THE UNIVERSITY OF CHICAGO chicago 37 - illinois

PROGRAM OF EDUCATION AND RESEARCH
IN PLANNING

Dear Lear:
Two weeks ago yow ashed ne about the costs of extraction. at that time I was able to give yow only very vague figures. Now in the November secure of the Inurady Instrial and Engineering Chemistry an announcement is made of a new piece of equipment which appears to be adapted to the prowases yow were imagining.

This price of equipment can process zoo liters of filtered solution (it was a $1.0 \mathrm{~g} / \mathrm{l}$. volution of Tryptophan as I recall) per hour about 20 hours a day - che remainder of the tine bering devoted to cleaning and maintinarece.
(3) 300 dap par year
\therefore 12,000 kilo litevo/yr.
and $12,00 \mathrm{~kg}$ of tryptophan extracted (overt)

Coato
Lofor $\$ 25 /$ day
for 3 shifto
Solvent hores
$\$ 2-5000$
Power cost, ete -1-200
Amortization on mach $(5 y \mathrm{y})$) ${ }_{2600}$
Amartigation on eevies, $\$ 2-300$ sedg', it.

Total Coat 5/5,100-20,100

Thim the cost of tryptophan in solvent solution (i.e. bofre evaporation or erystallization) is $50.55-.75$ per ll. under the conditiono yow duacrited. The effiiciency of recevery wos taken to be in the vange 97-99\%. For chio receveng that io quite a cheap prece to pay.
G.L. Mever

I20,000 12000 ton
or

$$
\underbrace{\text { in } 2 \text { per } h o m ~} 1 \mathrm{gm} / \mathrm{l}
$$

Dr. Richard Meier
24 Brundretts Road Charton-cum-Hardy Manchester 21, England

Dear Meier:

I am writing to find out whether you would be interested in the following possibility:

As you know, the University has created three institutas which are financed by industrisl sponsors. The industrisl compenies who join as sponsors efther Join one institute or they join all three, and in the latter case, pay a membership fee of $\$ 50,000$ a year. The larger of these companice don't really care to obtain anything in return, but the smaller companies would like to feel that they get something in return, even though they perfectly understand that the institutes cannot accept "projects," I was impressed by the questions asked by the research director of one of these industrial corporations Which, in my opinion, we did not satisfactorily hteldty answer. This man ssked whether we could advise his on the general question whether his laboratory should take up radiometive isotopes as a research tool. Would this be worthwhile, he wanted to know, and could we tell him just what would be involved. He also wondered whether we could be of any assistance to him in enlisting the cooperation of some medical school for clarifying the issue whether or not dolesterol might be responeible for the increased incidence of coronary
attacks. His interest is derived from the fact that the products of his company contain oblesterol. The University was not able to give him an encourging answer on either of these discussions because there is no one in the institutes tho is sufficiently acquainted on the one bend with the Univercity and on the other hand with industriel research problems to be able to put this research director in touch with those mon in our Univeraity who wight be able to give him advice or put hin in touch with men in other Universities who might be able to give advice.

It occurred to ae thet if we had attached to the Developmont Office someone who is sufficiontly interested in the research probleas of our industrial sponsors, (not neceesarily ϕ all of thom, but at least some of them) and at the same tine hed a good acqusintance m th the mon in our own University, such a men could fill an important gap by keeping contact with the research directors of these corporations end put them in touch with those who can give them advice.

Assuaing that your job in the Planning Diviaion does not necessarily require your full time, it occurred to ae that perhepe you might be interested in working part-tine for the Development office in this oapacity.

My suess would be thet your final financial compensetion would bephigher for the part of you timewhicw that you might find this activity both usaful to the University and stimulating to yourself. If you are interested at all, I would suggest to Lom Willians, Vice President in charge of develogment, that he arrange a. meetins with you. Perhaps you could fly here and back to England, taking a lotal of not more then ton deys or a fortnight (I understand that return tickets to London of two weeks duration can bs obtained in thía seamon for something like $\$ 350$), and I think that the University should be w1111ng to invest this smount in order to arrange for an interview.

