REPORT

on the

CARROIL RESERVOIR

and
SYSTEM OF YORKS UNDER THE SAME MADE BY
H. CIAY RBLIOGG, CONSULTING ENGINEER.
\qquad

The Water Supply is primarily the water shed of the San Dieguito River, which is designated on account of the differont basins through which it passes, as the San Diegrito at the San Dieguito Ranch and the Bernardo in "Carroll Reservoir Water Shed", and the Santa Isabel on its upper reaches above the Pamo Dam, which is the dividing factor betweon tho Bernardo Basin and the Pamo Reservoir, and the vater supply of the Carroll Reservoir is assumed to be the 196 square miles of vater shed tributary to it and the Bernardo Basin plus whatever water may be allowed to pass over the crest of the Pamo Dam.

The average rainfall on this water shed is 1.1 ' in depth per annum. By estimating this in acre feet per second and assuming the government statistics to be correct for the percentage, this would Iurnish an average of 27,600 acre feet per annum. Checking this by comparison with rable 新 of the water supply, which is compiled for a period of years extending from 1905-06 to 1914-15, an average period of ten years, we get 26,570 acre feet, which is a very close cieck, being about one-half of what I term a complete cycle of seasons for Southern Califormia; therefore, I have concluded that it is safe to assume that the average supply for storage is that amount with the surplus from Pamo Dam added which Table $\frac{H}{\bar{\omega}} \overline{3}$ shows to be about 50% of the above quantity for one-half the period of ten jears. This would be a very valuable addition with a higher dam which would conserve about 60% of this increment from the waste over the Pamo Dam.

For a more elaborate discussion of examination into this
subject you are referred to Table \#2 of run-off at Bernardo Bridge at Carroll dam, and Table \#3 showing the water supply in aore feet, and Table \#t of the use and waste at the Carroll Reservoir; and for a more extensive study you are referred to Appendix A of this report.

Another foature which adds an adaitional supply to the Carroll Reservoir is the 6600 acre feet, which by mutual agreement is to be delivered from the Pamo Reservoir to the San Pasqual irrigators. This water is to be delivered in two irrigating ditches irrigating about 1200 acres of land. About 40\% of this water percolates into the Carroll Reservoir adding 2460 acre feet to its storage as a parmanent addition.

If in the earlier part of the season additional waters were used upon these lands it would have a tendency to further increase the storage supply into the Carroll Reservoir in the ditier periods.

Additional water can also be developed by pumping water
from the gravel beds around the upper rim of the Bernardo Basin near the flood line of the reservoir. This increment can be made to give a permanent additional water supply for the drier periods for what is known as the dry seasons, of at least 300°.

For detailed study of this situation you are referred to Appendix A, and the Tables hereinbefore mentioned as it is from all of these investigations that I have concluded that the available water supply after deducting for seepage and evaporation at the dam would be $2000^{\prime \prime}$ for a period of 200 days. This woula be dependable with tho additions of the waters winch could be pumped from the gravels heretofore referred to excepting for a possibility which has occurred during the last seven years of the twenty-
one year cycle referred to in Appendix A when all irrigating sygtems of Southern Califomia were compelled to reduce their supply from one to three years during this oycle. In figuring the available water supply it will be necessary to figure on a deduction Ior evaporation and seepage in the canals and a loss in the distribution. This has been found by actual experionce to be firom 6 to 12% in the canal systems, and from 15 to 25% in deliveries; therefore, I wouid consider that the safe available supply for sale atld use would be 1400 liners Inches, to whioh might be addedt the amount of water that can be pumped from the wells in the basin of the San Dieguito on the San Dieguito Ranch, which can be safely estimated at $250^{\prime \prime}$ in addition to the reservations made by the San Dieguito Ranch for their bottom lands, making a total winen fully developed, of 1650" of water, for which water rizits could be sold.

DUTYOFWATER.

A careful study of this whole question has been made, as set forth as Appendix B, accompanying this report.

After considering all of the data at hand and the arguments presented by different authorities, and inaluding my personal observations, I have concluded that $I^{\prime \prime}$ to 7 acres for all of the lands which I have classed as in in comparison with all of the lands in the several tracts under a gravity system, is the safest estimate of the quantity required, and the system of works hes been planned to fumish a sufficient capaoity for all of the lands that can be irrigated by gravity water. If in the development of the several tracts of land it is found desirable to trrigate a larger amount of land_with the same amount of water, the
opportunity oan at once be furnished for doing so by pumping water upon the landr which adjoin and lie above the main trunk Iines or distributaries.

SYSTEMOFWORKS.

1st. DAM FOR CARROLI RESERVOIP

This has been carefully treated under Divisions A, B and C of Appendix C, to which you are referred for a consideration of the different divisions of the sub ject.

Two types of dam have been taken under consideration.
One is the MUIIIPLE ARCH Type Design, by lir. J. S. Eastwood, and the other the SINGLE ARCH design by lir. I. Jorgensen.

Both of these plans have been carefully considered together with a study of the Dam Site with reference to the advantages that might be obtained by the construction of either class of dam.

A structure which would be entirely satisfactory can be made with either plan as the conditions are favorable for both

The main things to be considered are both carefully made in the design of either dem, which is as follows:
Ist. A careful uniting of the structure of the underlying bed rock. 2nd. A large and elaborate Spillway sufficient to pass in safety the maximum floods.

3rd. A proper construction of large sluice ways for clearing the reservoir.

The estimates of cost in my opinion provide a sufficient sum to meet these special requirements. In my judgment, one of the most important features is the provision for elaborate sluiceways of the proper dimensions to remove the immense amount
of debris winich accumpates in torrential floods in streams of this character. This feature has beon sadly overlooked in the construction of all the modern reservoirs in Southern California, as has also a proper provision for passing the flood waters over the dam.

Both of these designs speaifically provide for an adequate spillway, and I would recommend that careful provision be mede for the sluice ways.

The additional items of cost under this heqding in the Jorgensen Dam provide $10,000.00$ for these outlet sluices. This is independent of the cost for the canal intake.

Wr. Bastwood's type oi dam is peculiarly adapted for the economical construction of a sluicoway, and this can be constructed for the sum he has set aside for that purpose.

In the single Arch type dam suggested by Mr. Jorgensen it would be necessary to enlerge the cross section of the dam to provide for an increase in haight, I have decided that an increase in keight of at least $20^{\prime \prime}$ should be provided for and have therefore enlsrged the section of his dam so that it can be raised the additionsl 20^{\prime} without any addition to the atruature as built. This will increase the cost of construction up to the 350^{\prime} contour, $\$ 44,000.00$, and would make the cost of his dam \$315,000.00.

In the Eastwood type of dam it will only be necessary to increase the depth of the girders on the extericr slope of the dam to raise the dam 20^{\prime} above the 315' contour, and as I have stated in the appendix C, this can be done at the time it is proposed to raise the dam, at a cost of about $\$ 30,000.00$, and -6-
the interest on the $\% 30,000.00$ op investment can be saved until the time has arrived to raise the dam. This vill maje the present cost of the Eastwood type of dam, \$280,000.00.

I would recommend that in the providing of the funds nooessary for reservoir construction, $\$ 315,000.00$ be set aside for that purpose.

For a further discussion of the subject, see Appendiz C of this report and the tablea showing capacity of reservoir and Summary of oost, and for the location of the reservoir, see Kap Frinibit A; and for location and elevation of Dam Sites, see Exhibits B and C, which are contour maps of the Dam Site and Spillway; and Fioibit D which is a Profile of Dam Site C; and for a general idea of the comparative elevations of the water level at reservoir, the intake of the canal and the relative elevation of the high and Iow water levels in San Dieguito Reservoir and outlet of San Dieguito Reservoir, see Eshibit E.

Also twhibit A, Jones Report showing the relative capacities for each 10^{\prime} in height of Carroll Ressrvoir.

This extends from the Carroll Reservoir to the San Dieguito

DAISITE C --- CARROL工 RESERVOIR.
Survey October 1916

DA:SIIE A is 2200 feet up stream from DANSITE C.

Ranch, a distance of $26,100^{\prime}$, and has a grade of .5 per 1000^{\prime}. Exhibit If, graphically illustrates the grade line of this canal and it s rolation to the two reservoirs.

The Canal will run along the Hortherily side of the San Dieguito River and will run for a considerable portion along a steep side hill, which in places has a slope of only about one-half to one. It is proposed to cut a bench into the solid formation and make a flat bottom conduit; that is, a concrete pipe reinforced at the bottom with additional conerote so as to form a flat surface on the bottom a little more than tine wiath of the pice. This will form a solid structure. The benching on the upper side will be surficient so that the slope of the hill vili extend over the top oin the pipe. This concrete pipe will be $48^{\prime \prime}$ in diameter and across the ravines or draws where it is not practical to follow the contour of the hill, reinforced concrote pipe will be used. On the section where the canal reaches the fesa lands it will be an open canal limed with concrete, excepting for a section of l800' where it will be necessary to put in an inverted syphon. This will be 52 : in diameter and 1800' in lengti. The lined soction of canal will have an average width of 4^{1} and a depth of 5^{1}.

The Appendix D for the fain Canal together with the Tables and Sumnary attached thereto give the dotails and oost of said caral, the total construction cost boing

Overhead and Administration Expense 18% 24,361.00
Waking the tatal cost of the Canal
$94,147.00$

Nain Canal.

SAN DIEGUITO RESERVOIR

This Reservoir serves the purpose of an equalizer of the flow of the main distributanhes and also has some storage capaeity.

A copy of rwhibit B, Jones Report hereto attachod shows the depth, elevation, ares and capscity in acre feot of this reservoir

I have planned to build this dam of earth as desoribed in the Summary of cost hereto attached, the cost of construction being

鱼14,698.20.
Fxhibit II shows the plan of the Reservoir and Frhibit X shove the Profile of tine Dan site.

$$
\text { II } A \text { I: DISTRIBUTARIES }
$$

Theso aro indicated as follows:
UPPER POMAION OA THE SAII DIEGUITO RANGH, Ezllibit I IOWER PORTION, Exhibit K COMPOUR MSP, Showing the lower Portion Bxhibit IS COITPUR MAP, showing Main Lines and Digericts in Irrigation System, Fxhibit 0 which is a plat showing the main lines and districts irrigated. This map made on a smali scale shows the looation of the canals and their numbers; also the portion of the districts in which the water is to be used, and the number of acres in each district. The acreages which are marked rith only the number 0 of acres are the lands irrigated by Gravity and the acreages which are marked with a P appended, thereto, indicate the lands that are above the gravity line to which water would have to be pumped.

The additional lands irrigated are on distributing lines running from San Dieguito Reservoir to the lands irrigated.

