Dear Dr. Dempster:
I have read your analysis of report A-55 dated July 9, 19 and you and I have since that time gone jointly over report A-55. In the following I am giving you a resume of the statements I made to you in connection with report A-55:

1. A-55 gives a recipe which permits to determine for a lattice of uranium spheres in graphite for what radius $R$ of uranium spheres and for what ratios of uranium to carbon for any given $R$ the multiplication factor can be expected to be close to its highest possible value. By using the formulae and the constants given in the paper one finds for room temperature and density of 15 grams per oc for the best radius $R_{\text {, }}$ a value slightly above 5 cm . Similarly, for $900^{\circ} \mathrm{C}$ one finds for the best radius R, a value of about 8 cm . All examples given in the paper refer either at 5 cm spheres at room temperatures or to 8 cm spheres at $900^{\circ} \mathrm{C}$.

The corresponding ratios or uranium and carbon can be easily calculated from the formulae given in A-55. Ho ratio of uranium to carbon at $900^{\circ} \mathrm{C}$ is explicitly given for 8 cm spheres/but this could be obtained simply by putting the set of values given on page 20 in A-55 into the formulae given in the paper. For 5 cm spheres at room temperature a ratio of uranium weight to graphite weight of 3 to 10 is given in A-55.

It is my contention that for all the $R$ values, and all weight ratios recommended in $A-55$, the multiplication factor is larger than 1 and that A-55 teaches how to obtain a lattice which is capable of sustain ing a chain reaction.

The theory given in the paper for the determination of the most favorable sizes and mixtures is an approximation which holds only for small uranium spheres, say spheres below 8 cm radius. The theory neglects various factors which counteract each other and thereby leads to very simple formulae.
a) The theory proven in A-55 permits to calculate for any given Radius $\mathbb{R}$ between 5 and 8 cm the most favorable ratio of uranium to carbon in the following manner:

The value of $\varepsilon$ is calculated from $R$, the radius of the uranium spheres by means of equation (20a). The value of all physical constants occuring in equation (20a) are given in the paper. Having obtained the value of $\varepsilon$ the value of gm can be calculated either from equation (26) or from equation (27). Having obtained gm the most favorable ratio of uranium to carbon corresponding to the chosen value of $R$ can be obtained from equation (33a).

An alternative method which is mathematically identical gives the uranium-carbon ratio of cabulating in addition to $\varepsilon$ and $\mathrm{gm}_{\mathrm{m}}$ also $P$ from equation (19) and then substituting the values of $\varepsilon, \varphi$, and gm into equation (33).

If the uranium graphite ratio has been calculated we may obtain the distance between neighboring uranium spheres in a cubic close-packed lattice from equation (34) or more directly from equation (35).
(Please note that the distance of 51 cm given on p. 12 is not the distance corrosponding to a physically real case, but is a maximum distance which can be gotten from equation (35) by means of a set of values
which are most pessimistically chosen, among all the values occurring on $p_{0} 20$ for the purpose of demonstrating that there is no danger of this distance becoming larger compared to the distance $\sqrt{\frac{x}{2}^{2}}$ which is about 50 cm . See in this connection the first paragraph on p.11.)
b) In order to get the most favorable multiplication factor we have according to A-55 to choose $R$ so as to make Ea maximum. This is obvious from equation (26) which shows that gm increases with increasing $\varepsilon$. Accordingly in order to make the multiplication factor a maximum we have to choose $R$ so as to make $\mathcal{E}$ as given by experession (20a) a maximus. As stated before, the maximum is at room temperatur slightly above $\mathrm{R}=5 \mathrm{~cm}$ for uranium density of 15 gms per ca. If the temperature is increased to $900^{\circ} \mathrm{C}$, the absorption and capture cross sections are reduced by a factor 2 and the maximum for $R$ shifts by a factor of $\sqrt{2}$ into the neighborhood of $\mathrm{R}=8 \mathrm{~cm}$.
2. A-55 es so far discussed in the present memoranduz deals only with the question of how to obtain the optimum size for the uranium spheres and the optimum ratios of uranium to cabbon. It is, however, also of interest to lnow whether for the optimum case, the multiplication factor will be larger than 1. In this respect, $A-55$ most emphatically asserts that this will be the case and gives on p. 21 for room temperature a rough guess of ( $\mu_{\mathrm{q}}-1$ ) being $1 / 8$ which corresponds to a multiplication factor of $\mu_{\mathrm{g}}=1.125$. This corresponds to $\mathrm{gm} /$ (value given on $p \cdot 21$ ) for spheres of 5 om radius at room temperature) and a value of $\mu=1.87$, which is in accordance with the value of $\mu$ given on p. 17 if we take into account the explicitly stated experimental error given on p. 17 for p.