In order to explore whether what I have in mind is feasible, I spent one and a half days with the Beechnut Company, who are making chewing gum and baby food, and it was wy ingression that in one to three days, one can learn a lot about their problems and thus put oneself in a position in which one can be helpful to them by steering them to the right people. I believe a number of smaller companies would really benefit from contact with such a largo University as the University of Chicago, provided that such contact can in fact be established through the catalytic action of someone who is interested in industrial research problems. Please let me know what you think about this.

Sincerely,

Leo Ezilerd

P.S. Thanks for your letter of November 17. Let se know sometime about English reaction concerning the H-bomb, if you can.

THE UNIVERSITY OF CHICAGO CHICAGO 37 . ILLINOIS

PROGRAM OF EDUCATION AND RESEARCH IN PLANNING 1126 EAST 59 TH STREET

May 6, 1953

Professor Leo Szilard c/o Mr. A. N. Spancel International Latex Corporation Empire State Building New York, New York
\section*{Dear Leo,}

Enclosed is a second draft manuscript, intended eventually for my book on world development, which deals with what I have been able to pick up on the problem of birth control. In casting about for a competent critic and source of new information relevant to the problem, there seemed to be none better than yourself at the moment. Planned Parenthood, I feel sure, remains always too optimistic-probably in order to keep the money rolling in.

The next time you are in town again do call me up. We haven't had a good discussion in a long time. I have been generating a few more radical ideas in the past few months, in addition to sweating out the elaboration of those of some years back for publication. Tried some of them out in Boulder, Colorado, where they seemed not too indigestible for faculty members, students and guests there but they need more testing.

About the end of June we are off for Berkeley by car. They have an interesting pilot plant design there for getting fresh water from sea water which looks like the cheapest proposition yet, and three or four other developments in the San Francisco area worth looking into at the moment. We expect to be back by the second week in September to get things going in the Fall quarter.

Have fun!

Richard L. Meier
RLM: rb

NEW PATTMRNS OF LIVIMO

New foods and new sources of energy would, by themselves, require that a new mode of life be developed. However there are at the samo tima many other important problems requiring solution, and other forces impinging upon the folkways. Some of these are relatad to the endgen of human reproduction; still others to the necessary relocation of people. But above all others is the task of revamping human institations so that the opporturities presented by nev technology can indeed be grasped.

These are largely sooial problans, since they deal primarily with interrolationships between human beings, and do not now invoive materials, or the man-machine interaction. Most people would instinetively exclude the scientist and the technologist in the search for solutions. Yet, in many instances, a social problem can be restated so that it is also a soientilic or an engineering problem which is not only researchable, but soluble: Epidomies of some infectious diseases wore onee primarily such a social problea. If the anelyais is acourate, the ensuing investigations successful, and the rosults pat to use, the diliticulty may disappear, just as most epidemic diseases have disappeared in the past half contury. Another more elaborate example of the restatemont of a problem so that a tachnologist': tools becone useful may be drawn from education certainly as much a social process as any that can be imagined. often nowadays in a changing society it is discovered that some rather complax information must be transferred rapidiy to a large section of the population, but at the moment of orisis oniy a handrul of persons possess this infore metion. If the problem were to be solved by a puraly social process each of the informed persons would teach a handful. These groups would break
up into individusis and they would bring together and teach new groups. This process would continue until the whole prescribed section of the popreLation had been reached. Such a procedure is quite slow and requiree a considerable arount of mamen effort. At the same time, garbling of the massege -- the somealled "rumor effect" - is probable. This could mean that the essential slements were not communicated as originsily intended, but some other messages of an unpredictable natare were commanicated. Prevention of garbling requires great discipline anong the message carriers, and a much more invelved human transmission syatem which incorperates several arrangements for making internal checks and corrections.

