial viruses T2 and T4 and incubate to permit lysis of the bacteria, there are present in the lysate 3 easily distinguishable types of bacterial viruses. Two of these, as expected, behave like the original parent strains T2 and T4, i.e., one of them behaves like T2 inasmuch as it is unable to attack the mutant strain $\mathrm{B} / 2$ (which is resistant to T2) but is able to grow in the mutant strain B/4 (which is sensitive to T2) ; the other behaves like T4, being unable to attack B/4 (which is resistant to T4) but is able to grow in $\mathrm{B} / 2$ (which is sensitive to T4). The third type of virus present is phenotypically like T4 inasmuch as it is capable of multiplying in the strain $B / 2$ (which is sensitive to $T 4$), but it is genotypically like T2 inasmuch as, after one passage in the strain $B / 2$, it is no longer capable of growing in it but is capable of growing in the strain $B / 4$ (which is sensitive to T2).

The presence of this third type of virus, which may be called "latent T2," can be demonstrated in the following manner: We add to a culture of the B strain of coli viruses T2 and T4 in ratios corresponding to 10 T 2 and 10 T 4 virus particles per bacterium, incubate to permit lysis of the bacteria, and then filter the lysate.

If we plate a sample of this lysate on agar that is inoculated with the strain $B / 4$ (which is sensitive to T2 but resistant to T4), those virus particles contained in the lysate which have the phenotype T2 will show up as plaques on these plates. T4 virus particles will not give plaques on this plate because $B / 4$ is resistant to T4. The number of plaques is thus a measure of the number of T2 particles in the lysate.
Using a sample of the lysate, we determine in this manner the number of plaques obtained on an agar plate inoculated with the strain $B / 4$. When we repeat this experiment-with the difference that before plating on the $\mathrm{B} / 4$ plate we add to the sample of our lysate a certain quantity of the strain $B / 2$, allow 5 min for absorption, dilute with broth, and incubate
for 1 hr to permit lysis of the bacteria-then we obtain a ten to twenty-five times larger number of plaques on the $\mathrm{B} / 4$ plate.
This phenomenon appears to show that there is present in our lysate a virus (the "latent T2") which is capable of multiplying in $B / 2$ and subsequently forming plaques on $B / 4$. In order to account for our observation, the concentration of the "latent T 2 " in the lysate would have to be about 10% of the concentration of T2. We were not able to obtain, after one passage in $B / 2$, any appreciable further growth in B/2 of our hypothetical "latent T2." Before drawing the conclusion that the presence of a "latent T2" is in fact responsible for our phenomenon, it is necessary to exclude alternative explanations.
As an alternative explanation of our observation, it appeared a priori conceivable that our lysate contains aggregates of virus particles formed by a T2 and a T4 particle that stick together. Such aggregates might then perhaps be capable of entering into a bacterium of the strain $\mathrm{B} / 2$ (by virtue of their T4 component) and, once inside, both virus particles T2 and T4 might then be able to multiply, and thus to produce the observed phenomenon. We were able to rule out this possibility, however, by performing the following experiment.
We add to a sample of our lysate a certain quantity of $\mathrm{B} / 2$, using an excess of $\mathrm{B} / 2$ so that independent infection of one bacterium by more than one virus particle can be neglected. We then allow 5 min for absorption and plate on an agar plate that has been inoculated with both $B / 2$ and $B / 4$. If there are present any $B / 2$ bacteria into which has entered an aggregate of virus particles composed of T2 and T4, and in which both viruses will grow, then a certain number of clear plaques centering around such bacteria (which yield both T2 and T4) should develop on the agar plate. We were not able to find any such clear plaques, however, and found only turbid plaques (in which either the $\mathrm{B} / 2$ is lysed by T4 or the $\mathrm{B} / 4$ is lysed by T2). This rules out the alternative explanation of our phenomenon.
We ascertained that our phenomenon is produced under conditions in which we use an excess of $\mathrm{B} / 2$, so that independent infection of one bacterium by more than one virus particle can be neglected. We also ascertained that our phenomenon is not produced if, in place of our lysate, we use a mixture of T2 and T 4 .
We are thus led to conclude that the phenomenon described is due to virus particles that have the phenotype of T4, but the genotype of T2. The properties of this "latent T2" virus would seem to merit investigation.