It should be noted that only the product $\mu_{q}$ enters into the determination of the critical radius $\mu$ and that it is indifferent from the point of view of the chain reaction in what way this product is split into thrxaxkexaye
the two factors $\mu$ (and $q$.
Similarly, Joliot's experiment which is discussed in the paper does not directly measure $\mu$ but measures a combination of constants something close to $\mu \times(l-p)$. is connected with the resonance absorption of uranium, and A-55 emphasizes that its value is very badly known. Although it is, therefore, somewhat uncertain in what way this product has to be split into (and lap this uncertainty does not affect the results of Joliot's experiments inasmuch a it shows that ura iumwater mixtures may have a multiplication pactor which is, rather close to 1.

At the time when the paper was written I knew from experiments made on heterogenous and homogenous systems of uranim and water that such systems have a multiplication factor which in the most favorable cases comes zadher rather close to 1 but most probably stays below 1. If one now replaces as a slowing agent, one hydrogen atom with 25 to 30 carbon atoms one should expect a system in which the loss of neutrons due to uranium resonance is about equal to loss of resonance in the hydrogen system. Since the absorption of 25 to 30 carbon atoms of a cross section of .005 each is only about .13 to .15 whereas the thermal absorption cross section of a hydrogen atom is about .3. So it may be seen that the uraniumagraphite system is more favorable and can be expected to have a multiplication factor above 1, but cannot expected to have a multiplication factor very much above 1 unless the carbon cross section should be considerably lower than .005. ${ }^{\text {. }}$ * (Please note that if the carbon absorption oross section were .01, then the above consideration would show that carbon and hydrogen are just about equal. I stated this fact in my letter to Fermi, July 3, 1939 and my statement was based on the consideration given above. Even so, carbon would have an advantage over hydrogen is used in a heterogeneous system, for reasons which were given in my

At the time when A-55 was written the best value for $\mu_{\text {appeared to }}$ be about 2. This would have led to a multiplication factor which was obviously far too high above 1 had Inot made a very pessimistic assumption about the resonance absorption of small spheres of uranium and assumed that axaln rich uranium spheres absorb at resonance considerably more than any other known element which has an even atomic number. Only in this way could I obtain for $\sigma_{c}(c)=0.005$ sufficiently small value for qm to give a produot $\mu q$ not too far above 1.

The quantity of resonance absorption enters into A-55 by means of a length $B$ which $A-5 \overline{5}$ took to be 6.5 om . The assumption of such a large rese onance absorption leads to very low values of qu but if we multiply $q$ with $\mu_{\text {in }}$ order to obtain the multiplication factor we come out with the approximately correct result. Fi.d I at the time when A-55 was written used the correct value for the resomance akas absorption of uranium in conjunction with the value of M-2 I would have come out with far too high values for the multiplication face tor which would not have fitted with my knowledge that the graphite-granium system can only be slightly better than the water-uranium system and, therefore, cannot have a multiplication factor very much above 1, unless the use of carbon were much smaller than 0.005 .
letter to Fermi. July 5, 1939, which reads as follows: "carbon would also have an advantage over hydrogen in so far as there is no change in the sax scattering cross section, in the transition from the resonance region to the thermal region. Confinite
sequently, if layers of uranium oxide of eixitize thickness are used, the diffusion of the thermal neutrons produced in the carbon to the uranium layer is not adversely affected as in the case of hydrogen by such a change." It is due to this fact that we can use fairly large spheres of uranium and fairly large distances between these spheres in the graphite and that is the reason why A-55 was justified in stating

