SANTA FE IRRIGATION DISTRICT
From the papers of Ed Fletcher, the following letters were removed to the alphabetized correspondence files
BAKEWELL, Robert (Sec'y-Mgr, Santa Fe Irr. Dist.)
Bakewell to Fletcher, $10 / 22 / 46$
Fletcher to Bakewell, 10/23/46
BECHBERGER, Wm. A. (Tax Collector)
Fletcher to Bechberger, [4 letters] 5/31/29, 5/19/29,
cher to Bechberger
$6 / 26 / 29,10 / 29 / 29$
Bechberger to Fletcher, [3 letters] 11/20/29, 12/19/29, BOETTIGER, W.O. (Mgr)

Fletcher to Boettiger, [8 letters] $1 / 7 / 29,1 / 26 / 29,2 / 1 / 29$, $5 / 7 / 29,5 / 27 / 29,9 / 25 / 29,9 / 25 / 29,10 / 5 / 29$
Boettiger to Fletcher, [3 letters] 1/24/29, 5/29/29, 10/2/29
Boettiger to Fletcher, [3 letters] 1/24/29,
Boettiger "To All Water Consumers," $5 / 4 / 29$
CALIFORNIA CORRUGATED CULBERT CO. to King, 6/30/19
MYERS, Maurice, entire correspondence file of MYERS, MAURICE,
TAIT, C. ${ }^{A}$
Tait to King, [2 letters] 5/24/19, 7/3/19
King to Tait, [2 letters] 6/26/19, 7/17/19
Tait to Fletcher, 5/27/19

THIS AGREFMENT, made and entered into this \qquad dey of
\qquad 19_, under and by virtue of the provisions of Division 1 Part 6, Chapter 8, Articles 1, 2, and 3, of the Revenue and Taxation Code of the State of, California, as amended, by and between:

THE BOARD OF SUTFRVISORS OF THE CCUITTY OF SAN DIEGO, STATE OF CALIFORNIA,
Party of the First Part,
and
THE SANTA BR TRRIGATION DISTRICT
of the state of California
Party of the Second Part,

WITNESSETH:

WHEREAS, certain lands hereinafter described, situated in
the County of San Diego, State of California, and also within the boundaries of \qquad SANMA TF IRRTGATTON DISTETCT \qquad
\qquad , have been tax-deeded to the State of California for
delinquent County taxes and/or assessments; and
VHEREAS, the same lands have also been tax-sold for two or more years, or have been tax-deeded to the SANTA FES IRRIGATION DISTRICT
\qquad for delinquent IRFIGATION DISTRICT
taxes and/or assessments; and
WIEEREAS, the EOard of Supervisors of the County of San
Diego and the BOARD OF DIREGTORE OF SANTA FR IRRIGAMION DISTRICT
believe that it is for the best inter-
ests, both of the County of San Diego and of the saNDA. BE
IRRIGATION DISTRICI
, that said property be
sold into private ownership, to the end that said lands be restored
to the assessment rolls of the parties hereto; and
YHEREAS, said lands are particularly described as rollows:

Property Description

(As appears upon the County assessment roll, together with Certificate No. and date of sale to the State, and Deed No. and date of deed to the State;
Item in. In Block 24 of Solana Boach, "Assezsqe's Map $\# 38$ Lot 1 and Lot $\mathrm{B}-2$. Cartificate \#145082 Sold to State $6 / 29 / 3$, Deeded to S/atie $7 / 1 / 37$, Deed $H^{2} 13516$.

Note: Fihen deeded to State, the above tract was included in parcel described as follows: Beginning at a pt. on sly 11 of plaza

 to intersection of center 11 of P1aza St. produced Why th $\mathrm{N} 78^{\circ} \mathrm{Si}$
 to beg. (Ex Co, of San Diego) Jom Assessor's Map \#58, Lot \#l. Item \#2. $15 / 3 / 4$ of $\mathrm{B} 1 / 2$ of ms $1 / 4$ of NE $1 / 4$ of Sec. 1. T. 14
 Deeded to state $/ / / 1 / 37$, Deed \# \# 13566 .

Note: When deeded to State above parcel was included in pancel (BI M \& B to San Diego Matual Mater Co.) Sec. 1 T. $14-4$.

Item in3. All lying Eiy of A.T. \& SoF. RWy R/V in Lot 3 (Ex State Bd. of Equal. Par. 2 Map 804-37-12) \& (EX Beg. at NS cor. of Lot 28, Blk 18 Solana Beach; th ${ }^{2} 21^{\circ} 33^{\circ} 30^{\prime \prime}$
 Sec. 34-13-4
Certificate \#145413-F. Sold to state $6 / 29 / 32$, Deeded to State 7/1/37, Deed \#13543.

Item \#4. All lying Ely A.T. \& S.F. FWy R/W in gEt of NEt in Sec. 34-13-4TI.
Certificate \#145413-H. Sold to state $6 / 29 / 32$. Deeded to state $7 / 1 / 37$. Deed \#13545.

Note: The above 2 parcels when deeded to State were included in a parcel described as follows: Nh (Inc. Lots 1 , and 2). (Nx Ry R of iil and (Bx Lot 2) and Lot 3 (NEt of skd) (Ex Ry. R of M) (Ex Map 2143) (Ex $2 M \& B$, Rho Santa Fe Corp) in $\mathrm{Sec} 34-13-4 \mathrm{~W}^{\prime}$
Item 45.5 Sec. 35-13-4
S羂 of NH $1 /$ Certificate \#145417-A, Sold to state 6/29/32. Deed \# 13545 , Deeded to State. $7 / 1 / 37$.
Item \#6.

$$
\begin{aligned}
& \text { Sec. } 35-13-417
\end{aligned}
$$

to State $6 / 29 / 32$. Deeded to state $7 / 1 / 37$. Deed $/ 23545$.

Note: The above 2 parcels when deeded to state were included in a parcel described as follows: "SWt of NS t and set of
 Corp) and $8 \mathrm{Se}_{5}$ in Sec $35-13-4 \mathrm{~K}^{\prime \prime}$

NOW, TYEREFORE, pursuant to authority granted by
Division 1, Part 6, Chapter 8, Articles 1, 2, and 3, of the Revenue and Taxation Code of the State of California, as amended, said Board of Supervisors hereby gives and grants unto said sANTA IS
\qquad an option to pur-
chase the above described lands upon the following terms and conditions, to wit:

1. That said DISTRICF shall have the right to exercise this option at any time within three years from the date hereof.
2. That this option is given to said pIsTaIGer upon the express condition that, at the time scidDISNRICT exercises the same, it shall have a bone fide purchaser for said property ready, willing and able to purchase the same, and said DTsTRICT shall, immediately following the exercise of this option, cause the said property to be resold and the title vested as of record in a third party, to the end that said land shall be reestablished on the assessment rolls of the County of San Diego, State of California.
3. That this option is given in consideration of the
payment by said DTsquRtar to the County of San Diego, by and through the Tax collector of said County, of the following sums and at the times hereinafter set forth:

PROVIDED, HOWEVER, that if said option is exercised prior to the due date of either the second or third payment above specified, such second or third payment, or both as the case may be, shall be canceled, and shall not in that event be due or owing to said County.
4. That said DIBMAICT shall have the right to exercise
this option at any time during the term hereof as to any portion of said property which, as of the date of this agreement, has a separate valuation on the assessment roll of said County; provided, further that said DISTRICN shall also have the right to exercise this option at any time during the term hereof as to any portion of a single lot, parcel or tract of said property, which lot, parcel or tract as of the date of this agreement, has a separate valuation on the assessment roll of said County. Upon exercise of said option as to any portion of such separately valued lot, parcel or tract the final payment therefor shall be a sum which bears the same ratio to the final payment set forth in Paragraph 3 herein for the entire lot, parcel or tract from Which said segregated portion is taken, as the assessed valuation of said segregated portion, placed thereon by the assessor at the time of segregation, bears to the assessed valuation of said entire lot, parcel or tract as of the date of this agreement. Any such segregation shall be made pursuant to Sections 4151 to 4155 inclusive, Revenue and Taxation Code, except that the sum of the valuations of the segregated portion and the remainder of the said lot, parcel or tract, may be greater but not less than the valuation, as of the date of this agreement, of the entire lot, parcel or tract.
5. That the price for which said county hereby agrees to sell its tax title to said property to said DIETRIOT shall be the aggregate amount of all payments made by said DISTRICT pursuant to Paragraph 3 hereof.
6. That this option is given SANTA 宊 IRRIGATION DISRRTCN under the terms and conditions of Division
1 , Part 6, Chapter 8 , Articles 1,2 , and 3 , of the Revenue and Taxation Code of the State of California, as amended, and is intended to be and shall be construed as a statutory agreement designed to carry into effect said provisions of said Code and shall have no effect or force otherwise.

IN WITNESS WHEREOF, the Board of Supervisors of the County of San Diego, by resolution duly passed and adopted on the
\qquad day of \qquad , 19
\qquad has caused this agreement to be executed in quadruplicate, and the Santa Fe Irrigation District , by resolution duly passed and adopted on the 14thday ofAugust , 144 , has caused this agreement to be executed in quadruplicate, by its officers thereunto duly authorized as of the day and year in this agreement first above written.

BOARD OF SUPERVISORS OF THE COUNTY OF SAN DIEGO, STATE OF CALIFORNIA

By
Charrman

ATTEST:

J. B. Mciees, County Clerk and ex officio Clerk of the Board of Supervisors

By
Deputy
(SEAL)
\qquad SANTA FTS IRRIGATION DISTRICT

By

The undersigned, Sam A. Claggett, Tax Collector of the County of San Diego, State of California, pursuant to Chapter 362, Statutes of 1943, and Chapter 409, Statutes of 1943 (Sec. 3794.2 R. \& T. Code), having duly considered the above and foregoing agreement, and compared the same with the records of the county relating to the real property described therein, and being fully advised in the premises, hereby approves said agreement.

Dated \qquad , 18 .

Tax collector of the county or San Diego, State of California

The undersigned, Harry B. Riley, Controller of the State of California, having duly considered the above and foregoing agreement and being fully advised in the premises, hereby approves said agreement.

Dated \qquad , 19 ..
HARRY B. RILEY, Controller of the State of California

By

Approved as to form
Date \qquad
THOMAS WHELAN, District Attorney
in and for the County of San
Diego, State of California

By Deputy

COLLEGE OF AGRICULTURE
AGRICULTURAL EXPERIMENT STATION
BERKELEY, CALIFORNIA

SOME MEASURING DEVICES USED IN THE DELIVERY OF IRRIGATION WATER

BY
CALIFORNIA AGENTS OF IRRIGATION INVESTIGATIONS, OFFICE OF EXPERIMENT STATIONS, U. S. DEPARTMENT OF AGRICULTURE

PBased oa rook done mader co-pperative agreemeat benceen the Olthe of Experimeat Stations and the Stare Eagocertas Departimeat of Calliorala and betwees the OMice of Experiment Statioas aad the Universtiy of Callforala Aipicultural Experiment Smation)

BULTMINN NO. 247
Berkeley, Cal, January, 1915

Bevjamin Ide Wheeler, President of the University.

- EXPERIMENT STATION STAFF

HEADS OF DIVISIONS

thomas Forsyth Hunt, Director.
Eugene W. Hilgard, Agricultural Chemistry (Emeritus).
Edivard J. Wickson, Horticulture.
Herbert J. Webber, Director Citrus Experiment Station; Plant Breeding
Hubert E. Van Norman, Vice-Director; Dairy Management
William A. Sexcuell, Botany.
Meyer E. Jaffa, Nutrition.
Robert H. Loughridge, Soil Chemistry and Physics (Emeritus)
Charles W. Woodworth, Entomology.
Ralph E. Shith, Plant Pathology.
J. Eliot Cort, Citriculture

John W. Giluore, Agronomy
Charles F. Shaw, Soil Technology.
John W. Grego, Landscape Gardening and Floriculture
Frederic T. Bioletti, Vitienlture and Enology.
Warren T. Clarke, Agricultural Extension.
John S. Burd, Agricultural Chemistry.
Charles B. Lipman, Soil Chemistry and Bacteriology.
Clarence M. Habizig, Veterinary Science and Bacteriology.
Ernest B. Babcock, Genetics.
Gordon H. True, Animal Husbandry.
Jayes T. Barrett, Plant Pathology.
Arnold V. Stubenrauch, Pomology
Valtik Mulpord, Forestry.
Williay G. Husares, Agricultural Education
Fank Adams, Irrigation Practice.
David N. Moroan, Assistant to the Director.
Mrs. D. L. Bunnell Librarian.

IRRIGATION PRACTICE

(In co-operation with Offee of Experiment Stations, U. B. Department of Agriculture, and State Engineering Department of Californin)

Frank Adays.
O. W. Israblsen.
8. H. BECKETT

Sayuel Fortier, Chief of Irrigation Investigations, Office of Experiment Stations W. F. McCluse, State Engineer of California.

CONTENTS

Introduction
Units of Water Measurement 116
The Davis Field Laboratory 117
Measuring Devices for Underground Distribution Systems 119
Azusa Hydrant 119
Gage Hydrant 121
Riverside Box 123
Foote Inch Box 124
\qquadCipolletti Weir126
139Weir Without End Contractions
Submerged Orifices 146
Submerged Orifices with Fixed Dimensions 147
Submerged Orifice Headgates 153
Mechanical Devices that Measure and Register the Total Flow 156
Dethridge Meter 156
Grant-Michell Meter 160
Hill Meter 161
Hanna Metex 163
Water Registers 164
Current Meters105
Appendix-Data and Discussion of Tests of Measuring Devices 166
Tables

Table 1. Discharge of Cipolletti Weirs, 12 to 24 inches long 131 Table 2. Discharge of Cipolletti Weirs, 3 to 5 feet long
Table 8. Discharge of Weirs Without End Contractions per foot of length.. 140
Table 4. Discharge of Submerged Rectangular Orifices
Table 6. Coefficients to be Applied to Discharges Given in Table 4 when Orifice Suppressed

Illustrations

 Figure 1. Reinforced Concrete Reservoir, Davis Field LaboratoryFigure 2. Concrete Standardizing Box, Davis Field Laboratory 117

Figure 3. Drawing of Azusa Hydrant 118
g.

Figure 5. Drawing of Gage Hydrant ... 122
Figure 6. Photograph of Gage Hydrant ... 122
Figure 7. Drawing of Riverside Measuring Box .. 123
Figure 8. Photograph of Riverside Measuring Box .. 123
Figure 9. Drawing of Foote Inch Box 125

Figure 10. Photograph of Foote Inch Box .. 120
Figure 11. Measuring Water with a Small Wooden Cipolletti Weir. 127
Figure 12. Drawing of Cipolletti Weir and Weir Box
Figure 13. Photographs of Cipolletti Weir and Hanna Meter 129
Figure 14. Photograph of Weir Without End Contractions 140
Figure 15. Drawing of Submerged Orifice Used by U. S. Reclamation Service 141
Figure 16. Photograph of Submerged Orifice Used by U. S. Reclamation Service

Figure 17. Drawing of Submerged Orifice Headgate 153
Figure 18. Photograph of Submerged Orifice Headgate 154
Figure 19. Drawing of Dethridge Meter .. 157
Figure 20. Photograph of Dethridge Meter .. 158
Figure 21. Plan an Elevation of Installation of Grant-Michell Meter 160
Figure 22. Photograph of Installation of Grant-Michell Meter 16
Figure 23. Sectional Elevation of Instalation of 12-inch Hill Meter 162
Figure 24. Photograph of Installation of 12 -inch Hill Meter 169
Figure 25. Photograph of Hanna Meter ... 163
Figure 26. Photograph of a Water Register ... 16
Figure 27. Photograph of Current Meter and Equipment 16.

SOME MEASURING DEVICES USED IN THE DELIVERY OF IRRIGATION WATER

BY

CALIFORNIA AGENTS OF IRRIGATION INVESTIGATIONS, OFFICE OF EXPERIMENT STATIONS, U. S. DEPARTMENT

OF AGRICULTURE

INTRODUCTION

The public and private advantages attending the measurement of individual deliveries of irrigation water have for many years been appreciated in the older irrigated countries and in some portions of the western United States where irrigation water has had a high sale value. Now the rapidly increasing utilization of the available water supplies and the better understanding of the principles underlying the wise making of rates to be charged for irrigation water are causing these advantages to be better understood in every irrigated section of the West. Citing only California as an illustration of this, it needs only to be said that while, outside of the southern citrus sections, appliances for measuring water deliveries were seldom considered in the design of irrigation systems ten or fifteen years ago, today no competent California irrigation engineer laying out an irrigation project would fail to give due consideration to necessary means for
-The installation of the measuring devices described in this bulletin has been carried out ehiefly by S. H. Beckett and R. D. Robertson, irrigation engi neers, assiated by Roy Wray. The tests of the devices have been made und the immediate drocuion in . Hardag, irily on in irrigation investigations in in tables incluced have been prepared by Wells A Hutchins The drawings and diagres have been prepared by Stephen O Whipple scientife assistant. Mr F \& Bixby, irrigation engineer, in charge of irrigation investigations in Nov Mexico temporarily on duty in California, assisted in designing the genera plan of installation. The full study has been planned sind, in general, super vised, and the data have been arranged for publication by Frank Adams, Irrigation Manager.
The installation of the Davis feld laboratory and the testing of the device have been jointly paid for from funds contributed by the Btato Engineerin Department of California, the Office of Experiment Etations of the Unite States Department of Agriculture, and the California Agrioultural Experiment Station. Co-operation with the State Engineering Department of Cailornic has been effected through agreement of Experimont stationa, Agricaltural Exporiment Station.
measuring the water supplied to irrigators. Furthermore, the recent giving to one central public authority the power to fix rates charged for irrigation water by California public utilities has made a more general understanding of practicable means of measuring irrigation deliveries at least exceedingly desirable.

The measurement of irrigation water, while theoretically simple, is rendered quite perplexing in practice because of the varying conditions almost any irrigation measuring device is required to meet. While extreme accuracy is not expected and thus far is almost never reached, measurements within, say, from two to five per cent of correct are reasonable to expect, and no device can be considered very satisfactory that does not accomplish such a result. Sometimes, and especially in the flatter valleys, irrigation ditches are but very little higher than the land to be watered, making measurement over a weir or other device requiring a free over-fall of the water impossible. In such cases some form of the submerged orifice ($\mathbf{p} .146$) or some kind of mechanical registering meter (pp. 156-164) must be used. With almost any one of these, silt or debris carried in the water, as well as temporary changes in the canal or ditch above or below the measuring point (as from checking up the water to get it on to the higher land) sufficiently change conditions to alter results and to impair the accuracy of measurements if they are not taken account of. An additional element of difficulty is found in the fluctuations in flow that almost invariably occur on every system, the same device sometimes being required to measure less and sometimes more than the quantity it is best suited to take account of.

Besides measuring water with reasonable accuracy, under sometimes widely varying conditions, a satisfactory device for taking account of farm water deliveries must be extremely simple in design, and be made of materials that are available and inexpensive. It should at least in part be susceptible of construction by the farmer to be served, and to be widely used, should not cost above, say, from twenty-five to fifty dollars. Where all of the farmers under one lateral receive the same flow of water in rotation, each retaining it for a length of time proportional to his interest in the system or the number of acres he irrigates, a device that both measures the rate of the flow and holds that flow constant is the ideal to be sought for. While there are few devices in use that hold the flow of water constant, reasonably satisfactory results are obtained under the rotation plan by measuring or gauging the turnout with sufficient frequency to enable its being held about uniform. Where rotation on laterals is not feasible, or where independent individual deliveries are preferred,
the measuring device, to be fully satisfactory, should register the total amount of water passing rather than the rate of the flow. While this result can be accomplished by using a water register (Fig. 26) in conjunction with a weir or other device that takes account of the rate of flow, water registers require too much care and are too expensive for use in making deliveries of water to farms. The Dethridge, GrantMichell, Hill, and Hanna meters described in this bulletin are all of the type that register the total flow rather than measure the rate of flow, and to the extent that they can be made to meet the conditions already named, are preferable to the more simple weir or orifice taken singly.

In planning and carrying out the installation at Davis three main purposes have been held in view : To assemble in one accessible place, and largely for demonstration uses, examples of the principal irrigation measuring devices so far developed; to make such tests of these devices as would demonstrate their accuracy under ordinary field conditions when compared to a standard weir and to each other; and incidentally to furnish an opportunity to students at the University Farm to make practical working tests in agricultural hydraulics. In installing the various devices the effort has been made to follow practical field rather than ideal laboratory conditions; also, in describing the devices and the tests made of them, technical language has been wholly eliminated. For the benefit of engineers, however, the full data of the various tests made are grouped together in the appendix.

There have been numerous bulletins dealing with different phases of the measurement of irrigation water issued by the Agricultural Experiment Stations of some of the western states. This bulletin is not designed to restate what these Stations have already stated, nor to deal with matters of water measurement that are of chicf interest to hydraulic engineers. The purpose is rather to describe fully, illustrate by drawings and photographs, and point out the relative accuracy of some types of the devices that have already become standard or that have been in use for a sufficiently long time or on a sufficient scale to make them of enough public interest to warrant their installation at the Davis field laboratory. This field laboratory offers opportunity for the installation and testing of other irrigation measuring devices, and since this bulletin was prepared the designers of two devices have made installations there for such impartial testing as it is desired to subject them to. It is hoped to add to the demonstration from time to time, so that ultimately an example of any irrigation measuring device of merit may be seen installed under practical field conditions on the University Farm.

UNITS OF WATER MIEASUREMENT

The Inch.-This is a variable unit having different meanings in different states añ even in different sections of the same state. The old miner's inch of California was the quantity of water flowing freely through an opening 1 inch square, the center of which was 4 inches below the surface of the water standing above the opening, and which is equivalent to a flow of 9 gallons per minute or $1 / 50$ cubic foot per second. The present statute inch of California is defined as a flow of one and one-half cubic feet per minute. It is measured under a 6 -inch pressure and is equivalent to a flow of $111 / 4$ gallons per minute or $1 / 40$ cubic foot per second. While the meaning of the inch varies with local practise, it is not a stream of water 1 inch deep and 1 inch wide, regardless of pressure. Where its meaning is clear the inch is a convenient unit for measuring small streams up to, say, 50 to 100 inches, and is quite commonly used for such streams, particularly on many of the southern California systems. For larger streams its use is generally discarded in favor of the more definite cubic foot per second.