The Canals are numbered $\mathbb{Z}, 2,2$ and 4 .
The dosignation and capacity of line and the number of acres dopendent upon thom are indicated Alphabetically as follows:

The Summary showing that 1382 Ifiners Inches of water

UPPER SAN DIEGUITO RESERVOTR AREA
AIID
CAPACITY TABLE

Depth	Contour	Area	Capacity	
			Acre Feet	:Million Galls
0	200	0	0	$\vdots 0$
5	205	. 2	. 5	0.2
				0.2
10	210	1.6	5.0	1.6
15	215	4.3	20.0	6.5
				: 6.
20	220	8.2	51.0	16.6
25	225	14.1	107.0	34.9
				: 6.0
30	230	24.1	202. 5	66.0
35	235	38.2	358.5	116.8
				116.8
40	240	53.2	587.0	191.3
45	245	72.2	900.5	293.4
		72.2	900.5	293.4
50	250	90.0	1,306.0	425.6

Volcan Land : Water Company.
Acconpanying Kap $652 \mathrm{~A}-\mathrm{m} 2$

The estimate for this Dam is for an Earth Dam with a Ccre Wall running down to bed roak in the center.
this Core Wall up to a height of 25^{\prime} to be of concrete 4^{\prime} in thickness, ena the puddle trench will be 6^{\prime} in thickness.

An Outlot Pipe will be placed on each side of the Dam and is included in the estimate, ena a spillway will be placed on the Ilorth side of the Dam 10^{\prime} in width and lined with concrete.

The following estimate includes all tinese items.

CORE WALI (Excavation for Conarete 87.4 Yas.)........ (Concrete	$\begin{array}{r} 43.00 \\ 3.904 .00 \end{array}$
PUDDLE TRENCH Exaavation	100.00
" in "	115.00
KAIN FILI39,930 yãs at $25 ¢$	9982.00
2 OUTIEPT PIPES, N. SIDE \& S. SIDE	1143.70
WEIR BOX \& CONSECTIONS	578.00
WINDLASS \& PLAF VALVES	780.00
	252.50
Total	14698.20

will be required on gravity lands and for domestic water, is indicated in the above Trables.

The foIlowing Tables sive the number or the MAINS, GReDE, CAPACITY, LENGMH, SIZE OF PIPE, KIHD OF PIPE, and the TOTAL COST of each Line.

In the discussion under Appendix G for the "Classiflastion of Eands", I heve decided not to recommend Iine ${ }^{\text {IN }}$ described as Green Valley Lines.

Whe following Majie of Comparison of Distributanies shows that the ミands in jistrict $\frac{4}{16}$ can be supplied vith vater por $\ddagger 55,389.00$ less tian they could by the construction of tiie Green Valley Iine, and if in the futwre the development of the wator syratem or the cesire of the owners of the lands on the Greon Vajley Innemke it an inaucement io construch sucn line, it can tinenl bo taken up as in that event the additional mater provided for in Iine fir could be utilizeà by pumping to highor elevations; thereloro,
 the addition to $\overline{7}$ of the necessary lines to irrigate District 部8.

No. 1-A is capacity of Iine and Acregge dependent on it. No. 2-B is ditto from Junction to Azuna Division.

No. 2-C is ditto from Azuna Division to W. Iine S.D.Ranch
No. 2-D W Line S. D. Ranch to Del Nar Reservoir.
No. 2-F is ditto Del Mar Reservoir to Junction with Coast Division.

No. 2-G is Junction with Coast Division to Junction with Iine No. 3.

No. 2-E is Del liar Reservoir to Del liar.
No. 3 - B from Junction of Line No. $2 \& 3$ vith 1 to West Line of San Diegutto Panch.

No. 3-C from West Line S. D. Ro to Junction at Coast with Line No. 2.

No. 3-D from Junction of Lines $2 \& 3$ along Coast Jine to IN. Line of Jones District No. 6.

-2-

No. $3-\mathrm{E}$
From N. Line of Jones District No. 6 to N Iine of Jones District No. 7 (Batiquitos Lagoon). "Hains" refer to the main distributing lines through the several tracts. The lateral lines for the delivery of water is not estimated or described.

GRAVITY TAMDS HOT UHDER PRIHCIPAS MAIHS.

SUMMARY

Provided on Principal liains
667 II. I.
District ITo. 8
366 II. I.
Outside of Principal mains
Total of Gravity Water
Domestic water for lands along coast
Total water used

1285 Mr .1.
100 1..I.
1382 II.I

IINES I \& 3 FIGURED WITHOUT $366^{\prime \prime} \mathrm{M}$. I. FOR DISTRICT HO. 8 .

A.

Recommended Construction. Distributaries.
istrict No. 8
II ${ }^{1003}{ }^{\text {n }}$
" ${ }^{\text {n }} 789^{\text {n }}$ to $366^{\text {n }}$
21,650.00 63,005.00
District No. 3 " $366^{\prime \prime}$ to 125" \qquad

Comparison of Distributaries

Innes 1 \& 3 with Distriat Ho. 8

$$
\begin{aligned}
& \text { Ho. I Cepacity }{ }^{1003^{n}} \\
& \text { " } 3 \text { n } \\
& \text { to Junction with } \text { to } 30.4 \\
& \text { line }
\end{aligned}
$$

$\$ 21,650.00$
$135,404.00$

Lines 1 \& 3 without District $\bar{T} 0$. 8 .

No. 1. Capacity 637"	" $423^{\prime \prime}$ to 100"	$15,370.00$	
Mo. 3			
to Junution with No. 4			
line		$87,055.00$	$102,425.00$

Fxtra Cost to serve Distilct.
Ho. 8 by means of lines 1 and 3

Jine No. 4. Green Valley Jine.
Fran San Dieguito Reservoir to Junctio on with Iine No. 3 .
$110,018.00$
Extra cost to serve Distric Ho. 8 by lines Ho. 1 and 3

54,629.00

Excess of Green Velley Line
$\$ 55,389.00$

SUMMARY.

 Summary of Cost.

Main canal capaoity 1550
Miners inches 5 miles long
San Dieguito Reservoir
Main Distributaries

$$
\begin{aligned}
& \text { No. } 1 \\
& \text { No. } \\
& \text { No. }
\end{aligned}
$$

Line in District No. 8

Awxilliary Reservoirs

Total all Structures, excepting Carroll Dam

Recommended Capital Provisions.
Carroll Dam
All other Structures
Total

411,335

The above Summary of cost includes everything but the Pumping Plants and Force Wains to pump the $250^{\prime \prime}$ of water into the system of porks.

I have not made any revision of my former estimates, but as they were carefully made at the time I investigated the underground waters of the San Dieguito Ranch and the conditions of water supply c srefally studied, I think it is safe to make the same recomendations for the development of the water that I made at that time, which in effect is that a plant be built about 9000 feet above the present plant and a pipe line built down to the South-mest corner of the Acuna place whefe the water from two plants could become interchangeable, and a booster plant be put in at that place to elevate the water required by the ratual Water Company to their system of works, and that this joint system be paid for by the Santa Fe R. R. Company and the lutual Water Company; that is, the portion in which they are both equally interested, the improvement of the old plant and the new plant and connecting pipe line be paid for jointly, and the necessary booster plant be paiafor by the 品utual Water Company.

The following is the estimate of cost for the work completed as a whole after deducting the amount to be paid by the Santa Fe Ranch for their part of the construction and including the booster plant and force main is,
$\$ 15000.00$
The construction of a separate system of works would cost equally as mach and would not prove as satiafiactory.

With this addition the total cost of the aystem of works as contemplated by the Mrutual Company will be, $\$ 746000.00$

I believe this report covers all the points which have been under discussion.

This Iast subject is one upon which many of you are comparatively well posted.

In conclusion, will say that in the discussion of any oif the difierent points on divisions of the report, I refer you to the appendioes for more elaborate discussion.

In regard to the looation in detail of the Distributaries they may havo to be modified in àtail as they are not located Prom actual surveys upon the ground and the estimates for the same do not include the smaller laterals for delivering the water upon the different subdivisions of the lend.

Respectfully submitted,
H. Clay Kollogg

Civil and Hydraulic Fngineer.
A. CARROTIL RESERVOIR.
B. GARROII DAN SITE COMOUR ZAR.
C. GARROLİ SPILLMAY COITYOUR MAP.
3. GARBOLL DAM PRORIJE.
s. IMTATURE PRORILE.
f. WAII CAMAL IINE.
G. jain catal profiles.
E. SAK DIEGUTTO RESTRVOIR.
K. SAIF DIEGUITO PROITITE OF DAM.
i. SAI dibguito ranch map showing main distribuming ilnes. UPFER PORTION.
in. COAST WAP. SHOWILG HAIN DISTRIEURING LIHIS. LOWER PORTION,
If. PLAT SHOWING ILAIN FIIRSS AND DISTRICIS IRRICATED.
0. Confour hap showing the main lines and bistriots in IRRIGATION SYSTEM.

Digest of Mr. Post's Report to W. E. Hodges, Oct. 13,1916, as to the available water supply of Carroll Reservoir.

I have checked up the computation of the water shed from the contour maps and Government roport. From my computations on the contour maps and Government reports, I make the area 186 sq . miles, but Ir. Post's more detailed information will possibly add the other ten miles which he estimates, making the water sheds 196 sq. miles for the Carroll Reservoir, independent of any surface flow from the Pamo Dam.

In regard to the cycle of years between high and low periods of water supply, vill take that up under a separate head, for the purpose of determining by comparison the r atio between the same.

ESCONDIDO CREFK: This oreek is in itself a local water shed, reaching about to rim of the San Luis Rey River, a distance of about 14 miles above Escondido, and the San Luis Rey River runs in behind said oreek. In addition to this the water shed is out off by the Escondido Reservoir, which is more than ample to store the waters from the water shed above the dam during ordinary periods of rainfall, therefore, I do not consider the residue of the water shed which 1 lr. Post estimates at 48 sa. miles, will justify the construction of the reservoir.

On the future increase of heights of Carroll Dam, to the heights of 140 ft. This is an economic feature that should be considered as a reinforcement to future requirements when the lands are developed.

In regard to the development of water from pumping in the gravel beds of the Bernardo basin. I took up the investigation of this besin very thoroughly, in my report of the underground waters of the San Dieguito river, I formed the conclusion at that time that there are no subterranean waters passing through the bed of the river between the Bernardo basin and the Sma -1-
the San Dieguito basin and this opinion is verified by the investigations for the dam site of the carroll Reservoir, therefore, it is safe to assume that the stored waters in the gravels of the Bernardo basin which would be available for pumping. The San Pasqual valley lies in the upper end of the Bernardo basin, where a settlement has appropriated the surface flow of the stream, and irrigate about twelve hundred acres by two ditches running along each side of the valley. The Government reports indioate that the water is running all the year around in the canyon above this valley and it is stipulated by the parties interested, that in case the Pamo Dam in constructed, the amount delivered to the San Pasqual irrigators shall be 6600 acre ft. during irrigating season. This would be more of an advantage to carroll Reservoir than a detriment, because 40% would be returned to the reservoir basin as percolating water, adding 2460 acred ft. to the storage in the reservoir, as a permanentaddition. If additional water is used in these ditches, it will have a beneficial effect in times of low water, by joining the waters of the reservoir at the lower levels or inoreasing the pumping supply.

Citrus orchards are being planted in portions of the Escondido district, their water supply being taken from the water shed of the San Luis Rey River and the return water will be into the Carroll Reservoir. This is variously estimated at from 27% to 35% of the water used in soils of this class. In time tisis will prove a valuable increment and will reinforce the low water supply in dry periods when it is most required.