The assumption of Bo6.5 cm in A -55 has only a slight falsifying effect on the recipe which leads to the selection of the nost favorable ta weight ratiod and, therefore, these recipes lead to sizes and weight ratios which are close to giving the highest possible multiplication factor.
c. I submit that it is not justified to oriticize A-55 on the ground that if the value of certain constants used in the paper is replaced by fodern values for those constans while the value of other constants used in the paper is left untouched one comes out with entirely wrong result. A-55 uses the constants only in certain combinations and the constants were so adjusted to each other as to make those combinations come out right.
3. On page 21, a formula is given for the critical radius $\ell$. Using the value of 50 cm given on p .21 have $\sqrt{\bar{r}^{2}}$ one may write,


This formula is correct in terms of $\mu \mathrm{q}$ and gives $\operatorname{sor} \mu \mathrm{q}=1.125, \mathrm{C}=250 \mathrm{~cm}$ corresponding to about 100 tons of graphite.

In view of the general statements made in the paper concerning the inaccuracy of some of the constants involved, and in view of the great sensitivity of the formula for $ل$ to changes in the multiplication factor, it must be obvious size of the proposed chain reacting system. It is my contention, whioh I do not propose to discuss here, that in February, 1940, there were methods available and known to men skilled in the art of inducing radioactivity by neutrons which permitted to determine the accurate size by making measurements on structures which were smaller than the accurate sige.
that even if the carbon cross section were as high as . 01, the graphite-uranium system would give a multiplication factor just slightly above 1 , in the case of the most favorable conditions.)
fav
$\because \leadsto 2 \pi$


Ar. Hewnaz? or av

I have read your analysis of report A-55 dated July 9, $19 \%$ and you and I have since that time gone jointly over report $A=55$. In the following I am giving you a resume of the statements I made to you in connection with report A-55:

1. A-55 gives a recipe which permits to determine for a lattice of uranium spheres in graphite for what radius $R$ of uranium spheres and for what ratios of uranium to carbon for any given $R$ the multiplication factor can be expected to be close to its highest possible value. By using the formulae and the constants given in the paper one finds for room temperature and density of 15 grams per cc for the best radius $R$, a value slightly above 5 cm . Similarly, for $900^{\circ} \mathrm{C}$ one finds for the best radius $R$, a value of about 8 cm . All examples given in the paper refer either at 5 cm spheres at room temperatures or to 8 cm spheres at $900^{\circ} \mathrm{C}$.

The corresponding ratios or uranium and carbon can be easily calculated from the formulae given in Am55. No ratio of uranium to carbon at $900^{\circ} \mathrm{C}$
is explicitly given for 8 cm spheres/but this could be obtained simply by putting the set of values given on page 20 in $A=55$ into the formulae given in the paper. For 5 cm spheres at room temperature a ratio of uranium weight to graphite weight of 3 to 10 is given in A-55.

It is my contention that for all the $R$ values, and all weight ratios recommended in $A=55$, the multiplication factor is larger than 1 and that A-55 teaches how to obtain a lattice which is capable of sustain e ing a chain reaction.

The theory given in the paper for the determination of the most favorable sizes and mixtures is an approximation which holds only for small uranium spheres, say spheres below 8 cm radius. The theory neglects various factors which counteract each other and thereby leads to very simple formulae. given
a) The theory $\begin{gathered}\text { aron in } A-55 \text { permits to calculate for any given Radius } R ~\end{gathered}$ between 5 and 8 cm the most favorable ratio of uranium to carbon in the following manner:

The value of $\varepsilon$ is calculated from $R$, the radius of the uranium spheres, by means of equation (20a). The value of all physical constants occuring in equation (20a) are given in the paper. Having obtained the value of $\varepsilon$ the value of $G m$ can be calculated either from equation (26) or from equation (27). Having obtained qm the most favorable ratio of uranium to carbon corresponding to the chosen value of $R$ can be obtained from equal tion (33a).