The $2 d$-Hour Inch.-This is a very common unit, especially in southern California, and is, as its name implies, 1 inch (the exact amount of which varies with locality and local custom) running for 24 hours. Variations of this unit found on some California irrigation systems are the 1 -hour inch and the 12 -hour inch.

The Cubic Foot per Second.-This unit represents an exact and definite quantity of water, viz: the equivalent of a stream 1 foot wide and 1 foot deep flowing at the rate of 1 foot per second. It is therefore the most satisfactory unit for streams of one or more cubic feet per second.

The 24-Hour Second Foot.-This is one cubic foot per second, running continuously throughout a 24 -hour period. It is equivalent to approximately 2 (exactly 1.9834) acre-feet.

The Acre-Foot.-This is the equivalent of a body of water 1 acre in area and 1 foot deep, or 43,560 cubic feet. As already stated, one cubic foot per second, or 50 southern California inches, or 40 California statute inches, running continuously for 24 hours will supply approximately 2 (exactly 1.9834) acre-feet.

The Acre-Inch. - This is one-twelfth of 1 acre-foot, or the equivalent of a sheet of water 1 acre in area and 1 inch deep. It is the unit sometimes used instead of the acre-foot, especially in expressing quantities of less than 1 acre-foot.

The Gallon.-As many irrigators receive their water supply from pumps and as pump manufacturers usually estimate discharges in gallons per minute or gallons per second, this is sometimes a convenient unit to use. One cubic foot is approximately equal to $71 / 2$ gallons (exactly 7.4805) and 1 cubic foot per second is approximately equivalent to 450 gallons per minute or $71 / 2$ gallons per second.

One Thousand Gallons.-This unit is quite common in irrigation practise in San Diego County, Calif,, where the cost of irrigation water is perhaps higher than anywhere else in the United States.

THE DAVIS FIELD LABORATORY

In addition to the various measuring devices subsequently described, the Davis laboratory consists of the following elements:
(1) Reinforced concrete lined reservoir (Fig. 1) 96 feet long, 16.5 feet wide, and 5.5 feet deep, with side-slopes of 1 to 1 , and with elevation of 94.8 feet above datum. This reservoir has a capacity of 11,910 cubic feet and it has been carefully calibrated. Outlet from this reservoir into the standardizing box and through it to the measuring devices is through a 15 -inch vitrified clay pipe and is controlled by means of a 15 -inch Western steel headgate. The reservoir is filled from a near-by well by means of a 4 -inch centrifugal pump.

Fig. 1.- Reinforced concrete reservoir, Davis Field Laboratory
(2) Concrete standardizing box (Fig. 2), 30 feet long, 9 feet wide, and 6 feet deep (all inside measurements) with partition 12.75 feet from the upper end containing an opening 5 feet wide, 1 foot above the bottom of the box, a similar opening 5 feet wide having been left in the lower end of the box. These openings are so equipped that weirs or orifices of desired sizes can be set in them, making it possible to use either a standard weir or a standard orifice in testing the various

Fig. 2.-Concrete standardizing box, Davis Field Laboratory
devices. Water from the reservoir is brought into the box with a downward flow into a slightly suppressed pool and must pass from the pool over a bulkhead 12 inches high and through a baffle before reaching the weir or orifice set in the opening in the partition already referred to. Four pieces of 4 -inch channel iron 9 feet long are set directly below the baffle board and when desired furnish a spill with an aggregate length of 72 feet for aiding in keeping a constant head over the standard weir or orifice. When planning the installation this was considered a necessary part of the control on account of the water supply from the reservoir being fed to the standardizing hox
under a diminishing head. The channel-iron spills all discharge through a 6 -inch iron pipe into a well on the side of the main box out of which water spilled can be measured through a circular orifice of any necessary size. In the tests thus far made this spilling device has not been used because it has not been found necessary to maintain an exactly constant flow during the tests. The elevation of the bottom of this box is 90.6 feet above datum.
(3) Concrete main ditch 3 feet wide, 2 feet deep, and 80 feet long, with vertical sides, leading from the lower end of the standardizing box. All devices other than the Azusa, Gage, and Riverside hydrants lead from this main ditch. The elevation of the ditch is 90.6 feet above datum and it has a slope of 0.10 foot in 100 feet.
(4) Twelve-inch concrete pipe leading from the bottom of the standardizing box to the Azusa, Gage, and Riverside hydrants, the flow into this pipe being controlled by a 12 -inch $\mathrm{K}-\mathrm{T}$ valve set flush with the bottom of the standardizing box.

MEASURING DEVICES FOR UNDERGROUND DISTRIBUTION SYSTEMS

When irrigation water is distributed in underground pipes measurement is usually accomplished at the hydrant through which the water is brought to the surface. Three of the measuring hydrants used in southern California have been installed at the field laboratory.

AZUSA HYDRANT

This hydrant (Figs. 3 and 4) is chiefly used in the vicinity of Azusa, Calif., and provides for measurement through one or more orifices on the center of which a pressure head of 4 inches is maintained by means of a sheet-iron spill crest set at right angles to the orifice plate. The hydrant is in the form of a concrete box placed over the supply pipe line. The openings in the orifice plate are 4 inches high and $21 / 2,33 / 4,61 / 4$, and $121 / 2$ inches wide, giving areas of $10,15,25$, and 50 square inches, respectively. When the water surface on the upper side of these openings is held 4 inches above their centers they will discharge respectively, 10, 15, 25, and 50 inches. By using different combinations of these openings several different amounts up to 100 inches can be measured. The water enters through the pipe shown in the drawing (Fig. 4). The orifices for the desired amounts to be turned out are opened and the others closed with slides.

By adjusting the gate below the spillway the water can be brought to the crest of the spillway, the area of the orifices in square inches being then equal to the number of inches turned out. If the water rises above the openings a large part of the increase will be carried back to the supply line over the spillway, but any increase in depth on the openings will also increase the amount turned out.

Fig. 3.-Drawing of Azusa hydrant
The Azusa box as shown has walls 6 inches thick, all sides being vertical and flat. The forms required in making are therefore simple. The box contains 78.3 cubic feet of concrete. This can be made of 1 part cement to 4 parts coarse sand. As the walls are 6 inches thick it is better to use some gravel when it can be obtained. A good mixture when using gravel is 1 part cement, 3 parts sand, and 4 parts
gravel. The gravel should not be larger than $11 / 2$ inches. The concrete for this box including forms will cost from $\$ 18$ to $\$ 20$ under a large contract and about $\$ 30$ if made singly. The plate with the openings and slides can be bought already made for $\$ 12$ from foundries in the vicinity of the places the hydrant is used. The gate can be any of the usual types of slide gate.

The average of all tests made of this hydrant showed the amounts in inches being earried through the

Fig. 4.-Photograph of Azusa hydrant from above openings to be 1 per cent more than their area in square inches. This difference includes all errors in the measurements so that these openings are seen to be very accurate. The tests showed all openings or combinations of openings to be equally accurate. The box will therefore measure as accurately as is required. The openings are not as closely adjustable to the amounts turned out, however, as they are in the case of the box of the Riverside Water Co.

GAGE HYDRANT

This hydrant (Figs. 5 and 6) has been developed, and, so far as is known, is only used by the Gage Canal Company, of Riverside, Calif. The main box is of mortar 2 inches thick and is made in the material yard and seasoned before setting. The concrete is made of 1 part cement and 3 parts coarse sand, mixed quite dry and thoroughly tamped. The bottom is cast separately and the top cemented to it in the field. The dimensions of the box are shown in the drawing. The weir crest consists of $1 / 8$-inch by $11 / 2$-inch iron cemented to the sides, giving a final opening of 10 inches wide and $101 / 2$ inches high. One man makes 2 boxes in a day. In making one box $23 /$ sacks of cement are used. The company charges $\$ 10$ per box, with weir, not installed. The outlet chamber into which the water goes after passing over the weir is omitted from the drawing. In the hydrant installed at Davis a half section of 18 -inch pipe is used for this purpose, as shown in the photograph. When the hydrant is not in use the valve
shown in the drawing at the end of the pipe is kept closed. When in use the valve is opened to the desired extent and the water rises from the valve and flows over the weir. The amount flowing is determined by measuring the depth of the water in the box above the crest of the weir and either figuring the discharge or taking it from a table. The depth of water on the crest is usually obtained by measurement from a bracket set level with the crest at the back side of the box. After the water passes the weir it can be caught in various ways and carried to its point of use. Generally this is done by letting it

Fig. 5.-Drawing of Gage hydrant

Fig. 6.-Photograph of Gage hydrant
fall to a pipe below and carrying it through pipe distributing systems or directly into a distributing flume.

In the tests with this hydrant it was found that the amount of water discharged for any given depth was greater with this box than it would be with a standard 10 -inch weir. This is due to the nearness of the sides of the box to the sides of the weir and to the velocity conditions in the box. The amount of this difference increases as the head increases, being as much as 35 per cent at the higher heads. In practice the principal source of error in using this box will be the difficulty in measuring the depth over the weir closely. In the tests this was done with special gages enclosed in stilling cans, but even then it was difficult to get the depths correctly. Measurements in open water with a rule would vary much more.

RIVERSDDE BOX

This is shown in figures 7 and 8. It consists of a shallow box set over the end of the delivery pipe line. The water enters through the bottom of the box and is measured out through an adjustable cast-

Fig. 7.-Drawing of Riverside measuring box
iron measuring plate in the end. The opening in this plate is 5 inches high and by moving the iron slide gates it can be varied in width up to 14 inches. With this gate, however, there is no provision for holding a constant head or pressure above the opening. The top of the plate is 4 inches above the center of the opening. Thus if the slides are set so as to hold the water surface at the top of this plate the discharge in inches will equal the area of the opening in square inches. The area of the opening is the width in inches multiplied by 5 : Marks one inch apart are

Fig. 8.-Photograph of Riverside measuring box
made on the plate to assist in measuring the width. The method of carrying the measured water away is not shown on the drawing but is shown in the photograph. The water is usually dropped into another pipe system to be distributed for use. Care should be taken so to place the outlet chamber that water passing through the gate will always have a free fall.

The Riverside box is made of concrete 4 inches thick and contains 18.4 cubic feet of concrete. The concrete can be made of 1 part cement, 3 parts sand, and 4 parts of gravel not larger than $11 / 2$ inches in diameter. This will require 3 sacks of cement for the box. The box can be made with a cover as shown in the drawing. The plates containing the orifice can be purchased already made. The forms for making the concrete walls are simple as there are no curves and all sides are vertical. The cost of the plate is $\$ 2.25$, the concrete will cost from $\$ 3.50$ to $\$ 5.00$ for material, forms, and labor, and the cover will cost about $\$ 1.50$ more. These boxes are made and instalied by the company for $\$ 10.00$.

In the tests of this device the average difference between the number of inches actually received and the area in square inches of the opening was about 2 per cent. Some of these tests gave more and some less than the measured amounts. For all tests the area in square inches of the opening averaged 1 per cent greater than the inches actually received. The tests show that where care is used to adjust the width of the opening to the amount running this box will measure water very closely.

While the Riverside box is of the type used on underground pipe systems, the measuring plate used in it can be set in open ditches if desired. The box is sufficiently large so that the water passes through it without much agitation and can be brought to the top of the opening plate quite closely. There will generally be some leakage around the slides but these can be wedged tight if necessary. The box shown will measure amounts up to 75 inches.

FOOTE INCH BOX

This structure is shown in figures 9 and 10. It consists of a box having two principal parts, the larger part being merely a section of flume set in the main channel of the supply lateral and the smaller a spill and measuring chamber. On one side of this smaller portion there is a discharge opening in which a slide moves horizontally. The other side of this side box or flume is a spillway. Gates are arranged as
shown at the upper end so that water can be turned into this side box as desired. This is done by putting in as many flash boards across the supply lateral as are needed to crowd the water into the side box. The slide on the miner's inch opening is then set so that the water in this side box stands level with the crest of the spillway. The crest of this spillway is placed 4 inches above the center of the opening. The opening is 4 inches high. Thus when the water stands level with the spillway the width of the opening of the slide multiplied by four gives the number of inches flowing.

Fig. 9.-Drawing of Foote inch box

This box does not require much fall in the supply lateral. The crest of the spillway should be set so that the water in the main channel will be at least 3 to 4 inches below it. The water in the ditch above can then be checked up with the flashboards until the water in the side box comes level with its crest. The ditch into which the measured water is turned must be lower than the main channel by over one foot. The water in the outlet flume should not rise within about 3 inches of the bottom of the slide opening. If the water in the outlet flume does rise above the bottom of the slide opening, the conditions for measurement are changed and the discharge is smaller than with free fall.

In the tests of this device the amount of water supposed to have been passed, as measured by taking the area of the slide openings,

Fig. 10.-Photograph of Foote inch box averaged 4 per cent greater than was actually run. The error did not vary with the amount of the discharge. From these tests it appears that the slide can be set within an average 4 per cent of correct if care is used.

This box will measure water up to 150 inches satisfactorily under conditions to which it is adapted, although it is not in general an economical box to use. It requires as much fall from the supply lateral as a weir, besides some fall in the lateral itself. It also takes as much lumber as is required for a check and turnout in the supply later and a weir below. The weir will give more satisfactory measurements and has no slides to leak if too loose or to stick if too tight. The inch box was used a good deal in the earlier days when water was measured mainly for mining but is built but little now for irrigation use. It has one advantage over a weir in that the amount being measured can be determined directly from the area of the slide opening, no tables or figuring being needed. With a weir, tables must be used giving the discharge for weirs of different lengths at different depths.

WEIRS*

In sections where the irrigated lands have a considerable slope, so that water can very easily be led from the supply ditches or laterals

[^0]to the land without having to check the water nearly as high as the ditch banks, some form of weir is the most common type of measuring device. Taken singly, however, a weir, like other non-mechanical meters, measures the rate of flow and does not indicate the total quantity delivered. In conjunction with a water register (Fig. 26), which graphically records the depth of water passing over the weir, or in conjunction with such a device as the Hanna meter (Fig. 25), which may be arranged to read directly in acre-feet, measurement by means of a weir gives entirely satisfactory results. Where conditions permit its use the weir is thus far the generally accepted device for measuring

Fig. 11.-Measuring water with a small wooden Cipolletti weir
lateral diversions from main canals. It is also an accepted standard device for testing the rate of flow from pumping plants, just as it has been the standard device in the tests that have been made of the various devices installed at Davis. Small movable weirs (Fig. 11) are convenient for use by farmers for measuring the water carried in their individual ditches or discharged by pumping plants.

Three types of weirs are chiefly in use in irrigation practise; viz: the Cipolletti weir, the weir' extending the entire distance across the ditch or flume carrying the water measured, known as the weir without end contractions, and the rectangular weir that does not extend entirely across the ditch or flume, known as the rectangular weir with end contractions. The first two only of these are installed at Davis and described in this bulletin.

Briefly, a weir is merely a board or other crest set across a stream or other water channel and over whick the water carried is made to flow. If the velocity of the water directly above the weir, known as
the velocity of approach, is very small and due only to the falling of the water over the weir crest, the quantity of water passing depends entirely on the depth of the water over the crest and the length of the crest. In the case of the rectangular weir with end contractions the discharge is not proportional to the length of the weir crest. Such a weir is not, however, deseribed in this bulletin. In fact, the discharge is not precisely proportional to the length in the case of the weir without end contractions, but is so nearly so as to involve no error of consequence by assuming it to be. As tables have been prepared that show the quantity passing over both a Cipolletti weir and a weir without end contractions (as well as other types of weirs), measurement with a weir only involves measuring the depth of water over the weir crest and reference to the appropriate table to determine the quantity passing for the given depth and crest length.

CIPOLLETTI WEIR

This weir, as installed at Davis, is shown in figures 12 and 13. The length of weir and size of box to make are of course dependent on the quantity of water to be measured. In general, it may be said that a Cipolletti weir should be small enough so that the amount of water to

Fig. 12.-Drawing of Cipolletti weir and weir box
be measured will never give less than a depth of one inch over the weir crest, and large enough so that the depth will never need to be much more than one-third of the crest length. Care should also be taken to see that the weir crest is long enough so that the water can be measured without raising it higher over the weir crest than is permitted by the available fall. A number of other conditions are usually laid down as necessary for the weir. The most important of these, briefly paraphrased, follow :

1. The distance from the crest of the weir to the

Fig. 13.-Photographs of Cipolletti weir and Hanna meter bottom of the canal or floor of the weir box should be at least three times the depth of water on the weir. That is, with an 18 -inch weir intended to measure up to 2 cubic feet per second, which requires a depth on the weir of about 6 inches, the crest of the weir should be about 18 inches above the floor.
2. The distance from the ends of the weir crest to the sides of the weir box should be about twice the depth of the water on the weir, or, say, from 10 to 12 inches in the case of an 18 -inch weir measuring about 2 cubic feet per second.
3. The bottom and sides of the weir notch should be bevelled on the down-stream side to give a narrow edge. The use of a galvanized iron crest is quite common and very satisfactory, but not necessary. Sometimes thin pieces of strap iron are fastened on the up-stream side of the weir notch. In other cases the board in which the weir noteh is cut is merely bevelled down to a crest thickness of one-eighth or one-quarter of an inch.
4. Water should not be allowed to approach the weir with a velocity exceeding 6 inches per second. Also, it should flow to the weir in a smooth stream free from eddies or swirls. Both of these conditions are most easily met by placing the weir in a straight section of the ditch.
5. The water passing over the weir should, if possible, have a free over-fall. Where necessary, however, it may rise to the level of the weir crest without appreciable error in the measurement.
6. The depth of water on the weir crest must be measured sufficiently above the weir to be free from the downward curve of the water as it passes over the weir. For convenience in making this measurement of depth a stake with its top level with the crest of the weir is usually set at one side of the ditch 2 or 3 feet above the weir, the measurements of depth then being made from the top of this stake to the top of the water.

Cipolletti Weir Tables

The tables below give the discharge over Cipolletti weirs from 1 to 5 feet long. For lengths of from 1 to 2 feet the length of weir crest is given in inches and the depths in inches and feet (Table 1). For weirs with crest lengths of 3,4 , and 5 feet the lengths and depths are given in feet only (Table 2). If it is desired to measure the discharge in inches instead of cubic feet per second, multiply the cubic feet per second given in the table by 50 , if the old customary California miner's inch is desired, or by 40 , if it is desired to use the statute miner's inch of California.

Discharge of Capolaetti Weirs 12 to 24 Inches Long in Cuhe Feet pel Second, Computed yrom Formula $Q=3.367$ Lhi ${ }^{\frac{1}{2}}$
Head, H
In. Fi.