The communications technician would take a different tack. He would look for some economicel means for transcribing the lesson into videly understood symbels and then use commanientions devices, such as printed publications, radie, 111 m , or some other medium for conveying these symbols. The transcription would be pretested os a sample audience, so thet one could have some confidence that the correct messege would be conveged. Such a systom requires much less effort, and usually aaves time, but one cannot be completely sure that of its being understood because it is seldom feasible to provide a means for the reeipients to talk back or ask questions for clarification. Mevertheless under most conditions, this second solution would have a markedly higher probability of success. Commnications techmology has been developed over the past fow decades to meet such social needs at lower cost, especialy if the time allowed is short.

Thus the technician oan bring forward "solutions" to this and many other social problems. The real scurce of success, however, is in finding a Pormalation of the problem which permita use of some of the store of seientific knewledge which has aceumalated so rapidiy over the past few
decades. Therefore the economic and social analysis in the pages to follow will not be along classical lines, but certain strands of erguaent will be pieked up and followed solely because they appear to coree into conjunction with sorae hitherto little known espects of science and technology which may now be used for problem-solving.

Faciug the Malthusian Dilema

The number of persons for waich to plan is a fundamental and inescapable factor in world development. At present it is apparent that there is more manpower available than can be successfully mobilized for developing the available resources. Thus we have the phanomenon of widespread underampleyment in areas which are "underdeveloped". There are also more people living in mary of these areas than can be supportad at a decent lovel of living by applying techniques already known. This was demonstrated in Section One. However such a condition of population surplus need not be permanent - since the means for increasing food, onergy, and raw materials production sre already on the horizon.

How many persons should populate the Earth? Ono approach to determining maximum populetion is to complete a calculation begun earlier. It was demonstrated in section two that the teehnology of nicrobiological food production should stretch sunlight and soil rescurces to the point where it is probable that they would be sufficient to feed 50 billions of personse. This would imply virtanliy continuous urbanization atretching over most of the flat portions of the world. A subsequent analysis of the minimua onergy costs of comfortable urban living suggested that they could not fall far below an average of $10^{7} \mathrm{Cal}$. per person per year. If this guantity were to be drawn from sunlight at reasonable efficiencies it turns out that one needs
flet surface roughly the size of the Pacific Ocean to accomodate enerey domands for 50 bililon people. Al2 the other requirements that cen be pat into physicel terms are equaly stapencome, but connot be proven imposeible (the investnent required, for instence, weuld be $10^{2}-10^{3}$ thes that of the V.5. today). It ie barely eredible then that 50 bil1ions can 1ive moderately vell on the planet, and that this number represents a practical saturation Ievel.

At the current rate of growth 18 vorld not take long for the garth to become seturated with humanity. If the present $0.8-1.08$ anmal everall incresse were to be maintained, the elapsed period weuld only be three to fous centuries. This sssumes thet the anval increase could be maintoined In the face of regionsl shortages of materiale and raw materials which now seem overvhelving.

Actually it is not the threat of 50 biluions of persena which is so serlous, bectase poople would probably get used to the iden and Its implicationa within a fev genorations, but the prosent rates at which various populations are groving. The donands of the new persone reçuire virtualy al1 the sevinge the growing sooiety is able to master, if even the minimu wants are to be nat. Moeting thase neede will bring most programs of econoxic ingrovemont to a standstill, with net per eapita inoreases in ineome romaning uncertain. There are 4 ikely to be many counterparts to the current Five Ioar Plan for India which ouly claing that condithoas will be no worse at the end of the peried than they were in tho begiming.

The present werld populetion increase of $20-25$ millions per year is fantastically exponsive. In order to feed and elothe them we have to clam new land for erops, or Luprove the existing fields, and accelerate the depletion of rescurces. The capital required each year just to maintain these
people at the subsistence levol is estimated at close to $\$ 10$ billions per year. Latar it will be possible to judge what it would cost to maintain them at a minimum adoquate standard of comfort and convenienco, but it is arready apparent that this sum is 13 kely to excsed the total anmal investaent in the world today.