In seasons like 1912-13 the river is dry for two or three months in the summer, this is led to the boring of wells and the construction of pumping plents at several points in the valley. These wells show that at the upper end the debris cone has a depth of 96 feet to bed rock and at the lower end of the valley they are from 40 feet to 25 feet to bed rock, immediately above the high water line. In 1913 they were probably pumping all together 200 miners inches of water, these developments indicate that there is quite a large area of gravel basin round the upper border of the carroll reservoir and the indications are that this debris cone has been deposited by the river and side canyons upon the original floor of the basin and I believe that a flow of 300 inches of vater could be developed by a system of wells around the upper edge of the reservoir, these wells could be located near enough to the high water line to be above the danger of flooding and the water could be economically piped down through the reservoir to the canal intake at the dam. In my opinion this should be considered as an emergency supply for the low cyole of years, which has been mentioned by Mr. Post. It is a well known fact by those who have been familiar with the conditions here in Southern California for a period of more than twenty years that there times when the water supply cannot be maintained at the ordinary standard fixed for the mean supply. All of the water systems have felt this deficiency. During the last cycle of low water, pumping plants were placed in the bed of the Bear Valley reservoir, which is recognized as the most dependable supply in Southern California, and Redlands, which receives water from this system, had to build pumping plants in the Yuoaipe val ley to sustain the orchards during this periods. A number of illustrations could be given, but this illustrates the point that all possible care must
fact that with the best system a shortage can be expeated by the irrigators at this time.

CYCIE Or YEARS. The best historical record that I can obtain shows the complete cycle to be from 21 to 22 years, the best natural barometer determining the cycle is Lake Elsinore. In 1883 I surveyed out the town and colony of Elsinore. At the time the lake was practioally dry, there jeing only about 1200 acres of land covered with water, out of the 6000 acres the maximum depth being 3-9/10 feet. Juan Machado, a Spaniard over 60 years old whose family originally owned the lake had lived there all his life and informed me that in 1839-40 the lake vas dry and also in 1859-61 it was dry and grass was growing over the major portion of it, and that it. was filled by a flood in 1841 and 1862, it was also filled by the flood of 1884. Following up the study more closely of this cycle, from my individual observation dating from 1868, I find the lake also over-flows a second time about seven years after the first over-flow and also by keeping a record of the seasons by the growth of orops, the rainfall and the shortage of water in irrigation system, I find that each 21 jears is approximately divided into three divisions and that these divisions run about as $f 0 l l o w s$, taking the nomenclature of the farmer, the first seven years run two years above the normal and one about normal, with the seventh year below normal. The second seven years about one above normal and one below, the fhird seven years one above nomal and two below with the last two years dry. Owing to disturbing elements, namely the irrigation of the Perris valley and Hemet system and the construction of the Hemet reservoir, the last oyale in Lake Elsinore has been disturbed so that the low water mark was two feet higher than in 1883 and the high water mark, namely the over-flow; was not quite reached in 1905-6. Also the second over-flow in the cyole should have been reached in 1914-15 instead of 1915-16 as occurred. The uniformity of these
conditions are not absolutely exact, but they are sufficientiy accurate to form a guide and thoy prove that there is only one dangerous period of draught and that is in the last seven years of the cycle. The other dry periods are so short that they do not produce any bad effects excepting on temporary orops.

By carefully, husbanding this extra supply and the underground water of the San Dieguíd basin, the irrigators under this system of works can be carried over this period.

San Dieguito basin and underground vater supply. It is not necessary for me to go into details in regard to the water that may be secured from this basin, suffice it to say that I regard the 250 incies of water to be obtained from this source as dependable and that the subject is exhaustively treated in my report of 1913. As intimated by Hr. Jones the construction of the Carroll Reservoir has cut off the most of the availablewater for storing the gravels of this basin, but the amount of water on the 29 sq . miles of water shed tributary to the basin and the ancient river clennel referred. to in my report will furmish the water. There is no way of absolut ely determining the velocity of the water in this old ancient channel, but there would be a possibility of an over-draught if the pumping was continued over too long a period of time. However, I still maintain that the storage basin outlined in my former report, will be necessary for the maintenance of the quantity of water required for the irrigation of the bottom lands and to furnish the 250 inches to the Carroll system.

Regarding the bottom lands in the San Dieguito river bottom, between San Dieguito Ranch and the ocean, I seriously doubt whether they will ever require any considerable amount of water, but as they are directly raparian through the stream they will have to be considered, by this I mean that they can demand the water they require at the same rate as that charged to the

Sutual Water Company, however, I do not consider it necessary to provide a pipe line and system of works for these lands, as such pipe lines an be more economiaally built in conjunction with the pipe system for the san Dieguito Ranch on the bottom lands and if it was required the water could be turned into the said system of works from the upper system by the construction of a short pipe line near the Asuna place or immediately above the ranah line.

TABLE NO. 2.
RUNOFFP AT BERNARDO BRIDGE NEAR CARROLI DANI
U. S. GEOJOGICAL SURVEY MRASURBMTITTS

IN
CO-OPERATION WIMH V.I..\& W.CO. IN ACRE FEFII.

	:	-	:	:	:
	:		:	: 0	:
Oot.	: 0	0	: 0	0	: 0
Nov.	: 0	12	: 0	0	0
	: 0	12	: 0	0	0
Dec.	: 0	12	: 2	0	334
Jan.	! 0	12	: 4,390	: 6,270	257,513
	: 0	12	: 4,390	: 0,270	257,513
Feb.	: 0	310	: 12,700	25,000	25,527
Mar.	: (a) 1,400	1,390	: 2,400	9,410	16,207
Apl.	:(a) 4,400	320	: 1,210	: 8,270	6,801
May	: 1,990	8	: 695	19,800	: 3,370
June	: 33	3	: 24	: $\mathbf{0}, 760$: 1,332
July	! 6	0	: 0	: 54	: 252
	: 0	0	:	: 5	
Aug.	: 0	0	: 0	53	: 0
Sept.	$: 0$	0	: 0	0	: 2
	:	0	:	:	:
	:		:	:	:
	:	- 070	:	: 70, 620	-
Total	: 7,830	2,070	: 21,420	70,620	311,340
	:		:	-	.

(a) Estimated.
$04 g^{\prime} 98$

TABLE NO. 4
COIPUUATPION OF USE AIJD WASTES

$\begin{aligned} & \text { SEASON } \\ & \text { (OCT• I } \\ & \text { TO } \\ & 00 T \cdot 1 \text {) } \end{aligned}$	RUNOFF (SUPPIY) MOSTLY ROD. BETWENI: IOV. \& \& APR. 1	WAsTED OVER CARROIJ DAM DURING RAINY PERIOD.	RESERVOIR CONTHITS APR.1st (END OF RAINY PERIOD.)	$\begin{aligned} & :(a) \\ & \vdots(b) \end{aligned}$	IRRIGATION MATER USED PIUS EVAPORATION LOSS DURING EIISUING SURARER.		RESERVOIR COMTEMTS NOV. 1 END OF DRY PERIOD.
1905-06 :	49,660	12,660:	37,000	$:$	15,600		21,400
1906-07 :	38,920	23, 320:	37,000	:	15,600		21,400
1907-08	5,31.0	$0:$	26,710	:	15,600		11,110
1908-09	53,960	28,070:	37,000	:	15,600		21,400
1909-10	36,340	20,740:	37,000	:	15,600		21,400
1910-11	12,980	0 :	34,380	:	15,600		18,780
1911-12	5,560	$0:$	2A,350	: (a)	12,000		12, 50
1912-13	2,070	$0:$	14,420	: (a)	12,000		2,420
1913-14	10,840	$0:$	13,260	: (a)	12,000		1,260
1914-15	50,060	14,320:	37,000	:	15,600		21,400
1915-16	306,090	290,490:	37,000	:	15,600	:	2I,400
:	:	.		:		:	
PRAGE	:	,		:		:	
EXCLUDIVG	26,5\%0	910:		:		:	
1915-16:	26,570	,010:		:			

(a) Irrigation Water used taken at 12,200 Acre Feet per year
(b) Evaporation from Reservoir Surface at 3,400 Acre Fect per year. Evaporation Loss of the Reservoir is small durins this period. (because of lessened airea and somcalled mmake up" or seepage from banks during a lowering reservoir), and would not amount to over 1000 Acre feet per year. Pumping fram gravels 1000 Acre Feet per yeur would therefore compensate this, and give a uniform annual Irrigation use of 12,000 Acre Feet.
po pump 10,000 Aore Feet requires pumping 250 Kiners Inches for 100 days in the year.

DUTY OF WATER.

This becomes a very important question in all cases where the land is to be irrigated exceeds the vater supply and that is the condition which confronts us here, and the lands to be irrigated can be considerad from several different angles, such as the oharacter of soil, advantage in location and cost of delivering the water. In my study of the situation, I have endeavored to consider these different points without considering the ownership of land. And to show the scope over whi ah my investigations have been made, I will under this head introduce some investigations that have been made by other parties, at the same time taking into account their point of vien and in this connection I will introduce the following quotations, made from my report to W. h. Hodges on the watier aupply of the San Diegrito Ranch.

The variation in the gmount of water used in different localities is saused by tile character of soil, the eoonomy of delivery, and the cost c£ घฉものr.

In the majority of casos the quantity of water actually used is far less than estimated. In those localities where all the economical conditions have jeen studied, and the best results obtained, 2 acre feet, equal to $24^{\prime \prime}$ depth on the land, has produced the most satisfactory results. With e complete system of piping on the hill lands, 1 " to 7 acres equal to 2.08 acre feot will bo sufficient, as the runs will necessarily be sinort, and deliveries made at close intervals. At Corona and Highgrove, $5^{\text {n }}$ in depth is considered the best for each irrigation. I have thorefore figured at 2.08 acre feot as a basis to be adopted for the hili lands on this tract, divided as follows, 7 irrigations of . 26 each, extending over a 7 moiths period termed the irrigating season, subject of courge to the modifying conditions of
seasons, and one irrigation through the winter months. More water can be used if required, by increasing the length of the pariod of irrigation, without incressing the capacity of the plant.

The system of furrow irrigation is the only available method for plaoing the water upon those Iands, whioh are very irregular, being on the sides of the hills. In the planting of the trees it will be found of great advantage to place them upon grede contours, the rows following the contour of the hill, with a grade that will permit the water to move slowly slong the furrows. This grade has, by those most experionced with conditions similar to those existing on this tract, b cen founa to be sbout one inch and a half to each tree, - that is, if the trees are set at distances of 20° or 25°, each tree mill be $\mathcal{l} \frac{1}{R}$ " lower than the last one, along the direction in which the water is to flow.

The water on these slopes will necessarily have to be delivered in saall quantities. A $25^{\prime \prime}$ stream will be found the most economical and satisfactory upon this slope.

EQUATION OF WATER FOR IRRIGATION.
$3-1 / 8^{\prime \prime}$ depth at each irrigation $=.26 \times 7 / 8=1.82$ sec. It. to be used in 7 months. The remainder to be used in the winter months. $25^{\prime \prime}=\frac{1}{8}$ sec. ft . $=30$ cu. ft . per minute $=1800$ cu. ft . per hour. $\frac{.26 \times 43560}{1800}=6.3$ hours to irrigate onekare.