TABLE 1 -(Continued)
Discharge op Cipolletti Weirs 12 to 24 Inches Long in Cubic Feet per Skcond, Computed prom Formilia $Q=3.367$ Lif ${ }^{\frac{7}{3}}$

						Length of	ir L ,	碞						
In.	Ft.	12	13	14	15	16	17	18	19	20	21	22	23	24
5\%/4	. 479	1.12	1.21	1.31	1.40	1.49	1.58	1.67	1.77	1.87	1.96	2.05	2.14	2.23
57/8	. 490	1.15	1.25	1.34	1.44	1.53	1.63	1.73	1.82	1.02	2.01	2.11	2.21	2.31
6	. 500	1.19	1.29	1.39	1.49	1.59	1.68	1.78	1.88	1.98	2.08	2.18	2.28	2.38
61/3	. 510	--...	1.33	1.43	1.53	1.64	1.74	1.84	1.94	2.04	2.15	2.25	2.35	2.45
61/4	. 521		1.37	1.48	1.58	1.69	1.79	1.90	2.01	2.11	2.22	2.32	2.43	2.53
6\%/8	. 531	\ldots	$1.41{ }^{\circ}$	1.52	1.62	1.73	1.84	1.95	2.06	2.17	2.28	2.38	2.49	2.61
61/2	. 542	\ldots	1.46	1.57	1.68	1.80	1.91	2.02	2.13	2.24	2.36	2.47	2.58	2.69
6\%	. 552	--...	-....	1.61	1.72	1.84	1.96	2.07	2.18	2.30	2.42	2.53	2.64	2.76
6\%/4	. 562	-....	1.66	1.78	1.89	2.01	2.13	2.25	2.37	2.48	2.60	2.72	2.84
67/8	. 573	--.	1.70	1.83	1.95	2.07	2.19	2.31	2.43	2.56	2.68	2.80	2.92
7	. 583	.-...	1.75	1.88	2.00	2.12	2.25	2.38	2.50	2.62	2.75	2.88	3.00
71/8	. 594	\cdots	--	1.92	2.05	2.18	2.31	2.44	2.56	2.69	2.82	2.95	3.08
$71 / 4$. 604	-....	\cdots	1.98	2.11	2.24	2.37	2.50	2.63	2.76	2.90	3.03	3.16
7\%	. 615			2.03	2.17 ,	2.30	2.44	2.58	2.71	2.85	2.98	3.12	3.25
71/3	. 625	--...	\cdots	2.08	2.22	2.36	2.50	2.64	2.78	2.92	3.06	3.20	3.33
74\%	. 635	\ldots	2.28	2.42	2.56	2.70	2.84	2.99	3.13	3.27	3.41
7\%	. 646	2.33	2.48	2.62	2.77	2.91	3.06	3.20	3.35	3.50
77/	. 656-...	\ldots	.-...	2.38	2.53	2.68	2.83	2.98	3.13	3.28	3.43	3.58
8	. 667	\ldots	\ldots	2.44	2.60	2.75	2.90	3.06	3.21	3.36	3.51	3.67
81/9	. 677	--	2.65	2.81	2.96	3.12	3.28	3.43	3.59	3.75

TABLE 1-(Concluded)
Discharge of Cipolletti Weirs 12 to 24 Inches Lono in Cubio Feet per Second, Computed yrom Formula $Q=3.367 \mathrm{~J} / \mathrm{H}^{\frac{3}{2}}$

Head, H						Length of weir L, inches								
In.	Ft.	12	13	14	15	16	17	18	19	20	21	22	23	24
81/4	. 688*	2.72	2.88	3.04	3.20	3.36	3.52	3.68	3.84
8\%/8	. 698	2.79	2.95	3.12	3.28	3.44	3.61	3.77	3.93
81/2	. 708	2.84	3.01	3.18	3.34	3.51	3.68	3.85	4.01
8\%/8	. 719-....	3.08	3.25	3.42	3.59	3.76	3.94	4.11
8\%	. 729	3.14	3.31	3.49	3.66	3.84	4.02	4.19
8\%/8	. 740	\ldots	3.22	3.40	3.58	3.76	3.94	4.12	4.29
9	. 750	\ldots	3.28	3.46	3.64	3.82	4.01	4.19	4.37
91/8	. 760	3.53	3.72	3.90	4.09	4.28	4.46
91/4	. 771		3.61	3.80	3.99	4.18	4.37	4.56
9\%	. 781	\ldots	3.67	3.87	4.06	4.25	4.45	4.64

TABLE 2
Discharge of Cipolletti Weirs 3 to 5 Feet Long in Cubic Feet per Second, Computed from Formula $Q=3.367 \mathrm{LH}^{\frac{3}{2}}$

Head H, feet	Length of weir L, feet			Head II, feet	Length of woir L, feet			Head H, feet	$\begin{aligned} & \text { Length of weir } \mathrm{L}, \text {, feet } \\ & 4.0 \end{aligned}$	
	3.0	4.0	5.0		3.0	4.0	5.0			
		0.76	6.69	8.92	11.15	1.51	24.99	31.24
-	\ldots 77	6.82	9.10	11.37	1.52	25.24	31.55
--- 78	6.96	9.28	11.60	1.53	25.48	31.85
-		- 79	7.09	9.46	11.82	1.54	25.74	32.17
0.05	0.11	0.15	0.19	. 80	7.23	9.64	12.04	1.55	25.99	32.49
0.06	.15	. 20	. 25	. 81	7.36	9.82	12.27	1.56	26.24	32.80
0.07	. 19	. 25	. 31	. 82	7.50	10.00	12.50	1.57	26.49	33.12
0.08	. 23.	. 30	. 38	. 83	7.64	10.18	12.73	1.58	26.75	33.44
0.09	. 27	. 36	. 46	. 84	7.78	10.37	12.96	1.59	27.00	33.75
0.10	. 32	.43	. 53	. 85	7.92	10.55	13.19	1.60	27.25	34.07
0.11	. 37	. 49	. 61	. 86	8.06	10.74	13.42	1.61	27.51	34.39
0.12	.42	. 56	. 70	. 87	8.20	10.93	13.66	1.62	27.77	34.71
0.13	. 47	. 63	. 79	. 88	8.34	11.12	13.90	1.63	28.03	35.04
0.14	. 53	. 70	. 88	. 89	8.48	11.31	14.13	1.64	-28.29	35.36
0.15	. 50	. 78	. 98	. 90	8.62	11.50	14.37	1.65	28.54	35.68
0.16	. 65	. 86	1.08	. 91	8.77	11.69	14.61	1.66	28.80	36.01
0.17	. 71	. 94	1.18	. 92	8.91	11.88	14.85	1.67	29.07	36.33
0.18	. 77	1.03	1.28	. 93	9.06	12.08	15.10	1.68	29.33	36.66
0.19	. 84	1.12	1.39	. 94	9.20	12.27	15.34	1.69	29.59	36.99
0.20	. 90	1.20	1.51	. 95	9.35	12.47	15.59	1.70	29.85	37.32

TABLE 2-(Continued)
Discharae of Cipolletti Weirs 3 to 5 Feet Lona in Cubio Feet per Second, Computed from formula $Q=3.367$ Lif ${ }^{\frac{3}{2}}$

Head H,		of we		Head II,		of weir	feet	Head H,	Length of	r L, feet
feet	3.0	4.0	5.0	feet	3.0	4.0	5.0	foet	4.0	5.0
0.21	. 97	1.30	1.62	. 96	9.50	12.67	15.83	1.71	30.12	37.64
0.22	1.04	1.39	1.74	. 97	9.65	12.86	16.08	1.72	30.38	37.98
0.23	1.11	1.48	1.86	. 98	9.80	13.06	16.33	1.73	-30.65	38.31
0.24	1.19	1.58	1.98	. 99	9.95	13.20	16.58	1.74	30.91	38.64
0.25	1.26	1.68	2.10	1.00	10.10	13.47	16.83	1.75	31.18	38.97
0.26	1.34	1.78	2.23	1.01	13.67	17.09	1.76	31.45	39.31
0.27	1.42	1.89	2.36	1.02	13.87	17.34	1.77	31.72	39.64
0.28	1.50	2.00	2.49	1.03	14.08	17.60	1.78	31.98	39.98
0.29	1.58	2.10	2.63	1.04	14.28	17.86	1.79	32.25	40.32
0.30	1.66	2.21	2.77	1.05	\ldots	14.49	18.11	1.80	32.52	40.66
0.31	1.74	2.32	2.90	1.06	14.70	18.37	1.81	32.80	41.00
0.32	1.83	2.44	3.05	1.07	14.91	18.63	1.82	33.07	41.34
0.33	1.98	2.55	3.19	1.08	15.12	18.90	1.83	33.34	41.68
0.34	2.00	2.67	3.34	1.09	15.33	19.16	1.84	33.61	42.02
0.35	2.09	2.79	3.49	1.10	15.54	19.42	1.85	33.89	42.36
0.36	2.18	2.91	3.64	1.11	15.75	19.69	1.86	34.16	42.70
0.37	2.27	3.03	3.79	1.12	15.96	19.96	1.87	34.44	43.05
0.38	2.37	3.16	3.94	1.13	16.18	20.22	1.88	34.72	43.40
0.39	2.46	3.28	4.10	1.14	16.39	20.49	1.89	34.99	43.74
0.40	2.56	3.41	4.26	1.15	16.61	20.76	1.90	35.27	44.09

TABLE 2-(Continued)
Discharge of Cipolletti Weirs 3 to 5 Feet Long in Cuhic Feet per Second, Computrd yrom Formula $Q=3.367$ LH ${ }^{\frac{3}{2}}$

Bill of Material for Cipolletti Weir Box

The bill of material given below covers what is necessary for an 18 -inch Cipolletti weir box and weir as installed at Davis. This box is long enough and of such other dimensions as to meet the general conditions that have been named. In some situations the box might be made somewhat shorter, but the additional cost required for a 12 foot over, say, an 8 -foot box is not sufficient to justify using the shorter box where only a small number of weirs are involved. This box is suitable for measuring from about 0.25 to about 1.75 or 2 cubic feet per second, equivalent to $121 / 2$ to 100 customary California miner's inches.

Bill of Material for Cipolletti Weir Box

4 pe. $1^{\prime \prime} \times 12^{\prime \prime} \times 2^{\prime}$ (cut-off walls)	$\begin{gathered} \text { Board } \\ \ldots \quad 8 \end{gathered}$
1 pe. $1^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime}$ (cut-off walls)	7
4 pe. $1^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime}$ (main walls)	48
7 pe. $1^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime}$ (floor)	84
8 pc. $2^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime}$ (posts)	16
2 pe. $4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime}-4^{\prime \prime}$ (posts)	12
8 pc. $1^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$ (cleats)	3
1 pc. $2^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime}-6^{\prime \prime}$ (gate stem)	3
1 pe. $2^{\prime \prime \prime} \times 2^{\prime \prime} \times 6^{\prime \prime}$ (gate stem brace)	2
2 pc. $2^{\prime \prime} \times 12^{\prime \prime} \times 3^{\prime}$ (gate)	12
2 pe. $2^{\prime \prime} \times 12^{\prime \prime} \times 3^{\prime}$ (weir board)	12
8 pe. $2^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime}-10^{\prime \prime}$ (caps and sills)	21

Weir Without End Contractions
This is illustrated by Figure 14, which is from a photograph of the weir of this type installed at Davis. It is different from the Cipolletti weir just described mainly in having the weir board extend the full width of the weir box. The same bill of material can therefore be used except that more or less lumber will be necessary according to the width and height of the weir chosen. This type of weir can only be used in a channel of constant cross-section and vertical sides directly
above the weir, such as is provided in the box shown. This weir must be so constructed as to allow free access of air to the under side of the falling sheet of water. This can

Fig. 14.-Photograph of weir without end contractions be accomplished by making a horizontal notch in the side of the weir box directly below the crest and extending down stream to the end of the wall. The water must not be allowed to approach the weir with an appreciable velocity. The velocity of approach is largely governed by the height of the weir board above the bottom of the box. It has been suggested by Professor Richard R. Lyman, ${ }^{\circ}$ of the University of Utah, that a weir of this type 1 foot or less long should be 6 inches high, that with lengths of 1.5 to 2.5 feet, it should be 9 inches high, that with lengths of 3 to 4 feet it should be 1 foot high, and that with lengths of 5 to 7 feet it should be 1.5 feet high. In the same bulletin Professor Lyman gives the following table of discharges per foot of length for such a weir. \dagger

TABLE 3
Discharge of Weirs Without End Contractions in Cubic Feet per Second

Head in inches	Head in feet	$\begin{aligned} & \text { Weir } \\ & \text { o.5 } 5 \text { hit. } \end{aligned}$	$\begin{aligned} & \text { Weir } \\ & 0.75 \\ & \text { high } \end{aligned}$	$\begin{aligned} & \text { Welr } \\ & \text { 1.00 } \mathrm{tc} . \\ & \text { hight } \end{aligned}$	$\begin{aligned} & \text { Weir } \\ & \text { y.50 f. } \\ & \text { hight } \end{aligned}$
2\%/8	0.200	0.315	0.314	0.313	0.312
27/16	0.205	0.327	0.326	0.325	0.324
21/2	0.210	0.340	0.337	0.336	0.335
2916	0.215	0.352	0.351	0.350	0.348
25/8	0.220	0.365	0.363	0.360	0.359
213/16	0.225	0.377	0.375	0.372	0.370
2\%	0.230	0.392	0.388	0.385	0.383
213/6	0.235	0.404	0.400	0.398	0.396
27/8	0.240	0.420	0.415	0.412	0.408
21\%6	0.245	0.433	0.487	0.425	0.482

[^1]TABLE 3-(Continued)
Discharge of Weirs Without End Contractions in Cubic Feet per Second

Head in inches	Head in feet	Weir 0.5 ft . high	Weir 0.75 ft .	$\begin{aligned} & \text { Weir } \\ & \text { 1.00ft. } \\ & \text { hight } \end{aligned}$	$\begin{aligned} & \text { Weir } \\ & 1.50 \mathrm{ft} . \\ & \text { high } \end{aligned}$
3	0.250	0.446	0.442	0.438	0.435
$31 / 16$	0.255	0.460	0.453	0.450	0.447
31/8	0.260	0.475	0.468	0.465	0.460
3716	0.265	0.490	0.483	0.478	0.475
$31 / 4$	0.270	0.503	0.497	0.493	0.488
3\%10	0.275	0.515	0.508	0.505	0.501
3\%/8	0.280	0.530	0.524	0.518	0.514
37/16	0.285	0.546	0.537	0.532	0.526
$31 / 2$	0.290	0.560	0.552	0.547	0.544
3\%	0.295	0.576	0.566	0.560	0.555
3\%/8	0.300	0.595	0.584	0.576	0.570
3\%/8	0.305	0.610	0.595	0.588	0.589
$311 / 16$	0.310	0.625	0.612	0.605	0.59 ,
3\%	0.315	0.640	0.627	0.620	0.613
31916	0.320	0.655	0.645	0.636	0.630
37/8	0.325	0.670	0.655	0.650	0.641
315/18	0.330	0.690	0.672	0.665	0.656
4	0.335	0.705	0.690	0.680	0.670
41/16	0.340	0.720	0.705	0.697	0.688
41/8	0.345	0.738	0.720	0.710	0.703
4316	0.350	0.755	0.735	0.726	0.717
41/4	0.355	0.770	0.759	0.743	0.732
$4 \% 16$	0.360	0.790	0.772	0.760	0.750
4%	0.365	0.805	0.786	0.775	0.764
47/16	0.370	0.824	0.502	0.792	0.780
41/2	0.375	0.840	0.817	0.805	0.795
4%	0.380	0.860	0.836	0.825	0.813
4\%	0.385	0.875	0.853	0.840	0.826
411/10	0.390	0.896	0.870	0.857	0.845
4%	0.395	0.910	0.885	0.870	0.860
41\%/6	0.400	0.930	0.905	0.893	0.875
47/8	0.405	0.950	0.928	0.910	0.845
41566	0.410	0.970	0.940	0.925	0.910
5	0.415	0.990	0.956	0.943	0.925
$51 / 8$	0.420	1.005	0.975	0.958	0.943
51/8	0.425	1.020	0.995	0.977	0.963
51/3	0.430	1.045	1.010	0.996	0.980
5\%\%	0.435	1.065	1.030	1.010	0.996
51/2	0.440	1.083	1.045	1.026	1.010
5\%\%	0.445	1.100	1.063	1.045	1.026

TABLE 3-(Continued)
Discharge of Weirs Without End Contractions in Cubic Feet per Second

Head in inches	Head in feet	$\begin{aligned} & \text { Weir } \\ & 0.5 \text { fit. } \\ & \text { hight } \end{aligned}$	$\begin{aligned} & \text { Welr } \\ & 0.75 \mathrm{th} . \\ & \text { high } \end{aligned}$	$\begin{aligned} & \text { Woir } \\ & \text { 1.00 ft. } \\ & \text { high } \end{aligned}$	$\begin{aligned} & \text { Weir } \\ & \text { 1.50 ft. } \\ & \text { high } \end{aligned}$
5\%	0.450	1.120	1.080	1.060	1.040
57/16	0.455	1.140	1.100	1.080	1.057
51/2	0.460	1.164	1.125	1.105	1.085
5\%	0.465	1.185	1.140	1.120	1.100
5\%8	0.470	1.205	1.163	1.143	1.120
$511 / 16$	0.475	1.230	1.185	1.162	1.140
5\%/4	0.480	1.250	1.205	1.185	1.160
51 \%	0.485	1.270	1.223	1.200	1.175
57/8	0.490	1.290	1.245	1.220	1.200
51\%/6	0.495	1.310	1.265	1.233	1.215
6	0.500	1.335	1.285	1.263	1.235
61/16	0.505	1.355	1.300	1.280	1.250
61/8	0.510	1.370	1.320	1.296	1.270
67\%	0.515	1.390	1.340	1.317	1.287
61/4	0.520	1.415	1.360	1.335	1.305
6\%16	0.525	1.440	1.380	1.355	1.325
6\%/3	0.530	1.465	1.405	1.375	1.346
67/6	0.535	1.490	1.425	1.400	1.365
6112	0.540	1.510	1.440	1.415	1.385
6916	0.545	1.530	1.465	1.435	1.403
6\%/6	0.550	1.555	1.490	1.460	1.425
6\%/8	0.555	1.575	1.505	1.475	1.440
61\%6	0.560	1.595	1.525	1.495	1.460
6\%	0.565	1.616	1.545	1.515	1.475
$61 \% 10$	0.570	1.640	1.570	1.535	1.500
67/8	0.575	1.665	1.590	1.555	1.517
615/16	0.580	1.686	1.610	1.076	1.537
7.	0.585	1.713	1.635	1.605	1.565
$71 / 16$	0.590	1.740	1.670	1.630	1.590
71/8	0.595	1.760	1.685	1.650	1.605
7310	0.600	1.790	1.700	1.675	1.625
71/4	0.605	1.805	1.730	1.695	1.655
7\%16	0.610	1.830	1.750	1.715	1.675
7\%	0.615	1.855	1.755	1.735	1.695
7716	0.620	1.880	1.795	1.760	1.710
71/2	0.625	1.905	1.815	1.780	1.730
7\%	0.630	1.930	1.845	1.805	1.760
7\%/8	0.635	1.955	1.875	1.835	1.785
711/10	0.640	1.980	1.900	1.860	1.815
7\%	0.645	2.010	1.915	1.870	1.820

TABLE 3-(Continued)
Discharae of Weirs Without End Contractionsin, Cubic Feet per Second

Head in inches	Head in feet	Weir 0.5 \%. high	Weir 0.75 ft. high	Weir 1.00 ft . high	$\begin{aligned} & \text { Weir } \\ & 1.50 \mathrm{ft} . \\ & \text { high } \end{aligned}$
${ }^{71} / 16$	0.650	2.035	1.930	1.890	1.840
77/8	0.655	2.060	1.960	1.915	1.860
715/6	0.660	2.085	1.985	1.945	1.890
8	0.665	2.110	2.005	1.965	1.910
81/16	0.670	2.135	2.025	1.980	1.930
81/6	0.675	2.160	2.055	2.000	1.945
81/8	0.680	2.185	2.075	2.030	1.980
$83 / 18$	0.685	2.210	2.095	2.050	1.990
$81 / 4$	0.690	2.240	2.125	2.075	2.025
85/16	0.695	2.260	2.150	2.095	2.040
8\%	0.700	2.295	2.180	2.130	2.070
87/16	0.705	2.325	2.200	2.155	2.100
81/2	0.710	2.350	2.220	2.170	1.115
8\%	0.715	2.380	2.250	2.195	2.140
8\%/8	0.720	2.410	2.275	2.220	2.160
811/16	0.725	2.435	2.300	2.245	2.180
8%	0.730	2.465	2.325	2.270	2.200
81%	0.735	2.490	2.350	2.295	2.230
8\%/8	0.740	2.520	2.375	2.320	2.250
815/16	0.745	2.550	2.405	2.340	2.275
9	0.750	2.585	2.430	2.375	2.300
91/16	0.755	2.605	2.455	2.400	2.325
91/8	0.760	2.640	2.480	2.415	2.340
9916	0:765	2.670	2.510	2.440	2.370
91/4	0.770	2.700	2.540	2.470	2.400
9716	0.775	2.730	2.560	2.500	2.420
9\%	0.780	2.760	2.590	2.515	2.440
97/16	0.785.	2.790	2.610	2.550	2.460
91/2	0.790	2.820	2.630	2.570	2.480
9\%	0.795	2.850	2.660	2.595	2.510
9\%	0.800	2.890	2.700	2.625	2.550
9\%/8	0.805	2.910	2.730	2.660	2.575
911/16	0.810	2.940	2.755	2.680	2.595
9\%	0.815	2.975	2.780	2.700	2.610
91\%60	0.820	3.010	2.810	2.735	2.640
	0.825	3.045	2.840	2.770	2.670
915/6	0.830	3.070	2.870	2.790	2.700
10	0.835	3.100	2.905	2.830	2.730
$10^{1 / 6}$	0.840	3.130	2.930	2.840	2.760
10\%	0.845	3.160	2.950	2.880	2.785

TABLE 3-(Continued)
Discharge of Weirs Without End Contractions in Cubic Feet per Second

Head in inches	Head in feet	$\begin{aligned} & \text { Weir } \\ & \text { O.5f. } \\ & \text { hight. } \end{aligned}$	$\begin{aligned} & \text { Weir } \\ & 0.75 \text { t. } \\ & \text { hight } \end{aligned}$	$\begin{aligned} & \text { Weir } \\ & \text { 1.00 f. } \\ & \text { high. } \end{aligned}$	$\begin{aligned} & \text { Weir } \\ & 1.50 \mathrm{ft} \\ & \text { high } \end{aligned}$
10\%\%	0.850	3.190	2.990	2.910	2.800
101/4	0.800	3.230	3.015	2.930	2.840
10\%\%	0.860	3.260	$3.040{ }^{\circ}$	2.960	2.860
- 10\%	0.865	3.290	3.070	2.980	2.880
107\%	0.8،	3.320	3.100	3.010	2.910
10\%	0.875	3.350	3.120	3.035	2.930
10\%	0.880	3.395	3.160	3.070	2.965
10\%/3	0.885	3.415	3.180	3.090	2.980
1013/6	0.890	3.445	3.200	3.120	3.010
10\%	0.985	3.480	3.235	3.150	3.040
1019\%	0.900	3.520	3.270	3.180	3.070
107/8	0.905	3.550	3.300	3.210	3.100
1015/6	0.910	3.580	3.330	3.235	3.120
11	0.915	3.620	3.360	3.260	3.155
111\%	0.920	3.655	3.390	3.290	3.180
111/8	0.925	3.690	3.420	3.325	3.210
$111 / 8$	0.930	3.720	3.445	3.350	3.230
11\%	0.935	3.760	3.480	3.380	3.250
111/4	0.940	3.800	3.510	3.405	3.290
115/6	0.945	3.830	3.540	3.430	3.315
11\%	0.950	3.870	3.580	3.470	3.350
117/6	0.955	3.900	3.610	3.500	3.380
111/2	0.960	3.940	3.640	3.540	3.400
11\%	0.965	3.980	3.680	3.570	3.430
11\%	0.970	4.010	3.700	3.590	3.450
1111/6	0.975	4.040	3.740	3.625	3.490
11\%	0.980	4.080	3.770	3.650	3.520
1113/6	0.985	4.120	3.800	3.690	3.555
117/\%	0.990	4.150	3.830	3.710	3.580
1115/6	0.995	4.180	3.850	3.730	3.590
12	1.000	4.230	3.900	3.780	3.640
121/8	1.010	4.300	3.970	3.840	3.710
121/4	1.020	4.380	4.030	3.900	3.760
12\%/8	1.030	4.450	4.100	3.970	
121/2	1.040	4.520	4.170	4.040	3.880
12\%	1.050	4.610	4.240	4.120	3.950
1211/6	1.060	4.800	4.320	4.180	4.020
121716	1.070	4.760	4.370	4.220	4.070
1215/6	1.080	4.820	4.430	4.280	4.130
131/16	1.090	4.900	4.480	4.340	4.180