An alternative method which is mathematically identical gives the uranium-carbon ratio of carulating in addition to $\varepsilon$ and $a m$ also $\varphi$ from equation (19) and then substituting the values of $\mathcal{E}, \varphi$, and $q$ into equation (33).

If the uranium graphite ratio has been calculated we may obtain the distance between neighboring uranium spheres in a cubic closempacked lattice from equation (34) or more directly from equation (35).
(Please note that the distance of 51 cm given on p 12 is not the distance corresponding to a physically real case, but is a maximum distance which can be gotten from equation (35) by means of a set of values
which are most pessimistically chosen, among all the values occurring on $\mathrm{p}_{\mathrm{s}} 20$ for the purpose of demonstrating that there is no danger of this distance $L$ becoming larger compared to the distance $\sqrt{\bar{r}^{2}}$ which is about 50 cm . See in this connection the first paragraph on p.11.)
b) In order to get the most favorable multiplication factor we have according to A-55 to choose $R$ so as to make $\varepsilon_{\text {a maximum. This is obvious from }}$ equation (26) which shows that Qm increases with increasing $\mathcal{E}$ Accordingly in order to make the multipdication factor a maximum we have to choose R so as hachp to make $\mathcal{E}$ as given by experession (20a) a maximum. As stated before, the
maximumf is at room termperaturne slightly above $R=5 \mathrm{~cm}$ for uranium density of 15 gms per cc. If the temperature is increased to $900^{\circ} \mathrm{C}$, the absorption and capture cross sections are reduced by a factor 2 and the maximum for $R$ shifts by a factor of $\sqrt{2}$ into the neighborhood of $R=8 \mathrm{~cm}$.
2. AmE5 a.s so far discussed in the present memorandum deals only with the question of how to obtain the optimum size for the uranium spheres and the optimum ratios of uranium to cajbon. It is, however, also of interest to know whether for the optimum case, the multiplication factor will be larger than 1. In this respect, $A-55$ most emphatically asserts that this will be the case and gives on p. 21 for room temperature ancough guass ad $(\mu q-1)=1 / 8$ which corresponds to a multiplication factor of $\mu q=1.125$. This corresponds to $\begin{aligned} & \phi_{2}=6 \\ & \text { avalue given on p. 21) for spheres of } 5 \text { om radius at room }\end{aligned}$ temperature ${ }_{3}$ and a value of $\mu=1.87$, which is in accordance with the value of $\mu$ given on p .17 if we take into account the explicitly stated experimental error given on p. 17 for $p$.

It should be noted that only the product $\mu$ q enters into the determination of the critical radius $\mathbb{R}$ and that it is indifferent from the point of view of the chain reaction in what way this product is split into
the two factors $\mu$ and $q$.
Similarly, Joliot's experiment which is discussed in the paper does not directly measure $\mu$ but measures a combination of constants something close to $\mu \times(I m p)$. is connected with the resonance absorption of uranium, and A-55 emphasizes that its value is very badly known. Although it is, therefore, somewhat uncertain in what way this product has to be split into $\mu$ and $l \mathrm{mp}$ this uncertainty does not affect the results of Joliot $s$ experiments inasmuch a it shows that ura iumwater mixtures may have a multiplication factor which is, rather close to 1.

At the time when the paper was written I knew from experiments made on heterogenous and homagenous systems of uranimm and water that such systems have a multiplication factor which in the most favorable cases comes xachax rather close to 1 but most wisx probably stays below l. If one now replaces as a slowing agent, one hydrogen atom with 25 to 30 carbon atoms one should expect system in which the loss of neutrons due to uranium resonance is about equal to loss of resonance in the hydrogen/system. shace The absorption of 25 to 30 carbon atoms of a cross section of .005 each is only about .13 to .15 whereas the thermal absorption cross section of a hydrogen atom is about 3 . So it may be seen that the uraniumagraphite system is more favorable and can be expected to have a multiplication factor above 1, but cannot to expected to have a multiplication factor very much above 1 unless the carbon cross section should be considerably lower than 005 ,