What these rough msasures emphasize is that world development cannot proceed in an orderly fashion unlese there is some social control over population increase. There are places in the world where this has occurred in recent times. Some societies have arrived at a population equilibrium with Low birth rate and low death rate which has been maintained over several decades. Most of these are in Nortawastern Lurope, or of that stock, so that the records of the social processes by which this social stability came about have beon acoessible to researohers. From the investigations it is possible to draw some generel conclusions about how they achieved this condition and have been able to continue it, despite nuch local opposition steming from religion and nationalism.

The improvement of public health and safety in these countries during the 29th contury was accompanied by an acceleration of trade and annufacturing. Under these ofrcumstanees the population grev steadily, due meiniy to a decline in the death rate while the birth rate remainad virtualiy constant. The excess population, forced to migrate from overcrowded villages, went to the city or to now territory overseas. In the city new opportunities existad. The age of marriage, for many logical reasons, was postponed. Also children were an inconvenionce in the eities of that poriod, so primitive mathode of contraception were brought into widespread use. Shortly after a social class became predominately litarate a gradual decrease in its birth rate was observable. This was even true of the agricultaral aseas which were
brought into steady comsercial contact wi th the cities. Another important factor tended to be the increasing independence, within the fandy unit, of the wife. It appears that wives have, alnost everywhere in the world, quite consistentiy preferred fewer children than their husbands. Once they achieved literacy, and ware periaitted to hold down a reaponsible job, childbearing was often postponed. The depression of the '30's, with its loss of income and threat to socisl statue, brought still more postponemant of marriage and more carefully planed families.

Thus, in all cases where the new population stabilization was achieved, it was required that there be
knowladge of some means of contraception
at least one means available to oach inoone level.
the mothod was used diligently
a high level of litaracy
opportunity existed for improving comfort
a decline in the authority of the male in the fandy
an urban, or urbanized, enviroment
These are circumstances which can only exist if economic development has already proceeded long way in that soclety. The world does not yet have an instance where a rural people with low lovels of 11 taracy, and with cone sumption at subsistance standards, has voluntarily taken up birth control. and made a success of 16 .

The mass populations in Asia have expanded their villages to the saturation point without generating sinultaneously a wave of education and sconomic opportunity in the ostias with the vitality of the moveraents in Nestern kurope. One suspects that this was because they started later, the transition was more rapid, and the political dominance of the West delayed

Indigenous responses. However, whatever the reasons, these soeieties are now in a position where, in ordar for investment and resource development to accelerato, the drain on resources caused by pepulation growth mast be markediy reduced. Thus we are faced with a presequisite for development which has no relevant precedenty unlike Europeans, these people need birth centrol before migration, before $1 i t e r a c y$, and before ocenoaic opportanity oo while thoy are still absorbed in the tradition-directed routinas of village iffe. China, India, Paldstan, Indonesia, Egypt and the others cannot follow in the Iootsteps of Jepan because the latter' population has already exceeded the capacity of the local soils, fisheries, and minos by at least 25%. The rest of the world does not have that mach surplus to spare.

It appears, from this lime of argament, that the most useful research which would coatribute to the solution of the population problea relates to the functioning of the family in various village oultures. Is there some simple inexpensive means whereby both the concept and practise of birth control can be introduced into such an impertarbable ritual-oriented ingtitac tion as the rural fandy?

Soeiologists and demegraphers have begua such thades (gacuber, 1951) in recent jears. They find that the tro or three child family is an ideal held by most women, and often by the men as well. These views are held privately, often in contradiction to the estabilahed mores of the culture, but they are operative only as wishes which exist without mode of fulfiliment. By the time their families are complete twice this number are likely to suxvive; under such conditions the overall numbers will incresse by more than 28 per annum. Investigators have found that idea of birth control is almost everywhere present, oven in the most primitive soeieties. It may take the form of an herb concoetion, charm, or a vaginal plug, or lead to abortion and inilscat.
and Infanticide. Nome of those means is eufficiontiy effoctive in agricultural comanitiles, indeed thay are soldom applied at all until the size of the family has become impossible to support. Thas the scattored evidence available suggeste that there is hope of fatroducing a truly worthwhile contracestive inte the sural fandiy, once it became avallable and comveniont.