TABLE 3-(Continued)
Discharae of Weirs. Without End Contractions in Cubic Feet per Second

Head in inches	Head in feet	Weir 0.5 ft . high	Weir 0.75 ft . high	$\begin{aligned} & \text { Weir } \\ & \text { 1.00 ft. } \\ & \text { high } \end{aligned}$	$\begin{aligned} & \text { Weir } \\ & \text { 1.50 fl. } \\ & \text { high } \end{aligned}$
13\%10	1.100	4.980	4.570	4.420	4.240
13\%10	1.110	5.060	4.640	4.480	4.320
137/16	1.120	5.150	4.710	4.560	4.370
13916	1.130	5.220	4.780	4.610	4.420
1311/16	1.140	5.300	4.840	4.670	4.480
1319\%6	1.150	5.380	4.910	4.740	4.560
131/16	1.160	5.450	4.980	4.800	4.610
141/16	1.170	5.510	5.050	4.870	4.670
141/8	1.180	5.600	5.130	4.950	4.740
141/4	1.190	5.680	5.200	5.000	4.800
14\% $/ 3$	1.200	5.780	5.250	5.075	4.870
141/2	1.210	5.860	5.340	5.150	4.940
14\%/8	1.220	5.940	5.420	5.250	5.000
14\%	1.230	6.000	5.460	5.270	5.050
147/3	1.240	6.100	5.550	5.360	5.150
15	1.250	6.200	5.620	5.430	$5.220{ }^{\circ}$
151/8	1.260	6.275	5.675	5.500	5.275
151/4	1.270	.-.....	5.750	5.560	5.325
15\%	. 1.280	5.820	5.620	5.380
151/2	1.290	5.900	5.680	5.450
15\%/8	1.300	5.975	5.775	5.595
1511/16	1.310	6.060	5.850	5.600
1513/10	1.320	6.150	5.920	5.675
151\%\%	1.330	\ldots	6.200	6.000	5.730
161/6	1.340	6.300	6.050	5.800
16\%	1.350	6.375	6.130	5.875
16%	1.360	6.450	6.200	5.940
167/18	1.370	\ldots	6.505	6.300	6.000
16\%	1.380	6.685	6.375	6.080
1611/6	1.390	6.700	6.459	6.150
1613/6	1.400	6.780	6.530	6.230
1615/16	1.410	6.860	6.620	6.320
171/10	1.420	6.950	6.675	6.375
171/8	1.430	7.000	6.750	6.450
171/4	1.440	7.075	6.890	6.520
17\%/3	1.450	...	7.150	6.900	6.600
171/2	1.460	7.250	6.975	6.660
17\%	1.470	7.330	7.050	6.740
17\%	1.480	.	7.400	7.130	6.800
17\%	1.490	7.480	7.200	6.850

TABLE 3-(Concluded)
Discharge of Weirs Without End Contractions in Cubic Feet per Second

Head in inches	Head in feet	$\begin{aligned} & \text { Weir } \\ & 0.5 \mathrm{ft.} \\ & \text { high } \end{aligned}$	$\begin{gathered} \text { Weir } \\ \text { o.75 ft. } \\ \text { high } \end{gathered}$	$\begin{aligned} & \text { Weir } \\ & \text { 1.00 ft. } \\ & \text { high } \end{aligned}$	$\begin{aligned} & \text { Weir } \\ & 1.50 \mathrm{th} \\ & \text { high } \end{aligned}$
18	1.500	7.600	7.300	6.950
181/8	1.510	7.660	7.360	7.020
181/4	1.520*	7.750	7.450	7.100
18\%	1.530	7.825	7.520	7.160
181/2	1.540	7.900	7.600	7.230
18\%/3	1.550	7.980	7.660	7.300
1813/6	1.560	8.075	7.730	7.400
1813'6	1.570	8.150	7.820	7.450
1815/16	1.580	8.250	7.900	7.525
191/10	1.590	-	8.300	7.960	7.560

SUBMERGED ORIFICES

The measurement of water through orifices has long been common in irrigation practice and various forms of orifices have been developed. The essential condition in the use of an orifice, eliminating the question of form, is that the water on the up-stream side of the orifice shall completely submerge it. If, when in use, the surface of the water on the lower side of the orifice is below the bottom thereof, the orifice is said to have a free discharge. If the surface of the water on the lower side of the orifice is above the top of the orifice, completely submerging it, it is classed as a submerged orifice. Except in the case of the miner's inch box, which is really but a form of orifice with free discharge, use of the orifice in irrigation practice is confined to the submerged form.

Submerged orifices as used can be divided into two general types, viz: those with orifices of fixed dimensions (Figs. 15 and 16) and those built so that the height of the opening may be varied (Figs. 17 and 18). Orifices with fixed dimensions are usually made with sharp edges similar to the crest of a weir. The most usual type of the second class is the simple head gate (Figs. 17 and 18), which is also used as a submerged orifice, the height of opening and loss of head being adjusted to the amount which it is desired to turn out and to the loss of head available. Of these two types, the sharp-edged orifice with fixed dimensions is much the more accurate.

SUBMERGED ORIFICES WITH FIXED DIMENSIONS

This type of submerged orifice is used for measurement only, the fixing of the size of the opening preventing its use as a headgate. The experiments which have been made by hydraulic engineers to determine the coefficient of discharge for the standard sharp-edged orifice

Fig. 15.-Drawing of submerged orifice used by U. S. Reclamation Service
approach in accuracy and number those that have been made for sharp-edged weirs. These experiments have shown the coefficients to vary slightly with the size of the orifice. For the sizes used in the measurement of individual deliveries of irrigation water this variation may be overlooked and one formula used for all sizes.

In order that the known formula for the discharge through such orifices shall apply, certain standard conditions must be observed in the construction and use of these orifices. The edges of the orifice must
be sharp and definite in shape. It is preferable to use a thin metal plate as this is not subject to wear and change. The edges of the orifice should not be too near to the sides of the box on either the upper or lower sides; a distance equal to twice the least dimension of the orifice is sufficient. The orifice should be vertical with the top and bottom edges level. The ditch above the orifice should be sufficiently large so that the velocity of approach will be small, as is necessary in the case of a weir. Corrections can be made in the computations for any velocity of approach but such corrections are more or less uncertain.

Fig. 16.-Photograph of submerged orifice used by U. S. Reclamation Service
The principal sources of error in measurements with this type of orifice are due to errors in the gage readings to determine the difference in the elevation of the water on the two sides, this being the head or pressure that forces the water through the orifice. As these orifices are generally used where there is but little loss of head available, the opening is usually made sufficiently large to require as little loss of head as is practicable. Any error in reading this loss of head is thus a larger percentage of the whole than it would be for greater total differences.

In the use of the submerged orifice two gage readings are required, one above and one below the orifice. The reading above the orifice should be taken back from the edge of the orifice. In the type of structure shown in figures 13 and 14 this can be taken on the side wing wall.

The measurement below the orifice should be taken at least 2 feet below it and farther if the discharging water is rough. A convenient method of obtaining the difference in the elevation of the water above and below the orifice is to set marks at equal elevations above and below the orifice or to set a board with its top level extending above and below the orifice sufficiently far to give good points for measurements. The difference in measurements from this level board to the surface of the water above and below the orifice gives the head or pressure under which the water is passing through the orifice.

The type of orifice described above and illustrated in figures 13 and 14 has been adopted by the U. S. Reclamation Service for use where sufficient loss of head is not available for weirs. The data given below regarding the sizes of the structures, and the table of discharges (Table 4) are taken from the publication of the Reclamation Service on the measurement of irrigation water and from their standard plans for submerged orifices. The cost of one of these devices installed will vary from about $\$ 5$ to about $\$ 15$.

Dimensions and Lumber for Standard Sizes of Submeroed Rectangular Orifices Adopted by U. S. Reclamation Service

Size of Orifice			Headwall height in fL . b	Side height in f . c	Structure length in f . d	Floor width in ft . e	Approximate quantity of lumber in ft. B.M
Height in $\%$. ?	Length in ft . a.	$\begin{aligned} & \text { Area } \\ & \text { in } \\ & \text { sq. } \mathrm{ft} . \end{aligned}$					
0.25	1.00	0.25	3.0	2.5	4.0	2.0	150
	2.00	0.50	3.0	2.5	4.0	3.0	170
	3.00	0.75	3.0	2.5	4.0	4.0	185
0.50	1.00	0.50	3.0	2.5	4.0	2.0	150
	1.50	0.75	3.0	9.5	4.0	2.5	160
	2.00	1.00	3.0	2.5	4.0	3.0	170
	2.50	1.25	3.0	2.5	4.0	3.5	175
	3.00	1.50	3.5	2.5	4.0	4.0	210
0.75	[1.33	1.00	3.0	2.5	4.0	2.0	150
	1.67	1.25	3.0	2.5	4.0	2.5	160
	2.00	1.50	3.0	2.5	4.0	3.0	170
	2.33	1.75	3.5	3.0	4.0	3.0	190
	2.67	2.00	3.5	3.0	4.0	3.5	200

TABLE 4
Discharge of Submerged Rectangular Orifices in Cubic Feet per Second Computed from the Formula $Q=0.61 \sqrt{\text { Qgh }} \mathbf{A}$-Taken from
"Measurement of Irrioation Water" Tables of

$\underset{\substack{\text { Head } \\ \text { feet }}}{\text { Hed }}$	U. S. Reclamation Service							
	Cross-sectional area \mathbf{A} of oritice, square feet							
	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.00
0.01	0.129	6.240	0.367	0.489	0.611	0.734	0.856	0.978
. 02	. 173	. 346	. 518	. 691	. 864	1.037	1.210	1.382
. 03	. 212	. 424	. 635	. 847	1.059	1.271	1.483	1.694
. 04	. 245	. 489	. 734	. 978	1.223	1.468	1.712	1.957
. 05	. . 273	. 547	. 820	1.093	1.367	1.640	1.913	2.186
. 66	. 300	. 599	. 899	1.198	1.497	1.797	2.097	2.396
. 07	. 324	. 647	. 971	1.294	1.617	1.941	2.265	2.588
. 08	. 346	. 691	1.037	1.383	1.729	2.074	2.420	2.766
. 09	. 367	. 734	1.101	1.468	1.835	2.201	2.638	2.935
. 10	. 387	. 773	1.160	1.557	1.933	2.320	2.707	3.094
. 11	. 406	. 811	1.217	1.622	2.027	2.433	2.839	3.244
. 12	. 424	. 847	1.271	1.694	2.118	2.542	2.965	3.389
. 13	. 441	. 882	1.323	1.764	2.205	2.645	3.086	3.597
. 14	. 458	. 915	1.373	1.830	2.287	2.745	3.203	3.660
. 15	. 474	. 947	1.421	1.895	2.369	2.842	3.316	3.790
.16	. 489	. 978	1.467	1.956	2.445	2.934	3.423	3.912
. 17	. 504	1.008	1.512	2.016	2.520	3.024	3.528	4.032
. 18	. 519	1.037	1.556	2.075	2.593	3.112	3.631	4.150
. 19	. 533	1.066	1.599	2.132	2.665	3.198	3.731	4.264
. 20	. 547	1.094	1.641	2.188	2.735	3.282	3.829	4.376
. 21	. 561	1.120	1.681	2.241	2.801	3.361	3.921	4.482
. 22	. 574	1.148	1.722	2.296	2.870	3.464	4.018	4.592
. 23	. 587	1.172	1.709	2.345	2.931	3.517	4.103	4.690
. 24	. 600	1.198	1.797	2.396	2.995	3.599	4.193	4.792
. 25	. 612	1.223	1.834	2.446	3.057	3.668	4.280	4.891
. 26	. 624	1.247	1.871	2.494	3.117	3.741	4.365	4.988
. 27	. 636	1.270	1.906	2.541	3.176	3.811	4.446	5.082
. 28	. 646	1.294	1.942	2.589	3.236	3.883	4.530	5.178
. 29	. 659	1.319	1.978	2.638	3.297	3.956	4.616	5.276
. 30	. 670	1.339	2.009	2.678	3.347	4.017	4.687	8.356
. 31	. 681	1.363	2.045	2.726	3.407	4.089	4.771	5.452
. 32	. 692	1.382	2.073	2.764	3.455	4.146	4.837	5.528
. 33	. 703	1.405	2.107	2.810	3.513	4.215	4.917	5.620
. 34	. 713	1.426	2.139	2.852	3.565	4.278	4.991	5.704
.35	. 724	1.446	2.169	2.892	3.615	4.338	5.061	5.784

TABLE 4-(Continued)

Discharee of Submerged Rectangular Obifices in Cubic Feet per Second, Computed from the Formula $Q=0.6 _\sqrt{2 g H} A-T a k e n ~ f r o m ~$
"Measurement of Irrigation Water" Tables of
U. S. Rechamation Service

Head			Cross-secti	al area	orific	uare f		
$\underset{\text { feet }}{\mathbf{H}}$	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.00
. 36	.734	1.467	2.201	2.934	3.667	4.401	5.135	5.868
. 37	. 745	1.488	2.232	2.976	3.720	4.464	5.208	5.952
. 38	. 754	1.508	2.262	3.016	3.770	4.524	5.278	6.032
. 39	. 764	1.527	2.291	3.054	3.818	4.582	5.345	6.109
. 40	. 774	1.547	2.321	3.094	3.867	4.641	5.415	6.188
. 41	. 783	1.567	2.350	3.133	3.917	4.700	5.483	6.266
. 42	. 792	1.585	2.377	3.170	3.962	4.754	5.547	6.339
. 43	. 802	1.604	2.406	3.208	4.010	4.812	5.614	6.416
. 44	. 811	1.622	2.433	3.244	4.055	4.866	5.677	6.488
. 45	. 820	1.640	2.461	3.281	4.101	4.921	5.741	6:562
. 46	. 829	1.659	2.489	3.318	4.147	4.977	5.807	6.636
. 47	. 839	1.678	2.517	3.356	4.195	5.035	5.874	6.713.
. 48	. 847	1.695	2.542	3.389	4.237	0. 084	5.931	6.778
. 49	. 856	1.712	2.568	3.424	4.280	5.136	5.992	6.848
. 50	. 865	1.729	2.594	. 3.458	4.323	5.188	6.059	6.917
. 51	. 873	1.746	2.620	3.493	4.366	5.239	6.112	6.986
. 52	. 882	1.763	2.645	3.527	4.409	5.290	6.172	7.054
. 53	. $890{ }^{\text {- }}$	1.780	2.670	3.560	4.451	5.341	6.231	7.121
. 54	. 898	1.797	2.695	3.593	4.491	5.390	6.288	7.186
. 55	. 907	1.813	2.719	3.626	4.533	5.439	6.345	7.252
. 56	.915	1.830	2.745	3.660	4.575	5.490	6.405	7.320
. 57	. 923	1.846	2.769	3.689	4.615	5.538	6.461	7.384
. 58	. 931	1.862	2.794	3.725	4.656	5.587	6.518	. 514
. 59	. 939	1.879.	2.818	3.757	4.697	5.636	6.575	. 514
. 60	. 947	1.895	2.842	3.790	4.737	5.684	6.632	7.579
. 61	. 955	1.910	2.865	3.820	4.775	5.730	6.685	7.640
. 62	. 963	1.925	2.887	3.850	4.812	5.775	6.737	7.700
. 63	. 971	1.941	2.911	3.882	4.853	5.823	. 793	4
. 64	. 978	1.956	2.934	3.912	4.890	5.868	6.846	7.888
. 65	. 986	1.972	2.958	3.744	4.930	5.916	6.90	
	. 993	1.987	2.980	3.974	4.967	5.960	6.954	7.947
. 67	1.001	2.008	3.003	4.004	5.005	6.006	7.007	8.008
. 68	1.008	2.016	3.094	4.032	5.040	6.048	7.056	. 188
. 69	1.016	2.032	3.048	4.064	5.080	6.096	7.112	8,184
70	1.023	2.046	3.069	4.092	5.115	6.138	7.161	8,184

TABLE 4-(Concluded)
Discharge of Subierged Rectangular Orifices in Cubic Feet per Second, COMPUTED FROM THE FOBMULA $Q=0.61 \sqrt{2 g H} A-T A K E N ~ Y B O M ~$
"Measurement of Irbigation Water" Tables of
U. S. Reclayation Service

$\begin{gathered} \text { Head } \\ H_{1} \\ \text { feet } \end{gathered}$	Cross-sectional area A of orifice, square feet							
	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.00
. 71	1.031	2.062	3.093	4.124	5.155	6.186	7.217	8.248
. 72	1.038	2.076	3.114	4.152	5.190	6.228	7.266	8.304
. 73	1.045	2.090	3.135	4.180	5.225	6.270	7.315	8.360
. 74	1.052	2.104	3.158	4.210	5.260	6.311	7.369	8.421
. 75	1.059	2.118	3.178	4.237	5.296	6.355	7.413	8.475
. 76	1.066	2.132	3.198	4.264	5.330	6.396	7.462	8.528
. 77	1.072	2.145	3.217	4.290	5.362	6.434	7.507	8.579
. 78	1.080	2.160	3.240	4.320	5.400	6.480	7.560	8.640
. 79	1.087	2.174	3.261	4.348	5.435	6.522	7.609	8.696
. 80	1.094	2.188	3.282	4.376	5.470	6.564 .	7.658	8.752

TABLE 5
Cogfyicient C to be Applied to a Discharge Given by Table 3 to Give the Discharge of the Same Orifice Suppressed, Computed from the Formula $C=1+0.15 \mathrm{r}$, Where $\mathrm{r}=$ Ratio of the Suppressed Portion of the Perimeter of the Orifice to the Whole Perimeter. Taken from

> "Measurement of Irbigation Water" by U. S. Rechamation Service.

Size of orifice			Bottom suppressed		Bottom and sides suppressed	
d,feet	1, feet	square feet	r	c	r	0
0.25	1.0	0.25	0.40	1.06	0.60	1.09
	2.0	. 50	. 44	1.07	. 56	1.08
	3.0	. 75	. 46	1.07	. 54	1.08
0.5	1.0	. 50	. 33	1.05	. 67	1.10
	1.5	. 75	. 37	1.06	. 63	1.09
	2.0	1.00	. 40	1.06	. 60	1.09
	2.5	1.25	.42	1.06	. 58	1.09
	3.0	1.50	. 43	1.06	. 57	1.09
0.75	1.33	1.00	. 32	1.05	. 68	1.10
	1.67	1.25	. 34	1.05	. 66	1.10
	2.00	1.50	. 36	1.05	. 64	1.10
	2.33	1.75	. 38	1.06	. 62	1.09
	2.67	2.00	. 39	1.06	. 61	1.09

One of the orifices described above, 2.0 feet wide and 0.5 foot high. has been installed at Davis and a series of tests made with discharges of from 1 to 2.2 cubic feet per second. The mean of all tests gave a coefficient for use in the formula given with the table of 0.61 , which is the same as has been fourd in other experiments.

When properly installed this type of submerged orifice should give dependable results if the difference in head is correctly measured. Care should be taken to prevent silting in front of the orifice or the eatching of drift.

SUBMERGED ORIFICE HEADGATES

This type of submerged orifice (Figs. 17 and 18) has been used to a large extent on systems where the small loss of head available makes

Fig. 17.-Drawing of submerged orifice headgate
a combination of headgate and measuring device necessary. While all such devices have many points of similarity, different canal companies have adopted slightly different forms as their standard.

The accuracy of measurement of water through a submerged opening depends on the measurement of the loss of head, the area of the opening, and the selection of the coefficient for use in the formula of discharge.

Measurements of the pressure for such gates are made in the same way as described for the submerged orifice with fixed opening. The best method is to make the measurements sufficiently far from the gate to avoid any sucking of the water on the upper side or rough water below. The pressure sometimes is determined by measuring down to the water surface on the upper and lower sides of the gate. This is a poor method as the water is liable to be drawn down below its true level above the gate and to shoot out from the gate below. The area of the opening is generally measured between a fixed mark on the gate stem and the top frame of the gate, the mark being placed so that it is even with the top of the frame when the gate is closed. The width is the same for any height of opening.

The proper coefficient to use in computing the discharge through such orifices is uncertain. Within general limits for any fixed set of conditions, the coefficient is probably nearly constant, but the actual coefficient to use may depend on many variables. For this reason discharge tables are not included. The values for sharp-edged orifices 0.61 or 0.62 have been used by some canal companies. It is certain that these values are too low for the orifices made of either 1 -inch or 2-inch lumber. The Yolo Water and Power Co. have adopted a standard form of headgate 3 feet wide with spreading wing walls, the bottom of the gate being 1 inch above the floor. Experiments made with this gate under the direction of Professor B. A. Etcheverry gave a mean value for the coefficient of

Fig. 18.-Photograph of submerged orifice headgate .73, which has been adopted by the company for use in the delivery of water.

Tests of a submerged orifice gate under two conditions were made at Davis: One gate 3 feet wide with the bottom 6 inches above the floor were set at the upper end of the turnout box diverting from a concrete flume. This gate is similar in type to the one shown in Figure 15. It was tested with discharges of from 0.50 to 4.25 cubic feet per second. The height of the side
walls prevented the use of larger discharges, although the gate can handle much larger heads. The loss of head was determined by measuring down from a level board above and below the gate and also on the gate. The mean of all measurements using the level board gave a mean coefficient of 0.80 ; the measurements on the gate gave a mean of 0.72 , but were more variable than the others.

A similar gate set across the 3 -foot wide concrete flume of the field laboratory was also tested, giving a mean value of 0.79 for the coefficient with level board readings. The discharges varied from 1.6 to 6.9 cubic feet per second in these experiments.

From these results it is seen that the coefficient for such measuring gates varies with the type of gate. It is possible that the coefficient would have been lower for higher rates of discharge at Davis if such tests could have been made.

There are several types of these gates in use in California. The gate used by Imperial Co. No. 1 is set 4 feet back from the front of the box. In the box used by the Kern County Land Co. the gate is set at the front, flush with the side of the canal.