* (Please note that if the carbon absorption cross section were 01 , then the above consideration would show that carbon and hydrogen are just about equal. I stated thas fact in my letter to Fermi, July 3, 1939 and my statement was based on the consideration given above. Even so, carbon would have an advantage over hydrogen is used in a Heterogeneous system, for reasons which were given in my

At the time when Am55 was written the best value for $\mu$ appeared to be about 2. This would have led to a multiplication factor which was obviously far too high above 1 had Inot made a very pessimistic assumption about the resonance absorption of small spheres of uranium and assumed that wheh uranium spheres absorb at resonqnce considerably more than any other known element which has an even atomic number. Only in this way could I obtain for $\sigma_{c}(c)=0.005$ sufficiently small value for $q_{m}$ to give a product $\mu_{q}$ not too far above 1 .

The quantity of resonance absorption enters into Am 65 by means of a length $B$ which $A-5 \overline{5}$ took to be 6.5 cm . The assumption of such a large resm onance absorption leads to very low values of qm but if we multiply $q$ with $\mu$ in order to obtain the multiplication factor we come out with the approximately correct result. Had I at the time when A-55 was written used the correct value for the resomance aka absorption of uranium in conjunction with the value of $\mu=2$ I would have come out with far tho high values for the multiplication factor which would not have fitted with my kowledge that the graphite-granium system can only be slightly better than the water-uranium system and, therefore, cannot have a multiplication factor very much abone 1 , unless the use of carbon were much smaller than 0.005.
letter to Fermi, July 5, 1939, which reads as followss "carbon would also have an advantage over hydrogen in so far as there is no change in the waw scattering cross section, in the transition from the resonance region to the thermal region. Confinite
sequently, if layers of uranium oxide of finatie thickness are used, the diffusion of the thermal neutrons produced in the carbon to the uranium layer is not adversely affected as in the case of hydrogen by such a change." It is due to this fact that we can use fairly large spheres of uranium and fairly large distances between these spheres in the graphite and that is the reason why $A-55$ was justified in stating

The assumption of $B 6.5 \mathrm{~cm}$ in $\mathrm{A}-55$ has only a slight falsifying effect on the recipe which leads to the selection of the most favorable in weight ratio d and, therefore, these recipes lead to sizes and weight ratios which are close to giving the highest possible multiplication factor.
c. I submit that it is not justified to criticize A-55 on the ground that if the value of certain constants used in the paper is replaced by modern values for those constants while the value of other constants used in the paper is left untouched one comes out with entirely wrong result e $A=55$ uses the constants only in certain combinations and the constants were so adjusted to each other as to make those combinations come out right.
3. On page 21, a formula is given for the critical radius (Using the value of 50 cm given on p .21 have $\sqrt{\mathrm{r}^{2}}$ one may write,

$$
\lambda=\sqrt{\frac{7500}{4 q-1}}
$$

This formula is correct in terms of $\mu \mathrm{q}$ and gives for $\mu \mathrm{q}=1.125, \chi=250 \mathrm{~cm}$


In view of the general statements made in the paper concerning the
inaccuracy of some of the constants involved, and in view of the great sensitivity of the formula for $\ell$ to changes in the multiplication factor, it must be obvious
to any one mho reese ls $A \sqrt{5}$ that itch statement $R=250$ em indelicate. size of the proposed chain reacting system. It is my contention which I do $\geqslant$


TO: Dr. Dempster<br>FROIT: Dro Szilaxd

I have read your analysis of report A-55 dated July 9, 1943 and you and I have since that time gone jointly over report Am55. In the following, I am giving you a resume of the statements I mede to you in connection with report A-55:

1. A-55 gives a recipe which pernits to detemuine for a lattice of urenium spheres in graphite for what radius $R$ of uranium spheres and for what ratios of uranium to caxbon for any given R the multiplication factor can be expected to be close to its highest possible value. By using the formalae and the constants given in the paper one finds for room temperature and density of 15 grs/ec for the best radius $R$, a value slightly above 5 cm . Similarly, for $900^{\circ} \mathrm{C}$ one finds for the best radius R , e value of about 8 cm . All examples given in the paper refer either at 5 cm spheres at room temperatures or to 8 cm spheres at $900^{\circ} \mathrm{C}$.