Among denographers and sociologisto faced with this problen thore has bsen some wiohful speculation too. The idoal solution, they felt, was a smell pill which produced temporary storility in the female. It must be not-tozic, have no undesirable side offecte, and have only trifling cost. It must not 20 se 1 is potoncy through age, heat, hamidity, or exposure to adr. In other worde, it should be as ajmple in its applieation as taking aspirin. Such a drug, mest of them feel confident, could be rather quiekiy (that 1s, over the span of one generation) introduced into rural villages, if it wore the object of a earefrully planned campeign.

Surprisingly snough, after years of neglect, the minor leads auggesting the speoifie chemieal and physiological nature of auch a drug are now being taken up. In the letter half of 1952 two preliminary reports on such possibi2ities were pubilshed. The first of these was an horb used by shoshone women (Lithospormam rudarale -- but the officinele species also has this activity), comoniy called gromsill. An aqueous infusion of the carefully dried harb appeared to stop ovalation in mice with no other $i 11$ effects (wiesner and Tudkin, 1952). Very 1 inited experimente upon humans suggest thet there are no lmmediate side resetions or toxieities to deal with, but the dosage required (areund 20 g . of dried herb per dey) is toe large to be cconomical. Somehow the delleate active ingredient must be isolated, identified, synergised, and produced by some more efficient means. Larger scele long term tostiag is necessary, and detailed cost estimates must be prepared, bofore
the drug will be ready for introduction. With ordinary 2uck and 1iberal financing this prodedure may take five to ifitsen jears.

Shortly after gromwell was announced, Slave (2952) reported a materlal which ssemed to be much flather advanced. Phosphorylated hesperidin is a compound with has hitherto bean used in small dosages to reinforce the small blood vessels of aviators and as an aid in rocovering from rediation sickness, so 1ts toxidities are well understood and a mattor of record. In largo dosages ($0.3-.4 \mathrm{~g}$. per day) Slave claimed that it was completely offective as an oral contreceptive in the case of 300 couples with a total of 327 exposed woman years. Ho also pointed out an advantage to oral contraceptives eapable of inducing temporary starility which demographors had not droamed of ..." A comparative study was made of the incidence of celtus befere and during thorapy. On guestioning the fomale (of the couple), one significant fact was pevealed. Nany of those who had been using mochanical dovices showed a definite Increase in total orgasm when the oral tharapy was used. From this observation $1 t$ may be deduced that mechanical methods had produced a state of anxiety causing varying degrees of frigidity, which resulted in - loss of total orgasm. A significant inorease in the frequency of coitus was found in this group. Interestingly enough it was found that the frecuency pattern now practised by these couplas now correspond essentially to the erequency pattern practiced in the oarly moatho of their marriage." Since phosphorylated hesparidin can be made from hesperidin, a chenical compound found in fair concentrations in practically all oitrus fruits and quite easily isolated from wasto orange pulp and peel, by what should oventueliy be a simple chanical proeess, the cost of mamufacture should be low. It would seem that here, in the first real try, the goals set for the oral contraceptive had not oniy been reached but surpassed! However the initial attempts
at verifying siove's ciaims soen to throw it open to guestion. Chang and pincus (1953) tested the presumed mode of sction of the drug and found that It did not hold for rabbits. From the laboratories of the manufaeturers of phosphorylated hesperidin it is reported that varicus batches of the product yield inconsistent, even negative, recults (Martin, 1953). It is sppareat already that it will take some years of active laboratory research and possibly extensive fleld tests to eettle the controversies which have already.

The first hint of the possible exiatonce of a product which acts exclue sively upon males is even more recent. It has been found thet furacin, a relatively simple chemical compeund used in salves for combetting superficial infections, will cause temporary sterility in rats. Since the drug seens to be guite specific in the inhibition of the growth of sperm, there is an excellent chance that it will have similar offects in humane. However large overdoses seem to be toxic, thus making self-medication possibly harmiul, so it appears that furacin itself may not be the solution, but some relatod compound may serve. Development in the genoral direction of sterility pill for fhales now eppears much more promising then ever before, but it too will take tine.