The San Fernando Valley system to be imrigated by the Los Angeles aqueduct can be considered in a measure as similar to the San Dieguito territory and Mr. Fifilholland on the duty of water estimates this quantity required as 1 dnch constant flow to $7 \frac{7}{2}$ acres. This is conourred in by the board appointed to investigate the report.

The Government selected Gage Cansl System as being about the best example of the economic use of water and the following is from their report

The Government Report Irrigation Investigation Bulletin 119, 1911, gives the results of three years observation on the duty of vater in this district, and a table giving the data in conoiso form is included herewith.

Duty of Water Under Gage Canal. 1898-1901.

District and year.	Area	Water used	Depth of Irrigation	Dopth of irrigation \& rainfall.
District Ho. 1	ficres	Acre-feet.	Feet	Feet.
1898-1899	5,595	8,330.46	2.32	2.79
1899-1900	3,614	8,779.64	2.15	2.87
1900-1901	3,614	7,478.78	2.07	2.74
District lio. 2	2. 871	6,407.80	2.23	2.71
1899-1900	3,237.84	6,855.71	2.12	2.56
1900-1903.	3,237.84	6,584.44	2.03	2.70
District IIO. 3	530	943.55	1.78	2.26
1899-1900	650	1,059.89	1.63	2.07
1900-1901	650	1,904.31	1.39	2.06
Canal is a whol				
1898-1899	6,996	15,681.84	2.24	2.72
1899-1900	7,501.84	16,695,24	2.25	2.67
1900-1901	7,501.34	14,967.53	2.00	2.67

Waking the everage for the three years in the three Districts 2.02 - depth

The following is taken from the Cuyamaca Fater Company, whiah parallels the San Dieguito territory to some extent. CUYAMACA WATHR COMPANY.

Depth of water apclied -
ac. ft. per acre.

$$
\begin{array}{lll}
0.87 & 0.96 & 0.85
\end{array}
$$

0.86\%

Note: $\frac{\psi}{*}=$ Equivalent to 1 Kiners Inch to 12.6 acres for 9 months Irrigation Saason.

Sweetwater System Coast soil or aore ft. per aore The following table shows use of water for a number of years.

- SWIEETWATER WATRR COMPANY -

SUMIARY OR MOIPMEIY USE OF WATER - ICRE FEERT.

Montin	1910	1911	1912:	1913	1914	$\begin{aligned} & \text { Konthy } \\ & \text { Averages: } \end{aligned}$	$\begin{aligned} & \text { Monthly } \\ & \text { Por cent } \end{aligned}$
Jan.	10	24	$20^{\text {: }}$	119	33	4.1	0.98
Feb.	47	15	231	47	32	74	1.77
Maren	151	16	171	83	99	104	2.49
April	325	441	26	284	297	275	6.58
Tay	589	627	193	614	404	486	11.63
June	608	594	668	485	570	585	14.02
July	593	594	607	525	602	584	14.01
Avg.	598	679	686	581	620	633	15.17
Sept.	581	598	588	550	577	579	13.82
Oct.	250	451	444	428	320	379	9.08
Hov.	160	320	402	198	202	266	6.13
Dec.	231	184	347	81	57	180	4.32
Total	4143	4543	4383	3995	3813	4176	100.00

1/25/15

T

APPENDIX "C" - SECTION "A"

December 7th, 1916
I have made a careful examination of the Dam Site as located at Dam Site "C", and have made a careful observation of the comparative meritts of Dam Site "C" and Dam Site "A"; also a study of the Profile and Contour Survey of the locations made by Mr. Post.

This personal examination was made on the 25 th and 26 th of November, 1916. A reconnoissance was also made of the same site in 1913 and during the dry period when the conditions of underflow and seepage could be observed above and below the dam site.

Liy report made at that time on the San Dieguito Ranch indicates my favorable impression of the dam site. I refer to that study of the situation as to how these conclusions were arrived at at that time.

The heavy floods have displaced most of the loose materials above the bed rock so that it appears upon the surface almost entirely across the cross section. The pits excavated up the sides of the mountain on either side show that this bedrock is almost at the surface and all the examinations and investigations made establish the fact of a perfect bed rock entirely across the dam site.

The location survey made for the line of an aroh dam acoss the canon intersects the bed of the stream at what I consider the best point to build a dam. In estimating a right line through the axis of the dam my judgment vauld be to bring the end of the
dam on the Southerly side of the stream a few feet fur ther up stream, but this is more of a matter of opinion than of necessity. In my judgment all of the conditions are exceptionably good for the construction of a permanent dam at this point regardless of the type of dam used. If properly construated it cannot be other than successful.

In the study of the types of dam suggested I shall refer to them as "EASTFOOD MULIIPLE ARCH DAM" and the "JORGENSEN SINGJE ARCH DAM".

Both plans have been submitted together with specifications and estimates of cost and will consider the two separately and introduce the plans and estimates as furnished mops a part of these Appendices.
1st. "THE EASTWOOD MUITIPLE ARCH DAM".
There are many features of this Dam that appeal to me; the principal feature being that for this particular place its economy 0 material and construction together w ith the fact that the rock is rather hard for the purposes of quarrying, it looks like it should be the most economical structure. There are several other advantages in this form of structure, one of winich is that it at all times furnishes an opportunity for the inspection of the interior of the dam. It also furnishes at a moderate expense an ideal opportunity of building a large sluice at the base of the dam at a very moderate cost, which can at all times be inspected throughout its length except direotly at the gateway which only ocoupies a small saction at the toe of the dam. It also affords advantages in the construction of a spill-
way as by the construction of a concrete deck or curtain wall the water can be passed over the crest of the dam and down the baak slope on a curtain wall over which the water vill pass smoothly without creating any jar upon the dam and this curtain wall without incroasing the initial cost to any great extent bocomes an additional brace for the stability of the dam and the expense for the construction of expensive spillways on the sides of the dam can be in a great measure obviated. In the preliminary plan which Nr. Hastwood has submitted he suggests a spillway the entire length of the dam, winich I think is correct inasmuch as the extreme floods as shown by the gaugings demand a very wide spillway, and as I have already shown it does not require any large additional expense. However, I do not consider that it is necessary to build an additional waste way on both sides of the dam. The natural configuration of the ground makes it very simple and economial to construct a spillway on the North side of the dam while the South side presents a uniform section of rock formation on the wall which would require considerable expense in constructing a waste way, therefore I would make the South ond of the dam with a stone pier at the end without any waste way and construct a wasto way on the Ilorth and; have estima ted the cost of such a waste way 50^{\prime} in width to be $\$ 4660.00$. See estimate of spillway in the Appendix of this report.

As this cost for spillway will not exceed the cost of spillways on the plan fumished by Mr. Eastwood itwill not be considered as an additional cost in the construction of the dam.

The question of the raising of the dam which has been rec-
commended both by myself and Mr. Post is one that has to be considered in connection with the construction of the dam.

The buttresses which form the main stay of the dam in the Eastwood type are planned to be 36^{1} apart from center to center. When it is considered necessary to raise the dam additional struts or beams could be built on the edge of these buttresses on their outer slope of the necessary width or thiakness to sustain the additional stress on the dam and it would be done with very sligit additional expense over what would be the cost to build them ai the present time, as the only expense would be the scabbling off of the face of the wall and roughening it so as to secure unit or bond with the conarete in place. I have made. no estimate of the cost of this extra construction for raising the dam to an additional height of 20^{1}, but it is safe to say that it would not exceed $\$ 30,000.00$

The effect of the dam after it was raised is that there would be ribbon walls on the baok slope of the dam, which I consider would be an advantage as it would divide up the aater curtain into divisions. I find that lir. Eastwood inclines to the opinion that there is an advantage in a contimuous ribbon of water. liy experience is that in wide sheets of water the action of the wind would have a tendency to unequally distributethe stream which would be prevented by this divided ribbons which I have put in on wooden crests where they were of considerable vidth. However, the questi on is not very vital in this case as the wiath of the wier and the depth of the water do not make such provisions a necessity.

I hereto attach the plans, specifications and estimates of cost which Mr. Eastwood has sent me.

2nd. "THE JORGENSEN SINGLE ARCH DAM."

I believe that this would be an entirely safe structure and it is an economical type of construction for this stte and would no doubt give satisfaction.

In his construction he designs a spillway on either side of the dam of supficient dimensions to take care of the flood waters, therefore a continuous overflow of the dam would not be required. Mir. Jorgenson has furmished a plan and complete specifications for the construction of his dam up to the height at Iresent required.

As I believe that provisions should be made for the raising of the dam to at least 20' higher I have made an estimate of the additional cost for making the structure sufficiently strong in its cross section so that it can be easily raised to an additional height above the crest of 20'. This will add $\$ 44,000.00$ to the construction of the dam at this time, but as it would cost a great deal more to add the additional thickness necessary at a later date I would consider it advisable to provide rot this raise in the beginning. The only advantage that I can see in the construction of The Eastwood type of dam from an economic standpcintwould be tho saving of the interest on the money necessary for raising it to the additional height at some time in the future.

An estimate of the cost of the Jorgensen Dam and also the additional amount nocessary to provide for the raising of the additional 20^{\prime} is attached to and forms a part of this appendix.

GArrOLL DAM SPILLWAY.

Station	End Erea	AV. end. Ares.	Length	Cu. ft.
Ox00	450			
1×00	425	137	100^{1}	43.700
1×50	425	425	50^{1}	21.250
2×00	360	392	50^{1}	19.600
3×00	200	280	100^{1}	28.000
4×00	66	133	100^{1}	13.300

125.850

Excavation Solid Roak

4660 Cu. Yds. at . 85
Concrete Fall - $5^{1} \times 1 \times 400^{1}$
2000 Cu . 2 t . at . 35
Total Construction cost
\$3961.
700
\$4661.

NOME--The following Specifications refer to preliminary Estimate Dam site "C" to 306 Flevation. The revised Estimate. For elevation 315, contour is $\$ 270900$ as shown by the following telegram: "Copy".

San Francisco, Calif Dec 51916

H. Clay Kellogg

Spurgeon Bld Santa Ana Calif
Quantities in multiple arched dam up to crest elevation three hundred fifteen is eighteen thousand and sixty cubic yards concrete at fifteen dollars per cubic yard or two hundred and seventy thousend nine hundred dollars

john s eastwood

745p

DESCRIPPION AND OUTLIUE SPECIFICA?Y ONS
of the
CARROLI RESERVOIR OVERFLOW DAY.
being the
DECKED TYPE OF EASTWOOD IULITPPLE-ARCHED DAY.
December 2nd. 1916.

GENERAL SPECTETCATTIONS.

The structure is to be located on the profile site for Carroll Dam known as the site "CH as provided by Mr. W. S. Post Nov. 25th, 1916 .

GEITERAT
DESCRIPTION The dam is to be a siructural dam of a type known as the OF DAKH. Bastwood lulutiple-arched Dem, to be decked to provide a continuous spiliway for the aischarge without distmrbance or injury of at least 80,000 cubic feet of water per second, to be all in compression, and to have a minimum safety factor of ten in compression under full service, the factors of safety in all other essentials exceoding ten. It is to have a crest lensth for spillway of 504 feet in the clear, the crawn of the crest rollway to be at elevation 306 , making a structure having a maximum height of 112 feet at the middie.