References

1. Delbruek, M., and Bailey, W. T., Jr. Cold Spring Harbor Symposia, 11, 33 (1946).
2. Leria, S. Private communication (1947).

August 11, 1950
Virus strains which are of identical Phenotype but different Genotype.

By A. Novick and Leo Szilard
and Berlez
46. Delbruck (1) had first noticed an anomaly in the Iysate of bacteria which wos obtained by misedy infecting the B strain of coli with the bacterial viruses T_{2} and \mathbb{T}_{4}. Subsequently, Luria (2) found this anomaly to be even more pronounced whon he repeated Delbruck's experiwent, using humerer baciefipa/ virus T_{2} which had boen exposed to ultra-violot irradiation.

When we undertook experimeats in an attompt to understand this anomaly, the we were led to the following resultz If we infect a culture off strain of coli mixediy with the bactorial viruses I_{2} and I_{4} and incubate to permit $1 y s i s$ of the bacteria, there are present in the Iysate thrse easily distinguishable types of bacterial virusos. Two of these, as expected, behave like the original
 unable to attack the reutant atrain $B / 2$ (which is resistant to T_{2}) but is able to grow in the wemant strain $B / 4$ (which is sensitive to m_{2}) and the other one bohaves like T_{4}, being unsble to attack $B / 4$ (which is resistant to I_{4}) but able to grow in $B / 2$ (which is sensitive to T_{4}). The third type of virus present is phenotypically like T_{4} inasmuch as it is capable of nultiplying in the strain $B / 2$ (which is sensitive to T_{4}) but it is genotypicnily like T_{2} inasmuch as / after one passage in the strain $B / 2$, it is no longer capable of growing in it but is capable of growing in the strain $B / 4$ (which is sensitive to T_{2}).

The presence of this third type of virus, which may be callod "incipient I_{2}, oan be demonstrated in the following manners We add to a culture of the B strain of coli viruses T_{2} and T_{4} in ration corresponding to $10 T_{2}$ and $20 \mathrm{~T}_{4}$ virus particles per bacterium, inoubate to permit Iysis of the broteria and then

filter the 1ysate.

If wo plate a sample of this Iysate on agar that is innoculated with the strein $B / 4$ (which is sansitive to T_{2} but resistant to T_{4}), those virus particloe contsitned in the Iysate which have the phenotype T_{2} will show up as plaques on these plates. T/4 vixus particles will not give pleques on this plat bocause $B / 4$ is resistant to T_{4}. The number of plaques is thus a wasure of the nurber of T_{2} particles in the Iysate.

Using a aample of the Iyeats, we fietornine in this mannor the number of plaques obtained on an agar plate innoculated with the strain $B / 4$ pti When wo repeat this experiment - with the diference that before plating on the B/4 plate wo add to the sample of our Iyaate a certain quantity of the atrain $B / 2$, allow five minute for absorption, dilute with broth and incubato for an hour to perisit Iysis of bagteria bion we obtain a ton to twenty-five times larger number of plaques on the $B / 4$ plato.

This phenowenon appears to show that there is present in our Iysate a virus (tho inoipiont $T_{2}{ }^{\text {h }}$) which is copable of multiplying in $B / 2$ and subsequantiy to form plaques on $B / 4$. The concontration of the mincipient is 2^{n} (would have to be about tem
 We were not able to obtaing after one passage in $\mathrm{B} / 2$, any approciable further growth in $B / 2$ of our hypothetical incipient $T_{2}{ }^{n}$. Before drasing the conclision that the presence an of "incipient T_{2} is in fact reaponsible los our phenomenon, it is necessary to exclude ldite Af aiternategerplanatione.