The corresponding ratios of uranium and carbon can be easily celculated from the fommalae given in A-55. No ratio of uranium to carbon is explicitly given for 8 an spheres at $900^{\circ} \mathrm{C}$ but this could be obtained simply by putting the set of values given on page 20 in A-55 into the fowmlae given in the paper. For 5 cm spheres at room temperatures a ratio of uranium weight to graphite weight of 3 to 10 is given in A-55.

It is ry contention that for all the $R$ velues, and all weight ratios recomended in A-55, the raitiplicatibn factore is larger than 1 and that A-55 teaches how to obtain a lattice which is capabie of sustaining a chain reaction.

The theory given in the paper for the deteraination of the most favorable sizes and mixtures is an approximation which halds only for suall uranium spheres, say spheres below 8 cm radius. The theory nectectsvarious factors which counteract each other and thereby leads to very simple foxmulae.
a) The theory given in A-55 permits to calculate for any given radius $R$ between 5 and 8 cm the most favorable ratio of urenium to carbon in the following marners

The value of $\varepsilon$ is colculated from $R$, the radius of the uranium spheres, by means of equation (20a). The velue of all physical constants occuring in equation (20a) are given in the paper. Maving obtained the value of the value of cm con be calculated either from equation (26) or from equation (27). Having obtained gn the most favorabie ratio of uranium to carbon compesponding to the chosem value of $R$ can be obtained from equation (33a).

An alternative method which is mathematically identical gives the uranium-carbon ratio of calculating in addition to $\varepsilon$ and from equation (19) and then substituting the values of $\varepsilon, \mathcal{P}$, and gminto equation (33).

If the uranium graphite ratio has been calculated we may obtain the distance between neighboring uranium spheres in a cubic close-packed lattice from equation (34) or more directly from equation (35).
(Please note that the distance of I 51 cm given on p. 12 is not the distance corresponding to a physically real case, but is a maximum distance which can be gotten from equation (35) by means of a set of values which are most
 paragraph on p.11.)
b) In order to get the most favorable fultevlication factor wo have according to A-55 to choose $R$ so as to make $\mathcal{E}$ a maxirmm. This is obvious from equation (26) which shows that quincreases with increasing $\mathcal{E}$. A-55 says on page 7: "The value of $R$ may be chosen as to make this factor a meximum." Accordingly, in order to make the multiplication factor a maximum we have to choose R so as to make $E$ as given by expression (20a) a maximum. As steted before, the maximum of Eis at room temperature slightly above $R=5$ an for uraniun density of 15 gras per sections are reduced by a factor 2 and the maximm for $R$ shifts by a factor of $\sqrt{2}$ into the neighborhood of $\mathrm{R}=8 \mathrm{~cm}$.
2. A-55 as so far discussed in the present menorandum deals oniy with the question of how to obtain the optimum size for the uranium spheres and the optimum ratios of uranium to carbon. It is, however, also of interest to know whether for the optimum case, the multiplication factor will be laxger than I. In this respect, A-55 most emphatically assexts that this will be the case and gives on p.21 for room temperature $(\mu q-1)=1 / 8$ which comesponcis to a maltiplication factor of $\mu_{q}=1.125$. This corresponds to gin $=.6$ value given on p.21 for spheres of 5 cm radius at room temperature and a value of $\mu=1.37$, which is in accordance with the value oi $\mu$ given on $p .17$ if we take into account the explicitly stated experimental error given on p.l7 for p .