To this potential battery of pills aight be added one or two more whioh would absolutely assure that the desired size of family was actually obtained, and unwanted children did not arrive on the scene. Drugs for bringing sbout eanly abortioas are already fairly well-known. Previous objections of the medical profession to the use of abortion -- based upon the possibility of Infection - have recently been shown to be largely without found tion (\%ietse, 2951). Abortion is safer than ohilabirth, both in priaitive and developed areas. In Japan and Rusia, and even in some Christian societios
where it would on the surface appear ideologically reprohensible, ebortion has been and my easily remain a preforred method of fanily 1 matation, at least as a line of secondary defense against surplus progeny. It is certainly no more drastic than permanent sterilization of the wife, which has become a very popular method in puerto Rico.

The perfection of these drugs and the methods of their manufactare is only the first atep toward achieviag the desired control over population growth. Thair introduction into a relatively agrarian society would reguire a program much more intensive and ingenious than has been applied to public health activities in these same areas. Indeed it secms logical that it be assigned to the agencies responsible for public health as a primary responsibility. Thus those professional workers that interiere with the equilibrium of births and deaths are ancouraged to develop a professional skill in combining alternative techniques of life-saving and Hfeoprevention in such a fashion that only moderate population disturbances occur in the course of transition, rather than the three-fold to eight-fold expansions which have hitharto been experienced.

In order to acquire this knowledge and skill sone rather large scale social experiments will have to be carried out. Initially these expariments would be rather simple, and would probably be organized along the lines set forth by Ogburn (1953) for introducing the rhy than method of birth control. As the early infornation is accumulated it will be apparent that the a succossful introduction will need to be either more rapid, or less domanding of scarce nan-power and meney -- guite possibly all of these at onee. Then still more elaborate experimente wi.11 have to be designed and conducted which will perhaps bring the methods of disseminating effective information about birth control up to the standards required for population stabilization

In backward rural areas. This process of experimentation must be repeatod for anch culture desiring to ambark upon a program of econemic improvemont, just as each public haalth progran has to be adopted to the blologic anvironmont and caltaral pattern of the region belng covered.

On the whole the outleok for birth control is more cloudy and uncestatn than any other olement of sclance and technology which eppeare to be necessary to improving Levela of 1iving. It deserves much more attention than is being accerded it in the allocation of funds for researeh. The need for seientific and clinical investigations on the subject is repidly coning to be understood, but it is seldom realised that the social researches mat be on a mueh larger and more expensive scele than these falling withia the scope of biblog and medicine.

Reforences

P. K. Hatt, Ad. Norld Population and Futare Resources, 2952 , Averican Book Co., Wew Yoria.
I. B. Taeuber, "Fandiy, Migration, and yndustrialiastion in Japan, Anerican Sociological Rev. 16, 149 (1951) ; "Approachos to the Problems of High Fertility in Tgrarian Sooieties, Hilbank Nomorial Fund, 1952, 172
C. Tietse, "Theroputic abortions in Yeu York Cityo Amer. J. of Obetot. and Grase. 60,146 (1950
B. Ryan, "Institational Fectors in Sinhalese Pertility," Milbank Mom. Fund Quart. 30, 359 (1953)
 Bhy thm Mothod of Centrreception Ferti11ty \& Sterility 2, H4L (1951)
B. F. Sieve, "A Hew Anti-Fortill ty Factor, " Seience 216, 373 (1952)
M. C. Chang and O. Pineus, \#Does Fhosphoryleted Hesperidin Affeet Fertility? saiene 117, 274 (1953)
Q. J. Martin, "Phosphory2ated Iesperidin," Scionee 217, 363 (1953)
W. O. Wolson and E. Steinberger, Mgifeots of Hitrefuran Compounds on the testis of the Rat, Ped. Proc. Biology 12, 103 (March 1953)
W. T. Ogburn, MA Design for Some Experiments in the Limitation of Population Growth in India," ECon. Dev. * Cult. Change 5, 376 (1953)