It is to consist of 14 buttresses, spaced 36 feet from center to center, these to be joined by arches on both the water face and the downstream deck, as show on the drawings.

A rollway of heavy section is provided as a crest over which the water is to be carried on the long sweeping curve so that it will slide down the deak in a smooth and unruffled sheet to the curved toe and there discharged into the streambed in a horizontal direction. As the rear deck is also arched the sheed of water will follow down over the buttresses in the shallow trough thus oreated and will relieve the load on the arched deak. The arched deck will also be a stiff strut-tie for the downstream edges of the buttresses.

A strut-tie foot walk is to run through the middle of the buttresses and serve as a goot walk and inspection gallery as woll, and also as a bridge through which to cross under any flood at any stage. This foot walk will also connect with the platform for operating the outlet gates and sluice ways. Arched openinge are to be left in all buttresses of a hoight less than the foot walk, leading to wrotected openings in the wings at the ends. This arrangement will enable the attendants to reach any part of the structure at any stage of water.

IOIS

 bodrook for the foundations. The rock is to be prepared for the buttress foundations by cleaning off all soft or decomposea portions, leveling it up across the pits and leaving it with jagged saw tooth shapes as shown on the drawings.The cutoff wall at the to of of the water face erches is to be carefully excavated to sound unseamed or tight 20 ck the shooting to be done by means of light shots, and all loose spalls of any kind are to be removed from the foundations and the rook thorough7y sorubbed with water under good prossure and again when conerete is to be laid.
CONCRETE.
The concrete to be used in this structure is to the best conorete the materials obtainable at the site will fornish, that for the buttress walls to be the equivalent of 1-21/2-5, mix, and thet for the arahed deaks and beams to be of 1-2-4 mix, the exact proporitions to be determined by trials in the field as to that mix will give tho best and denses and strongest concrete of appraximately the se mixtures. -5-

If the aggregate available at the site will not make a good and first class conorete without screening and washing it must be screoned, or screened and washed as the case may be as determined by tho ongineer on the ground.

All cement used shall pass the speoifications of the American Society ior Testing Materials, shall be tested at the mill and only suah coment as passes these requizements are to be allowed to be used in this work.

Field tests 0 of the cement furnished and of the conorete made from it are to be made from time to time as mequired by tine engineer in oharge for the company.

REIHRORCEATEITI.
All parts of the structure are to be reinforced as is shown on the detail sheet for reinfor cement, the reinforcement to consist of deformed bars and Clint on Slectric Weldod mesh, all properly tied in place.

The Eatimate of cost is as follows:Motal concrete structure will be 14510 cu. yds. This I huve estimated at our overall cost of $\$ 15.00$ per cu.yds. or $\$ 217650.00$ for the concrete outlet works for the same placed \$2750.00
Total cost of Dam complete
The copy of Specifications for laltiple Aroh Reinforced Concrete Dam Type III are typical of Specifications for the work, but are not complete, inammuch as they do not contain any special features that refer to Dam site "C" of Carroll

SPECIFICATIOWS.

FOR

MULTIPLE-ARCH REIMTORCED COHCRENE DAM.

TYPE III

SECMION 17. This dam is to be a structural dam of the type known as the Eastwood IFultiple-arched Type, in which design, ardhes are useä for the water face deck and buttresses

GEITRRAI DESCRIP TION OF THE are used for the support of the same, designed especially to meet the conditions prevailing at this site, and so designedas to be completed to an eventful height of 150 feet, or 40 feet above its present crest line, to contour elevation of 5530. This base forthefinaldam is to be built to a crest line at contour elevation 5490, practically a 110 foot base for a 150 ft . dam when completed. It will consist of 11 arches supported by 11 buttresses. The structure is to be founded on a solid rock foundation, the cut-off wall at the front edges of the arch-ring foundations to be cut into sound rock for \& tight cut-off and the buttress foundations to be sound rock, roughened and not ched. The spillway, of smple section is to be located on the right hand end, as shown on the plans, the outlet gates to be located as near the present oreek ainamel as possible, and at the elevation shovn for the solid arched dam.
2. The general dimensions of the proposed 110 foot base for GENERAL the 150 foot dam are as follows:

SIOIIS

Slope of crown line of arches, 1 to 1,45 degrees
Slope of baok eages of buttresses, 音 to 1 , steppeã for the extension.
SDans, 35 Ie日t irom conter to oenter of buttressea.
Arc of extrados, angle of arch, 133 degrees to $34^{\prime \prime}$
radion
at the spring lines and at the arown line of the arale s.
5. The buttresses are supported and tied together by the use STRUT-TIE of reinforced strut-tie beams, built as part of the buttress the reinforcement being continuous from end to end and run into the bed rock at the ends.
4. The spillway as shown on the draws is located at the SPILLWAY right hand end and is provided with a paved or conoreted apron or floor, the crest being at elevation 5486 for partial height and 5526 for full height, the channel of the spillway to be extended to a point far enough to pass the waste water to the rear of the buttress walls.
5. The excavation of the overburden to reach the foundations EXCAVAare to be so made as to enable good sound supporting bedrook to FIONS FOR TIONS be reached for the buttress foundations and to permit the out to be made for the cut-off walls of the aroh ring walls into sound and tight bedrock. In rock excavation for the foundations, only small and light shots shall be used where blasting is necessary, the shots being so placed as to disturb as little as possible the surrounding ground. The bed rock must be cleaned of all spalls or loose fragments before placing concrete.

The arch ring foundations can be excavated as a trench in all perts where the trench does not exceed about 8 or 10 feet, and as an open cut having the general outline of the eliptic plen of the arch rings where deeper than this, giving the cut such slopes as the materials will lay on as an angle of repose. The excavations for the buttresses ase best made as trenches for all depths, open cut for shallow cuts and timbered for the deeper cuts, the cuts being wide enough to permit erecting forms inside of them.
6. As the structure is somewhat unusual in its shapes, the

FORMS FOR CONCRETE forms are sidigned ag a part of the dam to give the oortractor
the advantage of past experience in their construction, and to remove all uncertainty as to the best forms to adopt. The forms are of wood, those for the buttresses being of panels made to resot and use over and over, all so designed as to fit in any part as well as of such sizes as to give a complete cover for the wall in the handiest units and shapes. The forms for the undersides of the arch rings are made up as a frame work of liners, giving the exact shape for the arch, these being mede into a frame upon which is bent to shape lapped $\frac{1}{2} \times 6$ inch boards, making a fo undation from which to space the panels used for the outside forms of the arches. The use of these forms is not arbitrary but they are the results of actual experience in building and will, if used, make the form work as simple as for a straight wall.
7. It is the purpose of these general specifications to cover in a
general wall all suoh matters relating to the construction of IMPMMION the structure as will lead to greater economy and better

OF GMITION SEECIFICATIOAS work in the structure, but there is no intent to make them rigid or arbitrary. The detail specifications to follow will contain the requirements for the work to be done. Full supplementary instruction and field drawings of details and methods to advance the work to the best advantage vill be furnished, as well as plans for plant layout and methods of procedure.
8. The outlet gates are shown to consist of a pair of $24^{\prime \prime}$ valve gates, set in front of a pair of 24 " butterfly gates, conne oted to a short piece of lap-welded tubing, prowided with a flange to which to bolt the butterfly gates, the valve gates being bolted to the flange of the butterfly gates, and a short length of ahoker pipe, flanged to be bolted to the valve gate, all of standard make. All of these to be of a standard make for the required ressure,
and built in place in the dam. The pipes through the dam can be set at the time the arch face is built and concreted in, the gates set after the dam is completed and the by-pass closure is to be closed.
9. The unvatering of the site and the by-passing of the

UNWATERING natural flow of the stream is to be provided in general by a low coffer dam upstream from the site, supplemented by a simisar coffer dam at the downstream side, each far enough removed to not interfere with the work of excavation, the water being passed in a flume over the workings, the seepage being pumped into the flume. When the walls are up to the level of the stream bed a flap gate is to be put into one of the arches to close an opening to be left to pass the water temporarily, this flap gate boing so arranged as to shut off the water, when it can be passed thro ugh the permanent gates till the space behind the flap gate is filled with concrete, making the permanent closure.

SECTION 18. In the designs of this dam the following UNIT unit stresses have been considered as the maximum allowable and STRESSES all parts ore be exceeded when the structure is finally completed to the contour at elevation 5530, and is full vater to that level. The stresses in the base structure are all proportionately less than the above amount in proportion to the depths of water stored.

```
Loading on foundations, less than 12 tons per square foot -
Buttresses in compression, 300# per sq. inch.
Arched deck in direct compression, 300# per sq. inch
Toundetion beses in direct shesr, 100# per sq. inch.
Steel reinforcement, 14,000# per'sq. inch.
There is no bending, no beam shear, or tension in the struature
    and noze of the steel is stressed at all under normal oonditions
    of temperature, the steel boing needed for temperature change
    stresses only.
```

All of the above named stresses are the maximum in the final completed structure.
2. In all buttresses steel. is inserted to connect the unfinishod base with the additionat wall needed to complete this structure, also through the corbels at the upstream ends of the buttresses, also to distribute the stres ses that may be set up by the strut-tie beams. This stoel and its dimensions is shown on the Reinforced Sheet.

Steel for reinforcement shall be in shape and sizes called for in the specifications and shall be of deformed bars, preferably corrugated bars.

The reinforcement for the arch ribs is to be of Clinton electric welded mesh or the equivalent, as shown on the Reinforcement Sheet. At the bases of the arohes there should be inserted steel bars to join the arch rings to the cut-off walls and also to reinforce the front in a longttudinal line at this point.

The steel shall show the following physical and chemical proportions Ultimate tensile strength, not less than $80,0001 \mathrm{bs}$. per sq. inch. Yield point
$\begin{array}{llllll}\text { Elongation in } 8 \text { inches } & \text { " } & \text { " } & \text { " } & 10 & \text { per cent } \\ \text { Phosphorous } & \text { " more } & \text { " } & 0.06 & \text { n } & \text { n } \\ \text { Sulphwr } & \text { " } & \text { " } & \text { " } & 0.06 & \text { " }\end{array}$ Manganese
$\begin{array}{lllll}" & \text { n } & \text { " } & 0.06 & \text { " } \\ " & \text { less } & \text { " } & 0.04 & n \\ & \end{array}$
All bars must be free from seams flaws and aracks and heve a wormanlike finish, and before being used in concrete it shall be cleaned free from all scale, dirt, paint and oil.

All secondary reinforcement such as netting, wire or ties shall be of the best quality obtainable.