It should be noted that only the product $\mu$ enters into the deterwination of the criticel redius $R$ and that it is indurforent from the point of view of the chain reaction in what wey this product is spiit into the twio factops $\mu$ and $q$. Similarly, Joliot's experiment whicieq discuased in the paper does not directly measure $\mu$ mut zoesures a combination of constants something close to $\mu_{x}(1-\mathrm{p}) . \mathrm{p}$ is comnected with the resonance absoretion of uranium, and A-55 emphasizes that its value is very badly know. Although it is, therefore, somewhat uncertain in what way this product has to be split into $\mu$ and $1-\mathrm{p}$ this uncertainty does not affect the results of Joliot's experiments inasmuoh as it shows that uranium-water mixtures may have a multiplication factor which is, rather close to 1.

At the time when A-55 was written, there was a consonsus of opinion based on various measuren:onts on homogeneous and heterogeneous watex-uranium systens that such systens may have at room temperature a multiplication factor which comes very close to 1 , but will not exceed 1 by more than a minute fraction if at all. This opinion was based on much better evidence then there, was available for any indivitual constant, for exanple, $\mu$ If we now replaced, as the slowing agont, hydrogen by cerbon by substituting 25 to 30 carbon atoms for one hyarogen atom, one should expect a system in which the loss of neutrons due to uranium resonance is about equal to the loss due to wesonence in the hydrogereous syster. Taking at room temperature the absoretion cross section of carbon at . 005 , 25 to 30 carbon atoms yould, at room temperature, have an absorption of only about . 13 to .15 , whereas, the themal absorytion cross section of hydrogen atom is about .3. Accordingly, one has to expect that the uranium-grephite systern is more favorable and will bave, in the most farorable case, a multipli-

cation factor above 2 , but canhot have, at goom tayperature, a multiplication factor very much above 1 , unless the carban cross section should be considerably lower than . 005.

The set of constants used in A-55 wes so adjusted that the formulae given in A-55 yield for room temperature in the most favorable case for $\mathrm{O}_{\mathrm{c}}(\mathrm{C})=0.005$ a multiplication factor of slightiy above one, for $\mu=1.87 ; q=0.6 ; \mu_{q}=1.125$.

The same set of constants give then if put into the formulae for room temperature as the most favorable size for $15 \mathrm{gm} / \mathrm{ec}$ density a radius slightly above 5 cm nd for the most favorable weight ratio of uraniun to carbon a value
cloge which is huswes to the optinum and for which in the light of our present knowledge the multiplication factor would be in fact above 1 .

Please note that from the consideration given above it would follow that of the carbon cross section were 0.01 , carbon would just about be equivalent to hydrogen. I wrote in my letter to Fermi dated July 3 , 1939 (which dealt with heterogeneous mixtures but did not fot envisage, the use of thick layers of graphite) MIf the cross section were 0.01 carbon would be no better than hydrogen." On July 5, 1929, envisaging the use of thick layers of carbon between uranium-containing elements I wrote to Pemi: "earbon would also have an advantage over hydrogen insorar as there is no change in the scattering eross section, in the transition from the resonance region to the thermal region. Consequently, if layers of uranium oxide of finite thickness are used, the aiffusion of the themal neutrons produced in the carbon to the uranium layer is not adversely affected as in the case of hydrogen by such a change."

This consideration gives carbon a sufficient advantage going sufficientiy beyond the equivalent considerations stated in the letter of July 3 rd to enable me to state in A-55 that the chain reacting in the uranium-carbon lattice would go
even if the carbon absoxption were 0.01 , but the advantege was not sufficient to make this statement hold for room temperature. For high temperature where the optimum in shifted towards laxger uranium spheres and thicker layers of carbon between the uranium spheres this advantage of carbon becomes greater and A-55 says that it becomes sufficiently freat to raise the multiplication factor above one for a carbon cross section of 0.01.
c. I submit that it is not justified to exiticize A-55 on the grounds that if the value of certain constants used in the paper is replaced by modern values for those constents while the value of other constants used in the paper is left untouched one comes out with entirely wrong results. A-55 uses the constants oniy in certain combinations and the constants were so adjusted to each other as to make those combinations come out right.
3. On p.2i, a formula is given for the critical radius $h$. Using the value of 50 cm given on p. 21 have $\sqrt{\bar{x}^{2}}$ one nay wite,

$$
l=\sqrt{\frac{7500}{\mu q-1}}
$$

This forraula is correct in terms of $\mu_{q}$ and gives $\operatorname{for} \mu \mathrm{q}=1.125, \ell=250 \mathrm{~cm}$ corresponding to about 100 tons of Eraphite.