Where the lack of sufficient fall for the use of a better measuring device makes the use of this type of submerged orifice necessary, a standard size and structure should be adopted, and special discharge tables prepared. This should then be rated under the condition in which it will be used. As long as the conditions of use can be maintained, fairly satisfactory measurements can be made. Care should be taken to prevent the deposit of silt or sand near the gate as this will change the conditions of discharge and affect the rating. The velocity above the gate should also be made as small as practicable.

Bill of Material for Submerged Orifice Headgate

$2^{\prime \prime} \times 12^{\prime \prime} \times 2^{\prime}$ (cut-off walls)	Board feet 48
2 pe. $2^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime}-4^{\prime \prime}$ (cut-off walls)	26
6 pe. $2^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime}-4^{\prime \prime}$ (main walls)	88
2 pc. $2^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime}-4^{\prime \prime}$ (floor)	30
1 pe. $2^{\prime \prime} \times 4^{\prime \prime} \times 7^{\prime}-4^{\prime \prime}$ (floor)	8
$6 \mathrm{pa} .2^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime}-10^{\prime \prime}$ (posts)	15
4 pe. $2^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime}-4^{\prime \prime}$ (posts)	12
4 po. $2^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime}-4^{\prime \prime}$ (gate posts)	12
3 pc. $2^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime}-4^{\prime \prime}$ (caps)	1
3 pe. $2^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime}-4^{\prime \prime}$ (silis)	\%
2 pe. $2^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime}-4^{\prime \prime}$ (gate caps)	3
3 pe. $2^{\prime \prime} \times 12^{\prime \prime} \times{ }^{\prime \prime} 4^{\prime \prime}$ (gate)	14
1 pe. $1^{\prime \prime} \times 6^{\prime \prime} \times 8^{\prime}-6^{\prime \prime}$ (gate stem)	4

The cost of one of these orifice headgates in Imperial Valley is given by the Superintendent of Mutual Water Company No. 1 as about $\$ 20$. The items making up the total are, lumber about $\$ 9$; labor, exclusive of excavation, about $\$ 8$; excavation and incidentals, about $\$ 3$.

MECHANICAL DEVICES THAT MEASURE AND REGISTER THE TOTAL FLOW

It is stated in the introduction of this bulletin that to be fully satisfactory for measuring individual deliveries of irrigation water a device should register the total amount of water passing, rather than the rate of flow. Three devices of this character-Dethridge, GrantMichell, and Hill meters-have been installed at Davis and tested. A fourth, the Hanna meter, is to be installed as soon as available, only a photograph and brief description of it being included herein.

DETHRIDGE METER

This meter is shown in figures 19 and 20 . It was invented by Mr . J. S. Dethridge, of the State Rivers and Water Supply Commission of Victoria, Australia, and has been extensively installed in Victoria, where 5000 are now in use. It has also been used quite extensively in New South Wales.

The Dethridge meter consists of a wheel or drum to which projecting pieces of sheet metal are fastened. The drum is placed with its axle horizontal and is set so that the projecting blades are in the current of the ditch to be measured. A special box is built around the wheel so that all water in passing has to strike against the blades. In this way the wheel turns in proportion to the amount of water passing. Knowing the number of revolutions of the wheel the amount of water passed can be determined.

The illustrations given show one of these wheels set in a concrete box, but wooden boxes of similar form can be used. The whole structure is set just below the turnout gate, which is shown in the drawing. The bottom of the box is curved to fit the shape of the wheel. About $3 / 8$ inch of clearance is left between the box and the blades. In use the water comes against each blade and pushes it around until the next blade strikes the water. In this way the space between the blades is filled with water, which is carried through the meter. The meter shown seems to have a normal capacity of 4 cubic feet per second and can be crowded to carry 5 cubic feet per second. This higher quantity, however, causes splashing over the top of the box. The fall needed to turn the meter varies with the amount being
measured, from $1 / 2$ inch for 1 cubic foot per second to $21 / 2$ inches for 4 cubic feet per second. This small required fall makes the use of this meter practicable in ditches with low grade. A counter is attached

Fig. 19.-Drawing of Dethridge meter
to one end of the axle and this indicates the number of revolutions which the meter has made at any time. The difference in the reading of the counter at any two times gives the number of revolutions the meter has made between the times of reading. By multiplying this number of revolutions by the number of cubic feet passed per revolution, the total quantity of water received can be determined. It is most convenient to transfer the water received into terms of acre-feet.

If it is desired, with the Dethridge meter, to know the rate at which water is being received at any time it is only necessary to time the meter for one or more complete revolutions and divide the quantity passed per revolution by the time for one revolution. Thus, if it takes 30 seconds for the meter to make one complete turn and it is known
from its rating that it passes 30.5 cubic feet for each turn, the rate of flow is 30.5 divided by 30 , or a little over one cubic foot per second.

The walls of the box in which the Dethridge meter is set are 4 inches thick when made of concrete. Care should be used in getting the bottom curved to the correct circle so that the leakage around the meter will be small. This meter is somewhat complicated in construction and it is better for it to be placed by canal companies than by land owners. It will probably cost less in this way as the drums can be

Fig. 20.-Photograph of Dethridge meter
bought in quantities. In Australia the concrete box is made in parts and seasoned in the material yard, the parts being then cemented together when placed in the field. When built of concrete as shown in figures 17 and 18, 22.8 cubic feet of concrete and 40 board feet of lumber are required. The drums are best made by some sheet metal works. A special counter should be used made of rust resistant metal as the ordinary counters have been found to rust out rapidly in use. Where installed in large numbers in Australia the cost has been about $\$ 40$ per meter; the cost of the meter installed at Davis was about $\$ 60$.

The tests of this device made at Davis showed the meter to be quite accurate under constant ditch conditions between rates of flow of 1 to 3.5 cubic feet per second. For both larger and smaller discharges the
meter passes more water than it does between these limits. The amount of water going through the meter varies with the depth of drowning. A meter set high in the ditch will discharge less water per revolution than one set low. Checking up the ditch below a meter so that the depth is increased at the meter may increase the discharge by as much as 10 per cent in some cases. This is discussed in detail in the appendix.

The Dethridge meter of this size is adapted for accurate measurement of streams varying from 1 to 3 or 4 cubic feet per second; in Australia it is considered satisfactory up to 5 cubic feet per second. Where the quantities are either larger or smaller than these amounts the error will be in favor of the water user. While rather expensive to install there are no parts which will wear out except possibly the counter. The bearings are merely oiled wooden blocks. Variations in the friction will not alter the discharge; if the bearings are tight a greater fall will be needed to drive the wheel, but unless tighter than they will become if not tampered with, the discharge per revolution will not change. Where larger amounts are to be turned out, larger meters can be built or more than one installed. The meter has the advantage of being easily understood. The wheel stands up in the air and has a clumsy appearance, yet it is some advantage to be able to look across the field to the turnout and see by the turning of the wheel that water is still coming. When users realize that every turn of the wheel means so much water charged to them they will be more liable to economize in its use.

Bill of Material for Dethridge Meter

In addition to the 22.8 cubic feet of concrete required for this meter and the galvanized iron wheel, the following lumber is necessary: -

Bill of Material for Dethridgo Meter

	Board feet
1 pc. $3^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}-6^{\prime \prime}$	4
2 pe. $3^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$	16
1 pe. $2^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime}-6^{\prime \prime}$	3
4 pe. $2^{\prime \prime} \times 11 / 2^{\prime \prime} \times 3^{\prime}$	3
4 pe. $2^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime}$	3
1 pe. $2^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime}-6^{\prime \prime}$	3
1 pe. $11 / 4^{\prime \prime} \times 6^{\prime \prime} \times 4^{\prime}$	3
1 pe. $114^{\prime \prime} \times 6^{\prime \prime} \times 5^{\prime}$	3
1 pc. $11 / 4^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime}-4^{\prime \prime}$	2

GRANT-MICHELL METER

This meter is shown in figures 21 and 22. It consists of a wheel turning in a horizontal circular opening through which the water is made to pass. This opening sets a little below the bottom of the ditch. The water in entering drops into a box set below the ditch bottom.

Fig. 21.-Plan and elevation of installation of Grant-Michell meter
passes under a cross wall, rises through the circular opening in which the meter is set, and passes on down the ditch. The meter consists of four flat blades set so that the water in flowing through the circular opening strikes against them at an angle. In this way the wheel is turned similarly to a wind mill. On the upper end of the shaft carrying the wheel is a counter which records the number of revolutions of the wheel.

This meter is made in 4 sizes, 12 -inch, 18 -inch, 21 -inch, and 39 inch. The size to be used is determined by the size of the circular opening. The rated capacities for these sizes given by the makers are $1.66,3.75,5.83$ and 16.66 cubic feet per second, respectively. The
wheel, counter, and standard for holding the wheel are sold and controlled by the patentees or their licensed agents. The prices quoted for Pacific Coast delivery, in lots of not less than 6 , with freight but not duty paid, are $\$ 52.25, \$ 66.75, \$ 74.20$ and $\$ 170.30$, respectively, for the four sizes. The meter was invented by the two Australian engineers for whom it is named and has been used to some extent in that country, but it has been but little used in the United States. The box for the meter can be built of either wood or concrete; that installed at Davis is of wood. The standard for holding the meter is arranged so that the meter-can be removed when not in use. On systems where the flow through each meter is not continuous, the meter can be used on more than one ditch, being moved around as water is turned out.

The tests made at Davis of a 21inch Grant-Michell meter showed

Fig. 22.-Photograph of installation of Grant-Michell meter that for discharges of over 2 cubic feet per second and up to 6.5 cubic feet per second, the meter makes one revolution for every 6.1 cubic feet of water passed. More water is passed per revolution on lower rates of discharge. The 24 tests made show that the meter will probably register within 2.5 per cent of the true quantity. The fall required in the ditch to get the water through the meter varies with the rate of flow. It is about 1 inch when the discharge is 3 cubic feet per second and rises to 4 inches with a flow of 5 cubic feet per second.

This meter is not as much affected by changing the depths of water on the lower side as some others. The tests at Davis were made with varying depths but showed no regular differences. This is an advantage when used on a ditch which is sometimes checked up. Its high cost, however, is against its general use.

HILL METER

This device is shown in figures 23 and 24. It consists of a circular opening set horizontally in the floor of a box through which the water to be measured is made to pass. The meter consists of curved vanes set on a central drum. It sets in the center of the opening and is turn:d
by the water as it strikes against the vanes on rising through the opening. The turning of the meter drives the gears of a counting device

Fig. 23.-Sectional elevation of installation of 12 -inch Hill meter
which records the water passed in acre-feet. Different sized openings and meters are used for different sized quantities of water. The box in which the meter is set resembles a siphon.

The Hill meter is patented and must be bought of the patentee or his licensed agents. While it has not been used to any extent as yet, and has not been pushed commercially, it is estimated that the meter alone, when manufactured in quantities, should cost about $\$ 10$ each for the 12 -inch size and about from $\$ 12$ to $\$ 15$ for the larger size, with

Fig. 24.-Photograph of installation of 12 -inch Hill meter a probable reduction with very large quantities. The cost of the structure for holding the 12 -inch meter will vary from $\$ 10$ to $\$ 15$. It is stated by those who have developed this meter that any kind of orifice in which the meter can be inserted so that its axis is vertical will do very nicely after the meter has been calibrated to suit that type of orifice.

From a test of a 12 -inch Hill meter at Davis it appears that this size of the meter will register the quantity passed within 1.5 per cent for discharges of from 1 to 3.5 cubic feet per second. For discharges
of less than 1 cubic foot per second, more water passes the meter than is registered. For discharges of 3.5 cubic feet per second the water boiled up through the opening so as to submerge the counter of the meter tested. By increasing the length of shaft of the meter higher discharges than this can be crowded through the 12 -inch meter, but the greater loss of head required makes the use of larger meters preferable.

The loss of head or fall in the water required for this meter varied from 1 inch, when carrying 1 cubic foot per second, to $61 / 2$ inches, when carrying 3.5 cubic feet per second.

The Hill meter seems adapted to use under the usual conditions of irrigation practice. It is simple and has few wearing parts. The head required for the different sizes is less than that needed for the use of weirs. The record of the total quantity of water passed can be read in units of .001 acre-foot.

HANNA METER

As before stated, a Hanna meter has not yet been tested in the Davis laboratory. This meter has been designed by Mr. F. W. Hanna, supervising engineer of the U. S. Reclamation Service. The present retail price is $\$ 50$. Figure 25 is taken from a photograph of one of these meters; figure 13 shows one installed with a Cipolletti weir.

The Eanna meter differs from the Dethridge, Grant-Michell, and Hill meters previously described in being a device that registers the quantity passing through some other device rather than itself making the measurement. It differs from an ordinary water register in that it registers the quantity of water passing rather than merely the height of the water in some device. It can be installed in connection with a weir, a rating flume, an open channel, or a submerged ori-

Fig. 25.-Photograph of Hannn meter fice, or an orifice with free discharge, and will indicate on a counter, directly in acre-feet, the quantity of water passing. The mechanism of the meter is inclosed
in a dust-proof metal box, shown in figure 13, and when installed this metal box rests on the top of a stilling box, also shown in the illustration, which communicates through a pipe with the stream being measured. A float resting on the water of the stilling box and an 8 -day clock together operate the meter.

WATER REGISTERS

Reference is made in the preceding pages to water registers for recording the height of water flowing over a weir or in a ditch or flume.

Fig. 26.-Photograph of a water register In the main a water register (fig. 26) is composed of a cylinder on which a record sheet is fastened, a float which causes this cylinder to rotate as the water being registered raises and lowers, and an eight-day clock which causes a pencil to travel horizontally the length of the cylinder each week, marking on the rec ord sheet the height of the water as it travels. Water registers are usually set at the side of the ditch or weir carrying the water being measured, the float and counter-weight hanging in a stilling well, as shown for the Hanna meter (fig. 13) just described. The regis ter sheets fastened on the cylinder are ruled horizontally to show feet and fractions of feet and vertically to show days and fractions of days. These sheets are changed once each week. To make use of the record they furnish it is necessary to use discharge tables giving the flow with different depths of water for the weir or flume in connection with which the register is set. As a rule water registers are not adapted to farm use. They require constant care and attention and, as indicated, considerable computation is necessary to determine from the register sheets and the discharge tables the quantity of water that has passed.

CURRENT METERS
The standard instrument used for measuring the velocity of water in ditches and other open channels is the current meter. One of these instruments, with its full equipment, is shown in figure 27. Current meters are not used by farmers but one should be a part of the equipment of every canal superintendent or ir rigation manager. They are mentioned here merely with the hope of encourag ing their wider use by canal companies which have not been accustomed to use them and to make them generally familiar to farm ers. Ordinarily it is not feasible to measure the water carried in main canals and main laterals by means of the devices that have been described in this Bulletin. Instead current meter ratings are made at selected portions of the main canals and main lat erals and from these tables are computed showing the quantity of water flowing at various depths. Standard types of current meters

Fig. 27.--Photograph of current meter and equipment cost from about $\$ 75$ to about $\$ 90$, depending upon the style and equipment. As engineers and canal superintendents and irrigation managers are familiar with these instruments no description needs to be added.

APPENDIX

DATA AND DISCUSSION OF TESTS OF MEASURING DEVICES AT DAVIS FIELD LABORATORY, JANUARY TO MARCH, 1914

Experiments and Discussion by S. T. Harding
I. AZUSA HYDRANT. (Figures 3 and 4)

Area of opening in hydrant gate. square inches (equiralent to discharge. miner's inches)	Difference in discharge of orifices and of meary ar error by orifices, per cent	Area of opening in bydrant gate, square inches discharge, miner's inches)	Difference in discharge of orifices and Weir, or error by orifices, per cent
10	+6.31	50	+0.85
10	-2.98	50	+2.00
15	+3.65	$10+15+25=50$	+1.00
25	+1.80	$10+50=60$	-1.38
25	$+5.80$	$15+50=65$	-0.39
$10+15=25$	+1.50	$25+50=75$	-2.20
$10+25=35$	+1.50	$10+15+50=75$	-1.30
$10+25=35$	+3.68	$10+25+50=85$	- 0.84
$15+25=40$	+1.70	$15+25+50=90$	-2.14
$15+25=40$	+0.37		
		Mean	2.18

Probable error of a single measurement +1.0 .

II. GAGE HYDRANT. (Figures 5 and 6)

This hydrant consists of a 10 -inch rectangular weir set in an opening in a vertical concrete box. The weir crest consists of pieces of iron strap $1 / 8$-inch thick set in mortar in the middle of the thickness of the box. It may be classed as having full contractions, although the nearness to the sides of the opening and to the sides of the box probably affects the contraction. The detail of the crest is shown in the drawing.

The experiments with this device consisted of 16 measurements with quantities varying from 0.15 to 1.13 cubic feet per second. The results of these are platted on the accompanying diagram. A hook gage was set in the back corner of the box with its zero point level
with the crest of the weir. A can 3 inches in diameter was used as a stilling box for this gage. Although the holes in this can were small, difficulty was experienced in getting accurate readings of the head due to the apparent "breathing". of the water, particularly at the higher heads. It is considered that this is the principal cause for the variation of the results of the separate measurements from the curve as shown on the diagram. Cross currents were very noticeable in the water in the box at the higher heads. Small shavings dropped

Rating Curve for Gage Hydrant
into certain parts of the surface of the water would be sucked several inches below the crest of the weir before passing over it. Under such conditions it is not to be expected that the standard weir formula would apply. For purposes of comparison the discharge of a 10 -inch weir computed from the formula $Q=3.33(1-.2 \mathrm{~h}) \mathrm{h} \frac{1}{2}$ is plotted on the diagram. This shows the device to give increasingly greater discharges than a similar standard weir as the head increases.

The half-round section of 18 -inch pipe used as an outlet for the water after it passes the weir was of sufficient size to discharge the
water received without submerging the weir. However, at the higher heads used the water below the weir was but little below the crest of the weir. The accuracy of measurements with this device under field conditions will depend to a considerable extent on the accuracy with which the reading of the head of the crest can be made. The usual method is to set a bracket at the back side of the box with its top level with the discharge crest. By setting a rule on this bracket the depth can be read directly. With the hook gage and stilling box used in these experiments the average variation of the 16 measurements from the curve was 3.5 per cent. With measurements of the head in open water the error to be expected would be much greater.

Some measurements were also made on this hydrant before the sharp edge was set, using the 2 -inch concrete wall as a discharge crest. The heads were read on a staff gage, the water being stilled in front of this with a piece of wood at the times of the readings. A total of 7 measurements were made, with discharges varying from 0.18 to 0.96 cubic foot per second. The erest was $135 / 8$ inches long. A comparison of the rating curve obtained from these measurements with a computed curve for a sharp crested weir of the same length showed that on the lower heads, where the thickness of the concrete is sufficient to give broad crested weir conditions, the discharge is less than for a sharp crested weir, and that on the higher heads, where the lower contraction is complete, the measured curve gives higher discharges than the sharp crested weir, being similar to the results on the same box after a sharp edge was installed.

Summary of Experiments

	Aetual discharge, en. ft. per. see.		Difference, per	$\begin{gathered} \text { Head } \\ \text { on } \\ \text { welp. } \\ \text { feet } \end{gathered}$	Actual discharge, ca. ft. per see.		$\begin{aligned} & \text { Differ } \\ & \text { ence } \\ & \text { per } \\ & \text { pent } \end{aligned}$
0.128	0.152	0.121	26	0.355	0.627	0.537	16
. 166	. 202	. 180	12	. 392	. 804	. 617	30
. 211	. 288	. 253	14	. 393	. 829	. 618	34
. 213	. 284	. 258	10	. 401	. 864	. 633	36
. 260	. 413	. 343	20	. 435	. 958	. 709	35
. 298	. 506	. 418	21	.446	. 978	. 735	33
. 313	. 548	. 442	24	. 471	1.000	. 795	26
. 342	. 652	. 509	28	. 494	1.134	. 846	34

III. RIVERSIDE BOX (Figures 7 and 8)

SUMMARY OF EXPERIMENTS

Area of opening in
 opening in gate. sq. in. (equivalent io (equivalent to dischargein miner's inches) 10. 10.
 14.6
 15.
 15. 20.
 25. 25.
 27.5
 32.5
 35.

Difference in
discharge of
discharge of
or error in
measurement by
orifice, per cent
-1.9
$+0.40$
+0.40
+3.16
$+3.16$
$+2.3$
$+.41$
$+1.59$
$+4.05$
$+1.25$
+1.25
-16
-.16
-.26
$-.26$
-1.08
$+1.95$
IV. FOOTE INCH BOX (Figures 9 and 10)

Summary of Experiments
$411 / 16$
$6 \% / 16$
$89 / 16$
$95 / 16$
$111 / 2$
$151 / 4$
$1611 / 16$
$191 / 4$
20
$211 / 6$
$221 / 2$
$25 \% / 6$
$2711 / 16$
$295 / 8$
$311 / 4$
$321 / 16$
$371 / 18$

Difference
in discharge,
of meanurement
meaxureme
by box.
per cent
-4.00
$+1.19$
$+1.53$
$+2.01$
$+2.83$
+2.83
+1.31
+1.31
+5.69
$+5.69$
$+5.91$
$+1.44$
$+6.59$
$+3.89$
+6.89
+6.98
$+6.92$
$+7.93$
$+7.32$
$+5.00$
$+2.92$
+8.92
+0.58

Mean
$+3.95$
V. SUBMERGED ORIFICE HEADGATES. (Figures 17 and 18)

The accompanying table shows the results of the tests made at Davis in January, 1914 of a gate $36 \% / 10$ inches wide of the type used by the Kern County Land Company. The discharges were measure over a 3 -foot Cipolletti weir and checked volumetrically from the eservoir.
The loss of head was measured in four different ways, viz: by hook gages about 6 feet above and below the gate, by staff gages at the same points, by measurements down from a level board about 1 foot above and below the gate, and by measurement down from the top of the gate on the upper and lower sides. Stilling boxes were used with the hook gages. At higher rates of discharge the depth of sub mergence was not sufficient to cause the water on the lower side to back up on the gate, so that the measurement on the lower side of the gate was of no value.