REINFORGED CONCRETE

SECMION 19. In all buttresses and floors a conorete having a mix of 1:3:6 Class "C" shall be used.
2. In the arch rings and all strut-tie beams and the gate
settings a 1:2:4 Class "A" mix shall be used.
5. Before beginning work of placing concrete, volumetric IEASUREMENTS measurements shall be made to determine the exact proportions required of esoh to meet these results and from time to time should there be any change in the quality of the aggregation, volumetric messurements should be made to meet the ahanges necessary to keep the quality of the concrete to the required standard.
4. In generai these mixtures shall be substantially

Instande what is generally known as "wet concrete". However, care must be exercised to not add an excess of water and thereby cause separation of cement from the aggregate. Each batch must bo deposited in place as quickly as possible after mixing and the entire mass must have primary set within twenty-four hours. Conorete which has comnenced to set before being deposited will not be permitted to rema in in the work. 8. All concrete shall be deposited wet and sloppy and shall be thoroughly spaded and puddled to remove air and until all the interstices between the stones are thoroughly filled with mortar. When deficiency of moisture is indicated it shall be supplied by sprinkling. Each batch must be pudaled and properly in place before another batch is deposited in the forms. All exposed surfaces of finished and unfinished work shall be kept moist by sprinkling with water under pressure at short intervals. Ho walking or handiing of materials on concrete is to be permitted until it hes thoroughly and completely hardened, and all finished work shell be protected as may be necessary by canvas or plank. Layers shall be formed with square ends and not sloped or tapered.
9. The concrete shall be placed by skilled worken and all stones shall be worked well back from the face of form by spading so as FIIISHINE to produce a smooth surface so that no stone shall approach the face of the work.
10. When new work is joined to old work or to concrete GROUTING already set, the joints shall be scarified and all loese material on the surface flushed out of the forms with water under pressure, the surface then slushed with grout of neat cement, or if still wet
from the washing with neat cement dusted on the wet surface. The surface must not be grouted or dusted unless concrete is to be immediately laid on
7. The resulting concrete mixture shall be of such consistency as to move freely and be sloppy and soft when deposited. It shall be in every
it, the grouting in all cases to immediately precede the laying of conarete. 11. Concrete shall be laid continuously in so far as possible and each layer incorporated with the one previously laid. Wherever it becomes necessary to place fresh concrete upon old conorete surface, the old surface shall be cleaned of all dirt, somm and laitance and thoroughly wetted and flushed before depositing the grout and fresh conarete. 12. The construction must be nearly monolithic JOINTS as possible, but if it is necessary to place the concrete in sections, key blocks in the form of an inverted truncated pyramid for each of removal without disturbing the surrounding concrete, of proper size and arrangement shail be embedded in the concrete where the woris is stopped so that the joining work may later be properly connected to it. Vertical joints shall not be permitted in buttress walls or arch ring walls except as shown on the plans. The vertical joints in the buttresses where they are to be later joined to the new vork for the completed structure shall be provided with the joining reinforcement as showm on the plans and shall also be provided with key blocks fastened to the vertical forms and embedded in the horizontal portions of the steps to key the parts of the walls together. 15. The buttresses and all walls are tapered unfformly from top to bottom to give the required thickness, and the wall is to be carried up with such lifts as are convenient, but in all cases must be left when ceasing work on a buttress wall so that the rear or downstream end of the wall is higher than the front by means of temporary boards placed across the forms to oreate steps or keys, each rising hizher as the rear of the buttress is approached. 14. The buttresses and their hinge joints shall be built first or kept at least a sood distance ahead of the arch ring
construction, preferably completed to the full height efter which the arch rings are built in place. The forms for the under side can be carried up to a considerable distance above the place where the work is being done or completed to the top of the completed battresses, the walls then being placed by using panel forms for the outside forms, braced to the inside forms. The steel for reinforcing the arch rings should be put in place before erecting the outside penels where the walls are thin. The outside panel forms must be properly spaced from the inside forms to give the required thiakness of arch walls at the vari ous levels. All of these dimensions will be given in field drawings.
15. Forms shall not be removeafefore the concrete is

REMROVAL SUFFICIENTIY SEP. Forms shall in no case be removed while OF FORMS the concrete is taking its set, and in not less than 24 hours after placing for buttress forms, not fess than 12 hours for outside panel forms of arches and not less than 7 days for inside arch forms.

Reinforcing bars or net must not be jarred or moved while the concrete is taking its set.
16. All concrete msonry shall be built in place in FORMS wooden forms of sufficient strength, properly tied and braced together so as to be practically unyielding. The forms must have close joints and for outside walls of lumber dressed on the side exposed to the concrete so as to produce a smooth surface on all showing faces. The forms shall be coated with a heavy oil before using, and where used over, as in the case of panels, must be cleaned of adhering conarete before re-use. All forms shall be thoroughly wet before placing conorete against them. All concrete is to be dence and have a smooth
exterior surface and any cracks or spalling shall be repairod.
17. All exposed surfaces of concrete in the superstructure EXPOSED or that portion above the natural surface of the ground and exposed to view, shall be given speodal attention in laying in order to produce smooth surfaces in true plens uniform in structure and appearance. The corners of all finished edges as that of the strut-tie beams are to be clipped by inserting a fillet in the corners of all form for such parts of the work.
18. All exposed reinforcement, left protruding from the EXPOSED buttress walls must be coated with a grout of cement after the MEINFORCErork is completed and before leaving the work, to prevent rusting by exposure to the elements.

COISTRRUCTION.

SECTION 19. Duttresses are to be built of 1:5:6 concrete reinforced longitudinaily with 1 " square deformed rods as shown on the plans, all leps to be 30"; and for the partial height the ends of rods will be leit projecting 24 inches at the onds of the buttresses. They shall be built with such lifts as are most convenient but at the termination of the pouring for any day the rear or doonstream end is to be left higner than the front and proper keys provided in the weli at the point of cessation of work. The foundations shall be prepared by removing all spalls, fragments, ahips, shavings or any foreign matter of any kind from the bedrook, washing it clean with a hose under pressure, dusting the surface with dry cement or sluging it with cement grout as may be airected, and placing the concrete imnediately on this prepared surface. The forms for the buttress bases at the foundation should be of a frame work of studs nailed to a plate to bring the top to a level to
begin the use of the panol buttress forms, leaving the boards of the forms off at the bottom to permit the spread of the concrete to form the proper footing for the buttresses. At the end of each pouring beveled wooden blocks of convenient aize are to be imbedded in the fresh conorete by pressing down into it until they ere flush with the top, which are to be removed before beginning work on the surface, the surface roughened and a 11 loose material of any kind washed out of the forms, till the surface is olean, then grouted or dusted and pouring ime diately commenced. Holes in the rear forms for naking the stops must be provided and the reinforcement placed as the conorete is laid, care being taken not to disturb the reinforcement after it is once in place. The steel rods usea for reinforcing the corbel are to be wired to the corbel forms before the concrete is placed. The strut-tie beam forms shall be built at the same time as the buttress forms, and ail steel shown on the detail dravings wired in place in them before pouring them. These forms must be braced firmly to the buttress forms to prevent sagging.
2. The deak of water-face of the dam shall be built of 1:2:4 concrete very wet and very carefully placed. The cut-off wall is to be placed carefully in a trench of such depth as will place oll of it in sound rock that is free Irom seams, the trench being perfectly clean before concrete is laid in it and the reinforcing bars shown on the reinfor cement sheet, placed in it, bent to an angle to fit the slope of the arch ring wall at the point placed. The concrete in the cut-off wall is to be cont inued up and constitute the base of the arch ring and is a part of it. The arch rings shall be oast in longitudinal lifts of about 6 feet, alt ernately on eadh side of the orown hinge form, the wall being so provided with key blooks as to be continuous and have no longitudinal joint s.
3. The inside forms are to be supported on liners cut to the required radius for the point placed, all of which are given in the field drawings, these liners resting on the projecting ledge of the buttress. These liners are spaced $7^{\prime \prime} 11^{\prime \prime}$ apert to make use of even length studs of 16 feet out to fit between the liners, making a frame of studs upon whioh the $\frac{1}{8 x c}{ }^{\prime \prime}$ boards are bent and neiled. Collar braces to stiffen the liners are put on at the time of erection, the liners being assembled to fit the required radius on a plat form in the carpenter yard. The clinton mesh or other reinforcement acceptable to the engineer, is placed on the inside forms and spparated from it by means of briquettes of mortar of such dimensions as to space it properly from the forms and in the proper place in the walls. This reinforcement will be cut just short of the length of the half arah. 4. The outside forms are to consist of panels as shown on the detail sheet showing arch forms and details. These panels are to be held in place by means of aomel pins and over all a cable of light weight providedwith turnbuckles and hooks at the ends to hold the row of panels in place, the ends of the cable fastening to wire loops placed in the filler of the buttress when the buttresses are poured. This arrangement obviates the tying of the outside form to the inside by means of wires left in the wall, which are objectionable as they cause weeping leaks where the water follows them. 5. Aㄱ strut-tie beams including the one used for a foot walk are to be continuous from end to end of the structure till they terminate in the bedrock at the ends into which the reinforcing rods are to be run and concreted in place.
6. The strut-tie beams are to be reinforced with rods runing continuously through the buttress valls, from ond to end and all of these are to be tied to the cross reinforcement placed in the buttresses
at the junction forming roots to distribute the stresses in the buttresses. The beams are so spaced as to give the atructure absolute rigidity, and owirg to the hinge construction, one is placed at the spring line of the arches. The strut beams aro to be juilt at the same time and as a pari of the buttresses.
7. Field joints in the arch rings shall bo thoroughly FIELD roughened by pioking and the feather edges of the top and
bottom of the walls broken away and cleaned out before continuing the conoreting. Great care must be taken to secure a tight joint between both inside and outside forms and old concrete at the top of lifts in order that no leskage of cement may take place at thas joint, as it is essential that all surfaces, both inside and outside bo as nearly periect as it is possible to make them.
8. Before pouring the arch rings the surfaces of the hinge HIHGE joints, which are cast wi th forms rolled true to make the hinge socket in the buttressan head or corbel, shall be trued up and mafe smooth and all pita filled even with coment mortar and troweled smooth with the remaining surface, and whon dry, the surface coated with an asphaltum of low meltingfoint, and ironed off smooth by weans of a hot hand roller till the surface is true and smooth with a thin and even surface of asphaltum. The crow hinge socket is treated in a similar manner, tine different halves of the arch ring being built up alternately so that the hinge lines are kept straight and are not permitted to become unbalanced. The metal part of the forms used on the corbel hinge sookets are again used for the crom hinges, being aligned by a line indioating the srown placed on the inside forms. The spring line hinges begin at the top of the out-off wall winile that at the crown line begins at a point normal on the aroh to it.
9. A metal strip of ingot iron galvanized is to be fastened to the under side of the hinge sooket forms, bent at 90 degreds so that the free edge can be bent out, coated with asphaltum and oast in the opposite side of the hinge, forming a flexible film to out off any seppage passing through the hinge joints. Yhese sheets are to be of light weight metal, bent and dipped before placing in the concrete, the strips to butt and be joined by mesins of a fold at the onds.
10. AII suriaces in the interior of the dam, such as tho under
side, delk, sides of buttresses shall be made as smooth as possible by the use of ciose, well made forms, but no spe cisl finishing is required after forms are removed except that any rough or poroug: spots shall be thoroughly cleaneã and filled with a mortar to match the concrete in color and texture and be floated over with a wooden float to resemble the remainder of the walls. The outside surface of the deak shall be cleaned and painted with neat cement wash as soon as possible after the outside forms are removed.
11. A wrought iron pipe railing is to be set in the foot walk provided iof the widening of one of the strut-tie beams, one side to have posts set in the top of the walk and on the other state the rail to be set into the side of the beam and ron through the edge of the buttresses. The railing is to be painted to the satisfaction of the enginaer.
12. The outiotrorks are to consist of a trash screen OUTIEN made of ligit railroad rails set into the block of conorete constituting the bsll mouth of tine outlet pipes set on the arch in the roservoir, the rack being vertical to make it self-clearing. The outlot pipes are to be of 24 inch lap-welded tubing, peaned at the upstream
end and flanged to fit a standard butterfly gate on the downstream end. These pipes should be dipped in asphaltum, and repainted when in place in the struature. The butterfly gates to be of standard make for the required pressure, to have bronze vanes and flange trafferty bored to fit the flange on outlot pipe, the other side to be bored to fit the standard 24" valve gate to be placed in front of it. The valve gate to be provided with a short piece of pipe bent fo form a choker, unloss the pipe is connected to a main, in which case it is not needod. The type of vaive shell conform to Section 6 of the Salt Lake City Matermein Spe cifications. 13. After the work is finished, ell materials, mubbish and debris shall be removed from the site, and tho site cleaned up satisfactory to the engineer.
14. Nield drawings of all perts of the works in suah detail as to make all parts of the work plain, as well aa instructions as to best and most economiaal methods will be furnished the contractor as required.