In view of the general statements made in the paper concerving the inaccuracy of some of the constants involved, and in Viev of the great sensitivity of the formula for $l$ to changes in the maltiplication factor, it must be obvious to anyone who reads A-55 that the statement $l=250 \mathrm{~cm}$ indicates only the approximate size of the proposed chain reacting systen. It is my contention, which I do not ohisenss propose to montion here, that in Pebruary 1940, there were methods available and known to men skilled in the axt of inducing redioactivity by neutrons which permitted 4 to determine the seurate size by making measurements on structures which were smaller than the acouzate size.

December 14, 1959

Dr. Hardin Jones Donner Laboratory Berkeley Campus

## Dear Hardin:

Thanks for the correspondence with Szilard. On the sex ratio business, the U.S. data for many years certainly gave a highly significant partial regression with age of father and a small non-significant one with age of mother, although later less extensive data showed that the regression was most importantly with parity! (The latter data were classified simultaneously for age of mother, of father, and order of birth). I was quite interested in these data, which were obtained by Novitski and worked over by him and by Alan Gimbal. I personally cane to the rather unsatisfactory belief that there probably exist in the U.S. subpopulations with different sex ratios, and that classification by the three variables mentioned above cuts across these subpopulations in such a way that only a small portion of the variability showed up between the age and parity groups. I would not like to have to prove this belie? but it seems to me reasonable in view of the difficulty of making much sense out of the parity correlation, and of the very small variation in those data compared with some reports showing much larger differences in special cases.

Dr. Szilard's ageing theories are certainly interesting and I would think, have a good chance of being essentially valid to a degree-i.e. I doubt if there is any one simple explanation but this could certainly be a partial one. I sm not too happy about the particular way he applies the theory to sex ratio. For example, I. doubt very much whether a mutation in the $\bar{Y}$ chromosome would kill or particularly incapacitate a spermatagonium or prevent it from producing functional sperm. However we do, now, have resson to suppose that a functional sperm lacking both a $Y$ and $X$ chromosome would probably produce a Turner-syndrone sterile female; but it seems to me that the frequency of production of a completely incapacitated $Y$ in spermatagonia is not likely to be very frequent. I also agree with you that the postulated erequency of a lethal mutation in the sex chromosomes of spermatagonia is rather high, so much so that I think it might be difficult to explainethe survival of human populations. In addition it is quite possible that manyarecessive lethal that would kill a zygote or embryo when homozygous or heterozygous might not kill a spermatagonium. Kaplan as I remember was able to induce lethal in germ-line $X$ chromosomes of males (although I think there was some reason to suppose that maybe half of them were cell lethal and therefore not detected) by feeding larne on formaldeky de.

I wonder why Dr. Szilard does not consider the usual theory that mutation of en $X$ chromosome in an oogonium would lead to lethality in male zygotes and would, if recessive, have no effect (usually) in female zygotes? Even if the $X$ were completely incapsoited on s might obtain an X-0 Turner syndrome female but certainly no male.

Perhaps above I did not make clear the improbability of lethal effects in a $Y$ chromosome-since XO individuals survive and seem to be fairly healthy except for being sterile, it seems to me unlikely that lethal mutations would occur frequently, 8) though of course two hit lethals (say dicentrics) or possibly sone other kind of chromosome aberration resulting in possible mechanical difficulties is not at all out of the question.

$$
P S \cdot(\text { aver })
$$



Everett R. Dempster
$P S$
I Showed have menterial the informatein available on cfffining of iriad. Mure mated after the prodictain of new rfermatougler Gom irradesel Hormatayoncie... Hewiry tothen Srar fuirly extemenie data for a concuderable runge of dosaget iontt hoo urvitabsal trand with dosage of very slight effoct, quindand ele dosaje