As an alternate explanation of our observation, it appeared a priori conceivable that our lysate containg aggregates of virus perticles formed by a T_{2} and \& T_{4} particle which atici together. Such ageregatos hight thon perhaps be capable of entoring into a bacterium of the strain $B / 2$ (by virtue of theix T_{4} component) and onoe inside, both Virus particlea T_{2} and T_{4} night thon be able to multiply, and thus/produce the phenomenon we observed. We were able to rule out this possibility, however, by performing the following expersmext:

We add to a sample of our lyeate a certain quantity of $B / 2$, using an excess of $\mathrm{B} / 2$ so that independent infection of one bacterium by more than one virus particle can be neglected. We then allow five minutes for adsorption and plate on an agar plate which has been innoculated with both $B / 2$ and $B / 4$. If there are present any bacteria $B / 2$ into which has ontarod an aggregate of virus particles composed of T_{2} and T_{4} and in which both viruses will grow, then a certain number of clear plaques centering around such bacteria (which yield both T_{2} and T_{4}) should develop on the agar plate. We were not able to find any such clear plaque, however, and found only turbid plaques (in which either the $B / 2$ is lysed by T_{4} or the $B / 4$ is $2 y s e d$ by T_{2}). This rules out the alternate explanation of our phenomenon.

We ascertained that our phenomenon is produced under conditions in which we use an excess of $B / 2$ so that independent infection of one bacterium by more than one virus particle can be neglected. We ala o ascertained that our phenomenon is not produced if, in place of our lysate, we use a mixture of T_{2} and T_{4}.

Thus, we are led to conclude that the phenomenon described is due to virus particles which have the phenotype of T_{4}, but the genotype of T_{2}. The properties of this "incipient I_{2} " virus would sem to merit investigation.
(1) Welbruak arne Truly, Gold
(2) S. Lurid, Private communication, 1947.

Virus strains which are of Identical Phenotype but different Genotype

By A. Novick and Leo Szilard

M. Delbruck had first noticed an anomaly (1) in the lysate of bacteria which were obtained by fixedly infecting the B strain of coli with the bacterial viruses T_{2} and T_{4}. Subsequently, Luria found (2) this anomaly to be even more pronounced when he repeated Delbruck's experiment, using a bacterial virus I_{2} which had been exposed to uitra-violet irradiation.

When we undertook experiments in an attempt to understand this anomaly, we were lead to the following results If we infect a culture of B strain of coli mirediy with the bacterial viruses T_{2} and T_{4} and incubate to permit Lysis of the bacteria, there are present in the lysate three easily distinguishable types of bacterial viruses. Two of these, as expected, behave like the original parent atrains T_{2} and T_{4}, i.e., one of them behaves like T_{2} inasmuch as it is unable to attack the mutant strain $B / 2$ (which is resistant to T_{2}) but is able to grow in the mutant strain $B / 4$ (which is sensitive to T_{2}) and the other one behaves like T_{4}, being unable to attack $B / 4$ (which is resistant to T_{4}) but able to grow in $B / 2$ (which is sensitive to T_{4}).)

Che third type of virus present is phenotypically like T_{4} inasumeh as it is capable of multiplying in the strain $B / 2$ (which is sensitive to T_{4}) but it is genotypically like T_{2} inasmuch as after one passage in the strain $B / 2$ it is no longer capable of growing in it bit is capable of growing in the strain B/4 (which is sensitive to I_{2}).

The presence of this third type of virus, which may be called "incipient $\mathrm{I}_{2}{ }^{\prime \prime}$, can be demonstrated in the following manner: We add to a Aoteteld culture the B stain if cult?
viruses I_{2} and I_{4} in ratios corresponding to $10 I_{2}$ and $10 T_{4}$ virus partieles per bacterium, Hef incubate to permit Iysis of the bacteria and then filter the 2ysate.

If we plete a sample of this Iysate on agar, that is innoculated with the strain $B / 4$ (which is sensitive to T_{2} but resistant to T_{4}), the virus partieles contained in the Iysate which have the phenotype I_{2} will show up as plaques on these plates, because $B / 4$ is resistent to T_{4}. The number of plaques is thus a measure of the number of I_{2} particles in the Iysate.