In several of the runs the discharges were small in proportion to the capacity of the gate, and the loss of head too small to be accurately measured. Two means are given, one being for all tests, the other ncluding only those runs having a height of opening of 1 inch or over, a loss of head of over 0.05 foot, and a depth of submergence of 0.10 foot or over. This latter mean is the better one. It should be remembered in interpreting these tests that the maximum discharge used is much less than the capacity of the gate and that the values of the coefficient for higher rates of discharge might be different, probably less than those given.

The average variation of each observation from the mean was about 4 to 5 per cent, for the different methods of measuring the loss of head. The greater variation of results of the measurements on the gate shows in these tests. This method should not be used
Tests were also made of a gate $317 / 8$ inches wide set across the 3 -foot concrete testing flume of the field laboratory. Side guides 2 inches by 4 inches and a sill 2 inches by 6 inches, were set in the flume. The loss of head was measured in the same four ways as in the case of the tests of the other gate. The results of these tests are also shown in a table. The coefficients for the measurements with hook and staff gages are higher than those found when measuring with the nd staif gages are higher than those ford
The results of these tests and other available data indicate that hile such a submerged orifice headgate is not a desirable type of measuring device, under certain conditions of necessity it can be use with fairly satisfactory results. On any system a standard type and

$\begin{gathered} \text { Num- } \\ \text { bor } \\ \text { of } \\ \text { ofn } \end{gathered}$	$\begin{aligned} & \text { phate } \\ & \text { chat, } \\ & \text { parget. } \\ & \text { partac. } \end{aligned}$	Height ofopening. openingneches	Area of opening.	Lous of head by, fen				Coeficient in formula$Q=A C V=12 \mathrm{gh}$ trom -				Depth ofsonce, eretset	Variation of coefficient from, mean of all				Variation of coefficient from, mean of selected observation			
				Hook	$\begin{gathered} \text { staff } \\ \text { karace } \end{gathered}$	Level board	$\underset{\text { gate }}{\text { on }}$	Hook	Staff	Lovel	$\underset{\text { Onto }}{\text { On }}$		$\begin{gathered} \text { Hook } \\ \text { gages } \end{gathered}$	Staff	$\underset{\substack{\text { Level } \\ \text { boorr }}}{ }$	${ }_{\text {gante }}^{\text {ant }}$	$\begin{gathered} \text { Hook } \\ \text { gagea } \end{gathered}$	${ }_{\text {Suser }}^{\text {sug }}$	$\underset{\substack{\text { Level } \\ \text { board }}}{ }$	$\underset{\text { onte }}{\substack{\text { On }}}$
1	. 511	\%	0.158	. 178	. 18	. 17	. 20	. 949	. 944	. 977	. 901	0.2	+. 140	+.176	+.161	+.146				
2	. 503	\%	0.191	. 124	. 15	. 13	. 135	. 932	. 838	. 911	. 893	. 23	+. 133	+. 070	+. 095	+. 138				
3	. 503	23/2	0.637	. 021	. 025	. 02	. 02	. 680	. 621	. 700	. 700	. 09	-. 129	-. 147	-. 116	-. 055	\ldots	$\underline{-}$		
4	. 503	1\%18	0.400	. 046	. 05	. 05	. 045	. 729	. 680	. 700	.740	. 15	-. 080	-. 088	-. 116	-. 015				
5	. 511	11/8	0.287	. 073		. 07	. 075	. 758		. 841	. 810	. 19	-. 051		+. 025	+. 055	-. 037		+.041	+. 092
6	. 793	11/8	0.287	. 173	. 17	. 17	. 195	. 825	. 825	. 837	. 781	. 24	+. 016	$+.057$	+. 021	+. 026	+. 030	+.042	+. 037	+. 063
7	. 806	\% 18	0.143	. 511	. 51	. 54	. 55	. 971	. 974	. 955	. 943	. 28	+. 162	+. 206	+. 139	+. 188				
8	. 816	37/6	0.985	. 022	. 035	. 02	. 01	. 697	. 551	. 783	1.035	. 02	-. 112	-. 217	-. 033	+. 280				
9	1.46	11/2	0.381	. 355	. 36	. 35	. 42	. 799	. 795	. 804	. 735	. 28	-. 010	$+.027$	-. 012	-. 020	+. 004	+. 012	+. 004	+.017
10	1.43	21/2	0.635	. 137	. 16	. 135	. 16	. 755	. 699	. 762	. 705	. 21	-. 054	-. 069	-. 054	-. 050	+. 040	-. 084	-.038	-.013
11	1.43	31/2	0.889	. 073	. 07	. 08	. 08	. 739	. 739	. 819	. 709	. 13	$-.070$	-. 029	+.003	-. 046	-. 056	-. 054	+. 019	-. 009
12	1.40	$43 / 10$	1.06	. 049	. 06	. 04	. 055	. 743	. 688	. 826	. 702	. 08	-. 066	-. 080	+. 010	-. 053	\ldots			
13	. 813	3	0.762	. 033	. 05	. 02	. 04	. 738	. 578	. 944	. 666	. 09	-. 071	-. 192	+. 128	-. 089	--.	--		
14	. 826	2	0.508	. 070	. 07	. 06	. 08	. 751	. 765	. 829	. 718	. 18	-. 058	-. 003	+. 013	-. 037	-. 048	-. 018	+. 029	0
15	. 811	11/2	0.381	. 120	. 13	. 115	. 135	. 765	. 744	. 782	. 724	. 22	-. 044	-. 024	-. 034	-. 031	-. 034	-. 039	-. 018	+. 006
16	3.01	1\%	0.445		. 88	. 92	1.08		. 908	. 879	. 815	. 40		+. 140	+. 063	$+.060$		+. 125	+.079	+. 093
17	2.66	231/22	0.756	. 32	. 33	. 36	. 47	. 773	. 764	. 731	. 640	. 23	-. 036	-. 004	-. 085	-. 115	-. 026	-. 021	-. 069	-.078
18	2.72	21/4	0.573	. 543	. 57	. 61		. 804	. 783	. 757		. 33	-. 005	+.015	-. 059		+. 009	0	-. 043	
19	2.38	+	1.017	. 114	. 13	125	. 205	. 864	. 811	. 825	. 646	. 13	+. 055	+.043	+. 009	-. 109	+. 069	+.028	+.025	-. 072
20	2.74	5	1.275	. 075	. 10	. 09	. 13	. 978	. 846	. 892	. 744	. 06	+. 169	+. 078	+. 076	-. 011		-	-	
21	2.04	31/2	0.891	. 135	. 145	. 135	. 19	. 775	. 747	. 775	. 653	. 19	-. 034	-. 021	-.041	-. 102	-. 020	$-.036$	-. 025	-.063
22	2.01	41/2	1.144	. 076	. 85	. 065	. 095	. 793	. 745	. 854	. 709	. 11	-. 016	-. 023	+. 038	-. 046	-. 002	-. 038	+.054	-. 009
23	2.01	55%	1.32	. 052	. 85	. 06	. 065	. 832	. 652	. 777	. 743	. 04	+. 023	-. 116	-. 039	-. 012				
24	1.93	215/2	0.629	. 247	. 265	. 27	. 305	. 767	. 740	. 735	. 690	. 27	-. 042	-. 028	-. 081	-. 065	-. 028	-. 043	-. 065	-.028
25	1.84	1\%/4	0.445		. 420	. 45	. 52		. 796	. 770	. 716	. 33		+. 028	-. 046	-. 039		+. 013	-. 030	-. 002
26	3.34	5	1.275	. 152	. 18	. 155	\cdots	. 837	. 769	. 828 13	+.028	+. 001	+. 012	+.042	-. 014	+. 028	- .-.
27	3.31	4	1.02	. 271	. 28	. 26	\cdots	.779	. 767	. 795	\ldots	. 22	-. 030	-. 001	-. 021		-. 016	-. 016	-. 005	
28	3.34	3	0.762	. 385	. 39	. 49	.	. 891	. 884	. 792	\cdots	. 34	+. 082	+. 116	-. 024		+.096	+. 101	-. 008	
29	3.31	6	1.525	. 088	. 12	. 10	\ldots	. 910	. 779	. 854	\cdots	. 05	+. 101	+. 011	+. 038	\ldots				
30	4.20	6	1.525	. 166	. 17	. 155	\ldots	. 841	. 831	. 871 15	+. 032	+. 063	+. 055	\ldots	+.046	+.048	+. 071	
31	4.26	5	1.275	. 255	. 28	. 28	\ldots	. 825	. 787	. 788	\cdots	. 21	+. 016	+. 019	-. 028		+. 030	+. 004	-. 012	
32	4.24	+	1.02	. 457	. 47	. 51 769	. 769	. 729		. 35	-. 040	+. 001	$1-.087$		-. 026	-. 014	-.071	
Number of observations								30	31	32	24		30	31	32	24	19	20	21	14
Mean coeflicient for all experiments								. 809	. 768	. 816	. 755		. 063	. 088	. 055	. 074	. 035	. 038	. 037	39
ejecting experiments with height								19	20	21	14	-..	\cdots	\cdots	\cdots	\cdots	--
of head less than 0.05 foot, and				No. of observations				. 795	. 783	. 800	. 718									
depth of submergence less than 0.10 foot.				Mean coeffleientsPer cent varintion					7.8	8.8	6.7	9.8	4.4	4.8	4.6	6.4
				Per cent variation																

So.of		Heifhtof openinches	Area open. ing. 1.10	Loss of head by, in feet				Coemeient in formula $\mathbf{Q}=\mathrm{AC}$ $Q=A C)$ gh grom^{-}				$\begin{gathered} \text { Depth } \\ \text { subinerg. } \\ \text { sunee. } \\ \text { feet } \\ .25 \end{gathered}$	Variation of coefficient from, mean				Veloeity orifce, feet per sec. 1.9
				Hook gages	$\begin{aligned} & \text { Etaff } \\ & \text { gages } \end{aligned}$	Level boar	$\underset{\substack{\text { On } \\ \text { gate }}}{ }$	Hook gages	Staff gagea	Level boar	$\underset{\substack{\text { on } \\ \text { gate }}}{ }$		Hook gages	Staff gageis	Level board	$\begin{aligned} & \text { On } \\ & \text { gate } \end{aligned}$	
	2.09	5		. 061	. 08	. 08	. 11	. 959	. 967	. 835	. 713		+. 091	+.133	+.045	-. 001	
	1.97	4	. 88	. 091	. 10	. 10	. 14	. 92	. 880	. 878	. 746	. 33	+. 052	+.046	+.088	+.032	2.24
3	1.80	3	. 66	. 170	. 17	. 20	. 21	. 821	. 821	. 760	. 740	. 40	-. 047	-. 013	-. 030	+.026	2.72
4	1.62	2	. 44	. 328	. 33	. 35	. 34	. 802	. 798	. 775	. 786	. 51	-. 068	-. 036	-. 015	+.072	3.68
5	3.15	5	1.10	. 192	. 20	. 22	. 26	. 817	. 798	. 761	. 700	. 42	-. 051	$-.036$	-. 029	-. 014	. 86
6	2.95	4	. 88	. 246	. 25	. 28	. 34	. 843	. 841	. 780	. 715	. 45	-. 025	$+.007$	0	+. 001	3.35
7	2.72	3	. 66	. 358	. 41	. 46	. 50	. 860	. 802	. 757	. 724	. 53	-. 028	-. 032	+. 033	+. 010	4.12
8	1.92	2	. 44	. 778	. 77	. 78	. 86	. 821	. 827	. 821	. 784	. 83	-. 047	-. 007	+.031	+.070	. 45
9	1.74	2	. 44	. 370	. 37	. 36	. 43	. 807	. 807	. 819	. 751	. 45	-. 061	-. 027	+. 029	+.037	94
10	4.05	6	. 132	. 169	. 19	. 25	. 37	. 931	. 878	. 749	. 629	. 33	+. 063	+.034	-. 041	-. 085	3.07
11	3.83	5	1.10	. 252	. 28	. 30	. 45	. 865	. 880	. 793	. 647	. 37	-. 003	-. 014	$+.003$	-.067	3.48
12	3.51	4	. 88	. 316	. 36	. 39	-.....	. 884	. 830	. 796 33	+.016	-. 004	+.006		3.99
13	3.16	27/8	. 63	. 47	. 52	. 58 805	. 860	. 819 25	$+.037$	+.032	+.029		. 00
14	2.85	2	. 44	. 90	. 96	1.06 850	. 826	. 778		. 28	-. 018	-. 008	+.012		6.48
15	5.12	7	1.54 31	. 39	. 37		. 745	. 663	. 681	. 56		-. 089	-. 127	-. 033	3.32
16	4.79	6	1.32	\ldots	. 34	. 35	. 44 775	. 775	. 691	. 35	-. 059	-. 015	-. 023	3.63
17	4.36	5	1.10	. 332	. 39	. 41	. 51	. 858	. 791	. 771	. 692	. 34	-. 010	-. 043	-. 019	-. 022	3.96
18	3.93	4	. 88	. 394	.43	. 51 887	. 848	. 810	-....	. 22	+. 019	+. 010	+. 020		4.46
19	3.60	3	. 66 55	. 74 915	. 793		. 36		+. 071	+. 003	\cdots	5.45
20	3.11	2	. 44	1.07	1.07 851	. 851 30		$+.017$	+. 061		7.07
21	6.92	7	1.54	. 38	. 43	. 40 909	. 854	. 825 37	+. 041	+.020	+. 035		4.49
22	0.16	6	1.32	. 425	. 51	. 56 893	. 816	. 778		. 33	+.025	-. 018	-. 012		4.66
23	5.65	5	1.10	. 539	. 60	. 69		. 872	. 827	. 781	\ldots	.43	+. 004	-. 007	-. 009		5.14
	Mean of all experiments,							. 868	. 834	. 790	. 714		. 037	. 033	. 030	. 035	
	Probable error of any observation, per cent,								--..	4.3	4.0	3.8	4.9	

size of gate should be adopted and strictly adhered to. This should then be rated for the conditions of use, using the same method of reading the loss of head that will be used in practice. The coefficient derived from the rating should then be used for the type of gate rated. In use, care should be taken to maintain the conditions under which the rating was made and prevent silting of the channel above or other changes.

VI. DETHRIDGE METER. (Figures 19 and 20)

This device was tested by running water through it which had been measured over a weir and also volumetrically measured from the reservoir. The rate of flow was kept practically constant. The time of run, number of revolutions, and rate of flow gave data on which the number of cubic feet passed per revolution could be computed. Gages were set above and below the meter from which the loss of head could be obtained.

The installation of the meter is shown in the drawing. Immediately at the lower end of the concrete there was a drop into the waste channel. When first tested the water passed through the meter over 18 inches of floor, and then had a free fall to the waste channel. The measurements in this first test were representative of one extreme of conditions under which the meter might be installed. The rating curve derived from them is marked No. 1. Later a section of flume 3 feet wide and 12 feet long was built out from the concrete. This was similar to the usual ditch conditions, the water having a greater depth over the lower sill of the meter than in the first run. The rating curve derived from these tests is marked No. 2. The rating curve furnished by the State Rivers and Water Supply Commission of Victoria is shown by dotted line adjacent to curves Nos. 1 and 2.

In addition to the tests mentioned above, checks were placed in the flume and four single tests were made with different depths of submergence. The figures obtained are shown in the table of results and are plotted above rating curve No. 2.

Rating curve No. 1 agrees very closely with that used in Victoria. It is the practice there to set the floor of the meter box rather high in the laterals. The full supply level shown on their drawings is about 10 inches below the axle of the meter. By setting the meter high in the ditch, more constant conditions are secured, as checking of the lateral below can not submerge the meter to as great an extent. However, this requires an additional fall below the meter which is not always available. The conditions obtained in the second run are

Erratum: "Grant-Michell Meter," in title to curves on page 173, should read "Dethridge Meter."

Each curve is consistent within itself. In curve No. 1 the average variation from the curve of the 7 points used to locate the curve is only 0.1 of a cubic foot per revolution, or about $1 / 3$ of 1 per cent. In curve No. 2 the average variation from the curve of the 12 points used to locate the curve is 0.15 of a cubic foot per revolution, or $1 / 2$ of 1 per cent.

With a meter of this type, which records in total quantities passed without showing the rate of flow, the ideal rating curve is a straight line which should be horizontal on the diagram. The discharge per revolution would then be independent of the rate of flow. It is not to be expected that this result can be obtained at either extreme of the capacity of any meter. With smaller discharges the leakage would be expected to be greater due to the slower movement of the wheel. Also, at higher discharges the greater depth of flow through the meter increases the leakage area. Both curves show this feature of increasing discharge per revolution at either low or high discharges. The range of capacity for this size wheel is considered to be from 1 to 4
cubic feet per second. A uniform rating is used between these discharges. The mean quantities discharged per revolution of the meter for all tests between 1 and 4 cubic feet per second were 28.75 cubic feet on curve No. 1 and 30,4 cubic feet on curve No. 2. The mean variation of the six tests on curve No. 1 from this average was 1 pel cent and on curve No. $2, \% \%$ of 1 per cent. Under conditions such as existed in either of these runs the use of 15.2 and 14.3 revolutions per 0.01 acre-foot should give close results on curves Nos. 1 and 2, respectively.

Four additional tests were made with discharges of a little over 2 cubic feet per second, the depth of submergence being varied by checks in the flume. With depths of water of $0.45,0.77,1.01$, and 1.20 feet on the lower sill of the meter, the quantities discharged per revolution of the meter were $30.5,31.5,32.5$, and 33.0 cubic feet, respectively.

The height of the blades is 10 inches, the diameter of the drum is 3 feet 4 inches, and the length of the drum is 2 feet 6 inches. The volume contained between the drum and outer edge of the blades is 27.3 cubic feet. If there were no leakage the meter would pass this amount per revolution. The clearance is from $1 / 4$ to $3 / 8$ of one inch. Under the conditions of small depth of water indicated in curve No. 1, the quantity passed was 28.75 cubic feet per revolution. Under conditions represented by curve No. 2, where the depth was greater, it was 30.4 cubic feet, and on the single test of maximum depth it was 33.0 cubic feet. These indicate slippages of $5.3,11.4$, and 20 per cent, respectively.

From these tests it would appear that a rating can be determined quite closely for any fixed condition under which the meter may operate. The accuracy obtained when using such a rating under such conditions of free fall or of unchecked ditch should be sufficient for any usual needs. When placed in ditches where variable submergence may be caused by checking up below, the rating will be subject to variations which may be as much as 10 to 15 per cent. The same effect might occur when installed in an unchecked ditch as shown in curve No. 2, due to natural checking during the season from weed growth in the ditch.

It would seem advisable where possible to install this meter as high in the ditch as conditions will permit, as under such settings the rating will be less liable to variation.

Where this is not practicable the rating should be chosen for the depth of submergence and the conditions in the ditch below kept as constant as possible.

The loss of head curves are also shown in the diagram. For the range of capacity of the meter the loss of head is quite small. The curve represents the head required to turn the meter; any raising of the meter in the ditch to prevent submergence would require additional fall. The three curves are plotted similarly to those for the rating of the meter. Less head seems to be required for the sul)merged condition.

Sumacary of Experiments

Rate of discharge, cu. ft. per sec.	Total number of cubic feet passing the meter	Number of revolutions of meter	Cuble feet passing the meter per revolution	Loss of head through meter,	Depth water in outlet. feet
Rating under unchecked ditch conditions (Curve No. 2)					
0.25	407	11	37.0	. 015	0.14
. 66	708	22	32.4	. 02	. 19
. 96	1906	62	30.7	. 05	. 40
1.28	908	30	30.3	. 04	. 30
1.68	1454	48	30.6	. 05	. 36
1.99	726	24	30.3	. 07	. 35
2.46	874	29	30.2	. 08	. 46
2.94	1291	43	30.0	. 09	. 51
3.38	1900	69	30.6	. 15	. 56
4.26	1857	59	31.5	. 23	. 69
5.29	1732	54	32.0	. 31	. 88

Rating for meter set high in ditch with excess fall below outlet sill of meter (Curve No. 1)

. 51	911	30	30.4	. 04	. 19
1.04	1538	53	28.9	. 07	. 17
1.45	1688	59	28.6	. 09	. 20
1.95	2891	102	28.3	. 10	. 25
2.05	2113	74	28.55	. 09	. 28
3.57	1318	45	29.3	. 23	. 32
4.05	575	20	28.8	. 32	. 35
Rating with variable depth of submergence					
2.16	1069	35	30.5	.15	. 45
2.37	945	30	31.5	. 11	. 78
2.33	948	29	32.5	.13	1.01
2.25	990	30	33.0	. 14	1.20

VII. GRANT-MICHELL METER. (Figures 21 and 22)

The tests of this meter are summarized in the accompanying table. Quantities varying from 0.5 to 6.5 cubic feet per second were run through the meter, the depth of water in the outlet being varied by checks. No regular variation of the discharge per revolution was apparent when discharging under varying submergence. The dial attached to this meter is graduated to read to 0.01 acre-inch. Onehundredth of an acre-inch equals 36.4 cubic feet. The meter was set up and several counts of the number of revolutions required to equal 0.1 acre-inch on the dial made. These showed 68 revolutions for 0.1 acre-inch, indicating that the dial is graduated to pass 5.35 cubic feet per revolution of the meter. The mean values found from the tests for discharges over 2 cubic feet per second was 6.10 cubic feet per revolution. For the size of meter used and the conditions of operation encountered, the gearing of the dial needs rearrangement. The box and setting were built according to the patentee's plans.

A total of 30 single runs were used in plotting the rating curve. It was found that a horizontal straight line fitted the points having discharge over 2 cubic feet per second as well as any curve. The average variation of the 24 tests at discharges over 2 cubic feet per second was 2.3 per cent. The same quantities were run through the meter, with checks varying from 0 to 12 inches high set in the outlet flume, without giving any apparent variation in the discharge per revolution. The quantities run with no checks gave somewhat more variable results, due apparently to the rougher water and more dis-

Rating Curve for Grant Michell Meter
turbed conditions. This constancy of discharge is probably due to the fact that the meter is set below the bottom of the outlet ditch, and is always submerged to a considerable depth. The rating curve rises at lower heads, as is to be expected.