CIBATITG UP

APPROXIMATE QUAUTITIES OF REINFORCEMENT \& FORM LUMBER.

PREIIMINARY REPORT ON THE CARROLL DAM POSSIBILITY

For arch ring reinforcement, $78,155 \mathrm{sq}$. It. Clinton Jesh

Lumber Stumery:
Buttress forms, about Arch Iorms
Strut-tie beam forms Scaffolding \& sundry

Total

120000 st. B. M.

TULI HRIGHT

Reinfor cing steel:

Arched deck, 160000 square ft. Clinion Fiesh or the equivalont, 部/年8-2" $\times 18^{n}$ black wire. 58 equivalent, 800 ft. of $1^{\text {n }}$ deformed bars -100 wire. $3 / 4^{\prime \prime}$ deformed kars .
Strut beams, 55,000 ft. 5/4i bars, 341 jencths. Strut junctions, 2;600 ft. $3 A^{\prime \prime}$ bars, 10 ${ }^{1}$ lengths. Copes on arches, 3,600 " $"$ odd lengths. Arch ring bases, 4,200 " " " $10^{\text {s }}$ lengths.

Total $3 / 4^{n}$ bars, $65400^{1}=49.25$ tons.

BY I. JORGENSEN, JUNE 3, 1916

THE CONSIAIIT ANGIE ARCH AT SITE "C"

On drawing C-55 aro shown the details of the proposed dam. It is seen that the arch starts out from tangents at both abutments. This cheapens both the arch and the spillway. The normal water lovel is taken at elevation 316. The dam crest is at elevation 320. The bottom is at elevation 196 and the spillway floor at elevation 310 .

The arch itself is designed for overflow to the extent of 5 feet passing over the crest. This is with the water at elevation 325. The discharge corresponding to a 325 ft. water level would in this case be 96,000 second feet. About 78,000 sec. ft. passing th rough the two spillways and about 18,000 sec. ft. passing over the crest of the main dam. This is a monolithic structure and is easily capable of withstanding such an overflow. With the water standing at the crest of the dam (elevation 320) the spillways will dis charge 42,000 second feet of water.

The stresses given in a column on drawing C-55 are those due to the maximum water load with water at elevation 325 md 5 ft . of water flowing over the crest. They are seen to be conservative, the max. stress being 25.5 tons per square Poot.

In this connection it may be of interest to note that the maximum arch stress in the ${ }^{2} U P P E R$ OTAY" dam is 61 tons per sq. ft. with water at the crest of the dam. This dam has recently withstood about 3 ft. of overflow.

SPILLTYAY

Both "horns" of the arch are adapted for spillways, the left looking upstream (in this report oalled the South abutment) is the best, and a spillway length of 250 ft . can be constructed here for the greater part consisting of the gravity tangents agrinst which the arch butts. At the right abutment a apillway length of 150 ft. can be economically constructed makin; a total spillway length of 400 ft . The spillway orest is as already mentioned chosen at elevation 310. With 6 ft. flashboards or automatic gates, (not included in the estimate as they are not absolutely necessary), the normal water level is fixed at elevation 316.

ESTIMATE OF COST.

The estimate given below is contractors price and does not include engineering or overhead charges, neither does it include outlet tower or any pipes or valves conneoted with it. It is assumed that a yard of concrete requires 1.25 barrels of cement at §す.00 per barrel at the site.

If the dam is built during the hot season contraction joints will be necossary or in their place some steel. This will add about Shors

I strongly recommend to construct as much as possible of the -2-

Estimate of Constant Angle Dam at Carroll.

 Orest M1ev. 316 Spillway elevation 310. Jorgensen's Eistimate with revised yardage and prices. Complete for Dam, gates and Spillway, but not for flashboards.

Estimate of Yardage.

Main Canal.

These estimates are based on Maps $\frac{n}{\hbar} 553$, Profile $\# 554 .-$ map $\frac{\#}{\hbar} 605 \mathrm{~A}$. and special cross sections taken between stations 46×50 and 85×75 Grade . 5 per 1000;

Between Station 0 to 85×75 the line is figured as a pipe line $48^{\prime \prime}$ diameter, and the remainder as cement lined oanal. Outlet klevation Grade Carroll Canal is 254 ft. Inlet to San Dieguito ia 241 feet. Length of Main Canal is 26100 feet.

Hew station	Length	Cut on upper side $8^{\text {P }}$ bench	End Section Sq.Ft.	Average ond section	Cu.st.
0×00	205	4.3	17		
2×05	205	3.5		16	3280
Trestie 45		3.5	14		
2 T 50		4.0	16		
4x00	150	4		16	2400
	450	4	1	17	65
$\begin{gathered} 7 \times 50 \\ \text { Trestle } 90 \end{gathered}$		4.5	18		65
8×40		4.5	18		
16×00	760			19	14440
Trestle 80		5.0	20		
16×80		4.5	18		
22x90	610	4.5	18	18	10980
Trestle 30:		4.5	18		
23x20		5.0	20		
23x80	60	5.0	20	20	1200
Trestle $24 \times 0{ }^{\text {a }}$			20		
24×00	110	5.0	20		
25×10 Trestye 90		6.0	24	22	2420
$\begin{gathered} \text { Trestle } 90^{1} \\ 26 \times 00 \end{gathered}$					
	500	4.6	18		
31×00 Trestle 120		5.0	20	19	9500
32x20		4.5	18		
39×50	730	4.5	18	18	13140
Trestle 100 41x			18		
	800	5.5	22		
46×50		5.0	20	21	16800
			tal		
					81730

Station	Dist. in feet.	Ifean cut for 8 ft . bench	Fnd Area	Hean end Ares sq. ft.	Cu.ft.	Carroll pipe lino cu. yds.
46×50		2.0	16.0			
	120.0			18.0	2160	80.0
47×70	43.0	2.5	20.0	22.0	946	350
48x73		3.0	24.0			
	105.0			22.0	2310	85.6
49x18		2.5	20.0			
49x80	62	2.5	20.0	20.0	1240	45
Trestle	25^{1}				Trestle	
50×05		2.5	20.0			
51×28	123	1.5	12.0	16	1968	
52×03	75.	1.5	12.0	16.0	1020	37.8
Trestle	27.				Trestle	
52×30	83.	4.5	36.0	28.0	2324.	86.1
53×15		2.5	20.0			
53×88	75.	2.0	16.0	18.0	1350	50.0
	88			15.0	1320	48.9
54×76	70	1.7	13.6	12.0	840	
55x46	70	1.3	10.4	12.0	840	31.1
Trestle	50	.			Trestle	
55x96		1.3	10.4			
57×93	197.0	3.0	24.0	17.2	3388	125.4
Prestle	27				Trestle	
58 x 20		3.0	24.0			
59 x 88	168	2.0	16.0	20.0	3360	124.4
	145			20.0	2900	107.4
61x33	143	3.0	24.0	20.0	2860	105.9

Carroll Pipe Line Continued.

Hote.
Sta 46 wnO of Projected line - Approx 60×00 of Original Survey.
" 85×75 n

Station Head ft.

80×00	215.0
to 0.0	

STATION	IENGTH	$\begin{aligned} & \text { AVERAGE } \\ & \text { END SECTION } \end{aligned}$	CU.FEEPI
$\begin{array}{r} 86+00 \\ 86+30 \\ \text { TRESTLE } \end{array}$	30	36	1080
$\begin{aligned} & 86+60 \\ & 88+50 \end{aligned}$	190	30	5700
$\begin{gathered} \text { TRESTIR } 30 \text { I } \\ 88+80 \\ 90+00 \end{gathered}$	120	30	3600
$\begin{array}{r} \text { TRESTLIG } \begin{array}{r} 401 \\ 90 \\ 91+80 \end{array}+80 \end{array}$	140	32	4480
$\begin{array}{r} \text { TRESTILR } \\ 92+30 \\ 95+70 \end{array}$	340	53	11220
$\begin{array}{rl} \text { TRESMITR } & 501 \\ 96 & 20 \\ 99+40 \end{array}$	$3 ? 0$	40	12800
	160	37	5920
$\begin{array}{r} \text { TRESTITS } \\ 101+70 \\ 105+10 \end{array}$	340	30	10200
$\begin{array}{r} \text { TRESTIIE } 701 \\ 105+80 \\ 111+80 \end{array}$	600	39	23400
$\begin{array}{r} \text { TRESIIIE }{ }^{70^{2}} \\ \frac{112}{120}+50 \\ \hline 00 \end{array}$	750	42	31500
$\begin{array}{r} \text { TRESTITE } 100 \\ 121+00 \\ 126+00 \end{array}$	500	44	22000
$\begin{array}{r} \text { TRESTLLE } 100 \\ 127+00 \\ 150+50 \end{array}$	350	30	10500
			142400

Appendix G.

Classification of Lands

Mr. Jones has olassified the land and gavo a list of a cres wiah I find to be quite accurate, as far as the Henshaw or Lockwood Mesa and the San Dieguito ranch are concerned, the gravity land and the lands too which water can pumped which are arable and waste land check up with the provious classification winich I have made. There may be some differences in regerd to the land further down, but it is immaterial, as there is more than enough land for the water supply. In addition to this classification, I think they shoula be classified with the reference to the character $0: 2$ the soil and their relative location, so far as their water supply and value is concerned.