Using a sample of the Iysate, we Mave detesmine in this manner the number of plaques obtained on an agar plate innoculated with the strain $B / 4$ and when we rual repeated this experiment fith the difference that before plating on the $B / 4$ plate, we add to the sample of our Iysate a cestain quantity of the strain $B / 2$, allow five minutes for absorption, dilute with broth and incubate for an hour to permit Iygis with $B / 2$, then we obtainis a ten to twenty-five times larger mumber of plaques on the $B / 4$ plate.

This phemonenon appears to show that there is present in our Iysate a virus (the "ineipient $T_{2}{ }^{n}$) which is capable of maltipiying in $B / 2$ and subsequently to form plaques on $B / 4$. The concentration of the "ineipient $T_{2}{ }^{n}$ would have to be about ten per cent of the concentration of T_{2} in the Iysate in order to account for our observation. We were not able to obtain after one passage in $B / 2$, any appreciable further growth in $B / 2$ of our hypothetical "ineipient $T_{2}{ }^{\prime \prime}$. Before draving the concluaion that the presence of "inciplent $T_{2}{ }^{\prime \prime}$ is in fact responsible for ous phenomenon, it is necessary to exclude other alternate explanations.

As an alternate explanation of our observation, it appeared a priosi conceivable that our Iysate contains aggregates of virus particles formed by a T_{2} and a T_{4} particle which stick together. Such aggregates might then perhaps be capable of entering into a bacterium of the atrain $B / 2$ (by vistue of their T_{4} component) and once inside, both virus particles I_{2} and T_{4} might then be able to multiply, and thus produce the phenomenon we observed. We were able to sule out
this possibility, however, by performing the following experiment:
We add to a sample of our Iysate a certain quantity of $B / 2$, using an excess of $\mathrm{B} / 2$ so that independent infection of one bacterium by more than one virus particle can be neglected. We then allow five minutes for absorption and plate on an agar plate which has been innoculated with both $B / 2$ and $B / 4$. If there are present any bacteria $B / 2$ into which has entered an aggregate of virus particles composed of I_{2} and T_{4} and in which both viruses will grow, then a certain number of clear plaques centering around such bacteria (which yield both T_{2} and T_{4}) should develop on the agar plate. We were not able to find any such clear plaques, however, and found only turbid plaques (in which either the $B / 2$ is 1 ysed by T_{4} or the $B / 4$ is lysed by T_{2}). This rules out the alternate explanation of our phenomenon.

We ascertained that out phenomenon is produced under conditions in which we use an excess of $B / 2$ so that independent infection of one bacterium by more than one virus particle can be neglected. We also ascertained that our phenomenon is not produced if, in place of our lysate, we use a mixture of T_{2} and T_{4}. the Jdesen'reed
Thus, we are led to conclude that poe phenomenon lis due to detinfut virus live) particle f which has the phenotype of T_{4}, but the genotype of T_{2}. The properties of this "incipient s_{2} " virus would seem to merit investigation.
(1) M. Delbruek
(2) S. Luria, eccl communication, 1947.

Mu os 19/50

WVVMMMMA Viplas Strains Which Are of Identical Boraza
M Delbruck had first noticed an anomaly in the lysate of bacteria Che Brfrain of
which were obtained by mixedly infecting coli with the bacterial viruses T_{2} and $T_{4}=W A S$ ubsequently Luria found this anomaly leven more pronounced when he repeated Delbruck's experimentatheral virus T_{2} which had been exposed to ultra-violet irradiation.

When we undertook fall u experiments in an attempt to understand the anomaly, we were led to the following result: strain of coli, minixindy

in $B / 4$ which is sensitive to T_{0}, and the other one behaves like T_{4} being unable

strain of coli, murnixily of the Condories.

Canapor/inereilated edith hours to permit lyses, and
then only plated an $\mathrm{B} / 4$, we obtained about 10 to 25 times higher number of plaques.
growing in $B / 2$ and after the present in the filtrate a virus which of the $B / 2$ (capabl em capable of
 Where T_{2} lent purity prealy like acc (has welled, innespiea of π_{2}). -
\checkmark finding is curststent with the ammunition