The loss of head curve was also plotted from the readings of gages above and below the meter. The points obtained from tests where no checks were used were omitted on this curve as the loss of head in such cases would depend on the location of the gage. The outlet flume was not long enough for the water to become settled before reaching the spillway.

Actual mean discharge, cu. feet persecond	Number of 1-100 acre inches recorded on dial	Total number of cuble feet passing meter	Cubic feet passing meter per 1-100 acre-inch reeorded	Cubic feet passing meter per revolution of meter	Loss of head through meter, fept	Depth of water in outlet feet
. 51	14.	694.7	49.6	7.30	0.00	0.84
. 71	19.	903.4	47.5	6.99	. 005	1.06
1.00	20.	901.3	45.1	6.64	. 02	1.11
1.29	23.	987.0	42.8	6.30	. 01	1.19
1.72	27.	1134.	42.0	6.18	. 15	. 53
1.85	16.	688.0	43.0	6.33	. 13	. 66
1.95	16.	685.9	42.85	6.30	. 30	. 38
2.16	13.	532.4	41.0	6.03	. 04	1.30
2.24	36.	1468.	40.8	6.00	.05	1.30
2.35	14.	571.8	40.8	6.00	. 06	1.31
2.57	19.	774.5	40.8	6.00	. 07	1.34
2.72	22.5	983.	43.7	6.45	. 10	.87
2.76	16.	665.6	41.6	6.12	. 07	1.38
2.88	41.	1681.	41.0	6.03	. 11	1.38
2.95	28.3	1239.	43.7	6.45	. 10	1.06
3.00	51.3	2165.	42.2	6.21	. 45	.28
3.18	24.	1032.	43.0	6.33	. 09	1.26
3.19	43.4	1913.	44.0	6.47	. 11	1.38
3.42	38.	1565.	41.2 .	6.06	. 23	1.34
3.43	45.	1786.	39.7	5.86	. 04	1.34
3.45	21.	884.	42.1	6.19	. 13	1.42
3.53 .	30.4	1276.	49.0	6.18	. 20	. 95
3.95	28.8	1185.	41.2	6.06	. 46	1.97
4.00	80.5	3361.	41.9	6.16	. 18	1.18
4.27	20.	799.1	40.0	8.89	. 19	1.58
4.74	105.	4263.	40.6	5.91	. 28	1.05
5.06	25.	1031.	41.25	6.07	. 34	1.61
5.52	58.	2362.	40.7	5.99	. 28	98
6.57	66.	2762.	41.8	6.15	-...

These tests indicate that this meter can be rated with sufficient accuracy for the usual requirements of irrigation work. A correctly calibrated dial reading in acre-feet is an advantage, as any user can see for himself the amount of water he has received. The removable meter and head reduces the number of meters required, which at the quoted price of these meters is quite an item. This meter is similar in type to the Hill meter, which has curved vanes instead of flat ones.

VIIL. 12-INCH HILL METER. (Figures 23 and 24)

Tests were made of a 12 -inch Hill meter. A 27 -inch meter and box had previously been installed but the capacity of this size of meter was larger than the discharges available at the experimental plant. The opening for the 12 -inch meter was set in the box previously built for the 27 -inch meter. This probably affected the loss of head but should not affect the meter rating.

The meter as supplied was geared to a Veeder counter with a gear ratio of 1 to 90 . As the last figure on the counter is intended to represent $1 / 1000$ of an acre-foot, each revolution of the meter is equivalent to .484 cubic foot of water.

Eleven tests were made with discharges varying from 0.21 to 3.34 cubic feet per second. In addition, six tests were made with discharges varying from 1.18 to 1.56 cubic feet per second, and with varying depths of submergence. These are all summarized in the accompanying table.

For discharges of from 1 to 3.5 cubic feet per second, the rating curve is a horizontal straight line. The 7 points used to locate this line give an average number of cubic feet passed, per $1 / 1000$ acre-foot on the counter, of 43.4 , or 0.3 per cent less than recorded. In these seven tests the depth of water in the outlet was varied as it would be in an unchecked ditch, the depth depending on the rate of discharge. Points for discharges of less than 1 cubic foot per second were not included in this average as the rating curve rises for these lower discharges, more water passing the meter than is recorded.

The maximum capacity of this meter as set was 3.5 cubic feet per second. For this discharge the water rose to the counter when coming through the orifice. By using a longer shaft on the meter higher rates of discharge can be crowded through this meter but the use of a larger meter would be preferable.

The additional tests made with variable depths of submergence did not give as uniform results, the six tests averaging 3.2 per cent
more discharge than recorded. The average of the thirteen tests made with discharges over 1 cubic foot per second gave 1.3 per cent more water passed by the meter than recorded. Data regarding tests of this same meter made by the U. S. Reclamation Service at Boise, Idaho, have been furnished for comparison. A total of twenty-three tests made by the Reclamation Service averaged 2.5 per cent more water passed than was recorded. The discharges in these tests varied from 1.11 to 3.96 cubic feet per second.

The loss of head curve for different rates of discharge is also shown. It should be remembered that the box used is larger than the standard for this size of meter. This reduces the total loss of head somewhat, although the main loss should be in passing through the 12 -inch opening. The loss of head reached a maximum of 0.5 foot for a discharge of 3.5 cubic feet per second. In the Boise experiments mentioned above the loss of head was 0.87 foot for the same discharge.

From these tests it would seem that this meter will measure and fecord the quantity of water passing with sufficient accuracy for irrigation needs when the size of meter is chosen to fit the rates of flow to be received. The loss of head can be kept below that required for a weir by such selection of sizes. The opening in which the meter is set is 9 inches in height. This height is an advantage as the lines

Rating Curve for Hill Meter
of flow are made straighter and more nearly parallel, giving more uniform action on the vanes of the meter. One disadvantage of the Hill meter is its limited range without changing the size of opening, but this does not seem to be difficult to overeome.

Summary of Experiments							
Discharge, cubic feet per second	Length of run, seconds	Total enbic passing	Thousandths aereon counter	$\begin{gathered} \text { Cubic } \\ \text { feet } \\ \text { passed } \\ \text { per } 1 / 1000 \\ \text { ance-foot } \\ \text { on counter } \end{gathered}$	$\begin{gathered} \text { Loss } \\ \text { of } \\ \text { head, } \\ \text { feet } \end{gathered}$	Depth of water outlet. feet	Variation of actual from recorded discharges, cuble feet per second
. 83	480	394	8.3	47.5	. 04	. 68
1.10	1231	1361	31.	43.9	. 07	. 74	$+.34$
1.43	990	1418	33.	43.0	. 12	. 78	-. 56
1.77	974	1742	40.	43.2	. 17	. 80	$-.36$
2.10	460	967	22.	43.9	. 20	. 77	$+.34$
2.51	398	999	23.	43.4	. 30	. 83	-. 16
2.93	380	1113	26.	42.8	. 41	. 64	-. 76
3.34	342	1141	26.	43.9	. 49	. 74	$+.34$
. 74	1084	804	17.	47.3	. 04	. 57	-
. 52	1170	602	13.	46.3	. 03	. 35
. 21	1974	408	8.	51.0	. 02	. 12
1.56	400	623	15.	41.5	. 13	. 34	-2.06
1.52	390	592	13.	45.6	. 12	. 68	+2.04
1.38	658	908	19.	47.8	. 08	1.08	+4.24
1.40	288	401	9.	44.5	. 12	. 72	$+.94$
1.40	447	624	14.	44.6	. 13	. 37	+1.04
1.18	542	642	14.	45.8	. 08	. 67	+2.94

Mean of all discharges over 1 cubic foot per second, cu. ft. per sec..... $+.58$
trinal Summary i Santa c Fe Rand Lands

Cleared Lance
Encalyfetir Twi
Uncleaned Lands
Total Ora Ranch $\frac{3056}{8399}$ Queen
0) This the filming cony le irrigated fin Ane present dustrybucim Ane by the comstructen of Ah crassany catalo

Cleared Law is 100 Qum ormisubfled by fumipuing
Unclicied n
74
Total Quin AltAr 333 Quern which earle suffered
 find tum " B"

FINAL SUMMARY OF SANTA IT PATCH LAUDS
Cleared Lands Eucalyptus Trees

Total Area Ranch
Of this the following can be irrigated from the present distribution line by the construction of the necessary laterals.

Area A I \& A2
Cleared Lands $\quad 100$ Acres now supplied by vanning

Total Area AI \& A2 353 Acres winch can be supplied from sine "A".
Area B includes that part of Walnut grove South of Little San Blijo. Cleared Lands Eucalyptus. Trees Uncleared Lands

Total Area B

529
141
$240 \quad$ -

910 Acres which can be supplied from Intine "B".

Area C

Cleared Lands | Eucalyptus Trees | 96 | Acres | |
| :--- | ---: | ---: | ---: |
| In | | | |
| Uncleared Lands | 17 | 17 | 71 |

Total Area C 607 Acres winch can be supplied from line "O".
Note Line "C" extends to the Western boundery of the Ranch.

Estmate y Cist ne gip Lin
hr Moolnut Gtne.

6000 fr 12 pipr míduding langmise 42 \& ${ }^{7 / 20}$

 Valnic ananinia ite
Engromulio is 90

$$
518
$$

cercarahim $\frac{1}{4}$ cu yd prto
Vahuc onanhilu ite

$$
\frac{13088}{\frac{65.15}{5440}} \frac{13888}{196320}
$$

Stw clis
$6700=22 \sin$ 8 Poutt tab $t h$
5 500 5223.3 Bingr Subhom A

$$
\begin{array}{r}
\frac{69}{5} \\
\hline 54
\end{array}
$$

$$
12+00=222.6 \text { ad A }
$$

$$
\begin{array}{r}
18+00-2212 \\
8
\end{array}
$$

$$
40+00-21 \frac{2}{210}
$$

$$
60+00-211,18
$$

$$
70.00-2167 \text { Beg Sifhm B }
$$

$$
73+00-21615 \text { End } \frac{4 \quad B \downarrow}{}
$$

$$
80+100=2148
$$

$$
100400-2128
$$

$120 \cdot 0.0=210.8 \quad$ Beg 3fshm C
$133+00=109,5$ and C
$140+00=208.8$

Dhchasc 12000

$$
\frac{5300}{17300}<\frac{530}{43 i+}
$$

$$
\begin{gathered}
32 \\
90 \\
60 \\
9 \\
6 \\
20 \\
2205 \\
\hline 422
\end{gathered}
$$

$$
\begin{aligned}
& 180 \\
& 66 \\
& 478 \\
& 21 \\
& 76 \\
& 32 \\
& 156 \\
& 155 \\
& 27 \\
& 19 \\
& \frac{72}{821}
\end{aligned}
$$

Cowrictoilim of sz y Gupu acissaing b muas vavius prtimin of SantaFe Ranch
Buy of Matu tabur an 1 acu fort pu acn pu Gea \quad to delimered dimag Simmen seasm of Sy momina
Coppacting of pifue colculatid in Muners snochu ither $50 \mathrm{cmI}=1 \operatorname{sie}-7$

	-8, 5	lem		Dila	3.		23												
					\% 1														
		Pons 5	$5 \times$	Dreg	017a	2	010								-				43
	\because				-														
					2														
Qrea	Acres	lenglt		size			$s 7$		-						10				
	served	pipe		Srze	-														
	Tuerved	pre									1.								
	-1				1														
											-		7		.				
A	26.0	7200			-														
	26.0	1200																	
					-								3	4					
3	21.0	3000						2	-					-	4				
	2.20	3000											-						
					-				-				-						
C	28.0	1800																	
	120.0	1800									15			-					
					-									2					
	125.0	12000												4					
					4	-									$\stackrel{3}{ }$				
		\cdots				.													
					\square		-						5				\square.		
t					-								,						
1	1-20.0.				-		${ }^{4}$						W			-			
-					.								\cdots		0		\%		
			,				-												
	- $\mathrm{F}+\mathrm{l}$			2	:		-												
7	78	5300																	
			-		1														
		-	1		1		-												
x+6																			
				+	.														
				-	14		-												
						\cdots									.				
				-												-			
-	4	C.		\%											5				
	T					+	5												
		\%																	
							4												
										S 4									
								1		1									
	*)																		

$$
\begin{aligned}
& \text { [4f }
\end{aligned}
$$

Fund summany o Sauta FC Raudh Lande
Qua $a^{n}=333$ Qem practically all d vich is gord agucultuil lould
U.smer the dutiy of vatur at 0.8 fer acu foot and fogirmi on dilniung thin amount of n-atu
 find an film
1 Qene $t+$ fer yuer $=0.0013813$ Sert. \therefore
Quefut pu 8 month -0.0020719 Ser th

$$
333 \operatorname{aren} \times 0.002071 \mathrm{~g}=0.69 \text { Sue It requmel }
$$

Quar β 910 ar appix 80% of intich will be
susciptible of migatem:-

$$
910 \times 0.8 \times 0.0020719=\frac{1.51 \text { Ser } \mid t \text { equmea }}{}
$$

Win" 60r ae of intich als appinx 800 mel Le susciftile of migation:

$$
607 \times 0.8 \times 0.0020719=1.01 \mathrm{Senf}
$$

Eafrantin lint A
Qua "O ' reques

Ques B B in \lim B.
Big lim $B=$

$$
\begin{aligned}
& \frac{1.51}{8.11} \\
& \frac{1.01}{7.10 .+t}
\end{aligned}
$$

Bolanc
cat f pmusp
9 wh
San Ely
Pre.
Gar pimuts

Leth t Mittudes
ROWA
RoxtPbelvi

\qquad

In and south of Id ver battom -

5 acyos

Cofpactiy of Pip- Cim Lianug SDRm = 10.69Sut Neie nille diam finw the lue ar fillm-

$$
\left.\begin{array}{rrr}
\operatorname{arn} D & = & 180 \\
a_{c} \\
\varepsilon & = & 2 \\
a_{e} \\
F & = & 4 \\
a & a_{c} \\
a & 47 & a_{c}
\end{array}\right] \text { ara } / t
$$

$$
\left.\begin{array}{rcc}
a & =47 & a_{c} \\
a_{\text {unb }} & \geqslant & 100 \\
333 & a_{c}
\end{array}\right)
$$

333 Ce mhnch will wqum
333 Qelt De fim $\quad .0013813 \quad 1 \quad 10.69$

$$
.46
$$

\because Herri lift to gr fimiaed
ymen the exfacty of the linm
stlin kumi an line $2 B$ is aly

- Whew is availatle tr tuilh! use 4) natir fr abut $. 0 0 1 3 8 1 3 \longdiv { \frac { . 6 1 0 0 0 0 0 } { 4 4 2 } - a _ { c } }$

Chin sift but
a gr farad while ne han a capacity it 8
li difumar or
th difucaror
com an a de fum the

sequin m full capacity of:
The the lime thu will 4 dna hitutea
a

4
Le e $\int_{\frac{0}{0}}^{0}$

eapacty' of pep- Liamir San D ugrut Remm m 10.69 Sic fut
The area ouftined vo nd is difundent upm Thi fust sctem of the line and ampervie $230 Q_{a}$ Cddid to thei is an avie outhund in thue of 100 Ce Phi is sund ly fumpung
T Sui thal of 333 acm mel uquin 333 Qan fut whil wil Rone ti Le delmens durnug an 8 amonth minatim beried
This mel rquiu a delining y'

Fenu the Rimew and if Subhm arhul we velocule Sctor B 910 Qever omust Lu sinid alor aitumed in red
hn well vquire

Fimer the prut ho the Ranch Brindang wll wave hisume bol Qem- avqum 607x0020719.

Seand Studyr
ra stant out trm li Sam Dugut Ru.

Todd acreage which can be Levved by presente pife live, 850 ae Quex. 1. How much of this is Now eleared?
2 How much in cucalyp.
3. How much not cleared

Wile Liv ic $1.2 t$ Bec It lift afth

 law a valane of $\frac{7,91}{92}$ Se (1- armaiqun N

The Piqumments telom the Banta Fe Ranch
au a fllm
sity if Sow Piog
Pundid fr Delma

$$
\begin{gathered}
5 \operatorname{sen} H^{4} \\
\frac{1}{6 R} H^{4}
\end{gathered}
$$ Wि afpacty, if the 24^{\prime} mie in 1.5 se fl

thim laning 1.5 S.e Ht anoilall br thin liang 1.5 g.e It anoilable bu
\qquad

A1\&2

col. Ea Flotehor,

fico.

oar Sir:
To get water, to the walnut grove by moans of a 4" iron pipe will require about 10,000 lin.ft. of pipe. A $4^{\prime \prime}$ pipe will deliver water at about 15 ft. higher olevation than a ditch, but will only deliver 1/2 acre leet per day or $12 \frac{1}{E}$ lifiners Inches continuous flow.

The cost of the pipe will be about $45 \not$ or about $\$ 5,000$.

Yours respectfully,
THE: BK

SAN DIECUITO - DEL MAR DISTRIBUTION LINE

Estimate of Discharge through Siphons

Siphons Ho.	Size	Grade	Estimated Dis. in Sec Ft
6 to 12	$24^{\prime \prime}$	-.0012	8.8
13 to 16	$24^{\prime \prime}$	-.001	8.0
17 to 18	$24^{\prime \prime}$	-.0009	7.5
19	$24^{\prime \prime}$	-.0008	7.0
20 to 24	$24^{\prime \prime}$	-.0006	5.8
25 to 33	$20 \prime$	-.0007	4.0
34 to 36	$20 \prime$	-.0006	3.7

Angret 28, 1920.
17. 5. H. King, o/o The Ed Fletoher Co.e 920 - 8th St..
San Diego, Calilornin.

Deap Sirs
Roplying to your lotter of Angust 24, we have no information on the soil survey of the Sen Diego area other then that contained in the prbilshed report of which you have a copy. However, before this ropost was printed, wo obtained data from the minusoript maps in Professor shaw's office and platted the primeipal soil types witinin the proposed irpigation district as then outlinod. A blue print of this map is attachod.

July 16, 1917.

Mr. King:

Enclosed find a log of the wells

 on the Santa. Fe Ranch. What records have you in this respect?
Ed Fletcher.

Log of Hyers Well Ho. "W"

Focated on East boundary of Hyer property

Log obtained in 1913 - Casing well now destrojed.

To 147 feet - Fine sediments.
At $148^{\circ} \pm-2$ or 3 feet of boulders
At 149' $\pm \quad$ - Enter blue shale.
At 176 - End of well in blue shale.
$\mathrm{F}-\mathrm{S}$

Beginnine at a point on the Range Inne between Range 3 Weat and fiange 4 West, Q.3.3. formed by the intersection of the said Range IIne with the East and West center Ilne of Section 1, Tounship 14 South, Range 4 West, s.3.2:

1. Thence Fiesterly along the said Sast and Test center line of said Section 1 to in intergection with the North and South center Iime of the Northeast $\frac{2}{4}$ of the Southrest $\frac{2}{4}$ of said Section 1:
2. Thence Southerly along the said North and South center line of the Northeast $\frac{7}{*}$ of the Soutimest $\frac{1}{-}$ of said Section 1 to an intersection with the Esst and West conter line of the Southvest $\frac{2}{4}$ of said Section 1:
3. Thence Thesterly along the ssid Zast ond West center line of the Soutinvest $\frac{z}{4}$ of said section I to an inte rsection with the Test Ine of saia Section 1 :
4. Thence Northerly along the said Meot line of said Section 1 to an intersection with the East and West center line of the Northeast: of section 2, Wornship is South, Range 4 Test, S.3.1:
5. Trence Westerly along the sai i Zast and West center line of the Northeast λ of said Section 2 to an intersection with the Fest line of said Northeast a ci said Section 2 :
6. Thence Northerly along the said Test line of the Nor theast; of ssid Section 2 to an Intersection with the Forth line of said section 2. 7. Therce continuing Fortherly along the North and South center Ine of section 35, Torn3h1p 13 South, Range 4 Test, S.B.LS., to an intgrsection with the East and West center Iine of the Southmest : of said Section 35.
7.

Thence westerly along the sald East and Weat conter lino ce Southest $\frac{2}{4}$ of said section 35 to an interssction with the West ine of said section 35:
9. Thence continuing Teste rly along the Worth Iine of Lot 4 of fractional section 34, Tomsinip 13 South, Rance 4 West, S.3.I: to an intersection with the line of the Mean 有ich Fide of the Pacific 000 an:
10.

The nce Northvesterly alone the said line of the Mpen 隹ich Tide of the Pacific Oce on to its intersection with the Morti line of said fractional section 34:
11. Thence Easterly alons tho Nortil line of sai i fractional section 34 to a point distant 50 feet wasterly from and measured at right angles to the center line of tie main track of the Atchison, Topeka \& Santa Fe Railway Company:
12: Thence Southerly parallel to and distant 50 Nesterly from and
messured at right angles to, the center line of the said nsin track to a point. on the East and West center line of the zorik hate of said fractional Section 34:
13. Thence Easterly along the suid East and West center Iine of the North half of said fractional Section 34 to the East lime of said fractional section 34 :
14. Thence continuing Lasterly along the Sast and Moct center line of the North half of Section 35, Tannship 13 South, Nange 4 Nest, S.B.Z. to an intersection with the North and South center line of the Nor theast : of seld Section 35:
15.