The lands known as Walnut Canyon on the San Dieguito Ranch are more valuable than the other land on the said ranch, also some portions of the Lockwood Lesa are nore valuable on account of the character of the soil than other portions of the land beaause they contain less clay and are more aluvial in their nature. I also consider the lands along near the coast more valua ble by reason of their location, but they are also more valuable because they are more even ana smooth and the soil contains more decomposed material and is more aiuvial in character. Therefare,
a higher value should be attaahed to them than the lands further inland. Also the lands to which water may be pumped are much more valuable near the coast as their soil is deeper and it contains a muah smaller per centage of indurated clay. Mr. Jones has ouilined the lands that can be reached by this system of works in Districts No. I to 12, a copy of which I shall includo in this roport, as it clearly ropresents the possibilities of the system and the Districts as outlined will aid me in my classifica-
tion of the lands and the location of the water upon the same. On account of the classiifaction of soil on the basia I have outlined, I would for the present leave out District No. I, Distriat No. 2, all the pump lands on the San Dieguito ranch, viich is designated as Distriat No. 13 and also all that part of the San Dieguito ranch on the southeast of the San Dieguito river. Some of this soil, th what is know as Dutah flat, is comparatively $\Omega \supset 0$, but the area is not sufficient to justify carrying a pipe line across the San Dieguito river. I तo not consider the character of the soil along what is termed Canal No. 4, or Green Valley line is good or as well adapted to irrigation as other lands that are more accessible. I have therefore, omitted them from the present consideration of the lands to be supplied with water, excepting the lands under the gravity line in District Ho. 12 known as the Olivenhaim Valley mich is a choice section already under cultivation. The bottom lands below the San Dieguito ranch designated. District No. 4, are very close to the tide level and it is doubtful. whether they will care to irrigate the same. They are only valuable for growing beans and sugar beets, however, as they are directly riparian to the atream they are in a position to demand water, but in case that they do require water, the land can be easily reached by supplementing pipe lines under the mains as laid out. 400 acres of land in District No. 3, which inalul es Del Mar have been included. About 150 acres of this is very desirable land and the other 250 acres, which includes the Del Mar town site, will likely require the vater as the territory is already more or less developed. I believe that the territory under main distributaries vhich I have outlined will be sufficient to use all the water available, especially
as there are 3000 aores of good land to whi ch water may be proped at suell expense imnodiately above these principal lines, añ there is also a possivility that the bottom lands of District 4 may require some water, for this reason I also leave out District No. 9 and all the lands on the Geeen Valley line, exoepting the Olivenheim District down to the jum tion of said line with line No. 5.

Rovised estimates from both lir. Jorgensen and Ir. Eastwood were presented after my report came in, and there were one or two other matters which I will inolude in order to bring my report cown to date.

Jorgensen Single Arch Dam "Constant Angle"

Revised estimate of cost	$\$ 221,200.00$
Fee to Jorgensen	$10,000.00$
I0\% for supervision	$22,120.00$
Total of revised estimate	$253,320.00$

Eastwood Noultiple Arch Dam

Revised estimate of cost, Contract price \$226,600.00 being $\$ 44,300.00$ less than f ormer estimate.

Formor estimate	$\$ 280,000.00$
Deducting	$44,300.00$

Ieaving total of revised esti-
mate $255,700.00$
The above figures shov that at least $\$ 61,680.00$ may be deducted from my former estimate of cost of dam, and the seme amount from the system of works under the Carroll Dam, making the revised total
\$664,655.00

STHGL PIPE.

There is a strong probability that itwill be at least ten years before more than one-half of the full water supply will be required upon Iine $\frac{H}{n} 3$, which mapplies the Hortherly
districts along the coast, and I find that there is 11,800
feet of steel pipe in the inverted syphons in this line, anä It is not likely that, at the end of this neriod that steel pipe will bo as high as at the present timo owing to the war comditions and the jossibility of revisod and additional developments of the stoel manuiacturing industry, therefor θ, it might prove to be a good plan and economy to reutce the size of the pipe to one-half their maximum oapacity. By doing so, at Least $\$ 20,000.00$ could be taken from the estimated cost; also the Del Liar Line which is marked "2-E" in the table of Distributing Lines (See Table 9-e) is a side line indppandent of the main system and they have just put in a small steel pipe line that will supply their immediate wants which will be good for at loast four years, therefore the cost of this line, which is $\$ 15,750.00$ may be eliminated from the present cost of construction, making a furtier deduction from tho total estimated cost of \$35,750.00.

There are other factors upon which a present economy mi chit be effected without in any way effecting the wiginal plan as these pipes can be replaced at the end of ten or twelve years by new pipe lines of the calculated capacity for a completed system which would seem to be justifled by the interest on the money at present deducted. However, this would not apply to any of the conerete pipe as the difference between the large pipe and a small pipe is not very great, and a small steel pipe would oost as much money as the larger conarete pipe.

PROPGRTY RIGHTS.

The property and water rights to be included in this system are not inoludsd in tire repart. This amounts to \$500,000.00.

I also learn that the cash amount to be invested was to be $\$ 600,000.00$, which vould make the outlay agreed upon, \$1,100,000.00

I have also been requested to give my estimate of a conservative commercial value of the lands and system of works when completed.
fiy table of elemental values does not include any factors relative to the commercial value of this territory due to its location and envi ronment. These include Railroad facilities, Highvays and the desirability by reason of climate and scenic conditions for homes. These values I could only establish by comparison and would necessarily be conservative.

Iy opinion is that taking the classification as giv en in elementri values and adaing the increment aune to the above conaitions tiat the following would be a conservative estimate of the comercial value.

COAST IAAIDS.
4000 acres - - at $\$ 650.00$ par acre $=\$ 2,600,000.00$

Inland 2nd class 1anda - -
3200 acres at $\$ 300.00^{\prime \prime}{ }^{\prime \prime}=960.000 .00$
Total _ _ _ _ $\quad 4 ; 760,000.00$ Less amount set aside for water rights and works 1,100,000.00 Leaves a net profit of 3,660,000.00

The increase in the value due to the development should be more than sufficient to pay the interest on the money invested and the water rights.

Mespectfully submitted,
H. Clay Kellogg

Civil \& Hydraulic Engineer.

Ir. E. O. Faulkner, Mgr., Tie \& Timber Department, Los Angeles, California,

Dear Sir:-
I an forwarding Addenda to Report, mede necessary by the fact of the revised estimates of both Jorgensen and Eastwood, whioh should arrive this afternoon.

I am not taking any special pains on the revision for the reason that I believe there will be other revisions made defore the final letting of the contract.

These revisions do not apply to form of construction but to the cost. From the pricos given by ifr. Eastwood, I am confident that they are still suaceptiole to reduction, but there are some elements of cost which do not appear in the estimate.

After agsin carefully going over and studying the matter, of the ele mental values given in my roport, I am better satisfied then ever with the conclusions given, and I find by referring to my notes that the different factors were carefully considered.

The definition of elementary is "the first or primery principles of rudiments"; that is, this would be the rudiment of cost and value and not the comnercial value, which cuuld be arrived at, as shown in the Pollowing table:

	: Cost vailue	cost	:COMAIERCIAL:	TOTAL
	PER	: FATER RI	: Varue	VKIUE
	$\triangle \mathrm{CNR}$	PER ACPE	: PRAR AcRa	PRR ACRE
Coast Lands	\$120.00	\$230.00	: $\$ 300.00$	$\$ 650.00$
Pirst Class	100.00	150.00	150.00	400.00
Second Clas	100.00	100.00	100.00	300.00

Second Class : 100.00 : 100.00: 100.00: 300.00
The above table woula give the following:
$\left.\begin{array}{llllr}\text { COAST IANDS } & 4,000 \text { acr6s } & \text { at } \$ 650.00 & - & \$ 2,600,000.00 \\ \text { lst class } \\ \text { Inland }\end{array}\right)$
§3,660,000.00

The increase in value due to the development sinould be more than sufficient to pay interest on the money invested.

In my report I will not include the table ss tables do not seem to be clear to Mr. Henshav or Irr. Mletoher.

I include a bill of expense and my owm time up to Decomber list. Yours truly,
(Sgd) F. Glay Kelloge,
Hyd. \& Civil Engineer.

Memorandum
(By Hodges - Dec. 20, 1916)
Mr. Eellogg in his report pages 3 and 4 states, that the available water supply after deducting for seepage and evaporation from the dam will be 8,000 inches for a period of 200 jurigati on days and then goes on to deduct 30% for loss betreen the dam and the delivery of the yater to irrigators. He has since stated that this 30% deduction is in error and stated that at least 200 inches sould be saded to the estimate making total of 1600 inches available at the dam and then in addition 250 inches from the San Disguito jottom lands, maling total of 1350 inches evailiable. Get him to confimrm this or correct his statemont in vritins.

The question was raised as to the amount of water to be sold per acre; whetier tinc basis be 7 acres to the inch or ten acres to the inch. It was thought probsble that this matter should be left to the purchaser of water, with the understandinf that he purchase just vhat he believes he will need and it is up to the purchaser as to whether he vill in the future require more.

In ir. Kelloggis report Pase 6, he recommends tinat either type of dam be so constructed as to enable ther sising thereof to an additional 20 it. the expense of this, approximately $\$ 30,000.00$. 3ir. Post insists that this can be aliminetoà and that the game result obtainod by much cheaper construction. This is a point to be considered in the construction

QUESTION: Can the Intual Water Compony increase its stock sufficiently to take care of this construction? Get Legal opinion and incorpcrate in By-havs if neceseary.

On Page 8 lir. Lellogg recommeinds an earth dam with concrete core at a cost of something over $\$ 14,000.00$. A complete concrete dam ould be built for approximately $\operatorname{sig} 20,000.00$. It is the opjonion that the conorete dam should be built.

Incorporate in the two agreements a completo general specification of the work to be completed in the general sohems of the liutual water Company, that is,

1st - The Carroll Dam and its Reservoir.
and - The main canal from the Carroll Jam to the San Dieguito Reservoir.
3d - The San Dieguito Dam and Reservoir.
4th - The canal and pipe line from the San Dioguito leservoir to the junction with Jines Mo. 2 ana Mo. 3, specified in Kellogg's report as line No. 1

5th - Line No. 2. Commence at the end of line No. I along the south side of the Dan Dieguito Rancin to Jockwooi Nesa and Del Nar, known as line No. 2.

6th - The canal and pipe Iiro from the Junction of lines io. I and No. 2 along the north side of the San Diegrito Ranch to Iacosta, known us Line No. 3.
7th - From Lacosta to Carl, shovn in Kellogers ruport as Distriat No. 8.

8th - The necessary punping plant, booster, canal en a pipe lines to develop the 250 miner's inches of water from the San Diesuito bottoms' sands to the San Dieguito Reservoir.

9th - The proposed developmant of Escondido Creek, includins the
dam reservoir site and necessary distributing system. Provide in the agreements that should the loan to the San Dieguito Kutual Water Company be paid off prior to the completion of smy portion of the work eavered by the specifications, provision shall be made that there shall be left in the ireasury of the Futual Water Company, a sufficient amount of stoak for sale by it to provide for the cost of such development not then completed.

Ed Fletcher Papers

1870-1955
MSS. 81

Box: 38 Folder: 13

Business Records - Reports - Kellogg, H.C - "Report on the Carroll Reservoir and System of Works Under the Same"

Copyright: UC Regents
Use: This work is available from the UC San Diego Libraries. This digital copy of the work is intended to support research, teaching, and private study.

Constraints: This work is protected by the U.S. Copyright Law (Title 17, U.S.C.). Use of this work beyond that allowed by "fair use" requires written permission of the UC Regents. Permission may be obtained from the UC SanDiego Libraries department having custody of the work (http://libraries.ucsd.edu/collections $/ \mathrm{mscl} /$). Responsibility for obtaining permissions and any use and distribution of this work rests exclusively with the user and not the UC San Diego Libraries.