Thence Southerly along the sald North and South center line of the Northeast $\frac{1}{6}$ of said Section 35 to an intersection with the South

[^2]16. Thance Zasterly along the sild South line of the Mortheast? of said Section 35 to an intersection with the East lino of said Section 35:
17. Tnence Nor the rly alons the said East line of said section 35 to on intersection with the East and West center line of the North hale of section 3ô, Iarnship 13 South, Range 4 Test, S.3.in:
18. Thence Disterly alone the sald East and Mest center line of the North haif of said section 30 to an intersection with the Esst line of said section 36:
19. Thence Southe rly along the said Dest line of said Section 36 to an intersection with the Scuth line of Lot 2 of frectional Section 31, Tornship 13 South Renge 3 Mest, S.3.1:
20. Thence Eisterly along the seid South line of said Lot

2 to the Southeast cormer of sei i Lot 2.
21. Thence \#orthe rly along the Eaet line of said Lot 2 to an inbersection with the "esterly boundary inne of the Rancho San Dieguito as said boundary line is shome upon map the reof in 3ook 1, Pace 37, records of San Diego County, California, and filed in the office of the Clerk of said County Octobe r 25, 1875:
22. Thence Jortherly, Sasterly and Southerly alone the boundary Iine of saíd Pancio Sen Dieguito to an intersection mith the Nor/h line of prac-
ticnal Section 27, Tomship 13 Soutin Range 3 Tiest, S.3.M:
23. Thence Easteriy alcng the said North lim of said fractional

Section 27 to the Northeost corner of said exectional section 27:
Snid
23. Thence Southe rly along the Sast line of fractional Section 27,
fractional Section 27 :
25. Thence conti nuing Southerly alone the East line of fractional Section 34, Tomship 13 South, Range 3 West, S.B.L. tc an intersection with the East.and Mest center line of the Martheast $\frac{1}{4}$ of said Fractional Socti Section 34:
26. Thence Festerly olong the said Last and Test center line of saic

Nortneast $\frac{1}{4}$ of said Fractional Section 34 to an intersection with the Easterly boundory yine of The aforesaird Ranchu Jan Diequito

27. Troneonti nuing Mesterly along the South linameatid of of
said Fractional Section 31 an inte ree fticll bhe asterly boundary Line of site siid Rencho-Sen-Tlesuito:
28. Thence Southeriy and Southvesterly along the boundary line of said Rencho San Dieguito to an intersection with the Dat line of Iot 2 of Fractional Section 4, Torm ship 14 South, Range 3 \%est, S.3.2i:
29. Thence Southe rly along the said East Iine of ssid Lot 2 to the Southeast corner of said Lot 2:
30.

Thence Westerly along the South line of seid Lot 2, to a point on the Scutheasterly boundary line of the said Rencho San Diesuito, said point being also the most Ensterly corner of the Laucie Branson Lot as said lot is shom on the aforesaid \%ap of the Rancho Son Die cuito on file in 3ook 1, Page 37, records of San lego County, filed in the office of the Clerk of said County:
31. Thence continuing Westerly alone the Northerly line of the said Maggie Branson Lot to on intersection with the Southvesterly baudary line of the sald Rancho San Diecuito:
32. Thence along the said Southwesterly boundary line of the said Rancho San Dieguito to an intersection with the Best line of Fractional

Section 6, Taunship is South, Range 3 West, S. B. M:
33. Thence Southerly alcng the said Dast ine of said Fractional Section 6 to a point, said point being the mont Northeasterly corner of that certain tract of land conveyed by Carl A. Sinke to the Santa Ana Co-oporative
Gepporation Sugar Co. by deed recor dod Oct. 3, 1913, in 3ook 613, Page
327 of Deeds, Records of San Die go County, California.
34. Therce in a general Westerly direction along the Northerly line of said tract so conveyed to the said Santa Ana Copporative point on the West line of the Southeast ? of said fractional Section 6, Tamship 14 South, Pance 3 Fest, S.3. H4, said point beinc also the most Nor theesterly corner of that certain tract of land convejed to the County of San Dieso by Bd Fletchor and Mory C.3. Fletcher, husband and Wife by deed reccraed Dec. 21, 1921 in 30ci 751, Paテe 240 of Deeds, Records of Sen Die go Ccunty, California.
35. Thence in a ceneral Southweste diy direction alons the Horthern
boundary line of that said tract so convejed by said. Sd Fletcier and \#̈ry C.3. Fletchor to the said County of San Diego, Calif crnia, to an intersection with the Sast and Tiest center line of the Southwest $\frac{?}{4}$ of said fractional Section 6, Founship 14 South, Range 3 Tiest, S.B.I:
36. Therce Testeriy alon the said Zast and West center line of said Southmest $\frac{7}{*}$ of said fractional Section 6 to an intersection vith the
West line of said eractional soction 6:
37: Thence Nor the rly along the said Test line of said frectional
Sid line teing alsa The Rangeline between Range 3 We stand Range orrestand Ranal an SBM Section 6 , to an intergection with the Jast and west center line of Section SBM
1, Tom ship 14 South, Range is Test, and the point of beginning.

DESCRIPTION OF THE EXTERIOR BOUNDARY OF THE PROPOSED SANTA FE IRRIGATION DISTRIOT.

Beginning at a point on the Range Iine between Range 3 West and Range 4 West, S.B.I. formed by the intersection of the said Range line with the East and West center line of Section 1 , Township 14 South, Range 4 Vest, S.B.M;

Thence Westerly along the said East and West center line of said Section 1 to an intersection wi th the Nor th and South center line of the Northeast $\frac{1}{4}$ 价 the Southwest $\frac{1}{4}$ of said Section 1 ;
Thence Southerly along the seidNorth and South center line of the Nor theast $\frac{1}{4}$ of the Southrest $\frac{1}{4}$ of said Section 1 to an intersection with the East an Mest center line of the Southwest $\frac{1}{4}$ of said Section 1 ;

Thence Westerly along the said ast and West center line of the Southwest $\frac{1}{5}$ of said secton 1 to an intersection with the West line of said Sectio 1 ;
Thence Northerly a long the saidFest line of said Section l to an intersection with the Eat and West center line of the Northeast $\frac{1}{4}$ of section 2, Towship 14 South, Range 4 West, S.B. Ki.;
Thence Vesterly along the said ast and West center Ine of the Northeast $\frac{1}{4}$ of said Secton 2 to an intersection with the West line of said Northest $\frac{1}{4}$ of said Section 2 ;
Thence Northerly along the saidest line of the Northeast $\frac{1}{4}$ of said Section 2 to an intesection with the North line of said section 2s
Thence continuing Northeriy ald the North and South center line of section 35, Townships South, Range 4 West, S. B. H., to an intersection with the Es and West center line of the Southwest $\frac{1}{4}$ of said Seotion a

Thence westerly along the said ist and West center line of Southwest $\frac{1}{4}$ of said seotion to an intersection with the West line of said section 35 ;
Thence continuing Westerly alorthe North line of Lot 4 of fractional section 34, Township 13, uth, Range 4 West, S. BoM, to an intersection with the li of the Mean High Tide of the Pacific Ocean;

Thence Northwesterly along the id line of the Mean High Tide of the Pacific Ocean to itsntersection with the North line of said fractional section ;

Thence Easterly along the Nor thine of said fractional section 34

Topeka \& Santa Fe Railway Company:
Thence Southerly parallel to and distant 50 feet Westerly from and measured at right angles to the conter line of the said main track to a point on the East and West center line of the North half of said fractional Section 34;
Thence Easterly along the said East and West center Ine of the North half of said fractional Seotion 34 to the East line of said fractional section 34 ;

Thence continuing Easterly along the Fast and West center line of the Horth half of Section 35 , Township 13 South, Range 4 West, of en an int of the Hortheast $\frac{1}{4}$ of said Section 35;

Thence Southerly along the said North and South center line of the Hortheast $\frac{1}{4}$ of said Section 35 to an intersection with the Sothth Ine of the said Northeast $\frac{1}{4}$ of said Section 35;

Thence Easterly along the said South line of the Northeast $\frac{1}{4}$ of said Section 35 to an intersection with the East line of said Section 35;

Thence Northerly along the said East line of said section 35 to an intersection with the East and West center line of the North half of section 36, Township 13 South, Range 4 West, S.B.M.;

Thence Fasterly along the said East and Mest center line of the North half of said section 36 to an intersection with the East line of said section 36 ;

Thence Southerly along the said East line of said Section 36 to an intersection FI th the South line of Lot 2 of fractional Section 31, Township 13 South Range 3 West, S.B.M.;
Thence Easterly along the said South line of said Lot 2 to the Southeast corner of said Lot 2 ;
Thence Hortherly along the East In of said Lot 2 to an intersection with the Westeriy boundary line of the Rancho San Dieguito as said boundary line is shown upon map thereof in Book 1, Page 37, records of San Diego County, Cailifornia, and filed in the office of the Clerk of said county, Octóber 25, 1875;
Thence Hortherly, Basterly and Southerly along the boundary line of said Rancho San Di eguito to an intersection with the North Iine of fractional Section 27, Township 13 South, Range 3 West, S.B.M.
Thence Easterly along the said North line of said fractional Section 27 to the Hortheast corner of said fractional Section 27;
Thence Southerly along the East line of said fractional Section 27 , to the Southeast corner of said fractional Section 27 ;

Thence continuing Southerly along the East line of fractional Section 34, Township 13 South, Range 3 West, S. B. M. to an intereoti on with the Esst and West center Ine of the Northeast of said Fractional Section 34;

Thence Westerly along the said East and West center line of said Northeast $\frac{1}{4}$ of saia Fractional Section 34 to an intersection Wi th the Easterly boundary line of the aforesaid Rancho San Dieguito;

Thence Southerly and Southwesterly along the boundary line of said Rancho San Dieguito to an intersection with the East line of Lot 2 of Fractional Section 4, Township 14 South, Range 3 West, S.B.M.;

Thence Southerly along the said Fast line of said Lot 2 to the Southeast corner of said Lot 2 ;

Thence Westerly along the South line of said Lot 2, to a point on the Southeasterly boundary line of the said Rancho San Dieguito, said point being also the most Easterly corner of the Maggie Branson Iot as said lot is shown on the aforesaid Map of th Rancho San Dieguito on file in Book l, Page 37, records of clerk of said County;

Thence continuing Westerly along the Northerly line of the said Maggie Branson Lot to an intersection with the Southwesterly bo madary line of the said Rancho San Dieguito;

Thence along the said Southwesterly boundary line of the said Rancho San Dieguito to an intersection with the East line of Fractional Section 6, Township 14 South, Range 3 West, S.B.M.;
Thence Southerly along the said Fast line of said practional Section 6 to a point, said point being the most Northeasterly corne of that certain tract of land conveyed by Carl A. Sinke to 3, 1913, in Book 613, Page 327 of Deeds, Records of San Diego 3, 1913, in Book 61

Thence in a general Westerly direction along the Northerly line of said tract so conveyed to the said Santa Ana Co-operative Sugar er ti a poin on 6 losm S.B.M. said point being also the most Northessterly corner S. Bom., said point being also the most Northeasterly of Diego by Ed Fletcher and Mary C. B. Fletoher, husbend and wife by deed recorded Dec. 21, 1921 in Book 751, page 240 of Deeds, Records of San Diego County, California.

Thence in a general Southwesterly direotion along the Northern boundary line of that said tract so conveyed by said Ed Fletoher and Mary C. B. Fletcher to the said County of San Diego, California to an interseotion with the Fast and Fest center line of the Southwest $\frac{1}{4}$ of said Irsctional Section 6, Township 14 South,

Thence Westerly along the said East and West conter line of said Southwest $\frac{1}{4}$ of said fractional Section 6 to an intersection with the West line of said Iractional Section 6 ;
Thence Northerly along the said West line of said fractional Section 6, said line being also the Range Ine between Range 3 West and Range 4 West, S. B. Mo, to an intersection with the East and West center line of Section I, Township 14 South, Range 4 West, S.B.M. and the point of beginning.

Board of Directors
Santa Fe Irrigation District,
Rancho Santa Fe, California.
Gentlemen:
I am submitting belor information relating to application of this District for a loan from the Reconstruction cation of this District for a loan from the Reconst

1. - History of Application and Purpose of Loan.

Application was filed pith the R. F. C. In August, 1933 and requests a loun of $\$ 525,000$ for the purpose of refunding the District's present bonded indebtednes of 1700,000 on the basis of 754 on the dollar. The present bonds mature seriall the present bondholders would 6%. If the loan were grante of the face value cash, and the District would issue new bonds for the amount of the loan and deposit same with the R. F. C. as security for the loan. The new bonds would mature serially 1938-1971 and would bear interest et the rate of $4 \%_{0}$.
2. - Consideration of Loan Application by R. F. C.

Enginearing, legal and financial studies of the application have been pursued by the Division of Irrigation Drainage and Levae Districts of the R. F. C. of Which Emil Schram is Chief, FrankJ. Keenan, Financial Advisor. Former Senator J. J. Blaine of ifisconsin, member of the Board of Directors of the R. F. C., has direct supervision over this Division.

Is appraisal of the District was made in November, 1933 by an appraiser of this Division of the R. F. C. He checked and the District's present financial situation and interviewed personally six land owners in the District. It is understood that the appraiser in his report recommended a loan of $\$ 420,000$ or on the basis of 604 on the dollar, and reported favorably on the District's need for refinancing and the security of the loan. It is also understood that subsequently the angineering and legal advisors of the Division reported Cavorably on the District's application.

The refunding of the Distiriot's bonded indbbtedness on the bssis of 60 on the collar, as recommended by the appraiser ould resuit in savings to the pistrict through reduction in interest and principal payments of $\$ 40,000$ znnuaily.

3. - Additional Information Furnished by District.

Subsequent to the filing of original application additional information has been presented to the Division relating to charges per acre, State and County taxes, modification of water contract, and the District's financial position. The District's attomey has been in Nashington in connection with other matters and has kept in touch with officials of the Division in furtherance of securipg favorable action on the District's application. Wihen it appeared the Financial Advisor of the Division lacked a clear understanding of the District's financial situation, charges per acre, plan of development, and extent and type of development, I was authorized to present to the Financial Advisor, parsonally in llashington, such additional facts and information as might be necessary to remove any doubt about the District's financial situation, the need for financial relief and the prospects for repayment of the loan.
4. - Obiections of Financial Adyisor.
(a) The Financial Advisor hesitated to recommend the loan because of the small area planted, - only 3,000 acres of 10,000 acres in the District. It was pointed out to him that of the 10,000 acres, less than 7,000 acres was classified as irrigable land suitabie for cultivation; that of the 10,000 acres, approximately 7,000 acres mas in small holdings, each partially or wholly planted; that each individual land owner Has making every effort to pay the assessments and charges on the entire holding in order to protect the investment in the portion planted; that the assessments and charges were separated es betreen the sires inole and could not be that therefore that therefore the developed area should be considered as beins, 000 acres lnstead or trict containing 3,000 acres was planted solid and the balance of the District was entirely uncyeloped.

In this connection it should be noted here that the District assessments and water charges are levied against the nonirrigable lands to the extent of only 25% of that levied against the irrigable lands. The rill burden of asseasaents and water by one-fourth of the non-irrigable land or byjaototaluof 7, 424 acres.
(b) The Financial Advisor was concerned about the large blocks of unsold and undereloned tunds, parijúdarly from a revenue standpoint. It was pointed out to hin that of the , 000 acres of unsold land, approximately 1,500 acres were assessments and charges and would continue to do po paying al proximately 1,500 acres ere held by the pincho so, and apation who were one and onemalf years delinnuent in payent of assessments and charges; that in the latter case a mortgage
of $\$ 450,000$ was held by the kh 1 tney Estate of New York against the property, that the mortgage was in default, and that the Dlabict was making an eror Estate forecloge on the mortgage, 11quidat assessments and charges.

In this connection it should be noted here that of the unsold lands of approximately 3,000 acres, only about 1,900 acres are classified as agricultural irrigation land and of this aroa several hundred acres are in valleys not suitable for semi-troplcal fruit culture. sold and is now held in small ownerships.
(c) The Finencial Advisor considered the charges per acre too high (particularly according to his method of allocating the total District charges over the 3,000 acres of planted land only - about $\$ 60.00$ per acre). It was pointed out that the District charges shouldued being the area included in individual holdings, 7,000 acres, being the area included in indivicual holaings,保 point, might be spread over o, Co . was paying all assessthents and charges on the 1,500 acres of undeveloped land they ments and charges on the In til omed. In any event the full burden of assessments and still omed. in any event the full burden of asses in the District whether develop charges is carried or undeveloped, planted or unplanted and spread over developed or undeveloped, planted or unplanted and spread ove this area the annual charges amount to only int per acre, the lovest charges per acre of any irrigation district in San Diego County and favorable when compared mith most agricultural areas these charges would be reduced to less than 819 per acre. The these charges would be reduced to less than ing per acre. The finans and vater costs in Southern California. It was therefore pointed out to him that the charges in our District were not exorbitant considering the value per acre of crops produced and the long groving season in Southern California as compared with other agricultural areas throughout the Country.
(d) The Financial Advisor considered that an insufficient number of people would be effected by the granting of this loan $a s$ compared with other districts, pointing out that the District's population was only 800. It was explained that more than half of the District's land owners were non-resident, had purchased the property several years ago and planted orchards fith the hope that as the orchards would mature and become income producing, they would establish permenent homes in the District. The change in economic conditions brought about by the 1929 financial collapse, and the low prices prevailing for egricultural products has temporarily fristratod these plans. Considering all of the property omners in the District, a population of about 2,500 would be benerited by the preposed refinancing.
(e) The Financial Advisor took the position that the financial distress in the District was not severe and did not warrant the R. F. C. refinancing. He argued that the non-resident
owners had established homes in various parts of the Country and no doubt enjoyed income from sources other than their orchards in the Santa Fe Irrigation District, that therefore these omners would suffer no serious loss nor human misery if pistrict; bistrict; furthermore, that a return or normal or even semi normal condelons in the near ruture ill anable these land and charges and continue to meet future District obligations and charges and. continue to meet future bistrict obligations analysis of omners in the District indicated that the distress analysis of owners in the District indicated that the distress could not be considered acute, and that it was not the policy of the government to make loans to Districts in which there fere owners such as Douglas Fairbanks and others who by themselves were financially able to arrange the refinancing requested. It was pointed out to him that the financial relie afforded by the proposed refinancing could by no means be considered direct relier, that it was merely snother step the tax burden on real estate, over-burdened for many years; that the wording of the Agricultural Eaergency Act indicated that this was the purpose and intent of this form of refinancing, ond that therefore, in considering loan applications, the government should confine its examination - first, to the necessity for refinancing according to record of defaults in meeting bond interest and principal and extent of assessment delinquencies; second, the assurance of an agreement by the bondholders to accept cash in lieu of their bonds according to the amount of loan recommended, and; third, the security of the ioan, feasibility of project, pian of development. was also pointed out to him that there were but very few owners of Pinancial importance in the District, such as Douglas Fairbanks; that these few owners had already made large investments in the District, could not be expected to carry the burden of the entire District, and that they represented important assets to the District from the standpoint of present and future developments; also, that if a refinancing of the District's obligations was not accomplished and assessment delinquencies continued, the additional burden thrust upon the lands which are not delinquent would be prohibitive from a farm operation standpoint. The result would be complete failure of the District and the loss of $\$ 15,000,000$ invested in land, orchards, and operative property.

5. - Eresent Status of Appifcation.

Hotwithstanding all of the arguments presented in support of our contention that the application of this District for a refunding loan from the R. F. C. fully meets the requirements, and is fully in accord with the intent and purposes of Section 36, Part 4 of the Emergency Farm Mortgage Act of 1932 as amended, recent wire communication from our attomey indicates that the pinancial Advisor has reported adversely on our application upon the grounds of no distress. Our attorney has arranged that the report be withheld pending the presentation of additional facts and information before final action by the Board of Directors of the R. F. C. is taken. This information is now being assembled.

6. - Conclusiong.

It is recommended that additional information be furnished the Financial Advisor es follows:
(a) A map showing ownership of every parcel of land In the District, except tom-site property, and stating acreage omed, acreage planted, and segregating by colors, the areas of unsold land.
(b) Additional evidence to justify the reasonableness of the charges per acre by making comparison of Eross value of crops produced in the District with the gross value of crops produced in other sections of the country where lower water charges per acre prevail.
(c) Additional evidence to show conclusively the steadily increasing distress in the District, including in statement of the assessment delinquencies for the six months period ending December 25th, 1933, Thich amounted to 68.7% as compared with 44.7% for $1932,27.6 \%$ for 1931 and 5.7% for 1930 .

It is also recommended our local Representative in Congress and the Senators from California be requested to join In a cooperative effort to secure a reconsideration of the District's application by the Financizl Advisor in view of the additional data presented in support of the District's application, and with the thought of impressing further upon the Financial Advisor the merits of the District's application, and of correcting his apparent misconception of conditions in

It is also recommended that other persons who may be of assistance be supplied with information regarding the District's financial situation and the status of the District's loan application.

Yours very truly,

Ed Fletcher Papers

1870-1955
MSS. 81
Box: 48 Folder: 10

Business Records - Water Companies - Volcan Land and Water Company - San Dieguito System - Santa Fe Land Improvement Company/Santa Fe Irrigation District - Santa Fe Irrigation District - Miscellaneous

Copyright: UC Regents
Use: This work is available from the UC San Diego Libraries. This digital copy of the work is intended to support research, teaching, and private study.

Constraints: This work is protected by the U.S. Copyright Law (Title 17, U.S.C.). Use of this work beyond that allowed by "fair use" requires written permission of the UC Regents. Permission may be obtained from the UC SanDiego Libraries department having custody of the work (http://libraries.ucsd.edu/collections $/ \mathrm{mscl} /$). Responsibility for obtaining permissions and any use and distribution of this work rests exclusively with the user and not the UC San Diego Libraries.

[^0]: - No attempt is made in this bulletin to present.a broad and full diseussion of weirs, only enough being given to enable tho farmer who is unfamiliar with water measurement to understand their use in irrigation. The weir tables that are given are those that are generally used in irrigation practise and are therefore based on the well-known formulas. Engineers have recognized that these and for that reason numerous ongincers have made experiments deal correct the formulas for the conditions to which the Francis and other formulas correct the formulas for the conditions to which the Francis and other formulas do not properly apply. Tho Oinee of Exporiment stations, in co-operation with at Fort Collins, Colo., an hydranlic laboratory in which a large number of such experiments with weirs have recently been made by V. M. Cone, irrigation engineer, and assistants.

[^1]: - Utah Engineering Experiment Station, Bull. 5.
 \dagger The tables given in the bulletin referred to cover depths for weirs up to 6 feet high.

[^2]: Ine of the sald Northeast: \% of sai a Section 35:

